WO2016026413A1 - 贮氢合金及其制造方法 - Google Patents

贮氢合金及其制造方法 Download PDF

Info

Publication number
WO2016026413A1
WO2016026413A1 PCT/CN2015/087227 CN2015087227W WO2016026413A1 WO 2016026413 A1 WO2016026413 A1 WO 2016026413A1 CN 2015087227 W CN2015087227 W CN 2015087227W WO 2016026413 A1 WO2016026413 A1 WO 2016026413A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
storage alloy
satisfies
alloy
chemical composition
Prior art date
Application number
PCT/CN2015/087227
Other languages
English (en)
French (fr)
Inventor
奥田大辅
金本学
挂谷忠司
儿玉充浩
张鹏
林振
杨金洪
钱文连
姜龙
Original Assignee
株式会社杰士汤浅国际
厦门钨业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社杰士汤浅国际, 厦门钨业股份有限公司 filed Critical 株式会社杰士汤浅国际
Priority to EP15833059.7A priority Critical patent/EP3185338B1/en
Priority to JP2017510590A priority patent/JP6343393B2/ja
Priority to US15/503,942 priority patent/US10243203B2/en
Publication of WO2016026413A1 publication Critical patent/WO2016026413A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B21/00Unidirectional solidification of eutectic materials
    • C30B21/02Unidirectional solidification of eutectic materials by normal casting or gradient freezing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen storage alloy and a method of manufacturing the same.
  • the hydrogen storage alloy used in a nickel-hydrogen storage battery or the like is a substance that greatly affects the performance of a battery such as discharge capacity and durability. Therefore, various crystal phases and compositions of hydrogen storage alloys have been studied.
  • an AB 5 -based hydrogen storage alloy mainly composed of a rare earth element and Ni has been put into practical use.
  • Mg or the like is contained in an alloy containing a rare earth element and Ni. Hydrogen storage alloys were studied.
  • the ratio of the intensity ratio (I A /I B ) of the maximum peak intensity (I B ) appearing in the range of 40° to 44° is 0.1 or more, and the molar ratio of Mg to the total amount of the rare earth element and Mg is 0.3 or more.
  • Hydrogen alloy or the like Patent Document 1.
  • the hydrogen storage alloy has a problem that the alloy particles are easily micronized by the charge and discharge cycle. If the alloy particles are micronized, the surface area of the particles is increased, so that corrosion of the alloy is promoted and the cycle life of the battery is lowered. That is, in the battery using the above hydrogen storage alloy, there is a problem that the cycle life is remarkably short.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2005-142104
  • the present invention has been made in view of the above problems and the like, and provides a hydrogen storage alloy in which micronization is suppressed and a method for producing the hydrogen storage alloy.
  • Polytype a polytype derived from a hydrogen storage alloy
  • the ratio of the maximum peak intensity occurring in the range of ° to 44° is 0.1 or less and includes 0.
  • the chemical composition is a general formula R (1-x) Mg x Ni y (R is one or more elements selected from the group consisting of rare earth elements containing Y, x satisfies 0.05 ⁇ x ⁇ 0.3, and y satisfies 2.8 ⁇ y ⁇ 3.8).
  • the chemical composition is La (1-ab) Y a Mg b Ni c Al d (a satisfies 0.12 ⁇ a ⁇ 0.15, and b satisfies 0.14 ⁇ b ⁇ 0.16, c It satisfies 3.39 ⁇ c ⁇ 3.53, and d satisfies 0.13 ⁇ d ⁇ 0.17).
  • the method for producing a hydrogen storage alloy according to the present invention includes a melting step of melting a raw material by setting a pouring amount to 300 to 700 kg, and quenching a molten material melted in a melting step in a cooling step, and an annealing step
  • the coolant cooled in the cooling process is annealed at a temperature of 950 ° C or more and less than 1000 ° C.
  • the chemical composition after melting is a general formula R (1-x) Mg x Ni y (R is one selected from the group consisting of rare earth elements containing Y or Two or more elements, x satisfies 0.05 ⁇ x ⁇ 0.3, and y satisfies 2.8 ⁇ y ⁇ 3.8).
  • R is one selected from the group consisting of rare earth elements containing Y or Two or more elements, x satisfies 0.05 ⁇ x ⁇ 0.3, and y satisfies 2.8 ⁇ y ⁇ 3.8).
  • the chemical composition after melting is La (1-ab) Y a Mg b Ni c Al d (a satisfies 0.12 ⁇ a ⁇ 0.15, and b satisfies 0.14).
  • the hydrogen storage alloy of the present invention has such an effect that micronization is suppressed. Further, the method for producing a hydrogen storage alloy of the present invention has an effect of obtaining a hydrogen storage alloy in which micronization is suppressed.
  • Fig. 1 is a graph showing the results of X-ray diffraction measurement of a hydrogen storage alloy (Example 2).
  • the ratio of the maximum peak intensity occurring in the range of ° to 44° is 0.1 or less (including 0).
  • the poly-type laminated structure is a structure in which a crystal structure in which two or more different crystal phases are laminated in the c-axis direction constitutes one crystal grain.
  • the crystal phase is constituted by laminating an AB 5 unit and an A 2 B 4 unit.
  • the A 2 B 4 unit means a structural unit having a hexagonal MgZn 2 type crystal structure (C14 structure) or a hexagonal MgCu 2 type crystal structure (C15 structure).
  • the AB 5 unit means a structural unit having a hexagonal CaCu 5 type crystal structure.
  • the hydrogen storage alloy may partially contain a plurality of crystal phases having crystal structures different from each other.
  • crystal phase examples include a crystal phase composed of a rhombohedral La 5 MgNi 24 type crystal structure (hereinafter also referred to simply as La 5 MgNi 24 phase), and a crystal composed of a hexagonal Pr 5 Co 19 type crystal structure.
  • a phase (hereinafter also referred to simply as Pr 5 Co 19 phase), a crystal phase composed of a crystal structure of a rhombohedral Ce 5 Co 19 type (hereinafter also referred to simply as a Ce 5 Co 19 phase), and a crystal of a hexagonal Ce 2 Ni 7 type A crystal phase having a structural structure (hereinafter also referred to simply as a Ce 2 Ni 7 phase), a crystal phase composed of a crystal structure of a rhombohedral Gd 2 Co 7 type (hereinafter also referred to simply as a Gd 2 Co 7 phase), and a hexagonal CaCu 5 A crystal phase composed of a crystal structure (hereinafter also referred to simply as CaCu 5 phase), a crystal phase composed of a cubic crystal AuBe 5 crystal structure (hereinafter also simply referred to as AuBe 5 phase), or the like.
  • Pr 5 Co 19 phase a crystal phase composed of a crystal structure of a rhombohedral Ce 5 Co 19 type
  • the La 5 MgNi 24 type crystal structure refers to a crystal structure in which 4 unit parts of AB 5 units are inserted between A 2 B 4 units.
  • the Pr 5 Co 19 type crystal structure refers to a crystal structure in which three unit parts of AB 5 units are inserted between A 2 B 4 units.
  • the Ce 5 Co 19 type crystal structure refers to a crystal structure in which three unit parts of AB 5 units are interposed between A 2 B 4 units.
  • the crystal structure of the Ce 2 Ni 7 type refers to a crystal structure in which two unit parts of the AB 5 unit are inserted between the A 2 B 4 units.
  • the crystal structure of the Gd 2 Co 7 type refers to a crystal structure in which two unit parts of the AB 5 unit are inserted between the A 2 B 4 units.
  • the CaCu 5 type crystal structure refers to a crystal structure composed only of AB 5 units.
  • the AuBe 5 type crystal structure refers to a crystal structure composed only of A 2 B 4 units.
  • the crystal structure of the crystal phase can be identified by X-ray diffraction measurement of the pulverized alloy powder and analysis of the X-ray diffraction pattern obtained by the Rietveld method.
  • the hydrogen storage alloy is a hydrogen storage alloy in which two or more kinds of the above crystal phases are laminated in the c-axis direction of the crystal structure.
  • the strain of the crystal phase when hydrogen is absorbed by charging of the rechargeable battery passes through other adjacent The crystal phase is moderated. Therefore, the hydrogen storage alloy has an advantage that even if hydrogen is occluded and discharged by charging and discharging, it is more difficult to cause micronization of the alloy.
  • the order of lamination of the respective crystal phases is not particularly limited.
  • a hydrogen storage alloy in which a plurality of crystal phases are stacked in the c-axis direction it may be a hydrogen storage alloy in which a plurality of crystal phases are combined and periodically laminated, or a plurality of crystal phases may be disordered.
  • the hydrogen storage alloy is laminated non-periodically.
  • the hydrogen storage alloy has a phase selected from the above Pr 5 Co 19 phase (a crystal structure of an AB 5 unit in which 3 unit parts are interposed between A 2 B 4 units) and a Ce 5 Co 19 phase (at A 2 B) 4-unit inserted parts 3 units AB 5 crystal structure of the unit) and Ce 2 Ni 7 or more phases (inserted crystal structure of parts of a second unit AB 5 unit between a 2 B 4 units) of two kinds, and A structure in which the AB 5 unit and the A 2 B 4 unit are stacked in the c-axis direction of the crystal structure.
  • the hydrogen storage alloy has an advantage that it is more difficult to cause micronization caused by the occlusion discharge of the repeated hydrogen.
  • the laminated structure of the crystal phase can be confirmed by observing the lattice image of the alloy using TEM. Specifically, when the lattice image of the alloy was observed by TEM, it was confirmed that two or more crystal phases having crystal structures different from each other were laminated, for example, in the c-axis direction of the crystal structure.
  • the chemical composition of the hydrogen storage alloy is preferably a general formula R (1-x) Mg z Ni y (R is one or more elements selected from the group consisting of rare earth elements containing Y, and x satisfies 0.05 ⁇ x ⁇ 0.3, y satisfies 2.8 ⁇ y ⁇ 3.8), and more preferably, it is represented by a chemical composition of the general formula R (1-x) Mg x Ni y M z , and M is at least one element selected from the group consisting of Mn, Co, and Al. And satisfy 0 ⁇ z ⁇ 0.3. Further, M is particularly preferably Al.
  • the numerical values expressed by x, y, and z in the above chemical composition indicate the ratio of the respective elements in the hydrogen storage alloy.
  • the hydrogen storage alloy since it is the chemical composition, there is an advantage that micronization is further suppressed.
  • the hydrogen storage alloy is particularly preferably La (1-ab) Y a Mg b Ni c Al d (a satisfies 0.12 ⁇ a ⁇ 0.15, b satisfies 0.14 ⁇ b ⁇ 0.16, c satisfies 3.39 ⁇ c ⁇ 3.53, and d satisfies 0.13 ⁇ d ⁇ 0.17).
  • the numerical values represented by a, b, c, and d in the above chemical composition indicate the ratio of the respective elements in the hydrogen storage alloy.
  • the hydrogen storage alloy since it is in this composition range, there is an advantage that micronization is further suppressed.
  • the B/A ratio is preferably 3.3 or more and 3.6 or less.
  • the B/A ratio of the hydrogen storage alloy is 3.3 or more and 3.6 or less, it is considered that even if the expansion and contraction crystal phase occurs, it is difficult to further finely pulverize, and the structure of the crystal phase is further stabilized. Therefore, the cycle characteristics of the alkaline storage battery using the hydrogen storage alloy are more excellent.
  • a in the B/A ratio represents an element selected from the group consisting of rare earth elements containing Y, Mg, and Ca.
  • B in the B/A ratio means a transition metal element selected from a group 6A element, a group 7A element, a group 8 element (excluding Pd), a group 1B element, and a group 2B element, and an element in Al.
  • the hydrogen storage alloy whose chemical composition is represented by the above general formula may contain an element not defined in the above formula as an impurity.
  • the amount of the casting is set to 300 to 700 kg to melt the raw material
  • the cooling material cooled in the cooling step is annealed at a temperature of 950 ° C or more and less than 1000 ° C.
  • a melting step is performed to melt an alloy raw material blended so as to have a chemical composition as defined above, and a cooling step is performed.
  • the molten material of the alloy raw material is cooled; in the annealing step, the cooled product in the cooling step is annealed in an inert gas atmosphere; and in the pulverizing step, the alloy that has passed through the annealing step is pulverized. Then, a hydrogen storage alloy is obtained.
  • the melting step first, a predetermined amount of raw material ingot (alloy material) is weighed so that the chemical composition of the hydrogen storage alloy becomes a target composition.
  • the weighed alloy raw material is placed in a crucible.
  • the pouring amount of the present invention is 300 to 700 kg.
  • the amount of casting of the present invention means the weight of the alloy when the raw material material is weighed, and the weight of the alloy which is melted in the first melting step. In addition, if the amount of casting is 300 kg or less, an alloy which has the effect of the present invention cannot be obtained, and if it is 700 kg or more, it is difficult to obtain a uniform alloy. Further, from the viewpoint of stably obtaining the alloy, the amount of casting is preferably from 400 to 650 kg, more preferably from 500 to 600 kg. Then, the alloy raw material is heated in an inert gas atmosphere or in a vacuum, for example, at a temperature exceeding 1200 ° C to 1650 ° C above the melting point of the alloy to melt the alloy raw material.
  • the melt obtained by melting the alloy raw material is quenched to be solidified.
  • the rapid cooling means that the molten material obtained by melting the alloy raw material is cooled at a cooling rate of 1000 K/sec or more. By cooling at 1000 K/sec or more, the alloy composition is more uniform. Further, the quenching cooling rate can be set to 1,000,000 K/sec or less.
  • the cooling method in the cooling step is a melt spinning method, and the cooling device is provided with a metal roll. In the case where a metal roll is used, it is preferable because it has excellent cooling efficiency.
  • annealing is performed at a temperature of 950 ° C or more and less than 1000 ° C.
  • the annealing step if annealing is performed at a temperature lower than 950 ° C, the crystal phase and chemical composition of the alloy change, which may have an extremely adverse effect on the hydrogen storage and release characteristics. Further, if annealing is performed at 1000 ° C or higher, the alloy is melted, and thus annealing may not be achieved.
  • the atmosphere in the annealing step is not particularly limited. That is, the annealing step may be carried out in an inert gas atmosphere or in a vacuum state.
  • the pressure conditions in the annealing step are not particularly limited.
  • a pressure condition for example, a pressurization condition exceeding a standard atmospheric pressure can be employed. Further, as the pressure condition, a reduced pressure condition lower than the standard atmospheric pressure can also be employed.
  • the annealing time in the annealing step is usually 3 hours or more and 50 hours or less.
  • pulverization step a usual pulverization method can be employed. Specifically, in the pulverization step, for example, a pulverization method such as mechanical pulverization or hydrogenation pulverization can be employed.
  • the pulverization in the pulverization step is preferably carried out in an inert atmosphere.
  • the pulverization step is preferably carried out so that the average particle diameter of the hydrogen storage alloy particles after the pulverization is 20 to 70 ⁇ m.
  • the hydrogen storage alloy of the present embodiment is expressed by the general formula having the above chemical composition, if the general formula is satisfied, the general formula may be contained within a range that does not impair the effects of the present invention. Elements not specified in the text.
  • a hydrogen storage alloy was produced by the method shown below.
  • the melting step a predetermined amount of the raw material blank is weighed so that the chemical composition becomes La 0.72 Y 0.13 Mg 0.15 Ni 3.48 Al 0.15 , and the crucible is placed.
  • the weighed raw material billet was heated to 1500 ° C in a high-frequency melting furnace under a reduced pressure argon atmosphere to be melted.
  • the amount of pouring in the melting step was set to 550 kg.
  • the cooling process is performed after the melting process.
  • the melt of the alloy raw material is rapidly cooled and solidified by a melt spinning method using a cooling roll.
  • the alloy after cooling was subjected to heat treatment at 950 ° C for 7 hours under a reduced pressure of 0.05 MPa (absolute pressure value, the same applies hereinafter), thereby performing annealing.
  • the alloy ingot obtained by the annealing step was pulverized to have an average particle diameter (D50) of 50 ⁇ m.
  • Example 2 The examples 2, 3 and comparison were carried out in the same manner as in Example 1 except that the chemical composition after the melting step, the amount of casting in the melting step, and the heat treatment temperature in the annealing step were changed as shown in Table 1. Alloys of Examples 1 to 6.
  • the structure of the hydrogen storage alloy of each of the examples and the comparative examples was analyzed by X-ray diffraction measurement.
  • the obtained hydrogen storage alloy was pulverized using a mortar, and the pulverized alloy was measured using a powder X-ray diffractometer (manufactured by Rigaku Corporation, Miniflex II).
  • the measurement conditions were as follows: a measurement angle of 185 mm, a divergence slit of 1 deg., a scattering slit of 1 deg., a receiving slit of 0.15 mm, an X-ray source of Cu-K ⁇ ray, a tube voltage of 50 kV, and a tube current of 200 mA.
  • the counting time is 2 seconds
  • the step scan is 0.020°.
  • structural analysis was carried out by Rietveld method (analysis software, using RIETAN2000).
  • the alloy powders of Examples 1 to 3 and Comparative Examples 1 to 6 were mixed with a dispersion of styrene-butadiene rubber (SBR) and an aqueous solution of methyl cellulose (MC) to prepare a hydrogen storage alloy paste.
  • SBR styrene-butadiene rubber
  • MC methyl cellulose
  • the Fe substrate having a thickness of 35 ⁇ m was subjected to nickel plating of 1 ⁇ m thick, and the paste was applied onto the obtained substrate and dried to prepare an original plate.
  • the original plate was cut into a size of 30 mm ⁇ 33 mm to prepare a hydrogen storage alloy electrode (negative electrode) having an electrode capacity of 500 mAh or more.
  • the produced hydrogen storage alloy was sandwiched between the sintered electrodes having a capacity of 4 times the negative electrode capacity (nickel: 90% by mass, cobalt 5 mass%, and zinc 5 mass%) in a state in which the polyolefin separator was interposed. Then, it was fixed using a bolt under a state where a pressure of 1 kgf/cm 2 was applied. Thereby, it is assembled into an open-type nickel-hydrogen storage battery in which the positive electrode capacity is excessive.
  • the electrolytic solution a 6.8 mol/L KOH solution was used as the electrolytic solution.
  • the evaluation battery fabricated as above was repeated for 10 cycles of 150% of charge at 0.1 ItA (31 mA/g), and the termination potential of the negative electrode at 0.2 ItA was -0.6 V (vs. Discharge of Hg/HgO).
  • the discharge of 105% under 1 ItA of 40 cycles and the discharge potential of the negative electrode at 1 ItA reached -0.6 V (vs. Hg/HgO) were further repeated. According to the above conditions, a total of 50 cycles of charge and discharge were performed.
  • the hydrogen storage alloy electrode was taken out from the evaluation battery after the charge and discharge, and after washing, a magnetic field of 500 ⁇ was applied using a magnetic susceptibility meter (BHV-10H manufactured by Riken Electronics Co., Ltd.) to measure the magnetic susceptibility.
  • a magnetic susceptibility meter (BHV-10H manufactured by Riken Electronics Co., Ltd.) to measure the magnetic susceptibility.
  • Table 1 shows the results of measuring the magnetic susceptibility of the negative electrode active material (hydrogen storage alloy) after charge and discharge in the nickel-hydrogen storage battery using the hydrogen storage alloy of each of the examples and the comparative examples.
  • the magnetic susceptibility after charge and discharge is less than 5.00 emu/g, and excessive corrosion of the alloy particles is suppressed.
  • the ratio is 0.1 or less. The occurrence of excessive corrosion suggests that the alloy is micronized, and it is understood that the micronization of the alloys in Examples 1 to 3 is suppressed.

Abstract

一种贮氢合金及其制造方法,化学组成为通式R(1-x)MgxNiy,其中R为选自包含Y的稀土类元素中的1种或2种以上的元素,x满足0.05≤x≤0.3,y满足2.8≤y≤3.8,通过将Cu-Kα射线设为X射线源的X射线衍射测定,在2θ=31°~33°的范围内出现的最大峰强度相对于在2θ=41°~44°的范围内出现的最大峰强度之比为0.1以下(包括0)。

Description

贮氢合金及其制造方法 技术领域
本发明涉及一种贮氢合金及其制造方法。
背景技术
镍氢蓄电池等中所用的贮氢合金是给放电容量、耐久性这样的电池的性能带来大的影响的物质。因此,研究了贮氢合金的各种结晶相、组成。以往,以稀土元素及Ni为主体的AB5系的贮氢合金已经被实用化,近年来,以电池的高放电容量化为目的,正在对使包含稀土元素和Ni的合金中含有Mg等的贮氢合金进行研究。作为这样的贮氢合金,例如,提出了在以Cu-Kα射线为X射线源的X射线衍射测定中2θ=31°~33°的范围内出现的最大峰强度(IA)与在2θ=40°~44°的范围内出现的最大峰强度(IB)的强度比(IA/IB)为0.1以上、且Mg相对于稀土元素与Mg的合计量的摩尔比为0.3以上的贮氢合金等(专利文献1)。
但是,与现有的以稀土类和Ni为主体的AB5系的贮氢合金相比,上述贮氢合金具有由充放电循环引起合金粒子易于微粉化这样的问题。如果合金粒子微粉化,则粒子的表面积增大,因此会促进合金的腐蚀,电池的循环寿命降低。即,在使用了上述贮氢合金的电池中,发生循环寿命显著较短这样的问题。
现有技术文献
专利文献
专利文献1:日本特开2005-142104号公报
发明内容
发明要解决的课题
本发明鉴于上述的问题点等,而以提供微粉化被抑制的贮氢合金及该贮氢合金的制造方法为课题。
解决问题的手段
为了解决上述课题,本发明人等反复潜心研究,结果发现,在具有规定的组成的合金中,通过使2θ=31°~33°的范围内出现的源自贮氢合金的多型体(Polytype)层叠结构的峰的强度变小,可抑制伴随着合金的充放电反应的微粉化。
本发明的贮氢合金,其特征在于,通过将Cu-Kα射线设为X射线源的X射线衍射测定,在2θ=31°~33°的范围内出现的最大峰强度相对于在2θ=41°~44°的范围内出现的最大峰强度之比为0.1以下且包括0。
优选在所述贮氢合金中,其特征在于,化学组成为通式R(1-x)MgxNiy(R为选自包含Y的稀土类元素中的1种或2种以上的元素,x满足0.05≤x≤0.3,y满足2.8≤y≤3.8)。此外,优选在所述贮氢合金中,其特征在于,化学组成为La(1-a-b)YaMgbNicAld(a满足0.12≤a≤0.15,b满足0.14≤b≤0.16,c满足3.39≤c≤3.53,d满足0.13≤d≤0.17)。
本发明的贮氢合金的制造方法,其特征在于,具备:熔融工序,将浇注量设为300~700kg而将原料熔融;冷却工序,将在熔融工序中熔融了的熔融物急冷;以及退火工序,将在冷却工序中冷却了的冷却物在950℃以上且低于1000℃的温度下退火。
优选在所述贮氢合金的制造方法中,其特征在于,熔融后的化学组成为通式R(1-x)MgxNiy(R为选自包含Y的稀土类元素中的1种或2种以上的元素,x满足0.05≤x≤0.3,y满足2.8≤y≤3.8)。此外,优选在所述贮氢合金的制造方法中,其特征在于,熔融后的化学组成为La(1-a-b)YaMgbNicAld(a满足0.12≤a≤0.15,b满足0.14≤b≤0.16,c满足3.39≤c≤3.53,d满足0.13≤d≤0.17)。
发明效果
本发明的贮氢合金起到微粉化被抑制的这样的效果。另外,本发明的贮氢合金的制造方法起到可获得微粉化被抑制的贮氢合金这样的效果。
附图说明
图1是表示贮氢合金(实施例2)的X射线衍射测定的结果的图。
具体实施方式
以下,对本发明的贮氢合金的一个实施方式进行说明。
就本实施方式的贮氢合金而言,通过将Cu-Kα射线设为X射线源的X射线衍射测定,在2θ=31°~33°的范围内出现的最大峰强度相对于在2θ=41°~44°的范围内出现的最大峰强度之比为0.1以下(包括0)。
所述贮氢合金的X射线衍射测定中的2θ=31°~33°的范围的峰源自贮氢合金的多型体层叠结构。需要说明的是,多型体层叠结构是指:不同的2种以上的晶相在c轴方向层叠而成的晶体结构构成一个晶粒的结构。另外,所述晶相是AB5单元与A2B4单元层叠而构成的。
A2B4单元是指,具有六方晶MgZn2型晶体结构(C14结构)或六方晶MgCu2型晶体结构(C15结构)的结构单元。另一方面,AB5单元是指具有六方晶CaCu5型晶体结构的结构单元。
就所述贮氢合金而言,在X射线衍射测定中,2θ=31°~33°的范围内出现的最大峰强度相对于2θ=40°~44°的范围内出现的最大峰强度之比为0.1以下,因此认为AB5单元与A2B4单元的层叠结构中的两者随机排列。由此,认为在所述贮氢合金中,由伴随着充放电反应的膨胀收缩引起的应力得到缓和,微粉化被抑制。
所述贮氢合金可部分含有具有彼此不同的晶体结构的多种晶相。
作为所述晶相,可以举出:由菱方晶La5MgNi24型晶体结构构成的晶相(以下也简称为La5MgNi24相)、由六方晶Pr5Co19型晶体结构构成的晶相(以下也简称为Pr5Co19相)、由菱方晶Ce5Co19型晶体结构构成的晶相(以下也简称为Ce5Co19相)、由六方晶Ce2Ni7型的晶体结构构成的晶相(以下也简称为Ce2Ni7相)、由菱方晶Gd2Co7型的晶体结构构成的晶相(以下也简称为Gd2Co7相)、由六方晶CaCu5型晶体结构构成的晶相(以下也简称为CaCu5相)、由立方晶AuBe5型晶体结构构成的晶相(以下也简称为AuBe5相)等。
La5MgNi24型晶体结构是指,在A2B4单元间插入了4单元份的AB5单元的晶体结构。Pr5Co19型晶体结构是指,在A2B4单元间插入了3单元份的AB5单元的晶体结构。Ce5Co19型晶体结构是指,在A2B4单元间插入了3单元份的AB5单元的晶体结构。Ce2Ni7型的晶体结构是指,在A2B4单元间插入了2单元份的AB5单元的晶体结构。Gd2Co7型的晶体结构是 指,在A2B4单元间插入了2单元份的AB5单元的晶体结构。CaCu5型晶体结构是指,仅由AB5单元构成的晶体结构。所谓AuBe5型晶体结构是指,仅由A2B4单元构成的晶体结构。
所述晶相的晶体结构可以通过对粉碎了的合金粉末进行X射线衍射测定,并利用Rietveld法解析所得的X射线衍射图来鉴定。
所述贮氢合金更优选为,上述的两种以上的晶相在该晶体结构的c轴方向层叠的贮氢合金。
在具有彼此不同的晶体结构的两种以上的晶相于该晶体结构的c轴方向上层叠的贮氢合金中,因充电电池的充电而吸藏氢时的晶相的应变,通过邻接的其他的晶相得到缓和。所以,上述贮氢合金具有如下优点,即,即使因充放电而反复进行氢的吸藏及放出,也更难以发生合金的微粉化。
在多种晶相于晶体结构的c轴方向上层叠的贮氢合金中,各晶相的层叠顺序没有特别限定。例如,就多种晶相在c轴方向上层叠的贮氢合金而言,其既可以是组合多种晶相并周期性地反复进行层叠的贮氢合金,也可以是多种晶相无序地非周期性地进行层叠的贮氢合金。
进一步优选为,所述贮氢合金具有选自上述Pr5Co19相(在A2B4单元间插入了3单元份的AB5单元的晶体结构)、Ce5Co19相(在A2B4单元间插入了3单元份的AB5单元的晶体结构)及Ce2Ni7相(在A2B4单元间插入了2单元份的AB5单元的晶体结构)中的2种以上,且具有AB5单元及A2B4单元在晶体结构的c轴方向上层叠的结构。通过具有这些晶相,从而所述贮氢合金具有如下优点,即,更难引起由重复氢的吸藏放出导致的微粉化。
所述晶相的层叠结构可通过使用TEM观察合金的晶格像来确认。具体来说,通过使用TEM进行合金的晶格像的观察,可以确认,具有彼此不同的晶体结构的两种以上的晶相例如在该晶体结构的c轴方向上层叠。
所述贮氢合金的化学组成优选为通式R(1-x)MgzNiy(R为选自包含Y的稀土类元素中的1种或2种以上的元素,x满足0.05≤x≤0.3,y满足2.8≤y≤3.8),而且,更优选由通式R(1-x)MgxNiyMz的化学组成表示,M为选自Mn、Co及Al中的至少1种元素,且满足0<z≤0.3。另外,M特别优选为Al。上述化学组成中的使用x、y及z来表示的数值表示贮氢 合金中的各元素的个数比。
就所述贮氢合金而言,由于其为该化学组成,因此具有微粉化得到进一步抑制的优点。
所述贮氢合金特别优选为La(1-a-b)YaMgbNicAld(a满足0.12≤a≤0.15,b满足0.14≤b≤0.16,c满足3.39≤c≤3.53,d满足0.13≤d≤0.17)。上述化学组成中的使用a、b、c及d来表示的数值表示贮氢合金中的各元素的个数比。
就所述贮氢合金而言,由于其为该组成范围,因此具有微粉化得到进一步抑制的优点。
在所述贮氢合金中,B/A比优选为3.3以上且3.6以下。认为通过使所述贮氢合金的B/A比为3.3以上且3.6以下,从而即使发生膨胀收缩结晶相也难以被进一步微粉化,结晶相的结构更加稳定化。因此,使用了所述贮氢合金的碱性蓄电池的循环特性可变的更为优异。
需要说明的是,B/A比中的A表示选自包含Y的稀土类元素、Mg及Ca中的元素。
另外,B/A比中的B表示选自6A族元素、7A族元素、8族元素(除Pd外)、1B族元素、2B族元素等过渡金属元素及Al中的元素。
需要说明的是,化学组成以上述通式表示的贮氢合金,可以含有该通式中未规定的元素作为杂质。
下面,对本实施方式的贮氢合金的制造方法进行说明。
本实施方式的贮氢合金的制造方法具备:
熔融工序,将浇注量设为300~700kg而将原料熔融;
冷却工序,将在熔融工序中熔融了的熔融物急冷;以及
退火工序,将在冷却工序中冷却了的冷却物在950℃以上且低于1000℃的温度下退火。
具体而言,在本实施方式的贮氢合金的制造方法中,例如,实施如下工序:熔融工序,将以成为如上规定的化学组成的方式而配合的合金原料熔融;冷却工序,将熔融了的合金原料的熔融物冷却;退火工序,将经由冷却工序的冷却物在不活泼气体气氛下退火;粉碎工序,将经由退火工序的合金粉碎。然后,得到贮氢合金。
在所述熔融工序中,首先,称量规定量的原料坯料(ingot)(合金原料),以使贮氢合金的化学组成成为目标组成。
在所述熔融工序中,接着,将称量后的合金原料放入坩埚。本发明的浇注量为300~700kg。本发明的浇注量是指称量原料坯料时的重量、是在一次的熔融工序中熔融的合金的重量。需要说明的是,如果浇注量为300kg以下则无法获得起到本发明的效果的合金,如果为700kg以上则难以获得均匀的合金。此外,从稳定地获得合金的观点考虑,浇注量优选为400~650kg,更优选为500~600kg。然后,在不活泼气体气氛中或真空中,例如,在1200℃以上且1650℃以下的超过合金熔点的温度下加热合金原料,使合金原料熔融。
在所述冷却工序中,通过将使合金原料熔融而成的熔融物急冷来使之固化。
急冷是指,以1000K/秒以上的冷却速度对使合金原料熔融而成的熔融物进行冷却。通过以1000K/秒以上进行冷却,合金组成更为均匀化。另外,可以将急冷的冷却速度设为1000000K/秒以下。
所述冷却工序的冷却方法是熔融纺丝法,冷却装置具备金属辊。就使用了金属辊的情况而言,由于冷却效率优异,因此优选。
在所述退火工序中,在950℃以上且低于1000℃的温度下进行退火。
在所述退火工序中,如果在低于950℃的温度下进行退火,则合金的晶相及化学组成发生变化,可能给氢的吸藏放出特性带来极为不良的影响。另外,如果在1000℃以上进行退火,则合金熔融,因此可能无法实现退火的目的。
所述退火工序的气氛没有特别限定。即,退火工序既可以在不活泼气体气氛下进行,也可以在真空状态下进行。
所述退火工序中的压力条件没有特别限定。作为该压力条件,例如可以采用超过标准大气压的加压条件。另外,作为压力条件,还可以采用低于标准大气压的减压条件。
所述退火工序的退火的时间通常为3小时以上且50小时以下。
在所述粉碎工序中,可以采用通常的粉碎方法。具体来说,在粉碎工序中,例如可以采用机械粉碎,氢化粉碎等粉碎方法。
就所述粉碎工序中的粉碎而言,为了防止因粉碎而新产生的粒子状合金发生表面氧化,优选在不活泼气氛中进行。
优选以使粉碎后的贮氢合金粒子的平均粒径为20~70μm的方式实施所述粉碎工序。
需要说明的是,本实施方式的贮氢合金即使在以如上化学组成的通式来表示的情况下,只要满足该通式,则在不损害本发明的效果的范围内,可以含有该通式中未规定的元素。
实施例
下面列举实施例对本发明进行更详细的说明,但本发明并不限于此。
(实施例1)
利用以下所示的方法,制造贮氢合金。
首先,在熔融工序中,以使化学组成成为La0.72Y0.13Mg0.15Ni3.48Al0.15的方式,称量规定量的原料坯料,并放入坩埚。接着,在减压氩气气氛下,使用高频熔化炉将称量的原料坯料加热到1500℃而使其熔化。熔融工序中的浇注量设为550kg。
在熔融工序之后进行冷却工序。在冷却工序中,采用使用了冷却辊的熔融纺丝法,将合金原料的熔融物急冷,使其固化。
在接下来的退火工序中,在0.05MPa(绝对压力值,下同)的减压状态下,对冷却后的合金进行7小时的950℃的热处理,由此进行了退火。
在接下来的粉碎工序中,将通过退火工序而得到的合金块粉碎至平均粒径(D50)为50μm。
(实施例2、3及比较例1~6)
如表1所示对熔融工序后的化学组成、熔融工序中的浇注量及退火工序中的热处理温度进行变更,除此以外,与实施例1同样地操作,制作出实施例2、3及比较例1~6的合金。
对由各实施例、各比较例制造的贮氢合金的化学组成进行分析,并将结果示于表1。表1的化学组成中的数值表示贮氢合金中的各元素的个数比。
另外,将各实施例、各比较例的贮氢合金的制造中的退火工序的加压条件及温度条件示于表1。
<利用X射线衍射的晶相的结构解析>
利用X射线衍射测定对各实施例、各比较例的贮氢合金进行了结构解析。
具体而言,使用研钵将得到的贮氢合金粉碎后,使用粉末X射线衍射装置(理学公司制,MiniflexII),测定粉碎后的合金。将测定条件设为:测角半径185mm、发散狭缝1deg.、散射狭缝1deg.、接收狭缝0.15mm、X射线源Cu-Kα射线、管电压50kV、管电流200mA的条件。需要说明的是,衍射角为2θ=15.0~85.0°的范围,计数时间为2秒,步进扫描为0.020°。基于得到的X射线衍射结果通过Rietveld法(分析软件,使用RIETAN2000)进行了结构解析。
在各实施例、各比较例的贮氢合金的X射线衍射测定中,将在2θ=31°~33°的范围内出现的最大峰强度相对于在2θ=41°~44°的范围内出现的最大峰强度之比示于表1。
另外,将对实施例2的贮氢合金进行X射线衍射测定的结果(衍射峰)分别示于图1。
(贮氢合金电极的制作)
将实施例1~3和比较例1~6的合金粉末与丁苯橡胶(SBR)的分散液和甲基纤维素(MC)水溶液混合,制成贮氢合金糊剂。对厚度为35μm的Fe基材实施1μm厚的镀镍,在所得基材上涂布该糊剂,进行干燥,制成原板。将原板裁切为30mm×33mm的尺寸,制作出电极容量为500mAh以上的贮氢合金电极(负极)。
(评价电池的制作)
在隔着聚烯烃隔离件的状态下,使用具有负极容量的4倍容量的烧结式电极(镍:90质量%、钴5质量%及锌5质量%)将制作出的各贮氢合金夹入,然后在施加1kgf/cm2的压力的状态下使用螺栓进行了固定。由此,组装成正极容量过剩的开放型镍氢蓄电池。作为电解液,使用6.8mol/L的KOH溶液。
(评价电池的充放电条件及充放电后的合金的磁化率测定)
在20℃的水槽中,对如上制作的评价电池重复10个循环的0.1ItA(31mA/g)下150%的充电、和0.2ItA下负极的终止电位达到-0.6V(vs. Hg/HgO)的放电。进一步重复40个循环的1ItA下105%的充电、和1ItA下负极的终止电位达到-0.6V(vs.Hg/HgO)的放电。按照上述条件,进行了合计50个循环的充放电。
从充放电后的评价电池取出贮氢合金电极,洗涤后,使用磁化率测定计(理研电子制BHV-10H),施加5000奥斯特的磁场,进行了磁化率测定。
将使用了各实施例、各比较例的贮氢合金的镍氢蓄电池中,测定充放电后的负极活性物质(贮氢合金)的磁化率的结果示于表1。
[表1]
Figure PCTCN2015087227-appb-000001
由表1进行把握可知:在将下述贮氢合金用作负极活性物质而制造的镍氢蓄电池中,充放电后的磁化率显示为小于5.00emu/g,合金粒子的过度腐蚀被抑制,其中就所述贮氢合金而言,通过X射线衍射测定,在2θ=31°~33°的范围内出现的最大峰强度相对于在2θ=41°~44°的范围内出现的最大峰强度之比为0.1以下。过度腐蚀的发生暗示合金被微粉化,从而可知实施例1~3中的合金的微粉化被抑制。

Claims (6)

  1. 一种贮氢合金,其特征在于,通过将Cu-Kα射线设为X射线源的X射线衍射测定,在2θ=31°~33°的范围内出现的最大峰强度相对于在2θ=41°~44°的范围内出现的最大峰强度之比为0.1以下且包括0。
  2. 根据权利要求1所述的贮氢合金,其特征在于,化学组成为通式R(1-x)MgxNiy,其中R为选自包含Y的稀土类元素中的1种或2种以上的元素,x满足0.05≤x≤0.3,y满足2.8≤y≤3.8。
  3. 根据权利要求1或2所述的贮氢合金,其特征在于,化学组成为La(1-a-b)YaMgbNicAld,其中a满足0.12≤a≤0.15,b满足0.14≤b≤0.16,c满足3.39≤c≤3.53,d满足0.13≤d≤0.17。
  4. 一种贮氢合金的制造方法,其特征在于,具备:
    熔融工序,将浇注量设为300~700kg而将原料熔融;
    冷却工序,将在所述熔融工序中熔融了的熔融物急冷;以及
    退火工序,将在所述冷却工序中冷却了的冷却物在950℃以上且低于1000℃的温度下退火。
  5. 根据权利要求4所述的贮氢合金的制造方法,其特征在于,熔融后的化学组成为通式R(1-x)MgxNiy,其中R为选自包含Y的稀土类元素中的1种或2种以上的元素,x满足0.05≤x≤0.3,y满足2.8≤y≤3.8。
  6. 根据权利要求4或5所述的贮氢合金的制造方法,其特征在于,熔融后的化学组成为La(1-a-b)YaMgbNicAld,其中a满足0.12≤a≤0.15,b满足0.14≤b≤0.16,c满足3.39≤c≤3.53,d满足0.13≤d≤0.17。
PCT/CN2015/087227 2014-08-19 2015-08-17 贮氢合金及其制造方法 WO2016026413A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15833059.7A EP3185338B1 (en) 2014-08-19 2015-08-17 Hydrogen storage alloy
JP2017510590A JP6343393B2 (ja) 2014-08-19 2015-08-17 水素吸蔵合金
US15/503,942 US10243203B2 (en) 2014-08-19 2015-08-17 Hydrogen storing alloy and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410409393.1 2014-08-19
CN201410409393.1A CN105349841B (zh) 2014-08-19 2014-08-19 贮氢合金及其制造方法

Publications (1)

Publication Number Publication Date
WO2016026413A1 true WO2016026413A1 (zh) 2016-02-25

Family

ID=55325900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087227 WO2016026413A1 (zh) 2014-08-19 2015-08-17 贮氢合金及其制造方法

Country Status (5)

Country Link
US (1) US10243203B2 (zh)
EP (1) EP3185338B1 (zh)
JP (1) JP6343393B2 (zh)
CN (1) CN105349841B (zh)
WO (1) WO2016026413A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708801A (zh) * 2020-12-03 2021-04-27 包头稀土研究院 单相PuNi3型超晶格La-Y-Ni系储氢合金及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179752A1 (ja) * 2019-03-07 2020-09-10 株式会社三徳 負極活物質粉末、負極及びニッケル水素二次電池
CN111647773B (zh) * 2020-05-20 2022-03-29 有研工程技术研究院有限公司 一种稀土储氢材料及其制备方法
EP3961765B1 (en) 2020-08-31 2024-02-28 FDK Corporation Hydrogen absorbing alloy, negative electrode comprising same and nickel-metal hydride secondary battery comprising same
CN116219228A (zh) * 2023-03-03 2023-06-06 包头中科轩达新能源科技有限公司 一种(Gd,Mg)2Ni7型超晶格储氢合金的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443861A (zh) * 2003-04-16 2003-09-24 华南理工大学 一种纳米晶多相混合稀土-镁系贮氢合金及其制备方法
CN101538660A (zh) * 2009-04-21 2009-09-23 中国科学院长春应用化学研究所 A112Mg17为镁源制备低残单的RE-Mg-Ni系储氢合金的方法
CN102337438A (zh) * 2011-09-26 2012-02-01 华南理工大学 一种具有长周期结构的镁基储氢合金及其制备方法
CN103165873A (zh) * 2013-02-28 2013-06-19 钢铁研究总院 一种动力电池贮氢电极合金及其制备方法
EP2628812A1 (en) * 2012-02-20 2013-08-21 GS Yuasa International Ltd. Hydrogen storage alloy, electrode, nickel-metal hydride rechargeable battery and method for producing hydrogen storage alloy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100276018B1 (ko) 1997-11-28 2000-12-15 니시무로 타이죠 니켈수소 이차전지
US20040015243A1 (en) * 2001-09-28 2004-01-22 Dwyane Mercredi Biometric authentication
CA2373553A1 (en) * 2002-02-27 2003-08-27 Robert Schulz Ca, mg and ni containing alloys, method for preparing the same and use thereof for gas phase hydrogen storage
JP4420653B2 (ja) * 2003-11-10 2010-02-24 三洋電機株式会社 ニッケル・水素蓄電池
CN101501896B (zh) * 2006-08-09 2011-05-04 株式会社杰士汤浅国际 储氢合金、储氢合金电极、二次电池及储氢合金的制造方法
JP5171114B2 (ja) * 2007-05-30 2013-03-27 三洋電機株式会社 アルカリ蓄電池用水素吸蔵合金およびその製造方法ならびにアルカリ蓄電池
US8539505B2 (en) * 2007-07-09 2013-09-17 National Instruments Corporation Automatically arranging objects in a selected portion of a graphical program block diagram
JP5642577B2 (ja) * 2010-03-18 2014-12-17 三洋電機株式会社 アルカリ蓄電池およびアルカリ蓄電池システム
KR101857055B1 (ko) * 2010-12-17 2018-05-11 가부시키가이샤 산도쿠 수소 흡장 합금 분말, 부극 및 니켈수소 2차전지
CN102181764A (zh) * 2011-01-28 2011-09-14 厦门钨业股份有限公司 一种无钴低镍贮氢合金
CN102902394A (zh) * 2011-07-28 2013-01-30 宸鸿科技(厦门)有限公司 触控面板以及其侦测方法
JP5716685B2 (ja) * 2012-01-18 2015-05-13 トヨタ自動車株式会社 リチウム電池用負極材料、当該リチウム電池用負極材料を含むリチウム電池、及び、当該リチウム電池用負極材料の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443861A (zh) * 2003-04-16 2003-09-24 华南理工大学 一种纳米晶多相混合稀土-镁系贮氢合金及其制备方法
CN101538660A (zh) * 2009-04-21 2009-09-23 中国科学院长春应用化学研究所 A112Mg17为镁源制备低残单的RE-Mg-Ni系储氢合金的方法
CN102337438A (zh) * 2011-09-26 2012-02-01 华南理工大学 一种具有长周期结构的镁基储氢合金及其制备方法
EP2628812A1 (en) * 2012-02-20 2013-08-21 GS Yuasa International Ltd. Hydrogen storage alloy, electrode, nickel-metal hydride rechargeable battery and method for producing hydrogen storage alloy
CN103165873A (zh) * 2013-02-28 2013-06-19 钢铁研究总院 一种动力电池贮氢电极合金及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708801A (zh) * 2020-12-03 2021-04-27 包头稀土研究院 单相PuNi3型超晶格La-Y-Ni系储氢合金及其制备方法
CN112708801B (zh) * 2020-12-03 2022-04-22 包头稀土研究院 单相PuNi3型超晶格La-Y-Ni系储氢合金的制备方法

Also Published As

Publication number Publication date
CN105349841B (zh) 2019-09-06
US10243203B2 (en) 2019-03-26
EP3185338B1 (en) 2020-01-01
EP3185338A1 (en) 2017-06-28
JP6343393B2 (ja) 2018-06-13
US20170250397A1 (en) 2017-08-31
CN105349841A (zh) 2016-02-24
JP2017532446A (ja) 2017-11-02
EP3185338A4 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP5466015B2 (ja) ニッケル水素蓄電池および水素吸蔵合金の製造方法
JP5146934B2 (ja) 水素吸蔵合金、水素吸蔵合金電極、二次電池、および水素吸蔵合金の製造方法
WO2016026413A1 (zh) 贮氢合金及其制造方法
US11094932B2 (en) Hydrogen storage alloy
JP5718006B2 (ja) 水素吸蔵合金およびニッケル水素二次電池
JP5119551B2 (ja) 水素吸蔵合金とその製造方法、及び二次電池
JP5909600B2 (ja) 水素吸蔵合金
EP1386974A1 (en) Hydrogen storage alloy, production method therefor and ickel-hydrogen secondary battery-use cathode
WO2003054240A1 (en) Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell
JP5700305B2 (ja) 水素吸蔵合金、水素吸蔵合金電極、及び二次電池
JP2013108105A (ja) 水素吸蔵合金及びこの水素吸蔵合金を用いたニッケル水素二次電池
JP2003197188A (ja) リチウムイオン二次電池用負極活物質及びその製造方法
JP2020087517A (ja) アルカリ蓄電池用水素吸蔵合金およびそれを用いたアルカリ蓄電池
JP5716195B2 (ja) 水素吸蔵合金及びこの水素吸蔵合金を用いたアルカリ蓄電池
KR20150142685A (ko) 리튬 이온 2차 전지 음극 활물질용 Si 합금 분말 및 그 제조 방법
WO2001069700A1 (en) Hydrogen absorbing alloy and negative electrode for nickel-metal hydride secondary cell
JP5455297B2 (ja) ニッケル水素蓄電池とその製造方法
JP5224581B2 (ja) ニッケル水素蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833059

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15503942

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017510590

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015833059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015833059

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE