WO2016031586A1 - 内視鏡対物光学系 - Google Patents
内視鏡対物光学系 Download PDFInfo
- Publication number
- WO2016031586A1 WO2016031586A1 PCT/JP2015/072913 JP2015072913W WO2016031586A1 WO 2016031586 A1 WO2016031586 A1 WO 2016031586A1 JP 2015072913 W JP2015072913 W JP 2015072913W WO 2016031586 A1 WO2016031586 A1 WO 2016031586A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical system
- objective optical
- conditional expression
- endoscope objective
- Prior art date
Links
- KOTNYLVDZQOUSF-UHFFFAOYSA-N CC1C(C)(C)CCC1C1CCC1 Chemical compound CC1C(C)(C)CCC1C1CCC1 KOTNYLVDZQOUSF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2407—Optical details
- G02B23/2423—Optical details of the distal end
- G02B23/243—Objectives for endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00188—Optical arrangements with focusing or zooming features
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/04—Reversed telephoto objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0081—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/62—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/02—Objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2407—Optical details
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2407—Optical details
- G02B23/2423—Optical details of the distal end
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2476—Non-optical details, e.g. housings, mountings, supports
- G02B23/2484—Arrangements in relation to a camera or imaging device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/005—Diaphragms
Definitions
- the present invention relates to an objective optical system, and particularly to an endoscope objective optical system applied to a medical endoscope.
- Patent Document 1 and Patent Document 2 are small-sized endoscope objective optical systems that can realize high image quality. That is, Patent Document 1 discloses an endoscope objective that is brighter by reducing Fno while having a smaller diameter, good aberrations, and strong against one blur without increasing the power of the first lens. An optical system is disclosed. Further, Patent Document 2 discloses an endoscope objective optical system with good performance of various aberrations.
- the endoscope objective optical system of Patent Document 1 is a bright objective optical system with a small Fno, the depth is narrow. Further, since focus adjustment is difficult and sensitivity at the focus adjustment position is strong, the influence of manufacturing variations on image quality increases, and stable production becomes difficult.
- the endoscope objective optical system of Patent Document 2 has low sensitivity at the focus adjustment position, and cannot be said to be strong against manufacturing variations.
- None of the above-mentioned endoscope objective optical systems takes into account the problem of focus adjustment that occurs when the diameter is reduced. Therefore, in order to optimize focus adjustment, for example, after narrowing part tolerances or after positioning It is necessary to newly develop a high-precision focus adjustment device that does not shift the focus position. In other words, in the conventional endoscope objective optical system, design considerations for optimizing the focus adjustment are not made in the endoscope objective optical system itself.
- the present invention has been made in view of the above-described circumstances, and provides a small-diameter endoscope objective optical system that is easy to adjust in focus and can obtain a bright, wide-angle, high-definition image quality. Objective.
- One aspect of the present invention includes, in order from the object side, a front group having a negative refractive power as a whole, an aperture stop, and a rear group having a positive refractive power as a whole.
- a first lens that is a single lens having a negative refractive power and a second lens that is a single lens having a positive refractive power and the rear group is a single lens having a positive refractive power in order from the object side.
- a third lens, a cemented lens of a fourth lens having a positive refractive power and a fifth lens having a negative refractive power, and a sixth lens having a positive refractive power, and the object side surface of the first lens is
- An endoscope objective optical system that is flat, has a meniscus shape, has a meniscus shape, and is joined to an imaging element, and satisfies the following conditional expression. 4 ⁇ Fno ⁇ F6 / F1_5 ⁇ 500 (1) Where Fno is the effective F number of the endoscope objective optical system, F6 is the focal length of the sixth lens, and F1_5 is the combined focal length from the first lens to the fifth lens.
- the first lens which is a flat object having a negative refracting power on the object side is the most object side, that is, a plano-concave lens is disposed on the image side of the first lens.
- a second lens that is a meniscus shape and a single lens having a positive refractive power is disposed.
- a rear group having a positive refractive power mainly contributing to image formation is arranged on the image side from the front group, and a positive third lens and a positive fourth lens are provided as lenses constituting the rear group.
- a positive third lens and a positive fourth lens are provided as lenses constituting the rear group.
- the optical magnification of the first lens to the fifth lens is reduced, and the sensitivity of the focus adjustment is relaxed and the assemblability is improved. Optical performance is improved.
- the endoscope objective optical system configured in this way is configured to satisfy the conditional expression (1) regarding the sensitivity at the focus adjustment position.
- the conditional expression (1) when Fno ⁇ F6 / F1_5 is larger than the upper limit, when trying to obtain bright and high-definition image quality, the radius of curvature of the sixth lens increases, and as a result, at the focus adjustment position. Since the sensitivity is increased, the endoscope objective optical system is weak against focus shift.
- the conditional expression (1) when the conditional expression (1) is below the lower limit, the curvature radius of the sixth lens becomes too small, so that the curvature of field becomes large and it becomes difficult to obtain good image quality. In addition, it is difficult to process the sixth lens.
- Conditional expression (2) is a conditional expression related to field curvature.
- SH_R1R6 is larger than the upper limit in conditional expression (2), the power balance between the first lens and the sixth lens is lost. It becomes impossible to correct well, and it becomes difficult to obtain good image quality. In addition, it becomes difficult to process the sixth lens.
- it is smaller than the lower limit various aberrations can be corrected satisfactorily, but the optical system is weak against defocusing.
- R4R is the radius of curvature of the image side surface of the fourth lens
- R6L is the radius of curvature of the object side surface of the sixth lens.
- Conditional expression (3) is an expression related to the workability of the lens.
- the edge of the fourth lens becomes too small and processing becomes difficult.
- the value is below the lower limit, the sixth lens is too thin and difficult to process, and the curvature of field increases, making it difficult to obtain high-definition image quality.
- F23 is the combined focal length of the second lens and the third lens
- FL is the combined focal length of the entire system.
- conditional expression (4) The variation in manufacturing can be suppressed by satisfying conditional expression (4). If the lower limit of conditional expression (4) is surpassed, since the positive power is strong, the negative power of the first lens becomes strong, one-sided blur is likely to occur, and manufacturing variations are weak. If the upper limit of conditional expression (4) is exceeded, downsizing becomes difficult.
- conditional expression (5) contributes to manufacturing miniaturization and strong manufacturing variation. If the upper limit of conditional expression (5) is exceeded, it will be difficult to reduce the size, the performance of various aberrations will deteriorate, and it will be difficult to obtain good image quality. On the other hand, when the conditional expression (5) is below the lower limit, the endoscope objective optical system is weak against one-sided blur and out-of-focus and weak against manufacturing variations.
- conditional expression (6) By satisfying conditional expression (6), the focus adjustment can be facilitated.
- conditional expression (6) if the value of P 2 / L is small, the focus adjustment interval cannot be taken sufficiently, and it is necessary to increase the focus sensitivity. Therefore, it is necessary to increase the value of F6.
- conditional expression (6) is below the lower limit, the optical system is vulnerable to defocusing.
- the upper limit of conditional expression (6) is exceeded, it is difficult to correct various aberrations.
- F12 is a composite focal length of the front group (first lens and second lens)
- F36 is a composite focal length of the rear group (from the third lens to the sixth lens).
- the focal length of the rear group can be properly maintained by satisfying conditional expression (7).
- conditional expression (7) if the upper limit is exceeded, the focal length of the rear group becomes relatively large and the image surface falls to the negative side, making it difficult to suppress various aberrations and achieving good image quality.
- conditional expression (7) is below the lower limit, the focal length of the rear group becomes relatively small, the R of the rear group lens becomes small, the lens rim becomes too small, and the rear group lens is processed. Becomes difficult.
- conditional expression (8) By satisfying conditional expression (8), it is possible to realize a reduction in size and a wide angle. In conditional expression (8), when the upper limit is exceeded, it is difficult to widen the angle, and when it is below the lower limit, miniaturization is difficult.
- conditional expression (9) By satisfying conditional expression (9), it is possible to reduce the size and improve the productivity.
- conditional expression (9) When the conditional expression (9) is below the lower limit, it is difficult to reduce the size, and when it exceeds the upper limit, the manufacturing variation is weak, so that stable production is difficult.
- conditional expression (10) can reduce the risk of overlooking a lesion during in vivo screening. That is, by satisfying conditional expression (10), a half angle of view of 62 ° can be secured and a wide angle can be maintained.
- the endoscope objective optical system includes, in order from the object side, a front group G1 having a negative refractive power as a whole, an aperture stop S, and a rear group G2 having a positive refractive power as a whole. And.
- the front group G1 in order from the object side, is a first lens L1 having a negative refracting power and a single lens having a flat surface on the object side, a second lens L2 having a positive refracting power and a meniscus single lens, And a parallel plate F as an outer cut filter.
- the rear group G2 includes a third lens that is a single lens having a positive refractive power, a cemented lens CL1 in which a fourth lens L4 having a positive refractive power and a fifth lens L5 having a negative refractive power are cemented, A sixth lens L6 that is bonded to the cover glass CG of the image sensor and has a positive refractive power is provided.
- “P” shown in the rear group G2 is a focus adjustment position.
- the endoscope objective optical system is configured to satisfy the following conditional expressions (1) to (10). 4 ⁇ Fno ⁇ F6 / F1_5 ⁇ 500 (1) Where Fno is the effective F number of the endoscope objective optical system, F6 is the focal length of the sixth lens, and F1_5 is the combined focal length of the first lens to the fifth lens.
- Conditional expression (1) is a conditional expression related to sensitivity at the focus adjustment position.
- conditional expression (1) when Fno ⁇ F6 / F1_5 is larger than the upper limit, when trying to obtain bright and high-definition image quality, the radius of curvature of the sixth lens increases, and as a result, at the focus adjustment position. Since the sensitivity is increased, the endoscope objective optical system is weak against focus shift.
- conditional expression (1) when the conditional expression (1) is below the lower limit, the curvature radius of the sixth lens becomes too small, so that the curvature of field becomes large and it becomes difficult to obtain good image quality. In addition, it is difficult to process the sixth lens.
- conditional expression (1 ′) instead of the conditional expression (1), and further satisfy the conditional expression (1 ′′) instead of the conditional expression (1) or (1 ′).
- conditional expression (1 ′) instead of the conditional expression (1)
- conditional expression (1 ′′) instead of the conditional expression (1) or (1 ′).
- SH_R1R6
- Conditional expression (2) is a conditional expression relating to field curvature, and by satisfying conditional expression (2), the power balance between the first lens and the sixth lens can be appropriately maintained, and the field curvature is favorable. It is possible to improve the image quality of an image acquired by correcting the image.
- Conditional Expression (2) when SH_R1R6 is larger than the upper limit, the power balance between the first lens and the sixth lens is lost, so that the field curvature cannot be corrected well, and it becomes difficult to obtain good image quality. . In addition, it becomes difficult to process the sixth lens. On the other hand, if it is smaller than the lower limit, various aberrations can be corrected satisfactorily, but the optical system is weak against defocusing.
- conditional expression (2 ′) instead of the conditional expression (2), and further satisfy the conditional expression (2 ′′) instead of the conditional expression (2) or (2 ′). Is more preferable.
- R4R is the radius of curvature of the image side surface of the fourth lens
- R6L is the radius of curvature of the object side surface of the sixth lens.
- Conditional expression (3) is an expression relating to the processability of the lens. By satisfying conditional expression (3), it is possible to facilitate the processing of the lens and improve the image quality of the acquired image. If the upper limit of conditional expression (3) is exceeded, the edge of the fourth lens will be too small, making processing difficult. On the other hand, if the value is below the lower limit, the sixth lens is too thin and difficult to process, and the curvature of field increases, making it difficult to obtain high-definition image quality.
- conditional expression (3) instead of the conditional expression (3), and further satisfy the conditional expression (3 ′′) instead of the conditional expression (3) or (3 ′). Is more preferable. -1.2 ⁇ R4R / R6L ⁇ -0.05 (3 ') ⁇ 1.0 ⁇ R4R / R6L ⁇ 0.15 (3 ′′)
- F23 is the combined focal length of the second lens and the third lens
- FL is the combined focal length of the entire system.
- conditional expression (4) The variation in manufacturing can be suppressed by satisfying conditional expression (4). If the lower limit of conditional expression (4) is surpassed, since the positive power is strong, the negative power of the first lens becomes strong, one-sided blur is likely to occur, and manufacturing variations are weak. If the upper limit of conditional expression (4) is exceeded, downsizing becomes difficult.
- conditional expression (4 ′) instead of the conditional expression (4), and further satisfy the conditional expression (4 ′′) instead of the conditional expression (4) or (4 ′). Is more preferable. 2.2 ⁇ F23 / FL ⁇ 3.7 (4 ′) 2.3 ⁇ F23 / FL ⁇ 3.4 (4 ′′)
- F1 is the focal length of the first lens
- F6 is the focal length of the sixth lens
- conditional expression (5) contributes to manufacturing miniaturization and strong manufacturing variation. If the upper limit of conditional expression (5) is exceeded, it will be difficult to reduce the size, the performance of various aberrations will deteriorate, and it will be difficult to obtain good image quality. On the other hand, when the conditional expression (5) is below the lower limit, the endoscope objective optical system is weak against one-sided blur and out-of-focus and weak against manufacturing variations.
- conditional expression (5 ′) instead of the conditional expression (5), and further satisfy the conditional expression (5 ′′) instead of the conditional expression (5) or (5 ′). Is more preferable. -0.6 ⁇ F1 / F6 ⁇ -0.02 (5 ') ⁇ 0.4 ⁇ F1 / F6 ⁇ 0.1 (5 ′′)
- conditional expression (6) By satisfying conditional expression (6), the focus adjustment can be facilitated.
- conditional expression (6) if the value of P 2 / L is small, the focus adjustment interval cannot be taken sufficiently, and it is necessary to increase the focus sensitivity. Therefore, it is necessary to increase the value of F6.
- conditional expression (6) is below the lower limit, the optical system is susceptible to defocusing.
- the upper limit of conditional expression (6) is exceeded, it is difficult to correct various aberrations.
- conditional expression (6 ′) instead of the conditional expression (6)
- conditional expression (6 ′′) instead of the conditional expression (6) or (6 ′).
- F12 is a composite focal length of the front group (first lens and second lens)
- F36 is a composite focal length of the rear group (from the third lens to the sixth lens).
- the focal length of the rear group can be properly maintained by satisfying conditional expression (7).
- conditional expression (7) if the upper limit is exceeded, the focal length of the rear group becomes relatively large and the image surface falls to the negative side, making it difficult to suppress various aberrations and achieving good image quality.
- conditional expression (7) is below the lower limit, the focal length of the rear group becomes relatively small, the R of the rear group lens becomes small, the lens rim becomes too small, and the rear group lens is processed. Becomes difficult.
- conditional expression (7 ′) instead of the conditional expression (7), and further satisfy the conditional expression (7 ′′) instead of the conditional expression (7) or (7 ′). Is more preferable. -1.7 ⁇ F12 / F36 ⁇ -0.6 (7 ') ⁇ 1.4 ⁇ F12 / F36 ⁇ 0.6 (7 ′′)
- conditional expression (8) By satisfying conditional expression (8), it is possible to realize a reduction in size and a wide angle. In conditional expression (8), when the upper limit is exceeded, it is difficult to widen the angle, and when it is below the lower limit, miniaturization is difficult.
- conditional expression (8 ′) is satisfied instead of the conditional expression (8), and that the conditional expression (8 ′′) is satisfied instead of the conditional expression (8) or (8 ′).
- conditional expression (8 ′) is satisfied instead of the conditional expression (8), and that the conditional expression (8 ′′) is satisfied instead of the conditional expression (8) or (8 ′).
- 0.06 ⁇ FL / L ⁇ 0.12 (8 ') 0.07 ⁇ FL / L ⁇ 0.12 (8 ′′)
- IH is the maximum image height.
- conditional expression (9) By satisfying conditional expression (9), it is possible to reduce the size and improve the productivity.
- conditional expression (9) When the conditional expression (9) is below the lower limit, it is difficult to reduce the size, and when it exceeds the upper limit, the manufacturing variation is weak, so that stable production is difficult.
- conditional expression (9 ′) is satisfied instead of the conditional expression (9), and that the conditional expression (9 ′′) is satisfied instead of the conditional expression (9) or (9 ′).
- conditional expression (9) or (9 ′) is satisfied instead of the conditional expression (9) or (9 ′).
- 0.07 ⁇ IH / L ⁇ 0.12 (9 ') 0.07 ⁇ IH / L ⁇ 0.11 (9 ′′)
- ⁇ > 62 ° (10)
- ⁇ is a half angle of view.
- conditional expression (10) can reduce the risk of overlooking a lesion during in vivo screening. That is, by satisfying conditional expression (10), a half angle of view of 62 ° can be secured and a wide angle can be maintained.
- conditional expression (10 ′) is satisfied instead of the conditional expression (10). ⁇ > 65 ° (10 ')
- the first lens L1 disposed closest to the object side as the lens constituting the front group G1 is a plane concave on the object surface side, that is, a plano-concave lens.
- the second lens L2 disposed on the image side of the first lens has a meniscus shape and is a single lens having a positive refractive power.
- the first lens L1 has a retrofocus configuration to reduce water breakage and cracking due to impact during observation, and the second lens increases the lens diameter while correcting the aberration of the first lens L1. Therefore, it is possible to provide a high-performance objective optical system that is suitable for an endoscope and that is small in size, small in size, bright, wide-angle, and capable of acquiring high-definition image quality.
- the rear group G2 has a positive refracting power so as to mainly contribute to image formation, and as each lens constituting the rear group, a third lens L3 and a fourth lens L4, both having a positive refracting power,
- the positive lens and the negative cemented lens are arranged at positions where the peripheral light beam height is increased by using the fourth lens L4 arranged on the image side as a cemented lens CL1 cemented with the negative fifth lens L5.
- chromatic aberration can be corrected.
- the optical magnification of the first lens L1 to the fifth lens L5 is reduced by joining the image pickup element (cover glass CG) on the image side of the rear group G2 and arranging the sixth lens L6 having a positive refractive power.
- the sensitivity of the focus adjustment position can be weakened. Thereby, the focus adjustment is easy, that is, the assemblability is good and the manufacturing variation can be suppressed.
- Examples 1 to 8 of the wide-angle objective optical system according to the above-described embodiment will be described with reference to FIGS.
- r is a radius of curvature (unit: mm)
- d is a surface separation (mm)
- Ne is a refractive index with respect to e-line
- ⁇ d is an Abbe number.
- FIG. 2 shows an overall configuration of the endoscope objective optical system according to Example 1 of the present invention, and lens data is shown below. Aberration curves of the endoscope objective optical system according to this example are shown in FIGS. 3A to 3D.
- FIG. 4 shows an overall configuration of an endoscope objective optical system according to Example 2 of the present invention, and lens data is shown below. Aberration curves of the endoscope objective optical system according to this example are shown in FIGS. 5A to 5D.
- FIG. 6 shows an overall configuration of an endoscope objective optical system according to Example 3 of the present invention, and lens data is shown below.
- aberration curve diagrams of the endoscope objective optical system according to the present example are shown in FIGS. 7A to 7D.
- FIG. 8 shows an overall configuration of an endoscope objective optical system according to Example 4 of the present invention, and lens data is shown below.
- aberration curve diagrams of the endoscope objective optical system according to the present example are shown in FIGS. 9A to 9D.
- FIG. 10 shows an overall configuration of an endoscope objective optical system according to Example 5 of the present invention, and lens data is shown below.
- aberration curve diagrams of the endoscope objective optical system according to the present example are shown in FIGS. 11A to 11D.
- FIG. 12 shows an overall configuration of an endoscope objective optical system according to Example 6 of the present invention, and lens data is shown below. Aberration curves of the endoscope objective optical system according to this example are shown in FIGS. 13A to 13D.
- FIG. 14 shows an overall configuration of an endoscope objective optical system according to Example 7 of the present invention, and lens data is shown below.
- aberration curve diagrams of the endoscope objective optical system according to the present example are shown in FIGS. 15A to 15D.
- FIG. 16 shows an overall configuration of an endoscope objective optical system according to Example 8 of the present invention, and lens data is shown below.
- FIG. 17 shows an aberration curve diagram of the endoscope objective optical system according to the present example.
- Table 1 shows values related to the conditional expressions (1) to (10) in the endoscope objective optical systems of Examples 1 to 8.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Astronomy & Astrophysics (AREA)
- Lenses (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Endoscopes (AREA)
Abstract
Description
特許文献2の内視鏡対物光学系は、ピント調整位置での感度が弱く、製造ばらつきに強いとはいえない。
本発明の一態様は、物体側から順に、全体として負の屈折力をもつ前群と、明るさ絞りと、全体として正の屈折力をもつ後群とからなり、前記前群が、物体側から順に、負の屈折力の単レンズである第1レンズと、正の屈折力の単レンズである第2レンズとを備え、前記後群が、物体側から順に、正の屈折力の単レンズである第3レンズと、正の屈折力の第4レンズと負の屈折力の第5レンズとの接合レンズと、正の屈折力の第6レンズとからなり、前記第1レンズの物体側面が平面であり、前記第2レンズがメニスカス形状であり、前記第6レンズが撮像素子と接合されており、以下の条件式を満足する内視鏡対物光学系を提供する。
4<Fno×F6/F1_5<500 ・・・(1)
但し、Fnoは内視鏡対物光学系の有効Fナンバー、F6は第6レンズの焦点距離、F1_5は、第1レンズから第5レンズまでの合成焦点距離である。
1.1<SH_R1R6<10 ・・・(2)
但し、SH_R1R6=|(R1R+R6L)/(R1R-R6L)|であり、R1Rは第1レンズの像側面の曲率半径であり、R6Lは第6レンズの物体側面の曲率半径である。
-1.5<R4R/R6L<-0.01 ・・・(3)
但し、R4Rは第4レンズの像側面の曲率半径であり、R6Lは第6レンズの物体側面の曲率半径である。
2.2<F23/FL<4.0 ・・・(4)
但し、F23は第2レンズと第3レンズの合成焦点距離、FLは全系の合成焦点距離である。
-0.8<F1/F6<-0.01 ・・・(5)
但し、F1は第1レンズの焦点距離、F6は第6レンズの焦点距離である。
0.0003<P2/(L×F6)<0.015 ・・・(6)
但し、Pはピント調整間隔、Lは内視鏡対物光学系の全長である。
-2.0<F12/F36<-0.6 ・・・(7)
但し、F12は前群(第1レンズ及び第2レンズ)の合成焦点距離、F36は後群(第3から第6レンズまで)の合成焦点距離である。
0.05<FL/L<0.12 ・・・(8)
0.06<IH/L<0.12 ・・・(9)
但し、IHは最大像高である。
ω>62° ・・・(10)
但し、ωは半画角である。
図1に示すように、内視鏡対物光学系は、物体側から順に、全体として負の屈折力を有する前群G1と、明るさ絞りSと、全体として正の屈折力を有する後群G2とを備えている。
なお、図1において、後群G2に示す「P」はピント調整位置である。
4<Fno×F6/F1_5<500 ・・・(1)
但し、Fnoは内視鏡対物光学系の有効Fナンバー、F6は第6レンズの焦点距離、F1_5は、第1レンズから第5レンズの合成焦点距離である。
6<Fno×F6/F1_5<120 ・・・(1’)
7<Fno×F6/F1_5<25 ・・・(1’’)
但し、SH_R1R6=|(R1R+R6L)/(R1R-R6L)|であり、R1Rは第1レンズの像側面の曲率半径であり、R6Lは第6レンズの物体側面の曲率半径である。
1.2<SH_R1R6<7 ・・・(2’)
2.0<SH_R1R6<5 ・・・(2’’)
但し、R4Rは第4レンズの像側面の曲率半径であり、R6Lは第6レンズの物体側面の曲率半径である。
-1.2<R4R/R6L<-0.05 ・・・(3’)
-1.0<R4R/R6L<-0.15 ・・・(3’’)
但し、F23は第2レンズと第3レンズの合成焦点距離、FLは全系の合成焦点距離である。
2.2<F23/FL<3.7 ・・・(4’)
2.3<F23/FL<3.4 ・・・(4’’)
但し、F1は第1レンズの焦点距離、F6は第6レンズの焦点距離である。
-0.6<F1/F6<-0.02 ・・・(5’)
-0.4<F1/F6<-0.1 ・・・(5’’)
但し、Pはピント調整間隔、Lは内視鏡対物光学系の全長である。
0.0005<P2/(L×F6)<0.013 ・・・(6’)
0.001<P2/(L×F6)<0.01 ・・・(6’’)
但し、F12は前群(第1レンズ及び第2レンズ)の合成焦点距離、F36は後群(第3から第6レンズまで)の合成焦点距離である。
-1.7<F12/F36<-0.6 ・・・(7’)
-1.4<F12/F36<-0.6 ・・・(7’’)
0.06<FL/L<0.12 ・・・(8’)
0.07<FL/L<0.12 ・・・(8’’)
但し、IHは最大像高である。
0.07<IH/L<0.12 ・・・(9’)
0.07<IH/L<0.11 ・・・(9’’)
但し、ωは半画角である。
ω>65° ・・・(10’)
さらに、後群G2の像側に撮像素子(カバーガラスCG)と接合し、正の屈折力を有する第6レンズL6を配置することで、第1レンズL1から第5レンズL5の光学倍率を低減すると共に、ピント調整位置の感度を弱めることができる。
これにより、ピント調整が容易、すなわち、組立性がよく製造バラつきを抑制することができる。
本発明の実施例1に係る内視鏡対物光学系の全体構成を図2に、レンズデータを以下に示す。また、本実施例に係る内視鏡対物光学系の収差曲線図を図3A~図3Dに示す。
面番号 r d Ne νd
物体面 ∞ 26.7261
1 ∞ 0.4454 1.88815 40.76
2 1.3675 1.0690
3 -10.2962 1.0022 1.93429 18.90
4 -5.6258 0.3341
5 ∞ 0.8909 1.49557 75.00
6(絞り) ∞ 0.0668
7 ∞ 0.4009
8 9.4766 1.5590 1.88815 40.76
9 -3.5835 0.2227
10 3.9243 1.5590 1.69979 55.53
11 -1.9065 0.6682 1.93429 18.90
12 ∞ 0.5791
13 3.5835 1.0022 1.51825 64.14
14 ∞ 0.0223 1.51500 64.00
15 ∞ 0.7795 1.50700 63.26
16 撮像面
焦点距離 1.047
Fno 2.979
半画角 66.7°
像高 1.000
全長 10.60
本発明の実施例2に係る内視鏡対物光学系の全体構成を図4に、レンズデータを以下に示す。また、本実施例に係る内視鏡対物光学系の収差曲線図を図5A~図5Dに示す。
面番号 r d Ne νd
物体面 ∞ 24.9443
1 ∞ 0.4887 1.88815 40.76
2 1.2969 1.0452
3 3.2461 0.7126 1.93429 18.90
4 3.9951 0.3873
5 ∞ 0.8909 1.51500 75.00
6(絞り) ∞ 0.0668
7 ∞ 0.2221
8 6.3541 1.4474 1.83945 42.71
9 -3.5783 0.2223
10 3.2639 1.7463 1.69979 55.53
11 -1.8928 0.5568 1.93429 18.90
12 ∞ 0.5738
13 3.1989 1.0022 1.51825 64.14
14 ∞ 0.0223 1.51500 64.00
15 ∞ 0.7795 1.50700 63.26
16 撮像面
焦点距離 1.092
Fno 3.019
半画角 65.4°
像高 1.000
全長 10.12
本発明の実施例3に係る内視鏡対物光学系の全体構成を図6に、レンズデータを以下に示す。また、本実施例に係る内視鏡対物光学系の収差曲線図を図7A~図7Dに示す。
面番号 r d Ne νd
物体面 ∞ 26.7261
1 ∞ 0.4476 1.88815 40.76
2 1.3211 0.8682
3 -4.7713 0.8238 1.93429 18.90
4 -3.3911 0.5791
5 ∞ 0.8909
6(絞り) ∞ 0.0668
7 ∞ 0.3720
8 9.3689 1.6091 1.88815 40.76
9 -3.5637 0.2222
10 4.0031 1.5583 1.69979 55.53
11 -1.8967 0.5587 1.93429 18.90
12 ∞ 0.5663
13 3.3105 1.0022 1.51825 64.14
14 ∞ 0.0223 1.51500 64.00
15 ∞ 0.7795 1.50700 63.26
16 撮像面
焦点距離 1.038
Fno 3.975
半画角 66.5°
像高 1.000
全長 10.37
本発明の実施例4に係る内視鏡対物光学系の全体構成を図8に、レンズデータを以下に示す。また、本実施例に係る内視鏡対物光学系の収差曲線図を図9A~図9Dに示す。
面番号 r d Ne νd
物体面 ∞ 26.0579
1 ∞ 0.4485 1.88815 40.76
2 1.2941 1.0110
3 ∞ 0.8909 1.51500 75.00
4 ∞ 0.2636
5 1.9246 0.6927 1.93429 18.90
6 1.7733 0.3211
7(絞り) ∞ 0.0668
8 ∞ 0.2930
9 4.9425 1.1191 1.82017 46.62
10 -3.2375 0.2221
11 2.8952 1.5588 1.64129 55.38
12 -1.7817 0.5566 1.93429 18.90
13 171.5852 0.5563
14 3.1170 1.0022 1.51825 64.14
15 ∞ 0.0223 1.51500 64.00
16 ∞ 0.7795 1.50700 63.26
17 撮像面
焦点距離 1.091
Fno 3.054
半画角 66.0°
像高 1.000
全長 9.80
本発明の実施例5に係る内視鏡対物光学系の全体構成を図10に、レンズデータを以下に示す。また、本実施例に係る内視鏡対物光学系の収差曲線図を図11A~図11Dに示す。
面番号 r d Ne νd
物体面 ∞ 21.6783
1 ∞ 0.5828 1.88815 40.76
2 1.3800 1.2587
3 -3.9557 1.8182 1.85504 23.78
4 -3.6853 0.4429
5 ∞ 0.9324 1.49557 75.00
6 ∞ 0.4196
7(絞り) ∞ 0.0699
8 ∞ 0.2331
9 8.3963 1.7716 1.83932 37.16
10 -5.4522 0.2564
11 5.2308 1.8182 1.73234 54.68
12 -1.9580 0.7459 1.93429 18.90
13 -22.1492 0.8858
14 3.4615 1.1655 1.51825 64.14
15 ∞ 0.0233 1.51500 64.00
16 ∞ 0.8159 1.50700 63.26
17 撮像面
焦点距離 0.967
Fno 2.987
半画角 81.4°
像高 1.000
全長 13.24
本発明の実施例6に係る内視鏡対物光学系の全体構成を図12に、レンズデータを以下に示す。また、本実施例に係る内視鏡対物光学系の収差曲線図を図13A~図13Dに示す。
面番号 r d Ne νd
物体面 ∞ 26.7261
1 ∞ 0.4454 1.88815 40.76
2 1.3671 0.9914
3 -8.8487 1.0115 1.93429 18.90
4 -3.9093 0.3803
5 ∞
6(絞り) ∞ 0.0668
7 ∞ 0.0668
8 9.4083 1.3763 1.88815 40.76
9 -3.5512 0.0668
10 4.8604 1.5506 1.69979 55.53
11 -1.8438 0.6561 1.93429 18.90
12 ∞ 0.5025
13 2.1158 1.0022 1.51825 64.14
14 ∞ 0.0223 1.51500 64.00
15 ∞ 0.7795 1.50700 63.26
16 撮像面
焦点距離 1.061
Fno 3.020
半画角 65.1°
像高 1.000
全長 9.81
各種データ
本発明の実施例7に係る内視鏡対物光学系の全体構成を図14に、レンズデータを以下に示す。また、本実施例に係る内視鏡対物光学系の収差曲線図を図15A~図15Dに示す。
面番号 r d Ne νd
物体面 ∞ 26.7261
1 ∞ 0.4454 1.88815 40.76
2 1.3403 1.0420
3 -11.3355 0.9880 1.93429 18.90
4 -5.3538 0.3946
5 ∞ 0.8909 1.51500 75.00
6(絞り) ∞ 0.0668
7 ∞ 0.6312
8 9.7005 1.5363 1.88815 40.76
9 -3.5452 0.1173
10 3.5940 1.5409 1.69979 55.53
11 -1.8859 0.6621 1.93429 18.90
12 ∞ 0.5209
13 11.1359 1.0022 1.51825 64.14
14 ∞ 0.0223 1.51500 64.00
15 ∞ 0.7795 1.50700 63.26
16 撮像面
焦点距離 1.049
Fno 3.001
半画角 66.4°
像高 1.000
全長 10.64
本発明の実施例8に係る内視鏡対物光学系の全体構成を図16に、レンズデータを以下に示す。また、本実施例に係る内視鏡対物光学系の収差曲線図を図17に示す。
面番号 r d Ne νd
物体面 ∞ 26.7261
1 ∞ 0.4454 1.88815 40.76
2 1.3437 1.0364
3 -11.4435 0.9802 1.93429 18.90
4 -5.2698 0.4539
5 ∞ 0.8909 1.51500 75.00
6(絞り) ∞ 0.0668
7 ∞ 0.6343
8 9.7252 1.5315 1.88815 40.76
9 -3.5438 0.0978
10 3.5342 1.5343 1.69979 55.53
11 -1.8850 0.6595 1.93429 18.90
12 ∞ 0.5155
13 22.2717 1.0022 1.51825 64.14
14 ∞ 0.0223 1.51500 64.00
15 ∞ 0.7795 1.50700 63.26
16 撮像面
焦点距離 1.058
Fno 3.003
半画角 65.4°
像高 1.000
全長 10.65
G1 前群
G2 後群
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
L6 第6レンズ
CL1 接合レンズ
S 明るさ絞り
P ピント調整位置
CG カバーガラス
IMG 像面
Claims (10)
- 物体側から順に、全体として負の屈折力をもつ前群と、明るさ絞りと、全体として正の屈折力をもつ後群とからなり、
前記前群が、物体側から順に、負の屈折力の単レンズである第1レンズと、正の屈折力の単レンズである第2レンズとを備え、
前記後群が、正の屈折力の単レンズである第3レンズと、正の屈折力の第4レンズと負の屈折力の第5レンズとの接合レンズと、正の屈折力の第6レンズとからなり、
前記第1レンズの物体側面が平面であり、前記第2レンズがメニスカス形状であり、
前記第6レンズが撮像素子と接合されており、以下の条件式を満足する内視鏡対物光学系。
4<Fno×F6/F1_5<500 ・・・(1)
但し、Fnoは内視鏡対物光学系の有効Fナンバー、F6は第6レンズの焦点距離、F1_5は、第1レンズから第5レンズの合成焦点距離である。 - 以下の条件式を満足する請求項1記載の内視鏡対物光学系。
1.1<SH_R1R6<10 ・・・(2)
但し、SH_R1R6=|(R1R+R6L)/(R1R-R6L)|であり、R1Rは第1レンズの像側面の曲率半径であり、R6Lは第6レンズの物体側面の曲率半径である。 - 以下の条件式を満足する請求項1記載の内視鏡対物光学系。
-1.5<R4R/R6L<-0.01 ・・・(3)
但し、R4Rは第4レンズの像側面の曲率半径であり、R6Lは第6レンズの物体側面の曲率半径である。 - 以下の条件式を満足する請求項1に記載の内視鏡対物光学系。
2.2<F23/FL<4.0 ・・・(4)
但し、F23は第2レンズと第3レンズの合成焦点距離、FLは全系の合成焦点距離である。 - 以下の条件式を満足する請求項1記載の内視鏡対物光学系。
-0.8<F1/F6<-0.01 ・・・(5)
但し、F1は第1レンズの焦点距離、F6は第6レンズの焦点距離である。 - 以下の条件式を満足する請求項1記載の内視鏡対物光学系。
0.0003<P2/(L×F6)<0.015 ・・・(6)
但し、Pは、ピント調整間隔、Lは内視鏡対物光学系の全長である。 - 以下の条件式を満足する請求項1記載の内視鏡対物光学系。
-2.0<F12/F36<-0.6 ・・・(7)
但し、F12は前群(第1、第2レンズ)の合成焦点距離、F36は後群(第3レンズから第6レンズ)の合成焦点距離である。 - 以下の条件式を満足する請求項1記載の内視鏡対物光学系。
0.05<FL/L<0.12 ・・・(8) - 以下の条件式を満足する請求項1記載の内視鏡対物光学系。
0.06<IH/L<0.12 ・・・(9)
但し、IHは最大像高である。 - 以下の条件式(10)を満足する請求項1記載の内視鏡対物光学系。
ω>62° ・・・(10)
但し、ωは半画角である。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15835864.8A EP3187916A4 (en) | 2014-08-28 | 2015-08-13 | Endoscope objective optical system |
CN201580003724.4A CN105899993B (zh) | 2014-08-28 | 2015-08-13 | 内窥镜物镜光学系统 |
JP2016506017A JP5927368B1 (ja) | 2014-08-28 | 2015-08-13 | 内視鏡対物光学系 |
US15/195,778 US9568725B2 (en) | 2014-08-28 | 2016-06-28 | Endoscope objective optical system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014174132 | 2014-08-28 | ||
JP2014-174132 | 2014-08-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/195,778 Continuation US9568725B2 (en) | 2014-08-28 | 2016-06-28 | Endoscope objective optical system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016031586A1 true WO2016031586A1 (ja) | 2016-03-03 |
Family
ID=55399483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/072913 WO2016031586A1 (ja) | 2014-08-28 | 2015-08-13 | 内視鏡対物光学系 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9568725B2 (ja) |
EP (1) | EP3187916A4 (ja) |
JP (1) | JP5927368B1 (ja) |
CN (1) | CN105899993B (ja) |
WO (1) | WO2016031586A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016204001A1 (ja) * | 2015-06-18 | 2016-12-22 | オリンパス株式会社 | 内視鏡用対物光学系 |
WO2017217146A1 (ja) * | 2016-06-15 | 2017-12-21 | オリンパス株式会社 | 内視鏡用対物光学系 |
JP6266195B1 (ja) * | 2016-09-01 | 2018-01-24 | オリンパス株式会社 | 内視鏡対物光学系 |
WO2018042797A1 (ja) * | 2016-09-01 | 2018-03-08 | オリンパス株式会社 | 内視鏡対物光学系 |
WO2018116865A1 (ja) * | 2016-12-21 | 2018-06-28 | オリンパス株式会社 | 内視鏡用対物光学系 |
WO2018131264A1 (ja) * | 2017-01-12 | 2018-07-19 | ソニーセミコンダクタソリューションズ株式会社 | 撮像ユニットおよび電子機器 |
JP6416451B1 (ja) * | 2017-06-22 | 2018-10-31 | オリンパス株式会社 | 内視鏡用対物光学系 |
WO2018235352A1 (ja) * | 2017-06-22 | 2018-12-27 | オリンパス株式会社 | 内視鏡用対物光学系 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10806332B2 (en) * | 2017-10-23 | 2020-10-20 | Karl Storz Imaging, Inc. | Fluorescence imaging scope with reduced chromatic aberration |
JP6995978B2 (ja) * | 2018-03-27 | 2022-01-17 | オリンパス株式会社 | 内視鏡用対物光学系、撮像装置、内視鏡及び内視鏡システム |
US11314043B2 (en) | 2018-09-10 | 2022-04-26 | Sintai Optical (Shenzhen) Co., Ltd. | Lens assembly including six lenses of −−++−+ refractive powers |
TWI716870B (zh) * | 2019-05-13 | 2021-01-21 | 大陸商信泰光學(深圳)有限公司 | 成像鏡頭(三十六) |
CN114675409B (zh) * | 2022-03-03 | 2023-02-03 | 浙江大学 | 一种内窥镜用4k变焦耦合器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04315118A (ja) * | 1991-04-15 | 1992-11-06 | Olympus Optical Co Ltd | 内視鏡対物光学系 |
JPH05107471A (ja) * | 1991-10-15 | 1993-04-30 | Olympus Optical Co Ltd | 内視鏡対物レンズ |
JP2010061007A (ja) * | 2008-09-05 | 2010-03-18 | Sony Corp | ズームレンズ及び撮像装置 |
US20150177491A1 (en) * | 2013-12-19 | 2015-06-25 | Kolen Co., Ltd. | Photographic Lens Optical System |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5208702A (en) * | 1990-04-11 | 1993-05-04 | Olympus Optical Co., Ltd. | Objective lens system for endoscopes |
US5283693A (en) * | 1990-06-13 | 1994-02-01 | Minolta Camera Kabushiki Kaisha | Compact zoom lens system |
US5359456A (en) | 1991-10-15 | 1994-10-25 | Olympus Optical Co., Ltd. | Objective lens system for endoscopes |
JP3051035B2 (ja) * | 1994-10-18 | 2000-06-12 | 富士写真光機株式会社 | 内視鏡用対物レンズ |
JPH0910170A (ja) * | 1995-06-29 | 1997-01-14 | Olympus Optical Co Ltd | 内視鏡対物光学系 |
JP4483086B2 (ja) * | 2000-12-25 | 2010-06-16 | コニカミノルタホールディングス株式会社 | ズームレンズ |
EP1220002B1 (en) * | 2000-12-27 | 2006-09-20 | Canon Kabushiki Kaisha | Zoom lens |
JP3862520B2 (ja) * | 2001-06-08 | 2006-12-27 | キヤノン株式会社 | ズームレンズ及びそれを用いた光学機器 |
JP4245985B2 (ja) * | 2003-05-30 | 2009-04-02 | オリンパス株式会社 | 内視鏡用対物レンズ |
JP4608253B2 (ja) * | 2004-07-06 | 2011-01-12 | オリンパス株式会社 | 液浸対物光学系 |
JP4591757B2 (ja) * | 2004-09-17 | 2010-12-01 | カシオ計算機株式会社 | レンズ装置 |
JP5006514B2 (ja) * | 2004-12-16 | 2012-08-22 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
JP2006178242A (ja) | 2004-12-24 | 2006-07-06 | Nidec Copal Corp | ズームレンズ |
ATE540329T1 (de) * | 2007-04-09 | 2012-01-15 | Fujifilm Corp | Endoskopobjektivlinse und endoskop |
JP4920572B2 (ja) * | 2007-12-21 | 2012-04-18 | オリンパスメディカルシステムズ株式会社 | 内視鏡用対物レンズ |
JP4695662B2 (ja) | 2008-03-18 | 2011-06-08 | オリンパスメディカルシステムズ株式会社 | 内視鏡用対物レンズ |
CN102687053B (zh) * | 2009-12-11 | 2014-11-05 | 奥林巴斯医疗株式会社 | 物镜光学系统 |
WO2011125539A1 (ja) | 2010-04-07 | 2011-10-13 | オリンパスメディカルシステムズ株式会社 | 対物レンズ及びそれを用いた内視鏡 |
JP4997348B2 (ja) | 2010-05-20 | 2012-08-08 | オリンパスメディカルシステムズ株式会社 | 内視鏡対物レンズユニットおよび内視鏡 |
CN103282817B (zh) * | 2011-06-23 | 2015-08-12 | 奥林巴斯医疗株式会社 | 内窥镜用物镜光学系统 |
WO2013077139A1 (ja) * | 2011-11-22 | 2013-05-30 | オリンパスメディカルシステムズ株式会社 | 内視鏡対物光学系 |
CN104054013B (zh) * | 2012-09-14 | 2016-08-24 | 奥林巴斯株式会社 | 内窥镜物镜 |
-
2015
- 2015-08-13 JP JP2016506017A patent/JP5927368B1/ja active Active
- 2015-08-13 CN CN201580003724.4A patent/CN105899993B/zh active Active
- 2015-08-13 WO PCT/JP2015/072913 patent/WO2016031586A1/ja active Application Filing
- 2015-08-13 EP EP15835864.8A patent/EP3187916A4/en not_active Withdrawn
-
2016
- 2016-06-28 US US15/195,778 patent/US9568725B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04315118A (ja) * | 1991-04-15 | 1992-11-06 | Olympus Optical Co Ltd | 内視鏡対物光学系 |
JPH05107471A (ja) * | 1991-10-15 | 1993-04-30 | Olympus Optical Co Ltd | 内視鏡対物レンズ |
JP2010061007A (ja) * | 2008-09-05 | 2010-03-18 | Sony Corp | ズームレンズ及び撮像装置 |
US20150177491A1 (en) * | 2013-12-19 | 2015-06-25 | Kolen Co., Ltd. | Photographic Lens Optical System |
Non-Patent Citations (1)
Title |
---|
See also references of EP3187916A4 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10018827B2 (en) | 2015-06-18 | 2018-07-10 | Olympus Corporation | Objective optical system for endoscope |
JP6109461B1 (ja) * | 2015-06-18 | 2017-04-05 | オリンパス株式会社 | 内視鏡用対物光学系 |
WO2016204001A1 (ja) * | 2015-06-18 | 2016-12-22 | オリンパス株式会社 | 内視鏡用対物光学系 |
WO2017217146A1 (ja) * | 2016-06-15 | 2017-12-21 | オリンパス株式会社 | 内視鏡用対物光学系 |
US10884223B2 (en) | 2016-06-15 | 2021-01-05 | Olympus Corporation | Objective optical system for endoscope |
JP6310166B1 (ja) * | 2016-06-15 | 2018-04-11 | オリンパス株式会社 | 内視鏡用対物光学系 |
US10809521B2 (en) | 2016-09-01 | 2020-10-20 | Olympus Corporation | Endoscope objective optical system |
CN109073864B (zh) * | 2016-09-01 | 2020-11-27 | 奥林巴斯株式会社 | 内窥镜对物光学系统 |
CN109073864A (zh) * | 2016-09-01 | 2018-12-21 | 奥林巴斯株式会社 | 内窥镜对物光学系统 |
JP6266195B1 (ja) * | 2016-09-01 | 2018-01-24 | オリンパス株式会社 | 内視鏡対物光学系 |
EP3508900A4 (en) * | 2016-09-01 | 2020-05-06 | Olympus Corporation | LENS OPTICAL SYSTEM FOR AN ENDOSCOPE |
WO2018042797A1 (ja) * | 2016-09-01 | 2018-03-08 | オリンパス株式会社 | 内視鏡対物光学系 |
JP6404531B1 (ja) * | 2016-12-21 | 2018-10-10 | オリンパス株式会社 | 内視鏡用対物光学系 |
WO2018116865A1 (ja) * | 2016-12-21 | 2018-06-28 | オリンパス株式会社 | 内視鏡用対物光学系 |
US11576564B2 (en) | 2016-12-21 | 2023-02-14 | Olympus Corporation | Objective optical system for endoscope |
WO2018131264A1 (ja) * | 2017-01-12 | 2018-07-19 | ソニーセミコンダクタソリューションズ株式会社 | 撮像ユニットおよび電子機器 |
JP6416451B1 (ja) * | 2017-06-22 | 2018-10-31 | オリンパス株式会社 | 内視鏡用対物光学系 |
US20200081240A1 (en) * | 2017-06-22 | 2020-03-12 | Olympus Corporation | Objective optical system for endoscope, endoscope, and image pickup unit |
US11543647B2 (en) | 2017-06-22 | 2023-01-03 | Olympus Corporation | Objective optical system for endoscope, endoscope, and image pickup unit |
WO2018235352A1 (ja) * | 2017-06-22 | 2018-12-27 | オリンパス株式会社 | 内視鏡用対物光学系 |
Also Published As
Publication number | Publication date |
---|---|
CN105899993A (zh) | 2016-08-24 |
JPWO2016031586A1 (ja) | 2017-04-27 |
US20160306162A1 (en) | 2016-10-20 |
EP3187916A1 (en) | 2017-07-05 |
CN105899993B (zh) | 2018-09-25 |
EP3187916A4 (en) | 2018-05-30 |
JP5927368B1 (ja) | 2016-06-01 |
US9568725B2 (en) | 2017-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5927368B1 (ja) | 内視鏡対物光学系 | |
JP4964551B2 (ja) | 内視鏡用対物レンズおよびそれを用いた内視鏡用撮像装置 | |
JP5948530B2 (ja) | 対物光学系 | |
JP6081683B1 (ja) | 内視鏡用対物光学系 | |
JP4695662B2 (ja) | 内視鏡用対物レンズ | |
WO2011125539A1 (ja) | 対物レンズ及びそれを用いた内視鏡 | |
WO2015025843A1 (ja) | 内視鏡用対物光学系 | |
JP2006330194A (ja) | 内視鏡用対物レンズ | |
JP5274728B2 (ja) | 内視鏡用対物光学系 | |
CN103562771B (zh) | 内窥镜物镜光学系统 | |
JP2008040033A (ja) | 広角レンズ | |
JP2007249189A (ja) | 内視鏡用対物レンズ | |
JP5745186B2 (ja) | 接眼レンズおよび撮像装置 | |
CN104024908B (zh) | 物镜光学系统和使用了它的内窥镜装置 | |
WO2016208367A1 (ja) | 内視鏡用対物光学系 | |
JP6404531B1 (ja) | 内視鏡用対物光学系 | |
WO2018042797A1 (ja) | 内視鏡対物光学系 | |
WO2016047421A1 (ja) | 内視鏡対物光学系 | |
JP4937780B2 (ja) | 内視鏡用対物レンズ | |
US10884223B2 (en) | Objective optical system for endoscope | |
JP6416451B1 (ja) | 内視鏡用対物光学系 | |
JP2005148508A (ja) | 内視鏡用対物レンズ | |
JP6266195B1 (ja) | 内視鏡対物光学系 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016506017 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15835864 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015835864 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015835864 Country of ref document: EP |