WO2016047736A1 - ペンタクロロジシランの製造方法並びに該方法により製造されるペンタクロロジシラン - Google Patents

ペンタクロロジシランの製造方法並びに該方法により製造されるペンタクロロジシラン Download PDF

Info

Publication number
WO2016047736A1
WO2016047736A1 PCT/JP2015/077055 JP2015077055W WO2016047736A1 WO 2016047736 A1 WO2016047736 A1 WO 2016047736A1 JP 2015077055 W JP2015077055 W JP 2015077055W WO 2016047736 A1 WO2016047736 A1 WO 2016047736A1
Authority
WO
WIPO (PCT)
Prior art keywords
pentachlorodisilane
liquid
tetrachlorosilane
cooling
reaction product
Prior art date
Application number
PCT/JP2015/077055
Other languages
English (en)
French (fr)
Inventor
八嶋 裕之
隆弘 小塚
聖一 寺崎
ジャン-マルク ジラール
Original Assignee
電気化学工業株式会社
レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスポロワタシオン・デ・プロセデ・ジョルジュ・クロード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社, レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスポロワタシオン・デ・プロセデ・ジョルジュ・クロード filed Critical 電気化学工業株式会社
Priority to CN201580051998.0A priority Critical patent/CN107074562B/zh
Priority to US15/513,593 priority patent/US10294110B2/en
Priority to KR1020177008376A priority patent/KR102405910B1/ko
Publication of WO2016047736A1 publication Critical patent/WO2016047736A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10778Purification

Definitions

  • the present invention generally relates to a method for producing pentachlorodisilane, and more particularly to a method for obtaining pentachlorodisilane from a production process of trichlorosilane.
  • the present invention also relates to pentachlorodisilane obtained by the production method.
  • chlorosilanes are used as raw materials such as polysilicon films, silicon nitride films and silicon oxide films that form integrated circuits in semiconductor devices, solar cells, liquid crystal and silicon production raw materials.
  • monosilanes which are compounds in which hydrogen and halogen atoms are bonded to one silicon atom, are representative compounds of chlorosilanes, and have been produced and used on an industrial scale.
  • the progress of semiconductor device manufacturing technology has already reached its limit, but the promotion of higher integration does not stop, and in order to further increase its density, it is caused by heating during the formation of integrated circuits.
  • Patent Document 1 discloses an exhaust gas of a Siemens method for obtaining high-purity polycrystalline silicon as a reaction containing pentachlorodisilane as a product, that is, It has been shown that pentachlorodisilane is contained in the exhaust gas after introducing and reacting trichlorosilane and hydrogen into a silicon production reactor.
  • Patent Document 2 describes that pentachlorodisilane is present in an off-gas during precipitation of polycrystalline silicon from chlorosilane and hydrogen.
  • Patent Document 3 in addition to disilicon tetrachloride and disilicon hexachloride, disilicon pentachloride (that is, pentachlorodisilane), octachloride are contained in the high-boiling chlorosilanes-containing material generated in the polycrystalline silicon production process. It is disclosed that trisilicon (that is, octachlorotrisilane) and the like are included.
  • JP 2006-169012 A Special table 2009-528253 JP 2009-227577 A
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel method for producing pentachlorodisilane that can utilize the production process of trichlorosilane, and particularly includes vaporized tetrachlorosilane and hydrogen. It is an object of the present invention to provide a method for recovering pentachlorodisilane from a mixture of chlorosilanes by-produced in a process of producing trichlorosilane by reacting a raw material gas at a high temperature. Another object of the present invention is to provide high-purity pentachlorodisilane obtained by the above production method.
  • the present inventors have been able to obtain pentachlorodisilane from a mixture of chlorosilanes produced in the above-described production process of trichlorosilane, and at the same time, pentachlorodisilane in the mixture of chlorosilanes. It has been found that the concentration of disilane and the mass produced per unit time can be controlled, and the present invention has been achieved.
  • the raw material gas containing vaporized tetrachlorosilane and hydrogen is reacted at a high temperature to obtain a reaction product gas containing trichlorosilane, and obtained in the high temperature reaction step.
  • a reaction process gas is brought into contact with a cooling liquid obtained by circulating cooling the agglomerated liquid generated by cooling the reaction product gas and rapidly cooled to produce pentachlorodisilane in the agglomerated liquid, And a recovery step of recovering the pentachlorodisilane thus obtained.
  • a liquid generated by quenching the reaction product gas is referred to as a condensate
  • a liquid used for quenching the reaction product gas by further cooling the condensate with a cooling device or the like is referred to as a cooling liquid.
  • the high temperature reaction step is usually performed at a temperature in the range of 700 to 1400 ° C.
  • the cooling temperature of the reaction product gas must be 600 ° C. or lower, preferably 200 ° C. or lower, more preferably 30 to 60 ° C.
  • tetrachlorosilane is additionally added to the cooling liquid and / or condensate, and the cooling liquid and / or condensate is extracted out of the circulation system and recovered as an extracted liquid.
  • the additional addition of tetrachlorosilane is preferably made by adding tetrachlorosilane to the cooling liquid and / or the coagulating liquid before use for quenching by means of an addition facility whose supply rate can be adjusted.
  • the extraction of the liquid to the outside of the circulation system may be performed at any place in the circulation system, but is preferably performed by providing an extraction facility whose extraction speed can be adjusted.
  • the amount of additional tetrachlorosilane added to the cooling liquid and / or condensate is preferably 10 to 10,000 L / h per 1000 L / h (before vaporization) of the feed rate of tetrachlorosilane for the raw material.
  • the method and place of adding additional tetrachlorosilane to the cooling liquid and / or condensate is arbitrary, but it is convenient and preferable to add it at a position before the spray nozzle used for rapid cooling.
  • the extraction rate of the cooling liquid and / or condensate is preferably 5 to 1000 L / h per 1000 L / h (before vaporization) of the feed rate of tetrachlorosilane for raw material.
  • the method and place for extracting the cooling liquid and / or condensate are not particularly limited, but it is convenient and preferable to extract from the position after the outlet of the circulation pump for circulating the cooling liquid.
  • the rate of addition of additional tetrachlorosilane to the coolant and condensate, and the rate of extraction of the coolant and condensate, respectively the concentration of pentachlorodisilane contained in the coolant and generated per unit time The mass can be adjusted.
  • the extracted liquid in the recovery step, is distilled to obtain pentachlorodisilane having a purity of 90% by mass or more.
  • the extracted condensate in the recovery step, is recovered, concentrated to form an intermediate raw material, and further passed through a distillation step, whereby higher purity pentachlorodisilane can be obtained.
  • the condensate collection facility, concentration facility, and distillation facility may be directly connected to the condensate extraction pipe or may be separate independent facilities, and there is no particular limitation. Further, there is no particular limitation on the number of the plurality of distillation facilities provided continuously or the number of distillations in the case of repeatedly using one facility for distillation.
  • the extracted liquid is stored in a recovery tank that is also a single distillation can equipped with a heating device, and the recovered extracted liquid is heated in the recovery tank (single distillation can) to generate evaporation gas.
  • the gas is introduced into a concentration tower, trichlorosilane and tetrachlorosilane are removed from the gas, the liquid is concentrated to a liquid containing pentachlorodisilane, and a liquid containing pentachlorodisilane obtained from the concentration tower is required.
  • further distillation in a distillation column is performed to obtain pentachlorodisilane having a purity of 90% by mass or more.
  • the form of the distillation column is not particularly limited, and a known multistage distillation column, packed distillation, or the like is preferably used.
  • either continuous type or batch type batch type
  • the number of stages or the theoretical number of distillation columns (hereinafter collectively referred to as the number of stages) is preferably 30 or more, more preferably 50 or more, and more preferably 70 or more. preferable. If it is less than 30 stages, the purification purity of pentachlorodisilane may not be improved even if repeated distillation operations are carried out.
  • the operation pressure for distillation can be set not only at normal pressure but also at a reduced pressure of 5 to 300 mmHg, preferably 10 to 100 mmHg.
  • the column top material is returned to the distillation column at a predetermined ratio (referred to as reflux ratio), but the reflux ratio is not particularly limited.
  • the reflux ratio is not particularly limited.
  • any regular packing or irregular packing should be used.
  • the irregular packing known materials such as Raschig rings, spiral rings, pole rings, partition rings, helipacks, coil packs, I-rings, C-rings, and nutter rings can be used.
  • a further aspect of the present invention is pentachlorodisilane obtained by purifying the above condensed liquid (extracted liquid) to 90% by mass or more by distillation.
  • the purification purity of pentachlorodisilane is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 99% by mass or more. When the purity is less than 90% by mass, film formability in the semiconductor manufacturing process may be deteriorated.
  • FIG. 1 schematically shows an evaporator 10 for vaporizing the raw material tetrachlorosilane, a preheater 20 for preheating the vaporized raw material tetrachlorosilane and hydrogen, and preheated.
  • Reaction furnace 30 for reacting the raw material gas at a temperature in the range of 700 to 1400 ° C. to obtain a reaction product gas, and the reaction product gas is 600 ° C. or less, preferably 200 ° C. or less, more preferably 30 to 60 ° C.
  • It includes a quenching tower 40 for cooling to a temperature range to obtain a condensate containing pentachlorodisilane, and a recovery device 50 for recovering pentachlorodisilane from the condensate. Furthermore, a pump 43 for circulating the condensate, a cooling device 44 for cooling the condensate into a cooling liquid, and a spray nozzle 42 for blowing the cooling liquid into the quenching tower can be provided. Further, in the present invention, additional tetrachlorosilane can be added to the circulating coolant at a position indicated by 49 using equipment having a mechanism capable of adjusting the addition rate. Furthermore, in the present invention, the circulating condensate can be extracted at a position indicated by 45 using equipment having a mechanism capable of adjusting the extraction speed.
  • the condenser 60 for condensing trichlorosilane and tetrachlorosilane from the cooled uncondensed gas of the reaction product gas, the condensate taken out from the condenser 60 and the collecting device 50 are taken out.
  • a tank 70 for temporarily storing low-boiling substances and a distillation column 80 for fractionating trichlorosilane and tetrachlorosilane from the storage liquid led out from the tank 70 are preferably provided.
  • the recovery device 50 also functions as a single distillation can 90 that vaporizes pentachlorodisilane or tetrachlorosilane from the condensate obtained in the quenching tower 40 and separates it from the non-evaporated component.
  • a concentrating tower 100 for separating disilane from other low boilers is preferably provided.
  • the evaporator 10, the preheater 20, and the reactor 30 constitute a high-temperature reaction step, and the subsequent quenching tower 40, pump 43, cooling device 44, and spray nozzle 42 are a quenching step (pentachlorodisilane generation).
  • the apparatus which comprises a process.
  • the evaporator 10 is an apparatus for vaporizing the raw material tetrachlorosilane.
  • the vaporized tetrachlorosilane is discharged from the evaporator 10, mixed with hydrogen, and supplied to the preheater 20.
  • the tetrachlorosilane stock solution supplied to the evaporator 10 is desirably high-purity tetrachlorosilane, silanes having a boiling point higher than that of tetrachlorosilane may be mixed in a trace amount.
  • such a high boiling point substance accumulates in the bottom portion of the evaporator 10 as an unevaporated component and prevents vaporization of tetrachlorosilane, so that the unevaporated component accumulated in the bottom portion of the evaporator 10 is removed from the evaporator 10.
  • a structure that can be removed in a batch or continuous manner is preferred.
  • the taken-out non-evaporated matter can be supplied to the distillation device 90 of the recovery device 50 in order to recover industrially available tetrachlorosilane, pentachlorodisilane, and the like discharged at the same time.
  • the heating temperature of the raw material tetrachlorosilane in the evaporator 10 can be 60 to 150 ° C., preferably 60 to 120 ° C. under atmospheric pressure. Within this temperature range, tetrachlorosilane can be sufficiently evaporated without vaporizing high-boiling substances such as pentachlorodisilane. Naturally, if the evaporator 10 is of a type that can adjust the internal pressure, the optimum temperature for vaporizing tetrachlorosilane varies from the above temperature range accordingly.
  • ⁇ Preheater> The raw material tetrachlorosilane vaporized in the evaporator 10 is mixed with hydrogen gas and supplied as a raw material gas to a reaction furnace 30 to be described later, but before being fed into the reaction furnace 30, the preheater 20 reacts with the reaction furnace 30. Heated to approach the internal temperature. Thereby, the temperature difference between the temperature of the mixed gas and the inside of the reaction furnace 30 can be relaxed, the temperature unevenness inside the reaction furnace 30 can be prevented, the conversion efficiency of the reaction furnace 30 can be improved, and the local thermal stress can be improved.
  • the reaction furnace 30 can be protected from the concentration of.
  • generated by reaction of tetrachlorosilane and hydrogen, and is in a thermal equilibrium state is returned to tetrachlorosilane by the temperature fall by inflow of raw material gas.
  • the mixing ratio of tetrachlorosilane and hydrogen gas can be, for example, 1: 1 to 1: 2 in terms of molar ratio.
  • the reaction furnace 30 includes a reaction vessel 31, a long heater 32 disposed so as to surround the outside of the reaction vessel 31, and an outer cylinder vessel 33 that accommodates the reaction vessel 31 and the heater 32.
  • the mixed gas of tetrachlorosilane and hydrogen is reacted inside the reaction vessel 31 at a high temperature of about 700 to 1400 ° C., so that the production of trichlorosilane mainly proceeds.
  • This reaction is a thermal equilibrium reaction, and at the same time, silylene, monochlorosilane, dichlorosilane, tetrachlorosilane, hydrogen, hydrogen chloride, and the like are in a coexisting state.
  • hexachlorodisilane and the pentachlorodisilane of the present invention are also generated and present constantly in this coexistence state, for example, when silylene and trichlorosilane react.
  • the reaction vessel 31 is a substantially cylindrical vessel for reacting raw material tetrachlorosilane and hydrogen in a high temperature environment, and a raw material gas inlet for taking in the raw material gas, and for deriving a reaction product gas. And a reaction product gas outlet.
  • the raw material gas inlet is provided in the center of the bottom of the reaction vessel 31 and the reaction product gas outlet is provided in the upper side wall of the reaction vessel 31.
  • An extraction pipe 34 is inserted into the reaction product gas outlet and discharges the reaction product gas to the outside of the reaction furnace 30.
  • a source gas introduction opening and a reaction product gas extraction opening are provided at positions corresponding to the source gas introduction port and the reaction product gas extraction port, respectively.
  • a connecting means is provided at the reaction product gas extraction opening and is connected to the quenching tower 40.
  • the extraction pipe 34 is a tubular member connected to the reaction product gas extraction outlet of the reaction container 31 through the reaction product gas extraction opening of the outer cylinder container 33, and contains trichlorosilane generated in the reaction container 31. The reaction product gas is discharged from the extraction pipe 34 and supplied to the quenching tower 40.
  • the quenching tower 40 includes a cylindrical metal container 41, spraying means for spraying the coolant into the reaction product gas in the metal container 41, that is, a spray nozzle 42 for subdividing the coolant into fine droplets, A pump 43 for taking out the condensate collected at the bottom of the metal container 41 and circulating it to the spray nozzle 42, a cooling device 44 for cooling the condensate, and a collecting device 50 (single distillation) for extracting a part of the condensate A conduit 45 is provided to the can 90).
  • a mechanism such as a control valve capable of adjusting the extraction speed of the aggregate liquid can be provided.
  • a reaction product gas extraction pipe 34 for connection to the reaction furnace 30 is provided on the side wall of the quenching tower 40.
  • the spray nozzle 42 is installed near the upper part of the reaction product gas introduction opening so that the coolant can be sprayed toward the reaction product gas introduced into the quenching tower 40.
  • a pipe for supplying uncondensed gas of the reaction product gas that is in a gaseous state after cooling to the capacitor 60 described later is connected to the top of the quenching tower 40. In the example of FIG.
  • a packed bed 46 is provided above the quenching portion of the quenching tower 40, and a pipe for supplying a cooling liquid to further cool the quenched reaction product gas passing through the packed bed 46. 47 is also provided. Furthermore, a disperser is provided in the vicinity of the lower portion of the pipe 47 in order to prevent a single flow of the coolant supplied from the pipe 47. In addition, supplying the coolant from the pipe 47 also has an effect of preventing the metal container 41 and the packed bed 46 from being corroded by a high-temperature reaction gas. Further, by changing the supply rate of the cooling liquid from the pipe 47, the amount of the reaction gas that condenses and liquefies changes, so that the circulating liquid amount in the quenching tower can be kept constant.
  • the amount of the cooling liquid in the pipe 47 is increased so that the condensed gas increases, and conversely, when the cooling liquid and the flocculated liquid circulating in the quenching tower increase.
  • the amount of coolant in the pipe 47 may be reduced so that the condensed gas is reduced.
  • the condensate accumulates at the bottom of the metal container 41 of the quenching tower 40, is extracted through the tank 48, is continuously circulated, and is cooled by the cooling device 44 to become a cooling liquid.
  • a cooling liquid is a mixed liquid mainly containing chlorosilane and trichlorosilane
  • additional tetrachlorosilane can be further added to the cooling liquid.
  • an additional tetrachlorosilane introduction tube 49 is connected to the base of the spray nozzle 42.
  • the introduction pipe 49 has a control valve or the like in the middle, and its supply speed can be adjusted.
  • the tetrachlorosilane to be added may be obtained from any place.
  • tetrachlorosilane derived from a distillation column 80 described later can be used.
  • the amount of tetrachlorosilane added to the cooling liquid is preferably 10 to 10,000 L / h, more preferably 10 to 5000 L / h, still more preferably 100 per 1000 L / h of raw material tetrachlorosilane (before vaporization). ⁇ 500 L / h.
  • the concentration of pentachlorodisilane in the aggregate liquid (extracted liquid) and the mass generated per unit time tend to decrease.
  • the temperature of the coolant is preferably adjusted to 50 ° C. or lower. If the temperature of the cooling liquid is adjusted to 50 ° C. or lower, the temperature of the reaction product gas can be rapidly cooled in a short time. Therefore, the reverse reaction in which the produced trichlorosilane following the thermal equilibrium transfer returns to the tetrachlorosilane is performed. Can be frozen.
  • Low-boiling substances such as trichlorosilane, hydrogen chloride, unreacted tetrachlorosilane, and hydrogen generated in the reaction furnace 30 do not condense even when quenched in the quenching tower 40, and form an uncondensed gas from the top of the quenching tower 40. It is discharged and supplied to the capacitor 60.
  • the produced hexachlorodisilane, pentachlorodisilane, and a part of tetrachlorosilane are condensed and mixed with the cooling liquid, and are condensed together with other by-products and impurities in the quenching tower 40 and connected to the bottom of the quenching tower 40.
  • the pump 43 led to the tank 48 and circulated through the circulation line to the spray nozzle 42 by the pump 43 connected to the tank 48, while a part is extracted from the circulation system through the line 45 and recovered. It is sent to the apparatus 50 (single distillation can 90).
  • the pipe line 45 has a control valve or the like in the middle, and can adjust the extraction speed of the aggregate liquid. The extraction of the cooling liquid through the pipe 45 is performed in order to keep the liquid composition constant against the change in the liquid composition during circulation. In the present invention, the amount of pentachlorodisilane produced is adjusted. Made to do.
  • the cooling liquid extraction speed for this purpose is preferably 5 to 1000 L / h, more preferably 5 to 500 L / h, and still more preferably 5 to 1000 L / h of raw material tetrachlorosilane (before vaporization). 100 L / h.
  • the concentration of pentachlorodisilane in the aggregate liquid decreases, but since the extraction liquid amount increases, the mass itself generated per unit time of pentachlorodisilane tends to increase.
  • the mass produced per unit time of pentachlorodisilane was calculated by multiplying the specific gravity of 1.5 kg / L of the condensed liquid to be extracted by the extraction speed.
  • the uncondensed gas taken out from the top of the quenching tower 40 is divided into a chlorosilane condensate mainly containing trichlorosilane and tetrachlorosilane and an uncondensed component containing hydrogen and hydrogen chloride in the condenser 60.
  • the extracted hydrogen is reused as a raw material gas, and hydrogen chloride is separately collected and used industrially.
  • the chlorosilane condensate is temporarily stored in the tank 70 and then sent to the distillation column 80 where trichlorosilane and tetrachlorosilane are separated.
  • Trichlorosilane can be recycled as an intermediate raw material for monosilane production, and tetrachlorosilane can be recycled as a raw material tetrachlorosilane.
  • the condensed liquid recovery device 50 is also a single distillation can 90, and the single distillation can 90 includes a jacketed metal container 91 for heating and a pump 92 for circulating the can liquid so as not to block by-products.
  • Connected to the simple distillation can 90 are piping for supplying tetrachlorosilane and pentachlorodisilane vaporized in the concentrating can to the concentrating tower 100 and piping for supplying high-boiling substances that do not evaporate in the simple distillation can 90 to the abatement equipment. ing.
  • the unevaporated components of the evaporator 10 and the cooling liquid of the quenching tower 40 are supplied to the single distillation can 90 and heated at about 150 ° C., and tetrachlorosilane and pentachlorodisilane are evaporated and supplied to the concentration tower 100 for recovery. Is done.
  • the non-evaporated components are extracted from the single distillation can 90 in a batch or continuous manner, and detoxified in a detoxification facility.
  • the concentration tower 100 can be composed of a multistage distillation apparatus having a reboiler.
  • trichlorosilane and tetrachlorosilane are roughly separated from the gas evaporated from the simple distillation can 90 and discharged from the top of the tower.
  • Tetrachlorosilane, hexachlorodisilane, pentachlorodisilane, and other high-boiling substances that could not be separated from the bottom of the column are separated.
  • Low-boiling substances mainly composed of tetrachlorosilane are discharged from the top of the concentration tower 100, cooled and condensed by a cooling device, temporarily stored in the tank 70, and then sent to the distillation tower 80.
  • high-boiling substances mainly composed of hexachlorodisilane and pentachlorodisilane are recovered from the bottom of the concentration tower 100.
  • the recovered liquid can be further distilled to produce pentachlorodisilane with increased purity.
  • the concentration of pentachlorodisilane at the bottom of the tower can be sufficiently increased by appropriately adjusting the temperature inside the tower and the pressure inside the tower 100.
  • the temperature in the tower is in the range of 60 to 200 ° C., and the range of 60 to 150 ° C. is particularly preferable.
  • the pressure in the tower is in the range of atmospheric pressure to 0.3 MPa (absolute pressure), and more preferably maintained in the range of atmospheric pressure to 0.2 MPa (absolute pressure).
  • ⁇ Distillation tower> The liquid in the tank 70 sent to the distillation tower 80 is separated into trichlorosilane and tetrachlorosilane.
  • the obtained trichlorosilane can be recycled as an intermediate raw material for monosilane production, and tetrachlorosilane can be recycled as a raw material tetrachlorosilane.
  • Example 1> 1 is operated in the conditions shown in Table 1-1 and Table 1-2, and after the reaction system for generating trichlorosilane from tetrachlorosilane and hydrogen reaches a steady state, quenching is performed.
  • the tower coolant temperature is 50 ° C.
  • the quench tower pressure is 0.1 MPaG
  • the tank 50 temperature the pressure is 150 ° C., 0.07 MPaG
  • the concentration tower 100 temperature the pressure is 100 ° C., 0.1 MPaG
  • the concentration was performed.
  • a sample solution was collected from the bottom of the tower 100.
  • the supply rate of the cooling liquid supplied to the top of the quenching tower was adjusted so that the total amount of the cooling liquid and condensate circulating in the quenching tower did not change.
  • the production concentration of pentachlorodisilane in each sample solution was measured using gas chromatography.
  • the results of Example 1 are shown together in Table 1-1 and Table 1-2, and it was confirmed that pentachlorodisilane was generated in the cooled aggregated liquid under any operating condition.
  • the gas chromatogram apparatus for quantitatively measuring silane compounds such as pentachlorodisilane and the measurement conditions were as follows.
  • Main body and recording device GC-14B, C-R6A (manufactured by Shimadzu Corporation) Column: Porapac QS (manufactured by Waters) -Column size: ID 3mm ⁇ , length 2m Column temperature conditions: 70 ° C to 220 ° C ⁇ Carrier gas: Helium type, flow rate 30mL / min ⁇ Gas sampler: 0.5mL ⁇ Detector: Type TCD
  • Example 2 A liquid obtained by reducing hexachlorodisilane by re-distilling the sample liquid obtained under the conditions (3) in Table 1-1 and Table 1-2 in Example 1 using the concentration tower 100, particularly, The raw material A was recovered from the top of the concentration tower 100. Next, the raw material A was set using a distillation facility combining two distillation columns whose outline is shown in FIG. 2, and first a 30-stage distillation column with a reflux ratio of 8 and a top temperature of 120 ° C. Then, a distillation operation was performed, and an intermediate raw material A was obtained from the bottom of the column by removing the low boiling point from the column top.
  • the reflux ratio is set to 3 and the temperature at the top of the column is set to be maintained at 136 ° C., the intermediate raw material A is distilled, and finally a pentane having a purity of 90 mass% or more from the top of the column Chlorodisilane was obtained as the final product, demonstrating the present invention.
  • the compositions of the raw material A, intermediate raw material A, and final purified product A used in Example 2 are shown in Table 2.
  • the concentration of pentachlorodisilane in the final product A was 97% by mass.
  • Example 3 The sample liquid obtained under conditions (3) in Table 1-1 and Table 1-2 in Example 1 was collected from the bottom of the concentration tower 100 as the raw material B in particular.
  • the raw material B was set using a distillation facility combining two-stage distillation towers, the outline of which is shown in FIG. 2, with a 50-stage distillation tower having a reflux ratio of 10 and a tower top temperature of 120 ° C. Then, a distillation operation was carried out to remove the low boiling point from the top of the column, thereby obtaining intermediate raw material B-1 from the bottom of the column. Further, in the same distillation column, that is, a distillation column having 50 plates, the reflux ratio was set to 5 and the temperature at the top of the column was maintained at 135 ° C.

Abstract

【課題】ペンタクロロジシラの新規な製造方法を提供し、該製造方法の実施により純度が90質量%以上のペンタクロロジシランを得る。 【解決手段】 気化させたテトラクロロシランと水素とを含む原料ガスを高温で反応させて、トリクロロシランを含む反応生成ガスを得る高温反応工程と、高温反応工程において得られた反応生成ガスを、該反応生成ガスの冷却により生じる凝集液を循環冷却させて得られる冷却液と接触させて急冷し、ペンタクロロジシランを凝集液中に生成させるペンタクロロジシラン生成工程と、生成されたペンタクロロジシランを回収する回収工程とを具備する製造方法とする。

Description

ペンタクロロジシランの製造方法並びに該方法により製造されるペンタクロロジシラン
 本発明は一般にペンタクロロジシランの製造方法に係り、より詳しくは、トリクロロシランの製造工程からペンタクロロジシランを得る製造方法に関する。本発明はまた該製造方法により得られたペンタクロロジシランにも関する。
 クロロシラン類と総称される化合物は、半導体デバイス中の集積回路を形成するポリシリコン膜、窒化ケイ素膜及び酸化ケイ素膜等の原材料、太陽電池、液晶やシリコンの製造原料等として使用されている。工業的な利用という観点では、従来は珪素1原子に水素やハロゲン原子が結びついた化合物であるモノシラン類がクロロシラン類の代表的な化合物であり、工業的規模で生産や使用がなされてきた。一方で半導体デバイス製造技術の進展は、既に極限まで達しているとも言えるが、高集積化の推進は留まることはなく、さらにその高密度化を進めるためには、集積回路形成中の加熱により引き起こされる不純物の拡散を抑えるために、より低温で回路を形成できる原材料が必要になってきている。このような状況下、ペンタクロロジシランは、モノシラン、ジクロロシラン等のモノシラン類と比較して、より低温での回路形成を可能とする原材料として、類似化合物であるヘキサクロロジシランと共に注目されてきており、それを用いた集積回路の開発が盛んになってきている。
 従来、ペンタクロロジシランを製造する方法については開示されていないが、特許文献1には、ペンタクロロジシランを生成物として含む反応として、高純度多結晶シリコンを得るためのシーメンス法の排出ガス、即ちトリクロロシランと水素とをシリコン生成反応炉に導入して反応させた後の排出ガス中に、ペンタクロロジシランが含まれることが示されている。また、特許文献2には、クロロシランと水素からの多結晶シリコン析出時のオフガス中に、ペンタクロロジシランが存在することが記されている。さらに特許文献3においても、多結晶シリコン製造プロセスにおいて発生する高沸点クロロシラン類含有物中に、四塩化二珪素、六塩化二珪素の他に、五塩化二珪素(即ちペンタクロロジシラン)、八塩化三珪素(即ちオクタクロロトリシラン)等が含まれることが開示されている。
特開2006-169012号公報 特表2009-528253号公報 特開2009-227577号公報
 本発明は、上記事情に鑑みてなされたもので、トリクロロシランの製造工程が活用できる新規なペンタクロロジシランの製造方法を提供することを目的とし、特に、気化させたテトラクロロシランと水素とを含む原料ガスを高温で反応させてトリクロロシランを製造するプロセスにおいて副生するクロロシラン類の混合物からペンタクロロジシランを回収する方法を提供することを目的とする。
 また、本発明は、上記製造方法により得られた高純度のペンタクロロジシランを提供することも目的とする。
 即ち、先に述べたように、ペンタクロロジシランは多結晶シリコン製造プロセスにおいて副生するクロロシラン類中に含まれていることは従来から知られていた。しかしながら、それらクロロシラン類から、工業的利用を目的としてペンタクロロシランを回収しようとする発想や、その回収方法は開示されてないし、ましてや、気化させたテトラクロロシランと水素とを含む原料ガスを高温で反応させてトリクロロシランを製造するプロセスにおいて副生するクロロシラン類の混合物中からも得られることは示されていなかった。本発明者等は、鋭意研究の結果、上記のようなトリクロロシランの製造プロセスにおいても、生成されるクロロシラン類の混合物からペンタクロロジシランを得ることができ、同時に該クロロシラン類の混合物中のペンタクロロジシランの濃度や単位時間あたりに生成する質量を制御することも可能であることを知見し、本発明に至った。
 よって、本発明の一態様によれば、気化させたテトラクロロシランと水素とを含む原料ガスを高温で反応させて、トリクロロシランを含む反応生成ガスを得る高温反応工程と、高温反応工程において得られた反応生成ガスを、該反応生成ガスの冷却により生じる凝集液を循環冷却させて得られる冷却液と接触させて急冷し、ペンタクロロジシランを凝集液中に生成させるペンタクロロジシラン生成工程と、生成されたペンタクロロジシランを回収する回収工程とを具備するペンタクロロジシランの製造方法が提供される。
 ここで、反応生成ガスが急冷されて生じた液を凝縮液と言い、該凝縮液を冷却装置などでさらに冷却して反応生成ガスの急冷に使用される液を冷却液と言う。
 なお、上記高温反応工程は、通常700~1400℃の範囲の温度で実施される。また反応生成ガスの冷却温度は、600℃以下でなければならず、好ましくは200℃以下、さらに好ましくは30~60℃の温度範囲に冷却される。
 本発明の一実施態様では、冷却液及び/又は凝縮液にテトラクロロシランを追加添加し、また冷却液及び/又は凝縮液を循環系外に抜き出して抜き出し液として回収する。テトラクロロシランの追加添加は、好ましくは、急冷に用いる前の冷却液及び/又は凝集液に、供給速度が調節可能とされた添加設備によってテトラクロロシランを添加することによりなされ、冷却液及び/又は凝縮液の循環系外への抜き出しは、循環系の何れの場所でもよいが、抜き出し速度が調節可能とされた抜き出し設備を設けて行うことが好ましい。
 冷却液及び/又は凝縮液中への追加用のテトラクロロシランの添加量は、好ましくは原料用のテトラクロロシランの供給速度1000L/h(気化前)当たり、10~10000L/hである。追加用のテトラクロロシランを冷却液及び/又は凝縮液中に添加する方法や場所等は任意であるが、急冷に使用されるスプレーノズルより手前の位置で添加するのが簡便で好ましい。冷却液及び/又は凝縮液の抜き出し抜き速度は、原料用のテトラクロロシランの供給速度1000L/h(気化前)当たり、好ましくは5~1000L/hである。冷却液及び/又は凝縮液の抜き出し方法や場所も特に制限はないが、冷却液を循環させる循環ポンプの出口以降の位置から抜き出すのが簡便で好ましい。冷却液及び凝縮液中への追加用テトラクロロシランの添加速度と、冷却液及び凝縮液の抜き出し速度をそれぞれ調整することにより、冷却液中に含まれるペンタクロロジシランの濃度や単位時間あたりに生成する質量を調整することが可能となる。
 本発明の別の実施態様では、回収工程において、抜き出し液を蒸留し、純度が90質量%以上であるペンタクロロジシランを得る。例えば、一実施態様では、回収工程において、抜き出しした凝縮液を回収し、濃縮して中間原料となし、さらに蒸留工程に通すことにより、さらに高純度のペンタクロロジシランを得ることができる。凝縮液の回収設備や濃縮設備、蒸留設備は、凝縮液の抜き出し配管に直接接続されていても、それぞれ別の独立した設備であってもかまわず、特に制限はない。さらに複数の蒸留設備を連続して設ける場合の数や、一つの設備を繰り返して用いて蒸留する場合の蒸留回数にも特に制限はない。よって、一実施態様では、抜き出し液を、加熱装置が具備された単蒸留缶でもある回収タンクに貯め、該回収タンク(単蒸留缶)で、回収した抜き出し液を加熱して蒸発ガスを生成し、該ガスを濃縮塔に導入し、該ガスからトリクロロシラン及びテトラクロロシランを除去して、ペンタクロロジシランを含む液に濃縮し、該濃縮塔から得られたペンタクロロジシランを含有する液を、必要に応じて、さらに蒸留塔において蒸留して、純度が90質量%以上であるペンタクロロジシランを得る。
 ここで、蒸留塔の様式は特に限定されるものではなく、公知の多段蒸留塔や充填蒸留等が好適に使用される。その際、ペンタクロロジシランの純度を上げるために繰り返し蒸留する場合には、連続式、回分式(バッチ式)等のいずれを選択しても構わない。ペンタクロロジシランの精製純度を高く設定するためには、蒸留塔の段数または理論段数(以下両者をまとめて段数という)は30段以上が好ましく、さらには50段以上が好ましく、70段以上がより好ましい。30段に満たない場合は、繰り返し蒸留操作を実施してもペンタクロロジシランの精製純度が上がらない場合がある。さらに蒸留の操作圧力を、常圧のみならず、5~300mmHg、好ましくは10~100mmHgの減圧状態に設定してすることも可能である。
 精製純度を高める目的で、所定の比率(還流比という)で塔頂物質が蒸留塔に戻されるが、還流比は特に限定するものではない。またペンタクロロジシランの回収率を上げる目的で、一旦は不要とした塔頂液や缶残液を原料として再利用することも可能である。
 また充填塔を用いて蒸留する場合において、充填塔内の気液接触面積を広げる目的で使用される充填物の種類には特に制限はなく、いずれの規則充填物、不規則充填物を用いることができる。不規則充填物としては、ラシヒリング、スパイラルリング、ポールリング、パーティションリング、ヘリパック、コイルパック、I-リング、C-リング、ナッターリング等公知のものを使用することができる。
 本発明の更なる態様は、上記凝縮液(抜き出し液)を蒸留により純度を90質量%以上に精製して得られるペンタクロロジシランである。なお、ペンタクロロジシランの精製純度は、90質量%以上であることが好ましいが、より好ましくは95質量%以上、さらにより好ましくは99質量%以上である。純度が90質量%に満たない場合は半導体製造工程における成膜性が悪くなる場合がある。
本発明に係るペンタクロロジシランの製造方法を説明するためのフロー図である。 本発明の回収工程に使用される設備の一例を示すものであり、2段の蒸留塔を組み合わせた蒸留設備を示すフロー図である。
 本発明に係るペンタクロロジシランの製造方法の一例を、図1に示す概略図を用いて説明する。
 図1の概略図は、原料用のテトラクロロシランを気化させるための蒸発器10と、気化させた原料用テトラクロロシランと水素とを含む原料ガスを予備加熱するための予熱器20と、予備加熱された原料ガスを700~1400℃の範囲の温度で反応させて反応生成ガスを得るための反応炉30と、反応生成ガスを600℃以下、好ましくは200℃以下、さらに好ましくは30~60℃の温度範囲に冷却してペンタクロロジシランを含む凝縮液を得るための急冷塔40と、該凝縮液からペンタクロロジシランを回収するための回収装置50とを含んでいる。さらに、該凝縮液を循環させるためのポンプ43、該凝縮液を冷却して冷却液となすための冷却装置44、急冷塔に冷却液を吹き込むためのスプレーノズル42を設けることができる。さらに本発明では、添加速度が調節可能な機構を有する設備を用いて、循環する冷却液に49で示す位置で追加用テトラクロロシランを添加することができる。さらに本発明では、抜き出し速度が調節可能な機構を有する設備を用いて、循環する凝縮液を45で示す位置で抜き出すことが可能である。
 なお、本発明の製造方法では、一般的に、反応生成ガスの冷却未凝縮ガスからトリクロロシラン及びテトラクロロシランを凝縮させるためのコンデンサ60と、コンデンサ60から取り出される凝縮液と回収装置50から取り出される低沸点物を一時的に貯留させておくためのタンク70と、タンク70から導出される貯留液からトリクロロシランとテトラクロロシランとを分溜するための蒸留塔80が好ましく設けられる。回収装置50は、急冷塔40で得られた凝縮液からペンタクロロジシランやテトラクロロシランを気化させ未蒸発分と分離させる単蒸留缶90としても機能し、該単蒸留缶90から供給されるペンタクロロジシランを他の低沸点物から分離させる濃縮塔100が好ましくは具備される。本製造方法の例では、蒸発器10、予熱器20、反応炉30が高温反応工程を構成し、それに続く急冷塔40、ポンプ43、冷却装置44、スプレーノズル42が急冷工程(ペンタクロロジシラン生成工程)を構成する装置である。
 以下、各装置についてさらに詳細に説明する。
<蒸発器>
 蒸発器10は、原料用のテトラクロロシランを気化させるための装置であり、気化されたテトラクロロシランは蒸発器10から放出された後、水素と混合され、予熱器20へ供給される。
 蒸発器10に供給されるテトラクロロシラン原液は、高純度のテトラクロロシランであることが望ましいが、テトラクロロシランよりも高沸点なシラン類が微量に混入していてもよい。しかし、このような高沸点物は、未蒸発分として蒸発器10の底部に蓄積し、テトラクロロシランの気化を妨げてしまうため、蒸発器10の底部に溜まった未蒸発分は、蒸発器10からバッチ式又は連続式に取り除くことが出来るような構造となっていることが好ましい。取り出された未蒸発分は、同時に排出された工業利用可能なテトラクロロシランやペンタクロロジシラン等を回収するため、回収装置50の蒸留装置90に供給することができる。
 蒸発器10における原料用のテトラクロロシランの加熱温度は、大気圧下において60~150℃、好ましくは60~120℃とすることができる。この温度範囲であれば、ペンタクロロジシランなどの高沸点物を気化させることなく、テトラクロロシランを十分に蒸発させることができる。当然ながら、蒸発器10が内部圧力を調節できるタイプのものであれば、それに応じてテトラクロロシランを気化させるための最適温度が上記温度範囲から変動する。
<予熱器>
 蒸発器10で気化された原料用のテトラクロロシランは、水素ガスと混合され、原料ガスとして後述する反応炉30へと供給されるが、反応炉30に送り込む前に、予熱器20において反応炉30内部の温度に近付けるように加熱される。これにより、混合ガスの温度と反応炉30内部の温度差を緩和し、反応炉30内部に温度ムラを発生させず、反応炉30の転換効率を向上させることができると共に、局所的な熱応力の集中から反応炉30を保護することができる。また、テトラクロロシランと水素との反応により生成し、熱平衡状態にあるトリクロロシランが、原料ガスの流入による温度低下によりテトラクロロシランへと戻されてしまうことを防止できる。なお、テトラクロロシランと水素ガスとの混合比は、例えばモル比にして1:1~1:2とすることができる。
<反応炉>
 反応炉30は、反応容器31と、反応容器31の外側を囲むように配される長尺のヒータ32と、反応容器31及びヒータ32を収容する外筒容器33とを具備する。ヒータ32で反応容器31の外壁を加熱することにより、テトラクロロシランと水素との混合ガスを反応容器31内部において約700~1400℃の高温で反応させることによりトリクロロシランの生成が主に進行する。なお、この反応は熱平衡反応であり、同時にシリレン、モノクロロシラン、ジクロロシラン、テトラクロロシラン、水素、塩化水素等が共存状態にある。さらに、これらが互いに反応することにより、ヘキサクロロジシランや、本発明のペンタクロロジシランも、例えばシリレンとトリクロロシランとが反応することより、この共存状態中に生成して定常的に存在すると考えられる。
<反応容器>
 反応容器31は、原料用のテトラクロロシランと水素とを高温環境下で反応させるための略円筒形状の容器であり、原料ガスを取り込むための原料ガス導入口と、反応生成ガスを導出するための反応生成ガス抜出口とを有する。本実施形態では、原料ガス導入口を反応容器31の底部中央に設け、反応生成ガス抜出口を反応容器31の上方の側壁に設ける構成としている。反応生成ガス抜出口には、抜出管34が挿入され、反応生成ガスを反応炉30の外部へと排出する。外筒容器33には、反応容器31を収容した際に、その原料ガス導入口および反応生成ガス抜出口に対応する位置にそれぞれ原料ガス導入開口部および反応生成ガス抜出開口部が設けられている。反応生成ガス抜出開口部には連結手段が設けられており、急冷塔40と接続される。抜出管34は、外筒容器33の反応生成ガス抜出開口部を経て、反応容器31の反応生成ガス抜出口に接続される管状部材であり、反応容器31内で生成したトリクロロシランを含む反応生成ガスは抜出管34から排出され、急冷塔40へ供給される。
<急冷塔>
 急冷塔40は、円筒状の金属製容器41と、金属製容器41内に冷却液を反応生成ガスに噴霧するための噴霧手段、すなわち冷却液を微細な液滴に細分するスプレーノズル42と、金属製容器41の底に溜まった凝縮液ごと取り出してスプレーノズル42に循環させるポンプ43と、凝縮液を冷却するための冷却装置44と、凝縮液の一部を抜き出して回収装置50(単蒸留缶90)に送る管路45を備える。
 管路45の中間には、例えばコントロールバルブのような、凝集液の抜き出し速度を調節することができる機構を設けることができる。急冷塔40の側壁には前記反応炉30と接続するための反応生成ガスの抜出管34が設けられている。スプレーノズル42は、急冷塔40に導入される反応生成ガスに向けて冷却液を噴霧できるように、反応生成ガス導入開口部の上部近傍に設置される。また、急冷塔40の塔頂部には、冷却後もガス状である反応生成ガスの未凝縮ガスを、後述するコンデンサ60に供給するための配管が接続されている。なお、図1の例では、急冷塔40の急冷部分より上方部分に充填層46が設けられ、該充填層46を通過する急冷された反応生成ガスをさらに冷却する為、冷却液を供給する配管47も設けられている。さらに、配管47から供給される冷却液の片流れを防止する為、配管47の下部近傍には分散盤が設けられている。また、配管47から冷却液を供給することで、金属製容器41や充填層46を高温の反応ガスによる腐食から防ぐ効果も有する。さらに配管47からの冷却液の供給速度を変化させることにより、凝縮して液化する反応ガスの量が変化するため、急冷塔の循環液量を一定に保つことができる。即ち、急冷塔を循環する冷却液や凝集液が減る場合には、凝縮ガスが増えるように配管47の冷却液量を増やし、逆に急冷塔を循環する冷却液や凝集液が増える場合には、凝縮ガスが減るように配管47の冷却液量を減らせばよい。
 凝縮液は、急冷塔40の金属製容器41の底部に溜まり、タンク48を介して抜き出されて連続して循環され、冷却装置44によって冷却されて冷却液とされる液であって、テトラクロロシランとトリクロロシランとを主に含有してなる混合液であるが、本発明では、この該冷却液に追加用のテトラクロロシランをさらに添加することができる。このために、追加用のテトラクロロシランの導入管49がスプレーノズル42の基部に接続されている。該導入管49は中間にコントロールバルブなどを有しており、その供給速度を調整することが可能である。添加されるテトラクロロシランはどこから得てもよく、例えば後述する蒸留塔80から導出されるテトラクロロシランを利用することができる。
 なお、冷却液中へのテトラクロロシランの添加量は、好ましくは、1000L/hの原料テトラクロロシラン(気化前)当たり、10~10000L/h、さらに好ましくは10~5000L/h、さらにより好ましくは100~500L/hである。テトラクロロシランの添加速度が増加すると、凝集液(抜出液)中のペンタクロロジシランのの濃度や単位時間あたりに生成する質量は減少する傾向がある。
 なお、冷却液は50℃以下に温度調整されていることが好ましい。冷却液が50℃以下に温度調整されていれば、短時間で反応生成ガスの温度を急冷することができるため、熱的な平衡移動に従った生成トリクロロシランがテトラクロロシランに戻る逆反応を、凍結することができる。
 反応炉30で生成したトリクロロシラン、塩化水素、未反応のテトラクロロシラン、水素等の低沸点物は急冷塔40で急冷されても凝縮することはなく、未凝縮ガスとして急冷塔40の塔頂部から放出され、コンデンサ60に供給される。一方、生成したヘキサクロロジシランやペンタクロロジシラン、一部のテトラクロロシランは凝縮され、冷却液に混ざり込み、急冷塔40内にその他の副生物、不純物と共に濃縮され、急冷塔40の塔底に接続されたタンク48に導かれ、タンク48に接続されたポンプ43により、循環管路を介して冷却液としてスプレーノズル42に循環される一方、一部は管路45を通じて循環系から抜き出され、回収装置50(単蒸留缶90)に送られる。管路45は中間にコントロールバルブなどを有しており、凝集液の抜き出し速度を調整することが可能である。なお、管路45を介しての冷却液の抜き出しは、循環中の液組成の変化に対して液組成を一定に保持するためになされるが、本発明では、ペンタクロロジシランの生成量を調整するためになされる。よって、この目的においてなされる冷却液の抜き出し速度は、1000L/hの原料テトラクロロシラン(気化前)当たり、好ましくは5~1000L/h、さらに好ましくは5~500L/h、さらにより好ましくは5~100L/hである。抜き出し量が増加すると、凝集液中のペンタクロロジシランの濃度は低下するが、抜き出し液量が増えるため、ペンタクロロジシランの単位時間あたりに生成する質量自体は増加する傾向がある。なお、ペンタクロロジシランの単位時間あたりに生成する質量は、抜き出しする凝集液の比重1.5kg/Lに、抜き出し速度を乗じることにより算出した。
<コンデンサ>
 急冷塔40の塔頂部から取り出された未凝縮ガスは、コンデンサ60において主にトリクロロシランやテトラクロロシランを含むクロロシラン類凝縮液と、水素および塩化水素を含む未凝縮成分とに分けられる。取り出された水素は、原料ガスに再使用され、塩化水素は別途回収して工業利用される。該クロロシラン類凝縮液は一時的にタンク70に貯蔵され、その後蒸留塔80へと送られ、トリクロロシランとテトラクロロシランとの分離が行われる。トリクロロシランはモノシラン製造のための中間原料として、またテトラクロロシランは再び原料テトラクロロシランとしてリサイクル使用することができる。
<単蒸留缶(蒸留装置、回収装置)>
 凝集液の回収装置50は単蒸留缶90でもあり、単蒸留缶90は加温するためのジャケット付金属製容器91と、副生物が閉塞しないように缶液を循環させるためのポンプ92を備えている。単蒸留缶90には濃縮缶において気化したテトラクロロシラン、ペンタクロロジシランを濃縮塔100に供給するための配管と、単蒸留缶90で蒸発しない高沸点物を除害設備へ供給する配管が接続されている。蒸発器10の未蒸発成分、急冷塔40の冷却液はこの単蒸留缶90に供給されて、約150℃で加熱され、テトラクロロシラン、ペンタクロロジシランが蒸発されて濃縮塔100に供給され、回収される。一方、未蒸発成分は単蒸留缶90よりバッチ式又は連続式に抜き出され、除害設備にて無害化処理が行われる。
<濃縮塔>
 濃縮塔100は、リボイラーを有する多段式蒸留装置から構成されうる。単蒸留缶90から蒸発されたガスは濃縮塔100において、トリクロロシラン、テトラクロロシランが大まかに分離されて塔頂から排出される。塔底からは分離しきれなかったテトラクロロシラン、ヘキサクロロジシラン、ペンタクロロジシラン、その他の高沸点物質が分離される。テトラクロロシランを主とした低沸点物は濃縮塔100の塔頂から放出され、冷却装置によって冷却凝縮され、一時的にタンク70に貯蔵され、その後、蒸留塔80に送られる。一方、ヘキサクロロジシランやペンタクロロジシランを主とした高沸点物は、濃縮塔100の塔底部から回収される。本発明では該回収液をさらに蒸留することにより、純度を上げたペンタクロロジシランを製造することができる。
 なお、濃縮塔100の塔内温度及び塔内圧力を適切に調整することにより、塔底部のペンタクロロジシランの濃度を十分に高めることができる。一例では、塔内温度は、60~200℃の範囲であり、60~150℃の範囲が特に好ましい。また、塔内圧力は大気圧~0.3MPa(絶対圧)の範囲であり、特に大気圧~0.2MPa(絶対圧)の範囲に維持することがさらに好ましい。
<蒸留塔>
 蒸留塔80に送られた、タンク70の液はトリクロロシランとテトラクロロシランとに分離される。得られたトリクロロシランはモノシラン製造のための中間原料として、またテトラクロロシランは再び原料テトラクロロシランとしてリサイクル使用することができる。
 以下、本発明を実施例によって詳細に説明する。但し、本実施例の具体的記述内容は本発明を限定するものではない。
<実施例1>
 図1の概略図で示す構成を有する設備において、表1-1、表1-2に示す条件で運転し、テトラクロロシランと水素からトリクロロシランを生成させる反応系が定常状態に達した後に、急冷塔冷却液の温度を50℃、急冷塔圧力を0.1MPaG、タンク50の温度、圧力を150℃、0.07MPaG、濃縮塔100の温度、圧力を100℃、0.1MPaGで運転し、濃縮塔100の塔底部からサンプル液を回収した。なお、急冷塔を循環する冷却液、凝縮液の総量は変化しないように、急冷塔塔頂部へ供給する冷却液の供給速度を調整した。各サンプル液中のペンタクロロジシランの生成濃度は、ガスクロマトグラフィーを用いて測定した。実施例1の結果を表1-1、表1-2に併せて示したが、何れの運転条件においても、冷却凝集液中にペンタクロロジシランが生成していることが確認された。なお、ペンタクロロジシラン等のシラン化合物を定量測定するガスクロマトグラム装置と測定条件は以下の通りとした。
  ・装置本体、記録装置:GC-14B、C-R6A(島津製作所社製)
  ・カラム:PorapacQS(Waters社製)
  ・カラムサイズ:内径3mmφ、長さ2m
  ・カラム温度条件:70℃~220℃
  ・キャリアガス:種類ヘリウム、流量30mL/分
  ・ガスサンプラー:0.5mL
  ・ディテクター:種類TCD
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
<実施例2>
 実施例1の表1-1、表1-2の(3)の条件で得られたサンプル液を、さらに濃縮塔100を利用して再度蒸留することによりヘキサクロロジシランを低減させた液を、特に原料Aとして濃縮塔100の塔頂部から回収した。次いで原料Aを、図2にその概略を示した2段の蒸留塔を組み合わせた蒸留設備を用い、まず段数30の蒸留塔で、還流比8とし、塔頂部温度を120℃に保つように設定して蒸留操作を行い、低沸分を塔頂から除去することにより塔底部から中間原料Aを得た。さらに続けて段数30の蒸留塔で、還流比3とし、塔頂部温度を136℃に保つように設定して中間原料Aを蒸留し、最終的に塔頂部から90質量%以上の純度を有するペンタクロロジシランが最終生成物として得られ、本発明が実証された。実施例2で用いた原料A、中間原料A、最終精製物Aの組成を表2に示した。最終生成物A中のペンタクロロジシランの濃度は97質量%であった。
Figure JPOXMLDOC01-appb-T000003
<実施例3>
 実施例1の表1-1、表1-2の(3)の条件で得られたサンプル液を、特に原料Bとして濃縮塔100の塔底部から回収した。次いで原料Bを、図2にその概略を示した2段の蒸留塔を組み合わせた蒸留設備を用い、まず段数50の蒸留塔で、還流比10とし、塔頂部温度を120℃に保つように設定して蒸留操作を行い、低沸分を塔頂から除去することにより塔底部から中間原料B-1を得た。さらに同じ蒸留塔、即ち段数50の蒸留塔で、還流比5とし、塔頂部温度を135℃に保つように設定して塔頂部から中間原料B-2を得た。さらに2段目の段数70の蒸留塔で、還流比50とし、塔頂部温度を136℃に保つように設定したところ、最終的に塔底部から90質量%以上の純度を有するペンタクロロジシランが最終生成物として得られ、本発明が実証された。実施例3で用いた原料B、中間原料B-1及びB-2、最終精製物Bの組成を表3に示した。最終生成物B中のペンタクロロジシランの濃度は99.5質量%であった。
Figure JPOXMLDOC01-appb-T000004
10    蒸発器
20    予熱器
30    反応炉
31    反応容器
32    ヒータ
33    外筒容器
34    抜出管
40    急冷塔
41    金属製容器
42    スプレーノズル
43    ポンプ
44    冷却装置
45    管路(調整手段)
46    充填層
47    配管
48    タンク
49    導入管(調整手段)
50    回収装置
60    コンデンサ
70    タンク
80    蒸留塔
90    単蒸留缶(蒸留装置)
91    ジャケット付金属製容器
92    ポンプ
100   濃縮塔

Claims (6)

  1.  気化させたテトラクロロシランと水素とを含む原料ガスを高温で反応させて、トリクロロシランを含む反応生成ガスを得る高温反応工程と、高温反応工程において得られた反応生成ガスを、該反応生成ガスの冷却により生じる凝集液を循環冷却させて得られる冷却液と接触させて急冷し、ペンタクロロジシランを凝集液中に生成させるペンタクロロジシラン生成工程と、生成されたペンタクロロジシランを回収する回収工程とを具備することを特徴とするペンタクロロジシランの製造方法。
  2.  ペンタクロロジシラン生成工程において、冷却液及び/又は凝縮液にテトラクロロシランを追加添加し、また冷却液及び/又は凝縮液を循環系外に抜き出して抜き出し液として回収し、抜き出し液中に含まれるペンタクロロジシランの濃度や単位時間あたりに生成する質量を調節することを特徴とする、請求項1記載のペンタクロロジシランの製造方法。
  3.  回収工程において、抜き出し液を蒸留し、純度が90質量%以上であるペンタクロロジシランを得ることを特徴とする、請求項2記載のペンタクロロジシランの製造方法。
  4.  回収工程において、加熱装置を備えた蒸留装置に抜き出し液を回収し、加熱して蒸発ガスを生成し、該ガスを濃縮塔に導入してトリクロロシラン及びテトラクロロシランを除去し、ペンタクロロジシランを含有する液を得ることを特徴とする、請求項2記載のペンタクロロジシランの製造方法。
  5.  濃縮塔から得られたペンタクロロジシランを含有する液をさらに蒸留して、純度が90質量%以上であるペンタクロロジシランを得ることを特徴とする、請求項4記載のペンタクロロジシランの製造方法。
  6.  請求項5記載の方法により製造された、純度が90質量%以上であるペンタクロロジシ
    ラン。
PCT/JP2015/077055 2014-09-25 2015-09-25 ペンタクロロジシランの製造方法並びに該方法により製造されるペンタクロロジシラン WO2016047736A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580051998.0A CN107074562B (zh) 2014-09-25 2015-09-25 五氯乙硅烷的制造方法以及采用该方法制造的五氯乙硅烷
US15/513,593 US10294110B2 (en) 2014-09-25 2015-09-25 Pentachlorodisilane production method and pentachlorodisilane produced by same
KR1020177008376A KR102405910B1 (ko) 2014-09-25 2015-09-25 펜타클로로디실란의 제조 방법 및 이 방법에 의해 제조되는 펜타클로로디실란

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014194723A JP6486049B2 (ja) 2014-09-25 2014-09-25 ペンタクロロジシランの製造方法並びに該方法により製造されるペンタクロロジシラン
JP2014-194723 2014-09-25

Publications (1)

Publication Number Publication Date
WO2016047736A1 true WO2016047736A1 (ja) 2016-03-31

Family

ID=55581253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077055 WO2016047736A1 (ja) 2014-09-25 2015-09-25 ペンタクロロジシランの製造方法並びに該方法により製造されるペンタクロロジシラン

Country Status (5)

Country Link
US (1) US10294110B2 (ja)
JP (1) JP6486049B2 (ja)
KR (1) KR102405910B1 (ja)
CN (1) CN107074562B (ja)
WO (1) WO2016047736A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11370666B2 (en) 2017-07-31 2022-06-28 Jiangsu Nata Opto-Electronic Materials Co. Ltd. Method of preparing pentachlorodisilane purified reaction product comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7028604B2 (ja) * 2017-10-24 2022-03-02 デンカ株式会社 ヘキサクロロジシランの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532786A (ja) * 2001-06-08 2004-10-28 ヘムロック・セミコンダクター・コーポレーション 多結晶シリコンの製造方法
JP2009062210A (ja) * 2007-09-05 2009-03-26 Shin Etsu Chem Co Ltd トリクロロシランの製造方法
JP2009062209A (ja) * 2007-09-05 2009-03-26 Shin Etsu Chem Co Ltd 多結晶シリコンの製造方法
JP2010540402A (ja) * 2007-10-09 2010-12-24 ワッカー ケミー アクチエンゲゼルシャフト 高純度ヘキサクロロジシランの製造方法
JP2013212957A (ja) * 2012-04-03 2013-10-17 Toagosei Co Ltd 高純度クロロシランの製造方法および製造装置
JP2013542168A (ja) * 2010-11-09 2013-11-21 エボニック デグサ ゲーエムベーハー 高次シランの選択的分解法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3340445B2 (ja) * 1991-02-16 2002-11-05 財団法人電力中央研究所 溶融炭酸塩型燃料電池の運転方法
JP2733035B2 (ja) * 1994-05-31 1998-03-30 株式会社日本触媒 炭酸エステルの製造方法
JP2003286227A (ja) * 2002-03-29 2003-10-10 Nippon Shokubai Co Ltd 芳香族置換アルキルエステルの製造方法
US20040152287A1 (en) * 2003-01-31 2004-08-05 Sherrill Adrian B. Deposition of a silicon film
JP4463502B2 (ja) * 2003-07-14 2010-05-19 株式会社トクヤマ クロロシラン類の回収方法
JP2006169012A (ja) 2004-12-13 2006-06-29 Sumitomo Titanium Corp ヘキサクロロジシラン及びその製造方法
KR100652427B1 (ko) * 2005-08-22 2006-12-01 삼성전자주식회사 Ald에 의한 도전성 폴리실리콘 박막 형성 방법 및 이를이용한 반도체 소자의 제조 방법
DE102006009954A1 (de) * 2006-03-03 2007-09-06 Wacker Chemie Ag Wiederverwertung von hochsiedenden Verbindungen innerhalb eines Chlorsilanverbundes
DE102006009953A1 (de) 2006-03-03 2007-09-06 Wacker Chemie Ag Verfahren zur Wiederverwertung von hochsiedenden Verbindungen innerhalb eines Chlorsilanverbundes
KR101573933B1 (ko) 2008-02-29 2015-12-02 미쓰비시 마테리알 가부시키가이샤 트리클로로실란의 제조 방법 및 제조 장치
CN101786629A (zh) * 2009-01-22 2010-07-28 陶氏康宁公司 回收高沸点废料的方法
WO2010103633A1 (ja) * 2009-03-11 2010-09-16 電気化学工業株式会社 クロロシラン回収装置およびそれを用いたクロロシラン回収方法
EP2415712B1 (en) * 2009-03-30 2017-05-03 Denka Company Limited Method for collection of hexachlorodisilane
JP6689886B2 (ja) * 2015-05-22 2020-04-28 ダウ シリコーンズ コーポレーション ペンタクロロジシラン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532786A (ja) * 2001-06-08 2004-10-28 ヘムロック・セミコンダクター・コーポレーション 多結晶シリコンの製造方法
JP2009062210A (ja) * 2007-09-05 2009-03-26 Shin Etsu Chem Co Ltd トリクロロシランの製造方法
JP2009062209A (ja) * 2007-09-05 2009-03-26 Shin Etsu Chem Co Ltd 多結晶シリコンの製造方法
JP2010540402A (ja) * 2007-10-09 2010-12-24 ワッカー ケミー アクチエンゲゼルシャフト 高純度ヘキサクロロジシランの製造方法
JP2013542168A (ja) * 2010-11-09 2013-11-21 エボニック デグサ ゲーエムベーハー 高次シランの選択的分解法
JP2013212957A (ja) * 2012-04-03 2013-10-17 Toagosei Co Ltd 高純度クロロシランの製造方法および製造装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11370666B2 (en) 2017-07-31 2022-06-28 Jiangsu Nata Opto-Electronic Materials Co. Ltd. Method of preparing pentachlorodisilane purified reaction product comprising same

Also Published As

Publication number Publication date
CN107074562A (zh) 2017-08-18
JP2016064952A (ja) 2016-04-28
KR102405910B1 (ko) 2022-06-08
US10294110B2 (en) 2019-05-21
KR20170060026A (ko) 2017-05-31
CN107074562B (zh) 2019-07-09
US20170283267A1 (en) 2017-10-05
JP6486049B2 (ja) 2019-03-20

Similar Documents

Publication Publication Date Title
JP4620694B2 (ja) 高純度トリクロロシランの製造方法
KR101681565B1 (ko) 실란 및 하이드로할로실란의 제조 방법
EP2540666B1 (en) Method for manufacturing trichlorosilane
US20150123038A1 (en) Advanced off-gas recovery process and system
JP2015089859A (ja) テトラクロロシラン回収方法及び多結晶シリコン製造方法
JP6486049B2 (ja) ペンタクロロジシランの製造方法並びに該方法により製造されるペンタクロロジシラン
TWI466826B (zh) 用於純化矽烷之方法及系統
US8524048B2 (en) Processes for recovering silane from heavy-ends separation operations
JP6391389B2 (ja) オクタクロロトリシランの製造方法並びに該方法により製造されるオクタクロロトリシラン
US8404205B2 (en) Apparatus and method for producing polycrystalline silicon having a reduced amount of boron compounds by forming phosphorus-boron compounds
JP2013542163A5 (ja)
JP5657493B2 (ja) ホウ素化合物の不純物を減じたトリクロロシラン製造方法
JP2710382B2 (ja) 高純度ジクロロシランの製造方法
JP5573852B2 (ja) 不活性ガスを用いたベンディングシステムによるホウ素化合物量を低減した多結晶シリコンの製造装置および製造方法
US20130121908A1 (en) Method for producing trichlorosilane with reduced boron compound impurities
US8551298B2 (en) Processes for purifying silane
JP6391390B2 (ja) ヘキサクロロジシランの製造方法
US8524044B2 (en) Systems for recovering silane from heavy-ends separation operations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843550

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15513593

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177008376

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843550

Country of ref document: EP

Kind code of ref document: A1