WO2016035531A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2016035531A1
WO2016035531A1 PCT/JP2015/072917 JP2015072917W WO2016035531A1 WO 2016035531 A1 WO2016035531 A1 WO 2016035531A1 JP 2015072917 W JP2015072917 W JP 2015072917W WO 2016035531 A1 WO2016035531 A1 WO 2016035531A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oxygen
drift layer
semiconductor substrate
vacancy
Prior art date
Application number
PCT/JP2015/072917
Other languages
English (en)
French (fr)
Inventor
俊之 松井
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to DE112015000610.9T priority Critical patent/DE112015000610T5/de
Priority to CN201580011623.1A priority patent/CN106062966B/zh
Priority to JP2016546400A priority patent/JP6237915B2/ja
Publication of WO2016035531A1 publication Critical patent/WO2016035531A1/ja
Priority to US15/246,595 priority patent/US9870923B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/221Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities of killers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/2636Bombardment with radiation with high-energy radiation for heating, e.g. electron beam heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/106Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
    • H10D62/107Buried supplementary regions, e.g. buried guard rings 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/109Reduced surface field [RESURF] PN junction structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/50Physical imperfections
    • H10D62/53Physical imperfections the imperfections being within the semiconductor body 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/111Field plates
    • H10D64/112Field plates comprising multiple field plate segments
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • H10D8/01Manufacture or treatment
    • H10D8/045Manufacture or treatment of PN junction diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • H10D8/411PN diodes having planar bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/106Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • H10D62/8303Diamond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • H10D62/832Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
    • H10D62/8325Silicon carbide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/8503Nitride Group III-V materials, e.g. AlN or GaN

Definitions

  • the present invention relates to a power diode used in a power converter and the like, a semiconductor device incorporating the power diode, and a method of manufacturing the semiconductor device.
  • a freewheeling diode is a semiconductor device used for a high-voltage, large-current power converter.
  • the electrical characteristics required during switching of the freewheeling diode are a reduction in switching loss and a soft recovery characteristic.
  • the soft recovery characteristic is a characteristic that has been particularly demanded as a countermeasure for environmental problems in recent years.
  • FIG. 5 is a cross-sectional view of a main part of a semiconductor substrate showing a layer structure and a lifetime control region of a conventional diode.
  • the vertical power diode 100 used as a freewheeling diode includes an anode electrode 102 provided on the upper surface of the high resistance n-type drift layer 101 and a cathode electrode provided on the lower surface of the n-type drift layer 101. 103.
  • the anode electrode 102 is in ohmic contact with the p-type anode layer 104 that is selectively formed in the central portion on the upper surface side of the n-type drift layer 101.
  • the cathode electrode 103 is in ohmic contact with the n-type cathode layer 105 formed on the entire lower surface of the n-type drift layer 101.
  • the anode layer 104 in contact with the anode electrode 102 is a region related to the main current and is referred to as an active portion 109.
  • an edge termination portion 110 is disposed on the same upper surface side as the anode electrode 102 and the anode layer 104 and on the outer periphery surrounding the anode layer 104.
  • the edge termination unit 110 includes a guard ring 107 and a field plate (not shown).
  • the guard ring 107 has a function of relaxing a high electric field generated on the surface of the outer peripheral substrate of the pn junction 106 when a reverse voltage with the anode as a negative electrode is applied.
  • the field plate has a function of preventing the electrostatic potential from changing due to the influence of external charges, for example.
  • the edge termination portion 110 has an insulating film 108 in addition to the guard ring 107 and the field plate.
  • the insulating film 108 protects the edge termination surface of the pn junction and the high electric field silicon (Si) substrate surface on the outer peripheral side thereof.
  • a lifetime control region 111 indicated by hatching is provided in the vicinity of the anode layer 104 of the high-resistance n-type drift layer 101.
  • FIG. 6 is a general chopper circuit diagram of an IGBT and a diode. In the closed circuit connecting the diode, the IGBT, and the intermediate capacitor, there is a floating inductance Lstray. In FIG. 6, for convenience, Lstray is shown as a part of the circuit.
  • FIG. 7 is a reverse recovery voltage current waveform diagram showing a time transition of voltage current during switching of a general diode. FIG. 7 shows a reverse recovery voltage current waveform representing a time transition ( ⁇ s) of reverse recovery voltage and current when the diode operating in the circuit shown in FIG. 6 is turned off.
  • the anode current Iak decreases from the forward current If at a decreasing rate di / dt, and commutates in the reverse direction to further increase the reverse current.
  • the anode current Iak decreases at a current decrease rate dIr / dt and converges to a current value of zero.
  • the anode-cathode voltage Vak is displayed in the direction of Vka in which the cathode is positive with respect to the anode for easy viewing.
  • the anode-cathode voltage Vak changes from a forward voltage VF (not shown) to a reverse voltage corresponding to a decrease in the anode current Iak, and the anode-cathode voltage Vak becomes negative (Vka is positive). Thereafter, when the anode current Iak reaches the reverse recovery peak current Irp, the cathode-anode voltage Vka has the same value as the power supply voltage Vcc. Thereafter, a voltage higher than Vcc is generated by the product of the current reduction rate dIr / dt of the anode current Iak and the floating inductance Lstray (Lstrat ⁇ dIr / dt). When this becomes a surge voltage and the absolute value of dIr / dt becomes maximum, Vka also becomes the maximum value Vs of the surge voltage. After that, it converges to Vcc.
  • This reverse current is called the diode recovery current (reverse recovery current).
  • the peak value Irp of the reverse recovery current increases as the current decrease rate (dIr / dt) of the forward current increases. As the peak value Irp of the reverse recovery current increases, the switching loss increases. In the process of increasing the reverse recovery current, the depletion layer begins to extend from the pn junction 106 with a slight delay, and the reverse voltage (blocking voltage) increases. Thereafter, the increased reverse voltage eventually converges to a reverse bias voltage value applied from the outside.
  • the horizontal axis ( ⁇ s) can be roughly divided into two regions. One is the A region from when the forward current reaches zero until the peak value Irp of the reverse recovery current is reached.
  • the forward current decreases from the steady current at a current decrease rate di / dt determined by the IGBT drive frequency or the like.
  • a current when holes remaining in the n-type drift layer 101 are excluded from the anode electrode 102 that is, a reverse recovery current.
  • the reverse recovery current increases as the reverse bias voltage increases and reaches the peak value Irp of the reverse recovery current.
  • Another region is a region B from the peak value Irp of the reverse recovery current until the reverse current becomes zero due to elimination and recombination of residual holes from the anode electrode 102 at a decreasing rate (dIr / dt).
  • the switching loss can be reduced by reducing the amount of holes injected from the anode layer 104 to reduce the peak value Irp of the reverse recovery current and increasing the current decrease rate dIr / dt to shorten the reverse recovery time (trr). It is obtained by doing.
  • the soft recovery characteristic can be obtained by decreasing the reverse recovery current decrease rate dIr / dt in the B region and increasing the reverse recovery time (trr). As described above, since the countermeasures of the reduction of switching loss and the soft recovery characteristic are contradictory, it is not easy to achieve both.
  • a method of thermally diffusing heavy metals such as platinum into a semiconductor is known.
  • a crystal defect is formed in a semiconductor substrate, and the crystal defect forms an impurity level in the Si band gap.
  • This method is used for lifetime control.
  • lifetime control methods using heavy metals tend to segregate to crystal defects at the Si / oxide film interface or crystal defects in the highly doped region. For this reason, it is possible to form a region with a short minority carrier lifetime in these places, but it is difficult to form in any place.
  • the types of radiation used for lifetime control include helium irradiation, proton irradiation, and electron beam irradiation.
  • helium irradiation and proton irradiation have a short range in the semiconductor, so that a region in which the lifetime is controlled to be short can be locally formed in a predetermined depth range.
  • a high energy irradiation device is extremely expensive, and when the depth control of the range uses the thickness of the metal shielding plate, the practicality in terms of accuracy of the depth control is not so high.
  • Patent Document 2 a carrier trapping layer is provided in the vicinity of an intermediate region of a high resistance region, thereby reducing a loss during reverse recovery and suppressing a depletion layer.
  • Patent Document 3 a description for obtaining recovery characteristics.
  • conventional soft recovery by, for example, diffusing platinum in a high resistance n layer and irradiating it with helium ions to form a low lifetime region. 4).
  • Patent Document 1 has less influence on the operating resistance (forward voltage drop value Vf) compared to the case of only electron beam irradiation in which crystal defects are formed in the entire thickness direction.
  • Vf forward voltage drop value
  • the switching loss can be reduced. That is, only the carrier lifetime close to the anode side is shortened to reduce the peak value Irp of the reverse recovery current, and the remaining carriers other than that are left unchanged, thereby reducing the influence on the operating resistance and reducing the loss. It is considered to be a technology to do.
  • FIG. 8 is a diagram showing reverse recovery characteristics of a diode in which the lifetime of a semiconductor substrate is uniformly controlled by electron beam irradiation.
  • a time transition waveform of anode current (Ia) ⁇ anode-cathode voltage (Vak) is additionally shown by a broken line.
  • the area integrated by the time on the horizontal axis of the waveform indicated by the broken line indicates the amount of power energy, that is, the switching loss.
  • FIG. 8 shows two peaks in the switching loss due to the reverse recovery current.
  • the first peak is a spike-like voltage peak having a narrow time width due to the peak value Irp of the reverse recovery current, and the second peak corresponds to the tail (dIr / dt) portion of the reverse current after Irp. It is a peak with a wide time width.
  • the area by time integration of a peak having a wide time width is more than twice as large as that of a peak having a narrow time width.
  • the present invention provides a semiconductor device and a method of manufacturing a semiconductor device that can achieve both reduction of switching loss and soft recovery characteristics by an inexpensive and simple process in order to solve the above-described problems caused by the prior art. With the goal.
  • a semiconductor device includes a first conductivity type semiconductor substrate and a first conductivity type drift layer formed on the first main surface side of the semiconductor substrate. And a second conductivity type anode layer that is selectively formed along the drift layer and has a lower resistance than the drift layer, and a surface layer on the second main surface side of the semiconductor substrate, and is in contact with the drift layer A cathode layer of a first conductivity type; and a vacancy-oxygen complex defect region formed by a complex defect of vacancies and oxygen.
  • the vacancy-oxygen complex defect region of the semiconductor device according to the present invention has a depth R in a direction from the boundary surface between the cathode layer and the drift layer toward the first main surface of the semiconductor substrate,
  • the specific resistance of the semiconductor substrate is ⁇
  • the thickness from the pn junction of the anode layer and the drift layer to the cathode layer is t
  • the reverse bias voltage V applied to the pn junction is used to form the drift layer from the pn junction.
  • the width of the depletion layer extending inward is 0.54 ⁇ ⁇ ( ⁇ ⁇ V), and the depth is represented by 0 ⁇ R ⁇ t ⁇ W.
  • the semiconductor device according to the present invention is characterized in that, in the above invention, the vacancy-oxygen complex defect region is formed by a complex defect of a VV defect and a VO defect.
  • the vacancy-oxygen composite defect region is a composite defect that functions as a recombination center formed by diffusing heavy metal in the vacancy-oxygen composite defect region. It is characterized by having.
  • the heavy metal diffusion is platinum diffusion.
  • the device having a second conductivity type region having a lower resistance than the semiconductor substrate selectively on one main surface of the first conductivity type semiconductor substrate is a diode or a diode.
  • a method for manufacturing a semiconductor device comprising: a first conductivity type semiconductor substrate; a first conductivity type drift layer formed on a first main surface side of the semiconductor substrate; and the drift layer.
  • a second conductivity type anode layer which is selectively formed and has a lower resistance than the drift layer; and a first conductivity type cathode layer which is formed on a surface layer on the second main surface side of the semiconductor substrate and is in contact with the drift layer; And a vacancy-oxygen complex defect region formed by a complex defect of vacancies and oxygen.
  • the vacancy-oxygen complex defect region has a depth R in a direction from the boundary surface between the cathode layer and the drift layer toward the first main surface of the semiconductor substrate, and the specific resistance of the semiconductor substrate is ⁇ ,
  • the thickness of the anode layer and the drift layer from the pn junction to the cathode layer is t, and the depletion layer width extending from the pn junction into the drift layer by the reverse bias voltage V applied to the pn junction is 0.
  • W which is 54 ⁇ ⁇ ( ⁇ ⁇ V)
  • it is provided at a depth represented by 0 ⁇ R ⁇ t ⁇ W.
  • a high-concentration oxygen region containing locally high-concentration oxygen is formed. It is characterized in that it is formed by lowering the lifetime by means of beam irradiation.
  • a method for manufacturing a semiconductor device comprising: a first conductivity type semiconductor substrate; a first conductivity type drift layer formed on a first main surface side of the semiconductor substrate; and the drift layer.
  • a second conductivity type anode layer which is selectively formed and has a lower resistance than the drift layer; and a first conductivity type cathode layer which is formed on a surface layer on the second main surface side of the semiconductor substrate and is in contact with the drift layer; And a vacancy-oxygen complex defect region formed by a complex defect of vacancies and oxygen.
  • the vacancy-oxygen complex defect region has a depth R in a direction from the boundary surface between the cathode layer and the drift layer toward the first main surface of the semiconductor substrate, and the specific resistance of the semiconductor substrate is ⁇ ,
  • the thickness of the anode layer and the drift layer from the pn junction to the cathode layer is t, and the depletion layer width extending from the pn junction into the drift layer by the reverse bias voltage V applied to the pn junction is 0.
  • W which is 54 ⁇ ⁇ ( ⁇ ⁇ V)
  • it is provided at a depth represented by 0 ⁇ R ⁇ t ⁇ W.
  • a high-concentration oxygen region containing locally high-concentration oxygen is formed. It is characterized by being formed by diffusion and reducing the lifetime.
  • the semiconductor device and the manufacturing method of the semiconductor device according to the present invention there is an effect that it is possible to obtain both reduction in switching loss and soft recovery characteristics by an inexpensive and simple process.
  • FIG. 1 is a cross-sectional view of a main part of a diode according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing a layer structure and a characteristic distribution in the active part of the diode according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing reverse recovery characteristics of the diode manufactured by the manufacturing method according to the first embodiment of the present invention.
  • FIG. 4 is a sectional view showing a manufacturing flow of the diode according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a main part of a semiconductor substrate showing a layer structure and a lifetime control region of a conventional diode.
  • FIG. 6 is a general chopper circuit diagram of an IGBT and a diode.
  • FIG. 7 is a reverse recovery voltage current waveform diagram showing a time transition of voltage current during switching of a general diode.
  • FIG. 8 is a diagram showing reverse recovery characteristics of a diode in which the lifetime of a semiconductor substrate is uniformly controlled by electron beam irradiation.
  • FIG. 9 is an explanatory diagram showing the reverse recovery characteristics of the comparative diode.
  • FIG. 1 is a cross-sectional view of a main part of a diode according to a first embodiment of the present invention.
  • a diode 20 according to a first embodiment of the present invention is a vertical power diode and has a pin structure.
  • a diode 20 having a withstand voltage class of 1200 V is illustrated.
  • the diode 20 includes a high-resistance n-type drift layer 1 as shown in the cross-sectional view of the main part in FIG.
  • the n-type drift layer 1 can realize the first conductivity type drift layer according to the present invention.
  • the n-type drift layer 1 is realized by a semiconductor substrate (see reference numeral 50 in FIG. 4). Silicon (Si) can be used for the semiconductor substrate.
  • silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), diamond (C), or the like may be used as a semiconductor substrate.
  • the diode 20 includes an anode electrode 2 provided on the upper surface (first main surface, front surface) of the n-type drift layer 1.
  • the anode electrode 2 is in ohmic contact with the p-type anode layer 4 that is selectively formed in the central portion on the upper surface side of the n-type drift layer 1.
  • the p-type anode layer 4 can realize the second conductivity type anode layer according to the present invention.
  • a pn junction 6 is formed at the interface between the p-type anode layer 4 and the n-type drift layer 1.
  • the diode 20 includes a cathode electrode 3 provided on the lower surface (the second main surface rear surface) of the n-type drift layer 1.
  • the cathode electrode 3 is in ohmic contact with the n-type cathode layer 5 formed on the entire lower surface.
  • the n-type cathode layer 5 is formed on the surface layer on the lower surface side of the n-type drift layer 1 and is in contact with the n-type drift layer 1.
  • the n-type cathode layer 5 can realize the first conductivity type cathode layer according to the present invention.
  • An edge termination portion 10 is disposed on the upper surface side of the n-type drift layer 1 and on the outer periphery surrounding the anode layer 4.
  • the edge termination portion 10 is a region having an insulating film 8 for insulating and protecting the surface of the edge termination 6a of the pn junction 6 and the surface of the high electric field semiconductor substrate (n-type drift layer 1) on the outer peripheral side thereof.
  • the edge termination portion 10 includes a guard ring 7 that is an annular p-type layer, and has a function of relaxing a high electric field generated on the outer peripheral surface of the substrate surrounding the pn junction 6 when a reverse voltage is applied.
  • the guard ring 7 may have a field plate 30.
  • the field plate 30 is a conductive film and is made of a metal film such as polysilicon or aluminum.
  • a vacancy-oxygen complex defect region 11 in which the lifetime of minority carriers is reduced as compared with the periphery is formed.
  • the vacancy-oxygen complex defect region 11 is formed on the semiconductor substrate (n-type drift layer 1) from the boundary surface between the n-type cathode layer 5 and the n-type drift layer 1 on the upper surface side of the semiconductor substrate (n-type drift layer 1).
  • the depth from the boundary surface is R.
  • the vacancy-oxygen complex defect region 11 is introduced into the entire n-type drift layer 1 by electron implantation and oxygen locally introduced to a specific depth of the n-type drift layer 1 by ion implantation. This is a region where a composite defect with the formed vacancies is formed. Oxygen and vacancies introduced into the n-type drift layer 1 become complex defects due to heat treatment, and vacancy-oxygen defects (VO defects, hereinafter referred to as VO), or double vacancies (divacancy, VV). It becomes a composite of defects, hereinafter VV). Each of VO and VV has a function of a carrier recombination center, and has an effect of lowering the lifetime of the carrier.
  • the diode 20 has the same configuration as that of the conventional vertical power diode 100 described above, and the manufacturing method thereof can be the same as the conventional manufacturing method.
  • FIG. 2 is an explanatory diagram showing the layer structure and characteristic distribution in the active portion 9 of the diode 20 according to the first embodiment of the present invention.
  • FIG. 2A shows a cross-sectional view of the main part of the layer structure in the active portion 9 of the diode 20.
  • the symbol d indicates the depth of the vacancy-oxygen composite defect region 11 from the pn junction 6.
  • reference numeral 15 indicates a depletion layer extending in the n-type drift layer 1.
  • symbol W denotes the depletion layer 15 spreading in the n-type drift layer 1 when the cathode-anode voltage Vka becomes Vcc by applying the power supply voltage Vcc to the diode 20.
  • the thickness in the depth direction is shown.
  • the symbol t indicates the thickness of the n-type drift layer 1 in the depth direction.
  • a thickness t in the depth direction of the n-type drift layer 1 is a distance from the pn junction 6 to the n-type cathode layer 5.
  • the vacancy-oxygen complex defect region 11 is further away in the direction of the n-type cathode layer 5 than the thickness W of the depletion layer 15.
  • FIG. 2B shows a lifetime distribution when the diode 20 is cut at a predetermined location as shown in the cross section of FIG.
  • the value of the lifetime on the horizontal axis is a logarithmic scale, and the point of intersection with the depth direction X on the vertical axis does not mean that the lifetime value is zero.
  • the value of tau 0 is about 10 ⁇ 100 [mu] s.
  • the value of ⁇ 0 may be 20 ⁇ s, for example.
  • the lifetime becomes a value ⁇ 1 that is reduced from ⁇ 0 .
  • ⁇ 1 is appropriately controlled to about 0.01 to 5 ⁇ s, for example, by an electron beam irradiation amount or an annealing temperature for crystallinity recovery.
  • the lifetime of the formation site of the vacancy-oxygen complex defect region 11 is locally ⁇ 2 . Decreases to the value.
  • the value of ⁇ 2 is about 0.001 to 0.1 ⁇ s. Note that the lifetimes of the p-type anode layer 4 and the n-type cathode layer 5 doped with a dopant at a high concentration are lowered from ⁇ 0 .
  • FIG. 2 (c) shows the defect concentration distribution when the diode 20 is cut at a predetermined location as shown in the cross section of FIG. 2 (a).
  • the concentration on the horizontal axis is a logarithmic scale, and the concentration at the point intersecting the depth direction X on the vertical axis is not zero.
  • oxygen (O) introduced into the semiconductor substrate by a method described later increases locally at a predetermined depth.
  • VV defects due to vacancies introduced by electron beam irradiation are distributed over the entire depth direction of the semiconductor substrate.
  • VO defects due to vacancies and oxygen are formed, resulting in a distribution in which the concentration of VO defects is locally increased. Further, the concentration of VV defects also increases at the position where oxygen is introduced (depth d).
  • the vacancy-oxygen composite defect region 11 is a composite defect region of VV defects and VO defects.
  • the concentration relationship of VV, VO, and O in the vacancy-oxygen complex defect region 11 is not limited to that shown in FIG.
  • the relative concentration relationship of VV, VO, and O in the vacancy-oxygen complex defect region 11 may vary depending on the formation conditions.
  • the VV defect may have a higher concentration than the VO defect.
  • the VO defect may serve as a donor, and the doping concentration of the n-type drift layer 1 may locally increase.
  • the portion where the doping concentration is locally increased by the donor of the VO defect may be an n-type field stop layer. This n-type field stop layer has an effect of suppressing the spread of the depletion layer.
  • the vacancy-oxygen complex defect region 11 of the present invention is further characterized by its formation position.
  • the specific resistance of the n-type semiconductor substrate applied to the diode 20 is ⁇
  • the reverse bias voltage of the pn junction 6 is V
  • the thickness of the n-type drift layer 1 made of the substrate in the same state as the n-type semiconductor substrate is t
  • the vacancy-oxygen complex defect region 11 is typically a region having a width D in the depth direction of the semiconductor substrate, as shown in FIG.
  • This width D may be the distribution width of the oxygen concentration in the vacancy-oxygen complex defect region 11 as will be described later. If the oxygen concentration is a Gaussian distribution or the like, the full width at half maximum (Full Width Half Maximum, FWHM) There may be.
  • the area by time integration of the peak having a wide time width is twice or more larger than the peak having a narrow time width. That is, the switching loss can be reduced not only by reducing Irp, but also by slightly increasing (fastening) the reverse current decrease rate dIr / dt in the B region shown in FIG. 7 described above.
  • the diode 20 has an effect that the switching loss is sufficiently reduced, the soft recovery characteristic is obtained, and the forward voltage (Vf) is hardly increased.
  • FIG. 4 is a sectional view showing a manufacturing flow of the diode 20 according to the first embodiment of the present invention.
  • the rated voltage of the diode 20 is 1200 V, but is not limited to this rated voltage.
  • a manufacturing method is demonstrated along the order of a process.
  • a semiconductor substrate 50 made of silicon is prepared.
  • the semiconductor substrate 50 for example, an n-type Si semiconductor substrate manufactured by an FZ (float zone) method having a thickness of 130 ⁇ m and a specific resistance of 55 ⁇ cm is used.
  • the semiconductor substrate 50 realizes the n-type drift layer 1.
  • the semiconductor substrate 50 is not limited to the one manufactured by the FZ method, but may be one manufactured by the CZ (Czochralski) method or the MCZ (Magnetic Field Applied Czochralski) method.
  • the semiconductor substrate 50 can realize the first conductivity type semiconductor substrate according to the present invention.
  • a semiconductor substrate manufactured by the CZ method or the MCZ method contains more oxygen than a semiconductor substrate manufactured by the FZ method.
  • the average oxygen concentration of the semiconductor substrate manufactured by the FZ method is 1 ⁇ 10 15 / cm 3 or less, but the average oxygen concentration of the semiconductor substrate manufactured by the CZ method or MCZ method is 1 ⁇ 10 16 / cm 3 or more. is there.
  • a semiconductor substrate manufactured by the MCZ method has an average oxygen concentration of 1 ⁇ 10 17 / cm 3 or more. Therefore, it is easy to form the vacancy-oxygen complex defect region 11 in the diode 20 according to the first embodiment of the present invention.
  • a p-type anode layer and an edge termination portion 10 are formed on the surface 50 a of the semiconductor substrate 50.
  • An oxide film 8 having the function of an insulating film is formed on the surface of the edge termination portion 10 by thermal oxidation or deposition. Further, the anode electrode 2 in contact with the p-type anode layer 4 and a surface passivation film are formed to complete the surface structure.
  • the thickness of the semiconductor substrate 50 is reduced.
  • the thickness of the semiconductor substrate 50 is reduced from the back surface 50b of the semiconductor substrate 50 by a method such as grinding by back grinding, back surface etching, or a combination thereof.
  • the semiconductor substrate 50 is thinned from the back surface 50b before thinning to the ground surface indicated by reference numeral 52 in the direction indicated by the arrow 51 in FIG.
  • a high concentration oxygen region 54 is formed.
  • the high-concentration oxygen region 54 is formed, for example, by ion-implanting and introducing oxygen into the semiconductor substrate 50 from the ground surface 52 of the semiconductor substrate 50 as indicated by reference numeral 53.
  • a hole forming region 55 is formed on the entire semiconductor substrate 50.
  • the hole forming region 55 can be formed, for example, by performing electron beam irradiation 12 from the surface of the semiconductor substrate 50.
  • the electron beam irradiation 12 may be performed from the back surface of the semiconductor substrate 50.
  • a vacancy-oxygen complex defect region 11 is formed.
  • the vacancy-oxygen complex defect region 11 is formed by, for example, heat-treating (annealing) the semiconductor substrate 50 at a predetermined temperature in the range of 300 to 400 ° C.
  • the oxygen passage region 56 shown in FIG. 4F may have a higher oxygen concentration than the n-type drift layer 1 through which oxygen does not pass, and the VO defect is slightly higher than that of the n-type drift layer 1. There is a case.
  • an n-type cathode layer 5 having a higher concentration than the n-type drift layer 1 is further formed.
  • the n-type cathode layer 5 having a higher concentration than the n-type drift layer 1 is formed, for example, by introducing an n-type dopant such as phosphorus into the ground surface 52 by ion implantation and electrically activating it by laser annealing or the like.
  • the cathode electrode 3 is formed on the ground surface 52 as shown in FIG.
  • the cathode electrode 3 is formed in contact with the n-type cathode layer 5 on the ground surface 52.
  • the depth at which the vacancy-oxygen complex defect region 11 is formed is , W ⁇ d ⁇ t.
  • the depth at which the vacancy-oxygen composite defect region 11 is provided is in the range of 98 ⁇ m to 130 ⁇ m from the bottom of the p-type anode layer 4 (pn junction 6). It becomes.
  • the vacancy-oxygen complex defect region 11 having an oxygen concentration of 4 ⁇ 10 17 cm 3 is formed to a depth of 110 ⁇ m from the bottom of the p-type anode layer 4 (the pn junction 6). It was formed by ion implantation of oxygen having a width of 5 ⁇ m.
  • the acceleration energy when oxygen is ion-implanted is about 30 MeV.
  • Such acceleration energy can be obtained with a linear accelerator, a cyclotron accelerator, or the like.
  • the FWHM in the depth direction (injection direction) is 0.7 ⁇ m.
  • the oxygen distribution width is about 1.0 ⁇ m. Therefore, the width D of the vacancy-oxygen complex defect region 11 is about 1.0 to 2.0 ⁇ m.
  • the width D of the vacancy-oxygen complex defect region 11 is further increased and may be considered to be about 2.0 to 10 ⁇ m.
  • the dose amount of oxygen for ion implantation may be, for example, 1 ⁇ 10 11 / cm 2 to 1 ⁇ 10 14 / cm 2 .
  • the maximum oxygen concentration of the vacancy-oxygen complex defect region 11 at the depth R from the n-type cathode layer 5 may be 1 ⁇ 10 16 / cm 2 to 1 ⁇ 10 19 / cm 2 .
  • the concentration of VO defects is approximately the same as the oxygen concentration, or is lower than the oxygen concentration because it is bonded to vacancies, and is, for example, 1 ⁇ 10 14 / cm 2 to 1 ⁇ 10 17 / cm 2 Also good.
  • the concentration of VV defects in the vacancy-oxygen composite defect region 11 may be, for example, 1 ⁇ 10 14 / cm 2 to 1 ⁇ 10 17 / cm 2 . Further, the concentration of VV defects in the vacancy-oxygen composite defect region 11 may be lower or higher than the concentration of VO defects.
  • the p-type guard ring 7 has boron as an acceleration voltage of 50 kV and a dose of 1.3 ⁇ 10 13 cm ⁇ 2 using an oxide film (not shown) as a mask. It was formed by ion implantation and drive diffusion. Further, in the diode 20, the p anode layer 4 was formed by ion implantation and drive diffusion of boron with an acceleration voltage of 50 kV and a dose of 1 ⁇ 10 13 cm ⁇ 2 using an oxide film (not shown) as a mask. The depths of the p anode layer 4 and the p guard ring 7 were about 3 ⁇ m and 4 ⁇ m, respectively.
  • a pn junction 6 is formed at the boundary between the p-type anode layer 4 and the n-type drift layer 1.
  • a plurality of p-type guard rings 7 are provided at predetermined intervals so as to surround the p-type anode layer 4 outside the edge termination 6a of the pn junction that intersects the surface of the Si semiconductor substrate.
  • An oxide film 8 is coated on the surface of the edge of the pn junction between 6a and the guard ring 7 and between the guard rings.
  • the electron beam dose was 60 kGy at an acceleration voltage of 4.2 MeV, and a heat treatment for alleviating crystal defects was performed at 360 ° C. for 1 hour.
  • the acceleration voltage of electron beam irradiation may be about 1 to 8 MeV, and the electron beam irradiation amount may be about 20 to 600 kGy.
  • the n-type cathode layer 5 was formed by ion-implanting phosphorus from the back surface at a dose of 1 ⁇ 10 15 cm 2 and then diffusing to a depth of 0.5 ⁇ m.
  • the anode electrode 2 was made of an Al—Si film, and the cathode electrode 3 was made of Ti, Ni and Au, respectively, by vacuum deposition. Although not shown, it is also preferable to provide a field plate 30 formed simultaneously with the anode electrode film in contact with each surface of the guard ring 7 through the opening of the oxide film 8. Regions and layers other than the vacancy-oxygen complex defect region 11, layers, electrode films, and the like can be appropriately formed by other known techniques other than those described above.
  • FIG. 3 is an explanatory diagram showing reverse recovery characteristics of the diode 20 manufactured by the manufacturing method according to the first embodiment of the present invention.
  • FIG. 9 is an explanatory diagram showing the reverse recovery characteristics of the comparative diode.
  • the comparative diode is formed as a vacancy-oxygen complex defect region by electron beam irradiation 12 with a high concentration oxygen region formed at a position 5 ⁇ m below the p-type anode layer 4.
  • the other manufacturing conditions of the comparative diode were the same as those of the diode 20.
  • the switching loss of the comparative example diode was 42 mJ, while the switching loss of the diode 20 was 26 mJ.
  • the diode 20 and the comparative example diode both have a spike-like surge voltage suppressed and a soft recovery characteristic, but the switching loss of the diode 20 is further reduced compared to the comparative example diode. I understand. Furthermore, it was confirmed that no forward voltage drop (Vf) defect occurred in the diode 20.
  • the diode according to the second embodiment of the present invention is manufactured by replacing the vacancy-oxygen complex defect region 11 in the diode 20 described in the first embodiment described above from the electron beam irradiation to the thermal diffusion of platinum. Before the thermal diffusion process of platinum, the same process as in the first embodiment may be used.
  • a paste containing 1% by weight of platinum is applied and heat treatment is performed at 1000 ° C. for 3 hours.
  • platinum was thermally diffused in the semiconductor substrate 50. Due to this thermal diffusion, platinum diffuses about 25 ⁇ m from the back surface of the semiconductor substrate 50 and forms crystal defects in the high-concentration oxygen region formed at a position about 20 ⁇ m from the back surface. It can be.
  • the diode 20 including the vacancy-oxygen complex defect region 11 manufactured by the method shown in Embodiment 2 has a switching loss of 28 mJ, and can also exhibit soft recovery characteristics. Further, it was confirmed that no forward voltage drop (Vf) defect occurred in the diode manufactured by the method shown in the second embodiment.
  • the diode 20 that achieves both a reduction in switching loss and a soft recovery characteristic without increasing the operating resistance can be obtained at low cost. It can be obtained with a simple process.
  • the semiconductor device and the method for manufacturing the semiconductor device according to the present invention are useful for the power diode used in the power conversion device and the like, the semiconductor device incorporating the power diode, and the method for manufacturing the semiconductor device.
  • the present invention is suitable for a power diode used in a high-voltage / large-current power converter, a semiconductor device incorporating the power diode, and a method for manufacturing the semiconductor device.
  • n-type drift layer 2 anode electrode 3 cathode electrode 4 p-type anode layer 5 n-type cathode layer 6 pn junction 6a edge termination 7 guard ring 8 oxide film 9 active portion 10 edge termination portion 11 hole-oxygen complex defect region 12 electron Line irradiation 15 Depletion layer 20 Diode 30 Field plate 50 Semiconductor substrate 50a Front surface 50b Back surface 52 Grinding surface 53 Ion implantation 54 High concentration oxygen region 55 Void formation region 56 Oxygen passage region

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 n型ドリフト層(1)の一方の主面に沿って選択的に形成され、ドリフト層(1)より低抵抗のp型領域(4)を有し、p型領域(4)の境界であるpn接合(6)面から厚さtのドリフト層(1)内で、空孔-酸素複合欠陥領域(11)が設けられるドリフト層(1)の半導体基板の裏面から厚さ方向の深さをR、ドリフト層(1)の比抵抗をρ、pn接合(6)の逆バイアス電圧Vでpn接合(6)からドリフト層(1)内に拡がる空乏層(15)の幅WをW=0.54×√(ρ×V)で表すとき、空孔-酸素複合欠陥領域(11)が、0<R≦t-Wで表される深さに設けられている半導体装置を構成した。これにより、スイッチング損失の低減とソフトリカバリ特性との両立が安価で簡単なプロセスで得られる。

Description

半導体装置および半導体装置の製造方法
 この発明は、電力変換装置などに使用される電力用のダイオードおよび電力用ダイオードを内蔵する半導体装置および半導体装置の製造方法に関する。
 還流ダイオードは、高電圧・大電流の電力変換装置などに使用される半導体装置である。還流ダイオードのスイッチング時に要求される電気特性は、スイッチング損失の低減とソフトリカバリ特性である。ソフトリカバリ特性は、パワーエレクトロニクス機器から発生する電磁ノイズを抑制するために、特に、近年、環境問題対策として要望される特性である。
 図5は、従来のダイオードの層構造とライフタイム制御領域を示す半導体基板の要部断面図である。図5に示すように、還流ダイオードとして使用される縦型パワーダイオード100は、高抵抗のn型ドリフト層101の上面に設けられるアノード電極102と、n型ドリフト層101の下面に設けられるカソード電極103と、を備える。
 アノード電極102は、n型ドリフト層101の上面側の中心部に選択的に形成されるp型アノード層104にオーミック接触する。カソード電極103は、n型ドリフト層101の下面側の全面に形成されるn型カソード層105にオーミック接触する。アノード電極102が接触するアノード層104は、主電流に係わる領域であり、活性部109と称される。
 n型ドリフト層101において、アノード電極102やアノード層104と同じ上面側であって、アノード層104を取り巻く外周には、エッジ終端部110が配置される。このエッジ終端部110は、ガードリング107およびフィールドプレート(図示を省略する)を備える。ガードリング107は、アノードを負極とする逆電圧印加時に、pn接合106の外周基板の表面に生じる高電界を緩和させる機能を有する。フィールドプレートは、例えば外部電荷の影響により静電ポテンシャルが変化するのを防ぐ機能を有する。
 エッジ終端部110は、ガードリング107やフィールドプレートの他に、絶縁膜108を有する。絶縁膜108は、pn接合のエッジ終端表面とその外周側の高電界のシリコン(Si)基板表面とを保護する。エッジ終端部110は、ハッチングで示されるライフタイム制御領域111が、高抵抗のn型ドリフト層101のアノード層104近辺に設けられる。
 図6は、一般的なIGBTとダイオードのチョッパ回路図である。ダイオードとIGBT、中間コンデンサを結ぶ閉回路には浮遊のインダクタンスLstrayが存在するが、図6においては、便宜上、Lstrayを回路上の一部に示している。図7は、一般的なダイオードのスイッチング時の電圧電流の時間推移を示す逆回復電圧電流波形図である。図7においては、図6に示す回路で動作するダイオードをターンオフさせる際の逆回復電圧と電流の時間(μs)推移を表す逆回復電圧電流波形を示している。
 図7に示すように、アノード電流Iakは、順方向電流Ifから減少率di/dtで減少し、逆方向に転流してさらに逆方向電流が増加する。アノード電流Iakは、逆回復ピーク電流Irpに達してからは、電流減少率dIr/dtで減少し、電流値0に収束する。図7においては、アノード・カソード間電圧Vakは、見やすくするために、アノードに対してカソードが正となるVkaの向きで表示している。
 アノード・カソード間電圧Vakは、順電圧VF(図示せず)からアノード電流Iakの減少に対応して逆向きの電圧に転じ、アノード・カソード間電圧Vakは負(Vkaが正)となる。その後、アノード電流Iakが逆回復ピーク電流Irpに達するときに、カソード・アノード間電圧Vkaは、電源電圧Vccと同じ値となる。その後、アノード電流Iakの電流減少率dIr/dtと浮遊のインダクタンスLstrayとの積(Lstray×dIr/dt)だけ、Vccよりも高い電圧が発生する。これがサージ電圧となり、dIr/dtの絶対値が最大となるときに、Vkaもサージ電圧の最大値Vsとなる。その後は、Vccに収束する。
 ダイオード100においては、図7の逆回復電流電圧波形図に示すように、ダイオードのスイッチング時に順方向電流(アノード電流)が流れている状態から逆方向の電圧阻止状態に切り換る際には、スイッチングが完了する間、逆方向に電流が流れる。これは、キャリアの導電度変調によってダイオード100内に蓄えられたキャリアが、電圧の印加方向が逆方向になっても残留キャリアとして残り、再結合消滅または外部に排出される間、逆方向電流となるからである。
 この逆方向電流は、ダイオードのリカバリ電流(逆回復電流)といわれる。この逆回復電流のピーク値Irpは、順電流の電流減少速度(dIr/dt)が急激になるほど大きくなる。逆回復電流のピーク値Irpが大きくなると、スイッチング損失が大きくなる。この逆回復電流が増加する過程で、少し遅れてpn接合106から空乏層が伸び始めて逆電圧(阻止電圧)が大きくなる。その後、大きくなった逆電圧はやがて、外部から印加される逆バイアス電圧値へと収束する。一方、n型ドリフト層101内の残留過剰電子はカソード層105を経てカソード電極103から排除され、残留ホールはアノード層104を経てアノード電極102から排除される。このとき、ホールのキャリア移動度が電子より小さいので、逆回復電流の減少速度dIr/dtは残留ホールの排除速度で決まると考えてよい。
 ダイオードが順電流状態から逆阻止電圧状態に切り換る際、その電流減少率が大きいほど、ダイオード逆電圧上昇率が増大し、前述の電磁ノイズ発生の原因となる。この理由は、電流減少率を維持するために、ダイオードの逆電圧をより急速に上昇させて残留ホールを速やかに排除する必要があるためである。
 図7に示した逆回復電圧電流波形図では、横軸の時間軸(μs)について、大きく2つの領域に分けることができる。一つは、順電流がゼロに至ったときから、逆回復電流のピーク値Irpに達するまでのA領域である。順電流は、定常電流から、IGBTの駆動周波数などで決まる電流減少率di/dtで減少する。
 その際、n型ドリフト層101に残留するホールがアノード電極102から排除されるときの電流が、すなわち逆回復電流となる。この逆回復電流は、逆バイアス電圧の増大と共に増加して逆回復電流のピーク値Irpに達する。もう一つの領域は、逆回復電流のピーク値Irpから、残留ホールがアノード電極102から減少速度(dIr/dt)での排除および再結合により、逆電流がゼロになるまでのB領域である。
 還流ダイオードに求められるスイッチング損失の低減とソフトリカバリ特性は、相互にトレードオフの関係にあるので、通常、両立させることは容易ではない。例えば、スイッチング損失の低減は、アノード層104からのホールの注入量を減らして逆回復電流のピーク値Irpを低減するとともに、電流減少率dIr/dtを大きくして逆回復時間(trr)を短くすることによって得られる。しかし、ソフトリカバリ特性は、逆に、B領域における逆回復電流減少率dIr/dtを小さくして逆回復時間(trr)を長くすることにより得られる。このように、スイッチング損失の低減とソフトリカバリ特性とは、両者の対策が相反するため、両立させることは容易ではない。
 逆回復時のスイッチング損失を低減する方法としては、従来、デバイスの耐圧を損なわない範囲でn型高抵抗ドリフト層を薄くして残留キャリア(ホール)を減少させる方法もある。しかし、この場合、逆回復時のカソード側蓄積キャリアも減らすこととなり、カソード側の残留キャリアの消滅が速く(逆回復電流の減少速度dIr/dtが大)なるため、結果として、サージ電圧が大きくなり発振し易くなる。つまり、逆回復電流の減少速度dIr/dtが大きいとハードリカバリ特性を示しやすくなり、逆回復電流の減少速度dIr/dtが小さすぎると損失が大きくなる。このため、通常は、ソフトリカバリ特性を維持しながらスイッチング損失を低減することは極めて困難である。
 このように、スイッチング損失の低減とソフトリカバリ特性(低ノイズ)を両立するためには、アノード層からのホール注入量を少なくして、逆回復電流のピーク値Irpを小さくするだけでなく、注入されたホールの寿命(ライフタイム)を適切に制御することが必要である。
 従来、残留キャリア(ホール)の制御を効果的に行うには、例えば、Si半導体基板の厚さ方向で所望の深さ範囲にライフタイムの短い領域を形成することが知られている。そのようなライフタイム制御方法には、放射線を半導体に照射または注入することにより形成される結晶欠陥を、キャリアの再結合中心として利用する方法がある。この結晶欠陥は、200℃~400℃の熱処理により大部分は回復するが、酸素がかかわる複合欠陥は残る。従来、この複合欠陥を制御することによってライフタイムを所望値となるように制御する方法が既に開発されている。
 また、従来、白金などの重金属を半導体に熱拡散させる方法が知られている。この方法は、半導体基板内に結晶欠陥を形成し、その結晶欠陥がSiバンドギャップ中に不純物準位を形成するので、これをライフタイム制御に利用する方法である。しかしながら、重金属を用いるライフタイム制御方法は、Si/酸化膜界面の結晶欠陥や高ドーピング領域内の結晶欠陥に偏析する傾向がある。このため、これらの場所に少数キャリアライフタイムの短い領域を形成することは可能であるが、任意の場所に形成することは困難である。
 ライフタイムの制御に用いる放射線の種類には、ヘリウム照射、プロトン照射、電子線照射などがある。そのうち、ヘリウム照射、プロトン照射は、半導体内での飛程が短いので、所定の深さ範囲にライフタイムを短く制御した領域を局所的に形成することができる。その一方で、高エネルギーの照射装置は極めて高価であり、また、飛程の深さ制御を金属遮蔽板の厚さを利用する場合、深さ制御の精度面からの実用性はあまり高くない。
 また、電子線照射はコストや生産性に優れるが、半導体内での飛程が長いので、半導体基板の厚さ方向全体で一様のライフタイムになり、局所的なライフタイム領域の形成は困難である。ただし、半導体基板内に予め局所的に高濃度酸素領域を形成した後、高濃度酸素領域以外の半導体領域にはライフタイム制御に有効な結晶欠陥が形成されない程度の電子線を照射する。このことにより、電子線照射によっても局所的ライフタイム制御がある程度可能である(例えば、下記特許文献1を参照)。
 その他、このようなスイッチング損失の低減とソフトリカバリ化に関する文献には、次のようなものがある。具体的には、従来、例えば、高抵抗領域の中間領域近傍にキャリア捕獲層を設けることにより、逆回復時の損失を低減し、空乏層の進展を抑える記載がある(特許文献2)。また、具体的には、従来、例えば、酸素を導入し、アノード側表面からプロトンを照射して結晶欠陥を導入し、結晶欠陥を回復させてネットドーピング濃度を高くすることにより、低損失、ソフトリカバリ特性を得る記載がある(例えば、下記特許文献3を参照)。さらに、具体的には、従来、例えば、高抵抗n層に白金を拡散し、ヘリウムイオンを照射して低ライフタイム領域とすることにより、ソフトリカバリ化を図る記載がある(例えば、下記特許文献4を参照)。
特開2007-266103号公報 特開2010-92991号公報 再表2007-55352号公報 国際公開第99/09600パンフレット
 しかしながら、上述した特許文献1に記載された従来の技術は、厚み方向全体に結晶欠陥を形成する電子線照射のみの場合に比べると、動作抵抗(順電圧降下値Vf)への影響が小さいままで、スイッチング損失を小さくすることができるという趣旨の記載がある。すなわち、アノード側に近いキャリアのライフタイムのみを短縮して逆回復電流のピーク値Irpを小さくし、それ以外の残留キャリアはそのままにすることにより、動作抵抗への影響を小さくして損失を低減する技術と考えられる。
 図8は、電子線照射により半導体基板を一様にライフタイム制御したダイオードの逆回復特性を示す図である。図8においては、図7に加えて、さらにアノード電流(Ia)×アノード・カソード間電圧(Vak)の時間推移波形を破線で加えて示している。図8において、破線で示す波形の横軸の時間で積分した面積分は、電力エネルギー量、すなわち、スイッチング損失を示す。
 図8によれば、逆回復電流によるスイッチング損失には、2つのピークが見られる。1つめのピークは、逆回復電流のピーク値Irpに起因する時間幅の狭いスパイク状電圧のピークであり、2つめのピークは、Irpより後の逆電流のテール(dIr/dt)部分に相当する時間幅の広いピークである。時間積分で比較すると、時間幅の狭いピークより時間幅の広いピークの時間積分による面積の方が2倍以上大きい。
 すなわち、スイッチング損失の低減はIrpの低減によるよりも、dIr/dtを大きく(速く)することの方が効果が大きい。言い換えると、上述した特許文献1に記載のように逆回復電流のピーク値Irpを小さくするだけでは、スイッチング損失の低減には限界があるという問題があった。
 この発明は、上述した従来技術による問題点を解消するため、スイッチング損失の低減とソフトリカバリ特性との両立が安価で簡単なプロセスで得ることができる半導体装置および半導体装置の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、この発明にかかる半導体装置は、第1導電型の半導体基板と、前記半導体基板の第1主面側に形成された第1導電型のドリフト層と、前記ドリフト層に沿って選択的に形成され、前記ドリフト層より低抵抗の第2導電型アノード層と、前記半導体基板の第2主面側の表面層に形成され、前記ドリフト層と接する第1導電型のカソード層と、空孔と酸素との複合欠陥で形成された空孔-酸素複合欠陥領域と、を備える。また、この発明にかかる半導体装置の前記空孔-酸素複合欠陥領域は、前記カソード層と前記ドリフト層との境界面から前記半導体基板の第1主面に向かう方向の深さがRであり、前記半導体基板の比抵抗をρ、前記アノード層と前記ドリフト層とのpn接合から前記カソード層までの厚さをt、前記pn接合に印加される逆バイアス電圧Vで前記pn接合から前記ドリフト層内に拡がる空乏層幅が0.54×√(ρ×V)であるWに対して、0<R≦t-Wで表される深さに設けられていることを特徴とする。
 また、この発明にかかる半導体装置は、上記の発明において、前記空孔-酸素複合欠陥領域は、VV欠陥とVO欠陥との複合欠陥により形成されていることを特徴とする。
 また、この発明にかかる半導体装置は、上記の発明において、前記空孔-酸素複合欠陥領域は、前記空孔-酸素複合欠陥領域に重金属を拡散させて形成される再結合中心として機能する複合欠陥を備えていることを特徴とする。
 また、この発明にかかる半導体装置は、上記の発明において、前記重金属拡散は、白金拡散であることを特徴とする。
 また、この発明にかかる半導体装置は、上記の発明において、前記第1導電型半導体基板の一方の主面に選択的に前記半導体基板より低抵抗の第2導電型領域を有するデバイスがダイオードまたはダイオードを含む半導体装置であることを特徴とする。
 また、この発明にかかる半導体装置の製造方法は、第1導電型の半導体基板と、前記半導体基板の第1主面側に形成された第1導電型のドリフト層と、前記ドリフト層に沿って選択的に形成され、前記ドリフト層より低抵抗の第2導電型アノード層と、前記半導体基板の第2主面側の表面層に形成され、前記ドリフト層と接する第1導電型のカソード層と、空孔と酸素との複合欠陥で形成された空孔-酸素複合欠陥領域と、を備えた半導体装置の製造方法である。前記空孔-酸素複合欠陥領域は、前記カソード層と前記ドリフト層との境界面から前記半導体基板の第1主面に向かう方向の深さがRであり、前記半導体基板の比抵抗をρ、前記アノード層と前記ドリフト層とのpn接合から前記カソード層までの厚さをt、前記pn接合に印加される逆バイアス電圧Vで前記pn接合から前記ドリフト層内に拡がる空乏層幅が0.54×√(ρ×V)であるWに対して、0<R≦t-Wで表される深さに設けられている。この発明にかかる半導体装置の製造方法は、前記空孔-酸素複合欠陥領域を、局所的に高濃度である酸素を含む高濃度酸素領域を酸素のイオン注入により所定の位置に形成した後、電子線照射によりライフタイムを低下させることによって形成することを特徴とする。
 また、この発明にかかる半導体装置の製造方法は、第1導電型の半導体基板と、前記半導体基板の第1主面側に形成された第1導電型のドリフト層と、前記ドリフト層に沿って選択的に形成され、前記ドリフト層より低抵抗の第2導電型アノード層と、前記半導体基板の第2主面側の表面層に形成され、前記ドリフト層と接する第1導電型のカソード層と、空孔と酸素との複合欠陥で形成された空孔-酸素複合欠陥領域と、を備えた半導体装置の製造方法である。前記空孔-酸素複合欠陥領域は、前記カソード層と前記ドリフト層との境界面から前記半導体基板の第1主面に向かう方向の深さがRであり、前記半導体基板の比抵抗をρ、前記アノード層と前記ドリフト層とのpn接合から前記カソード層までの厚さをt、前記pn接合に印加される逆バイアス電圧Vで前記pn接合から前記ドリフト層内に拡がる空乏層幅が0.54×√(ρ×V)であるWに対して、0<R≦t-Wで表される深さに設けられている。この発明にかかる半導体装置の製造方法は、前記空孔-酸素複合欠陥領域を、局所的に高濃度である酸素を含む高濃度酸素領域を酸素のイオン注入により所定の位置に形成した後、重金属拡散を行いライフタイムを低下させることによって形成することを特徴とする。
 この発明にかかる半導体装置および半導体装置の製造方法によれば、スイッチング損失の低減とソフトリカバリ特性との両立が安価で簡単なプロセスで得ることができるという効果を奏する。
図1は、この発明にかかる実施の形態1のダイオードの要部断面図である。 図2は、この発明にかかる実施の形態1のダイオードの活性部における層構造および特性分布を示す説明図である。 図3は、この発明にかかる実施の形態1の製造方法により製造したダイオードの逆回復特性を示す説明図である。 図4は、この発明にかかる実施の形態1のダイオードの製造フローを示す断面図である。 図5は、従来のダイオードの層構造とライフタイム制御領域を示す半導体基板の要部断面図である。 図6は、一般的なIGBTとダイオードのチョッパ回路図である。 図7は、一般的なダイオードのスイッチング時の電圧電流の時間推移を示す逆回復電圧電流波形図である。 図8は、電子線照射により半導体基板を一様にライフタイム制御したダイオードの逆回復特性を示す図である。 図9は、比較例ダイオードの逆回復特性を示す説明図である。
 以下に添付図面を参照して、この発明にかかる導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。以下の実施の形態(明細書および添付図面)において、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+は、相対的に不純物濃度が高いことを意味し、nやpに付す-は、相対的に不純物濃度が高いまたは低いことを意味する。
 なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、実施の形態で説明される添付図面は、見易くまたは理解し易くするため、正確なスケール、寸法比で描かれていない。さらに、本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
 (実施の形態1)
 まず、この発明にかかる実施の形態1の半導体装置であるダイオードの構成について説明する。図1は、この発明にかかる実施の形態1のダイオードの要部断面図である。図1において、この発明にかかる実施の形態1のダイオード20は、縦型パワーダイオードであって、pin構造を有している。図1においては、例えば、耐圧クラスが1200Vであるダイオード20を示している。
 ダイオード20は、図1の要部断面図に示すように、高抵抗のn型ドリフト層1を備えている。実施の形態1においては、n型ドリフト層1によって、この発明にかかる第1導電型のドリフト層を実現することができる。n型ドリフト層1は、半導体基板(図4における符号50を参照)によって実現される。半導体基板は、シリコン(Si)を用いることができる。ダイオード20においては、シリコンに代えて、シリコンカーバイド(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga23)、ダイアモンド(C)等を半導体基板として用いてもよい。
 ダイオード20は、n型ドリフト層1の上面(第1主面、おもて面)に設けられたアノード電極2を備える。アノード電極2は、n型ドリフト層1の上面側の中心部に選択的に形成されるp型アノード層4にオーミック接触する。実施の形態1においては、p型アノード層4によって、この発明にかかる第2導電型アノード層を実現することができる。p型アノード層4とn型ドリフト層1との界面には、pn接合6が形成されている。
 また、ダイオード20は、n型ドリフト層1の下面(第2主面裏面)に設けられたカソード電極3を備える。カソード電極3は、下面側の全面に形成されるn型カソード層5にオーミック接触する。n型カソード層5は、n型ドリフト層1の下面側の表面層に形成され、n型ドリフト層1と接している。実施の形態1においては、n型カソード層5によって、この発明にかかる第1導電型のカソード層を実現することができる。
 n型ドリフト層1の上面側であって、アノード層4を取り巻く外周には、エッジ終端部10が配置される。エッジ終端部10は、pn接合6のエッジ終端6aの表面およびその外周側の高電界の半導体基板(n型ドリフト層1)の表面を絶縁保護するための絶縁膜8を有する領域である。エッジ終端部10は、環状のp型層であるガードリング7を有し、逆電圧印加時に、pn接合6を取り巻く基板の外周表面に生じる高電界を緩和させる機能を有する。ガードリング7は、フィールドプレート30を有していてもよい。フィールドプレート30は、導電性の膜であり、ポリシリコンや、アルミニウム等の金属膜からなる。
 n型ドリフト層1の下面側には、少数キャリアのライフタイムが周辺よりも低減された空孔-酸素複合欠陥領域11が形成されている。空孔-酸素複合欠陥領域11は、半導体基板(n型ドリフト層1)において、n型カソード層5とn型ドリフト層1との境界面から半導体基板(n型ドリフト層1)の上面側であって、当該境界面からの深さがRとなる位置に形成されている。
 空孔-酸素複合欠陥領域11は、後述するように、イオン注入によってn型ドリフト層1の特定の深さに局所的に導入された酸素と、電子線照射によってn型ドリフト層1全体に導入された空孔との複合欠陥が形成された領域である。n型ドリフト層1に導入された酸素と空孔は、熱処理により複合的な欠陥となり、空孔-酸素欠陥(Vacancy-Oxygen defect、VO欠陥、以下VO)、または、複空孔(divacancy、VV欠陥、以下VV)の複合体となる。VO、VVは、それぞれ、キャリアの再結合中心の機能を有し、キャリアのライフタイムを低くする効果を有する。ダイオード20は、上述した従来の縦型パワーダイオード100と同様の構成を有し、その製法についても、従来と同様の製造方法とすることができる。
(空孔-酸素複合欠陥領域11の層構造および特性分布)
 次に、ダイオード20に特有の空孔-酸素複合欠陥領域11の層構造および特性分布について説明する。図2は、この発明にかかる実施の形態1のダイオード20の活性部9における層構造および特性分布を示す説明図である。図2(a)においては、ダイオード20の活性部9における層構造の要部断面図を示している。
 図2(a)において、符号dは、空孔-酸素複合欠陥領域11のpn接合6からの深さを示している。また、図2(a)において、符号15は、n型ドリフト層1内に広がる空乏層を示している。また、図2(a)において、符号Wは、ダイオード20への電源電圧Vccの電圧印加によってカソード・アノード間電圧VkaがVccとなったときの、n型ドリフト層1内に広がる空乏層15の深さ方向の厚さを示している。また、図2(a)において、符号tは、n型ドリフト層1の深さ方向の厚さを示している。n型ドリフト層1の深さ方向の厚さtは、pn接合6からn型カソード層5までの距離である。空孔-酸素複合欠陥領域11は、空乏層15の厚さWよりもさらにn型カソード層5の方向に離れている。
 図2(b)においては、図2(a)の断面に示すようにダイオード20を所定の箇所で切断したときのライフタイム分布を示している。図2(b)において、横軸のライフタイムの値は、対数スケールであり、縦軸の深さ方向Xと交差する点は、ライフタイムの値がゼロであるわけではない。
 特にライフタイム制御を施さない場合のダイオードのライフタイムをτ0とすると、τ0の値は10~100μs程度である。τ0の値は、例えば、20μsでもよい。これに対して、電子線照射等により空孔を主体とした点欠陥が半導体基板の全体に導入されると、ライフタイムは、τ0から低下した値τ1となる。このτ1は、ダイオードの所定の特性を得るために、例えば電子線の照射量や結晶性回復のためのアニール処理温度等で、0.01~5μs程度に適宜制御される。
 この実施の形態1においては、さらに所定の深さに、空孔-酸素複合欠陥領域11を形成するため、空孔-酸素複合欠陥領域11の形成箇所のライフタイムは、局所的にτ2の値まで低下する。τ2の値は、0.001~0.1μs程度である。なお、高濃度にドーパントがドーピングされているp型アノード層4とn型カソード層5とは、ライフタイムがτ0から低下している。
 図2(c)においては、図2(a)の断面に示すようにダイオード20を所定の箇所で切断したときの欠陥濃度分布を示している。図2(c)において、横軸の濃度は、対数スケールであり、縦軸の深さ方向Xと交差する点は、濃度がゼロであるわけではない。図2(c)に示すように、ダイオード20においては、後述する方法によって半導体基板に導入された酸素(O)は、所定の深さで局所的に増加している。
 一方、ダイオード20において、電子線照射によって導入された空孔によるVV欠陥は、半導体基板の深さ方向全体に分布する。熱処理等により、空孔と酸素によるVO欠陥が形成され、局所的にVO欠陥の濃度が増加した分布となる。また、VV欠陥も酸素が導入された位置(深さd)で濃度が増加する。このように、空孔-酸素複合欠陥領域11は、VV欠陥とVO欠陥の複合欠陥領域である。
 なお、空孔-酸素複合欠陥領域11におけるVV、VO、Oの濃度関係は、図2(c)に示したものに限るものではない。空孔-酸素複合欠陥領域11におけるVV、VO、Oの相対的な濃度関係は、形成条件により変化してもよい。例えば、VV欠陥がVO欠陥より高濃度となってもよい。また、VO欠陥がドナーとなり、n型ドリフト層1のドーピング濃度が局所的に増加してもよい。この場合、VO欠陥のドナーにより局所的にドーピング濃度が増加する箇所は、n型フィールドストップ層としてもよい。このn型フィールドストップ層は、空乏層の広がりを抑制する効果を有する。
 本発明の空孔-酸素複合欠陥領域11は、さらにその形成位置に特徴を有する。ダイオード20にかかるn型半導体基板の比抵抗をρ、pn接合6の逆バイアス電圧をV、n型半導体基板と同じ状態の基板からなるn型ドリフト層1のpn接合6からの厚さをt、空孔-酸素複合欠陥領域11のpn接合6からの深さをdとすると、n型カソード層5から空孔-酸素複合欠陥領域11に至る長さRは、R=t-dである。
 pn接合6からn型ドリフト層1内に拡がる空乏層15の幅Wが、W=0.54×√(ρ×V)で表されるとき、W、d、tの関係は、W≦d<tで表される。n型カソード層5から空孔-酸素複合欠陥領域11に至る長さRは、0<R≦t-Wで表される。このn型カソード層5からの深さRの位置を中心に、空孔-酸素複合欠陥領域11が設けられることにより、スイッチング損失を充分に低減し、ソフトリカバリ特性も得られるダイオード20を実現することができる。
 なお、空孔-酸素複合欠陥領域11は、典型的には図2に示すように、半導体基板の深さ方向に幅Dを有する領域である。この幅Dは、後述するように空孔-酸素複合欠陥領域11における酸素濃度の分布幅であってもよく、酸素濃度がガウス分布等であれば、半値全幅(Full Width Half Maximum、FWHM)であってもよい。
 特許文献1に記載された従来のライフタイム制御のように、逆回復電流のピーク値Irpの低減だけによってスイッチング損失の低減を図ると、ソフトリカバリ化を図ることはできるが、充分なスイッチング損失の低減を得ることは難しい。本発明は、そこでさらに改良して、逆回復電流のピーク値Irpを小さくするとともに、注入されたホールの寿命(ライフタイム)を適切に制御することが必要であるとの考えのもとになされている。
 上述した図8において説明したように、順電流Ia×逆電圧Vakの波形を時間積分で比較すると、時間幅の狭いピークより時間幅の広いピークの時間積分による面積の方が2倍以上大きい。すなわち、スイッチング損失の低減はIrpの低減だけでなく、上述した図7に示したB領域における逆電流減少速度dIr/dtを少し大きく(速く)すると、スイッチング損失をさらに低減することができる。
 これにより、上述した図7に示したB領域の逆電流減少速度dIr/dtを大きく(速く)するために、スイッチングの際のB領域の残留ホールを少なくすればよい。一方で、B領域の残留ホールを少なくし過ぎると、動作抵抗(順電圧Vf)が大きくなることがある。このため、ダイオード20においては、ダイオードの定格電圧における最大の空乏層幅の外側に位置する残留ホールのみライフタイムを短くして、残留ホールを少なくするように調節する。これにより、ダイオード20は、スイッチング損失を十分に低減し、ソフトリカバリ特性も得られ、順電圧(Vf)も大きくなり難いという効果を奏する。
(ダイオード20の製造方法)
 次に、この発明にかかる半導体装置の製造方法として、実施の形態1のダイオード20の製造方法について説明する。図4は、この発明にかかる実施の形態1のダイオード20の製造フローを示す断面図である。実施の形態1において、ダイオード20の定格電圧は1200Vとするが、この定格電圧に限るものではない。以下、工程の順序に沿って製造方法を説明する。
 まず、図4(a)に示すように、シリコン製の半導体基板50を用意する。半導体基板50は、例えば、厚さが130μm、比抵抗が55Ωcmの、FZ(フロートゾーン)法により製造されたn型のSi半導体基板を用いる。半導体基板50は、n型ドリフト層1を実現する。半導体基板50は、FZ法により製造されたものに限らず、CZ(チョクラルスキー)法、MCZ(磁場印加型チョクラルスキー)法により製造されたものでもよい。実施の形態1においては、半導体基板50によって、この発明にかかる第1導電型の半導体基板を実現することができる。
 8インチ以上の口径の半導体基板には、MCZ法が容易かつ濃度分布を精度よく製造でき、有利である。特に、CZ法、MCZ法により製造された半導体基板は、FZ法により製造された半導体基板よりも酸素を多く含む。FZ法により製造された半導体基板の平均酸素濃度は1×1015/cm3以下であるが、CZ法、MCZ法により製造された半導体基板の平均酸素濃度は1×1016/cm3以上である。特にMCZ法により製造された半導体基板では、平均酸素濃度が1×1017/cm3以上である。このため、この発明にかかる実施の形態1のダイオード20における空孔-酸素複合欠陥領域11を形成しやすい。
 次に、図4(b)に示すように、半導体基板50の表面50aに、p型アノード層とエッジ終端部10とを形成する。エッジ終端部10の表面には、熱酸化あるいは堆積法により、絶縁膜の機能を有する酸化膜8を形成する。さらに、p型アノード層4と接触するアノード電極2、表面パシベーション膜等を形成し、表面構造を完成させる。
 次に、図4(c)に示すように、半導体基板50の厚さを薄くする。半導体基板50は、半導体基板50の裏面50bから、バックグラインドによる研削、裏面エッチングあるいはこれらの組合せ等の方法によって厚さを薄くする。これにより、半導体基板50は、薄くする前の裏面50bから、図4(c)において矢印51で示す方向に、符号52で示す研削面まで薄くされる。
 次に、図4(d)に示すように、高濃度酸素領域54を形成する。高濃度酸素領域54は、例えば、半導体基板50の研削面52から、符号53で示すように、半導体基板50の内部に酸素をイオン注入して導入することにより形成する。
 次に、図4(e)に示すように、空孔形成領域55を半導体基板50の全体に形成する。空孔形成領域55は、例えば、半導体基板50の表面から電子線照射12を行うことによって形成することができる。電子線照射12は、半導体基板50の裏面から行ってもよい。
 次に、図4(f)に示すように、空孔-酸素複合欠陥領域11を形成する。空孔-酸素複合欠陥領域11は、例えば、半導体基板50を300~400℃の範囲の所定温度で熱処理(アニール)することによって形成する。この場合、図4(f)に示す酸素通過領域56は、酸素が通過していないn型ドリフト層1よりも酸素濃度が多い場合があり、n型ドリフト層1よりもVO欠陥が若干高くなる場合がある。
 図4(f)に示した工程においては、さらに、n型ドリフト層1より高濃度のn型カソード層5を形成する。n型ドリフト層1より高濃度のn型カソード層5は、例えば、研削面52にリン等のn型ドーパントをイオン注入により導入し、レーザーアニール等により電気的に活性化させることにより形成する。
 最後に、図4(g)に示すように、研削面52にカソード電極3を形成する。カソード電極3は、研削面52のn型カソード層5に接するように形成する。
 定格耐圧1200Vのダイオード20は、例えば、電源電圧600Vの電力変換装置に用いられる。このため、比抵抗ρ=55Ωcm、V=600Vとすると、p型アノード層4底部からn型ドリフト層1内に拡がる空乏層15の幅Wは、式)W=0.54×√(ρ×V)から、W=0.54×√(55×600)=98μmとなる。pn接合6面からの、n型ドリフト層1の厚さをtとし、空孔-酸素複合欠陥領域11の深さをdとすると、空孔-酸素複合欠陥領域11が形成される深さは、W≦d<tで表される。
 これをこの発明にかかる実施の形態1のダイオード20に適用すると、空孔-酸素複合欠陥領域11が設けられる深さは、p型アノード層4底部(pn接合6)から98μm以上130μm以内の範囲となる。図2に示したダイオード20では、4×1017cm3の酸素濃度を有する空孔-酸素複合欠陥領域11を、p型アノード層4の底部(pn接合6のこと)から110μmの深さに幅5μmの酸素のイオン注入により形成した。
 研削面52からの酸素の注入深さは20μm(130-110μm)となるので、酸素をイオン注入するときの加速エネルギーは、約30MeVである。このような加速エネルギーは、線形加速器、サイクロトロン加速器等で得ることができる。このとき、深さ方向(注入方向)のFWHMは0.7μmである。ただし、熱処理により若干酸素が拡散するので、酸素の分布幅は約1.0μmとなる。よって、空孔-酸素複合欠陥領域11の幅Dは、約1.0~2.0μmとなる。
 なお、酸素のイオン注入により、半導体基板の裏面から、酸素が通過するn型カソード層5、n型ドリフト層1、および、空孔-酸素複合欠陥領域11は、格子欠陥にダメージが導入されるため、空孔-酸素複合欠陥領域11の幅Dはさらに広がり、約2.0~10μmと考えても構わない。
 また、イオン注入する酸素のドーズ量は、例えば1×1011/cm2~1×1014/cm2であってもよい。この場合、n型カソード層5から深さRにおける空孔-酸素複合欠陥領域11の最大酸素濃度は、1×1016/cm2~1×1019/cm2であってもよい。また、VO欠陥の濃度は、酸素濃度と同程度か、あるいは空孔と結合しているため酸素濃度よりも低くなり、例えば1×1014/cm2~1×1017/cm2であってもよい。さらに、空孔-酸素複合欠陥領域11のVV欠陥の濃度は、例えば1×1014/cm2~1×1017/cm2であってもよい。また、空孔-酸素複合欠陥領域11のVV欠陥の濃度は、VO欠陥の濃度より低くてもよく、あるいは高くてもよい。
 図4に示した工程では説明を省いたが、ダイオード20において、p型のガードリング7は、図示しない酸化膜をマスクとしてボロンを加速電圧50kVで、ドーズ量1.3×1013cm-2のイオン注入とドライブ拡散により形成した。また、ダイオード20において、pアノード層4を図示しない酸化膜をマスクとしてボロンを加速電圧は50kVで、ドーズ量1×1013cm-2のイオン注入とドライブ拡散により形成した。このpアノード層4とpガードリング7の深さはそれぞれ約3μm、4μmとした。
 また、p型アノード層4とn型ドリフト層1の境界には、pn接合6が形成される。Si半導体基板表面と交わるpn接合のエッジ終端6aの外側には、p型アノード層4を取り巻くように、所定の間隔を置いて複数p型のガードリング7を設ける。pn接合のエッジ終端を6aとガードリング7との間、およびガードリング間の表面には、酸化膜8が被覆される。
 その後、ライフタイムを調整するために、電子線照射12と熱処理を施した。電子線照射量は加速電圧4.2MeVで60kGyで、結晶欠陥の緩和のための熱処理を360℃、1時間とした。なお、電子線照射の加速電圧は1~8MeV程度であってもよく、電子線照射量は20~600kGy程度であってもよい。n型カソード層5は裏面からリンを1×1015cm2のドーズ量でイオン注入した後、0.5μmの深さに拡散して形成した。
 アノード電極2をAl-Si膜で、カソ-ド電極3をTi、NiおよびAuで、それぞれ真空蒸着により形成した。図示されないが、酸化膜8の開口部を介してガードリング7のそれぞれの表面に接するアノード電極膜と同時形成によるフィールドプレート30が設けられることも好ましい。空孔-酸素複合欠陥領域11以外の領域および層、電極膜などは前述の説明以外の他の公知の技術により適宜形成することもできる。
 図3は、この発明にかかる実施の形態1の製造方法により製造したダイオード20の逆回復特性を示す説明図である。図9は、比較例ダイオードの逆回復特性を示す説明図である。比較例ダイオードは、ダイオード20との比較のため、高濃度酸素領域をp型アノード層4の下方5μmの位置に形成し電子線照射12により空孔-酸素複合欠陥領域として形成されている。
 比較用ダイオードのその他の製造条件は、ダイオード20と同じにした。図3および図9に示すように、比較例ダイオードのスイッチング損失は42mJであるのに対し、ダイオード20のスイッチング損失は26mJであった。ダイオード20および比較例ダイオードは、ともに、スパイク状のサージ電圧が抑えられ、かつソフトリカバリ特性も得られているが、ダイオード20では、比較例ダイオードに比べて、スイッチング損失がいっそう低減していることが判る。さらに、ダイオード20においては、順電圧降下(Vf)不良の発生がないことも確認された。
 (実施の形態2)
 次に、この発明にかかる実施の形態2のダイオードについて説明する。この発明にかかる実施の形態2のダイオードは、上述した実施の形態1に記載のダイオード20における空孔-酸素複合欠陥領域11を、電子線照射から白金の熱拡散に代えて製造されている。白金の熱拡散工程前は、上述した実施の形態1と同じとしてよい。
 実施の形態2のダイオードの製造に際しては、半導体基板50の裏面にn型カソード層5を形成する前に、白金を1重量%含有したペーストを塗布し、1000℃で3時間の熱処理を行うことによって、半導体基板50に白金を熱拡散させた。この熱拡散により、白金が、半導体基板50の裏面から25μm程度拡散し、裏面から20μm程度の位置に形成されている高濃度酸素領域に結晶欠陥を形成するため、空孔-酸素複合欠陥領域11とすることができる。
 実施の形態2に示す方法によって製造された、空孔-酸素複合欠陥領域11を備えるダイオード20は、スイッチング損失が28mJであり、ソフトリカバリ特性も示すことができた。また、実施の形態2に示す方法によって製造されたダイオードにおいては、順電圧降下(Vf)不良が発生していないことを確認した。
 以上説明したように、実施の形態1、2に記載のダイオード20によれば、動作抵抗を大きくすることなく、スイッチング損失の低減とソフトリカバリ特性との両立が図られたダイオード20を、安価で簡単なプロセスで得ることができる。
 以上のように、この発明にかかる半導体装置および半導体装置の製造方法は、電力変換装置などに使用される電力用のダイオードおよび電力用ダイオードを内蔵する半導体装置および半導体装置の製造方法に有用であり、特に、高電圧・大電流の電力変換装置などに使用される電力用のダイオードおよび電力用ダイオードを内蔵する半導体装置および半導体装置の製造方法に適している。
 1   n型ドリフト層
 2   アノード電極
 3   カソード電極
 4   p型アノード層
 5   n型カソード層
 6   pn接合
 6a  エッジ終端
 7   ガードリング
 8   酸化膜
 9   活性部
 10  エッジ終端部
 11  空孔-酸素複合欠陥領域
 12  電子線照射
 15  空乏層
 20  ダイオード
 30  フィールドプレート
 50  半導体基板
 50a 表面
 50b 裏面
 52  研削面
 53  イオン注入
 54  高濃度酸素領域
 55  空孔形成領域
 56  酸素通過領域

Claims (7)

  1.  第1導電型の半導体基板と、
     前記半導体基板の第1主面側に形成された第1導電型のドリフト層と、
     前記ドリフト層に沿って選択的に形成され、前記ドリフト層より低抵抗の第2導電型アノード層と、
     前記半導体基板の第2主面側の表面層に形成され、前記ドリフト層と接する第1導電型のカソード層と、
     空孔と酸素との複合欠陥で形成された空孔-酸素複合欠陥領域と、
     を備えた半導体装置であって、
     前記空孔-酸素複合欠陥領域は、
     前記カソード層と前記ドリフト層との境界面から前記半導体基板の第1主面に向かう方向の深さがRであり、
     前記半導体基板の比抵抗をρ、前記アノード層と前記ドリフト層とのpn接合から前記カソード層までの厚さをt、前記pn接合に印加される逆バイアス電圧Vで前記pn接合から前記ドリフト層内に拡がる空乏層幅が0.54×√(ρ×V)であるWに対して、0<R≦t-Wで表される深さに設けられていることを特徴とする半導体装置。
  2.  前記空孔-酸素複合欠陥領域は、VV欠陥とVO欠陥との複合欠陥により形成されていることを特徴とする請求項1記載の半導体装置。
  3.  前記空孔-酸素複合欠陥領域は、前記空孔-酸素複合欠陥領域に重金属を拡散させて形成される再結合中心として機能する複合欠陥を備えていることを特徴とする請求項1に記載の半導体装置。
  4.  前記重金属拡散は、白金拡散であることを特徴とする請求項3に記載の半導体装置。
  5.  前記第1導電型半導体基板の一方の主面に選択的に前記半導体基板より低抵抗の第2導電型領域を有するデバイスがダイオードまたはダイオードを含む半導体装置であることを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置。
  6.  第1導電型の半導体基板と、
     前記半導体基板の第1主面側に形成された第1導電型のドリフト層と、
     前記ドリフト層に沿って選択的に形成され、前記ドリフト層より低抵抗の第2導電型アノード層と、
     前記半導体基板の第2主面側の表面層に形成され、前記ドリフト層と接する第1導電型のカソード層と、
     空孔と酸素との複合欠陥で形成された空孔-酸素複合欠陥領域と、
     を備え、
     前記空孔-酸素複合欠陥領域は、
     前記カソード層と前記ドリフト層との境界面から前記半導体基板の第1主面に向かう方向の深さがRであり、
     前記半導体基板の比抵抗をρ、前記アノード層と前記ドリフト層とのpn接合から前記カソード層までの厚さをt、前記pn接合に印加される逆バイアス電圧Vで前記pn接合から前記ドリフト層内に拡がる空乏層幅が0.54×√(ρ×V)であるWに対して、0<R≦t-Wで表される深さに設けられている半導体装置の製造方法であって、
     前記空孔-酸素複合欠陥領域を、
     局所的に高濃度である酸素を含む高濃度酸素領域を酸素のイオン注入により所定の位置に形成した後、電子線照射によりライフタイムを低下させることによって形成することを特徴とする半導体装置の製造方法。
  7.  第1導電型の半導体基板と、
     前記半導体基板の第1主面側に形成された第1導電型のドリフト層と、
     前記ドリフト層に沿って選択的に形成され、前記ドリフト層より低抵抗の第2導電型アノード層と、
     前記半導体基板の第2主面側の表面層に形成され、前記ドリフト層と接する第1導電型のカソード層と、
     空孔と酸素との複合欠陥で形成された空孔-酸素複合欠陥領域と、
     を備え、
     前記空孔-酸素複合欠陥領域は、
     前記カソード層と前記ドリフト層との境界面から前記半導体基板の第1主面に向かう方向の深さがRであり、
     前記半導体基板の比抵抗をρ、前記アノード層と前記ドリフト層とのpn接合から前記カソード層までの厚さをt、前記pn接合に印加される逆バイアス電圧Vで前記pn接合から前記ドリフト層内に拡がる空乏層幅が0.54×√(ρ×V)であるWに対して、0<R≦t-Wで表される深さに設けられている半導体装置の製造方法であって、
     前記空孔-酸素複合欠陥領域を、
     局所的に高濃度である酸素を含む高濃度酸素領域を酸素のイオン注入により所定の位置に形成した後、重金属拡散を行いライフタイムを低下させることによって形成することを特徴とする半導体装置の製造方法。
PCT/JP2015/072917 2014-09-04 2015-08-13 半導体装置および半導体装置の製造方法 WO2016035531A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112015000610.9T DE112015000610T5 (de) 2014-09-04 2015-08-13 Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung
CN201580011623.1A CN106062966B (zh) 2014-09-04 2015-08-13 半导体装置及半导体装置的制造方法
JP2016546400A JP6237915B2 (ja) 2014-09-04 2015-08-13 半導体装置および半導体装置の製造方法
US15/246,595 US9870923B2 (en) 2014-09-04 2016-08-25 Semiconductor device and method of manufacturing the semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-180373 2014-09-04
JP2014180373 2014-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/246,595 Continuation US9870923B2 (en) 2014-09-04 2016-08-25 Semiconductor device and method of manufacturing the semiconductor device

Publications (1)

Publication Number Publication Date
WO2016035531A1 true WO2016035531A1 (ja) 2016-03-10

Family

ID=55439597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072917 WO2016035531A1 (ja) 2014-09-04 2015-08-13 半導体装置および半導体装置の製造方法

Country Status (5)

Country Link
US (1) US9870923B2 (ja)
JP (1) JP6237915B2 (ja)
CN (1) CN106062966B (ja)
DE (1) DE112015000610T5 (ja)
WO (1) WO2016035531A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157935A1 (ja) * 2015-04-02 2016-10-06 三菱電機株式会社 電力用半導体装置の製造方法
JP2017208490A (ja) * 2016-05-19 2017-11-24 ローム株式会社 高速ダイオード及びその製造方法
WO2022158114A1 (ja) * 2021-01-22 2022-07-28 株式会社日立パワーデバイス 半導体装置の製造方法、半導体装置、半導体モジュールおよび電力変換装置
WO2023112571A1 (ja) * 2021-12-15 2023-06-22 株式会社日立パワーデバイス 半導体装置および電力変換装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6406452B2 (ja) * 2015-06-30 2018-10-17 富士電機株式会社 半導体装置及びその製造方法
CN106449729B (zh) * 2016-08-22 2019-04-30 湖南大学 一种半导体结构以其制作方法
CN108461541A (zh) * 2017-02-17 2018-08-28 中芯国际集成电路制造(上海)有限公司 Igbt的终端结构、igbt器件及其制造方法
JP6911453B2 (ja) * 2017-03-28 2021-07-28 富士電機株式会社 半導体装置およびその製造方法
TWI607563B (zh) * 2017-04-21 2017-12-01 Maxpower Semiconductor Inc With a thin bottom emitter layer and in the trenches in the shielded area and the termination ring Incoming dopant vertical power transistors
CN108183135B (zh) * 2017-12-28 2020-10-23 重庆平伟伏特集成电路封测应用产业研究院有限公司 一种高频快恢复二极管及其制造方法
CN111095565B (zh) * 2018-02-16 2023-04-07 富士电机株式会社 半导体装置
CN110197854B (zh) * 2019-06-20 2023-02-24 中国电子科技集团公司第十三研究所 氧化镓sbd终端结构及制备方法
DE102019118803A1 (de) * 2019-07-11 2021-01-14 Infineon Technologies Ag Verfahren zum herstellen einer halbleitervorrichtung und halbleitervorrichtung
CN112652661A (zh) * 2019-10-10 2021-04-13 珠海格力电器股份有限公司 一种晶体管及其制备方法
CN112117189A (zh) * 2020-09-14 2020-12-22 瑞能半导体科技股份有限公司 二极管及其制备方法
JP7515428B2 (ja) * 2021-02-16 2024-07-12 三菱電機株式会社 半導体装置およびその製造方法
CN114122111B (zh) * 2022-01-26 2022-05-03 江苏游隼微电子有限公司 一种具有寄生二极管的mos栅控晶闸管及制备方法
CN115224105A (zh) * 2022-06-09 2022-10-21 深圳基本半导体有限公司 一种快恢复二极管及其制作方法和应用
CN116153969A (zh) * 2023-03-03 2023-05-23 深圳吉华微特电子有限公司 抗单粒子烧毁高压快恢复二极管及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121052A (ja) * 1995-08-21 1997-05-06 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2007266103A (ja) * 2006-03-27 2007-10-11 Sanken Electric Co Ltd 半導体装置の製法及び半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603189B2 (en) 1997-08-14 2003-08-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with deliberately damaged layer having a shorter carrier lifetime therein
WO2007055352A1 (ja) 2005-11-14 2007-05-18 Fuji Electric Device Technology Co., Ltd. 半導体装置およびその製造方法
JP2010092991A (ja) 2008-10-06 2010-04-22 Toyota Central R&D Labs Inc ダイオード
DE102009051828B4 (de) * 2009-11-04 2014-05-22 Infineon Technologies Ag Halbleiterbauelement mit Rekombinationszone und Graben sowie Verfahren zu dessen Herstellung
US9064711B2 (en) * 2011-06-09 2015-06-23 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method for fabricating semiconductor device
EP2782121B1 (en) * 2011-11-15 2021-01-06 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121052A (ja) * 1995-08-21 1997-05-06 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2007266103A (ja) * 2006-03-27 2007-10-11 Sanken Electric Co Ltd 半導体装置の製法及び半導体装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157935A1 (ja) * 2015-04-02 2016-10-06 三菱電機株式会社 電力用半導体装置の製造方法
JPWO2016157935A1 (ja) * 2015-04-02 2017-04-27 三菱電機株式会社 電力用半導体装置の製造方法
JP2017208490A (ja) * 2016-05-19 2017-11-24 ローム株式会社 高速ダイオード及びその製造方法
WO2022158114A1 (ja) * 2021-01-22 2022-07-28 株式会社日立パワーデバイス 半導体装置の製造方法、半導体装置、半導体モジュールおよび電力変換装置
JP2022112689A (ja) * 2021-01-22 2022-08-03 株式会社 日立パワーデバイス 半導体装置の製造方法、半導体装置、半導体モジュールおよび電力変換装置
JP7589879B2 (ja) 2021-01-22 2024-11-26 ミネベアパワーデバイス株式会社 半導体装置の製造方法、半導体装置、半導体モジュールおよび電力変換装置
US12315728B2 (en) 2021-01-22 2025-05-27 Hitachi Power Semiconductor Device, Ltd. Method for manufacturing semiconductor device, semiconductor device, semiconductor module, and power conversion device
WO2023112571A1 (ja) * 2021-12-15 2023-06-22 株式会社日立パワーデバイス 半導体装置および電力変換装置

Also Published As

Publication number Publication date
JP6237915B2 (ja) 2017-11-29
CN106062966B (zh) 2019-04-26
DE112015000610T5 (de) 2016-11-17
US9870923B2 (en) 2018-01-16
JPWO2016035531A1 (ja) 2017-04-27
US20160365250A1 (en) 2016-12-15
CN106062966A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6237915B2 (ja) 半導体装置および半導体装置の製造方法
US11823898B2 (en) Semiconductor device and method for manufacturing the same
EP3242330B1 (en) Diode and power convertor using the same
KR101794182B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
JP6015745B2 (ja) 半導体装置の製造方法
JP5104314B2 (ja) 半導体装置およびその製造方法
JP5033335B2 (ja) 半導体装置およびそれを用いたインバータ装置
WO2013141141A1 (ja) 半導体装置の製造方法
JPWO2016010097A1 (ja) 半導体装置および半導体装置の製造方法
JP2009176892A (ja) 半導体装置およびその製造方法
WO2012081664A1 (ja) 半導体装置およびその製造方法
JP7263740B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US20140117406A1 (en) Reverse blocking mos semiconductor device and manufacturing method thereof
US9991336B2 (en) Semiconductor device, method for manufacturing the same, and power conversion system
JP3952452B2 (ja) 半導体装置の製造方法
JP2011507301A (ja) ダイオード
CN108417623B (zh) 含半绝缘区的igbt及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015000610

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2016546400

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15837790

Country of ref document: EP

Kind code of ref document: A1