WO2016031067A1 - はんだ材料、はんだ継手及びはんだ材料の製造方法 - Google Patents

はんだ材料、はんだ継手及びはんだ材料の製造方法 Download PDF

Info

Publication number
WO2016031067A1
WO2016031067A1 PCT/JP2014/072803 JP2014072803W WO2016031067A1 WO 2016031067 A1 WO2016031067 A1 WO 2016031067A1 JP 2014072803 W JP2014072803 W JP 2014072803W WO 2016031067 A1 WO2016031067 A1 WO 2016031067A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
less
sno
layer
film
Prior art date
Application number
PCT/JP2014/072803
Other languages
English (en)
French (fr)
Inventor
浩由 川▲崎▼
六本木 貴弘
相馬 大輔
佐藤 勇
勇司 川又
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to EP14900789.0A priority Critical patent/EP3187299B1/en
Priority to KR1020167036699A priority patent/KR101781777B1/ko
Priority to PCT/JP2014/072803 priority patent/WO2016031067A1/ja
Priority to PT149007890T priority patent/PT3187299T/pt
Priority to CN201480080357.3A priority patent/CN106536124B/zh
Priority to US15/327,510 priority patent/US10173287B2/en
Priority to JP2015525662A priority patent/JP5807733B1/ja
Priority to TW104128294A priority patent/TWI543835B/zh
Publication of WO2016031067A1 publication Critical patent/WO2016031067A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1131Manufacturing methods by local deposition of the material of the bump connector in liquid form
    • H01L2224/11318Manufacturing methods by local deposition of the material of the bump connector in liquid form by dispensing droplets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • H01L2224/11826Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13113Bismuth [Bi] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/1312Antimony [Sb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13157Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/1316Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1356Disposition
    • H01L2224/13561On the entire surface of the core, i.e. integral coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13575Plural coating layers
    • H01L2224/1358Plural coating layers being stacked
    • H01L2224/13582Two-layer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/13686Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/13686Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/13687Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/053Oxides composed of metals from groups of the periodic table
    • H01L2924/054414th Group

Definitions

  • the present invention relates to a solder material mainly composed of Sn, a solder joint, and a method for manufacturing the solder material.
  • BGA ball grid array
  • An electronic component to which BGA is applied includes, for example, a semiconductor package.
  • a semiconductor package a semiconductor chip having electrodes is sealed with a resin.
  • Solder bumps are formed on the electrodes of the semiconductor chip. This solder bump is formed by joining a solder ball to an electrode of a semiconductor chip.
  • a semiconductor package using BGA is mounted on a printed circuit board by placing the solder bumps on the printed circuit board so that each solder bump contacts the conductive land of the printed circuit board, and the solder bumps and lands melted by heating are joined. Is done.
  • solder ball in order to join the solder ball to the electrode, it is required to suppress the formation of a metal oxide film on the surface of the solder ball. Moreover, when a solder ball is mixed with a flux and used as a solder paste, it is required to suppress an increase in viscosity during storage.
  • Patent Document 1 there is a proportional relationship between the film thickness of the oxide film formed on the solder ball surface and the yellowness. Therefore, a technique has been proposed in which solder balls having a yellowness of a predetermined value or less, that is, an oxide film having a predetermined value or less are used, and the oxide film is destroyed by heating so that bonding is possible (for example, Patent Document 1). reference).
  • Patent Document 1 solder balls having a surface yellowing degree of 10 or less after selection are selected, and the storage state is strictly controlled to prevent solder ball surface yellowing. It is disclosed that a SnO oxide film and a SnO 2 oxide film are formed on the surface of a solder bump formed using this solder ball while suppressing the growth of the SnO oxide film on the surface.
  • JP 2009-248156 A Japanese Patent No. 4084657
  • solder ball mainly composed of Sn, Sn and O 2 in the air react to form a SnO film.
  • this film thickness increases, it becomes difficult to remove with a flux at the time of soldering.
  • oxide film remains on the surface of the solder ball, wettability deteriorates.
  • the oxide film thickness increases, the yellowness increases. In some cases, yellowness is used as an appearance inspection of solder balls. If the increase in the oxide film thickness cannot be suppressed, the possibility that the solder balls are not suitable for use increases.
  • Patent Document 1 the storage state is strictly controlled to suppress the growth of the SnO oxide film on the solder ball surface. Further, in Patent Document 1, the bonding property between the solder and the electrode terminal is improved by paying attention to the fact that the crystalline SnO 2 oxide film is easily damaged by internal deformation accompanying melting of the solder ball. There is no disclosure about suppressing the growth of the oxide film with the composition of the oxide film other than the management of the state. Furthermore, with respect to Patent Document 2, there is no disclosure about suppressing the growth of the SnO oxide film.
  • an object of the present invention is to provide a solder material, a solder joint, and a method for manufacturing a solder material that can suppress the growth of an oxide film, and thereby have good storage properties and wettability.
  • the present inventors have found that the growth of an oxide film can be suppressed by coating a solder layer containing Sn as a main component with a coating layer containing SnO and SnO 2 .
  • the coating layer containing SnO and SnO 2 means an oxide film layer made of tin oxide mainly containing SnO and an oxide film layer made of tin oxide mainly containing SnO 2 . The same applies to the following description.
  • the invention according to claim 1 covers the surface of the solder layer with a solder layer made of a metal material made of an alloy having a Sn content of 40% or more or a metal material having a Sn content of 100%.
  • a solder material comprising a coating layer, wherein the coating layer has an SnO film formed on the outside of the solder layer, an SnO 2 film formed on the outside of the SnO film, and the thickness of the coating layer is greater than 0 nm and not more than 4.5 nm It is.
  • the invention according to claim 2 is the solder material according to claim 1, wherein the yellowness is 5.7 or less.
  • a solder layer made of a metal material made of an alloy having a Sn content of 40% or more or a metal material having a Sn content of 100%, and a coating layer covering the surface of the solder layer
  • the covering layer is a solder material in which a SnO film is formed outside the solder layer, a SnO 2 film is formed outside the SnO film, and the yellowness is 5.7 or less.
  • the solder layer includes Ag of 0% to less than 4%, Cu of 0% to less than 1%, P of 0 ppm to less than 5 ppm, and Ge of 0 ppm to less than 20 ppm.
  • solder layer in the solder layer, (i) at least one element selected from Ni, Co, Fe, and Sb is less than 1% in total so that the Sn content is 40% or more.
  • the solder material according to any one of claims 1 to 4, wherein the solder material contains less than 40% in total or less than 40% of one of In and Bi and less than 20% of the other.
  • the invention according to claim 6 is the solder material according to any one of claims 1 to 5, wherein the emitted ⁇ dose is 0.0200 cph / cm 2 or less.
  • the invention according to claim 7 is the solder material according to any one of claims 1 to 6, which is a sphere having a diameter of 1 to 1000 ⁇ m.
  • the invention according to claim 8 is a solder joint obtained by using the solder material according to any one of claims 1 to 7.
  • the invention according to claim 9 includes a solder layer forming step of forming a solder layer made of a metal material made of an alloy having a Sn content of 40% or more or a metal material having a Sn content of 100%, and a solder layer the SnO film was formed on the outside of, to form a SnO 2 film on the outside of the SnO film, a greater than 4.5nm or less of the coating layer thickness is 0 nm, comprising an oxide film formation step of forming on the surface of the solder layer
  • the invention according to claim 10 is the method for producing a solder material according to claim 9, wherein the yellowness of the surface of the coating layer is formed to be 5.7 or less in the oxide film forming step.
  • the invention according to claim 11 is the method for producing a solder material according to claim 9 or 10, wherein the oxide film forming step irradiates the surface of the solder layer with O 2 —Ar plasma.
  • the reaction between Sn and O 2 in the air is suppressed, and the growth of the SnO film and the SnO 2 film is suppressed.
  • an increase in film thickness can be suppressed, and an increase in film thickness is suppressed, whereby yellowing can be suppressed and yellowness can be suppressed to 5.7 or less.
  • FIG. 1 is a cross-sectional view showing a schematic structure of a solder ball as an example of the solder material of the present embodiment.
  • units (ppm, ppb, and%) relating to the composition of the solder material represent ratios (mass ppm, mass ppb, and mass%) relative to mass unless otherwise specified.
  • the solder ball 1A of the present embodiment includes a solder layer 2 and a coating layer 3 that covers the solder layer 2.
  • the solder layer 2 is spherical, and is made of an alloy material in which Ag is 0% or more and less than 4%, Cu is 0% or more and less than 1%, and the Sn content is 40% or more.
  • the oxidation resistance is improved by adding a predetermined amount of P or Ge.
  • the oxidation resistance can be improved without adding them.
  • the addition of less than 5 ppm P and less than 20 ppm Ge does not impair the effects of the present invention.
  • P or Ge does not have to be added, and if added, the addition amount of P is less than 5 ppm and the addition amount of Ge is less than 20 ppm. Therefore, the addition amount of P is 0 ppm or more and less than 5 ppm, and the addition amount of Ge is 0 ppm or more and less than 20 ppm.
  • the solder layer 2 contains at least one element selected from Ni, Co, Fe, and Sb so that the Sn content is 40% or more as a whole, or less than 1%, or less than 1% of each, And, at least one element selected from In and Bi is contained in total of less than 40%, or one of In and Bi is less than 40% and the other is less than 20%.
  • At least one element selected from Ni, Co, Fe, and Sb is contained less than 1% or less than 1% in total, or at least one element selected from In and Bi is added as a whole Less than 40%, or one of In and Bi is less than 40% and the other is less than 20%.
  • solder layer 2 may be made of a metal material having a Sn content of 100%. Note that the ⁇ dose emitted from the solder layer 2 is preferably 0.0200 cph / cm 2 or less.
  • the SnO film 3a is formed outside the solder layer 2
  • the SnO 2 film 3b is formed outside the SnO film 3a.
  • the solder ball 1A preferably has a diameter of 1 to 1000 ⁇ m.
  • the thickness of the covering layer 3 is preferably greater than 0 nm (meaning that 0 nm is not included) and 4.5 nm or less. When the thickness of the coating layer 3 exceeds 4.5 nm, it becomes difficult to remove the coating layer 3 with a flux during soldering, and the wettability is deteriorated.
  • the yellowness b * of the solder ball 1A is preferably 5.7 or less.
  • yellowness may be used. This is because high yellowness means that the film thickness of SnO is thick, so that solder balls whose yellowness exceeds a predetermined value can be excluded as being unsuitable for use.
  • the lightness and yellowness are measured using a Konica Minolta CM-3500d2600d spectrophotometer, using a D65 light source and a 10-degree field of view according to JIS Z 8722 “Color measurement method: reflection and transmission object color”. was determined from the color values (L * , a * , b * ).
  • the color values (L * , a * , b * ) are defined in JIS Z 8729 “Color Display Method—L * a * b * Color System and L * U * V * Color System”. It is as follows.
  • the shape of the solder material is spherical in this example, but may be other shapes such as a cylindrical shape or a quadrangular prism shape.
  • the ⁇ dose emitted from the solder ball 1A is also preferably 0.0200 cph / cm 2 or less.
  • 2A, 2B, and 2C are cross-sectional views schematically showing a method for manufacturing a solder ball as an example of the solder material of the present embodiment.
  • solder layer forming step As shown in FIG. 2A, a spherical solder layer 2 made of the above-described metal material made of an alloy having a Sn content of 40% or more, or a metal material having a Sn content of 100%. Is formed.
  • the solder layer forming step uses a dropping method in which a molten metal material is dropped to be cured in a spherical shape.
  • an SnO 2 film 3b is formed on the surface of the SnO film 3a generated when the surface of the solder layer 2 is exposed to air, as shown in FIG. 2C.
  • a conventionally known method can be used.
  • an evaporation method, a sputtering method, a plasma irradiation method, and the like can be given.
  • the oxide film forming step is realized by a plasma irradiation method using a known atmospheric pressure plasma apparatus.
  • the plasma irradiation method high-concentration O 2 —Ar plasma is irradiated before molten metal is dropped and cured.
  • the solder ball 1A in which the coating layer 3 is formed on the surface of the solder layer 2 having a predetermined diameter is manufactured by the above manufacturing method.
  • the coating layer 3a has a thickness greater than 0 nm and not greater than 4.5 nm.
  • the SnO film 3a is formed outside the solder layer 2, and the SnO 2 film 3b is formed outside the SnO film 3a.
  • the yellowness of the solder ball 1A is 5.66 or less.
  • a metal ball corresponding to the solder layer 2 was formed by a dropping method using a metal material composed of 3% Ag, 0.5% Cu, and the balance Sn.
  • a film corresponding to the coating layer 3 was formed on the metal sphere by a plasma irradiation method to produce the solder ball of the example.
  • the plasma irradiation method high concentration O 2 —Ar plasma was irradiated before the molten metal material was dropped.
  • solder ball having a SnO layer formed on the surface by natural oxidation was generated.
  • Table 1 shows the results of heating the solder balls of Examples and Comparative Examples at 200 ° C. and observing the oxidation behavior with the value of yellowness b * .
  • the solder ball of the comparative example quickly increased in yellowness b *, whereas the solder ball of the example had a solder layer mainly composed of Sn by qualitative analysis by SERA. It was found that the growth of the oxide film thickness was suppressed by forming the SnO layer on the outer side and the SnO 2 layer on the outer side of the SnO layer.
  • the oxide film thicknesses of the solder balls of Example 1 heated at 200 ° C. for 15 minutes and the solder balls of Example 2 heated at 200 ° C. for 30 minutes are defined as FE-AES (electric field).
  • SERA Sequential Electrochemical Analysis: Sequential Electrochemical Reduction
  • SnO and SnO 2 the components of the formed oxide film are Sn oxides (SnO and SnO 2 ).
  • Quantitative analysis was performed with FE-AES.
  • the analysis values with SERA are easy to disperse and qualitative analysis is possible, but to discuss specific oxide film thickness as quantitative analysis, FE-AES analysis This is because it is easier to show a constant value.
  • the thickness of the oxide film was measured with the following apparatus and conditions. Incidentally, the oxide film thickness measurements were determined by the terms of SiO 2.
  • Measuring device ULVAC-PHI, INC. Scanning FE Auger Electron Spectroscopy Analyzer Measuring conditions: Beam Voltage: 10 kV, Sample current: 10 nA (The sputtering depth measurement method using an Ar ion gun is based on ISO / TR 15969. .)
  • Table 2 shows the measurement results of oxide film thickness and yellowness.
  • the oxide film thickness is suppressed to 5 nm or less, and the film thickness of the coating layer is preferably 4.5 nm or less. Moreover, it turns out that the yellowness is suppressed to 10 or less, and it turns out that it is preferable to set it as 5.7 or less from the result of Table 2.
  • the solder ball of each example has a film thickness of 4.5 nm or less, the solder ball of example 1 has a film thickness of 2.6 nm, and the solder ball of example 2 has a film thickness of 4.1 nm.
  • the solder ball No. 3 has a film thickness of 1.5 nm.
  • solder balls of each example have a yellowness of 5.7 or less, the solder balls of example 1 have a yellowness of 4.60, and the solder balls of example 2 have a yellowness of 5.77.
  • the solder ball of Example 3 has a yellowness of 3.90.
  • the solder ball of each comparative example has a film thickness of 10 nm or more and a yellowness of 10 or less.
  • the solder ball of comparative example 1 has a yellowness of 10.21, and the solder ball of comparative example 2 has The yellowness is 13.15.
  • solder material according to the present invention can be used for a solder joint of an electronic component by being electrically joined to an electrode with a solder paste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Powder Metallurgy (AREA)

Abstract

酸化膜の成長を抑制できるようにしたはんだ材料を提供する。 はんだ材料であるはんだボール1Aは、はんだ層2と、はんだ層2を被覆する被覆層3で構成される。はんだ層2は球状であり、Snの含有量が40%以上の合金からなる金属材料で構成される。または、はんだ層2は、Snの含有量が100%である金属材料で構成される。被覆層3は、はんだ層2の外側にSnO膜3aが形成され、SnO膜3aの外側にSnO2膜3bが形成される。被覆層3の厚さは、0nmより大きく4.5nm以下であることが好ましい。また、はんだボール1Aの黄色度は、5.7以下であることが好ましい。

Description

はんだ材料、はんだ継手及びはんだ材料の製造方法
 本発明は、Snを主成分としたはんだ材料、はんだ継手及びはんだ材料の製造方法に関する。
 近年、小型情報機器の発達により、搭載される電子部品では急速な小型化が進行している。電子部品は、小型化の要求により接続端子の狭小化や実装面積の縮小化に対応するため、裏面に電極が設置されたボールグリッドアレイ(以下、「BGA」と称する)が適用されている。
 BGAを適用した電子部品には、例えば半導体パッケージがある。半導体パッケージでは、電極を有する半導体チップが樹脂で封止されている。半導体チップの電極には、はんだバンプが形成されている。このはんだバンプは、はんだボールを半導体チップの電極に接合することによって形成されている。BGAを適用した半導体パッケージは、各はんだバンプがプリント基板の導電性ランドに接触するように、プリント基板上に置かれ、加熱により溶融したはんだバンプとランドとが接合することにより、プリント基板に搭載される。
 さて、はんだボールを電極に接合するためには、はんだボールの表面に金属酸化膜が形成されることを抑制することが求められる。また、はんだボールがフラックスと混合されてソルダペーストとして使用される場合、保管時の粘度上昇を抑制することが求められる。
 ここで、はんだボール表面に形成される酸化膜の膜厚と黄色度には比例関係がある。
そこで、黄色度が所定値以下、すなわち、酸化膜が所定値以下のはんだボールを使用し、加熱によって酸化膜を破壊して、接合できるようにした技術が提案されている(例えば、特許文献1参照)。この特許文献1においては、先ず、製造後に表面の黄化度が10以下となるはんだボールを選別し、保管状態を厳密に管理することにより、はんだボール表面の黄化を防止、すなわち、はんだボール表面のSnO酸化膜の成長を抑制すると共に、このはんだボールを用いて形成されたはんだバンプの表面に、SnO酸化膜及びSnO2酸化膜が形成されることが開示されている。
 また、はんだボールの表面に、所定値の酸化膜を形成して、粘度上昇を抑制できるようにした技術が提案されている(例えば、特許文献2参照)。この特許文献2においては、はんだ粒子表面にSnOまたはSnO2を主成分とする酸化錫からなる酸化被膜を形成し、フラックスと混合・撹拌して製造されるはんだペースト作製後の経過的粘土上昇を抑制することが開示されている。
特開2009-248156号公報 特許第4084657号公報
 Snを主成分としたはんだボールでは、Snと空気中のOが反応してSnOの膜が形成される。この膜厚が増加すると、はんだ付け時にフラックスでの除去が困難になる、はんだボールの表面に酸化膜が残っていると、濡れ性が悪くなる。また、酸化膜厚が増加すると、黄色度が上昇する。はんだボールの外観検査として、黄色度を利用する場合があり、酸化膜厚の増加を抑制できないと、はんだボールが使用に適さないと判断される可能性が高くなる。
 特許文献1では、保管状態を厳密に管理することにより、はんだボール表面のSnO酸化膜の成長を抑制するようにしている。また、特許文献1では、結晶質であるSnO2酸化膜が、はんだボールの溶融に伴う内部変形で破損し易いことに着目して、はんだと電極端子の接合性を向上させているが、保管状態の管理以外に、酸化膜の組成で酸化膜の成長を抑制することについての開示は一切ない。更に、特許文献2に関しては、SnO酸化膜の成長を抑制することについての開示は一切ない。
 そこで、本発明は、酸化膜の成長を抑制できるようにし、これにより、保管性及び濡れ性の良好なるはんだ材料、はんだ継手及びはんだ材料の製造方法を提供することを目的とする。
 本発明者らは、Snを主成分とするはんだ層を、SnO及びSnO2を有する被覆層で被覆することで、酸化膜の成長を抑制できることを見出した。なお、SnO及びSnO2を有する被覆層とは、SnOを主成分とする酸化錫からなる酸化被膜層、及び、SnO2を主成分とする酸化錫からなる酸化被膜層を意味する。以下の説明においても同様である。
 そこで、請求項1に記載の発明は、Snの含有量が40%以上の合金からなる金属材料またはSnの含有量が100%である金属材料からなるはんだ層と、はんだ層の表面を被覆する被覆層を備え、被覆層は、はんだ層の外側にSnO膜が形成され、SnO膜の外側にSnO2膜が形成され、被覆層の厚さは、0nmより大きく4.5nm以下であるはんだ材料である。
 請求項2に記載の発明は、黄色度が5.7以下である請求項1に記載のはんだ材料である。
 請求項3に記載の発明は、Snの含有量が40%以上の合金からなる金属材料またはSnの含有量が100%である金属材料からなるはんだ層と、はんだ層の表面を被覆する被覆層を備え、被覆層は、はんだ層の外側にSnO膜が形成され、SnO膜の外側にSnO2膜が形成され、黄色度が5.7以下であるはんだ材料である。
 請求項4に記載の発明は、はんだ層は、Agを0%以上4%未満、Cuを0%以上1%未満、Pを0ppm以上5ppm未満、Geを0ppm以上20ppm未満で含む請求項1~請求項3のいずれか1項に記載のはんだ材料である。
 請求項5に記載の発明は、はんだ層は、Snの含有量が40%以上となるように、(i)Ni、Co、Fe、Sbから選ばれる少なくとも1つの元素を、全体で1%未満あるいはそれぞれを1%未満含有し、及び、In、Biから選ばれる少なくとも1つ以上の元素を、全体で40%未満あるいはIn、Biの一方を40%未満、他方を20%未満含有し、あるいは、(ii)Ni、Co、Fe、Sbから選ばれる少なくとも1つの元素を、全体で1%未満あるいはそれぞれを1%未満含有するか、または、In、Biから選ばれる少なくとも1つ以上の元素を、全体で40%未満あるいはIn、Biの一方を40%未満、他方を20%未満含有した請求項1~請求項4のいずれか1項に記載のはんだ材料である。
 請求項6に記載の発明は、放射されるα線量が0.0200cph/cm2以下である請求項1~請求項5のいずれか1項に記載のはんだ材料である。
 請求項7に記載の発明は、直径が1~1000μmの球体である請求項1~請求項6のいずれか1項に記載のはんだ材料である。
 請求項8に記載の発明は、請求項1~7のいずれか1項に記載のはんだ材料を使用して得たはんだ継手である。
 請求項9に記載の発明は、Snの含有量が40%以上の合金からなる金属材料またはSnの含有量が100%である金属材料からなるはんだ層を形成するはんだ層形成工程と、はんだ層の外側にSnO膜を形成し、SnO膜の外側にSnO2膜を形成して、厚さが0nmより大きく4.5nm以下の被覆層を、はんだ層の表面に形成する酸化膜形成工程を含むはんだ材料の製造方法である。
 請求項10に記載の発明は、酸化膜形成工程で、被覆層表面の黄色度が5.7以下に形成される請求項9に記載のはんだ材料の製造方法である。
 請求項11に記載の発明は、酸化膜形成工程は、はんだ層の表面にO2-Arプラズマを照射する請求項9または請求項10に記載のはんだ材料の製造方法である。
 本発明では、はんだ層を被覆する被覆層において、SnO膜の外側にSnO2膜が形成されると、Snと空気中のO2との反応が抑制され、SnO膜及びSnO2膜成長が抑制され、膜厚の増加を抑制することができる、また、膜厚の増加が抑制されることで、黄変が抑制され、黄色度を5.7以下に抑制することができる。これにより、保管性及び濡れ性の良好なるはんだ材料、及び、このはんだ材料を使用したはんだ継手を提供できる。
本実施の形態のはんだ材料の一例としてのはんだボールの模式的な構造を示す断面図である。 本実施の形態のはんだ材料の一例としてのはんだボールの製造方法を模式的に示した断面図である。 本実施の形態のはんだ材料の一例としてのはんだボールの製造方法を模式的に示した断面図である。 本実施の形態のはんだ材料の一例としてのはんだボールの製造方法を模式的に示した断面図である。
 以下、本発明のはんだ材料、はんだ継手及びはんだ材料の製造方法について説明する。
 <はんだ材料の構成例>
 図1は、本実施の形態のはんだ材料の一例としてのはんだボールの模式的な構造を示す断面図である。なお、本明細書において、はんだ材料の組成に関する単位(ppm、ppb、及び%)は、特に指定しない限り質量に対する割合(質量ppm、質量ppb、及び質量%)を表す。
 本実施の形態のはんだボール1Aは、はんだ層2と、はんだ層2を被覆する被覆層3で構成される。はんだ層2は球状であり、Agを0%以上4%未満、Cuを0%以上1%未満、Snの含有量が40%以上の合金材料で構成される。一般に、所定量のPあるいはGeを添加することで耐酸化性が向上するが、本発明ではこれらを添加することなく耐酸化性を向上させることができる。但し、Pを5ppm未満、Geを20ppm未満添加しても本発明の効果を損なうことはない。そこで、PあるいはGeは、添加しなくても良いし、添加するのであれば、Pの添加量は5ppm未満、Geの添加量は20ppm未満とする。従って、Pの添加量を0ppm以上5ppm未満、Geの添加量を0ppm以上20ppm未満とする。
 また、はんだ層2は、Snの含有量が40%以上となるように、Ni、Co、Fe、Sbから選ばれる少なくとも1つの元素を、全体で1%未満あるいはそれぞれを1%未満含有し、及び、In、Biから選ばれる少なくとも1つ以上の元素を、全体で40%未満あるいはIn、Biの一方を40%未満、他方を20%未満含有する。
 あるいは、Ni、Co、Fe、Sbから選ばれる少なくとも1つの元素を、全体で1%未満あるいはそれぞれを1%未満含有するか、または、In、Biから選ばれる少なくとも1つ以上の元素を、全体で40%未満あるいはIn、Biの一方を40%未満、他方を20%未満含有する。
 更に、はんだ層2は、Snの含有量が100%である金属材料で構成されるものでも良い。なお、はんだ層2から放射されるα線量が0.0200cph/cm2以下であることが好ましい。
 被覆層3は、はんだ層2の外側にSnO膜3aが形成され、SnO膜3aの外側にSnO2膜3bが形成される。はんだボール1Aが空気に触れることで、はんだ層2の表面に形成されるSnOの層は、時間の経過と共に膜厚が厚くなる。また、膜厚が厚くなると、はんだボール1Aの表面が黄変する。
 これに対し、SnO膜3aの外側にSnO2膜3bが形成されると、Snと空気中のO2との反応が抑制され、SnO膜3a及びSnO2膜3b自体の成長が抑制され、結果として膜厚の増加が抑制される。また、膜厚の増加が抑制されることで、黄変が抑制され、はんだ層2を構成する金属材料が持つ色に近い所定の白銀色が保持される。
 はんだボール1Aは、直径が1~1000μmであることが好ましい。また、被覆層3の厚さは、0nmより大きく(0nmは含まないことを意味する)4.5nm以下であることが好ましい。被覆層3の厚さが4.5nmを超えると、はんだ付け時にフラックスで被覆層3の除去が困難になり、濡れ性が悪化する。
 また、はんだボール1Aの黄色度bは、5.7以下であることが好ましい。製造、保存されたはんだボール1Aを管理する際に、黄色度を利用する場合がある。これは、黄色度が高いということは、SnOの膜厚が厚いということであり、黄色度が所定値を超えるはんだボールは、使用に適さないものとして除外できるようにするためである。
 明度及び黄色度は、コニカミノルタ製CM-3500d2600d型分光測色計を使用して、D65光源、10度視野でJIS Z 8722「色の測定方法―反射及び透過物体色」に準じて分光透過率を測定して、色彩値(L、a、b )から求めた。
 なお、色彩値(L、a、b )は、JIS Z 8729「色の表示方法―L表色系及びL表色系」に規定されているとおりである。
 なお、はんだ材料の形状は、本例では球状としたが、円筒状、四角柱状等、他の形状でもよい。また、はんだボール1Aから放射されるα線量も0.0200cph/cm2以下であることが好ましい。
 <はんだ材料の製造方法例>
 図2A、図2B及び図2Cは、本実施の形態のはんだ材料の一例としてのはんだボールの製造方法を模式的に示した断面図である。
 はんだ層形成工程では、図2Aに示すように、上述したSnの含有量が40%以上の合金からなる金属材料、または、Snの含有量が100%である金属材料で、球状のはんだ層2が形成される。はんだ層形成工程は、本例では、溶融した金属材料を滴下して球状に硬化させる滴下法が用いられる。
 酸化膜形成工程では、図2Bに示すように、はんだ層2の表面が空気に触れることで生成されるSnO膜3aの表面に、図2Cに示すように、SnO2膜3bが形成される。酸化膜を形成する方法としては、従来公知の方法を用いることができる。例えば、蒸着法、スパッタリング法、プラズマ照射法などがあげられる。本例では、酸化膜形成工程を公知の大気圧プラズマ装置を用いてプラズマ照射法で実現する。プラズマ照射法は、溶融した金属が滴下されて硬化するまでの間に、高濃度のO2-Arプラズマが照射される。
 以上の製造方法により、所定の直径を有したはんだ層2の表面に被覆層3が形成されたはんだボール1Aが製造される。被覆層3aは、厚さが0nmより大きく4.5nm以下であり、はんだ層2の外側にSnO膜3aが形成され、SnO膜3aの外側にSnO2膜3bが形成される。また、はんだボール1Aの黄色度は5.66以下である。
 <実施例>
 Agが3%、Cuが0.5%、残部がSnからなる金属材料で、滴下法によりはんだ層2に相当する金属球を作成した。この金属球に、プラズマ照射法で被覆層3に相当する被膜を形成して実施例のはんだボールを生成した。プラズマ照射法は、溶融した金属材料が滴下するまでの間に高濃度のO2-Arプラズマを照射した。
 比較例として、自然酸化により表面にSnOの層が形成されたはんだボールを生成した。
 実施例と比較例のはんだボールを200℃で加熱して、酸化挙動を黄色度bの値で観察した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例のはんだボールは速やかに黄色度b*の値が上昇したのに対して、実施例のはんだボールは、SERAによる定性分析により、Snを主成分としたはんだ層の外側にSnOの層が形成され、SnOの層の外側にSnO2の層が形成されることで、酸化膜厚の成長が抑制されているのが判った。
 また、参考までに比較例において酸化工程と加熱試験工程を分離するために、200℃で1分間の加熱を行い、その後、冷却した後に再度加熱を行ってみたが、工程分離前と同様に速やかに黄色度b*の値が上昇した。
 次に、上述した実施例のはんだボールとして、200℃で15分間加熱した実施例1のはんだボールと、200℃で30分間加熱した実施例2のはんだボールの酸化膜厚をFE-AES(電界放射型オージェ電子分光法)にて定量分析し、かつ、形成された酸化膜の成分がSnの酸化物(SnO及びSnO2)であることの確認をSERA(Sequential Electrochemical Reduction Analysis:連続電気化学還元法)により定性分析した。
 なお、定量分析をFE-AESで実施したのは、SERAでの分析値は分散しやすく、定性分析は可能であるが、具体的な酸化膜厚を定量分析として議論するにはFE-AES分析の方が一定値を示しやすいためである。酸化膜の膜厚は、以下の装置及び条件で測定された。なお、酸化膜厚測定値はSiO換算により求めた。
 測定装置:ULVAC-PHI,INC製 走査型FEオージェ電子分光分析装置
 測定条件:Beam Voltage:10kV, 試料電流:10nA(Arイオン銃を用いたスパッタ深さの測定方法は、ISO/TR 15969に準拠。)
 表2に酸化膜厚と黄色度の測定結果を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、酸化膜厚は5nm以下に抑えられていることが判り、被覆層の膜厚は、4.5nm以下とすることが好ましいことが判る。また、黄色度は10以下に押さえられていることが判り、表2の結果から、5.7以下とすることが好ましいことが判る。
 次に、上述した実施例と比較例のはんだボールで、膜厚、黄色度を変えたものを作成して、保管性と濡れ性を検証した。
 各実施例のはんだボールは、膜厚が4.5nm以下であり、実施例1のはんだボールは、膜厚が2.6nm、実施例2のはんだボールは、膜厚が4.1nm、実施例3のはんだボールは、膜厚が1.5nmである。
 また、各実施例のはんだボールは、黄色度が5.7以下であり、実施例1のはんだボールは、黄色度が4.60、実施例2のはんだボールは、黄色度が5.77、実施例3のはんだボールは、黄色度が3.90である。
 一方、各比較例のはんだボールは、膜厚が10nm以上であり、また、黄色度が10以下であり、比較例1のはんだボールは、黄色度が10.21、比較例2のはんだボールは、黄色度が13.15である。
 検証結果を表3に示す
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例1から実施例3のはんだボールでは、保管性及び濡れ性のいずれも、所定の条件を満たして、一方、各比較例のはんだボールは、保管性及び濡れ性のいずれも、所定の条件を満たさなかった、
 よって、被覆層の厚さが0nmより大きく4.5nm以下、黄色度bが5.7以下のはんだボールでは、保管性及び濡れ性とも向上することが判った。
 なお、本発明に係るはんだ材料は、はんだペーストで電極に電気的に接合されることにより、電子部品のはんだ継手に用いることができる。
1A・・・はんだボール
2・・・はんだ層
3・・・被膜層
3a・・・SnO膜
3b・・・SnO2

Claims (11)

  1.  Snの含有量が40%以上の合金からなる金属材料またはSnの含有量が100%である金属材料からなるはんだ層と、
     前記はんだ層の表面を被覆する被覆層を備え、
     前記被覆層は、前記はんだ層の外側にSnO膜が形成され、前記SnO膜の外側にSnO2膜が形成され、前記被覆層の厚さは、0nmより大きく4.5nm以下である
     ことを特徴とするはんだ材料。
  2.  黄色度が5.7以下である
     ことを特徴とする請求項1に記載のはんだ材料。
  3.  Snの含有量が40%以上の合金からなる金属材料またはSnの含有量が100%である金属材料からなるはんだ層と、
     前記はんだ層の表面を被覆する被覆層を備え、
     前記被覆層は、前記はんだ層の外側にSnO膜が形成され、前記SnO膜の外側にSnO2膜が形成され、
     黄色度が5.7以下である
     ことを特徴とするはんだ材料。
  4.  前記はんだ層は、Agを0%以上4%未満、Cuを0%以上1%未満、Pを0ppm以上5ppm未満、Geを0ppm以上20ppm未満で含む
     ことを特徴とする請求項1~請求項3のいずれか1項に記載のはんだ材料。
  5.  前記はんだ層は、Snの含有量が40%以上となるように、
     (i)Ni、Co、Fe、Sbから選ばれる少なくとも1つの元素を、全体で1%未満あるいはそれぞれを1%未満含有し、及び、In、Biから選ばれる少なくとも1つ以上の元素を、全体で40%未満あるいはIn、Biの一方を40%未満、他方を20%未満含有し、
     あるいは、
     (ii)Ni、Co、Fe、Sbから選ばれる少なくとも1つの元素を、全体で1%未満あるいはそれぞれを1%未満含有するか、または、In、Biから選ばれる少なくとも1つ以上の元素を、全体で40%未満あるいはIn、Biの一方を40%未満、他方を20%未満含有した
     ことを特徴とする請求項1~請求項4のいずれか1項に記載のはんだ材料。
  6.  放射されるα線量が0.0200cph/cm2以下である
     ことを特徴とする請求項1~請求項5のいずれか1項に記載のはんだ材料。
  7.  直径が1~1000μmの球体である
     ことを特徴とする請求項1~請求項6のいずれか1項に記載のはんだ材料。
  8.  請求項1~7のいずれか1項に記載のはんだ材料を使用して得た
     ことを特徴とするはんだ継手。
  9.  Snの含有量が40%以上の合金からなる金属材料またはSnの含有量が100%である金属材料からなるはんだ層を形成するはんだ層形成工程と、
     前記はんだ層の外側にSnO膜を形成し、前記SnO膜の外側にSnO2膜を形成して、厚さが0nmより大きく4.5nm以下の被覆層を、前記はんだ層の表面に形成する酸化膜形成工程を含む
     ことを特徴とするはんだ材料の製造方法。
  10.  前記酸化膜形成工程で、前記被覆層表面の黄色度が5.7以下に形成される
     ことを特徴とする請求項9に記載のはんだ材料の製造方法。
  11.  前記酸化膜形成工程は、前記はんだ層の表面にO2-Arプラズマを照射する
     ことを特徴とする請求項9または請求項10に記載のはんだ材料の製造方法。
PCT/JP2014/072803 2014-08-29 2014-08-29 はんだ材料、はんだ継手及びはんだ材料の製造方法 WO2016031067A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP14900789.0A EP3187299B1 (en) 2014-08-29 2014-08-29 Solder material, use of solder material, and production method for solder material
KR1020167036699A KR101781777B1 (ko) 2014-08-29 2014-08-29 땜납 재료, 납땜 조인트 및 땜납 재료의 제조 방법
PCT/JP2014/072803 WO2016031067A1 (ja) 2014-08-29 2014-08-29 はんだ材料、はんだ継手及びはんだ材料の製造方法
PT149007890T PT3187299T (pt) 2014-08-29 2014-08-29 Material de solda, uso de material de solda e método de produção para material de solda
CN201480080357.3A CN106536124B (zh) 2014-08-29 2014-08-29 软钎料材料、焊料接头及软钎料材料的制造方法
US15/327,510 US10173287B2 (en) 2014-08-29 2014-08-29 Solder material, solder joint, and method of manufacturing the solder material
JP2015525662A JP5807733B1 (ja) 2014-08-29 2014-08-29 はんだ材料、はんだ継手及びはんだ材料の製造方法
TW104128294A TWI543835B (zh) 2014-08-29 2015-08-28 焊接材料、焊接接頭以及焊接材料之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072803 WO2016031067A1 (ja) 2014-08-29 2014-08-29 はんだ材料、はんだ継手及びはんだ材料の製造方法

Publications (1)

Publication Number Publication Date
WO2016031067A1 true WO2016031067A1 (ja) 2016-03-03

Family

ID=54545783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072803 WO2016031067A1 (ja) 2014-08-29 2014-08-29 はんだ材料、はんだ継手及びはんだ材料の製造方法

Country Status (8)

Country Link
US (1) US10173287B2 (ja)
EP (1) EP3187299B1 (ja)
JP (1) JP5807733B1 (ja)
KR (1) KR101781777B1 (ja)
CN (1) CN106536124B (ja)
PT (1) PT3187299T (ja)
TW (1) TWI543835B (ja)
WO (1) WO2016031067A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124512A1 (ja) * 2017-12-22 2019-06-27 積水化学工業株式会社 はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法
WO2019124513A1 (ja) * 2017-12-22 2019-06-27 積水化学工業株式会社 はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法
WO2021079702A1 (ja) * 2019-10-25 2021-04-29 千住金属工業株式会社 核材料、電子部品及びバンプ電極の形成方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6892568B2 (ja) * 2015-12-21 2021-06-23 ニホンハンダ株式会社 表面性に優れたSnを主成分とするはんだ合金の選別方法
JP5935938B1 (ja) * 2015-12-28 2016-06-15 千住金属工業株式会社 導電接合シートおよび導電接合シートの製造方法。
US11344976B2 (en) 2017-11-24 2022-05-31 Senju Metal Industry Co., Ltd. Solder material, solder paste, and solder joint
JP6439893B1 (ja) * 2018-05-25 2018-12-19 千住金属工業株式会社 ハンダボール、ハンダ継手および接合方法
CN109290696A (zh) * 2018-09-26 2019-02-01 深圳市安臣焊锡制品有限公司 一种性能稳定耐腐蚀型焊锡锡球及其制备方法
JP6573019B1 (ja) 2018-10-25 2019-09-11 千住金属工業株式会社 フラックス及びソルダペースト
JP6579253B1 (ja) * 2018-11-09 2019-09-25 千住金属工業株式会社 ハンダボール、ハンダ継手および接合方法
EP3978186A4 (en) 2019-05-27 2023-07-26 Senju Metal Industry Co., Ltd. SOLDER ALLOY, SOLDER PASTE, SOLDER BALL, SOLDER PREFORM, SOLDER JOINT, ON BOARD CIRCUIT, ECU ELECTRONIC CIRCUIT, BODY ELECTRONIC SWITCH AND ECU ELECTRONIC SWITCH
WO2020241318A1 (ja) 2019-05-27 2020-12-03 千住金属工業株式会社 はんだ合金、ソルダペースト、はんだボール、ソルダプリフォーム、はんだ継手、および回路
US11813686B2 (en) 2019-05-27 2023-11-14 Senju Metal Industry Co., Ltd. Solder alloy, solder paste, solder ball, solder preform, solder joint, and substrate
JP6810373B1 (ja) 2019-05-27 2021-01-06 千住金属工業株式会社 はんだ合金、ソルダペースト、はんだボール、ソルダプリフォーム、およびはんだ継手
TWI789165B (zh) * 2021-12-14 2023-01-01 昇貿科技股份有限公司 無鉛無銅錫合金與用於球柵陣列封裝的錫球

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084657B2 (ja) * 2002-12-27 2008-04-30 三井金属鉱業株式会社 はんだペースト用はんだ粉
JP2009248156A (ja) * 2008-04-08 2009-10-29 Hitachi Metals Ltd はんだボール、はんだ層及びはんだバンプ並びにそれらの形成方法
JP2009275240A (ja) * 2008-05-12 2009-11-26 Koki:Kk 鉛フリーSn−Ag系半田合金又は半田合金粉末
WO2010061795A1 (ja) * 2008-11-27 2010-06-03 日立電線株式会社 太陽電池用リード線及びその製造方法、保管方法、並びに太陽電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255840A (en) * 1989-12-26 1993-10-26 Praxair Technology, Inc. Fluxless solder coating and joining
JPH0484657A (ja) 1990-07-25 1992-03-17 Toyota Motor Corp マグネシウム砂型低圧鋳造法
US6805279B2 (en) * 2002-06-27 2004-10-19 Taiwan Semiconductor Manufacturing Co., Ltd. Fluxless bumping process using ions
US6821813B2 (en) * 2002-12-19 2004-11-23 Taiwan Semiconductor Manufacturing Co., Ltd. Process for bonding solder bumps to a substrate
US7361972B2 (en) * 2006-03-20 2008-04-22 Taiwan Semiconductor Manufacturing Co., Ltd. Chip packaging structure for improving reliability
US7749887B2 (en) * 2007-12-18 2010-07-06 Micron Technology, Inc. Methods of fluxless micro-piercing of solder balls, and resulting devices
US9773744B2 (en) * 2011-07-12 2017-09-26 Globalfoundries Inc. Solder bump cleaning before reflow
KR101283580B1 (ko) * 2011-12-14 2013-07-05 엠케이전자 주식회사 주석계 솔더 볼 및 이를 포함하는 반도체 패키지
JP2013211508A (ja) * 2012-03-01 2013-10-10 Nec Corp Lsiパッケージ及びlsiパッケージの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084657B2 (ja) * 2002-12-27 2008-04-30 三井金属鉱業株式会社 はんだペースト用はんだ粉
JP2009248156A (ja) * 2008-04-08 2009-10-29 Hitachi Metals Ltd はんだボール、はんだ層及びはんだバンプ並びにそれらの形成方法
JP2009275240A (ja) * 2008-05-12 2009-11-26 Koki:Kk 鉛フリーSn−Ag系半田合金又は半田合金粉末
WO2010061795A1 (ja) * 2008-11-27 2010-06-03 日立電線株式会社 太陽電池用リード線及びその製造方法、保管方法、並びに太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187299A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124512A1 (ja) * 2017-12-22 2019-06-27 積水化学工業株式会社 はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法
WO2019124513A1 (ja) * 2017-12-22 2019-06-27 積水化学工業株式会社 はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法
KR20200098485A (ko) 2017-12-22 2020-08-20 세키스이가가쿠 고교가부시키가이샤 땜납 입자, 도전 재료, 땜납 입자의 보관 방법, 도전 재료의 보관 방법, 도전 재료의 제조 방법, 접속 구조체 및 접속 구조체의 제조 방법
KR20200098486A (ko) 2017-12-22 2020-08-20 세키스이가가쿠 고교가부시키가이샤 땜납 입자, 도전 재료, 땜납 입자의 보관 방법, 도전 재료의 보관 방법, 도전 재료의 제조 방법, 접속 구조체 및 접속 구조체의 제조 방법
JPWO2019124512A1 (ja) * 2017-12-22 2020-11-19 積水化学工業株式会社 はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法
JPWO2019124513A1 (ja) * 2017-12-22 2020-11-19 積水化学工業株式会社 はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法
JP7184758B2 (ja) 2017-12-22 2022-12-06 積水化学工業株式会社 導電材料、導電材料の保管方法、導電材料の製造方法及び接続構造体の製造方法
JP7184759B2 (ja) 2017-12-22 2022-12-06 積水化学工業株式会社 導電材料、導電材料の保管方法、導電材料の製造方法及び接続構造体の製造方法
WO2021079702A1 (ja) * 2019-10-25 2021-04-29 千住金属工業株式会社 核材料、電子部品及びバンプ電極の形成方法
JP2021065923A (ja) * 2019-10-25 2021-04-30 千住金属工業株式会社 核材料、電子部品及びバンプ電極の形成方法
CN113767469A (zh) * 2019-10-25 2021-12-07 千住金属工业株式会社 芯材料、电子部件和凸点电极的形成方法
US11872656B2 (en) 2019-10-25 2024-01-16 Senju Metal Industry Co., Ltd. Core material, electronic component and method for forming bump electrode

Also Published As

Publication number Publication date
US10173287B2 (en) 2019-01-08
CN106536124A (zh) 2017-03-22
EP3187299A4 (en) 2018-12-19
PT3187299T (pt) 2020-10-29
TW201622867A (zh) 2016-07-01
EP3187299B1 (en) 2020-10-14
EP3187299A1 (en) 2017-07-05
JP5807733B1 (ja) 2015-11-10
TWI543835B (zh) 2016-08-01
JPWO2016031067A1 (ja) 2017-04-27
KR20170010012A (ko) 2017-01-25
US20170252871A1 (en) 2017-09-07
CN106536124B (zh) 2018-03-20
KR101781777B1 (ko) 2017-09-25

Similar Documents

Publication Publication Date Title
JP5807733B1 (ja) はんだ材料、はんだ継手及びはんだ材料の製造方法
EP3165323B1 (en) Solder alloy, solder ball, chip solder, solder paste and solder joint
WO2016071971A1 (ja) はんだ材料、はんだペースト、フォームはんだ、はんだ継手、およびはんだ材料の管理方法
US10639749B2 (en) Cu core ball, solder joint, solder paste and formed solder
JP5447745B1 (ja) Cuボール
EP3334260B1 (en) Core material, semiconductor package, and forming method of bump electrode
JP2018167310A (ja) はんだ合金、はんだボール、チップソルダ、はんだペースト及びはんだ継手
US20190376161A1 (en) Cu Core Ball, Solder Joint, Solder Paste and Formed Solder
KR20160012878A (ko) 땜납 볼 및 전자 부재
WO2017154957A1 (ja) はんだ合金、はんだボール、チップソルダ、はんだペースト及びはんだ継手
US10780530B2 (en) Solder ball, solder joint, and joining method
US20140158254A1 (en) Flux
WO2022107719A1 (ja) 実装基板、及び回路基板
WO2016017398A1 (ja) 半田ボールおよび電子部材
JP2005133178A (ja) はんだ被覆ボールの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015525662

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167036699

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014900789

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15327510

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE