WO2019124513A1 - はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法 - Google Patents

はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法 Download PDF

Info

Publication number
WO2019124513A1
WO2019124513A1 PCT/JP2018/047056 JP2018047056W WO2019124513A1 WO 2019124513 A1 WO2019124513 A1 WO 2019124513A1 JP 2018047056 W JP2018047056 W JP 2018047056W WO 2019124513 A1 WO2019124513 A1 WO 2019124513A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
conductive material
electrode
solder particles
connection
Prior art date
Application number
PCT/JP2018/047056
Other languages
English (en)
French (fr)
Inventor
士輝 宋
周治郎 定永
将大 伊藤
諭 齋藤
石澤 英亮
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201880078035.3A priority Critical patent/CN111432980A/zh
Priority to KR1020207011613A priority patent/KR20200098486A/ko
Priority to JP2019515666A priority patent/JP7184758B2/ja
Publication of WO2019124513A1 publication Critical patent/WO2019124513A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/226Non-corrosive coatings; Primers applied before welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/264Bi as the principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections

Definitions

  • the present invention relates to, for example, solder particles that can be used for electrical connection between electrodes and a storage method of the solder particles.
  • the present invention also relates to a conductive material containing the above-described solder particles, a method of storing the conductive material, and a method of manufacturing the conductive material.
  • the present invention also relates to a connection structure using the above-mentioned solder particles or the above-mentioned conductive material, and a method of manufacturing the connection structure.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder. Solder particles are widely used as the conductive particles.
  • the anisotropic conductive material is used to obtain various connection structures.
  • connection by the anisotropic conductive material for example, connection of a flexible printed substrate and a glass substrate (FOG (Film on Glass)), connection of a semiconductor chip and a flexible printed substrate (COF (Chip on Film)), semiconductor The connection between a chip and a glass substrate (COG (Chip on Glass)), the connection between a flexible printed substrate and a glass epoxy substrate (FOB (Film on Board)), and the like can be mentioned.
  • an anisotropic conductive material containing conductive particles is arranged on the glass epoxy board Do.
  • the flexible printed circuit is laminated, and heated and pressurized.
  • the anisotropic conductive material is cured to electrically connect the electrodes via the conductive particles to obtain a connection structure.
  • Patent Document 1 describes an anisotropic conductive material containing conductive particles and a resin component whose curing is not completed at the melting point of the conductive particles.
  • the conductive particles tin (Sn), indium (In), bismuth (Bi), silver (Ag), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd) And metals such as gallium (Ga) and thallium (Tl), and alloys of these metals.
  • Patent Document 1 a resin heating step of heating the anisotropic conductive resin to a temperature which is higher than the melting point of the conductive particles and the curing of the resin component is not completed, and a resin component curing step of curing the resin component. And electrically connecting between the electrodes is described. Further, Patent Document 1 describes that mounting is performed with the temperature profile shown in FIG. 8 of Patent Document 1. In Patent Document 1, the conductive particles are melted in the resin component whose curing is not completed at the temperature at which the anisotropic conductive resin is heated.
  • Patent Document 2 discloses a solder material comprising a solder layer and a covering layer covering the surface of the solder layer.
  • the said solder layer is comprised from the metal material comprised from the alloy whose content of Sn is 40% or more, or the metal material whose content of Sn is 100%.
  • the covering layer is composed of a SnO film and a SnO 2 film.
  • the SnO film is formed on the outer surface side of the solder layer.
  • the SnO 2 film is formed on the outer surface side of the SnO film.
  • the thickness of the covering layer is more than 0 nm and 4.5 nm or less.
  • the diameter of the solder particles and the like is reduced, it may be difficult to efficiently condense the solder particles and the like between the upper and lower electrodes to be connected at the time of conductive connection using the conductive material.
  • the viscosity of the conductive material may increase before the solder particles and the like sufficiently move on the electrode, and the solder particles and the like may remain in the region without the electrode. As a result, it may not be possible to sufficiently improve the conduction reliability between the electrodes to be connected and the insulation reliability between the adjacent electrodes that should not be connected.
  • the surface area of the solder particles and the like increases with the reduction of the particle diameter of the solder particles and the like, the content of the oxide film on the surface of the solder particles and the like also increases. If an oxide film is present on the surface of the solder particles etc., the solder particles etc. can not be efficiently aggregated on the electrode, so in the conventional conductive material, measures such as increasing the content of flux in the conductive material are taken. It will be necessary. However, when the content of the flux in the conductive material is increased, the flux and the thermosetting component in the conductive material react with each other to reduce the storage stability of the conductive material, or the heat resistance of the cured product of the conductive material. May decrease. In addition, when the content of the flux in the conductive material is increased, voids may occur in the cured product of the conductive material, or curing failure of the conductive material may occur.
  • An object of the present invention is to provide a solder particle and a storage method of the solder particle capable of effectively enhancing the cohesion of the solder at the time of conductive connection.
  • Another object of the present invention is to provide a conductive material containing the above-mentioned solder particles, a method of storing the conductive material, and a method of producing the conductive material.
  • the objective of this invention is providing the manufacturing method of the connection structure using the said solder particle or the said electrically-conductive material, and a connection structure.
  • the solder particle has a solder particle body and an oxide film disposed on the outer surface of the solder particle body, and the particle diameter of the solder particle is 0.01 ⁇ m or more and less than 1 ⁇ m.
  • the oxide film has an average thickness of 5 nm or less.
  • the average thickness of the oxide film after heating is the average thickness of the oxide film after heating.
  • the ratio to thickness is 2/3 or less.
  • the absolute value of the calorific value at 200 ° C. or more is 100 mJ / mg or more.
  • the solder particle includes a thermosetting component and a plurality of solder particles, and the solder particles have a solder particle body and an oxide film disposed on the outer surface of the solder particle body.
  • a conductive material is provided, wherein the particle diameter of the solder particles is 0.01 ⁇ m or more and less than 1 ⁇ m, and the average thickness of the oxide film is 5 nm or less.
  • the average thickness of the oxide film after heating is the average thickness of the oxide film after heating.
  • the ratio to thickness is 2/3 or less.
  • the viscosity at 25 ° C. is 10 Pa ⁇ s or more and 1000 Pa ⁇ s or less.
  • the viscosity measured at 25 ° C. and 0.5 rpm using an E-type viscometer was measured at 25 ° C. and 5 rpm using an E-type viscometer
  • the thixotropic index divided by the viscosity is 1 or more and 10 or less.
  • the absolute value of the calorific value at 200 ° C. or more of the solder particles is 100 mJ / mg or more.
  • the conductive material is a conductive paste.
  • solder particles as described above, wherein the solder particles are placed in a storage container and stored under an inert gas atmosphere, or the solder particles are placed in a storage container
  • a storage method of solder particles is provided, which is stored under vacuum under a condition of 1 ⁇ 10 2 Pa or less.
  • a storage method of the conductive material as described above wherein the conductive material is stored in a storage container and stored under the condition of -40 ° C. or more and 10 ° C. or the solder particles are stored.
  • a method of storage of a conductive material in a container and stored under an inert gas atmosphere is provided.
  • the method comprises a mixing step of mixing a thermosetting component and a plurality of solder particles to obtain a conductive material, wherein the solder particles comprise a solder particle body and an outer surface of the solder particle body.
  • a method is provided.
  • the method further comprises a storage step of storing the solder particles, the storage step placing the solder particles in a storage container and storing under an inert gas atmosphere. Or the step of placing the solder particles in a storage container and storing them under a vacuum of 1 ⁇ 10 2 Pa or less, and the solder particles are the solder particles stored by the storage step. .
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member And a connection portion connecting the second connection target member, the material of the connection portion includes the above-described solder particles, and the first electrode and the second electrode are the connection portion.
  • a connection structure is provided, which is electrically connected by the solder portion in the inside.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member And a connection portion connecting the second connection target member, the material of the connection portion is the above-described conductive material, and the first electrode and the second electrode are the connection portion.
  • a connection structure is provided, which is electrically connected by the solder portion in the inside.
  • a step of disposing the conductive material on the surface of the first connection target member having the first electrode on the surface using the above-mentioned conductive material, and the above-mentioned conductive material A second connection target member having a second electrode on the surface is disposed on the surface opposite to the first connection target member side such that the first electrode and the second electrode face each other. And forming a connection portion connecting the first connection target member and the second connection target member by the conductive material by heating the conductive material to a temperature higher than the melting point of the solder particles. And a step of electrically connecting the first electrode and the second electrode by a solder portion in the connection portion.
  • the solder particle according to the present invention has a solder particle body and an oxide film disposed on the outer surface of the solder particle body.
  • the particle diameter of the solder particle is 0.01 ⁇ m or more and less than 1 ⁇ m.
  • the average thickness of the oxide film is 5 nm or less.
  • the conductive material according to the present invention includes a thermosetting component and a plurality of solder particles.
  • the solder particles have a solder particle body and an oxide film disposed on the outer surface of the solder particle body.
  • the particle diameter of the solder particles is 0.01 ⁇ m or more and less than 1 ⁇ m.
  • the average thickness of the oxide film present on the surface of the solder particles is 5 nm or less.
  • the method for producing a conductive material according to the present invention comprises a mixing step of mixing a thermosetting component and a plurality of solder particles to obtain a conductive material.
  • the solder particles have a solder particle body and an oxide film disposed on the outer surface of the solder particle body, and the particle diameter of the solder particles is 0.
  • a conductive material having a thickness of not less than 01 ⁇ m and less than 1 ⁇ m and having an average thickness of 5 nm or less is obtained.
  • the cohesion of solder at the time of conductive connection can be effectively enhanced.
  • FIG. 1 is a cross-sectional view schematically showing a connection structure obtained by using a conductive material according to an embodiment of the present invention.
  • FIGS. 2 (a) to 2 (c) are cross-sectional views for explaining each step of an example of a method for producing a connection structure using a conductive material according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a modified example of the connection structure.
  • FIG. 4 is a cross-sectional view showing an example of solder particles that can be used for the conductive material.
  • FIG. 5 is a diagram for explaining the cohesion of the solder particles.
  • FIG. 6 is a diagram for explaining the cohesion of solder particles.
  • solder particles The solder particle according to the present invention has a solder particle body and an oxide film disposed on the outer surface of the solder particle body.
  • the particle diameter of the solder particle is 0.01 ⁇ m or more and less than 1 ⁇ m.
  • the average thickness of the oxide film is 5 nm or less.
  • solder particle according to the present invention since the above configuration is provided, the cohesion of the solder at the time of conductive connection can be effectively improved.
  • solder particles can not be efficiently aggregated between them.
  • the present inventors have found that the oxide film present on the surface of the solder particle becomes relatively thick as the particle diameter of the solder particle is reduced, and the surface area of the solder particle It has been found that the increase in the content of the oxide film present on the surface of the solder particles due to the increase in the cause of the above problems.
  • the present inventors have found that this problem occurs notably when the particle size of the solder particles is less than 1 ⁇ m. Furthermore, as a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by controlling the oxide film present on the surface of the solder particles to a specific thickness. In the present invention, in spite of reducing the size of the solder particles, the movement of the solder particles on the electrodes sufficiently proceeds to efficiently condense the solder between the electrodes to be connected. It is possible to enhance the conduction reliability and the insulation reliability.
  • FIGS. 5 and 6 are diagrams for explaining the cohesion of the solder particles.
  • FIGS. 5 and 6 are views when heating is performed on the solder particles under each condition (the presence or absence of control of the three types of particle diameter and thickness of the oxide film), and it is confirmed whether the solder particles are aggregated.
  • solder particles in which the thickness of the oxide film in FIGS. 5 and 6 is not controlled, it can be understood that the solder particles are not aggregated as the particle diameter of the solder particles decreases. This is because the oxide film present on the surface of the solder particle becomes relatively thick as the particle diameter of the solder particle decreases, and the content of the oxide film present on the surface of the solder particle due to the increase of the surface area of the solder particle Is increased.
  • solder particles in which the thickness of the oxide film in FIGS. 5 and 6 is not controlled, in the case of solder particles having a particle diameter of 10 ⁇ m, the solder particles aggregate to form solder aggregates, but the solder aggregates Solder particles that are not aggregated around the object can be confirmed. It can be confirmed that the solder particles do not aggregate at all and solder aggregates are not formed in the solder particles having a particle diameter of 0.05 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 2 ⁇ m and 5 ⁇ m.
  • the solder particles controlling the thickness of the oxide film in FIGS. 5 and 6, regardless of the particle diameter of the solder particles, the solder particles aggregate and form one large solder aggregate. It can confirm. It can be understood that control of the oxide film present on the surface of the solder particles to a specific thickness is important to enhance the cohesion of the solder particles.
  • the solder particles can be efficiently aggregated on the electrode, so the content of the flux in the conductive material can be reduced. There is no need to increase excessively. As a result, the reaction between the thermosetting component and the flux in the conductive material can be effectively suppressed, and the storage stability of the conductive material can be effectively enhanced.
  • the melting point (activation temperature) of the flux in the conductive material is often lower than the Tg of the thermosetting component in the conductive material, and as the content of the flux in the conductive material increases, the cured product of the conductive material Heat resistance tends to decrease.
  • the heat resistance of the cured product of the conductive material can be effectively improved.
  • the generation of voids in the cured product of the conductive material can be effectively suppressed, and the generation of the curing failure of the conductive material is effective. Can be suppressed.
  • controlling the oxide film present on the surface of the solder particles to a specific thickness greatly contributes.
  • the solder particle has a solder particle body and an oxide film disposed on the outer surface of the solder particle body.
  • the solder particle main body both the central portion and the outer surface are formed of solder.
  • the solder particle main body is a particle in which both the central portion and the outer surface are solder.
  • the oxide film is formed by oxidizing the outer surface of the solder particle body with oxygen in the air.
  • the oxide film is made of tin oxide or the like.
  • commercially available solder particles have an outer surface oxidized by oxygen in air and have an oxide film.
  • FIG. 4 is a cross-sectional view showing an example of solder particles that can be used for the conductive material.
  • the solder particle 21 shown in FIG. 4 has a solder particle body 22 and an oxide film 23 disposed on the outer surface of the solder particle body 22.
  • the solder particle main body 22 and the oxide film 23 are in contact with each other.
  • the solder particle body 22 is entirely formed of solder.
  • the solder particle main body 22 does not have substrate particles in the core, and is not core-shell particles. In the solder particle main body 22, both the central portion and the outer surface are formed of solder.
  • the said solder is a metal (low melting metal) whose melting
  • the low melting point metal particles are particles containing a low melting point metal.
  • the low melting point metal means a metal having a melting point of 450 ° C. or less.
  • the melting point of the low melting point metal is preferably 300 ° C. or less, more preferably 160 ° C. or less.
  • the solder particles are preferably low melting point solder having a melting point of less than 150.degree.
  • the melting point of the solder particles can be determined by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • Examples of a differential scanning calorimetry (DSC) apparatus include "EXSTAR DSC 7020" manufactured by SII.
  • the solder particles contain tin.
  • the content of tin is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 70% by weight or more, particularly preferably 90% by weight or more, in 100% by weight of the metal contained in the solder particles. .
  • the connection reliability of a solder part and an electrode becomes it still higher that content of tin in the said solder particle is more than the said minimum.
  • the content of tin is determined using a high-frequency inductively coupled plasma emission spectrometer ("ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer ("EDX-800HS” manufactured by Shimadzu Corporation). It can be measured.
  • ICP-AES high-frequency inductively coupled plasma emission spectrometer
  • EDX-800HS fluorescent X-ray analyzer
  • the solder melts and joins to the electrode, and the solder solidifies to form a solder portion, and the solder portion conducts the electrodes.
  • the solder portion and the electrode are likely to be in surface contact rather than point contact, connection resistance is reduced.
  • the joint strength between the solder portion and the electrode becomes high, so that peeling between the solder portion and the electrode becomes even more difficult to occur, and the conduction reliability and the connection reliability become even higher.
  • the metal which comprises the said solder particle is not specifically limited.
  • the metal is preferably tin or an alloy containing tin.
  • the alloy include tin-silver alloy, tin-copper alloy, tin-silver-copper alloy, tin-bismuth alloy, tin-zinc alloy, tin-indium alloy and the like.
  • the metal is preferably tin, a tin-silver alloy, a tin-silver-copper alloy, a tin-bismuth alloy, or a tin-indium alloy because it is excellent in wettability to an electrode. More preferably, tin-bismuth alloy or tin-indium alloy is used.
  • the said solder particle is a filler material whose liquidus line is 450 degrees C or less based on JISZ3001: welding term.
  • the composition of the solder particles include metal compositions containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like.
  • a low melting point lead-free tin-indium system (117 ° C. eutectic) or a tin-bismuth system (139 ° C. eutectic) is preferred. That is, the solder particles preferably do not contain lead, and preferably contain tin and indium, or contain tin and bismuth.
  • solder particles are nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese, chromium, in order to further increase the joint strength between the solder portion and the electrode.
  • You may contain metals, such as molybdenum and palladium.
  • the solder particles preferably contain nickel, copper, antimony, aluminum or zinc.
  • the content of these metals for enhancing the bonding strength is preferably 0.0001% by weight or more, preferably 1% by weight in 100% by weight of the solder particles. % Or less.
  • the particle diameter of the solder particle is 0.01 ⁇ m or more and less than 1 ⁇ m.
  • the particle diameter of the solder particles is preferably 0.02 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less, and still more preferably 0.1 ⁇ m or less. is there.
  • the particle diameter of the solder particles is particularly preferably 0.05 ⁇ m or more and 0.1 ⁇ m or less.
  • the particle diameter of the solder particles is preferably an average particle diameter, and more preferably a number average particle diameter.
  • the particle diameter of the solder particles for example, 50 arbitrary solder particles are observed with an electron microscope or an optical microscope to calculate the average value of the particle diameter of each solder particle, or to perform laser diffraction particle size distribution measurement. Determined by In the observation with an electron microscope or an optical microscope, the particle diameter of each solder particle is determined as the particle diameter at the equivalent circle diameter. In the observation with an electron microscope or an optical microscope, the average particle diameter at the equivalent circle diameter of 50 arbitrary solder particles is approximately equal to the average particle diameter at the equivalent sphere diameter. In the laser diffraction type particle size distribution measurement, the particle diameter of each solder particle is determined as the particle diameter at a sphere equivalent diameter.
  • the average particle size of the solder particles is preferably calculated by laser diffraction particle size distribution measurement.
  • the coefficient of variation (CV value) of the particle diameter of the solder particles is preferably 5% or more, more preferably 10% or more, preferably 40% or less, more preferably 30% or less.
  • the variation coefficient of the particle diameter of the solder particles is not less than the lower limit and not more than the upper limit, the solder can be arranged more uniformly on the electrode.
  • the CV value of the particle diameter of the solder particles may be less than 5%.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of solder particle Dn: Average value of particle diameter of solder particle
  • the shape of the solder particles is not particularly limited.
  • the shape of the solder particles may be spherical or may be a shape other than a spherical shape such as a flat shape.
  • the average thickness of the oxide film is 5 nm or less.
  • the average thickness of the oxide film is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 4 nm or less, more preferably 3 nm or less.
  • the average thickness of the oxide film is not less than the lower limit and not more than the upper limit, the cohesiveness of the solder at the time of conductive connection can be more effectively enhanced.
  • the average thickness of the oxide film is not less than the lower limit and not more than the upper limit, the storage stability of the conductive material can be more effectively enhanced, and further, the heat resistance of the cured product of the conductive material is further enhanced. It can be enhanced more effectively.
  • the handleability of the electrically-conductive material containing the said solder particle can be improved much more effectively as the average thickness of the said oxide film is more than the said minimum.
  • the meltability of the surface of the solder particle at the time of heating can be properly controlled. It is considered to be even more effective.
  • the average thickness of the oxide film can be determined, for example, by observing the cross section of the solder particles using a transmission electron microscope.
  • the average thickness of the oxide film can be calculated, for example, from the average value of the thicknesses of ten arbitrarily selected oxide films.
  • the ratio of the average thickness of the oxide film before heating to the average thickness of the oxide film after heating is preferably 2/3 or less, more preferably 1/2 or less.
  • the lower limit of the above ratio is not particularly limited.
  • the above ratio average thickness of oxide film before heating / average thickness of oxide film after heating
  • the above ratio (average thickness of oxide film before heating / average thickness of oxide film after heating) is not more than the above upper limit, the cohesion of the solder at the time of conductive connection can be more effectively enhanced.
  • the above ratio (average thickness of oxide film before heating / average thickness of oxide film after heating) is not more than the above upper limit, the storage stability of the conductive material can be more effectively enhanced, and further, the conductivity The heat resistance of the cured product of the material can be more effectively enhanced.
  • it can use suitably for the use of a conductive material as the said ratio (average thickness of the oxide film before heating / average thickness of the oxide film after heating) is below the said upper limit.
  • the oxide film before heating is controlled to a specific thickness (the oxide film is relatively thin)
  • the oxide film is heated by heating at 120 ° C. for 10 hours in an air atmosphere.
  • the thickness can be increased to satisfy the above ratio (average thickness of oxide film before heating / average thickness of oxide film after heating).
  • the oxide film before heating is relatively thick, so there is little room for oxidation, and the thickness of the oxide film does not increase so much even when heated at 120 ° C. for 10 hours in an air atmosphere, and the above ratio (Average thickness of oxide film before heating / average thickness of oxide film after heating) is not satisfied.
  • the average thickness of the oxide film before heating and the average thickness of the oxide film after heating can be determined, for example, by observing a cross section of the solder particles before and after heating using a transmission electron microscope.
  • the average thickness of the oxide film before heating and the average thickness of the oxide film after heating can be calculated, for example, from an average value of thicknesses of ten oxide films arbitrarily selected.
  • the ratio of the average thickness of the oxide film to the particle diameter of the solder particles is preferably 0.001 or more, more preferably 0.002 or more, and preferably It is 0.5 or less, more preferably 0.4 or less.
  • the above ratio average thickness of oxide film / particle diameter of solder particles
  • the cohesiveness of the solder at the time of conductive connection can be more effectively enhanced.
  • the storage stability of the conductive material can be more effectively enhanced, and furthermore, the conductivity The heat resistance of the cured product of the material can be more effectively enhanced.
  • the content of the oxide film is preferably 1% by volume or more, more preferably 2% by volume or more, and preferably 70% by volume or less, more preferably 60% by volume or less in 100% by volume of the solder particles.
  • the content of the oxide film is not less than the lower limit and not more than the upper limit, the cohesion of the solder at the time of conductive connection can be more effectively enhanced.
  • the content of the oxide film is not less than the lower limit and not more than the upper limit, the storage stability of the conductive material can be more effectively enhanced, and further, the heat resistance of the cured product of the conductive material is further enhanced. It can be enhanced more effectively.
  • the content of the oxide film can be calculated from the weight of solder particles before and after oxide film removal.
  • the absolute value of the calorific value at 200 ° C. or more of the solder particles is preferably 100 mJ / mg or more, more preferably 200 mJ / mg or more, preferably 400 mJ / mg or less, more preferably 300 mJ / mg or less.
  • the absolute value of the calorific value at 200 ° C. or more of the solder particles is considered to change depending on the thickness of the oxide film on the surface of the solder particles.
  • the absolute value of the calorific value at 200 ° C. or more is the lower limit or more and the upper limit or less, the cohesion of the solder at the time of conductive connection can be more effectively enhanced.
  • the calorific value of the solder particles at 200 ° C. or higher can be determined by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • Examples of a differential scanning calorimetry (DSC) apparatus include "EXSTAR DSC 7020" manufactured by SII.
  • the solder particles can be obtained, for example, by acid treatment of commercially available solder particles. It is preferable to control the thickness of the oxide film which exists on the surface of the said solder particle by the said acid treatment.
  • an acid used by the said acid treatment an organic acid etc. are mentioned.
  • the storage method of the solder particle which concerns on this invention is a method for storing the solder particle mentioned above.
  • the solder particles described above are preferably stored by the method for storing solder particles according to the present invention.
  • the solder particles are preferably stored in a storage container and stored under an inert gas atmosphere, or the solder particles are preferably stored in a storage container and vacuum stored under a condition of 1 ⁇ 10 2 Pa or less.
  • the storage method of the solder particles may be cold storage or freezing storage.
  • the solder particles may be stored in a storage container at 10 ° C. or more and 50 ° C. or less.
  • the solder particles according to the present invention may be stored at 10 ° C. to 45 ° C., may be stored at 20 ° C. or more, may be stored at 25 ° C. or more, or may be stored at 40 ° C. or less And 30 ° C. or less. It is preferable that the storage method of the said solder particle is storage below normal temperature, and it is more preferable that it is storage below normal temperature.
  • a thermostatic bath or the like can be used to store the solder particles under the above temperature conditions. It is preferable to store the storage container containing the above-mentioned solder particles in a thermostatic bath set to the above preferable temperature conditions.
  • the storage method of the above-mentioned solder particles it is preferable to put the above-mentioned solder particles in a storage container and store under an inert gas atmosphere.
  • Examples of the inert gas include argon gas and nitrogen gas.
  • the above-mentioned solder particles are put in a storage container and vacuum is applied under the condition of 0.8 ⁇ 10 2 Pa or less. It is preferable to store, and more preferably stored in vacuum under the condition of 0.5 ⁇ 10 2 Pa or less.
  • the storage container is not particularly limited as long as it can withstand refrigeration storage, freezing storage, and vacuum storage. From the viewpoint of more effectively enhancing the cohesion of the solder at the time of conductive connection, the storage container is preferably a container capable of preventing the entry of oxygen, and is preferably a container having a good sealing property. An aluminum pack etc. are mentioned as said storage container.
  • the oxygen concentration in the storage container is controlled.
  • the oxygen concentration in the storage container is preferably 200 ppm or less, more preferably 100 ppm or less, from the viewpoint of more effectively enhancing the cohesion of the solder at the time of conductive connection.
  • Examples of the method of controlling the oxygen concentration in the storage container include a method of replacing the inside of the storage container with nitrogen, and the like.
  • the oxygen concentration in the storage container can be determined using an oximeter.
  • the oximeter include “XO-326IIsA” manufactured by New Cosmos Electric Co., Ltd.
  • the conductive material according to the present invention includes a thermosetting component and a plurality of solder particles.
  • the solder particles have a solder particle body and an oxide film disposed on the outer surface of the solder particle body.
  • the particle diameter of the solder particles is 0.01 ⁇ m or more and less than 1 ⁇ m.
  • the average thickness of the oxide film present on the surface of the solder particles is 5 nm or less.
  • the method for producing a conductive material according to the present invention comprises a mixing step of mixing a thermosetting component and a plurality of solder particles to obtain a conductive material.
  • the solder particles have a solder particle body and an oxide film disposed on the outer surface of the solder particle body, and the particle diameter of the solder particles is 0.
  • a conductive material having a thickness of not less than 01 ⁇ m and less than 1 ⁇ m and having an average thickness of 5 nm or less is obtained.
  • solder particles are used.
  • the solder particles are preferably the above-described solder particles.
  • the above-described solder particles are preferably used.
  • solder particles can not be efficiently aggregated between them.
  • the present inventors have found that the oxide film present on the surface of the solder particle becomes relatively thick as the particle diameter of the solder particle is reduced, and the surface area of the solder particle It has been found that the increase in the content of the oxide film present on the surface of the solder particles due to the increase in the cause of the above problems.
  • the present inventors have found that the above problems can be solved by controlling the oxide film present on the surface of the solder particles to a specific thickness.
  • the movement of the solder particles on the electrodes sufficiently proceeds to efficiently condense the solder between the electrodes to be connected. It is possible to enhance the conduction reliability and the insulation reliability.
  • the solder particles can be efficiently aggregated on the electrode, so the content of the flux in the conductive material can be reduced. There is no need to increase excessively. As a result, the reaction between the thermosetting component and the flux in the conductive material can be effectively suppressed, and the storage stability of the conductive material can be effectively enhanced.
  • the melting point (activation temperature) of the flux in the conductive material is often lower than the Tg of the thermosetting component in the conductive material, and as the content of the flux in the conductive material increases, the cured product of the conductive material Heat resistance tends to decrease.
  • the heat resistance of the cured product of the conductive material can be effectively improved.
  • the generation of voids in the cured product of the conductive material can be effectively suppressed, and the generation of the curing failure of the conductive material is effective. Can be suppressed.
  • controlling the oxide film present on the surface of the solder particles to a specific thickness greatly contributes.
  • positional deviation between the electrodes can be prevented.
  • the electrode of the first connection target member and the electrode of the second connection target member Even in the state where the alignment is deviated, it is possible to correct the deviation and connect the electrodes (self-alignment effect).
  • the conductive material is preferably liquid at 25 ° C., and is preferably a conductive paste.
  • the viscosity ( ⁇ 25 (5 rpm)) at 25 ° C. and 5 rpm of the conductive material is preferably 10 Pa ⁇ s or more, more preferably 30 Pa ⁇ s. It is s or more, more preferably 50 Pa ⁇ s or more, particularly preferably 100 Pa ⁇ s or more.
  • the viscosity ( ⁇ 25 (5 rpm)) at 25 ° C. and 5 rpm of the conductive material is preferably 1000 Pa ⁇ s or less, more preferably 400 Pa ⁇ s, from the viewpoint of more effectively enhancing the cohesion of the solder at the time of conductive connection. or less, more preferably 300 Pa ⁇ s or less, and particularly preferably 200 Pa ⁇ s or less.
  • the viscosity ( ⁇ 25 (5 rpm)) can be appropriately adjusted according to the type and the amount of the blending component.
  • the viscosity ( ⁇ 25 (5 rpm)) can be measured, for example, at 25 ° C. and 5 rpm using an E-type viscometer (“TVE 22L” manufactured by Toki Sangyo Co., Ltd.) or the like.
  • E-type viscometer (“TVE 22L” manufactured by Toki Sangyo Co., Ltd.) or the like.
  • the viscosity ( ⁇ 20 (5 rpm)) at 20 ° C. and 5 rpm of the above conductive material is preferably 10 Pa ⁇ s or more, more preferably 30 Pa ⁇ s. It is s or more, preferably 600 Pa ⁇ s or less, more preferably 400 Pa ⁇ s or less.
  • the viscosity ( ⁇ 20 (5 rpm)) can be appropriately adjusted according to the type and the amount of the blending component.
  • the viscosity ( ⁇ 20 (5 rpm)) can be measured, for example, at 20 ° C. and 5 rpm using an E-type viscometer (“TVE 22L” manufactured by Toki Sangyo Co., Ltd.) or the like.
  • E-type viscometer (“TVE 22L” manufactured by Toki Sangyo Co., Ltd.) or the like.
  • the viscosity ( ⁇ 25 (0.5 rpm)) of the above conductive material measured under conditions of 25 ° C. and 0.5 rpm using an E-type viscometer Is preferably 50 Pa ⁇ s or more, more preferably 100 Pa ⁇ s or more, preferably 400 Pa ⁇ s or less, more preferably 300 Pa ⁇ s or less.
  • the viscosity ( ⁇ 25 (0.5 rpm)) can be appropriately adjusted according to the type and the blending amount of the blending component.
  • the viscosity ( ⁇ 25 (5 rpm)) of the above conductive material measured under conditions of 25 ° C. and 5 rpm using an E-type viscometer is preferably It is 50 Pa ⁇ s or more, more preferably 100 Pa ⁇ s or more, preferably 300 Pa ⁇ s or less, more preferably 200 Pa ⁇ s or less.
  • the viscosity ( ⁇ 25 (5 rpm)) can be appropriately adjusted according to the type and the amount of the blending component.
  • the viscosity of the conductive material measured using an E-type viscometer at 25 ° C. and 0.5 rpm is divided by the viscosity of the conductive material measured using the E-type viscometer at 25 ° C. and 5 rpm.
  • the tropic index ( ⁇ 25 (0.5 rpm) / ⁇ 25 (5 rpm)) is preferably 1 or more, more preferably 1.1 or more, and still more preferably 1.5 or more.
  • the viscosity of the conductive material measured using an E-type viscometer at 25 ° C. and 0.5 rpm is divided by the viscosity of the conductive material measured using the E-type viscometer at 25 ° C. and 5 rpm.
  • the tropic index ( ⁇ 25 (0.5 rpm) / ⁇ 25 (5 rpm)) is preferably 10 or less, more preferably 5 or less, still more preferably 4 or less.
  • thixotropic index ( ⁇ 25 (0.5 rpm) / 5 25 (5 rpm)) is not less than the above lower limit and not more than the above upper limit, the cohesiveness of the solder at the time of conductive connection can be more effectively enhanced.
  • the said conductive material can be used as a conductive paste, a conductive film, etc.
  • the conductive paste is preferably an anisotropic conductive paste
  • the conductive film is preferably an anisotropic conductive film.
  • the conductive material is preferably a conductive paste from the viewpoint of more effectively enhancing the cohesion of the solder at the time of conductive connection.
  • the said conductive material is used suitably for the electrical connection of an electrode.
  • the conductive material is preferably a circuit connection material.
  • the method for producing a conductive material according to the present invention comprises a mixing step of mixing a thermosetting component and a plurality of solder particles to obtain a conductive material.
  • the solder particles have a solder particle body and an oxide film disposed on the outer surface of the solder particle body, and the particle diameter of the solder particles is 0.
  • a conductive material having a thickness of not less than 01 ⁇ m and less than 1 ⁇ m and having an average thickness of 5 nm or less is obtained.
  • the method of manufacturing a conductive material according to the present invention further comprises a storage step of storing the solder particles.
  • the storage step is preferably a step of placing the solder particles in a storage container and storing the same in an inert gas atmosphere.
  • the storage step is preferably a step of placing the solder particles in a storage container and storing the solder particles under vacuum at 1 ⁇ 10 2 Pa or less.
  • the solder particles are preferably solder particles stored in the storage step.
  • the storage method of the solder particles may be cold storage or freezing storage.
  • solder particles according to the present invention may be stored, for example, in a storage container under conditions of 10 ° C. or more and 50 ° C. or less.
  • the solder particles according to the present invention may be stored at 10 ° C. to 45 ° C., may be stored at 20 ° C. or more, may be stored at 25 ° C. or more, or may be stored at 40 ° C. or less And 30 ° C. or less. It is preferable that the storage method of the said solder particle is storage below normal temperature, and it is more preferable that it is storage below normal temperature.
  • the solder particles are preferably the above-described solder particles.
  • the solder particles may be solder particles stored by the above-described storage method of solder particles.
  • thermosetting component and the solder particles can be a conventionally known dispersion method, and is not particularly limited.
  • examples of the method of dispersing the solder particles in the thermosetting component include the following methods. A method in which the solder particles are added to the thermosetting component and then kneaded and dispersed by a planetary mixer or the like. A method of uniformly dispersing the above-mentioned solder particles in water or an organic solvent using a homogenizer or the like, then adding it to the above-mentioned thermosetting component, and kneading and dispersing it with a planetary mixer or the like. A method of diluting the above-mentioned thermosetting component with water or an organic solvent or the like, adding the above-mentioned solder particles, and kneading and dispersing it with a planetary mixer or the like.
  • the oxygen concentration in the mixing step is preferably 200 ppm or less, more preferably 100 ppm or less, from the viewpoint of more effectively enhancing the cohesion of the solder at the time of conductive connection.
  • the oxygen concentration in the mixing step can be determined using an oximeter.
  • the oximeter include “XO-326IIsA” manufactured by New Cosmos Electric Co., Ltd.
  • the content of the solder particles is preferably 10% by weight or more, more preferably 20% by weight or more, and preferably 80% by weight or less, more preferably 70% by weight or less, in 100% by weight of the conductive material. It is easy to arrange solder more efficiently on an electrode as content of the above-mentioned solder particle is more than the above-mentioned lower limit and below the above-mentioned upper limit, and conduction reliability becomes still higher effectively. From the viewpoint of more effectively enhancing the conduction reliability, it is preferable that the content of the solder particles is large.
  • the method of storing a conductive material according to the present invention is preferably a method for storing the above-described conductive material.
  • the conductive material described above is preferably stored by the storage method of the conductive material according to the present invention.
  • the above-mentioned conductive material is put in a storage container and stored under the condition of -40 ° C or more and 10 ° C or less Alternatively, it is preferable to store the conductive material in a storage container and store it under an inert gas atmosphere.
  • the storage method of the conductive material may be cold storage or freezing storage.
  • the conductive material according to the present invention may be stored at 10 ° C. or more and 45 ° C. or less, may be stored at 20 ° C. or more, may be stored at 25 ° C. or more, and is stored at 40 ° C. or less It may also be stored at or below 30.degree.
  • the conductive material according to the present invention may be stored at ⁇ 20 ° C. or higher, may be stored at ⁇ 10 ° C. or higher, may be stored at 50 ° C. or lower, and may be stored at 10 ° C. or lower. It is preferable that the storage method of the said electrically-conductive material is storage below normal temperature, and it is preferable that it is storage below normal temperature.
  • a refrigerator, a freezer, a thermostat, or the like can be used to store the conductive material under the above temperature conditions. It is preferable to store the storage container containing the conductive material in a thermostatic bath set to the above preferable temperature conditions.
  • the storage method of the conductive material it is preferable to put the conductive material in a storage container and store it under an inert gas atmosphere.
  • Examples of the inert gas include argon gas and nitrogen gas.
  • the method of storage of the conductive material described above stores the conductive material in a storage container, and performs vacuum storage under the condition of 0.8 ⁇ 10 2 Pa or less It is preferable to store in vacuum under the condition of 0.5 ⁇ 10 2 Pa or less.
  • the storage container is not particularly limited as long as it can withstand cold storage and frozen storage. From the viewpoint of more effectively enhancing the cohesion of the solder at the time of conductive connection, the storage container is preferably a container capable of preventing the entry of oxygen, and is preferably a container having a good sealing property. An aluminum pack etc. are mentioned as said storage container.
  • the oxygen concentration in the storage container is controlled.
  • the oxygen concentration in the storage container is preferably 200 ppm or less, more preferably 100 ppm or less, from the viewpoint of more effectively enhancing the cohesion of the solder at the time of conductive connection.
  • Examples of the method of controlling the oxygen concentration in the storage container include a method of replacing the inside of the storage container with nitrogen, and the like.
  • the oxygen concentration in the storage container can be determined using an oximeter.
  • the oximeter include “XO-326IIsA” manufactured by New Cosmos Electric Co., Ltd.
  • thermosetting component The said thermosetting component is not specifically limited.
  • the thermosetting component may contain a thermosetting compound that can be cured by heating and a thermosetting agent.
  • thermosetting component Thermosetting compound
  • thermosetting compound examples include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenol compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds and polyimide compounds.
  • an epoxy compound or an episulfide compound is preferable, Epoxy compounds are more preferred.
  • the said thermosetting component contains an epoxy compound.
  • the said thermosetting component contains an epoxy compound and a hardening
  • the epoxy compound is a compound having at least one epoxy group.
  • the epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, resorcinol type epoxy compounds Naphthalene type epoxy compounds, fluorene type epoxy compounds, benzophenone type epoxy compounds, phenol aralkyl type epoxy compounds, naphthol aralkyl type epoxy compounds, dicyclopentadiene type epoxy compounds, anthracene type epoxy compounds, epoxy compounds having an adamantane skeleton, tricyclodecane An epoxy compound having a skeleton, a naphthylene ether type epoxy compound, and a triazine nucleus Epoxy compounds having the rank and the like. Only one type of the epoxy compound may be used, or two or more types may be used in combination.
  • aromatic epoxy compounds such as a resorcinol type epoxy compound, a naphthalene type epoxy compound, a biphenyl type epoxy compound, a benzophenone type epoxy compound, and a phenol novolak type epoxy compound, are preferable.
  • the melting temperature of the epoxy compound is preferably equal to or less than the melting point of the solder.
  • the melting temperature of the epoxy compound is preferably 100 ° C. or less, more preferably 80 ° C. or less, still more preferably 40 ° C. or less.
  • the first connection target member and the second connection target when the viscosity is high and acceleration is given by an impact such as transportation in a stage where the connection target member is bonded by using the above preferable epoxy compound. Misalignment with the member can be suppressed. Furthermore, the viscosity can be greatly reduced by the heat at the time of curing, and the cohesion of the solder at the time of conductive connection can be more effectively enhanced.
  • thermosetting component preferably includes a thermosetting compound having an isocyanuric skeleton.
  • thermosetting compound having an isocyanuric skeleton examples include triisocyanurate type epoxy compounds and the like, and TEPIC series manufactured by Nissan Chemical Industries, Ltd. (TEPIC-G, TEPIC-S, TEPIC-SS, TEPIC-HP, TEPIC-L, TEPIC-PAS, TEPIC-VL, TEPIC-UC) and the like can be mentioned.
  • the content of the thermosetting compound is preferably 20% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and preferably 99% by weight or less in 100% by weight of the conductive material. It is preferably at most 98 wt%, more preferably at most 90 wt%, particularly preferably at most 80 wt%.
  • the content of the thermosetting compound is not less than the lower limit and not more than the upper limit, the cohesion of the solder at the time of conductive connection can be more effectively enhanced, and the heat resistance of the cured product of the conductive material is further enhanced. It can be enhanced more effectively. From the viewpoint of more effectively improving the impact resistance, the content of the thermosetting compound is preferably as large as possible.
  • the content of the above-mentioned epoxy compound is preferably 20% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and preferably 99% by weight or less, more preferably 100% by weight of the conductive material. It is at most 98 wt%, more preferably at most 90 wt%, particularly preferably at most 80 wt%.
  • the content of the epoxy compound is not less than the lower limit and not more than the upper limit, the cohesion of the solder at the time of conductive connection can be more effectively enhanced, and the heat resistance of the cured product of the conductive material is more effective Can be enhanced. From the viewpoint of further improving the impact resistance, the content of the epoxy compound is preferably as large as possible.
  • thermosetting component thermosetting agent
  • the said thermosetting agent is not specifically limited.
  • the thermosetting agent thermally cures the thermosetting compound.
  • examples of the thermosetting agent include imidazole curing agents, amine curing agents, phenol curing agents, thiol curing agents such as polythiol curing agents, phosphonium salts, acid anhydride curing agents, thermal cationic initiators (thermal cationic curing agents) and thermal radicals A generator etc. are mentioned. Only one type of the thermosetting agent may be used, or two or more types may be used in combination.
  • the heat curing agent is preferably an imidazole curing agent, a thiol curing agent, or an amine curing agent.
  • the thermosetting agent is preferably a latent curing agent.
  • the latent curing agent is preferably a latent imidazole curing agent, a latent thiol curing agent or a latent amine curing agent.
  • the thermosetting agent may be coated with a polymeric substance such as a polyurethane resin or a polyester resin.
  • the imidazole curing agent is not particularly limited.
  • Examples of the imidazole curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6 -[2'-Methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adduct , 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4-benzyl-5-hydroxymethylimidazole, 2-paratoluyl-4-methyl-5 -Hydroxymethylimidazole, 2-Metato
  • the thiol curing agent is not particularly limited.
  • Examples of the above-mentioned thiol curing agent include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate and dipentaerythritol hexa-3-mercaptopropionate.
  • the above-mentioned amine curing agent is not particularly limited.
  • As the above-mentioned amine curing agent hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5] undecane, bis (4 (4) -Aminocyclohexyl) methane, metaphenylene diamine, diaminodiphenyl sulfone and the like.
  • the phosphonium salt is not particularly limited.
  • Examples of the phosphonium salt include tetranormal butyl phosphonium bromide, tetra normal butyl phosphonium OO diethyl dithiophosphate, methyl tributyl phosphonium dimethyl phosphate, tetra normal butyl phosphonium benzotriazole, tetra normal butyl phosphonium tetrafluoroborate, and tetra normal butyl Examples include phosphonium tetraphenyl borate and the like.
  • the above-mentioned acid anhydride curing agent is not particularly limited, and any acid anhydride may be used widely as long as it is used as a curing agent for thermosetting compounds such as epoxy compounds.
  • As the above acid anhydride curing agent phthalic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylbutenyltetrahydrophthalic anhydride , Anhydrides of phthalic acid derivatives, maleic anhydride, nadic acid anhydride, methyl nadic acid anhydride, glutaric acid anhydride, succinic acid anhydride, glycerin bis trimellitic anhydride monoacetate, and difunctional ethylene glycol bis trimellitic anhydride, etc.
  • Acid anhydride curing agents trifunctional acid anhydride curing agents such as trimellitic anhydride, and pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, methylcyclohexene tetracarboxylic acid anhydride, polyazelaic acid anhydride, etc. Acidic anhydride of 4 or more functional Curing agents.
  • the heat cation initiator (heat cation curing agent) is not particularly limited.
  • the thermal cationic initiator thermal cationic curing agent
  • thermal cationic curing agent include iodonium-based cationic curing agents, oxonium-based cationic curing agents, and sulfonium-based cationic curing agents.
  • the iodonium-based cationic curing agent include bis (4-tert-butylphenyl) iodonium hexafluorophosphate and the like.
  • the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate and the like.
  • the sulfonium-based cationic curing agent include tri-p-tolylsulfonium hexafluorophosphate and the like.
  • the heat radical generating agent is not particularly limited.
  • the heat radical generator include azo compounds and organic peroxides.
  • the azo compound include azobisisobutyronitrile (AIBN).
  • AIBN azobisisobutyronitrile
  • the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.
  • the reaction initiation temperature of the thermosetting agent is preferably 50 ° C. or more, more preferably 70 ° C. or more, still more preferably 80 ° C. or more, preferably 250 ° C. or less, more preferably 200 ° C. or less, still more preferably 150 ° C.
  • the temperature is particularly preferably 140 ° C. or less.
  • the reaction initiation temperature of the thermosetting agent is particularly preferably 80 ° C. or more and 140 ° C. or less.
  • the reaction initiation temperature of the thermosetting agent is preferably higher than the melting point of the solder in the solder particles, more preferably 5 ° C. or more, and 10 It is more preferable that the temperature be as high as ° C or more.
  • the reaction initiation temperature of the thermosetting agent means the temperature at which the onset of the onset of the exothermic peak in DSC.
  • the content of the thermosetting agent is not particularly limited.
  • the content of the thermosetting agent is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, and preferably 200 parts by weight or less, more preferably 100 parts by weight of the thermosetting compound. It is 100 parts by weight or less, more preferably 75 parts by weight or less. It is easy to fully harden a conductive material as content of a thermosetting agent is more than the above-mentioned minimum. When the content of the thermosetting agent is less than or equal to the above upper limit, it becomes difficult for the surplus thermosetting agent that did not participate in curing to remain after curing, and the heat resistance of the cured product is further enhanced.
  • the conductive material may contain a flux. By using the flux, the solder can be arranged more efficiently on the electrode.
  • the flux is not particularly limited. As the above-mentioned flux, a flux generally used for solder joint etc. can be used.
  • the flux examples include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, a hydrazine, an amine compound, an organic acid and Matsusebo, etc. may be mentioned.
  • the flux may be used alone or in combination of two or more.
  • Ammonium chloride etc. are mentioned as said molten salt.
  • the organic acids include lactic acid, citric acid, stearic acid, glutamic acid and glutaric acid.
  • the rosin include activated rosin and non-activated rosin.
  • the flux is preferably an organic acid having two or more carboxyl groups, or rosin.
  • the flux may be an organic acid having two or more carboxyl groups, or may be rosin. The use of an organic acid having two or more carboxyl groups, or rosin, further enhances the conduction reliability between the electrodes.
  • organic acid having two or more carboxyl groups examples include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid.
  • Examples of the above amine compound include cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, imidazole, benzimidazole, phenylimidazole, carboxybenzimidazole, benzotriazole, carboxybenzotriazole and the like.
  • the above-mentioned rosins are rosins mainly composed of abietic acid.
  • the rosins include abietic acid and acrylic modified rosin.
  • the flux is preferably rosins, more preferably abietic acid. The use of this preferred flux further enhances the conduction reliability between the electrodes.
  • the activation temperature (melting point) of the flux is preferably 50 ° C. or more, more preferably 70 ° C. or more, still more preferably 80 ° C. or more, preferably 200 ° C. or less, more preferably 190 ° C. or less, still more preferably 160 C. or less, more preferably 150 ° C. or less, still more preferably 140 ° C. or less.
  • the flux effect is exhibited more effectively as the activation temperature of the above-mentioned flux is more than the above-mentioned lower limit and below the above-mentioned upper limit, and solder is arranged more uniformly on an electrode.
  • the activation temperature (melting point) of the flux is preferably 80 ° C. or more and 190 ° C. or less.
  • the activation temperature (melting point) of the flux is particularly preferably 80 ° C. or more and 140 ° C. or less.
  • the flux having an activation temperature (melting point) of 80 ° C. to 190 ° C. includes succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point 104) C.), dicarboxylic acids such as suberic acid (melting point 142 ° C.), benzoic acid (melting point 122 ° C.), malic acid (melting point 130 ° C.) and the like.
  • the boiling point of the said flux is 200 degrees C or less.
  • the melting point of the flux is preferably higher than the melting point of the solder in the solder particles, more preferably 5 ° C. or more, and preferably 10 ° C. or more. Is more preferred.
  • the melting point of the flux is preferably higher than the reaction initiation temperature of the thermosetting agent, more preferably 5 ° C. or more, and more preferably 10 ° C. or more Is more preferred.
  • the flux may be dispersed in the conductive material and may be deposited on the surface of the solder particle.
  • the solder particles can be efficiently aggregated in the electrode portion. This is because, when heat is applied at the time of bonding, the thermal conductivity of the electrode portion is equal to that of the connection target member portion when comparing the electrode formed on the connection target member and the connection target member portion around the electrode. The higher temperature than the thermal conductivity is attributed to the rapid temperature rise of the electrode portion. When the temperature exceeds the melting point of the solder particle, the inside of the solder particle dissolves, but the oxide film formed on the surface is not removed because it does not reach the melting point (activation temperature) of the flux.
  • the said flux is a flux which discharge
  • the use of a flux that releases cations upon heating allows the solder to be placed more efficiently on the electrodes.
  • the above-mentioned heat cation initiator heat cation hardening agent
  • the above-mentioned flux is an acid compound and a base compound It is preferable that it is a salt of
  • the acid compound is preferably an organic compound having a carboxyl group.
  • the acid compound include malonic acid which is an aliphatic carboxylic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, citric acid, malic acid and cycloaliphatic carboxylic acid
  • malonic acid which is an aliphatic carboxylic acid
  • succinic acid succinic acid
  • glutaric acid adipic acid
  • pimelic acid suberic acid, azelaic acid, sebacic acid
  • citric acid malic acid
  • malic acid and cycloaliphatic carboxylic acid examples thereof include cyclohexylcarboxylic acid, 1,4-cyclohexyldicarboxylic acid, isophthalic acid which is an aromatic carboxylic acid, terephthalic acid, trimellitic acid, and ethylenediaminetetraacetic acid.
  • the above-mentioned acid compound is Preferably, it is a carboxylic acid or adipic acid.
  • the base compound is preferably an organic compound having an amino group.
  • the base compound include diethanolamine, triethanolamine, methyldiethanolamine, ethyldiethanolamine, cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, 2-methylbenzylamine, 3-methylbenzylamine, 4-tert-butylbenzylamine And N-methylbenzylamine, N-ethylbenzylamine, N-phenylbenzylamine, N-tert-butylbenzylamine, N-isopropylbenzylamine, N, N-dimethylbenzylamine, imidazole compounds, and triazole compounds.
  • the above-mentioned base compound is benzylamine Is preferred.
  • the content of the flux is preferably 0.5% by weight or more, preferably 30% by weight or less, and more preferably 25% by weight or less in 100% by weight of the conductive material.
  • the conductive material may not contain flux. When the content of the flux is above the lower limit and below the upper limit, it is more difficult to form an oxide film on the surface of the solder and the electrode, and further, the oxide film formed on the surface of the solder and the electrode is made more It can be removed effectively.
  • the conductive material according to the present invention may contain a filler.
  • the filler may be an organic filler or an inorganic filler.
  • the solder can be uniformly aggregated over all the electrodes of the substrate.
  • the conductive material does not contain the filler, or contains 5% by weight or less of the filler.
  • the smaller the filler content the easier the solder moves on the electrode.
  • the content of the filler is preferably 0% by weight (not contained) or more, preferably 5% by weight or less, more preferably 2% by weight or less, and still more preferably 1% by weight or less in 100% by weight of the conductive material. is there.
  • the content of the filler is at least the lower limit and the upper limit, the solder is more efficiently disposed on the electrode.
  • the conductive material may optionally contain, for example, a filler, an extender, a softener, a plasticizer, a thixo agent, a leveling agent, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer. It may contain various additives such as UV absorbers, lubricants, antistatic agents and flame retardants.
  • a connection structure according to the present invention includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, and the first connection target member. And a connecting portion connecting the second connection target member.
  • the material of the connection portion includes the above-described solder particles.
  • the material of the connection portion is the above-described conductive material.
  • the first electrode and the second electrode are electrically connected by the solder portion in the connection portion.
  • a method of manufacturing a connection structure according to the present invention uses the above-described conductive material containing solder particles or the above-described conductive material, on the surface of the first connection target member having the first electrode on the surface. Providing a step of arranging the material.
  • a second connection target member having a second electrode on the surface is provided on the surface of the conductive material opposite to the first connection target member. And a step of arranging so that one electrode and the second electrode face each other.
  • the first connection target member and the second connection target member are connected by heating the conductive material above the melting point of the solder particles. And a step of electrically connecting the first electrode and the second electrode with the solder portion in the connection portion.
  • connection structure and the method of manufacturing the connection structure according to the present invention since the specific solder particles or the specific conductive material are used, the solder particles can be efficiently arranged on the electrode, and the first electrode And the second electrode, and the solder particles can be efficiently aggregated on the electrode (line). In addition, it is difficult for a portion of the solder particles to be disposed in the area (space) in which the electrode is not formed, and the amount of the solder particle disposed in the area in which the electrode is not formed can be considerably reduced. Therefore, the conduction reliability between the first electrode and the second electrode can be enhanced. Moreover, electrical connection between laterally adjacent electrodes, which should not be connected, can be prevented, and insulation reliability can be enhanced.
  • the conductive material is not a conductive film but a conductive paste. Is preferred.
  • the thickness of the solder portion between the electrodes is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the solder wet area on the surface of the electrode is preferably 50% or more, more preferably 70% or more, and preferably 100% or less.
  • connection structure In the method of manufacturing a connection structure according to the present invention, no pressure is applied in the step of arranging the second connection target member and the step of forming the connection portion, and the second connection is performed on the conductive material. Preferably, the weight of the target member is added.
  • the conductive material is controlled by the force of the weight of the second connection target member. Preferably, no overpressure is applied. In these cases, the uniformity of the amount of solder can be further improved in the plurality of solder portions.
  • the thickness of the solder portion can be further effectively increased, a plurality of solder particles are easily collected between the electrodes, and the plurality of solder particles can be arranged more efficiently on the electrodes (lines). it can.
  • a part of the plurality of solder particles is difficult to be disposed in the region (space) in which the electrode is not formed, and the amount of solder in the solder particles disposed in the region in which the electrode is not formed is further reduced. it can. Therefore, the conduction reliability between the electrodes can be further enhanced.
  • the electrical connection between the laterally adjacent electrodes which should not be connected can be further prevented, and the insulation reliability can be further enhanced.
  • the thickness of the connection portion and the solder portion can be easily adjusted by the application amount of the conductive paste.
  • the conductive film in order to change or adjust the thickness of the connection portion, it is necessary to prepare conductive films having different thicknesses or to prepare conductive films having a predetermined thickness. There is.
  • the melt viscosity of the conductive film in the case of the conductive film, compared to the conductive paste, the melt viscosity of the conductive film can not be sufficiently lowered at the melting temperature of the solder, and the aggregation of the solder particles tends to be inhibited.
  • FIG. 1 is a cross-sectional view schematically showing a connection structure obtained by using a conductive material according to an embodiment of the present invention.
  • connection structure 1 shown in FIG. 1 is a connection in which the first connection target member 2, the second connection target member 3, and the first connection target member 2 and the second connection target member 3 are connected. And 4 are provided.
  • the connection portion 4 is formed of the above-described conductive material.
  • the conductive material includes a thermosetting compound, a thermosetting agent, and solder particles.
  • a conductive paste is used as the conductive material.
  • connection portion 4 includes a solder portion 4A in which a plurality of solder particles are gathered and joined together, and a cured product portion 4B in which a thermosetting compound is thermally cured.
  • the first connection target member 2 has a plurality of first electrodes 2a on the surface (upper surface).
  • the second connection target member 3 has a plurality of second electrodes 3a on the surface (lower surface).
  • the first electrode 2a and the second electrode 3a are electrically connected by the solder portion 4A. Therefore, the first connection target member 2 and the second connection target member 3 are electrically connected by the solder portion 4A.
  • solder particles do not exist in a region (hardened portion 4 B portion) different from the solder portion 4 A gathered between the first electrode 2 a and the second electrode 3 a. In a region (hardened portion 4B portion) different from the solder portion 4A, there is no solder particle separated from the solder portion 4A. If the amount is small, solder particles may be present in a region (hardened portion 4B portion) different from the solder portion 4A collected between the first electrode 2a and the second electrode 3a.
  • connection structure 1 a plurality of solder particles gather between the first electrode 2 a and the second electrode 3 a, and after the plurality of solder particles are melted, a melt of the solder particles After the surface of the electrode is wetted and spread, it is solidified to form a solder portion 4A. Therefore, the connection area between the solder portion 4A and the first electrode 2a, and between the solder portion 4A and the second electrode 3a is increased. That is, by using the solder particles, the solder portion 4A, the first electrode 2a, and the solder portion are compared to the case where the conductive outer surface is a metal such as nickel, gold or copper. The contact area between 4A and the second electrode 3a is increased. This also increases the conduction reliability and the connection reliability in the connection structure 1. In the case where the conductive material contains a flux, the flux is generally gradually inactivated by heating.
  • connection structure 1 shown in FIG. 1 all of the solder portions 4A are located in the area where the first and second electrodes 2a and 3a are facing each other.
  • the connection structure 1X of the modified example shown in FIG. 3 differs from the connection structure 1 shown in FIG. 1 only in the connection part 4X.
  • the connection portion 4X has a solder portion 4XA and a cured product portion 4XB.
  • most of the solder portions 4XA are located in the facing regions of the first and second electrodes 2a and 3a, and a part of the solder portions 4XA is the first and second portions. It may be protruded to the side from the field which electrode 2a, 3a has opposed.
  • solder portion 4XA protruding to the side from the opposing region of the first and second electrodes 2a and 3a is a part of the solder portion 4XA and is not a solder particle separated from the solder portion 4XA.
  • the amount of solder particles separated from the solder portion can be reduced, but solder particles separated from the solder portion may be present in the cured product portion.
  • connection structure 1 can be easily obtained by reducing the amount of solder particles used.
  • connection structure 1X can be easily obtained by increasing the amount of solder particles used.
  • connection portions 4 and 4X when the first electrode 2a and the second electrode 3a face each other in the stacking direction of the first electrode 2a, the connection portions 4 and 4X, and the second electrode 3a.
  • the solder portions 4A and 4XA in the connection portions 4 and 4X are arranged in 50% or more of the area 100% of the opposing portions of the first electrode 2a and the second electrode 3a.
  • the solder portions 4A and 4XA in the connection portions 4 and 4X satisfy the above-described preferred embodiments, the conduction reliability can be further enhanced.
  • the solder part in the said connection part is arrange
  • the solder part in the said connection part is arrange
  • the solder portion in the connection portion be disposed at 70% or more in 100% of the area of the portion facing the two electrodes.
  • the solder portion in the connection portion be disposed at 80% or more of the area 100% of the portion facing the two electrodes.
  • the solder portion in the connection portion be disposed in 90% or more of the area 100% of the portion facing the two electrodes.
  • the conduction reliability can be further enhanced by the solder portion in the connection portion satisfying the above-described preferred embodiment.
  • the first It is most preferable that 99% or more of the solder portion in the connection portion be disposed at a portion where the electrode and the second electrode face each other.
  • the conduction reliability can be further enhanced by the solder portion in the connection portion satisfying the above-described preferred embodiment.
  • FIG. 2 demonstrates an example of the method of manufacturing the connection structure 1 using the electrically-conductive material which concerns on one Embodiment of this invention.
  • the first connection target member 2 having the first electrode 2a on the surface (upper surface) is prepared.
  • the conductive material 11 including the thermosetting component 11B and the plurality of solder particles 11A is disposed on the surface of the first connection target member 2 (first Process).
  • the used conductive material 11 contains a thermosetting compound and a thermosetting agent as the thermosetting component 11B.
  • the conductive material 11 is disposed on the surface of the first connection target member 2 on which the first electrode 2 a is provided. After the placement of the conductive material 11, the solder particles 11A are placed both on the first electrode 2a (line) and on the area (space) where the first electrode 2a is not formed.
  • the method of arranging the conductive material 11 is not particularly limited, but application by a dispenser, screen printing, discharge by an inkjet device, etc. may be mentioned.
  • the second connection target member 3 having the second electrode 3a on the surface (lower surface) is prepared.
  • the second connection target member 3 is disposed (second step).
  • the second connection target member 3 is disposed on the surface of the conductive material 11 from the second electrode 3 a side. At this time, the first electrode 2a and the second electrode 3a are made to face each other.
  • the conductive material 11 is heated to the melting point or more of the solder particles 11A (third step).
  • the conductive material 11 is heated to a temperature higher than the curing temperature of the thermosetting component 11B (thermosetting compound).
  • the solder particles 11A present in the region where the electrode is not formed gather between the first electrode 2a and the second electrode 3a (self-aggregation effect).
  • the conductive paste is used instead of the conductive film, the solder particles 11A gather more effectively between the first electrode 2a and the second electrode 3a.
  • the solder particles 11A melt and bond to each other.
  • the thermosetting component 11B is thermally cured. As a result, as shown in FIG.
  • connection portion 4 connecting the first connection target member 2 and the second connection target member 3 is formed of the conductive material 11.
  • the connection portion 4 is formed of the conductive material 11, and the solder portion 4A is formed by joining the plurality of solder particles 11A, and the cured product portion 4B is formed by thermosetting the thermosetting component 11B. If the solder particles 11A move sufficiently, the movement of the solder particles 11A not located between the first electrode 2a and the second electrode 3a starts, and then the first electrode 2a and the second electrode It is not necessary to keep the temperature constant until the movement of the solder particles 11A is completed between 3a and 3a.
  • the weight of the second connection target member 3 is added to the conductive material 11. Therefore, at the time of formation of the connection portion 4, the solder particles 11A are more effectively gathered between the first electrode 2a and the second electrode 3a.
  • the solder particles 11A act to gather between the first electrode 2a and the second electrode 3a. Is more likely to be inhibited.
  • the first connection target member 2 and the second connection target member 3 are in a state where the alignment between the first electrode 2a and the second electrode 3a is shifted. Even when they are superimposed, the deviation can be corrected to connect the first electrode 2a and the second electrode 3a (self alignment effect).
  • the molten solder that is self-aggregated between the first electrode 2a and the second electrode 3a is the same as the solder between the first electrode 2a and the second electrode 3a and the other conductive material. Since the direction in which the area in contact with the component is the smallest becomes energetically stable, a force acts on the connection structure having alignment that is the connection structure having the smallest area. At this time, it is desirable that the conductive material is not cured, and that the viscosity of the components other than the solder particles of the conductive material is sufficiently low at the temperature and time.
  • the viscosity ( ⁇ mp) of the conductive material at the melting point of the solder particles is preferably 50 Pa ⁇ s or less, more preferably 10 Pa ⁇ s or less, still more preferably 1 Pa ⁇ s or less, preferably 0.1 Pa ⁇ s or more, more Preferably, it is 0.2 Pa ⁇ s or more. If the viscosity ( ⁇ mp) is equal to or less than the upper limit, the solder particles can be efficiently aggregated. When the viscosity ( ⁇ mp) is equal to or more than the above lower limit, it is possible to suppress the void at the connection portion and to suppress the extension of the conductive material to the portions other than the connection portion.
  • the viscosity ( ⁇ mp) of the conductive material at the melting point of the above-mentioned solder particles can be measured by using a strain control of 1 rad, a frequency of 1 Hz, a heating rate of 20 ° C./min, and a measurement temperature range of 25 to 200 ° C. using STRESSTECH (manufactured by REOLOGICA). However, when the melting point of the solder particles exceeds 200 ° C., the temperature upper limit can be taken as the melting point of the solder particles). From the measurement results, the viscosity at the melting point (° C.) of the solder particles is evaluated.
  • connection structure 1 shown in FIG. 1 is obtained.
  • the second step and the third step may be performed continuously.
  • the laminated body of the 1st connection object member 2, the conductive material 11, and the 2nd connection object member 3 obtained is moved to a heating part, and said 3rd A process may be performed.
  • the laminate may be disposed on a heating member, or the laminate may be disposed in a heated space.
  • the heating temperature in the third step is preferably 140 ° C. or more, more preferably 160 ° C. or more, preferably 450 ° C. or less, more preferably 250 ° C. or less, still more preferably 200 ° C. or less.
  • a heating method in the third step a method of heating the entire connection structure by using a reflow furnace or using an oven at a temperature higher than the melting point of the solder particles and higher than the curing temperature of the thermosetting component There is a method of locally heating only the body connection.
  • a hot plate As a tool used for the method of heating locally, a hot plate, a heat gun for applying hot air, a soldering iron, an infrared heater and the like can be mentioned.
  • the metal directly under the connection should be a metal with high thermal conductivity, and other parts where heating is not desirable should be a material with low thermal conductivity such as fluorocarbon resin.
  • the upper surface of the hot plate is formed.
  • the first and second connection target members are not particularly limited.
  • the first and second connection target members include semiconductor chips, semiconductor packages, LED chips, LED packages, electronic components such as capacitors and diodes, resin films, printed boards, flexible printed boards, flexible Examples include electronic components such as flat cables, rigid flexible substrates, glass epoxy substrates, and circuit substrates such as glass substrates.
  • the first and second connection target members are preferably electronic components.
  • the first connection target member and the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board.
  • the said 2nd connection object member is a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible substrate.
  • the resin film, the flexible printed circuit, the flexible flat cable and the rigid flexible substrate have properties of high flexibility and relatively light weight. When a conductive film is used to connect such a connection target member, the solder particles tend to be difficult to collect on the electrode.
  • connection object member metal electrodes, such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode, are mentioned.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient, and the electrode by which the aluminum layer was laminated
  • the indium oxide in which the trivalent metal element was doped, the zinc oxide in which the trivalent metal element was doped, etc. are mentioned. Sn, Al, Ga, etc. are mentioned as said trivalent metal element.
  • the first electrode and the second electrode are preferably arranged in an area array or a peripheral.
  • the area array is a structure in which the electrodes are arranged in a grid on the surface on which the electrodes of the connection target member are arranged.
  • the peripheral is a structure in which an electrode is disposed on the outer peripheral portion of the connection target member.
  • the solder particles may be aggregated along the direction perpendicular to the comb, whereas in the area array or peripheral structure described above, the entire surface on which the electrodes are arranged It is necessary for the solder particles to be uniformly aggregated. Therefore, while the amount of solder tends to be uneven in the conventional method, the effect of the present invention is more effectively exhibited in the method of the present invention.
  • Thermosetting Component (Thermosetting Compound): Thermosetting compound 1: "D.E.N-431” manufactured by Dow Chemical Company, epoxy resin Thermosetting compound 2: "jER152” manufactured by Mitsubishi Chemical Corporation, epoxy resin
  • Thermosetting component thermosetting agent: Thermosetting agent 1: "BF3-MEA” manufactured by Tokyo Chemical Industry Co., Ltd., boron trifluoride-monoethylamine complex
  • Thermosetting agent 2 "2PZ-CN” manufactured by Shikoku Chemicals Co., Ltd., 1-cyanoethyl-2-phenylimidazole
  • Solder particle Solder particle 1: Sn 96.5 Ag 3 Cu 0.5 solder particle, melting point 220 ° C., particle diameter: 0.5 ⁇ m, average thickness of oxide film: 4.5 nm
  • Flux 1 "benzyl glutarate salt", melting point 108 ° C
  • Flux 1 In a glass bottle, 24 g of water as a reaction solvent and 13.212 g of glutaric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were placed and dissolved until uniform at room temperature. Thereafter, 10.715 g of benzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred for about 5 minutes to obtain a mixed solution. The resulting mixture was placed in a 5-10 ° C. refrigerator and left overnight. The precipitated crystals were separated by filtration, washed with water and vacuum dried to obtain flux 1.
  • a glass epoxy substrate (FR-4 substrate) (first connection target member) having a copper electrode pattern (copper electrode thickness 12 ⁇ m) of L / S 100 ⁇ m / 100 ⁇ m and electrode length 3 mm on the top was prepared.
  • a flexible printed board (second connection target member) having a copper electrode pattern (copper electrode thickness 12 ⁇ m) of L / S 100 ⁇ m / 100 ⁇ m and electrode length 3 mm on the lower surface was prepared.
  • the overlapping area of the glass epoxy substrate and the flexible printed substrate was 1.5 cm ⁇ 3 mm, and the number of connected electrodes was 75 pairs.
  • a conductive material (anisotropic conductive paste) immediately after preparation is coated on the upper surface of the glass epoxy substrate by screen printing using a metal mask so as to have a thickness of 100 ⁇ m on the electrode of the glass epoxy substrate, A conductive material (anisotropic conductive paste) layer was formed.
  • the flexible printed circuit was laminated on the upper surface of the conductive material (anisotropic conductive paste) layer so that the electrodes face each other. At this time, no pressure was applied.
  • the weight of the flexible printed board is added to the conductive material (anisotropic conductive paste) layer. From that state, the temperature of the conductive material (anisotropic conductive paste) layer was heated to become the melting point of the solder 5 seconds after the start of the temperature rise.
  • the conductive material (anisotropic conductive paste) layer is heated to 160 ° C. to harden the conductive material (anisotropic conductive paste) layer, and the connection structure is obtained. Obtained. During heating, no pressure was applied.
  • the average thickness of the oxide film of the solder particles (the average thickness of the oxide film of the solder particles before heating) was observed using a transmission electron microscope to observe the cross section of the solder particles, and ten oxide films selected arbitrarily Calculated from the average value of the thickness of
  • the ratio of the average thickness of the oxide film of the solder particles to the particle size of the solder particles (average thickness of the oxide film of the solder particles / particles of the solder particles The diameter was calculated.
  • the solder particles were heated at 120 ° C. for 10 hours in an air atmosphere.
  • the average thickness of the oxide film after heating was observed from the cross section of the solder particle after heating using a transmission electron microscope, and was calculated from the average value of the thicknesses of ten oxide films arbitrarily selected.
  • the ratio of the average thickness of the oxide film of the solder particles before heating to the average thickness of the oxide film of the solder particles after heating (oxidation of solder particles before heating
  • the average thickness of the film / the average thickness of the oxide film of the solder particles after heating was calculated.
  • Viscosity of conductive material at 25 ° C. ( ⁇ 25 (5 rpm))
  • the viscosity ( ⁇ 25 (0.5 rpm)) of the obtained conductive material (anisotropic conductive paste) was measured at 25 ° C. using an E-type viscometer (“TVE 22 L” manufactured by Toki Sangyo Co., Ltd.). It measured on the conditions of 0.5 rpm.
  • the viscosity ( ⁇ 25 (5 rpm)) of the obtained conductive material (anisotropic conductive paste) was measured at 25 ° C. and 5 rpm using an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
  • the viscosity of the conductive material (anisotropic conductive paste) measured at 25 ° C. and 0.5 rpm using an E-type viscometer is measured at 25 ° C. and 5 rpm using an E-type viscometer
  • the thixotropic index ( ⁇ 25 (0.5 rpm) / ⁇ 25 (5 rpm)) divided by the viscosity of the obtained conductive material (anisotropic conductive paste) was calculated.
  • connection structure when a portion where the first electrode and the second electrode face each other is seen in the stacking direction of the first electrode, the connection portion, and the second electrode, The ratio X of the area in which the solder portion in the connection portion is arranged in the area 100% of the portion facing the second electrode was evaluated.
  • the placement accuracy (solder cohesion) of the solder on the electrode was determined according to the following criteria.
  • ratio X is 70% or more ⁇ : ratio X is 60% to 70% ⁇ : ratio X is 50% to 60% ⁇ : ratio X is less than 50%
  • connection resistance per connection point between the upper and lower electrodes was measured by the four-terminal method.
  • the average value of connection resistance was calculated.
  • the conduction reliability was determined based on the following criteria.
  • Average value of connection resistance is 50 m ⁇ or less ⁇ : Average value of connection resistance is 50 m ⁇ or less and 70 m ⁇ or less ⁇ : Average value of connection resistance is 70 m ⁇ or more and 100 m ⁇ or less ⁇ : Average value of connection resistance exceeds 100 m ⁇ Bad connection has occurred
  • connection resistance average value of connection resistance is 10 7 ⁇ or more
  • average value of connection resistance is 10 6 ⁇ or more and less than 10 7 ⁇
  • average value of connection resistance is 10 5 ⁇ or more and less than 10 6 ⁇
  • connection resistance Average value less than 10 5 ⁇
  • Reference Signs List 1 1X Connection structure 2 First connection target member 2a First electrode 3 Second connection target member 3a Second electrode 4, 4X Connection portion 4A, 4XA Solder portion 4B, 4XB ... Hardened part 11 ... conductive material 11 A ... solder particle 11 B ... thermosetting component 21 ... solder particle 22 ... solder particle main body 23 ... oxide film

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

導電接続時のはんだの凝集性を効果的に高めることができるはんだ粒子を提供する。 本発明に係るはんだ粒子は、はんだ粒子本体と、前記はんだ粒子本体の外表面上に配置された酸化皮膜とを有するはんだ粒子であり、前記はんだ粒子の粒子径が、0.01μm以上1μm未満であり、前記酸化皮膜の平均厚みが、5nm以下である。

Description

はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法
 本発明は、例えば、電極間の電気的な接続に用いることができるはんだ粒子及びはんだ粒子の保管方法に関する。また、本発明は、上記はんだ粒子を含む導電材料、導電材料の保管方法及び導電材料の製造方法に関する。また、本発明は、上記はんだ粒子又は上記導電材料を用いた接続構造体及び接続構造体の製造方法に関する。
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー中に導電性粒子が分散されている。上記導電性粒子として、はんだ粒子が広く用いられている。
 上記異方性導電材料は、各種の接続構造体を得るために使用されている。上記異方性導電材料による接続としては、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。
 上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。
 上記異方性導電材料の一例として、下記の特許文献1には、導電性粒子と、該導電性粒子の融点で硬化が完了しない樹脂成分とを含む異方性導電材料が記載されている。上記導電性粒子としては、具体的には、錫(Sn)、インジウム(In)、ビスマス(Bi)、銀(Ag)、銅(Cu)、亜鉛(Zn)、鉛(Pb)、カドミウム(Cd)、ガリウム(Ga)及びタリウム(Tl)等の金属や、これらの金属の合金が挙げられている。
 特許文献1では、上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、異方性導電樹脂を加熱する樹脂加熱ステップと、上記樹脂成分を硬化させる樹脂成分硬化ステップとを経て、電極間を電気的に接続することが記載されている。また、特許文献1には、特許文献1の図8に示された温度プロファイルで実装を行うことが記載されている。特許文献1では、異方性導電樹脂が加熱される温度にて硬化が完了しない樹脂成分内で、導電性粒子が溶融する。
 下記の特許文献2には、はんだ層と、上記はんだ層の表面を被覆する被覆層とを備えるはんだ材料が開示されている。上記はんだ層は、Snの含有量が40%以上の合金から構成されている金属材料又はSnの含有量が100%である金属材料から構成されている。上記被覆層は、SnO膜とSnO膜とから構成されている。上記SnO膜は、上記はんだ層の外表面側に形成されている。上記SnO膜は、上記SnO膜の外表面側に形成されている。上記被覆層の厚みは、0nmより大きく4.5nm以下である。
特開2004-260131号公報 WO2016/031067A1
 近年、プリント配線板等における配線のファインピッチ化が進行している。これに伴って、はんだ粒子又ははんだを表面に有する導電性粒子を含む導電材料では、はんだ粒子又ははんだを表面に有する導電性粒子の微小化及び小粒子径化が進行している。
 はんだ粒子等を小粒子径化した場合には、導電材料を用いた導電接続時に、接続されるべき上下の電極間にはんだ粒子等を効率的に凝集させることが困難なことがある。特に、導電材料を加熱硬化させる際に、はんだ粒子等が電極上に十分に移動する前に、導電材料の粘度が上昇し、はんだ粒子等が電極のない領域に残存する場合がある。結果として、接続されるべき電極間の導通信頼性及び接続されてはならない隣接する電極間の絶縁信頼性を十分に高めることができない場合がある。
 また、はんだ粒子等の小粒子径化に伴い、はんだ粒子等の表面積が増加するため、はんだ粒子等の表面の酸化皮膜の含有量も増加する。はんだ粒子等の表面に酸化皮膜が存在すると、はんだ粒子等を電極上に効率的に凝集させることができないため、従来の導電材料では、導電材料中のフラックスの含有量を増加させる等の対策が必要となる。しかしながら、導電材料中のフラックスの含有量を増加させると、フラックスと導電材料中の熱硬化性成分とが反応して、導電材料の保存安定性が低下したり、導電材料の硬化物の耐熱性が低下したりすることがある。また、導電材料中のフラックスの含有量を増加させると、導電材料の硬化物中にボイドが発生したり、導電材料の硬化不良が発生したりすることがある。
 従来の導電材料では、導電接続時のはんだの凝集性を高めることと、導電材料の保存安定性を高めることと、導電材料の硬化物の耐熱性を高めることとの、これらの全ての要求を満足させることは困難である。
 本発明の目的は、導電接続時のはんだの凝集性を効果的に高めることができるはんだ粒子及びはんだ粒子の保管方法を提供することである。また、本発明の目的は、上記はんだ粒子を含む導電材料、導電材料の保管方法及び導電材料の製造方法を提供することである。また、本発明の目的は、上記はんだ粒子又は上記導電材料を用いた接続構造体及び接続構造体の製造方法を提供することである。
 本発明の広い局面によれば、はんだ粒子本体と、前記はんだ粒子本体の外表面上に配置された酸化皮膜とを有するはんだ粒子であり、前記はんだ粒子の粒子径が、0.01μm以上1μm未満であり、前記酸化皮膜の平均厚みが、5nm以下である、はんだ粒子が提供される。
 本発明に係るはんだ粒子のある特定の局面では、前記はんだ粒子を、空気雰囲気下において120℃で10時間加熱したときに、加熱前の前記酸化皮膜の平均厚みの、加熱後の酸化皮膜の平均厚みに対する比が、2/3以下である。
 本発明に係るはんだ粒子のある特定の局面では、200℃以上における発熱量の絶対値が、100mJ/mg以上である。
 本発明の広い局面によれば、熱硬化性成分と、複数のはんだ粒子とを含み、前記はんだ粒子が、はんだ粒子本体と、前記はんだ粒子本体の外表面上に配置された酸化皮膜とを有し、前記はんだ粒子の粒子径が、0.01μm以上1μm未満であり、前記酸化皮膜の平均厚みが、5nm以下である、導電材料が提供される。
 本発明に係る導電材料のある特定の局面では、前記はんだ粒子を、空気雰囲気下において120℃で10時間加熱したときに、加熱前の前記酸化皮膜の平均厚みの、加熱後の酸化皮膜の平均厚みに対する比が、2/3以下である。
 本発明に係る導電材料のある特定の局面では、25℃における粘度が、10Pa・s以上1000Pa・s以下である。
 本発明に係る導電材料のある特定の局面では、E型粘度計を用いて25℃及び0.5rpmの条件で測定した粘度を、E型粘度計を用いて25℃及び5rpmの条件で測定した粘度で除したチクソトロピックインデックスが、1以上10以下である。
 本発明に係る導電材料のある特定の局面では、前記はんだ粒子の200℃以上における発熱量の絶対値が、100mJ/mg以上である。
 本発明に係る導電材料のある特定の局面では、前記導電材料が、導電ペーストである。
 本発明の広い局面によれば、上述したはんだ粒子の保管方法であり、前記はんだ粒子を保管容器に入れて、不活性ガス雰囲気下で保管するか、又は、前記はんだ粒子を保管容器に入れて、1×10Pa以下の条件で真空保管する、はんだ粒子の保管方法が提供される。
 本発明の広い局面によれば、上述した導電材料の保管方法であり、前記導電材料を保管容器に入れて、-40℃以上10℃以下の条件で保管するか、又は、前記はんだ粒子を保管容器に入れて、不活性ガス雰囲気下で保管する、導電材料の保管方法が提供される。
 本発明の広い局面によれば、熱硬化性成分と、複数のはんだ粒子とを混合し、導電材料を得る混合工程を備え、前記はんだ粒子が、はんだ粒子本体と、前記はんだ粒子本体の外表面上に配置された酸化皮膜とを有し、前記はんだ粒子の粒子径が、0.01μm以上1μm未満であり、前記酸化皮膜の平均厚みが、5nm以下である導電材料を得る、導電材料の製造方法が提供される。
 本発明に係る導電材料の製造方法のある特定の局面では、前記はんだ粒子を保管する保管工程をさらに備え、前記保管工程が、前記はんだ粒子を保管容器に入れて、不活性ガス雰囲気下で保管する工程であるか、又は、前記はんだ粒子を保管容器に入れて、1×10Pa以下の条件で真空保管する工程であり、前記はんだ粒子が、前記保管工程により保管されたはんだ粒子である。
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述したはんだ粒子を含み、前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電材料であり、前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。
 本発明の広い局面によれば、上述したはんだ粒子を含む導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電材料を配置する工程と、前記導電材料の前記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、前記はんだ粒子の融点以上に前記導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法が提供される。
 本発明の広い局面によれば、上述した導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電材料を配置する工程と、前記導電材料の前記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、前記はんだ粒子の融点以上に前記導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法が提供される。
 本発明に係るはんだ粒子は、はんだ粒子本体と、上記はんだ粒子本体の外表面上に配置された酸化皮膜とを有する。本発明に係るはんだ粒子では、上記はんだ粒子の粒子径が、0.01μm以上1μm未満である。本発明に係るはんだ粒子では、上記酸化皮膜の平均厚みが、5nm以下である。本発明に係るはんだ粒子では、上記の構成が備えられているので、導電接続時のはんだの凝集性を効果的に高めることができる。
 本発明に係る導電材料は、熱硬化性成分と、複数のはんだ粒子とを含む。本発明に係る導電材料では、上記はんだ粒子が、はんだ粒子本体と、上記はんだ粒子本体の外表面上に配置された酸化皮膜とを有する。本発明に係る導電材料では、上記はんだ粒子の粒子径が、0.01μm以上1μm未満である。本発明に係る導電材料では、上記はんだ粒子の表面に存在する酸化皮膜の平均厚みが、5nm以下である。本発明に係る導電材料では、上記の構成が備えられているので、導電接続時のはんだの凝集性を効果的に高めることができる。
 本発明に係る導電材料の製造方法は、熱硬化性成分と、複数のはんだ粒子とを混合し、導電材料を得る混合工程を備える。本発明に係る導電材料の製造方法では、上記はんだ粒子が、はんだ粒子本体と、上記はんだ粒子本体の外表面上に配置された酸化皮膜とを有し、上記はんだ粒子の粒子径が、0.01μm以上1μm未満であり、上記酸化皮膜の平均厚みが、5nm以下である導電材料を得る。本発明に係る導電材料の製造方法では、上記の構成が備えられているので、導電接続時のはんだの凝集性を効果的に高めることができる。
図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。 図2(a)~(c)は、本発明の一実施形態に係る導電材料を用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。 図3は、接続構造体の変形例を示す断面図である。 図4は、導電材料に使用可能なはんだ粒子の例を示す断面図である。 図5は、はんだ粒子の凝集性を説明するための図である。 図6は、はんだ粒子の凝集性を説明するための図である。
 以下、本発明の詳細を説明する。
 (はんだ粒子)
 本発明に係るはんだ粒子は、はんだ粒子本体と、上記はんだ粒子本体の外表面上に配置された酸化皮膜とを有する。本発明に係るはんだ粒子では、上記はんだ粒子の粒子径が、0.01μm以上1μm未満である。本発明に係るはんだ粒子では、上記酸化皮膜の平均厚みが、5nm以下である。
 本発明に係るはんだ粒子では、上記の構成が備えられているので、導電接続時のはんだの凝集性を効果的に高めることができる。
 はんだ粒子の粒子径が35μm程度のはんだ粒子を含む従来の導電材料と比較して、はんだ粒子の粒子径が10μm以下のはんだ粒子を含む導電材料では、導電接続時に、接続されるべき上下の電極間にはんだ粒子を効率的に凝集させることができないという課題があった。本発明者らは、上記課題を解決するために鋭意検討した結果、はんだ粒子の小粒子径化に伴い、はんだ粒子の表面に存在する酸化皮膜が相対的に厚くなること、及びはんだ粒子の表面積の増加によるはんだ粒子の表面に存在する酸化皮膜の含有量が増加することが、上記課題の原因であることを見出した。本発明者らは、はんだ粒子の粒子径が1μm未満であるときに、この課題が顕著に生じることを見出した。さらに、本発明者らは、上記課題を解決するために鋭意検討した結果、はんだ粒子の表面に存在する酸化皮膜を特定の厚みに制御することで、上記課題を解決できることを見出した。本発明では、はんだ粒子を小粒子径化しているにもかかわらず、上記はんだ粒子の電極上への移動が十分に進行し、接続されるべき電極間に、はんだを効率的に凝集させることができ、導通信頼性及び絶縁信頼性を高めることができる。
 図5,6は、はんだ粒子の凝集性を説明するための図である。図5,6は、各条件(3種類の粒子径及び酸化皮膜の厚みの制御の有無)のはんだ粒子を加熱して、はんだ粒子が凝集するか否かを確認したときの図である。
 図5,6の酸化皮膜の厚みを制御していないはんだ粒子に関しては、はんだ粒子の粒子径が小さくなるほど、はんだ粒子が凝集していないことが理解できる。これは、はんだ粒子の小粒子径化に伴い、はんだ粒子の表面に存在する酸化皮膜が相対的に厚くなるため、及びはんだ粒子の表面積の増加によるはんだ粒子の表面に存在する酸化皮膜の含有量が増加するためである。
 図5,6の酸化皮膜の厚みを制御していないはんだ粒子に関して、はんだ粒子の粒子径が10μmのはんだ粒子では、はんだ粒子が凝集し、はんだの凝集物を形成しているものの、はんだの凝集物の周囲に凝集していないはんだ粒子が確認できる。はんだ粒子の粒子径が0.05μm、0.1μm、0.5μm、2μm及び5μmのはんだ粒子では、はんだ粒子が一切凝集しておらず、はんだの凝集物が形成されていないことが確認できる。
 一方、図5,6の酸化皮膜の厚みを制御しているはんだ粒子に関しては、はんだ粒子の粒子径にかかわらず、はんだ粒子が凝集し、1つの大きなはんだの凝集物を形成していることが確認できる。はんだ粒子の表面に存在する酸化皮膜を特定の厚みに制御することは、はんだ粒子の凝集性を高めるために重要であることが理解できる。
 また、本発明では、はんだ粒子の表面に存在する酸化皮膜を特定の厚みに制御することによって、はんだ粒子を電極上に効率的に凝集させることができるので、導電材料中のフラックスの含有量を過度に増加させる必要がない。結果として、導電材料中における熱硬化性成分とフラックスとの反応を効果的に抑制することができ、導電材料の保存安定性を効果的に高めることができる。
 また、導電材料中におけるフラックスの融点(活性温度)は、導電材料中における熱硬化性成分のTgよりも低い場合が多く、導電材料中におけるフラックスの含有量が多くなるほど、導電材料の硬化物の耐熱性が低下する傾向がある。本発明では、導電材料中におけるフラックスの含有量を過度に増加させる必要がないので、導電材料の硬化物の耐熱性を効果的に高めることができる。また、本発明では、導電材料中におけるフラックスの含有量を過度に増加させる必要がないので、導電材料の硬化物中のボイドの発生を効果的に抑制でき、導電材料の硬化不良の発生を効果的に抑制することができる。
 本発明では、上記の構成が備えられているので、導電接続時のはんだの凝集性を高めることと、導電材料の保存安定性を高めることと、導電材料の硬化物の耐熱性を高めることとの、これらの全ての要求を満足させることができる。
 本発明では、上記のような効果を得るために、はんだ粒子の表面に存在する酸化皮膜を特定の厚みに制御することは大きく寄与する。
 上記はんだ粒子は、はんだ粒子本体と、上記はんだ粒子本体の外表面上に配置された酸化皮膜とを有する。上記はんだ粒子本体は、中心部分及び外表面のいずれもがはんだにより形成されている。上記はんだ粒子本体は、中心部分及び外表面のいずれもがはんだである粒子である。上記酸化皮膜は、上記はんだ粒子本体の外表面が空気中の酸素により酸化されることで形成される。上記酸化皮膜は、酸化錫等により構成される。一般に、市販のはんだ粒子は、外表面が空気中の酸素により酸化されており、酸化皮膜を有する。
 上記はんだ粒子の代わりに、はんだ以外の材料から形成された基材粒子と該基材粒子の表面上に配置されたはんだ部とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まり難くなる。また、上記導電性粒子では、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる傾向があり、電極間の位置ずれの抑制効果も低くなる傾向がある。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。なお、以下の図面において、大きさ、厚み、及び形状等は、図示の便宜上、実際の大きさ、厚み、及び形状等と異なる場合がある。
 図4は、導電材料に使用可能なはんだ粒子の例を示す断面図である。
 図4に示すはんだ粒子21は、はんだ粒子本体22と、はんだ粒子本体22の外表面上に配置された酸化皮膜23とを有する。はんだ粒子本体22と酸化皮膜23とは接している。はんだ粒子本体22は、全体がはんだにより形成されている。はんだ粒子本体22は、基材粒子をコアに有さず、コアシェル粒子ではない。はんだ粒子本体22は、中心部分及び外表面のいずれも、はんだにより形成されている。
 上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ粒子は、融点が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは160℃以下である。上記はんだ粒子は、融点が150℃未満の低融点はんだであることが好ましい。
 上記はんだ粒子の融点は、示差走査熱量測定(DSC)により求めることができる。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。
 また、上記はんだ粒子は錫を含むことが好ましい。上記はんだ粒子に含まれる金属100重量%中、錫の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記はんだ粒子における錫の含有量が、上記下限以上であると、はんだ部と電極との接続信頼性がより一層高くなる。
 なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(島津製作所社製「EDX-800HS」)等を用いて測定することができる。
 上記はんだ粒子を用いることで、はんだが溶融して電極に接合し、はんだが固化してはんだ部が形成され、該はんだ部が電極間を導通させる。例えば、はんだ部と電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、上記はんだ粒子の使用により、はんだ部と電極との接合強度が高くなる結果、はんだ部と電極との剥離がより一層生じ難くなり、導通信頼性及び接続信頼性がより一層高くなる。
 上記はんだ粒子を構成する金属は特に限定されない。該金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、錫-インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、錫-インジウム合金であることが好ましい。錫-ビスマス合金、錫-インジウム合金であることがより好ましい。
 上記はんだ粒子は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだ粒子の組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウム等を含む金属組成が挙げられる。低融点で鉛フリーである錫-インジウム系(117℃共晶)、又は錫-ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだ粒子は、鉛を含まないことが好ましく、錫とインジウムとを含むか、又は錫とビスマスとを含むことが好ましい。
 はんだ部と電極との接合強度をより一層高めるために、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだ部と電極との接合強度をさらに一層高める観点からは、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部と電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、はんだ粒子100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。
 本発明に係るはんだ粒子では、上記はんだ粒子の粒子径は、0.01μm以上1μm未満である。上記はんだ粒子の粒子径は、好ましくは0.02μm以上、より好ましくは0.05μm以上であり、好ましくは0.5μm以下、より好ましくは0.2μm以下であり、さらに好ましくは0.1μm以下である。上記はんだ粒子の粒子径が、上記下限以上及び上記上限以下であると、導電接続時のはんだの凝集性をより一層効果的に高めることができる。上記はんだ粒子の粒子径は、0.05μm以上0.1μm以下であることが特に好ましい。
 上記はんだ粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることが好ましい。はんだ粒子の粒子径は、例えば、任意のはんだ粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各はんだ粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりのはんだ粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意のはんだ粒子50個の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりのはんだ粒子の粒子径は、球相当径での粒子径として求められる。上記はんだ粒子の平均粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。
 上記はんだ粒子の粒子径の変動係数(CV値)は、好ましくは5%以上、より好ましくは10%以上であり、好ましくは40%以下、より好ましくは30%以下である。上記はんだ粒子の粒子径の変動係数が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層均一に配置することができる。但し、上記はんだ粒子の粒子径のCV値は、5%未満であってもよい。
 上記変動係数(CV値)は、以下のようにして測定できる。
 CV値(%)=(ρ/Dn)×100
 ρ:はんだ粒子の粒子径の標準偏差
 Dn:はんだ粒子の粒子径の平均値
 上記はんだ粒子の形状は特に限定されない。上記はんだ粒子の形状は、球状であってもよく、扁平状等の球形状以外の形状であってもよい。
 本発明に係るはんだ粒子では、上記酸化皮膜の平均厚みは、5nm以下である。上記酸化皮膜の平均厚みは、好ましくは0.5nm以上、より好ましくは1nm以上であり、好ましくは4nm以下、より好ましくは3nm以下である。上記酸化皮膜の平均厚みが、上記下限以上及び上記上限以下であると、導電接続時のはんだの凝集性をより一層効果的に高めることができる。また、上記酸化皮膜の平均厚みが、上記下限以上及び上記上限以下であると、導電材料の保存安定性をより一層効果的に高めることができ、さらに、導電材料の硬化物の耐熱性をより一層効果的に高めることができる。また、上記酸化皮膜の平均厚みが、上記下限以上であると、導電材料の用途に好適に用いることができる。また、上記酸化被膜の平均厚みが、上記下限以上であると、上記はんだ粒子を含む導電材料のハンドリング性をより一層効果的に高めることができる。また、上記酸化被膜の厚みを、上記下限以上及び上記上限以下とすることによって、加熱時のはんだ粒子の表面における溶融性を適切に制御することができるため、導電接続時のはんだの凝集性がより一層効果的に高くなると考えられる。
 上記酸化皮膜の平均厚みは、例えば、透過型電子顕微鏡を用いて、はんだ粒子の断面を観察することにより求めることができる。上記酸化皮膜の平均厚みは、例えば、任意に選択した10箇所の酸化皮膜の厚みの平均値から算出することができる。
 上記はんだ粒子を、空気雰囲気下において120℃で10時間加熱したときに、加熱前の上記酸化皮膜の平均厚みの、加熱後の酸化皮膜の平均厚みに対する比(加熱前の酸化皮膜の平均厚み/加熱後の酸化皮膜の平均厚み)は、好ましくは2/3以下、より好ましくは1/2以下である。上記比(加熱前の酸化皮膜の平均厚み/加熱後の酸化皮膜の平均厚み)の下限は特に限定されない。上記比(加熱前の酸化皮膜の平均厚み/加熱後の酸化皮膜の平均厚み)は、1/100以上であってもよく、1/50以上であってもよく、1/10以上であってもよい。上記比(加熱前の酸化皮膜の平均厚み/加熱後の酸化皮膜の平均厚み)が、上記上限以下であると、導電接続時のはんだの凝集性をより一層効果的に高めることができる。上記比(加熱前の酸化皮膜の平均厚み/加熱後の酸化皮膜の平均厚み)が、上記上限以下であると、導電材料の保存安定性をより一層効果的に高めることができ、さらに、導電材料の硬化物の耐熱性をより一層効果的に高めることができる。また、上記比(加熱前の酸化皮膜の平均厚み/加熱後の酸化皮膜の平均厚み)が、上記上限以下であると、導電材料の用途に好適に用いることができる。
 本発明に係るはんだ粒子では、加熱前の酸化皮膜を特定の厚みに制御している(酸化皮膜が比較的薄い)ために、空気雰囲気下において120℃で10時間加熱することで、酸化皮膜の厚みが増加して上記比(加熱前の酸化皮膜の平均厚み/加熱後の酸化皮膜の平均厚み)を満足することができる。従来のはんだ粒子では、加熱前の酸化皮膜が比較的厚いため、酸化される余地が乏しく、空気雰囲気下において120℃で10時間加熱しても、酸化皮膜の厚みがさほど増加せず、上記比(加熱前の酸化皮膜の平均厚み/加熱後の酸化皮膜の平均厚み)を満足しない。
 加熱前の上記酸化皮膜の平均厚み及び加熱後の上記酸化皮膜の平均厚みは、例えば、透過型電子顕微鏡を用いて、加熱前後のはんだ粒子の断面を観察することにより求めることができる。加熱前の上記酸化皮膜の平均厚み及び加熱後の上記酸化皮膜の平均厚みは、例えば、任意に選択した10箇所の酸化皮膜の厚みの平均値から算出することができる。
 上記酸化皮膜の平均厚みの、上記はんだ粒子の粒子径に対する比(酸化皮膜の平均厚み/はんだ粒子の粒子径)は、好ましくは0.001以上、より好ましくは0.002以上であり、好ましくは0.5以下、より好ましくは0.4以下である。上記比(酸化皮膜の平均厚み/はんだ粒子の粒子径)が、上記下限以上及び上記上限以下であると、導電接続時のはんだの凝集性をより一層効果的に高めることができる。また、上記比(酸化皮膜の平均厚み/はんだ粒子の粒子径)が、上記下限以上及び上記上限以下であると、導電材料の保存安定性をより一層効果的に高めることができ、さらに、導電材料の硬化物の耐熱性をより一層効果的に高めることができる。
 上記はんだ粒子100体積%中、上記酸化皮膜の含有量は、好ましくは1体積%以上、より好ましくは2体積%以上であり、好ましくは70体積%以下、より好ましくは60体積%以下である。上記酸化皮膜の含有量が、上記下限以上及び上記上限以下であると、導電接続時のはんだの凝集性をより一層効果的に高めることができる。また、上記酸化皮膜の含有量が、上記下限以上及び上記上限以下であると、導電材料の保存安定性をより一層効果的に高めることができ、さらに、導電材料の硬化物の耐熱性をより一層効果的に高めることができる。
 上記酸化皮膜の含有量は、酸化皮膜除去前後のはんだ粒子の重量から算出することができる。
 上記はんだ粒子の200℃以上における発熱量の絶対値は、好ましくは100mJ/mg以上、より好ましくは200mJ/mg以上であり、好ましくは400mJ/mg以下、より好ましくは300mJ/mg以下である。上記はんだ粒子の200℃以上における発熱量の絶対値は、はんだ粒子表面の酸化被膜の厚み等により変化すると考えられる。上記200℃以上における発熱量の絶対値が、上記下限以上及び上記上限以下であると、導電接続時のはんだの凝集性をより一層効果的に高めることができる。
 上記はんだ粒子の200℃以上における発熱量は、示差走査熱量測定(DSC)により求めることができる。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。
 上記はんだ粒子は、例えば、市販のはんだ粒子を酸処理することにより得ることができる。上記酸処理により、上記はんだ粒子の表面に存在する酸化皮膜の厚みを制御することが好ましい。上記酸処理で用いる酸としては、有機酸等が挙げられる。
 (はんだ粒子の保管方法)
 本発明に係るはんだ粒子の保管方法は、上述したはんだ粒子を保管するための方法であることが好ましい。上述したはんだ粒子は、本発明に係るはんだ粒子の保管方法により保管されることが好ましい。上記はんだ粒子を保管容器に入れて、不活性ガス雰囲気下で保管するか、又は、上記はんだ粒子を保管容器に入れて、1×10Pa以下の条件で真空保管することが好ましい。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記はんだ粒子の保管方法は、冷蔵保管であってもよく、冷凍保管であってもよい。
 但し、本発明に係るはんだ粒子は、例えば、はんだ粒子を保管容器に入れて、10℃以上50℃以下で保管してもよい。本発明に係るはんだ粒子は、10℃以上45℃以下で保管してもよく、20℃以上で保管してもよく、25℃以上で保管してもよく、40℃以下で保管してもよく、30℃以下で保管してもよい。上記はんだ粒子の保管方法は、常温以下での保管であることが好ましく、常温未満での保管であることがより好ましい。
 上記はんだ粒子を、上記の温度条件で保管するために、恒温槽等を用いることができる。上記はんだ粒子を入れた保管容器を、上記の好ましい温度条件に設定した恒温槽内で保管することが好ましい。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記はんだ粒子の保管方法に関しては、上記はんだ粒子を保管容器に入れて、不活性ガス雰囲気下で保管することが好ましい。
 上記不活性ガスとしては、アルゴンガス及び窒素ガス等が挙げられる。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記はんだ粒子の保管方法に関しては、上記はんだ粒子を保管容器に入れて、0.8×10Pa以下の条件で真空保管することが好ましく、0.5×10Pa以下の条件で真空保管することがより好ましい。
 上記はんだ粒子を、上記の真空条件で保管するために、真空ポンプ等を用いて上記保管容器内を減圧して保管することが好ましい。
 上記保管容器は、冷蔵保管、冷凍保管、及び真空保管に耐えることができる容器であれば特に限定されない。導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記保管容器は、酸素の侵入を防止できる容器であることが好ましく、密閉性の良い容器であることが好ましい。上記保管容器としては、アルミパック等が挙げられる。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記保管容器内の酸素濃度が制御されていることが好ましい。導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記保管容器内の酸素濃度は、200ppm以下であることが好ましく、100ppm以下であることがより好ましい。上記保管容器内の酸素濃度を制御する方法としては、上記保管容器内を窒素置換する方法等が挙げられる。
 上記保管容器内の酸素濃度は、酸素濃度計を用いて求めることができる。酸素濃度計としては、新コスモス電機社製「XO-326IIsA」等が挙げられる。
 (導電材料及び導電材料の製造方法)
 本発明に係る導電材料は、熱硬化性成分と、複数のはんだ粒子とを含む。本発明に係る導電材料では、上記はんだ粒子が、はんだ粒子本体と、上記はんだ粒子本体の外表面上に配置された酸化皮膜とを有する。本発明に係る導電材料では、上記はんだ粒子の粒子径が、0.01μm以上1μm未満である。本発明に係る導電材料では、上記はんだ粒子の表面に存在する酸化皮膜の平均厚みが、5nm以下である。
 本発明に係る導電材料の製造方法は、熱硬化性成分と、複数のはんだ粒子とを混合し、導電材料を得る混合工程を備える。本発明に係る導電材料の製造方法では、上記はんだ粒子が、はんだ粒子本体と、上記はんだ粒子本体の外表面上に配置された酸化皮膜とを有し、上記はんだ粒子の粒子径が、0.01μm以上1μm未満であり、上記酸化皮膜の平均厚みが、5nm以下である導電材料を得る。
 本発明に係る導電材料及び本発明に係る導電材料の製造方法では、はんだ粒子が用いられる。上記はんだ粒子は、上述したはんだ粒子であることが好ましい。本発明に係る導電材料及び本発明に係る導電材料の製造方法では、上述したはんだ粒子が用いられることが好ましい。
 本発明に係る導電材料及び本発明に係る導電材料の製造方法では、上記の構成が備えられているので、導電接続時のはんだの凝集性を効果的に高めることができる。
 はんだ粒子の粒子径が35μm程度のはんだ粒子を含む従来の導電材料と比較して、はんだ粒子の粒子径が10μm以下のはんだ粒子を含む導電材料では、導電接続時に、接続されるべき上下の電極間にはんだ粒子を効率的に凝集させることができないという課題があった。本発明者らは、上記課題を解決するために鋭意検討した結果、はんだ粒子の小粒子径化に伴い、はんだ粒子の表面に存在する酸化皮膜が相対的に厚くなること、及びはんだ粒子の表面積の増加によるはんだ粒子の表面に存在する酸化皮膜の含有量が増加することが、上記課題の原因であることを見出した。さらに、本発明者らは、上記課題を解決するために鋭意検討した結果、はんだ粒子の表面に存在する酸化皮膜を特定の厚みに制御することで、上記課題を解決できることを見出した。本発明では、はんだ粒子を小粒子径化しているにもかかわらず、上記はんだ粒子の電極上への移動が十分に進行し、接続されるべき電極間に、はんだを効率的に凝集させることができ、導通信頼性及び絶縁信頼性を高めることができる。
 また、本発明では、はんだ粒子の表面に存在する酸化皮膜を特定の厚みに制御することによって、はんだ粒子を電極上に効率的に凝集させることができるので、導電材料中のフラックスの含有量を過度に増加させる必要がない。結果として、導電材料中における熱硬化性成分とフラックスとの反応を効果的に抑制することができ、導電材料の保存安定性を効果的に高めることができる。
 また、導電材料中におけるフラックスの融点(活性温度)は、導電材料中における熱硬化性成分のTgよりも低い場合が多く、導電材料中におけるフラックスの含有量が多くなるほど、導電材料の硬化物の耐熱性が低下する傾向がある。本発明では、導電材料中におけるフラックスの含有量を過度に増加させる必要がないので、導電材料の硬化物の耐熱性を効果的に高めることができる。また、本発明では、導電材料中におけるフラックスの含有量を過度に増加させる必要がないので、導電材料の硬化物中のボイドの発生を効果的に抑制でき、導電材料の硬化不良の発生を効果的に抑制することができる。
 本発明では、上記の構成が備えられているので、導電接続時のはんだの凝集性を高めることと、導電材料の保存安定性を高めることと、導電材料の硬化物の耐熱性を高めることとの、これらの全ての要求を満足させることができる。
 本発明では、上記のような効果を得るために、はんだ粒子の表面に存在する酸化皮膜を特定の厚みに制御することは大きく寄与する。
 さらに、本発明では、電極間の位置ずれを防ぐことができる。本発明では、導電材料を上面に配置した第1の接続対象部材に、第2の接続対象部材を重ね合わせる際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態でも、そのずれを補正して電極同士を接続させることができる(セルフアライメント効果)。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記導電材料は、25℃で液状であることが好ましく、導電ペーストであることが好ましい。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記導電材料の25℃及び5rpmでの粘度(η25(5rpm))は、好ましくは10Pa・s以上、より好ましくは30Pa・s以上、さらに好ましくは50Pa・s以上、特に好ましくは100Pa・s以上である。導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記導電材料の25℃及び5rpmでの粘度(η25(5rpm))は、好ましくは1000Pa・s以下、より好ましくは400Pa・s以下、さらに好ましくは300Pa・s以下、特に好ましくは200Pa・s以下である。上記粘度(η25(5rpm))は、配合成分の種類及び配合量により適宜調整することができる。
 上記粘度(η25(5rpm))は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記導電材料の20℃及び5rpmでの粘度(η20(5rpm))は、好ましくは10Pa・s以上、より好ましくは30Pa・s以上であり、好ましくは600Pa・s以下、より好ましくは400Pa・s以下である。上記粘度(η20(5rpm))は、配合成分の種類及び配合量により適宜調整することができる。
 上記粘度(η20(5rpm))は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、20℃及び5rpmの条件で測定することができる。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、E型粘度計を用いて25℃及び0.5rpmの条件で測定した上記導電材料の粘度(η25(0.5rpm))は、好ましくは50Pa・s以上、より好ましくは100Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記粘度(η25(0.5rpm))は、配合成分の種類及び配合量により適宜調整することができる。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、E型粘度計を用いて25℃及び5rpmの条件で測定した上記導電材料の粘度(η25(5rpm))は、好ましくは50Pa・s以上、より好ましくは100Pa・s以上であり、好ましくは300Pa・s以下、より好ましくは200Pa・s以下である。上記粘度(η25(5rpm))は、配合成分の種類及び配合量により適宜調整することができる。
 上記E型粘度計としては、東機産業社製「TVE22L」等が挙げられる。
 E型粘度計を用いて25℃及び0.5rpmの条件で測定した上記導電材料の粘度を、E型粘度計を用いて25℃及び5rpmの条件で測定した上記導電材料の粘度で除したチクソトロピックインデックス(η25(0.5rpm)/η25(5rpm))は、好ましくは1以上、より好ましくは1.1以上、さらに好ましくは1.5以上である。E型粘度計を用いて25℃及び0.5rpmの条件で測定した上記導電材料の粘度を、E型粘度計を用いて25℃及び5rpmの条件で測定した上記導電材料の粘度で除したチクソトロピックインデックス(η25(0.5rpm)/η25(5rpm))は、好ましくは10以下、より好ましくは5以下、さらに好ましくは4以下である。上記チクソトロピックインデックス(η25(0.5rpm)/η25(5rpm))が、上記下限以上及び上記上限以下であると、導電接続時のはんだの凝集性をより一層効果的に高めることができる。
 上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電ペーストは異方性導電ペーストであることが好ましく、上記導電フィルムは異方性導電フィルムであることが好ましい。導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記導電材料は、導電ペーストであることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
 本発明に係る導電材料の製造方法は、熱硬化性成分と、複数のはんだ粒子とを混合し、導電材料を得る混合工程を備える。本発明に係る導電材料の製造方法では、上記はんだ粒子が、はんだ粒子本体と、上記はんだ粒子本体の外表面上に配置された酸化皮膜とを有し、上記はんだ粒子の粒子径が、0.01μm以上1μm未満であり、上記酸化皮膜の平均厚みが、5nm以下である導電材料を得る。
 本発明に係る導電材料の製造方法は、上記はんだ粒子を保管する保管工程をさらに備えることが好ましい。本発明に係る導電材料の製造方法では、上記保管工程は、上記はんだ粒子を保管容器に入れて、不活性ガス雰囲気下で保管する工程であることが好ましい。本発明に係る導電材料の製造方法では、上記保管工程は、上記はんだ粒子を保管容器に入れて、1×10Pa以下の条件で真空保管する工程であることが好ましい。本発明に係る導電材料の製造方法では、上記はんだ粒子は、上記保管工程により保管されたはんだ粒子であることが好ましい。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記はんだ粒子の保管方法は、冷蔵保管であってもよく、冷凍保管であってもよい。
 但し、本発明に係るはんだ粒子は、例えば、はんだ粒子を保管容器に入れて、10℃以上50℃以下の条件で保管してもよい。本発明に係るはんだ粒子は、10℃以上45℃以下で保管してもよく、20℃以上で保管してもよく、25℃以上で保管してもよく、40℃以下で保管してもよく、30℃以下で保管してもよい。上記はんだ粒子の保管方法は、常温以下での保管であることが好ましく、常温未満での保管であることがより好ましい。
 本発明に係る導電材料の製造方法では、上記はんだ粒子は、上述したはんだ粒子であることが好ましい。本発明に係る導電材料の製造方法では、上記はんだ粒子は、上述したはんだ粒子の保管方法により保管されたはんだ粒子であってもよい。
 上記混合工程において、上記熱硬化性成分と、上記はんだ粒子とを混合する方法は、従来公知の分散方法を用いることができ、特に限定されない。上記熱硬化性成分に上記はんだ粒子を分散させる方法としては、以下の方法が挙げられる。上記熱硬化性成分中に上記はんだ粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法。上記はんだ粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記熱硬化性成分中に添加し、プラネタリーミキサー等で混練して分散させる方法。上記熱硬化性成分を水又は有機溶剤等で希釈した後、上記はんだ粒子を添加し、プラネタリーミキサー等で混練して分散させる方法。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記混合工程では、上記はんだ粒子が過度に酸化されないように、酸素濃度が制御されていることが好ましい。上記酸素濃度を制御する方法としては、上記混合工程を窒素雰囲気中で実施する方法等が挙げられる。導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記混合工程における酸素濃度は、200ppm以下であることが好ましく、100ppm以下であることがより好ましい。
 上記混合工程における酸素濃度は、酸素濃度計を用いて求めることができる。酸素濃度計としては、新コスモス電機社製「XO-326IIsA」等が挙げられる。
 導電材料100重量%中、上記はんだ粒子の含有量は、好ましくは10重量%以上、より好ましくは20重量%以上であり、好ましくは80重量%以下、より好ましくは70重量%以下である。上記はんだ粒子の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することが容易であり、導通信頼性がより一層効果的に高くなる。導通信頼性をより一層効果的に高める観点からは、上記はんだ粒子の含有量は多い方が好ましい。
 (導電材料の保管方法)
 本発明に係る導電材料の保管方法は、上述した導電材料を保管するための方法であることが好ましい。上述した導電材料は、本発明に係る導電材料の保管方法により保管されることが好ましい。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記導電材料の保管方法に関しては、上記導電材料を保管容器に入れて、-40℃以上10℃以下の条件で保管するか、又は、上記導電材料を保管容器に入れて、不活性ガス雰囲気下で保管することが好ましい。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記導電材料の保管方法は、冷蔵保管であってもよく、冷凍保管であってもよい。
 但し、本発明に係る導電材料は、10℃以上45℃以下で保管してもよく、20℃以上で保管してもよく、25℃以上で保管してもよく、40℃以下で保管してもよく、30℃以下で保管してもよい。本発明に係る導電材料は、-20℃以上で保管してもよく、-10℃以上で保管してもよく、50℃以下で保管してもよく、10℃以下で保管してもよい。上記導電材料の保管方法は、常温以下での保管であることが好ましく、常温未満での保管であることが好ましい。
 上記導電材料を、上記の温度条件で保管するために、冷蔵庫、冷凍庫、及び恒温槽等を用いることができる。上記導電材料を入れた保管容器を、上記の好ましい温度条件に設定した恒温槽内で保管することが好ましい。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記導電材料の保管方法に関しては、上記導電材料を保管容器に入れて、不活性ガス雰囲気下で保管することが好ましい。
 上記不活性ガスとしては、アルゴンガス及び窒素ガス等が挙げられる。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記導電材料の保管方法は、上記導電材料を保管容器に入れて、0.8×10Pa以下の条件で真空保管することが好ましく、0.5×10Pa以下の条件で真空保管することがより好ましい。
 上記導電材料を、上記の真空条件で保管するために、真空ポンプ等を用いて上記保管容器内を減圧して保管することが好ましい。
 上記保管容器は、冷蔵保管、及び冷凍保管に耐えることができる容器であれば特に限定されない。導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記保管容器は、酸素の侵入を防止できる容器であることが好ましく、密閉性の良い容器であることが好ましい。上記保管容器としては、アルミパック等が挙げられる。
 導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記保管容器内の酸素濃度が制御されていることが好ましい。導電接続時のはんだの凝集性をより一層効果的に高める観点からは、上記保管容器内の酸素濃度は、200ppm以下であることが好ましく、100ppm以下であることがより好ましい。上記保管容器内の酸素濃度を制御する方法としては、上記保管容器内を窒素置換する方法等が挙げられる。
 上記保管容器内の酸素濃度は、酸素濃度計を用いて求めることができる。酸素濃度計としては、新コスモス電機社製「XO-326IIsA」等が挙げられる。
 以下、導電材料の他の詳細を説明する。
 (熱硬化性成分)
 上記熱硬化性成分は特に限定されない。上記熱硬化性成分は、加熱により硬化可能な熱硬化性化合物と、熱硬化剤とを含んでいてもよい。
 (熱硬化性成分:熱硬化性化合物)
 上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電材料の硬化性及び粘度をより一層良好にする観点、導通信頼性をより一層効果的に高める観点、及び絶縁信頼性をより一層効果的に高める観点からは、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。上記熱硬化性成分は、エポキシ化合物を含むことが好ましい。上記熱硬化性成分は、エポキシ化合物と、硬化剤とを含むことが好ましい。上記熱硬化性成分は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記エポキシ化合物は、少なくとも1個のエポキシ基を有する化合物である。上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、レゾルシノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、ベンゾフェノン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。上記エポキシ化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記エポキシ化合物としては、レゾルシノール型エポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物、ベンゾフェノン型エポキシ化合物、及びフェノールノボラック型エポキシ化合物等の芳香族エポキシ化合物が好ましい。上記エポキシ化合物の溶融温度は、はんだの融点以下であることが好ましい。上記エポキシ化合物の溶融温度は、好ましくは100℃以下、より好ましくは80℃以下、さらに好ましくは40℃以下である。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができる。さらに、硬化時の熱により、粘度を大きく低下させることができ、導電接続時のはんだの凝集性をより一層効果的に高めることができる。
 硬化物の耐熱性をより一層効果的に高める観点からは、上記熱硬化性成分は、イソシアヌル骨格を有する熱硬化性化合物を含むことが好ましい。
 上記イソシアヌル骨格を有する熱硬化性化合物としてはトリイソシアヌレート型エポキシ化合物等が挙げられ、日産化学工業社製TEPICシリーズ(TEPIC-G、TEPIC-S、TEPIC-SS、TEPIC-HP、TEPIC-L、TEPIC-PAS、TEPIC-VL、TEPIC-UC)等が挙げられる。
 導電材料100重量%中、上記熱硬化性化合物の含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、さらに好ましくは50重量%以上であり、好ましくは99重量%以下、より好ましくは98重量%以下、さらに好ましくは90重量%以下、特に好ましくは80重量%以下である。上記熱硬化性化合物の含有量が、上記下限以上及び上記上限以下であると、導電接続時のはんだの凝集性をより一層効果的に高めることができ、導電材料の硬化物の耐熱性をより一層効果的に高めることができる。耐衝撃性をより一層効果的に高める観点からは、上記熱硬化性化合物の含有量は多い方が好ましい。
 導電材料100重量%中、上記エポキシ化合物の含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、さらに好ましくは50重量%以上であり、好ましくは99重量%以下、より好ましくは98重量%以下、さらに好ましくは90重量%以下、特に好ましくは80重量%以下である。上記エポキシ化合物の含有量が、上記下限以上及び上記上限以下であると、導電接続時のはんだの凝集性をより一層効果的に高めることができ、導電材料の硬化物の耐熱性をより一層効果的に高めることができる。耐衝撃性をより一層高める観点からは、上記エポキシ化合物の含有量は多い方が好ましい。
 (熱硬化性成分:熱硬化剤)
 上記熱硬化剤は特に限定されない。上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤等のチオール硬化剤、ホスホニウム塩、酸無水物硬化剤、熱カチオン開始剤(熱カチオン硬化剤)及び熱ラジカル発生剤等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 導電材料を低温でより一層速やかに硬化可能とする観点からは、上記熱硬化剤は、イミダゾール硬化剤、チオール硬化剤、又はアミン硬化剤であることが好ましい。また、上記熱硬化性化合物と上記熱硬化剤とを混合したときの保存安定性を高める観点からは、上記熱硬化剤は、潜在性の硬化剤であることが好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。
 上記イミダゾール硬化剤は特に限定されない。上記イミダゾール硬化剤としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4-ベンジル-5-ヒドロキシメチルイミダゾール、2-パラトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4,5-ジヒドロキシメチルイミダゾール、2-パラトルイル-4,5-ジヒドロキシメチルイミダゾール等における1H-イミダゾールの5位の水素をヒドロキシメチル基で、かつ、2位の水素をフェニル基またはトルイル基で置換したイミダゾール化合物等が挙げられる。
 上記チオール硬化剤は特に限定されない。上記チオール硬化剤としては、トリメチロールプロパントリス-3-メルカプトプロピオネート、ペンタエリスリトールテトラキス-3-メルカプトプロピオネート及びジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等が挙げられる。
 上記アミン硬化剤は特に限定されない。上記アミン硬化剤としては、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。
 上記ホスホニウム塩は特に限定されない。上記ホスホニウム塩としては、テトラノルマルブチルホスホニウムブロマイド、テトラノルマルブチルホスホニウムO-Oジエチルジチオリン酸、メチルトリブチルホスホニウムジメチルリン酸塩、テトラノルマルブチルホスホニウムベンゾトリアゾール、テトラノルマルブチルホスホニウムテトラフルオロボレート、及びテトラノルマルブチルホスホニウムテトラフェニルボレート等が挙げられる。
 上記酸無水物硬化剤は特に限定されず、エポキシ化合物等の熱硬化性化合物の硬化剤として用いられる酸無水物であれば広く用いることができる。上記酸無水物硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、フタル酸誘導体の無水物、無水マレイン酸、無水ナジック酸、無水メチルナジック酸、無水グルタル酸、無水コハク酸、グリセリンビス無水トリメリット酸モノアセテート、及びエチレングリコールビス無水トリメリット酸等の2官能の酸無水物硬化剤、無水トリメリット酸等の3官能の酸無水物硬化剤、並びに、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、メチルシクロヘキセンテトラカルボン酸無水物、及びポリアゼライン酸無水物等の4官能以上の酸無水物硬化剤等が挙げられる。
 上記熱カチオン開始剤(熱カチオン硬化剤)は特に限定されない。上記熱カチオン開始剤(熱カチオン硬化剤)としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ-p-トリルスルホニウムヘキサフルオロホスファート等が挙げられる。
 上記熱ラジカル発生剤は特に限定されない。上記熱ラジカル発生剤としては、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ-tert-ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。
 上記熱硬化剤の反応開始温度は、好ましくは50℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは150℃以下、特に好ましくは140℃以下である。上記熱硬化剤の反応開始温度が、上記下限以上及び上記上限以下であると、はんだが電極上により一層効率的に配置される。上記熱硬化剤の反応開始温度は、80℃以上140℃以下であることが特に好ましい。
 はんだを電極上により一層効率的に配置する観点からは、上記熱硬化剤の反応開始温度は、上記はんだ粒子におけるはんだの融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことがさらに好ましい。
 上記熱硬化剤の反応開始温度は、DSCでの発熱ピークの立ち上がり開始の温度を意味する。
 上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、さらに好ましくは75重量部以下である。熱硬化剤の含有量が、上記下限以上であると、導電材料を十分に硬化させることが容易である。熱硬化剤の含有量が、上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。
 (フラックス)
 上記導電材料は、フラックスを含んでいてもよい。フラックスを用いることで、はんだを電極上により一層効率的に配置することができる。上記フラックスは特に限定されない。上記フラックスとして、はんだ接合等に一般的に用いられているフラックスを用いることができる。
 上記フラックスとしては、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、アミン化合物、有機酸及び松脂等が挙げられる。上記フラックスは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、又は松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、松脂の使用により、電極間の導通信頼性がより一層高くなる。
 上記カルボキシル基を2個以上有する有機酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、及びセバシン酸等が挙げられる。
 上記アミン化合物としては、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、イミダゾール、ベンゾイミダゾール、フェニルイミダゾール、カルボキシベンゾイミダゾール、ベンゾトリアゾール、及びカルボキシベンゾトリアゾール等が挙げられる。
 上記松脂はアビエチン酸を主成分とするロジン類である。上記ロジン類としては、アビエチン酸、及びアクリル変性ロジン等が挙げられる。フラックスはロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。
 上記フラックスの活性温度(融点)は、好ましくは50℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは190℃以下、より一層好ましくは160℃以下、さらに好ましくは150℃以下、更に一層好ましくは140℃以下である。上記フラックスの活性温度が、上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、はんだが電極上により一層均一に配置される。上記フラックスの活性温度(融点)は80℃以上190℃以下であることが好ましい。上記フラックスの活性温度(融点)は80℃以上140℃以下であることが特に好ましい。
 フラックスの活性温度(融点)が80℃以上190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、スベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、リンゴ酸(融点130℃)等が挙げられる。
 また、上記フラックスの沸点は200℃以下であることが好ましい。
 はんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記はんだ粒子におけるはんだの融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。
 はんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。
 上記フラックスは、導電材料中に分散されていてもよく、上記はんだ粒子の表面上に付着していてもよい。
 フラックスの融点が、はんだの融点より高いことにより、電極部分にはんだ粒子を効率的に凝集させることができる。これは、接合時に熱を付与した場合、接続対象部材上に形成された電極と、電極周辺の接続対象部材の部分とを比較すると、電極部分の熱伝導率が電極周辺の接続対象部材部分の熱伝導率よりも高いことにより、電極部分の昇温が速いことに起因する。はんだ粒子の融点を超えた段階では、はんだ粒子の内部は溶解するが、表面に形成された酸化被膜は、フラックスの融点(活性温度)に達していないので、除去されない。この状態で、電極部分の温度が先に、フラックスの融点(活性温度)に達するため、優先的に電極上に移動したはんだ粒子の表面の酸化被膜が除去され、はんだ粒子が電極の表面上に濡れ拡がることができる。これにより、電極上に効率的にはんだ粒子を凝集させることができる。
 上記フラックスは、加熱によりカチオンを放出するフラックスであることが好ましい。加熱によりカチオンを放出するフラックスの使用により、はんだを電極上により一層効率的に配置することができる。
 上記加熱によりカチオンを放出するフラックスとしては、上記熱カチオン開始剤(熱カチオン硬化剤)が挙げられる。
 電極上にはんだをより一層効率的に配置する観点、絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記フラックスは、酸化合物と塩基化合物との塩であることが好ましい。
 上記酸化合物は、カルボキシル基を有する有機化合物であることが好ましい。上記酸化合物としては、脂肪族系カルボン酸であるマロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、クエン酸、リンゴ酸、環状脂肪族カルボン酸であるシクロヘキシルカルボン酸、1,4-シクロヘキシルジカルボン酸、芳香族カルボン酸であるイソフタル酸、テレフタル酸、トリメリット酸、及びエチレンジアミン四酢酸等が挙げられる。電極上にはんだをより一層効率的に配置する観点、絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記酸化合物は、グルタル酸、シクロヘキシルカルボン酸、又はアジピン酸であることが好ましい。
 上記塩基化合物は、アミノ基を有する有機化合物であることが好ましい。上記塩基化合物としては、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、エチルジエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、2-メチルベンジルアミン、3-メチルベンジルアミン、4-tert-ブチルベンジルアミン、N-メチルベンジルアミン、N-エチルベンジルアミン、N-フェニルベンジルアミン、N-tert-ブチルベンジルアミン、N-イソプロピルベンジルアミン、N,N-ジメチルベンジルアミン、イミダゾール化合物、及びトリアゾール化合物が挙げられる。電極上にはんだをより一層効率的に配置する観点、絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記塩基化合物は、ベンジルアミンであることが好ましい。
 導電材料100重量%中、上記フラックスの含有量は、好ましくは0.5重量%以上であり、好ましくは30重量%以下、より好ましくは25重量%以下である。上記導電材料は、フラックスを含んでいなくてもよい。上記フラックスの含有量が、上記下限以上及び上記上限以下であると、はんだ及び電極の表面に酸化被膜がより一層形成され難くなり、更に、はんだ及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。
 (フィラー)
 本発明に係る導電材料は、フィラーを含んでいてもよい。フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。上記導電材料がフィラーを含むことにより、基板の全電極上に対して、はんだを均一に凝集させることができる。
 上記導電材料は、上記フィラーを含まないか、又は上記フィラーを5重量%以下で含むことが好ましい。上記熱硬化性化合物を用いている場合には、フィラーの含有量が少ないほど、電極上にはんだが移動しやすくなる。
 導電材料100重量%中、上記フィラーの含有量は、好ましくは0重量%(未含有)以上であり、好ましくは5重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。上記フィラーの含有量が、上記下限以上及び上記上限以下であると、はんだが電極上により一層効率的に配置される。
 (他の成分)
 上記導電材料は、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、チキソ剤、レベリング剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
 (接続構造体及び接続構造体の製造方法)
 本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述したはんだ粒子を含む。本発明に係る接続構造体では、上記接続部の材料が、上述した導電材料である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
 本発明に係る接続構造体の製造方法は、上述したはんだ粒子を含む導電材料又は上述した導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、上記導電材料を配置する工程を備える。本発明に係る接続構造体の製造方法は、上記導電材料の上記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、上記第1の電極と上記第2の電極とが対向するように配置する工程を備える。本発明に係る接続構造体の製造方法は、上記はんだ粒子の融点以上に上記導電材料を加熱することで、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を、上記導電材料により形成し、かつ、上記第1の電極と上記第2の電極とを、上記接続部中のはんだ部により電気的に接続する工程を備える。
 本発明に係る接続構造体及び接続構造体の製造方法では、特定のはんだ粒子又は特定の導電材料を用いているので、はんだ粒子を電極上に効率的に配置することができ、第1の電極と第2の電極との間に集まりやすく、はんだ粒子を電極(ライン)上に効率的に凝集させることができる。また、はんだ粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子の量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。
 また、電極上にはんだを効率的に配置し、かつ電極が形成されていない領域に配置されるはんだの量をかなり少なくするためには、上記導電材料は、導電フィルムではなく、導電ペーストを用いることが好ましい。
 電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは70%以上であり、好ましくは100%以下である。
 本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料には、上記第2の接続対象部材の重量が加わることが好ましい。本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、上記導電材料には、上記第2の接続対象部材の重量の力を超える加圧圧力は加わらないことが好ましい。これらの場合には、複数のはんだ部において、はんだ量の均一性をより一層高めることができる。さらに、はんだ部の厚みをより一層効果的に厚くすることができ、複数のはんだ粒子が電極間に多く集まりやすくなり、複数のはんだ粒子を電極(ライン)上により一層効率的に配置することができる。また、複数のはんだ粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子におけるはんだの量をより一層少なくすることができる。従って、電極間の導通信頼性をより一層高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続をより一層防ぐことができ、絶縁信頼性をより一層高めることができる。
 また、導電フィルムではなく、導電ペーストを用いれば、導電ペーストの塗布量によって、接続部及びはんだ部の厚みを調整することが容易になる。一方で、導電フィルムでは、接続部の厚みを変更したり、調整したりするためには、異なる厚みの導電フィルムを用意したり、所定の厚みの導電フィルムを用意したりしなければならないという問題がある。また、導電フィルムでは、導電ペーストと比べて、はんだの溶融温度で、導電フィルムの溶融粘度を十分に下げることができず、はんだ粒子の凝集が阻害されやすい傾向がある。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
 図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。
 図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電材料により形成されている。本実施形態では、上記導電材料は、熱硬化性化合物と、熱硬化剤と、はんだ粒子とを含む。本実施形態では、導電材料として、導電ペーストが用いられている。
 接続部4は、複数のはんだ粒子が集まり互いに接合したはんだ部4Aと、熱硬化性化合物が熱硬化された硬化物部4Bとを有する。
 第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ粒子は存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだ粒子は存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだ粒子が存在していてもよい。
 図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、はんだ粒子を用いることにより、導電性の外表面がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このことによっても、接続構造体1における導通信頼性及び接続信頼性が高くなる。なお、導電材料にフラックスが含まれる場合に、フラックスは、一般に、加熱により次第に失活する。
 なお、図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。図3に示す変形例の接続構造体1Xは、接続部4Xのみが、図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだ粒子ではない。なお、本実施形態では、はんだ部から離れたはんだ粒子の量を少なくすることができるが、はんだ部から離れたはんだ粒子が硬化物部中に存在していてもよい。
 はんだ粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。はんだ粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。
 接続構造体1,1Xでは、第1の電極2aと接続部4,4Xと第2の電極3aとの積層方向に第1の電極2aと第2の電極3aとの対向し合う部分をみたときに、第1の電極2aと第2の電極3aとの対向し合う部分の面積100%中の50%以上に、接続部4,4X中のはんだ部4A,4XAが配置されていることが好ましい。接続部4,4X中のはんだ部4A,4XAが、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。
 上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上に、上記接続部中のはんだ部が配置されていることが好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の60%以上に、上記接続部中のはんだ部が配置されていることがより好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の70%以上に、上記接続部中のはんだ部が配置されていることがさらに好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の80%以上に、上記接続部中のはんだ部が配置されていることが特に好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の90%以上に、上記接続部中のはんだ部が配置されていることが最も好ましい。上記接続部中のはんだ部が、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。
 上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の60%以上が配置されていることが好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の70%以上が配置されていることがより好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の90%以上が配置されていることがさらに好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の95%以上が配置されていることが特に好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の99%以上が配置されていることが最も好ましい。上記接続部中のはんだ部が、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。
 次に、図2では、本発明の一実施形態に係る導電材料を用いて、接続構造体1を製造する方法の一例を説明する。
 先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、複数のはんだ粒子11Aとを含む導電材料11を配置する(第1の工程)。用いた導電材料11は、熱硬化性成分11Bとして、熱硬化性化合物と熱硬化剤とを含む。
 第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電材料11を配置する。導電材料11の配置の後に、はんだ粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。
 導電材料11の配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。
 また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、図2(b)に示すように、第1の接続対象部材2の表面上の導電材料11において、導電材料11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電材料11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。
 次に、はんだ粒子11Aの融点以上に導電材料11を加熱する(第3の工程)。好ましくは、熱硬化性成分11B(熱硬化性化合物)の硬化温度以上に導電材料11を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子11Aは、第1の電極2aと第2の電極3aとの間に集まる(自己凝集効果)。導電フィルムではなく、導電ペーストを用いた場合には、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間により一層効果的に集まる。また、はんだ粒子11Aは溶融し、互いに接合する。また、熱硬化性成分11Bは熱硬化する。この結果、図2(c)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4が、導電材料11により形成される。導電材料11により接続部4が形成され、複数のはんだ粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。はんだ粒子11Aが十分に移動すれば、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動が開始してから、第1の電極2aと第2の電極3aとの間にはんだ粒子11Aの移動が完了するまでに、温度を一定に保持しなくてもよい。
 本実施形態では、上記第2の工程及び上記第3の工程において、加圧を行わない方が好ましい。この場合には、導電材料11には、第2の接続対象部材3の重量が加わる。このため、接続部4の形成時に、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間により一層効果的に集まる。なお、上記第2の工程及び上記第3の工程の内の少なくとも一方において、加圧を行えば、はんだ粒子11Aが第1の電極2aと第2の電極3aとの間に集まろうとする作用が阻害される傾向が高くなる。
 また、本実施形態では、加圧を行っていないため、第1の電極2aと第2の電極3aとのアライメントがずれた状態で、第1の接続対象部材2と第2の接続対象部材3とが重ね合わされた場合でも、そのずれを補正して、第1の電極2aと第2の電極3aとを接続させることができる(セルフアライメント効果)。これは、第1の電極2aと第2の電極3aとの間に自己凝集している溶融したはんだが、第1の電極2aと第2の電極3aとの間のはんだと導電材料のその他の成分とが接する面積が最小となる方がエネルギー的に安定になるため、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電材料が硬化していないこと、及び、その温度、時間にて、導電材料のはんだ粒子以外の成分の粘度が十分低いことが望ましい。
 はんだ粒子の融点での導電材料の粘度(ηmp)は、好ましくは50Pa・s以下、より好ましくは10Pa・s以下、さらに好ましくは1Pa・s以下であり、好ましくは0.1Pa・s以上、より好ましくは0.2Pa・s以上である。上記粘度(ηmp)が、上記上限以下であれば、はんだ粒子を効率的に凝集させることができる。上記粘度(ηmp)が、上記下限以上であれば、接続部でのボイドを抑制し、接続部以外への導電材料のはみだしを抑制することができる。
 上記はんだ粒子の融点での導電材料の粘度(ηmp)は、STRESSTECH(REOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25~200℃(但し、はんだ粒子の融点が200℃を超える場合には温度上限をはんだ粒子の融点とする)の条件で測定可能である。測定結果から、はんだ粒子の融点(℃)での粘度が評価される。
 このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電材料11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。
 上記第3の工程における上記加熱温度は、好ましくは140℃以上、より好ましくは160℃以上であり、好ましくは450℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下である。
 上記第3の工程における加熱方法としては、はんだ粒子の融点以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。
 局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。
 また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。
 上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。
 上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。上記第2の接続対象部材が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだ粒子が電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、はんだ粒子を電極上に効率的に集めることで、電極間の導通信頼性を十分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップ等の他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
 本発明に係る接続構造体では、上記第1の電極及び上記第2の電極は、エリアアレイ又はペリフェラルにて配置されていることが好ましい。上記第1の電極及び上記第2の電極が、エリアアレイ又はペリフェラルにて配置されている場合において、本発明の効果がより一層効果的に発揮される。上記エリアアレイとは、接続対象部材の電極が配置されている面にて、格子状に電極が配置されている構造のことである。上記ペリフェラルとは、接続対象部材の外周部に電極が配置されている構造のことである。電極が櫛型に並んでいる構造の場合は、櫛に垂直な方向に沿ってはんだ粒子が凝集すればよいのに対して、上記エリアアレイ又はペリフェラル構造では電極が配置されている面において、全面にて均一にはんだ粒子が凝集する必要がある。そのため、従来の方法では、はんだ量が不均一になりやすいのに対して、本発明の方法では、本発明の効果がより一層効果的に発揮される。
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
 熱硬化性成分(熱硬化性化合物):
 熱硬化性化合物1:ダウ・ケミカル社製「D.E.N-431」、エポキシ樹脂
 熱硬化性化合物2:三菱ケミカル社製「jER152」、エポキシ樹脂
 熱硬化性成分(熱硬化剤):
 熱硬化剤1:東京化成工業社製「BF3-MEA」、三フッ化ホウ素-モノエチルアミン錯体
 熱硬化剤2:四国化成工業社製「2PZ-CN」、1-シアノエチル-2-フェニルイミダゾール
 はんだ粒子:
 はんだ粒子1:Sn96.5Ag3Cu0.5はんだ粒子、融点220℃、粒子径:0.5μm、酸化皮膜の平均厚み:4.5nm
 はんだ粒子2:Sn96.5Ag3Cu0.5はんだ粒子、融点220℃、粒子径:0.1μm、酸化皮膜の平均厚み:4.8nm
 はんだ粒子3:Sn96.5Ag3Cu0.5はんだ粒子、融点220℃、粒子径:0.05μm、酸化皮膜の平均厚み:5nm
 はんだ粒子4:Sn42Bi58はんだ粒子、融点138℃、粒子径:0.5μm、酸化皮膜の平均厚み:4.5nm
 はんだ粒子5:Sn42Bi58はんだ粒子、融点138℃、粒子径:0.1μm、酸化皮膜の平均厚み:5nm
 はんだ粒子6:Sn42Bi58はんだ粒子、融点138℃、粒子径:0.05μm、酸化皮膜の平均厚み:5nm
 はんだ粒子7:Sn96.5Ag3Cu0.5はんだ粒子、融点220℃、粒子径:0.5μm、酸化皮膜の平均厚み:10nm
 はんだ粒子8:Sn96.5Ag3Cu0.5はんだ粒子、融点220℃、粒子径:0.1μm、酸化皮膜の平均厚み:10nm
 はんだ粒子9:Sn96.5Ag3Cu0.5はんだ粒子、融点220℃、粒子径:0.05μm、酸化皮膜の平均厚み:10nm
 はんだ粒子10:Sn42Bi58はんだ粒子、融点138℃、粒子径:0.5μm、酸化皮膜の平均厚み:12nm
 はんだ粒子11:Sn42Bi58はんだ粒子、融点138℃、粒子径:0.1μm、酸化皮膜の平均厚み:12nm
 はんだ粒子12:Sn42Bi58はんだ粒子、融点138℃、粒子径:0.05μm、酸化皮膜の平均厚み:12nm
 フラックス:
 フラックス1:「グルタル酸ベンジルアミン塩」、融点108℃
 フラックス1の作製方法:
 ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5~10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥し、フラックス1を得た。
 (実施例1~6及び比較例1~6)
 (1)導電材料(異方性導電ペースト)の作製
 下記の表1,2に示す成分を下記の表1,2に示す配合量で配合して、導電材料(異方性導電ペースト)を得た。
 (2)接続構造体(L/S=100μm/100μm)の作製
 作製直後の導電材料(異方性導電ペースト)を用いて、以下のようにして、接続構造体を作製した。
 L/Sが100μm/100μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR-4基板)(第1の接続対象部材)を用意した。また、L/Sが100μm/100μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
 上記ガラスエポキシ基板と上記フレキシブルプリント基板との重ね合わせ面積は、1.5cm×3mmとし、接続した電極数は75対とした。
 上記ガラスエポキシ基板の上面に、作製直後の導電材料(異方性導電ペースト)を、ガラスエポキシ基板の電極上で厚さ100μmとなるように、メタルマスクを用い、スクリーン印刷にて塗工し、導電材料(異方性導電ペースト)層を形成した。次に、導電材料(異方性導電ペースト)層の上面に上記フレキシブルプリント基板を、電極同士が対向するように積層した。このとき、加圧を行わなかった。導電材料(異方性導電ペースト)層には、上記フレキシブルプリント基板の重量は加わる。その状態から、導電材料(異方性導電ペースト)層の温度が、昇温開始から5秒後にはんだの融点となるように加熱した。さらに、昇温開始から15秒後に、導電材料(異方性導電ペースト)層の温度が160℃となるように加熱し、導電材料(異方性導電ペースト)層を硬化させ、接続構造体を得た。加熱時には、加圧を行わなかった。
 (評価)
 (1)はんだ粒子の粒子径及びはんだ粒子の酸化皮膜の平均厚み
 はんだ粒子の粒子径を、レーザー回折式粒度分布測定装置(堀場製作所社製「LA-920」)を用いて測定した。
 また、はんだ粒子の酸化皮膜の平均厚み(加熱前のはんだ粒子の酸化皮膜の平均厚み)を、透過型電子顕微鏡を用いて、はんだ粒子の断面を観察し、任意に選択した10箇所の酸化皮膜の厚みの平均値から算出した。
 はんだ粒子の粒子径及びはんだ粒子の酸化皮膜の平均厚みの測定結果から、はんだ粒子の酸化皮膜の平均厚みの、はんだ粒子の粒子径に対する比(はんだ粒子の酸化皮膜の平均厚み/はんだ粒子の粒子径)を算出した。
 また、はんだ粒子を空気雰囲気下において120℃で10時間加熱した。加熱後の酸化皮膜の平均厚みを、透過型電子顕微鏡を用いて、加熱後のはんだ粒子の断面を観察し、任意に選択した10箇所の酸化皮膜の厚みの平均値から算出した。
 加熱前後のはんだ粒子の酸化皮膜の平均厚みの測定結果から、加熱前のはんだ粒子の酸化皮膜の平均厚みの、加熱後のはんだ粒子の酸化皮膜の平均厚みに対する比(加熱前のはんだ粒子の酸化皮膜の平均厚み/加熱後のはんだ粒子の酸化皮膜の平均厚み)を算出した。
 (2)はんだ粒子100体積%中の酸化皮膜の含有量
 はんだ粒子100体積%中の酸化皮膜の含有量を、酸化皮膜除去前後のはんだ粒子の重量から算出した。
 (3)はんだ粒子の200℃以上における発熱量の絶対値
 はんだ粒子の200℃以上における発熱量を、示差走査熱量測定(DSC)装置(SII社製「EXSTAR DSC7020」)を用いて測定した。
 (4)25℃における導電材料の粘度(η25(5rpm))
 得られた導電材料(異方性導電ペースト)の25℃における導電材料の粘度(η25(5rpm))を、E型粘度計(東機産業社製「TVE22L」)を用いて、25℃及び5rpmの条件で測定した。
 (5)チクソトロピックインデックス
 得られた導電材料(異方性導電ペースト)の粘度(η25(0.5rpm))を、E型粘度計(東機産業社製「TVE22L」)を用いて25℃及び0.5rpmの条件で測定した。得られた導電材料(異方性導電ペースト)の粘度(η25(5rpm))を、E型粘度計(東機産業社製「TVE22L」)を用いて25℃及び5rpmの条件で測定した。
 測定結果から、E型粘度計を用いて25℃及び0.5rpmの条件で測定した導電材料(異方性導電ペースト)の粘度を、E型粘度計を用いて25℃及び5rpmの条件で測定した導電材料(異方性導電ペースト)の粘度で除したチクソトロピックインデックス(η25(0.5rpm)/η25(5rpm))を算出した。
 (6)電極上のはんだの配置精度(はんだの凝集性)
 得られた接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度(はんだの凝集性)を下記の基準で判定した。
 [電極上のはんだの配置精度(はんだの凝集性)の判定基準]
 ○○:割合Xが70%以上
 ○:割合Xが60%以上70%未満
 △:割合Xが50%以上60%未満
 ×:割合Xが50%未満
 (7)上下の電極間の導通信頼性
 得られた接続構造体(n=15個)において、上下の電極間の1接続箇所当たりの接続抵抗をそれぞれ、4端子法により、測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。
 [導通信頼性の判定基準]
 ○○:接続抵抗の平均値が50mΩ以下
 ○:接続抵抗の平均値が50mΩを超え70mΩ以下
 △:接続抵抗の平均値が70mΩを超え100mΩ以下
 ×:接続抵抗の平均値が100mΩを超える、又は接続不良が生じている
 (8)横方向に隣接する電極間の絶縁信頼性
 得られた接続構造体(n=15個)において、85℃、湿度85%の雰囲気中に100時間放置後、横方向に隣接する電極間に、5Vを印加し、抵抗値を25箇所で測定した。絶縁信頼性を下記の基準で判定した。
 [絶縁信頼性の判定基準]
 ○○:接続抵抗の平均値が10Ω以上
 ○:接続抵抗の平均値が10Ω以上10Ω未満
 △:接続抵抗の平均値が10Ω以上10Ω未満
 ×:接続抵抗の平均値が10Ω未満
 結果を下記の表1,2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 フレキシブルプリント基板、樹脂フィルム、フレキシブルフラットケーブル及びリジッドフレキシブル基板を用いた場合でも、同様の傾向が見られた。
 1,1X…接続構造体
 2…第1の接続対象部材
 2a…第1の電極
 3…第2の接続対象部材
 3a…第2の電極
 4,4X…接続部
 4A,4XA…はんだ部
 4B,4XB…硬化物部
 11…導電材料
 11A…はんだ粒子
 11B…熱硬化性成分
 21…はんだ粒子
 22…はんだ粒子本体
 23…酸化皮膜

Claims (17)

  1.  はんだ粒子本体と、前記はんだ粒子本体の外表面上に配置された酸化皮膜とを有するはんだ粒子であり、
     前記はんだ粒子の粒子径が、0.01μm以上1μm未満であり、
     前記酸化皮膜の平均厚みが、5nm以下である、はんだ粒子。
  2.  前記はんだ粒子を、空気雰囲気下において120℃で10時間加熱したときに、加熱前の前記酸化皮膜の平均厚みの、加熱後の酸化皮膜の平均厚みに対する比が、2/3以下である、請求項1に記載のはんだ粒子。
  3.  200℃以上における発熱量の絶対値が、100mJ/mg以上である、請求項1又は2に記載のはんだ粒子。
  4.  熱硬化性成分と、複数のはんだ粒子とを含み、
     前記はんだ粒子が、はんだ粒子本体と、前記はんだ粒子本体の外表面上に配置された酸化皮膜とを有し、
     前記はんだ粒子の粒子径が、0.01μm以上1μm未満であり、
     前記酸化皮膜の平均厚みが、5nm以下である、導電材料。
  5.  前記はんだ粒子を、空気雰囲気下において120℃で10時間加熱したときに、加熱前の前記酸化皮膜の平均厚みの、加熱後の酸化皮膜の平均厚みに対する比が、2/3以下である、請求項4に記載の導電材料。
  6.  25℃における粘度が、10Pa・s以上1000Pa・s以下である、請求項4又は5に記載の導電材料。
  7.  E型粘度計を用いて25℃及び0.5rpmの条件で測定した粘度を、E型粘度計を用いて25℃及び5rpmの条件で測定した粘度で除したチクソトロピックインデックスが、1以上10以下である、請求項4~6のいずれか1項に記載の導電材料。
  8.  前記はんだ粒子の200℃以上における発熱量の絶対値が、100mJ/mg以上である、請求項4~7のいずれか1項に記載の導電材料。
  9.  導電ペーストである、請求項4~8のいずれか1項に記載の導電材料。
  10.  請求項1~3のいずれか1項に記載のはんだ粒子の保管方法であり、
     前記はんだ粒子を保管容器に入れて、不活性ガス雰囲気下で保管するか、又は、前記はんだ粒子を保管容器に入れて、1×10Pa以下の条件で真空保管する、はんだ粒子の保管方法。
  11.  請求項4~9のいずれか1項に記載の導電材料の保管方法であり、
     前記導電材料を保管容器に入れて、-40℃以上10℃以下の条件で保管するか、又は、前記はんだ粒子を保管容器に入れて、不活性ガス雰囲気下で保管する、導電材料の保管方法。
  12.  熱硬化性成分と、複数のはんだ粒子とを混合し、導電材料を得る混合工程を備え、
     前記はんだ粒子が、はんだ粒子本体と、前記はんだ粒子本体の外表面上に配置された酸化皮膜とを有し、前記はんだ粒子の粒子径が、0.01μm以上1μm未満であり、前記酸化皮膜の平均厚みが、5nm以下である導電材料を得る、導電材料の製造方法。
  13.  前記はんだ粒子を保管する保管工程をさらに備え、
     前記保管工程が、前記はんだ粒子を保管容器に入れて、不活性ガス雰囲気下で保管する工程であるか、又は、前記はんだ粒子を保管容器に入れて、1×10Pa以下の条件で真空保管する工程であり、
     前記はんだ粒子が、前記保管工程により保管されたはんだ粒子である、請求項12に記載の導電材料の製造方法。
  14.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部の材料が、請求項1~3のいずれか1項に記載のはんだ粒子を含み、
     前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体。
  15.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部の材料が、請求項4~9のいずれか1項に記載の導電材料であり、
     前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体。
  16.  請求項1~3のいずれか1項に記載のはんだ粒子を含む導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電材料を配置する工程と、
     前記導電材料の前記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、
     前記はんだ粒子の融点以上に前記導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法。
  17.  請求項4~9のいずれか1項に記載の導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電材料を配置する工程と、
     前記導電材料の前記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、
     前記はんだ粒子の融点以上に前記導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法。
PCT/JP2018/047056 2017-12-22 2018-12-20 はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法 WO2019124513A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880078035.3A CN111432980A (zh) 2017-12-22 2018-12-20 焊锡粒子、导电材料、焊锡粒子的保管方法、导电材料的保管方法、导电材料的制造方法、连接结构体以及连接结构体的制造方法
KR1020207011613A KR20200098486A (ko) 2017-12-22 2018-12-20 땜납 입자, 도전 재료, 땜납 입자의 보관 방법, 도전 재료의 보관 방법, 도전 재료의 제조 방법, 접속 구조체 및 접속 구조체의 제조 방법
JP2019515666A JP7184758B2 (ja) 2017-12-22 2018-12-20 導電材料、導電材料の保管方法、導電材料の製造方法及び接続構造体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017246177 2017-12-22
JP2017-246177 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019124513A1 true WO2019124513A1 (ja) 2019-06-27

Family

ID=66993522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047056 WO2019124513A1 (ja) 2017-12-22 2018-12-20 はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法

Country Status (5)

Country Link
JP (1) JP7184758B2 (ja)
KR (1) KR20200098486A (ja)
CN (1) CN111432980A (ja)
TW (1) TWI809022B (ja)
WO (1) WO2019124513A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009800A (ja) * 2019-07-01 2021-01-28 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法
JP2021057293A (ja) * 2019-10-01 2021-04-08 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102612482B1 (ko) * 2021-11-16 2023-12-11 덕산네오룩스 주식회사 도전입자, 도전재료 및 접속 구조체

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155070A (ja) * 1992-11-20 1994-06-03 Hitachi Ltd はんだペースト
JP2000094179A (ja) * 1998-09-22 2000-04-04 Harima Chem Inc ソルダペースト及びその製造方法並びにはんだプリコート方法
JP2013202632A (ja) * 2012-03-27 2013-10-07 Nitto Denko Corp 接合シート、電子部品およびその製造方法
WO2015125778A1 (ja) * 2014-02-24 2015-08-27 積水化学工業株式会社 導電ペースト、接続構造体及び接続構造体の製造方法
WO2016031067A1 (ja) * 2014-08-29 2016-03-03 千住金属工業株式会社 はんだ材料、はんだ継手及びはんだ材料の製造方法
WO2016140326A1 (ja) * 2015-03-04 2016-09-09 デクセリアルズ株式会社 導電用粒子の製造方法、異方性導電接着剤、部品の搭載方法
JP2017100145A (ja) * 2015-11-30 2017-06-08 三菱マテリアル株式会社 はんだ粉末の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084657B2 (ja) * 2002-12-27 2008-04-30 三井金属鉱業株式会社 はんだペースト用はんだ粉
JP3769688B2 (ja) 2003-02-05 2006-04-26 独立行政法人科学技術振興機構 端子間の接続方法及び半導体装置の実装方法
JP2008214678A (ja) * 2007-03-01 2008-09-18 Mitsui Mining & Smelting Co Ltd 錫粉、錫ペースト及び錫粉の製造方法
JP5813917B2 (ja) * 2009-11-19 2015-11-17 Dowaホールディングス株式会社 はんだ粉の製造方法
CN104439259B (zh) * 2014-11-25 2016-05-04 北京康普锡威科技有限公司 一种短流程球形钝化合金焊粉的制备方法
WO2016104275A1 (ja) * 2014-12-26 2016-06-30 積水化学工業株式会社 導電ペースト、接続構造体及び接続構造体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155070A (ja) * 1992-11-20 1994-06-03 Hitachi Ltd はんだペースト
JP2000094179A (ja) * 1998-09-22 2000-04-04 Harima Chem Inc ソルダペースト及びその製造方法並びにはんだプリコート方法
JP2013202632A (ja) * 2012-03-27 2013-10-07 Nitto Denko Corp 接合シート、電子部品およびその製造方法
WO2015125778A1 (ja) * 2014-02-24 2015-08-27 積水化学工業株式会社 導電ペースト、接続構造体及び接続構造体の製造方法
WO2016031067A1 (ja) * 2014-08-29 2016-03-03 千住金属工業株式会社 はんだ材料、はんだ継手及びはんだ材料の製造方法
WO2016140326A1 (ja) * 2015-03-04 2016-09-09 デクセリアルズ株式会社 導電用粒子の製造方法、異方性導電接着剤、部品の搭載方法
JP2017100145A (ja) * 2015-11-30 2017-06-08 三菱マテリアル株式会社 はんだ粉末の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009800A (ja) * 2019-07-01 2021-01-28 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法
JP7303675B2 (ja) 2019-07-01 2023-07-05 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法
JP2021057293A (ja) * 2019-10-01 2021-04-08 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法

Also Published As

Publication number Publication date
KR20200098486A (ko) 2020-08-20
JP7184758B2 (ja) 2022-12-06
JPWO2019124513A1 (ja) 2020-11-19
CN111432980A (zh) 2020-07-17
TW201934703A (zh) 2019-09-01
TWI809022B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
JP7356217B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
WO2019124513A1 (ja) はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法
WO2019124512A1 (ja) はんだ粒子、導電材料、はんだ粒子の保管方法、導電材料の保管方法、導電材料の製造方法、接続構造体及び接続構造体の製造方法
JPWO2018066368A1 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2023138947A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2021028895A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP6767307B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
WO2020255874A1 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP7271312B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP7497136B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP7332458B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
TWI793307B (zh) 導電材料、連接構造體及連接構造體之製造方法
JP7277289B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP7014576B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2020119955A (ja) 接続構造体、接続構造体の製造方法、導電材料及び導電材料の製造方法
JP7518602B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP7372745B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP7303675B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP7389657B2 (ja) 導電ペースト及び接続構造体
JP7284699B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2019096616A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2020170591A (ja) 導電材料及び接続構造体
JP2019200964A (ja) 導電材料、接続構造体及び接続構造体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019515666

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890753

Country of ref document: EP

Kind code of ref document: A1