WO2016052120A1 - 重合性組成物、透明樹脂、光学材料、プラスチックレンズおよび透明樹脂の製造方法 - Google Patents

重合性組成物、透明樹脂、光学材料、プラスチックレンズおよび透明樹脂の製造方法 Download PDF

Info

Publication number
WO2016052120A1
WO2016052120A1 PCT/JP2015/075664 JP2015075664W WO2016052120A1 WO 2016052120 A1 WO2016052120 A1 WO 2016052120A1 JP 2015075664 W JP2015075664 W JP 2015075664W WO 2016052120 A1 WO2016052120 A1 WO 2016052120A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerizable composition
transparent resin
compound
plastic lens
weight
Prior art date
Application number
PCT/JP2015/075664
Other languages
English (en)
French (fr)
Inventor
飯島 孝幸
上坂 昌久
Original Assignee
ホヤ レンズ タイランド リミテッド
飯島 孝幸
上坂 昌久
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 飯島 孝幸, 上坂 昌久 filed Critical ホヤ レンズ タイランド リミテッド
Priority to EP15847806.5A priority Critical patent/EP3202805B1/en
Priority to KR1020177008589A priority patent/KR101919258B1/ko
Priority to US15/515,287 priority patent/US10106640B2/en
Priority to CN201580052669.8A priority patent/CN106715502B/zh
Publication of WO2016052120A1 publication Critical patent/WO2016052120A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/724Combination of aromatic polyisocyanates with (cyclo)aliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures

Definitions

  • the present invention relates to a polymerizable composition containing a polythiol compound and a polyisocyanate compound, a transparent resin obtained from the polymerizable composition, an optical material containing the transparent resin, a plastic lens containing the optical material, and a method for producing the transparent resin.
  • Patent Document 1 discloses a composition obtained by mixing an aliphatic polyisocyanate compound and an aliphatic polythiol compound such as pentaerythritol tetrakis- (thioglycolate) and trimethylolpropane tris- (thioglycolate).
  • a method of manufacturing a polyurethane plastic lens having a high refractive index by heating an object is disclosed.
  • Patent Document 2 discloses a tetrafunctional polythiol compound such as pentaerythritol tetrakis (thioglycolate) and pentaerythritol tetrakis (mercaptopropionate) together with a polythiol compound having a bifunctional thiol group in order to increase the degree of crosslinking of the resin. The method used is disclosed.
  • mercaptopropionic acid or an ester compound of mercaptoglycolic acid and polyhydric alcohol is widely used as a polythiol compound as a raw material for plastic lenses.
  • ester compound some literatures disclose the correlation between the quality of the raw material and the impurities contained in the raw material and the quality of the lens obtained.
  • Patent Documents 3 to 6 disclose that the following problems occur when the amount of impurities contained in pentaerythritol and mercaptocarboxylic acid, which are raw materials of pentaerythritol mercaptocarboxylic acid ester, increases.
  • the amount of impurities increases, the viscosity of the polymerizable composition obtained by mixing the pentaerythritol mercaptocarboxylic acid ester and the polyiso (thio) cyanate compound increases, which may make it difficult to handle the polymerizable composition.
  • problems such as deterioration of the hue of the lens and white turbidity of the lens may occur.
  • the cloudiness of the obtained lens is suppressed by setting the content of the bimolecular condensed thioester in the mercaptocarboxylic acid to a predetermined value or less.
  • white turbidity of the obtained lens is suppressed by making the total content of alkali metal and alkaline earth metal in pentaerythritol 1.0% by mass or less. is doing.
  • plastic lenses obtained by reacting a polyisocyanate compound and a polythiol compound a polymerizable composition comprising a polythiol compound having 3 or more mercapto groups and a polyiso (thio) cyanate compound having one or more aromatic rings
  • a plastic lens obtained by polymerizing a product is expected as a plastic lens having a high refractive index and low dispersion.
  • the methods described in Patent Documents 3 to 6 are obtained by polymerizing a polymerizable composition containing a polythiol compound having three or more mercapto groups and a polyiso (thio) cyanate compound having one or more aromatic rings. The occurrence of white turbidity, optical distortion and striae of the plastic lens could not be suppressed.
  • one embodiment of the present invention provides a polymerizable composition capable of suppressing the occurrence of white turbidity, optical distortion and striae of the obtained transparent resin, a transparent resin obtained from the polymerizable composition, and the transparent resin. It is an object of the present invention to provide an optical material including the same, a plastic lens including the optical material, and a method for producing the transparent resin.
  • the present inventors have obtained a polymerizable composition containing a polythiol compound having three or more mercapto groups and a polyiso (thio) cyanate compound having one or more aromatic rings.
  • the cause of white turbidity, optical distortion and striae is the polythiol compound having 3 or more mercapto groups.
  • a polythiol compound having three or more mercapto groups having a value obtained by dividing the measured value of thiol equivalent by the theoretical value of thiol equivalent is within a specific range, the above problem It was found that can be solved.
  • a polymerizable composition comprising a polythiol compound having three or more mercapto groups and a polyiso (thio) cyanate compound having one or more aromatic rings, and measuring a thiol equivalent with respect to a theoretical value of a thiol equivalent of the polythiol compound
  • the polymerizable composition whose thiol equivalent ratio which is a value is 0.975 or more and less than 1.000.
  • a transparent resin obtained by polymerizing the polymerizable composition as described in [1].
  • An optical material comprising the transparent resin according to [1] or [2].
  • a method for producing a transparent resin comprising a step of cast polymerization of the polymerizable composition as described in [1].
  • a polymerizable composition capable of suppressing the occurrence of white turbidity, optical distortion and striae of the obtained transparent resin, a transparent resin obtained from the polymerizable composition, and the transparent resin It is possible to provide an optical material containing the plastic lens, a plastic lens containing the optical material, and a method for producing the transparent resin.
  • the present invention is a polymerizable composition
  • a polymerizable composition comprising a polythiol compound having three or more mercapto groups and a polyiso (thio) cyanate compound having one or more aromatic rings, wherein the thiol equivalent of the thiol equivalent of the polythiol compound is the theoretical value.
  • the measured value of thiol equivalent ratio is 0.975 or more and less than 1.000.
  • the polythiol compound having 3 or more mercapto groups used in the polymerizable composition of the present invention is not particularly limited as long as it is used for producing a transparent resin.
  • Examples of the polythiol compound having three or more mercapto groups used in the polymerizable composition of the present invention include polyol compounds such as pentaerythritol, glycerin and trimethylolpropane, thioglycolic acid, mercaptopropionic acid, thiolactic acid, and the like.
  • ester compound of the above polyol compound and acid examples include trimethylolpropane tris (2-mercaptoacetate), trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (2-mercaptoacetate). And pentaerythritol tetrakis (3-mercaptopropionate).
  • One of these polythiol compounds may be used alone or in combination of two or more.
  • polythiol compounds at least one selected from the group consisting of a polyol compound, thioglycolic acid, mercaptopropionic acid, thiolactic acid, and thiosalicylic acid because the obtained transparent resin has less odor during polishing.
  • ester compounds are preferred.
  • the polyol compound is preferably at least one selected from the group consisting of pentaerythritol, glycerin and trimethylolpropane.
  • the polythiol compound contained in the polymerizable composition of the present invention may be only a polythiol compound having three or more mercapto groups.
  • the polythiol compound which the polymeric composition of this invention contains within the range which does not impair the effect of this invention may contain polythiol compounds other than the polythiol compound which has 3 or more of mercapto groups.
  • the polyiso (thio) cyanate compound having one or more aromatic rings used in the polymerizable composition of the present invention has one or more aromatic rings in one molecule and has two or more iso (thio) cyanate groups. If it has and is used for preparation of transparent resin, it will not specifically limit.
  • the polyiso (thio) cyanate compound having one or more aromatic rings is preferably an aromatic isocyanate.
  • polyiso (thio) cyanate compound examples include 1,2-diisocyanatobenzene, 1,3-diisocyanatobenzene, 1,4-diisocyanatobenzene, 2,4-diisocyanatotoluene, ethylpheny Range isocyanate, isopropylphenylene diisocyanate, dimethylphenylene diisocyanate, diethylphenylene diisocyanate, diisopropylphenylene diisocyanate, trimethylbenzene triisocyanate, benzene triisocyanate, biphenyl diisocyanate, toluidine diisocyanate, 4 , 4'-methylenebis (phenylisocyanate), 4,4'-methylenebis (2-methylphenylisocyanate), bibenzyl-4,4'-diisocyanate, bis (isocyanatophenyl) ethyl Aromatic polyisocyanate compound
  • Xylylene diisocyanate bis (isocyanatoethyl) benzene, bis (isocyanatopropyl) benzene, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate, bis (isocyanatobutyl) benzene, bis (isocyanato) Polyisocyanate compounds having aromatic ring compounds such as methyl) naphthalene and bis (isocyanatomethylphenyl) ether;
  • Aromatic sulfide polyisocyanate compounds such as 2-isocyanatophenyl-4-isocyanatophenyl sulfide, bis (4-isocyanatophenyl) sulfide and bis (4-isocyanatomethylphenyl) sulfide; bis (4-isocyanato Phenyl) disulfide, bis (2-methyl- 5-isocyanatophenyl) disulfide, bis (3-methyl- 5- isocyanatophenyl) disulfide, bis (3-methyl- 6- isocyanatophenyl) disulfide, bis (4- Aromatic disulfides such as methyl- 5-isocyanatophenyl) disulfide, bis (3-methoxy- 4-isocyanatophenyl) disulfide, bis (4-methoxy- 3-isocyanatophenyl) disulfide De-based isocyanate compound;
  • One of these polyiso (thio) cyanate compounds may be used alone, or two or more thereof may be used in combination.
  • tolylene diisocyanate 4, 4'- diphenylmethane diisocyanate and phenylene diisocyanate are used from the viewpoint of suppressing the occurrence of cloudiness, optical distortion and striae of the transparent resin obtained. More preferred is at least one selected from the group consisting of nates.
  • the polyiso (thio) cyanate compound contained in the polymerizable composition of the present invention may be only a polyiso (thio) cyanate compound having one or more aromatic rings. Further, the polyiso (thio) cyanate compound contained in the polymerizable composition of the present invention has an aromatic ring in addition to the polyiso (thio) cyanate compound having one or more aromatic rings as long as the effects of the present invention are not impaired. Other polyiso (thio) cyanate compounds that do not have may also be included.
  • polyisocyanate compounds are not particularly limited as long as they are used for transparent resins and do not have an aromatic ring.
  • Other polyiso (thio) cyanate compounds include, for example, hexamethylene diisocyanate, 2,2-dimethylpentane diisocyanate, 2,2,4-trimethylhexane diisocyanate, butene diisocyanate, 1,3- Butadiene-1,4-diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-undecane triisocyanate, 1,3,6-hexamethylene triisocyanate, 1,8- Aliphatic polyisocyanate compounds such as diisocyanate-4-isocyanatomethyloctane, bis (isocyanatoethyl) carbonate, bis (isocyanatoethyl) ether, lysine diisocyanatomethyl ester and lysine triisocyanate;
  • Aliphatic polyisothiocyanate compounds such as 1,2-diisothiocyanatoethane and 1,6-diisothiocyanatohexane; alicyclic polyisothiocyanate compounds such as cyclohexane diisothiocyanate;
  • Carbonyl isothiocyanate compounds such as 1,3-benzenedicarbonyldiisothiocyanate, 1,4-benzenedicarbonyldiisothiocyanate and (2,2-pyridine) -4,4-dicarbonyldiisothiocyanate; Sulfur-containing aliphatic iso (thio) cyanate compounds such as thiobis (3-isothiocyanatopropane), thiobis (2-isothiocyanatoethane) and dithiobis (2-isothiocyanatoethane);
  • Sulfur-containing alicyclic polyisocyanate compounds such as natomethyl-2-methyl-1,3-dithiolane; containing 2,5-diisothiocyanatothiophene and 2,5-diisothiocyanato-1,4-dithiane Sulfacyclic compounds;
  • halogen-substituted products such as chlorine-substituted products and bromine-substituted products, alkyl-substituted products, alkoxy-substituted products, nitro-substituted products
  • polyvalent compounds Prepolymer-type modified products with alcohol, carbodiimide-modified products, urea-modified products, burette-modified products, dimerization and trimerization reaction products, and the like can also be used.
  • One of these compounds may be used alone or in combination of two or more.
  • the thiol equivalent of the polythiol compound is a value obtained by dividing the number of thiol groups contained in one molecule by the molecular weight.
  • the measured value of the thiol equivalent of a polythiol compound is the thiol equivalent obtained as follows. To about 0.1 g of polythiol compound, 30 mL of chloroform and 30 mL of 2-propanol are added to obtain a sample solution. A 0.05 mol / L iodine solution was dropped into the sample solution, and the end point was the point at which the brown color of the dropped iodine solution did not disappear. And the measured value of thiol equivalent is computed from a following formula.
  • Thiol equivalent (Titration volume (mL) ⁇ Iodine solution factor) / (Sample amount (g) ⁇ 10000)
  • the theoretical value of the thiol equivalent of the polythiol compound is a calculated value obtained by dividing the number of thiol groups contained in one molecule by the molecular weight.
  • the thiol equivalent ratio which is a measured value of thiol equivalent to the theoretical value of thiol equivalent of a polythiol compound having 3 or more mercapto groups, is 0.975 or more and less than 1.000, preferably 0.980 or more and 0.995. It is as follows. When the above value is 0.975 or more and less than 1.000, it is possible to suppress white turbidity, optical distortion and striae of the transparent resin obtained from the polymerizable composition.
  • the thiol equivalent ratio is a value obtained by rounding off the fourth digit after the decimal point.
  • the polythiol compound having 3 or more mercapto groups contained in the polymerizable composition of the present invention has a thiol equivalent ratio, which is a measured value of thiol equivalent to the theoretical value of thiol equivalent of the polythiol compound, of 0.975 or more and less than 1.000.
  • a polythiol compound having three or more mercapto groups there may be only a polythiol compound having three or more mercapto groups.
  • the polythiol compound having three or more mercapto groups contained in the polymerizable composition of the present invention is a thiol equivalent which is a measured value of the thiol equivalent to the theoretical value of the thiol equivalent of the polythiol compound within a range not impairing the effects of the present invention.
  • a polythiol compound having 3 or more mercapto groups having a ratio of less than 0.975 may be included.
  • the polymerizable composition of the present invention may consist only of a polythiol compound having 3 or more mercapto groups and a polyiso (thio) cyanate compound having 1 or more aromatic rings.
  • the polymerizable composition of the present invention is a polythiol compound having three or more mercapto groups and a polyiso (thio) cyanate compound having one or more aromatic rings as necessary, as long as the effects of the present invention are not impaired. These compounds may also be included.
  • Such compounds include, for example, compounds copolymerizable with the above compounds, active hydrogen compounds typified by amines, epoxy compounds, olefin compounds, carbonate compounds, ester compounds, metals, metal oxides, organometallic compounds, and the like.
  • active hydrogen compounds typified by amines, epoxy compounds, olefin compounds, carbonate compounds, ester compounds, metals, metal oxides, organometallic compounds, and the like.
  • An inorganic substance etc. are mentioned. You may use these 1 type individually or in combination of 2 or more types.
  • the polymerizable composition of the present invention may be added to a chain extender, a crosslinking agent, a light stabilizer, an ultraviolet absorber, an antioxidant, an oil-soluble dye, a filler, a release agent, a bluing agent, and the like.
  • a chain extender e.g., a crosslinking agent
  • a light stabilizer e.g., a light stabilizer
  • an ultraviolet absorber e.g., an antioxidant
  • an oil-soluble dye e.g., an oil-soluble dye, a filler, a release agent, a bluing agent, and the like.
  • a known reaction catalyst used in the production of polyurethane can be appropriately added to the polymerizable composition of the present invention.
  • the transparent resin of the present invention is obtained by polymerizing the polymerizable composition of the present invention.
  • the ratio of the total number of urethane bonds to the total number of thiourethane bonds contained in the transparent resin is preferably 0.026 or less, more preferably 0.020 or less. If the ratio of the total number of urethane bonds to the total number of thiourethane bonds is 0.026 or less, the transparent resin may have problems such as optical distortion and striae even if the center thickness or peripheral thickness of the transparent resin is large. rare.
  • an example of the manufacturing method of the transparent resin of this invention is demonstrated.
  • the method for producing a transparent resin of the present invention includes a step of cast polymerization of the polymerizable composition of the present invention. Specifically, first, a polymerizable composition is prepared by mixing a polythiol compound having three or more mercapto groups and a polyiso (thio) cyanate compound having one or more aromatic rings. Then, if necessary, the polymerizable composition is defoamed, and then the polymerizable composition is injected into a mold, and the polymerizable composition injected into the mold is polymerized.
  • a glass or metal mold is used as the mold.
  • the polymerization time for polymerizing the polymerizable resin in the mold is, for example, 3 to 96 hours, and the polymerization temperature is, for example, 0 to 130 ° C.
  • a release agent may be applied to the mold release surface of the mold, or the polymerizable composition may be applied to the polymerizable composition.
  • a release agent may be added.
  • the transparent resin thus obtained, white turbidity, optical distortion and striae are hardly observed.
  • the transparent resin has a high refractive index and low dispersion, further has good heat resistance, durability and impact resistance, and is lightweight.
  • the transparent resin of this invention is used suitably as an optical material of optical elements, such as a spectacle lens and a camera lens.
  • the optical material of the present invention contains the transparent resin of the present invention. As a result, white turbidity, optical distortion and striae are hardly observed in the optical material of the present invention. Further, the optical material of the present invention has a high refractive index and low dispersion, further has good heat resistance, durability and impact resistance, and is lightweight.
  • the optical material of the present invention may consist only of the transparent resin of the present invention, or may contain other transparent resins. Examples of the other transparent resin include polymethyl methacrylate, polycarbonate, cycloolefin polymer, acrylic resin, fluororesin, polyimide, epoxy resin, styrene polymer, polyethylene terephthalate, and polyethylene.
  • the plastic lens of the present invention includes the optical material of the present invention. As a result, white turbidity, optical distortion and striae are hardly observed in the plastic lens of the present invention. Further, the plastic lens of the present invention has a high refractive index and low dispersion, further has good heat resistance, durability and impact resistance, and is lightweight. The plastic lens of the present invention may be composed only of the optical material of the present invention or may contain other optical materials.
  • plastic lens of the present invention may be subjected to physical or chemical treatment such as coating treatment, dyeing treatment, and light control treatment.
  • plastic lenses of Examples and Comparative Examples were evaluated for refractive index, Abbe number, transparency, optical distortion, and striae.
  • ne is a refractive index measured with light of e-line wavelength
  • n F ′ is a refractive index measured with light of F′-line wavelength
  • n C ′ is a refractive index measured with light of C′-line. It is.
  • a plastic lens with an evaluation result of VG or G has no practical problem with respect to optical distortion.
  • a plastic lens with an evaluation result of B is unsuitable for practical use.
  • ⁇ Plastic lenses with an evaluation result of VG or G have no practical problem regarding striae.
  • a plastic lens with an evaluation result of B is unsuitable for practical use.
  • Theoretical and measured values of thiol equivalent The theoretical value of thiol equivalent was calculated by dividing the number of thiol groups contained in one molecule of the polythiol compound used when producing the plastic lens by the molecular weight. Moreover, the measured value of the thiol equivalent of the polythiol compound used when producing a plastic lens was measured with the following method. To about 0.1 g of polythiol compound, 30 mL of chloroform and 30 mL of 2-propanol are added to obtain a sample solution. A 0.05 mol / L iodine solution was dropped into the sample solution, and the end point was the point at which the brown color of the dropped iodine solution did not disappear.
  • Thiol equivalent (meq / g) (Titration amount (mL) ⁇ Iodine solution factor) / (Sample amount (g) ⁇ 10)
  • plastic lenses of Examples and Comparative Examples were produced as follows.
  • Example 1 49.7 parts by weight of pentaerythritol tetrakismercaptoacetate (hereinafter referred to as PETMA), 50.7 parts by weight of tolylene diisocyanate (hereinafter referred to as TDI), 0.02 parts by weight of dimethyltin dichloride and butoxyethyl acid phosphate and diester
  • PETMA pentaerythritol tetrakismercaptoacetate
  • TDI tolylene diisocyanate
  • JP-506 butoxyethyl acid phosphate and diester
  • a mixture obtained by thoroughly stirring and mixing 0.30 parts by weight of a mixture of butoxyethyl acid phosphate (Johoku Chemical Co., Ltd., trade name: JP-506) at room temperature was degassed under a reduced pressure of 5 mmHg.
  • a uniform monomer mixture was prepared. This monomer mixture was poured into a mold composed of a pair of glass mold and resin gasket.
  • Example 1 After injecting the monomer mixture into the mold, the temperature was raised from 20 ° C. to 120 ° C. over 15 hours, polymerized by heating at 120 ° C. for 4 hours, cooled, and the plastic lens was taken out of the mold. Got a plastic lens.
  • Example 2 Instead of using 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI, 55.0 parts by weight of trimethylolpropane tris (3-mercaptopropionate) (hereinafter referred to as TMTP) and 45.8 parts by weight of TDI were used.
  • TMTP trimethylolpropane tris (3-mercaptopropionate)
  • TDI trimethylolpropane tris
  • Example 3 Example 1 except that 46.8 parts by weight of PETMA and 50.7 parts by weight of TDI were replaced with 116.8 parts by weight of pentaerythritol tetrakismercaptopropionate (hereinafter referred to as PETMP) and 87.4 parts by weight of TDI. Similarly, a polymerizable composition was prepared, and a plastic lens of Example 3 was produced.
  • PETMA pentaerythritol tetrakismercaptopropionate
  • PETMP pentaerythritol tetrakismercaptopropionate
  • Example 4 Instead of using 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI, 58.9 parts by weight of 2,3-dimercaptoethylthio-1-mercaptopropane (hereinafter referred to as DMMTP) and 59.1 parts by weight of TDI were used.
  • DMMTP 2,3-dimercaptoethylthio-1-mercaptopropane
  • TDI 2,3-dimercaptoethylthio-1-mercaptopropane
  • Example 5 Instead of using 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI, 33.4 parts by weight of PETMA, 32.8 parts by weight of dimercaptomethyldithiane (hereinafter referred to as DMMD), and 53.8 parts by weight of TDI were used.
  • a polymerizable composition was prepared in the same manner as in Example 1 to produce a plastic lens of Example 5.
  • Example 6 Instead of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI, 117.5 parts by weight of PETMP, 46.6 parts by weight of TDI, and 37.9 parts by weight of hexamethylene diisocyanate (hereinafter referred to as HDI) were used.
  • a polymerizable composition was prepared in the same manner as in Example 1 to produce a plastic lens of Example 6.
  • Example 7 Example 1 except that 44.5 parts by weight of PETMA and 50.7 parts by weight of TDI were used, 54.5 parts by weight of PETMA, 20.9 parts by weight of diphenylmethane diisocyanate (hereinafter referred to as MDI) and 27.1 parts by weight of HDI were used. In the same manner as above, a polymerizable composition was prepared, and a plastic lens of Example 7 was produced.
  • MDI diphenylmethane diisocyanate
  • HDI diphenylmethane diisocyanate
  • Example 8 A polymerizable composition was prepared in the same manner as in Example 1 except that 52.0 parts by weight of PETMP, 20.6 parts by weight of MDI and 25.0 parts by weight of HDI were used instead of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI.
  • the plastic lens of Example 8 was manufactured.
  • Example 9 Instead of using 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI, 59.4 parts by weight of 1,2,4-tris (mercaptomethyl) cyclohexane (hereinafter referred to as MMCH) and 50.6 parts by weight of TDI were used.
  • MMCH 1,2,4-tris (mercaptomethyl) cyclohexane
  • a polymerizable composition was prepared in the same manner as in Example 1 to produce a plastic lens of Example 9.
  • Example 10 A polymerizable composition was prepared in the same manner as in Example 1, except that 35.5 parts by weight of PETMA, 26.8 parts by weight of PETMP and 47.7 parts by weight of TDI were used instead of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI.
  • the plastic lens of Example 10 was manufactured.
  • Example 11 Example 1 was used except that 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI were used and 113.0 parts by weight of PETMP and 87.0 parts by weight of xylylene diisocyanate (hereinafter referred to as XDI) were used.
  • a polymerizable composition was prepared to produce a plastic lens of Example 11.
  • Example 12 A polymerizable composition was prepared in the same manner as in Example 1 except that 120.2 parts by weight of DMMTP and 130.8 parts by weight of XDI were used instead of 49.7 parts by weight of PETMA and 50.7 parts by weight of TDI. Twelve plastic lenses were produced.
  • Comparative Example 1 A polymerizable composition was prepared in the same manner as in Example 1 except that PETMA different from PETMA used in Example 1 was used, and a plastic lens of Comparative Example 1 was produced.
  • Comparative Example 2 A polymerizable composition was prepared in the same manner as in Example 2 except that TMTP different from TMTP used in Example 2 was used, and a plastic lens of Comparative Example 2 was produced.
  • Comparative Example 3 A polymerizable composition was prepared in the same manner as in Example 3 except that PETMP different from PETMP used in Example 3 was used, and a plastic lens of Comparative Example 3 was produced.
  • Comparative Example 4 A polymerizable composition was prepared in the same manner as in Example 7 except that PETMA different from PETMA used in Example 7 was used, and a plastic lens of Comparative Example 4 was produced.
  • Example 5 A polymerizable composition was prepared in the same manner as in Example 10 except that PETMA different from PETMA used in Example 10 was used, and PETMP different from PETMP used in Example 10 was used. A lens was manufactured.
  • Comparative Example 6 A polymerizable composition was prepared in the same manner as in Comparative Example 5 except that PETMA different from PETMA used in Comparative Example 5 was used, and a plastic lens of Comparative Example 6 was produced.
  • Comparative Example 7 A polymerizable composition was prepared in the same manner as in Example 11 except that PETMP different from PETMP used in Example 11 was used, and a plastic lens of Comparative Example 7 was produced.
  • Table 1 shows the thiol equivalents and thiol equivalent ratios of the polythiol compounds used in the production of the plastic lenses of Examples and Comparative Examples.
  • Table 2 shows the evaluation results of the refractive index, Abbe number, transparency, optical distortion, and striae of the plastic lenses of Examples and Comparative Examples. Note that VG, G, and B in the evaluation results mean those described above.
  • the plastic lenses of Examples 1 to 12 were satisfactory in all evaluation items of refractive index, Abbe number, transparency, optical distortion, and striae.
  • the plastic lenses of Comparative Examples 1 to 4 and Comparative Example 6 were satisfactory in terms of refractive index, Abbe number, and transparency, but not satisfactory in terms of optical distortion and striae. It was.
  • the plastic lenses of Comparative Examples 5 and 7 were satisfactory in terms of evaluation items of refractive index, Abbe number, transparency and optical distortion, but not satisfactory in striae.
  • the polymerizable composition of the present invention is a polymerizable composition comprising a polythiol compound having three or more mercapto groups and a polyiso (thio) cyanate compound having one or more aromatic rings,
  • the thiol equivalent ratio which is a measured value of thiol equivalent to the theoretical value of thiol equivalent of the polythiol compound, is 0.975 or more and less than 1.000.
  • the thiol equivalent ratio which is a measured value of thiol equivalent to the theoretical value of thiol equivalent of the polythiol compound, is 0.975 or more and less than 1.000, white turbidity, optical distortion and striae of the transparent resin obtained from the polymerizable composition Can be suppressed.
  • ester compounds of a polyol compound and at least one selected from the group consisting of thioglycolic acid, mercaptopropionic acid, thiolactic acid and thiosalicylic acid are preferable.
  • the polyol compound is preferably at least one selected from the group consisting of pentaerythritol, glycerin and trimethylolpropane.
  • the transparent resin of the present invention is obtained by polymerizing the polymerizable composition of the present invention.
  • the plastic lens of the present invention includes an optical material obtained by polymerizing a polymerizable composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

 得られる透明樹脂の白濁、光学歪みおよび脈理の発生を抑制することができる重合性組成物、その重合性組成物より得られる透明樹脂、その透明樹脂を含む光学材料、その光学材料を含むプラスチックレンズおよび前記透明樹脂の製造方法を提供する。 本発明の重合性組成物は、メルカプト基を3個以上有するポリチオール化合物と芳香環を1個以上有するポリイソ(チオ)シアナート化合物とを含む重合性組成物であって、ポリチオール化合物のチオール当量の理論値に対するチオール当量の測定値であるチオール当量比が、0.975以上、1.000未満である。

Description

重合性組成物、透明樹脂、光学材料、プラスチックレンズおよび透明樹脂の製造方法
 ポリチオール化合物およびポリイソシアナート化合物を含む重合性組成物、その重合性組成物より得られる透明樹脂、その透明樹脂を含む光学材料、その光学材料を含むプラスチックレンズおよび上記透明樹脂の製造方法に関する。
 ポリイソシアネート化合物とポリチオール化合物とを反応させることにより高屈折率を有するプラスチックレンズが得られることが知られている。例えば、特許文献1には、脂肪族ポリイソシアネート化合物と、ペンタエリスリトールテトラキス-(チオグリコレート)およびトリメチロールプロパントリス-(チオグリコレート)などの脂肪族ポリチオール化合物とを混合して得られた組成物を加熱して、高屈折率を有するポリウレタン系プラスチックレンズを製造する方法が開示されている。
 特許文献2には、樹脂の架橋度を上げるために2官能のチオール基を有するポリチオール化合物とともにペンタエリスリトールテトラキス(チオグリコレート)およびペンタエリスリトールテトラキス(メルカプトプロピオネート)などの4官能のポリチオール化合物を用いる方法が開示されている。
 また、プラスチックレンズの原料のポリチオール化合物としてメルカプトプロピオン酸もしくはメルカプトグリコール酸と多価アルコールとのエステル化合物が広く用いられている。このエステル化合物の原料について、その原料の品質およびその原料に含まれる不純物と得られるレンズの品質との間の相関関係がいくつかの文献で開示されている。
 例えば、特許文献3~6には、ペンタエリスリトールメルカプトカルボン酸エステルの原料であるペンタエリスリトールおよびメルカプトカルボン酸に含まれる不純物が多くなると以下の問題が起こることが開示されている。不純物が多くなると、ペンタエリスリトールメルカプトカルボン酸エステルとポリイソ(チオ)シアナート化合物とを混合して得られる重合性組成物の粘度が高くなり、重合性組成物のハンドリングが困難となる可能性がある。また、不純物が多くなると、レンズの色相が悪化したり、レンズに白濁が生じたりするなどの問題が生じる可能性がある。
 そこで、特許文献3に記載のプラスチックレンズの製造方法では、ペンタエリスリトール中のビスペンタエリスリトールの含有量を5.0質量%以下にすることにより、得られるレンズの白濁を抑制している。また、特許文献4に記載のプラスチックレンズの製造方法では、ペンタエリスリトール中のナトリウムおよびカルシウムの含有量を合計で1.0質量%以下、およびビスペンタエリスリトールの含有量を5.0質量%以下にすることにより、得られるレンズの白濁を抑制している。さらに、特許文献5に記載のプラスチックレンズの製造方法では、メルカプトカルボン酸中の二分子間縮合チオエステルの含有量を所定値以下にすることにより、得られるレンズの白濁を抑制している。また、特許文献6に記載のプラスチックレンズの製造方法では、ペンタエリスリトール中のアルカリ金属およびアルカリ土類金属の含有量を合計で1.0質量%以下にすることにより、得られるレンズの白濁を抑制している。
特開昭60-199016号公報 特開昭63-46213号公報 特開平10-120646号公報 特開2005-336104号公報 国際公開第2007/122810号パンフレット 国際公開第2007/052329号パンフレット
 しかしながら、特許文献1および2に記載の方法では、ポリイソシアネート化合物とポリチオール化合物との重合速度が大きいため、反応熱が高くなる。このため、重合熱の熱制御により、得られるプラスチックレンズの光学歪および脈理の発生を防ぐことが困難になる。したがって、特許文献1および2に記載の方法では、プラスチックレンズの光学歪みが大きくなり、実用的なレンズを得ることが難しい場合がある。さらに、特許文献1および2に記載の方法では、ポリイソシアネート化合物とポリチオール化合物とを混合して得られる組成物の粘度は時間の経過とともに著しく上昇するので、その組成物を鋳型中に注入することが困難となる場合がある。
 また、ポリイソシアネート化合物とポリチオール化合物とを反応させることにより得られるプラスチックレンズの中でも、メルカプト基を3個以上有するポリチオール化合物と芳香環を1個以上有するポリイソ(チオ)シアナート化合物とを含む重合性組成物を重合させることにより得られるプラスチックレンズが、高屈折率および低分散を有するプラスチックレンズとして期待されている。しかし、特許文献3~6に記載の方法では、メルカプト基を3個以上有するポリチオール化合物と芳香環を1個以上有するポリイソ(チオ)シアナート化合物とを含む重合性組成物を重合させることにより得られるプラスチックレンズの白濁、光学歪みおよび脈理の発生を抑制することができなかった。
 そこで、本発明の一実施例は、得られる透明樹脂の白濁、光学歪みおよび脈理の発生を抑制することができる重合性組成物、その重合性組成物より得られる透明樹脂、その透明樹脂を含む光学材料、その光学材料を含むプラスチックレンズおよび上記透明樹脂の製造方法を提供することを目的とする。
 本発明者らは、上述の課題を解決するために鋭意検討した結果、メルカプト基を3個以上有するポリチオール化合物と芳香環を1個以上有するポリイソ(チオ)シアナート化合物とを含む重合性組成物を重合させることにより得られる透明樹脂において、白濁、光学歪みおよび脈理が発生する原因は、メルカプト基を3個以上有するポリチオール化合物にあることがわかった。さらに鋭意検討を続けた結果、驚くべきことに、チオール当量の測定値をチオール当量の理論値で除した値が特定範囲内であるメルカプト基を3個以上有するポリチオール化合物を使用すれば、上記課題を解決できることを見出した。すなわち、本発明は以下のとおりである。
[1]メルカプト基を3個以上有するポリチオール化合物と芳香環を1個以上有するポリイソ(チオ)シアナート化合物とを含む重合性組成物であって、ポリチオール化合物のチオール当量の理論値に対するチオール当量の測定値であるチオール当量比が、0.975以上、1.000未満である重合性組成物。
[2]上記[1]に記載の重合性組成物を重合させて得られる透明樹脂。
[3]上記[1]または[2]に記載の透明樹脂を含む光学材料。
[4]上記[3]に記載の光学材料を含むプラスチックレンズ。
[5]上記[1]に記載の重合性組成物を注型重合する工程を含む透明樹脂の製造方法。
 本発明の一実施例によれば、得られる透明樹脂の白濁、光学歪みおよび脈理の発生を抑制することができる重合性組成物、その重合性組成物より得られる透明樹脂、その透明樹脂を含む光学材料、その光学材料を含むプラスチックレンズおよび上記透明樹脂の製造方法を提供することができる。
[重合性組成物]
 本発明は、メルカプト基を3個以上有するポリチオール化合物と芳香環を1個以上有するポリイソ(チオ)シアナート化合物とを含む重合性組成物であって、ポリチオール化合物のチオール当量の理論値に対するチオール当量の測定値であるチオール当量比が、0.975以上、1.000未満である。以下、本発明の重合性組成物を詳細に説明する。
(メルカプト基を3個以上有するポリチオール化合物)
 本発明の重合性組成物に使用される、メルカプト基を3個以上有するポリチオール化合物は、透明樹脂の作製に使用されるものであればとくに限定されない。本発明の重合性組成物に使用されるメルカプト基を3個以上有するポリチオール化合物には、例えば、ペンタエリスリトール、グリセリンおよびトリメチロールプロパン等のポリオール化合物と、チオグリコール酸、メルカプトプロピオン酸、チオ乳酸およびチオサリチル酸等の酸とのエステル化合物、1,2,3-プロパントリチオール、1,2,3-トリメルカプトベンゼン、1,2,4-トリメルカプトベンゼン、1,3,5-トリメルカプトベンゼン、1,2,3-トリス(メルカプトメチル)ベンゼン、1,2,4-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,2,3-トリス(2-メルカプトエチル)ベンゼン、1,2,4-トリス(2-メルカプトエチル)ベンゼン、1,3,5-トリス(2-メルカプトエチル)ベンゼン、1,2,3-トリス(2-メルカプトエチレンオキシ)ベンゼン、1,2,4-トリス(2-メルカプトエチレンオキシ)ベンゼン、1,3,5-トリス(2-メルカプトエチレンオキシ)ベンゼン、1,2,3,4-テトラメルカプトベンゼン、1,2,3,5-テトラメルカプトベンゼン、1,2,4,5-テトラメルカプトベンゼン、1,2,3,4-テトラキス(メルカプトメチル)ベンゼン、1,2,3,5-テトラキス(メルカプトメチル)ベンゼン、1,2,4,5-テトラキス(メルカプトメチル)ベンゼン、1,2,3,4-テトラキス(2-メルカプトエチル)ベンゼン、1,2,3,5-テトラキス(2-メルカプトエチル)ベンゼン、1,2,4,5-テトラキス(2-メルカプトエチル)ベンゼン、1,2,3,4-テトラキス(2-メルカプトエチレンオキシ)ベンゼン、1,2,3,5-テトラキス(2-メルカプトエチレンオキシ)ベンゼン、1,2,4,5-テトラキス(2-メルカプトエチレンオキシ)ベンゼン、1,2,3-トリス(2-メルカプトエチルチオ)ベンゼン、1,2,4-トリス(2-メルカプトエチルチオ)ベンゼン、1,3,5-トリス(2-メルカプトエチルチオ)ベンゼン、1,2,3,4-テトラキス(2-メルカプトエチルチオ)ベンゼン、1,2,3,5-テトラキス(2-メルカプトエチルチオ)ベンゼン、1,2,4,5-テトラキス(2-メルカプトエチルチオ)ベンゼン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、ならびにテトラキス(2-メルカプトエチルチオメチル)メタン等が挙げられる。なお、上述のポリオール化合物と酸とのエステル化合物には、例えば、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)およびペンタエリスリトールテトラキス(3-メルカプトプロピオネート)等が挙げられる。これらのポリチオール化合物の1種を単独で、または2種以上を組み合わせて使用してもよい。
 これらのポリチオール化合物の中でも、得られた透明樹脂の研磨時の臭気が少ないこと等から、ポリオール化合物と、チオグリコール酸、メルカプトプロピオン酸、チオ乳酸およびチオサリチル酸からなる群から選択される少なくとも1種とのエステル化合物が好ましい。また、上記ポリオール化合物は、ペンタエリスリトール、グリセリンおよびトリメチロールプロパンからなる群から選択される少なくとも1種が好ましい。
 本発明の重合性組成物が含むポリチオール化合物は、メルカプト基を3個以上有するポリチオール化合物のみであってもよい。また、本発明の効果を損なわない範囲で、本発明の重合性組成物が含むポリチオール化合物は、メルカプト基を3個以上有するポリチオール化合物以外のポリチオール化合物を含んでもよい。
(芳香環を1個以上有するポリイソ(チオ)シアナート化合物)
 本発明の重合性組成物に使用される、芳香環を1個以上有するポリイソ(チオ)シアナート化合物は、一分子中に1以上の芳香環を有し、2以上のイソ(チオ)シアナート基を有し、そして透明樹脂の作製に使用されるものであればとくに限定されない。芳香環を1個以上有するポリイソ(チオ)シアナート化合物は、好ましくは芳香族イソシアナートである。上記ポリイソ(チオ)シアナート化合物には、例えば、1,2-ジイソシアナトベンゼン、1,3-ジイソシアナトベンゼン、1,4-ジイソシアナトベンゼン、2,4-ジイソシアナトトルエン、エチルフェニレンジイソシアナート、イソプロピルフェニレンジイソシアナート、ジメチルフェニレンジイソシアナート、ジエチルフェニレンジイソシアナート、ジイソプロピルフェニレンジイソシアナート、トリメチルベンゼントリイソシアナート、ベンゼントリイソシアナート、ビフェニルジイソシアナート、トルイジンジイソシアナート、4,4’-メチレンビス(フェニルイソシアナート)、4,4’-メチレンビス(2-メチルフェニルイソシアナート)、ビベンジルー4,4’-ジイソシアナート、ビス(イソシアナトフェニル)エチレン等の芳香族ポリイソシアナート化合物;
キシリレンジイソシアナート、ビス(イソシアナトエチル)ベンゼン、ビス(イソシアナトプロピル)ベンゼン、α,α,α’,α’-テトラメチルキシリレンジイソシアナート、ビス(イソシアナトブチル)ベンゼン、ビス(イソシアナトメチル)ナフタリンおよびビス(イソシアナトメチルフェニル)エーテル等の芳香環化合物を有するポリイソシアナート化合物;
2-イソシアナトフェニル-4-イソシアナトフェニルスルフィド、ビス(4-イソシアナトフェニル)スルフィドおよびビス(4-イソシアナトメチルフェニル)スルフィド等の芳香族スルフィド系ポリイソシアナート化合物;ビス(4 - イソシアナトフェニル) ジスルフィド、ビス( 2 - メチル- 5 - イソシアナトフェニル)ジスルフィド、ビス( 3 - メチル- 5- イソシアナトフェニル)ジスルフィド、ビス( 3 - メチル- 6- イソシアナトフェニル)ジスルフィド、ビス( 4 - メチル- 5-イソシアナトフェニル) ジスルフィド、ビス(3 - メトキシ- 4 - イソシアナトフェニル) ジスルフィド、ビス( 4 - メトキシ- 3 - イソシアナトフェニル)ジスルフィド等の芳香族ジスルフィド系イソシアナート化合物;
1,2-ジイソチオシアナトベンゼン、1,3-ジイソチオシアナトベンゼン、1,4-ジイソチオシアナトベンゼン、2,4-ジイソチオシアナトトルエン、2,5-ジイソチオシアナト-m-キシレン、4,4’-メチレンビス(フェニルイソチオシアナート)、4,4’-メチレンビス(2-メチルフェニルイソチオシアナート)、4,4’-メチレンビス(3-メチルフェニルイソチオシアナート)、4,4’-ジイソチオシアナトベンゾフェノン、4,4’-ジイソチオシアナト-3,3’-ジメチルベンゾフェノンおよびビス(4-イソチオシアナトフェニル)エーテル等の芳香族ポリイソチオシアナート化合物等が挙げられる。これらのポリイソ(チオ)シアナート化合物の1種を単独で、または2種以上を組み合わせて使用してもよい。
 これらのポリイソ(チオ)シアナート化合物の中で、得られる透明樹脂の白濁、光学歪みおよび脈理の発生を抑制する観点から、トリレンジイソシアナート、4 , 4’- ジフェニルメタンジイソシアナートおよびフェニレンジイソシアナートからなる群から選択される少なくとも1種がより好ましい。
 本発明の重合性組成物が含むポリイソ(チオ)シアナート化合物は芳香環を1個以上有するポリイソ(チオ)シアナート化合物のみであってもよい。また、本発明の重合性組成物が含むポリイソ(チオ)シアナート化合物は、本発明の効果を損なわない範囲で、上記の芳香環を1個以上有するポリイソ(チオ)シアナート化合物以外に、芳香環を有さない他のポリイソ(チオ)シアナート化合物を含んでもよい。
 他のポリイソシアネート化合物は、透明樹脂に使用され、芳香環を有さないものであればとくに限定されない。他のポリイソ(チオ)シアネート化合物には、例えば、ヘキサメチレンジイソシアナート、2,2-ジメチルペンタンジイソシアナート、2,2,4-トリメチルヘキサンジイソシアナート、ブテンジイソシアナート、1,3-ブタジエン-1,4-ジイソシアナート、2,4,4-トリメチルヘキサメチレンジイソシアナート、1,6,11-ウンデカントリイソシアナート、1,3,6-ヘキサメチレントリイソシアナート、1,8-ジイソシアナート-4-イソシアナトメチルオクタン、ビス(イソシアナトエチル)カーボネート、ビス(イソシアナトエチル)エーテル、リジンジイソシアナトメチルエステルおよびリジントリイソシアナート等の脂肪族ポリイソシアナート化合物;
ビス(イソシアナトメチル)スルフィド、ビス(イソシアナトエチル)スルフィド、ビス(イソシアナトプロピル)スルフィド、ビス(イソシアナトヘキシル)スルフィド、ビス(イソシアナトメチル)スルホン、ビス(イソシアナトメチル)ジスルフィド、ビス(イソシアナトエチル)ジスルフィド、ビス(イソシアナトプロピル)ジスルフィド、ビス(イソシアナトメチルチオ)メタン、ビス(イソシアナトエチルチオ)メタン、ビス(イソシアナトメチルチオ)エタン、ビス(イソシアナトエチルチオ)エタン、1,5-ジイソシアナート-2-イソシアナトメチル-3-アペンタン、1,2,3-トリス(イソシアナトメチルチオ)プロパン、1,2,3-トリス(イソシアナトエチルチオ)プロパン、3,5-ジチア-1,2,6,7-ヘプタンテトライソシアナート、2,6-ジイソシアナトメチル-3,5-ジチア-1,7-ヘプタンジイソシナート、2,5-ジイソシアナートメチルチオフェンおよび4-イソシアナトエチルチオ-2,6-ジチア-1,8-オクタンジイソシアナート等の含硫脂肪族ポリイソシアナート化合物;
1,2-ジイソチオシアナトエタンおよび1,6-ジイソチオシアナトヘキサン等の脂肪族ポリイソチオシアナート化合物;シクロヘキサンジイソチオシアナート等の脂環族ポリイソチオシアナート化合物;
1,3-ベンゼンジカルボニルジイソチオシアナート、1,4-ベンゼンジカルボニルジイソチオシアナートおよび(2,2-ピリジン)-4,4-ジカルボニルジイソチオシアナート等のカルボニルイソチオシアナート化合物;チオビス(3-イソチオシアナトプロパン)、チオビス(2-イソチオシアナトエタン)およびジチオビス(2-イソチオシアナトエタン)等の含硫脂肪族イソ(チオ)シアナート化合物;
ナトメチル-2-メチル-1,3-ジチオラン等の含硫脂環族ポリイソシアナート化合物;2,5-ジイソチオシアナトチオフェンおよび2,5-ジイソチオシアナト-1,4-ジチアン等の含硫脂環族化合物;
1-イソシアナト-6-イソチオシアナトヘキサン、1-イソシアナト-4-イソチオシアナトシクロヘキサン、1-イソシアナト-4-イソチオシアナトベンゼン、4-メチル-3-イソシアナト-1-イソチオシアナトベンゼン、2-イソシアナト-4,6-ジイソチオシアナト1,3,5-トリアジン、4-イソシアナトフェニル-4-イソチオシアナトフェニルスルフィドおよび2-イソシアナトエチル-2-イソチオシアナトエチルジスルフィド等のイソシアナト基とイソチオシアナト基を有する化合物等が挙げられる。これらのポリイソ(チオ)シアナート化合物の1種を単独で、または2種以上を組み合わせて使用してもよい。
 さらに、上記の芳香環を1個以上有するポリイソ(チオ)シアナート化合物に加えて、これらの塩素置換体および臭素置換体等のハロゲン置換体、アルキル置換体、アルコキシ置換体、ニトロ置換体、多価アルコールとのプレポリマー型変性体、カルボジイミド変性体、ウレア変性体、ビュレット変性体ならびにダイマー化およびトリマー化反応生成物等も使用できる。これらの化合物の1種を単独で、または2種以上を組み合わせて使用してもよい。
(チオール当量)
 本明細書において、ポリチオール化合物のチオール当量とは、1つの分子中に含まれるチオール基の数を分子量で割り算した値である。また、ポリチオール化合物のチオール当量の測定値とは、以下のようにして得られたチオール当量である。
 約0.1gのポリチオール化合物に30mLのクロロホルムおよび30mLの2-プロパノールを加えて試料溶液とする。その試料溶液に0.05mol/Lのヨウ素溶液を滴下し、滴下したヨウ素溶液の褐色が消失しなくなる点を終点とした。そして、下記の式からチオール当量の測定値を算出する。
チオール当量=(滴定量(mL)×ヨウ素溶液のファクター)/(試料量(g)×10000)
 ポリチオール化合物のチオール当量の理論値とは、1つの分子中に含まれるチオール基の数を分子量で割り算した計算値である。
 メルカプト基を3個以上有するポリチオール化合物のチオール当量の理論値に対するチオール当量の測定値であるチオール当量比は、0.975以上、1.000未満であり、好ましくは0.980以上、0.995以下である。上記値が0.975以上、1.000未満であると、重合性組成物から得られる透明樹脂の白濁、光学歪みおよび脈理の発生を抑制することができる。
 なお、上記チオール当量比は、小数点以下4桁目を四捨五入した値である。
 本発明の重合性組成物が含むメルカプト基を3個以上有するポリチオール化合物は、ポリチオール化合物のチオール当量の理論値に対するチオール当量の測定値であるチオール当量比が0.975以上、1.000未満である、メルカプト基を3個以上有するポリチオール化合物のみであってもよい。また、本発明の重合性組成物が含むメルカプト基を3個以上有するポリチオール化合物は、本発明の効果を損なわない範囲で、ポリチオール化合物のチオール当量の理論値に対するチオール当量の測定値であるチオール当量比が0.975未満である、メルカプト基を3個以上有するポリチオール化合物を含んでもよい。
(使用割合)
 メルカプト基を3個以上有するポリチオール化合物と芳香環を1個以上有するポリイソ(チオ)シアナート化合物との使用割合は、好ましくは、SH基/NCO基=0.3~2.0の範囲内であり、より好ましくは0.7~1.5の範囲内である。
(その他の成分)
 本発明の重合性組成物は、メルカプト基を3個以上有するポリチオール化合物および芳香環を1個以上有するポリイソ(チオ)シアナート化合物のみからなるものであってもよい。しかし、本発明の重合性組成物は、本発明の効果を損なわない範囲で、必要に応じて、メルカプト基を3個以上有するポリチオール化合物および芳香環を1個以上有するポリイソ(チオ)シアナート化合物以外の化合物を含んでもよい。このような化合物には、例えば、上記化合物と共重合可能な化合物、アミン等に代表される活性水素化合物、エポキシ化合物、オレフィン化合物、カーボネート化合物、エステル化合物、金属、金属酸化物、有機金属化合物および無機物等が挙げられる。これらの1種を単独で、または2種以上を組み合わせて使用してもよい。
 また、目的に応じて、本発明の重合性組成物に、鎖延長剤、架橋剤、光安定剤、紫外線吸収剤、酸化防止剤、油溶染料、充填剤、離型剤およびブルーイング剤等の種々の物質を添加してもよい。さらに、所望の反応速度に調整するために、ポリウレタンの製造において用いられる公知の反応触媒を本発明の重合性組成物に適宜添加することもできる。
[透明樹脂]
 本発明の透明樹脂は、本発明の重合性組成物を重合させて得られる。透明樹脂に含まれるチオウレタン結合の総数に対するウレタン結合の総数の比は、好ましくは0.026以下であり、より好ましくは0.020以下である。チオウレタン結合の総数に対するウレタン結合の総数の比が0.026以下であると、透明樹脂の中心厚または周縁厚が大きくても、透明樹脂に光学歪み、脈理の発生という問題が生じることがほとんどない。以下、本発明の透明樹脂の製造方法の一例を説明する。
(透明樹脂の製造方法)
 本発明の透明樹脂の製造方法は、本発明の重合性組成物を注型重合する工程を含む。具体的には、まず、メルカプト基を3個以上有するポリチオール化合物と、芳香環を1個以上有するポリイソ(チオ)シアナート化合物とを混合して重合性組成物を作製する。そして、必要に応じて重合性組成物を脱泡し、その後、重合性組成物を成形型に注入し、成形型に注入した重合性組成物を重合させる。成形型には、例えばガラス又は金属製のモールド型が用いられる。成形型内で重合性樹脂を重合させるときの重合時間は、例えば3~96時間であり、重合温度は、例えば、0~130℃である。重合性組成物を重合させて作製した透明樹脂の成形型からの離型性を良好にするために、成形型の離型面に離型剤を塗布してもよいし、重合性組成物に離型剤を添加してもよい。
 このようにして得られる透明樹脂には、白濁、光学歪みおよび脈理が非常にほとんど観察されない。また、透明樹脂は、高屈折率および低分散を有し、良好な耐熱性、耐久性および耐衝撃性をさらに有し、軽量である。このため、本発明の透明樹脂は、眼鏡レンズおよびカメラレンズ等の光学素子の光学材料として好適に使用される。
[光学材料]
 本発明の光学材料は本発明の透明樹脂を含む。これにより、本発明の光学材料には、白濁、光学歪みおよび脈理が非常にほとんど観察されない。また、本発明の光学材料は、高屈折率および低分散を有し、良好な耐熱性、耐久性および耐衝撃性をさらに有し、軽量である。本発明の光学材料は、本発明の透明樹脂のみからなるものであってもよいし、他の透明樹脂を含んでもよい。他の透明樹脂には、例えば、ポリメチルメタクリレート、ポリカーボネート、シクロオレフィンポリマー、アクリル樹脂、フッ素樹脂、ポリイミド、エポキシ樹脂、スチレン系ポリマー、ポリエチレンテレフタレートおよびポリエチレン等が挙げられる。
[プラスチックレンズ]
 本発明のプラスチックレンズは本発明の光学材料を含む。これにより、本発明のプラスチックレンズには、白濁、光学歪みおよび脈理が非常にほとんど観察されない。また、本発明のプラスチックレンズは、高屈折率および低分散を有し、良好な耐熱性、耐久性および耐衝撃性をさらに有し、軽量である。本発明のプラスチックレンズは、本発明の光学材料のみからなるものであってもよいし、他の光学材料を含んでもよい。
 また、必要に応じて、反射防止、高硬度付与、耐摩耗性向上、耐薬品性向上、防雲性付与またはファッション性付与等のために、表面研磨、帯電防止処理、ハードコート処理、無反射コート処理、染色処理、調光処理等の物理的または化学的処理を本発明のプラスチックレンズに施してもよい。
 本発明は、上記各成分の例、含有量、各種物性については、発明の詳細な説明に例示又は好ましい範囲として記載された事項を任意に組み合わせてもよい。
 また、実施例に記載した組成に対し、発明の詳細な説明に記載した組成に調整を行えば、クレームした組成範囲全域にわたって実施例と同様に発明を実施することができる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
 実施例および比較例のプラスチックレンズについて、屈折率、アッベ数、透明性、光学歪みおよび脈理を評価した。
(屈折率およびアッベ数)
 カルニュー光学工業(株)製精密屈折率計KPR-2000型を用いて20℃で、F’線(488.0nm)、C’線(643.9nm)およびe線(546.1nm)の波長の光についてプラスチックレンズの屈折率を測定した。そして、下記の式からアッベ数を算出した。
   アッベ数ν=(n-1)/(nF’-nC’
はe線の波長の光で測定した屈折率であり、nF’はF’線の波長の光で測定した屈折率であり、nC’はC’線の光で測定した屈折率である。
(透明性)
 得られたプラスチックレンズを暗所にて蛍光灯下で目視観察し、プラスチックレンズの透明性を以下の3段階で評価した。
 曇りおよび不透明物質の析出がないもの:VG(Very Good)
 わずかに曇りおよび/または不透明物質の析出が観察されるもの:G(Good)
 曇りの程度がひどいものまたは不透明物質の析出が明らかに見られるもの:B(Bad)
 評価結果がVGまたはGであるプラスチックレンズは、透明性に関して実用的には問題ない。一方、評価結果がBであるプラスチックレンズは実用的には不適当である。
(光学歪み)
 ストレインスコープを使用して、得られたプラスチックレンズを目視観察し、プラスチックレンズの光学歪みを以下の3段階で評価した。
 光学歪みがないもの:VG(Very Good)
 わずかに光学歪みが観察されるもの:G(Good)
 光学歪みが多いもの:B(Bad)
 評価結果がVGまたはGであるプラスチックレンズは、光学歪みに関して実用的には問題ない。一方、評価結果がBであるプラスチックレンズは、実用的には不適当である。
(脈理)
 シュリーレン法により、得られたプラスチックレンズを目視観察し、プラスチックレンズの脈理を以下の3段階で評価した。
 脈理がないもの:VG(Very Good)
 わずかに脈理が観察されるもの:G(Good)
 脈理が多いもの:B(Bad)
 評価結果がVGまたはGであるプラスチックレンズは、脈理に関して実用的には問題ない。一方、評価結果がBであるプラスチックレンズは、実用的には不適当である。
 実施例および比較例のプラスチックレンズを作製するときに使用したポリチオール化合物のチオール当量の理論値を以下のように算出し、測定値を、以下のように測定した。これらの結果を用いてチオール当量比を算出した。
(チオール当量の理論値および測定値)
 プラスチックレンズを作製するときに使用したポリチオール化合物の1つの分子中に含まれるチオール基の数を分子量で割り算しして、チオール当量の理論値を算出した。また、プラスチックレンズを作製するときに使用したポリチオール化合物のチオール当量の測定値を以下の方法で測定した。
 約0.1gのポリチオール化合物に30mLのクロロホルムおよび30mLの2-プロパノールを加えて試料溶液とする。その試料溶液に0.05mol/Lのヨウ素溶液を滴下し、滴下したヨウ素溶液の褐色が消失しなくなる点を終点とした。そして、下記の式からチオール当量の測定値を算出する。
チオール当量(meq/g)=(滴定量(mL)×ヨウ素溶液のファクター)/(試料量(g)×10)
(チオール当量比)
 メルカプト基を3個以上有するポリチオール化合物のチオール当量の測定値をチオール当量の理論値で割り算して、チオール当量比を算出した。
 次に実施例および比較例のプラスチックレンズを以下のようにして作製した。
(実施例1)
 ペンタエリスリトールテトラキスメルカプトアセテート(以下、PETMAと記す)49.7重量部、トリレンジイソシアナート(以下、TDIと記す)50.7重量部、ジメチルチンジクロリド0.02重量部ならびにブトキシエチルアシッドホスフェートおよびジブトキシエチルアシッドホスフェートの混合物(城北化学工業(株)製、商品名:JP-506)0.30重量部を室温中で十分に撹拌混合して得た混合物を、5mmHgの減圧下で脱泡し、均一とした単量体混合物を調製した。この単量体混合物を一対のガラスモールドと樹脂製ガスケットとからなる成形型中に注入した。なお、上記一対のガラスモールドは上型曲率600mm、下型曲率120mmからなるものを用い、プラスチックレンズの中心肉厚が5mm、径が75mmになるように成形型を組み立てた。
 単量体混合物を成形型に注入後、20℃から120℃まで15時間かけて昇温し、120℃にて4時間、加熱重合し、冷却して成形型からプラスチックレンズを取り出して実施例1のプラスチックレンズを得た。
(実施例2)
 PETMA49.7重量部およびTDI50.7重量部の代わりに、トリメチロールプロパントリス(3―メルカプトプロピオナート)(以下、TMTPと記す)55.0重量部、およびTDI45.8重量部を用いた以外は、実施例1と同様にして重合性組成物を調製し、実施例2のプラスチックレンズを製造した。
(実施例3)
 PETMA49.7重量部およびTDI50.7重量部の代わりに、ペンタエリスリトールテトラキスメルカプトプロピオネート(以下PETMPと記す)116.8重量部、およびTDI87.4重量部を用いた以外は、実施例1と同様にして重合性組成物を調製し、実施例3のプラスチックレンズを製造した。
(実施例4)
 PETMA49.7重量部およびTDI50.7重量部の代わりに、2,3-ジメルカプトエチルチオ-1-メルカプトプロパン(以下DMMTPと記す)58.9重量部、およびTDI59.1重量部を用いた以外は、実施例1と同様にして重合性組成物を調製し、実施例4のプラスチックレンズを製造した。
(実施例5)
 PETMA49.7重量部およびTDI50.7重量部の代わりに、PETMA33.4重量部、ジメルカプトメチルジチアン(以下、DMMDと記す)32.8重量部、およびTDI53.8重量部を用いた以外は、実施例1と同様にして重合性組成物を調製し、実施例5のプラスチックレンズを製造した。
(実施例6)
 PETMA49.7重量部およびTDI50.7重量部の代わりに、PETMP117.5重量部、TDI46.6重量部およびヘキサメチレンジイソシアナート(以下、HDIと記す)37.9重量部を用いた以外は、実施例1と同様にして重合性組成物を調製し、実施例6のプラスチックレンズを製造した。
(実施例7)
 PETMA49.7重量部およびTDI50.7重量部の代わりに、PETMA54.5重量部、ジフェニルメタンジイソシアネート(以下、MDIと記す)20.9重量部およびHDI27.1重量部を用いた以外は、実施例1と同様にして重合性組成物を調製し、実施例7のプラスチックレンズを製造した。
(実施例8)
 PETMA49.7重量部およびTDI50.7重量部の代わりに、PETMP52.0重量部、MDI20.6重量部およびHDI25.0重量部を用いた以外は、実施例1と同様にして重合性組成物を調製し、実施例8のプラスチックレンズを製造した。
(実施例9)
 PETMA49.7重量部およびTDI50.7重量部の代わりに、1,2,4-トリス(メルカプトメチル)シクロヘキサン(以下MMCHと記す)59.4重量部、およびTDI50.6重量部を用いた以外は、実施例1と同様にして重合性組成物を調製し、実施例9のプラスチックレンズを製造した。
(実施例10)
 PETMA49.7重量部およびTDI50.7重量部の代わりに、PETMA35.5重量部、PETMP26.8重量部およびTDI47.7重量部を用いた以外は、実施例1と同様にして重合性組成物を調製し、実施例10のプラスチックレンズを製造した。
(実施例11)
 PETMA49.7重量部およびTDI50.7重量部の代わりに、PETMP113.0重量部、およびキシリレンジイソシアナート(以下XDIと記す)87.0重量部を用いた以外は、実施例1と同様にして重合性組成物を調製し、実施例11のプラスチックレンズを製造した。
(実施例12)
 PETMA49.7重量部およびTDI50.7重量部の代わりに、DMMTP120.2重量部、およびXDI130.8重量部を用いた以外は、実施例1と同様にして重合性組成物を調製し、実施例12のプラスチックレンズを製造した。
(比較例1)
 実施例1で使用したPETMAと異なるPETMAを用いた以外は、実施例1と同様にして重合性組成物を調製し、比較例1のプラスチックレンズを製造した。
(比較例2)
 実施例2で使用したTMTPと異なるTMTPを用いた以外は、実施例2と同様にして重合性組成物を調製し、比較例2のプラスチックレンズを製造した。
(比較例3)
 実施例3で使用したPETMPと異なるPETMPを用いた以外は、実施例3と同様にして重合性組成物を調製し、比較例3のプラスチックレンズを製造した。
(比較例4)
 実施例7で使用したPETMAと異なるPETMAを用いた以外は、実施例7と同様にして重合性組成物を調製し、比較例4のプラスチックレンズを製造した。
(比較例5)
 実施例10で使用したPETMAと異なるPETMAを使用し、実施例10で使用したPETMPと異なるPETMPを使用した以外は、実施例10と同様にして重合性組成物を調製し、比較例5のプラスチックレンズを製造した。
(比較例6)
 比較例5で使用したPETMAと異なるPETMAを用いた以外は、比較例5と同様にして重合性組成物を調製し、比較例6のプラスチックレンズを製造した。
(比較例7)
 実施例11で使用したPETMPと異なるPETMPを用いた以外は、実施例11と同様にして重合性組成物を調製し、比較例7のプラスチックレンズを製造した。
(結果)
 実施例および比較例のプラスチックレンズの製造に使用したポリチオール化合物のチオール当量およびチオール当量比を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例および比較例のプラスチックレンズの屈折率、アッベ数、透明性、光学歪みおよび脈理の評価結果を下記の表2に示す。なお、評価結果のVG、GおよびBは前述したものを意味する。
Figure JPOXMLDOC01-appb-T000002
 実施例1~12のプラスチックレンズは屈折率、アッベ数、透明性、光学歪みおよび脈理の全ての評価項目において満足すべきものであった。一方、比較例1~4および比較例6のプラスチックレンズは屈折率、アッベ数、および透明性の評価項目において満足すべきものであったが、光学歪みおよび脈理の評価項目において満足すべきものではなかった。また、比較例5および7のプラスチックレンズは屈折率、アッベ数、透明性および光学歪みの評価項目において満足すべきものであったが、脈理において満足すべきものではなかった。
 最後に、本発明を総括する。
 本発明の重合性組成物は、メルカプト基を3個以上有するポリチオール化合物と芳香環を1個以上有するポリイソ(チオ)シアナート化合物とを含む重合性組成物であって、
 上記ポリチオール化合物のチオール当量の理論値に対するチオール当量の測定値であるチオール当量比が、0.975以上、1.000未満である。
 ポリチオール化合物のチオール当量の理論値に対するチオール当量の測定値であるチオール当量比が0.975以上、1.000未満であると、重合性組成物から得られる透明樹脂の白濁、光学歪みおよび脈理の発生を抑制することができる。
 上記ポリチオール化合物の中でも、ポリオール化合物と、チオグリコール酸、メルカプトプロピオン酸、チオ乳酸およびチオサリチル酸からなる群から選択される少なくとも1種とのエステル化合物が好ましい。また、上記ポリオール化合物は、ペンタエリスリトール、グリセリンおよびトリメチロールプロパンからなる群から選択される少なくとも1種が好ましい。
 上記ポリイソ(チオ)シアナート化合物の中も、トリレンジイソシアナート、4 , 4’- ジフェニルメタンジイソシアナートおよびフェニレンジイソシアナートからなる群から選択される少なくとも1種がより好ましい。
 本発明の透明樹脂は、本発明の重合性組成物を重合させて得られる。
 本発明のプラスチックレンズは、重合性組成物を重合させて得られる光学材料を含む。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。

Claims (10)

  1.  メルカプト基を3個以上有するポリチオール化合物と芳香環を1個以上有するポリイソ(チオ)シアナート化合物とを含む重合性組成物であって、
     前記ポリチオール化合物のチオール当量の理論値に対するチオール当量の測定値であるチオール当量比が、0.975以上、1.000未満である重合性組成物。
  2.  前記ポリチオール化合物が、ポリオール化合物と、チオグリコール酸、メルカプトプロピオン酸、チオ乳酸およびチオサリチル酸からなる群から選ばれる少なくとも1種とのエステル化合物である、請求項1に記載の重合性組成物。
  3.  前記ポリオール化合物が、ペンタエリスリトール、グリセリンおよびトリメチロールプロパンからなる群から選ばれる少なくとも1種である、請求項2に記載の重合性組成物。
  4.  前記芳香環を1個以上有するポリイソ(チオ)シアナート化合物が、芳香族イソシアナートである、請求項1~3のいずれか1項に記載の重合性組成物。
  5.  前記芳香族イソシアナートが、トリレンジイソシアナート、4 , 4 '- ジフェニルメタンジイソシアナートおよびフェニレンジイソシアナートからなる群から選ばれる少なくとも1種である、請求項4に記載の重合性組成物。
  6.  請求項1~5のいずれか1項に記載の重合性組成物を重合させて得られる透明樹脂。
  7.  前記透明樹脂に含まれるチオウレタン結合の総数に対するウレタン結合の総数の比が0.026以下である、請求項6に記載の透明樹脂。
  8.  請求項6または7に記載の透明樹脂を含む光学材料。
  9.  請求項8に記載の光学材料を含むプラスチックレンズ。
  10.  請求項1~5のいずれか1項に記載の重合性組成物を注型重合する工程を含む、透明樹脂の製造方法。
PCT/JP2015/075664 2014-09-30 2015-09-09 重合性組成物、透明樹脂、光学材料、プラスチックレンズおよび透明樹脂の製造方法 WO2016052120A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15847806.5A EP3202805B1 (en) 2014-09-30 2015-09-09 Polymerizable composition, transparent resin, optical material, plastic lens, and method for manufacturing transparent resin
KR1020177008589A KR101919258B1 (ko) 2014-09-30 2015-09-09 중합성 조성물, 투명 수지, 광학 재료, 플라스틱 렌즈 및 투명 수지의 제조 방법
US15/515,287 US10106640B2 (en) 2014-09-30 2015-09-09 Polymerizable composition, transparent resin, optical material, plastic lens, and method for manufacturing transparent resin
CN201580052669.8A CN106715502B (zh) 2014-09-30 2015-09-09 聚合性组合物、透明树脂、光学材料、塑料透镜以及透明树脂的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014202415A JP6324286B2 (ja) 2014-09-30 2014-09-30 重合性組成物、透明樹脂、光学材料、プラスチックレンズおよび透明樹脂の製造方法
JP2014-202415 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052120A1 true WO2016052120A1 (ja) 2016-04-07

Family

ID=55630163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075664 WO2016052120A1 (ja) 2014-09-30 2015-09-09 重合性組成物、透明樹脂、光学材料、プラスチックレンズおよび透明樹脂の製造方法

Country Status (6)

Country Link
US (1) US10106640B2 (ja)
EP (1) EP3202805B1 (ja)
JP (1) JP6324286B2 (ja)
KR (1) KR101919258B1 (ja)
CN (1) CN106715502B (ja)
WO (1) WO2016052120A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153061A1 (ja) * 2015-03-25 2016-09-29 ホヤ レンズ タイランド リミテッド 重合性組成物、光学部材、プラスチックレンズ、及び眼鏡レンズ
US11649324B2 (en) 2017-12-13 2023-05-16 Brimstone Holding Llc Highly pure thionated polymers
KR102001495B1 (ko) * 2018-01-12 2019-07-18 에스케이씨 주식회사 폴리티오우레탄계 플라스틱 렌즈
JP7296755B2 (ja) * 2019-03-28 2023-06-23 ホヤ レンズ タイランド リミテッド 光学部材用樹脂組成物、光学部材、及び眼鏡レンズ
JP7296754B2 (ja) * 2019-03-28 2023-06-23 ホヤ レンズ タイランド リミテッド 光学部材用重合性組成物、光学部材、及び眼鏡レンズ
KR102006338B1 (ko) * 2019-07-11 2019-10-01 에스케이씨 주식회사 폴리티오우레탄계 플라스틱 렌즈용 중합성 조성물
JP2021054915A (ja) * 2019-09-27 2021-04-08 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 光学部材用重合性組成物、光学部材、及び、着色光学部材
CN113549192B (zh) * 2021-08-05 2022-01-18 盛鼎高新材料有限公司 热塑性聚氨酯材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981901A (en) * 1975-02-03 1976-09-21 W. R. Grace & Co. Novel urethane polythiols
JP2000047003A (ja) * 1998-07-31 2000-02-18 Seiko Epson Corp プラスチックレンズの製造方法
JP2001039945A (ja) * 1999-07-27 2001-02-13 Mitsui Chemicals Inc ペンタエリスリトールポリ(チオグリコレート)の製造方法
JP2009536257A (ja) * 2006-05-05 2009-10-08 ピーピージー インダストリーズ オハイオ インコーポレーテツド チオエーテル官能性ポリチオールオリゴマーおよびそれから調製される物品
WO2010067489A1 (ja) * 2008-12-08 2010-06-17 三井化学株式会社 光学材料用重合性組成物、光学材料および光学材料の製造方法
JP2011088933A (ja) * 2004-11-16 2011-05-06 Mitsui Chemicals Inc 樹脂または該樹脂からなる光学部材

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984456A (en) * 1975-02-03 1976-10-05 W. R. Grace & Co. Novel urethane polythiols
JPS59152367A (ja) 1983-02-16 1984-08-31 Mitsui Toatsu Chem Inc メルカプトカルボン酸多価アルコ−ルエステル類の精製法
JPS59172459A (ja) 1983-03-18 1984-09-29 Mitsui Toatsu Chem Inc β−メルカプトプロピオン酸多価アルコ−ルエステルの製造法
JPS60199016A (ja) 1984-03-23 1985-10-08 Mitsui Toatsu Chem Inc チオカルバミン酸s―アルキルエステル系レンズ用樹脂の製造方法
JPS6346213A (ja) 1986-03-01 1988-02-27 Mitsui Toatsu Chem Inc 高屈折率プラスチックレンズ用樹脂の製造方法
EP0676428B1 (en) * 1994-04-06 1999-02-03 Mitsui Chemicals, Inc. Composition for low-specific gravity urethane-base plastic lens
JP3562918B2 (ja) 1996-10-22 2004-09-08 三井化学株式会社 ペンタエリスリトールメルカプトカルボン酸エステルの製造方法
JPH11167006A (ja) 1997-12-02 1999-06-22 Seed Co Ltd 合成樹脂製レンズ
JP4692696B2 (ja) 2000-09-08 2011-06-01 三菱瓦斯化学株式会社 光学材料用樹脂組成物
JP4339181B2 (ja) 2004-05-27 2009-10-07 三井化学株式会社 光学素子用重合性組成物及び該組成物を硬化して得られる光学素子
EP1950197B1 (en) 2005-10-31 2014-04-30 Mitsui Chemicals, Inc. Process for producing pentaerythritol mercaptocarboxylic acid ester, pentaerythritol mercaptocarboxylic acid ester obtained by the same, and use thereof
JP4820865B2 (ja) 2006-04-21 2011-11-24 三井化学株式会社 ペンタエリスリトールメルカプトカルボン酸エステルの製造方法
JP2009057493A (ja) 2007-08-31 2009-03-19 Canon Inc 光学材料及び成形体の製造方法
JP2010235840A (ja) 2009-03-31 2010-10-21 Mitsubishi Chemicals Corp 重合性組成物およびその硬化物
JP2011084479A (ja) 2009-10-13 2011-04-28 Showa Denko Kk メルカプトカルボン酸多価アルコールエステルの製造方法
CN102597037B (zh) * 2009-11-06 2014-04-16 三井化学株式会社 光学材料用内部脱模剂的制造方法、光学材料用内部脱模剂以及含有其的聚合性组合物
JP2011126822A (ja) 2009-12-18 2011-06-30 Showa Denko Kk メルカプトカルボン酸多価アルコールエステルの製造方法
JP5647533B2 (ja) 2010-06-07 2014-12-24 昭和電工株式会社 安定化されたポリエン−ポリチオール系硬化性樹脂組成物
EP2746823B1 (en) * 2011-08-19 2016-05-04 Hoya Corporation Urethane-based optical component and manufacturing process therefor
JP2013184996A (ja) 2012-03-06 2013-09-19 Hitachi Chemical Co Ltd 光学材料用樹脂組成物及びその硬化物
JP5747001B2 (ja) * 2012-06-12 2015-07-08 Hoya株式会社 ウレタン系光学部材及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981901A (en) * 1975-02-03 1976-09-21 W. R. Grace & Co. Novel urethane polythiols
JP2000047003A (ja) * 1998-07-31 2000-02-18 Seiko Epson Corp プラスチックレンズの製造方法
JP2001039945A (ja) * 1999-07-27 2001-02-13 Mitsui Chemicals Inc ペンタエリスリトールポリ(チオグリコレート)の製造方法
JP2011088933A (ja) * 2004-11-16 2011-05-06 Mitsui Chemicals Inc 樹脂または該樹脂からなる光学部材
JP2009536257A (ja) * 2006-05-05 2009-10-08 ピーピージー インダストリーズ オハイオ インコーポレーテツド チオエーテル官能性ポリチオールオリゴマーおよびそれから調製される物品
WO2010067489A1 (ja) * 2008-12-08 2010-06-17 三井化学株式会社 光学材料用重合性組成物、光学材料および光学材料の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202805A1 *

Also Published As

Publication number Publication date
KR101919258B1 (ko) 2018-11-16
CN106715502B (zh) 2022-03-22
JP2016069581A (ja) 2016-05-09
KR20170046762A (ko) 2017-05-02
EP3202805A1 (en) 2017-08-09
EP3202805B1 (en) 2022-08-03
CN106715502A (zh) 2017-05-24
US20170240683A1 (en) 2017-08-24
EP3202805A4 (en) 2018-05-02
JP6324286B2 (ja) 2018-05-16
US10106640B2 (en) 2018-10-23

Similar Documents

Publication Publication Date Title
JP6326343B2 (ja) 重合性組成物、透明樹脂、光学材料、プラスチックレンズおよび透明樹脂の製造方法
JP6324286B2 (ja) 重合性組成物、透明樹脂、光学材料、プラスチックレンズおよび透明樹脂の製造方法
US8044165B2 (en) Process for producing resin for optical material
WO2014027427A1 (ja) ポリチオール化合物の製造方法、光学材料用重合性組成物およびその用途
WO2015159811A1 (ja) 光学材料用組成物及びその製造方法並びに光学材料用組成物から得られる光学材料
KR101877590B1 (ko) 광학 재료용 조성물
KR101923369B1 (ko) 우레탄계 광학 부재 및 그 제조방법
JP3256415B2 (ja) 光重合含硫ウレタン系プラスチックレンズ
KR20150023356A (ko) 우레탄계 광학부재 및 그 제조방법
JP4326455B2 (ja) 高耐熱性樹脂用ポリチオール
JP2006131554A (ja) 高耐熱性樹脂用環状ポリチオール
KR20140001808A (ko) 티오우레탄계 광학재료의 제조방법
JP5319036B1 (ja) ポリチオール化合物の製造方法
EP4036137A1 (en) Polymerizable composition for optical members, optical member, and colored optical member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177008589

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015847806

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15515287

Country of ref document: US

Ref document number: 2015847806

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE