WO2016041351A1 - 酮酸类化合物的不对称氢化反应 - Google Patents

酮酸类化合物的不对称氢化反应 Download PDF

Info

Publication number
WO2016041351A1
WO2016041351A1 PCT/CN2015/077660 CN2015077660W WO2016041351A1 WO 2016041351 A1 WO2016041351 A1 WO 2016041351A1 CN 2015077660 W CN2015077660 W CN 2015077660W WO 2016041351 A1 WO2016041351 A1 WO 2016041351A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
butoxide
group
potassium
hydrogen
Prior art date
Application number
PCT/CN2015/077660
Other languages
English (en)
French (fr)
Inventor
严普查
李原强
车大庆
章向东
陈康
鄢永亮
Original Assignee
浙江九洲药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江九洲药业股份有限公司 filed Critical 浙江九洲药业股份有限公司
Priority to JP2017533670A priority Critical patent/JP6475341B2/ja
Priority to EP15842631.2A priority patent/EP3196185B1/en
Priority to US15/508,933 priority patent/US10112884B2/en
Publication of WO2016041351A1 publication Critical patent/WO2016041351A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/367Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in singly bound form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/189Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms containing both nitrogen and phosphorus as complexing atoms, including e.g. phosphino moieties, in one at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/11Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/42Unsaturated compounds containing hydroxy or O-metal groups
    • C07C59/48Unsaturated compounds containing hydroxy or O-metal groups containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/42Unsaturated compounds containing hydroxy or O-metal groups
    • C07C59/48Unsaturated compounds containing hydroxy or O-metal groups containing six-membered aromatic rings
    • C07C59/50Mandelic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/42Unsaturated compounds containing hydroxy or O-metal groups
    • C07C59/56Unsaturated compounds containing hydroxy or O-metal groups containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/64Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/58Pyridine rings

Definitions

  • the present invention relates to the field of ligand chemistry, and in particular to asymmetric hydrogenation of quinone-keto acids.
  • Asymmetric hydrogenation of hydrazine-keto acids has rarely been reported in the art, and direct asymmetric hydrogenation of hydrazine-keto acids using metal ligand complexes has been reported to be largely blank in this field.
  • the reason for the analysis is that the carboxyl group of the oxime-keto acid compound is complexed with the metal to poison the catalyst and lower the reaction yield; and since the fluorenylcarbonyl group of the fluoren-keto acid compound is substantially coplanar with the carboxylic acid carbonyl group, The chances of attacking the chiral ligand catalyst ketone acid compound on both sides are equal, resulting in low reaction yield or corresponding selectivity.
  • the chiral spiropyridinium phosphine ligand complex with the following structure was first developed by Nankai University.
  • the present invention provides the following technical solutions:
  • R 1 is phenyl, substituted phenyl, naphthyl, substituted naphthyl, C 1 -C 6 alkyl or aralkyl; said substituent is C 1 -C 6 alkyl, C 1 -C 6 alkoxy a group, a halogen; the number of the substituents is 1-3.
  • M is a chiral spiropyridinium phosphine ligand ruthenium complex having the following structure:
  • R is hydrogen, 3-methyl, 4- t Bu or 6-methyl.
  • the base is selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium t-butoxide and potassium t-butoxide.
  • the molar ratio of the compound to the substrate A is (1.0 to 3):1; the preferred molar ratio is (1.001 ⁇ ). 1.5): 1.
  • the solvent is selected from the group consisting of methanol, ethanol, propanol, isopropanol, tetrahydrofuran, toluene, methyl tert-butyl ether, dioxane, DMF, and the like.
  • Preferred R 1 is phenyl, substituted phenyl, naphthyl, substituted naphthyl.
  • the present invention adopts the following technical scheme: under nitrogen protection, the hydrogen pressure is 0.5-10 MPa, the amount of the base is 1.0-3.0 molar equivalent, and in the organic solvent, the a-keto acid A compound is in the range of 0.00001-0.01 molar equivalent.
  • the B compound is obtained by catalyzing the spiropyridinium phosphine ligand complex (M).
  • a substrate A 1.0 to 3 molar equivalents of sodium hydroxide, potassium hydroxide, sodium t-butoxide or potassium t-butoxide, 0.0001 to 0.01 molar equivalents of catalyst M are added to the hydrogenated inner tube. And solvent.
  • the reaction inner tube was charged into a high pressure reaction vessel, and the pressure of hydrogen was hydrogenated to 0.5 to 10 MPa, and the mixture was stirred at 10 to 90 ° C for 1 to 30 hours to obtain a product B.
  • the invention realizes the direct asymmetric catalytic hydrogenation of a-keto acid by changing the amount of the base used in the reaction to overcome the strong coordination of the carboxyl group and the central metal in the substrate molecule.
  • Figure 1 is an optical purity HPLC chromatogram of the compound 3a obtained under the conditions of Example 12;
  • Figure 2 is an optical purity HPLC chromatogram of the 3c compound obtained under the conditions of Example 17;
  • Figure 3 is an optical purity HPLC chromatogram of the 3 l compound obtained under the conditions of Example 26.
  • the reaction inner tube was charged into a high pressure reaction vessel. After replacing the gas in the autoclave with hydrogen, the initial hydrogen pressure was applied to 15 atm, and the reaction was stirred at room temperature for 24 hours. After the hydrogenation reaction is completed, hydrogen is released and the autoclave is opened.
  • the reaction solution was filtered through a short short silica gel to remove the catalyst, and the reaction conversion was analyzed by nuclear magnetic resonance. After the product was derivatized into methyl ester, the optical purity was measured, and the results are shown in Table 1.
  • B/S represents the ratio of the base to the substrate oxime-keto acid
  • conv. represents the nuclear magnetic detection substrate conversion rate
  • a substrate a-keto acid 2a (3 g, 20 mmol), potassium hydroxide (1.68 g, 30 mmol), a catalyst 1c (20 mg, 0.02 mmol) and n-butanol (50 mL) were added to a 200 mL hydrogenated inner tube.
  • the reaction inner tube was charged into a high pressure reaction vessel. After replacing the gas in the autoclave with hydrogen, the initial hydrogen pressure was applied to 30 atm, and the reaction was stirred at room temperature for 10 hours. After the hydrogenation reaction is completed, hydrogen is released and the autoclave is opened. The reaction solution was filtered through a short short silica gel to remove the catalyst, and the conversion was 100% by nuclear magnetic analysis. After the product was derivatized to methyl ester, the optical purity was determined to be 84% ee.
  • a substrate a-keto acid 2 m (4 g, 20 mmol), potassium t-butoxide (3.36 g, 30 mmol), catalyst 1b (20 mg, 0.02 mmol) and n-butanol (50 mL) were added to a 200 mL hydrogenated inner tube.
  • the reaction inner tube was charged into a high pressure reaction vessel. After replacing the gas in the autoclave with hydrogen, the initial hydrogen pressure was applied to 15 atm, and the reaction was stirred at room temperature for 12 hours. After the hydrogenation reaction is completed, hydrogen is released and the autoclave is opened. The reaction solution was filtered through a short short silica gel to remove the catalyst, and the conversion was 100% by nuclear magnetic analysis. After the product was derivatized to methyl ester, the optical purity was determined to be 95% ee.
  • a substrate a-keto acid 2o (2.6 g, 20 mmol), potassium t-butoxide (3.36 g, 30 mmol), catalyst 1b (40 mg, 0.04 mmol) and n-butanol (50 mL) were added to a 200 mL hydrogenated inner tube.
  • the reaction inner tube was charged into a high pressure reaction vessel. After replacing the gas in the autoclave with hydrogen, the initial hydrogen pressure was applied to 15 atm, and the reaction was stirred at room temperature for 24 hours. After the hydrogenation reaction is completed, hydrogen is released and the autoclave is opened. The reaction solution was filtered through a short short silica gel to remove the catalyst, and the conversion was 100% by nuclear magnetic analysis. After the product was derivatized to benzyl ester, the optical purity was determined to be 85% ee.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及有机化学技术领域,具体为ɑ-酮酸类化合物的不对称氢化反应,该方案如公式(I),其中R1为苯基,取代苯基,萘基,取代萘基,C1-C6烷基或芳烷基;所述取代基为C1-C6烷基,C1-C6烷氧基,卤素;所述取代基的个数为1-3个。其中M为具有结构(II)的手性螺环吡啶胺基膦配体铱络合物,其中R为氢,3-甲基,4-tBu或6-甲基。

Description

酮酸类化合物的不对称氢化反应
本申请要求于2014年9月15日提交中国专利局、申请号为201410468805.9、发明名称为“ɑ-酮酸类化合物的不对称氢化反应”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及配体化学技术领域,具体涉及ɑ-酮酸类化合物的不对称氢化反应。
背景技术
ɑ-酮酸类化合物的不对称氢化反应在本领域鲜有报道,利用金属配体络合物直接不对称氢化ɑ-酮酸类化合物在该领域的报道也基本处于空白状态。分析原因为:ɑ-酮酸类化合物类的羧基会与金属络合从而毒化催化剂,降低反应收率;又由于ɑ-酮酸类化合物的ɑ羰基与羧酸羰基在空间上基本是共平面,导致手性配体催化剂ɑ酮酸类化合物两面进攻的机会均等,从而导致反应收率或对应选择性低。
具有下列结构的手性螺环吡啶胺基膦配体络合物最早由南开大学研制开发,
Figure PCTCN2015077660-appb-000001
该化合物公开发表在公开号为CN102040625的中国专利申请文件中,主要用于芳基酮、烯酮、酮酸酯类化合物的不对称氢化反应中,并且由其实施例11表1编号27记载的结果可知,其对ɑ-酮酸酯催化结果不理想。
鉴于不对称氢化反应在有机合成中的重要地位,有必要研究开发新的工艺,以解决ɑ-酮酸类化合物很难或不能进行不对称氢化反应这个技术问题。
发明内容
为了解决ɑ-酮酸类化合物很难或不能进行不对称氢化反应这个技术问题,本发明提供如下技术方案:
Figure PCTCN2015077660-appb-000002
其中R1为苯基,取代苯基,萘基,取代萘基,C1-C6烷基或芳烷基;所述取代基为C1-C6 烷基,C1-C6烷氧基,卤素;所述取代基的个数为1-3个。
其中M为具有下列结构的手性螺环吡啶胺基膦配体铱络合物:
Figure PCTCN2015077660-appb-000003
其中R为氢,3-甲基,4-tBu或6-甲基。
所述碱选自氢氧化钠、氢氧化钾、叔丁醇钠、叔丁醇钾所述与底物A化合物的摩尔用量比为(1.0~3):1;优选的摩尔比为(1.001~1.5):1。
所述溶剂选自甲醇,乙醇,丙醇,异丙醇,四氢呋喃,甲苯,甲基叔丁基醚,二氧六环,DMF等。
优选的R1为苯基,取代苯基,萘基,取代萘基。
优选的本发明采用如下技术方案:在氮气保护下,氢气压力为0.5-10MPa,碱的用量为1.0~3.0摩尔当量,在有机溶剂中,a-酮酸A化合物在0.00001~0.01摩尔当量的手性螺环吡啶胺基膦配体络合物(M)催化下得到B化合物。
更有选的,在氮气保护下,向氢化内管中加入底物A、1.0~3摩尔当量氢氧化钠、氢氧化钾、叔丁醇钠或叔丁醇钾、0.0001~0.01摩尔当量催化剂M和溶剂。将该反应内管装入高压反应釜中,充氢气压力至0.5-10MPa,并使其在10~90℃搅拌反应1-30小时得到产物B。
本发明通过改变反应中所用碱的量,克服底物分子中羧基与中心金属的强配位作用,实现了a-酮酸的直接不对称催化氢化。
附图说明
图1为在实施例12条件下得到的3a化合物的光学纯度HPLC图谱;
图2为在实施例17条件下得到的3c化合物的光学纯度HPLC图谱;
图3为在实施例26条件下得到的3l化合物的光学纯度HPLC图谱。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
HPLC分析仪器及方法:
仪器型号:Agilent 1200
色谱柱:Chiracel OD-H,4.6mm×250mm×5μm
流动相A:正己烷
流动相B:异丙醇
流速:1.0mL/min柱温:35℃
波长:210nm
进样量:5μL
实施例1:2-羟基-2-苯基乙酸的制备
Figure PCTCN2015077660-appb-000004
在氮气保护下,向200mL氢化内管中加入底物a-酮酸2a(3g,20mmol)、叔丁醇钾(112mg,1mmol)、催化剂M(20mg,0.02mmol,R=3-甲基)和溶剂(50mL)。将该反应内管装入高压反应釜中。用氢气置换釜内的气体后,充初始氢气压力至15个大气压,并使其在室温搅拌反应24小时。氢化反应完毕,释放氢气,打开高压釜。反应液经快速短硅胶过滤除去催化剂,用核磁分析反应转化率。产品衍生化成甲酯后,测定光学纯度,结果列于表一。
下表一中实施例2-15为按照实施例1的方法同法操作得到的试验结果:
Figure PCTCN2015077660-appb-000005
表一:
Figure PCTCN2015077660-appb-000006
Figure PCTCN2015077660-appb-000007
其中B/S表示碱与底物ɑ-酮酸的比率,conv.表示核磁检测底物转化率。
下表二实施例16-30是以1c为催化剂,按照实施例1的方法同法操作得到的试验结果:
Figure PCTCN2015077660-appb-000008
表二:
Figure PCTCN2015077660-appb-000009
Figure PCTCN2015077660-appb-000010
Figure PCTCN2015077660-appb-000011
实施例31:(R)-2-羟基-2-(2-氯苯基)乙酸的制备
按照实施例1的方法同法操作,进行高转化数实验:S/C=50000
Figure PCTCN2015077660-appb-000012
实施例32:(S)-2-羟基-2-苯基乙酸的制备
Figure PCTCN2015077660-appb-000013
在氮气保护下,向200mL氢化内管中加入底物a-酮酸2a(3g,20mmol)、氢氧化钾(1.68g,30mmol)、催化剂1c(20mg,0.02mmol)和正丁醇(50mL)。将该反应内管装入高压反应釜中。用氢气置换釜内的气体后,充初始氢气压力至30个大气压,并使其在室温搅拌反应10小时。氢化反应完毕,释放氢气,打开高压釜。反应液经快速短硅胶过滤除去催化剂,用核磁分析反应转化率100%。产品衍生化成甲酯后,测定光学纯度84%ee。
实施例33:(S)-2-羟基-2-(2-萘基)乙酸的制备
Figure PCTCN2015077660-appb-000014
在氮气保护下,向200mL氢化内管中加入底物a-酮酸2m(4g,20mmol)、叔丁醇钾(3.36g,30mmol)、催化剂1b(20mg,0.02mmol)和正丁醇(50mL)。将该反应内管装入高压反应釜中。用氢气置换釜内的气体后,充初始氢气压力至15个大气压,并使其在室温搅拌反应12小时。氢化反应完毕,释放氢气,打开高压釜。反应液经快速短硅胶过滤除去催化剂,用核磁分析反应转化率100%。产品衍生化成甲酯后,测定光学纯度95%ee。
实施例34:(R)-2-羟基-3,3-二甲基丁酸的制备
Figure PCTCN2015077660-appb-000015
在氮气保护下,向200mL氢化内管中加入底物a-酮酸2o(2.6g,20mmol)、叔丁醇钾(3.36g,30mmol)、催化剂1b(40mg,0.04mmol)和正丁醇(50mL)。将该反应内管装入高压反应釜中。用氢气置换釜内的气体后,充初始氢气压力至15个大气压,并使其在室温搅拌反应24小时。氢化反应完毕,释放氢气,打开高压釜。反应液经快速短硅胶过滤除去催化剂,用核磁分析反应转化率100%。产品衍生化成苄酯后,测定光学纯度85%ee。
尽管已经结合了具体实施方式对本发明进行了充分的描述,应当注意的是对于本领域技术人员来说其各种变化和修改是显而易见的。这样的变化和修改将可以理解为包括在由所附权利要求所定义的本发明的范围内。

Claims (8)

  1. 一种下列式(B)化合物的制备方法:
    Figure PCTCN2015077660-appb-100001
    其中R1为苯基,取代苯基,萘基,取代萘基,C1-C6烷基或芳烷基;所述取代基为C1-C6烷基,C1-C6烷氧基,卤素;所述取代基的个数为1-3个。
    其中M为具有下列结构的手性螺环吡啶胺基膦配体铱络合物:
    Figure PCTCN2015077660-appb-100002
    其中R为氢,3-甲基,4-tBu或6-甲基。
    所述碱选自氢氧化钠、氢氧化钾、叔丁醇钠、叔丁醇钾;
    所述碱与底物(A)化合物的摩尔用量比为(1.0~3):1;
  2. 根据权利要求1所述的制备方法,所述碱与底物(A)化合物的摩尔用量比为(1.001~1.5):1。
  3. 根据权利要求1所述的制备方法,其中所述R1为苯基,取代苯基,萘基,取代萘基。
  4. 根据权利要求1所述的制备方法,所述R为4-tBu。
  5. 根据权利要求1所述的制备方法,所述碱为叔丁醇钠、叔丁醇钾。
  6. 根据权利要求1、3-5任一权利要求所述的制备方法,其特征在于,在氮气保护下,氢气压力为0.5-10MPa,碱的用量为1.0~3.0摩尔当量,在有机溶剂中,式(A)化合物在0.00001~0.01摩尔当量的手性螺环吡啶胺基膦配体络合物(M)催化下得到(B)化合物。
  7. 根据权利要求1、3-5任一权利要求所述的制备方法,其特征在于,在氮气保护下,向氢化内管中加入式(A)化合物、1.0~3摩尔当量氢氧化钠、氢氧化钾、叔丁醇钠或叔丁醇钾、0.0001~0.01摩尔当量催化剂M和溶剂。将该反应内管装入高压反应釜中,充氢气压力至0.5-10MPa,并使其在10~90℃搅拌反应1-30小时得到式(B)化合物。
  8. 根据权利要求1所述的制备方法,所述溶剂选自甲醇,乙醇,丙醇,异丙醇,四氢呋喃,甲苯,甲基叔丁基醚,二氧六环,DMF。
PCT/CN2015/077660 2014-09-15 2015-04-28 酮酸类化合物的不对称氢化反应 WO2016041351A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017533670A JP6475341B2 (ja) 2014-09-15 2015-04-28 ケト酸類化合物の不斉水素化反応
EP15842631.2A EP3196185B1 (en) 2014-09-15 2015-04-28 Asymmetrical hydrogenation reaction of ketonic acid compound
US15/508,933 US10112884B2 (en) 2014-09-15 2015-04-28 Asymmetrical hydrogenation reaction of ketonic acid compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410468805.9 2014-09-15
CN201410468805.9A CN105481677B (zh) 2014-09-15 2014-09-15 ɑ-酮酸类化合物的不对称氢化反应

Publications (1)

Publication Number Publication Date
WO2016041351A1 true WO2016041351A1 (zh) 2016-03-24

Family

ID=55532516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077660 WO2016041351A1 (zh) 2014-09-15 2015-04-28 酮酸类化合物的不对称氢化反应

Country Status (5)

Country Link
US (1) US10112884B2 (zh)
EP (1) EP3196185B1 (zh)
JP (1) JP6475341B2 (zh)
CN (1) CN105481677B (zh)
WO (1) WO2016041351A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107089920A (zh) * 2017-04-25 2017-08-25 武汉理工大学 L‑3‑n,n‑二苄基氨基‑1‑(3‑环己基甲氧基)苯基)丙‑1‑醇的制备方法
CN107827802B (zh) * 2017-10-17 2021-06-11 南京红杉生物科技有限公司 一种d-脯氨酸的合成方法
CN110790664A (zh) * 2018-08-01 2020-02-14 浙江九洲药业股份有限公司 γ-或δ-酮酸类化合物的不对称氢化反应
CN111410604B (zh) * 2019-01-08 2023-06-16 浙江九洲药业股份有限公司 烯酸类化合物的不对称氢化反应
CN109748788B (zh) * 2019-01-17 2021-05-14 南方科技大学 ɑ-羟基酸制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112563A (zh) * 1994-02-12 1995-11-29 弗·哈夫曼-拉罗切有限公司 水溶性膦衍生物
CN1439643A (zh) * 2003-02-21 2003-09-03 南开大学 螺环双膦配体
CN101671365A (zh) * 2009-09-18 2010-03-17 南开大学 手性螺环胺基膦配体化合物与合成方法及其应用
WO2012065571A1 (zh) * 2010-11-19 2012-05-24 浙江九洲药业股份有限公司 手性螺环吡啶胺基膦配体化合物与合成方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283867B2 (ja) * 2007-07-26 2013-09-04 国立大学法人 千葉大学 光学活性β−ヒドロキシカルボン酸誘導体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112563A (zh) * 1994-02-12 1995-11-29 弗·哈夫曼-拉罗切有限公司 水溶性膦衍生物
CN1439643A (zh) * 2003-02-21 2003-09-03 南开大学 螺环双膦配体
CN101671365A (zh) * 2009-09-18 2010-03-17 南开大学 手性螺环胺基膦配体化合物与合成方法及其应用
WO2012065571A1 (zh) * 2010-11-19 2012-05-24 浙江九洲药业股份有限公司 手性螺环吡啶胺基膦配体化合物与合成方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196185A4 *

Also Published As

Publication number Publication date
CN105481677A (zh) 2016-04-13
EP3196185A1 (en) 2017-07-26
JP6475341B2 (ja) 2019-02-27
JP2017534672A (ja) 2017-11-24
US20170260119A1 (en) 2017-09-14
CN105481677B (zh) 2019-10-22
US10112884B2 (en) 2018-10-30
EP3196185B1 (en) 2019-06-12
EP3196185A4 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
WO2016041351A1 (zh) 酮酸类化合物的不对称氢化反应
KumaráMishra et al. Cp* Rh (iii)-catalyzed C (sp 3)–H alkylation of 8-methylquinolines in aqueous media
JP5345270B2 (ja) 接触水素化法
AU2008243349A1 (en) Process for the preparation of optically active ethenylphenyl alcohols
Hennig et al. Synthesis of (R)-and (S)-4-hydroxyisophorone by ruthenium-catalyzed asymmetric transfer hydrogenation of ketoisophorone
EP4328221A1 (en) Preparation method of l-nicotine
Kang et al. Imidazolium ion tethered TsDPENs as efficient water-soluble ligands for rhodium catalyzed asymmetric transfer hydrogenation of aromatic ketones
Lu et al. Highly enantioselective catalytic alkynylation of ketones–A convenient approach to optically active propargylic alcohols
JPH07179484A (ja) シラン基含有ジホスフィン、固定されたジホスフィン及びそれを用いる水素化触媒
JP2549158B2 (ja) 不飽和アルコールを製造する方法
JP4746749B2 (ja) 光学活性アミノアルコール類の製造方法
Wilhelmus Novel alkaloid modifiers for enantioselective heterogeneous catalysis
JP3598133B2 (ja) 水素化方法
JP5055185B2 (ja) ジシクロヘキサン誘導体の製造方法
CN112573996B (zh) 一种光学活性薄荷醇的制备方法
JP2001526111A (ja) モリブデン、タングステンまたはクロムを有するキラル配位子をベースとする触媒組成物およびアリル性基質の不斉アルキル化の方法
Tungle et al. New asymmetric heterogeneous catalytic hydrogenation reactions
JPH0859554A (ja) ケトイソホロン誘導体類の不斉水素化
Szőri et al. Inversion of enantioselectivity in the 2, 2, 2-trifluoroacetophenone hydrogenation over Pt-alumina catalyst modified by cinchona alkaloids
JP4755829B2 (ja) ピロリジン誘導体の製造方法
CN114713283B (zh) 钴纳米颗粒高效选择性催化体系及其还原炔烃生成(z)-烯烃的方法
CN113336770B (zh) 一种盐酸多佐胺的手性合成方法
JP2002506845A (ja) 4−置換シス−シクロヘキシルアミンの製造法
Thingom et al. Cadmium-proline catalyzed direct asymmetric Michael and Aldol reactions in water
JP2011178699A (ja) ルテニウム化合物及びそれを用いた不斉シクロプロパン化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15508933

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017533670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015842631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015842631

Country of ref document: EP