WO2016021557A1 - ポリアリーレンスルフィドの製造方法、及び該製造方法により製造されたポリアリーレンスルフィド - Google Patents

ポリアリーレンスルフィドの製造方法、及び該製造方法により製造されたポリアリーレンスルフィド Download PDF

Info

Publication number
WO2016021557A1
WO2016021557A1 PCT/JP2015/071971 JP2015071971W WO2016021557A1 WO 2016021557 A1 WO2016021557 A1 WO 2016021557A1 JP 2015071971 W JP2015071971 W JP 2015071971W WO 2016021557 A1 WO2016021557 A1 WO 2016021557A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
steam distillation
polymerization
unreacted
pas
Prior art date
Application number
PCT/JP2015/071971
Other languages
English (en)
French (fr)
Inventor
道寿 宮原
博仁 河間
孝一 鈴木
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to US15/327,472 priority Critical patent/US10196486B2/en
Priority to JP2016540223A priority patent/JP6403779B2/ja
Publication of WO2016021557A1 publication Critical patent/WO2016021557A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers

Definitions

  • the present invention provides a polymerization reaction solution containing polyarylene sulfide by polymerizing at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and a dihaloaromatic compound in an organic amide solvent.
  • a production method for producing a polyarylene sulfide comprising a polymerization step to be produced; a separation step for separating a polyarylene sulfide and a separated liquid by solid-liquid separation from a polymerization reaction solution that has undergone the polymerization step, an unreacted dihaloaromatic compound is produced.
  • the present invention relates to a method for producing polyarylene sulfide which is recovered and reused.
  • the present invention also provides a method for producing a polyarylene sulfide comprising a dehydration step in which dehydration is performed during the polymerization reaction (from a raw material mixture and / or a polymerization reaction solution), and an unreacted dihaloaromatic compound is recovered.
  • the present invention relates to a method for producing recycled polyarylene sulfide.
  • Polyarylene sulfides typified by polyphenylene sulfide (hereinafter sometimes abbreviated as “PPS”) are heat resistant, chemical resistant, flame retardant, mechanical It is an engineering plastic with excellent strength, electrical characteristics, dimensional stability, etc., and is widely used as a material for resin parts in a wide range of fields such as electrical / electronic equipment, automotive equipment, and chemical equipment.
  • a sulfur source and p-dichlorobenzene (hereinafter referred to as “pDCB”) are used in an organic amide solvent such as N-methyl-2-pyrrolidone (hereinafter sometimes abbreviated as “NMP”).
  • NMP N-methyl-2-pyrrolidone
  • DHA dihaloaromatic compound
  • the present inventors analyzed the reason and inferred that there are causes in the following four. This is partly cost-effective. Since the conversion rate of DHA in the production of PAS is usually more than 90%, the amount of unreacted DHA remaining in the polymerization reaction solution after the polymerization reaction is small for recovery and reuse, and therefore a small amount of unreacted DHA is not. If the cost (for example, the heat energy cost for distillation or the cost for operation) is too high for the recovery of the reaction DHA, the cost effectiveness is low.
  • stable PAS production there is an effect on the quality and production when the recovered unreacted DHA is reused to produce PAS (hereinafter sometimes simply referred to as “stable PAS production”).
  • stable PAS production in order to meet the demand for quality from the market, there are a wide variety of manufactured products.
  • starting materials, polymerization reaction conditions, etc., and unreacted DHA recovered in the recovery / reuse process The types and amounts of impurities produced are different. Therefore, it is natural to consider that the influence which it has on the quality of the unreacted DHA which causes them, and the manufacturing method of PAS differs.
  • Patent Document 1 a PAS reaction solution slurry is supplied into a stirring tank of a rectification column having a vertical jacketed stirring tank as a distillation kettle, and the slurry is heated while stirring. Then, a method for recovering and purifying the solvent from the slurry of the PAS reaction solution comprising fractionating the evaporated component in the rectification column has been proposed. It is described that in the initial stage of recovery, water is used as the boiling point sequence, and then some unreacted aromatic halide is initially fractionated, with the remainder being the recovery of the polar solvent occupying the majority. However, the rectifying column is initially refluxed and then slightly refluxed after the temperature in the column is stabilized. The initial distillation is received by the receiver, and after completion of the water distillation, the pressure is reduced to obtain a pDCB / NMP solution. It is not described as a highly pure pDCB recovery method.
  • Patent Document 2 a recovery solvent containing at least water, pDCB, NMP, and NaCl from which PAS is recovered from a polymerization solution of PAS is extracted with n-hexanol, and at least water, n
  • Patent Document 2 a recovery solvent containing at least water, pDCB, NMP, and NaCl from which PAS is recovered from a polymerization solution of PAS is extracted with n-hexanol, and at least water, n
  • Patent Document 2 a recovery solvent containing at least water, pDCB, NMP, and NaCl from which PAS is recovered from a polymerization solution of PAS is extracted with n-hexanol, and at least water, n
  • pDCB is recovered from a water-containing mixture containing hexanol, pDCB and NMP and used as a raw material for PAS.
  • this method requires a step of separating and purifying a mixed solution containing four components of NMP, n
  • JP 2010-144085 A proposes a method of recovering unreacted pDCB by azeotropy with water from an NMP solution obtained by separating and recovering PAS from a polymerization reaction solution.
  • the water must be adjusted by adding water to the NMP solution from which PAS has been separated and recovered prior to the azeotropic operation.
  • the recovered unreacted pDCB is reused, the above-mentioned four problems are solved, and it cannot be said that, in particular, it has been sufficiently elucidated whether PAS can be stably produced.
  • Patent Document 4 in order to reduce as much as possible the amount of polyhaloaromatic compound distilled out of the reaction system in the dehydration step during the polymerization reaction, the distilled polyhaloaromatic compound is used as a reflux liquid.
  • a method of returning to the rectification column has been proposed. However, this method cannot completely eliminate the discharge of the polyhaloaromatic compound, and it is difficult to say that the impurities in the polyhaloaromatic compound returned as a reflux liquid are also sufficiently controlled.
  • Patent Document 5 proposes a method using a rectifying column with an intercooler in order to prevent polyhaloaromatic compounds distilling out of the reaction system in the dehydration step during the polymerization reaction. ing.
  • this method requires a rectifying column having a complicated structure, so that the equipment cost increases, and the use of an intercooler cannot satisfy the thermal energy cost.
  • the present inventors sought a simple method for recovering and reusing unreacted DHA, which enables stable PAS production.
  • the inventors of the present invention have problems that prevent the recovery and reuse of the unreacted DHA described above, namely, one is a problem of cost-effectiveness, two is a problem of manufacturing stable PAS, and Sought a manufacturing method that solved the problem of high-efficiency drivability.
  • the effluent or exhaust vapor obtained in the dehydration step during the polymerization reaction contains an organic amide solution, impurities, unreacted sulfur, water, and unreacted DHA.
  • the separated liquid obtained by the separation step after the polymerization reaction includes the produced PAS. Of fine particles that cannot be separated. Therefore, the waste liquid obtained in the dehydration step during the polymerization reaction or the mixed liquid containing the separation liquid can be said to be a hydrous mixed liquid.
  • the exhaust steam obtained in the dehydration step during the polymerization reaction is a water-containing mixed steam.
  • the water-containing mixed solution and the water-containing mixed steam may be collectively referred to as “water-containing mixture”.
  • the water-containing mixed solution contains water, an organic solvent, and the like used in the washing step.
  • the present inventors have sought to recover unreacted DHA that solves the above-mentioned problems from a water-containing mixed solution or water-containing mixed steam containing various components.
  • the present inventors are suitable for distillation, but unexpected thermal decomposition by distillation of each component of the target water-containing mixed liquid or the water-containing mixed steam.
  • steam distillation that can be performed at a lower temperature than distillation is appropriate.
  • impurities generated by the polymerization reaction include hydrophilic impurities such as a sulfur-containing compound and an oxygen-containing compound derived from a sulfur source as a reaction component. It was conceived that these hydrophilic impurities can be solubilized in water.
  • steam distillation is the operation of separating a nonvolatile substance as a residue of impurities from a water-containing liquid mixture having a high boiling point that is insoluble in water and easily insoluble in water. It contributes to both lowering the partial pressure of the entire system "(Chemical Engineering Association, edited by” Revised 5th Edition, Chemical Engineering Handbook “Maruzen Co., Ltd., page 466, left column, middle column (issued March 18, 1988)) Yes.
  • the steam distillation refers to water other than the refluxed water in the steam distillation tower using a water-containing mixed liquid containing a separated liquid separated from the polymerization reaction liquid after the polymerization step by solid-liquid separation.
  • the distillation is performed by adjusting the reflux ratio of water without adding the water, and includes heating the bottom of the column and generating water vapor from the water present in the steam distillation column.
  • the steam distillation refers to water other than the refluxed water in the steam distillation tower, using a water-containing mixed liquid or water-containing mixed steam containing waste liquid or waste steam obtained in the dehydration step during the polymerization reaction.
  • the distillation is performed by adjusting the reflux ratio of water without adding the water, and includes generating steam from the water present in the steam distillation column by heating.
  • the organic amide solvent and water are stably separated, whereby the organic amide solvent is recovered, and together with the unreacted DHA with reduced impurities from water.
  • the present inventors examined whether the separation and recovery would be accurate. If this is possible, the impurities contained in the unreacted DHA are effectively reduced, and the running cost and thermal energy cost for separation are reduced.
  • the organic amide solvent and water are recovered from the water-containing mixed solution or the water-containing mixed vapor containing the polymerization reaction liquid, the separation liquid, the washing waste liquid, and the like with different production recipes. Even if it is a case, it is not necessary to stop the operation or adjust the operation conditions, and it is possible to achieve high-efficiency drivability, or when the recovered unreacted DHA is reused, There were many problems that had to be elucidated, such as whether unreacted unreacted DHA could be recovered.
  • NMP-pDCB-water three-component system is in a single-phase (homogeneous phase) state where the amount (concentration) of water is low, but the amount (concentration) of NMP decreases and the amount (concentration) of water decreases.
  • steam distillation is performed so that NMP is obtained from the bottom of the steam distillation tower and water (including pDCB) is obtained from the top, that is, water and pDCB are obtained from the distillate from the top.
  • water including pDCB
  • pDCB water and pDCB are obtained from the distillate from the top.
  • a liquid-liquid 2 of a phase having a high pDCB concentration and a phase having a high water concentration is used. It is necessary to be in a phase (inhomogeneous phase) state.
  • the inventors of the present invention have used conventional techniques in steam distillation of a water-containing mixed solution or water-containing mixed steam containing a separation liquid or a washing waste liquid in order to control the amount ratio of water at least near the top of the steam distillation column. Instead of adjusting the amount of water by adding water to the water-containing mixed liquid or water-containing mixed steam before steam distillation or introducing steam into the steam distillation tower that also serves as a heat source, steam distillation to adjust the water reflux ratio I thought of doing it.
  • the present inventors perform reflux near the top of the steam distillation column, do not adjust the amount of water by newly adding water in addition to the refluxed water, and also serve as a heat source. Without introducing water vapor into the distillation tower (in other words, without adding new water to the water-containing mixed liquid or water-containing mixed steam to be introduced into the water-distilling tower, and water vapor as a heat source at the bottom of the tower) Without adding new water), by adjusting the reflux ratio of water, steam distillation can be easily carried out in the steam distillation column, that is, at least in the heterogeneous phase state near the top of the column ( It was found that a liquid-liquid two-phase state of pDCB and water can be realized.
  • the present inventors aim to separate the distillate from the top of the steam distillation column into water and unreacted pDCB by the method described later, from this unreacted pDCB. It has been found that impurities contained in unreacted pDCB, which are considered to have an adverse effect on a polymerization reaction represented by, for example, phenol, are reduced.
  • NMP and water can be separated and the impurities are removed without much influence from the component ratio of the water-containing mixed liquid or water-containing mixed steam introduced into the steam distillation tower, particularly the amount of water (water concentration).
  • the high-purity unreacted pDCB can be separated, and high-efficiency continuous operation can be confirmed, and a high-cost apparatus such as a rectification column or an intercooler is not necessary.
  • a high-cost apparatus such as a rectification column or an intercooler is not necessary.
  • the unreacted pDCB and water can be separated by selectively using a stationary reflux device that efficiently separates the liquid using the difference in specific gravity of the liquid, whereby the unreacted pDCB can be selectively separated during the reflux. I found out that I can do it. In this way, high-purity unreacted pDCB was recovered, and even when these were reused in the production of PAS, it was possible to produce PAS stably, and the present invention was achieved.
  • a manufacturing method for manufacturing PAS the following steps: (A) a polymerization step in which at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides is polymerized in an organic amide solvent to form a polymerization reaction solution containing PAS; (B) a separation step of separating the polymerization reaction solution that has undergone the polymerization step into PAS and a separation solution by solid-liquid separation; and (c) a water-containing mixture that is a water-containing mixture containing the separation solution, A recovery step of recovering unreacted dihaloaromatic compounds by steam distillation that adjusts the reflux ratio of water without adding water other than refluxing water;
  • a manufacturing method is provided for manufacturing a PAS comprising:
  • (2) a manufacturing method for manufacturing PAS comprising the following steps: (A) Polymerization comprising polyarylene sulfide by polymerizing a raw material mixture containing at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and dihaloaromatic compounds in an organic amide solvent A polymerization step for producing a reaction solution; (D) a dehydration step of removing water from the water-containing mixture and / or water-containing mixture which is a water-containing mixed steam by steam distillation during the above-described polymerization reaction; and (c) In the dehydration step, a recovery step of recovering the unreacted dihaloaromatic compound from the water-containing mixture by steam distillation in a steam distillation tower that adjusts the water reflux ratio without adding water other than the refluxing water. ;
  • a manufacturing method is provided for manufacturing a PAS comprising:
  • the recovery step is carried out by adding water from the water-containing mixture in addition to refluxing water in a steam distillation tower.
  • the recovery step is (c ′) from the water-containing mixture, in addition to the refluxed water in the steam distillation column.
  • a production method in which the water-containing mixture in the recovery step is a water-containing liquid mixture containing the separated liquid and the cleaning waste liquid recovered in the cleaning step. A method is provided.
  • the measured melt viscosity at a temperature of 310 ° C. and a shear rate of 1,216 sec ⁇ 1 is 0.5 to 5,000 Pa ⁇ s, and the average particle size is 100 to PAS manufactured by the manufacturing method of said (8) which is 5,000 micrometers is provided.
  • high-purity unreacted DHA can be selectively separated and recovered at the time of recovery of the organic amide solvent. At the same time, PAS can be stably produced even if the recovered unreacted DHA is reused. Further, according to the present invention, at the time of dehydration during the polymerization reaction, high purity unreacted DHA can be selectively separated and recovered. At the same time, PAS can be stably produced even if the recovered unreacted DHA is reused.
  • the molded product obtained by using the PAS stably produced by the production method of the present invention includes a wide range of materials such as electrical / electronic equipment parts materials, automotive equipment parts materials, chemical equipment parts materials, water-related parts materials Can be used in the technical field.
  • FIG. 1 is a schematic diagram of steam distillation according to the present invention.
  • FIG. 2 is a schematic view of the stationary reflux apparatus of the present invention.
  • PAS production method of PAS is produced by a production method including a polymerization step and a separation step. That is, the PAS production method of the present invention comprises (a) an organic amide solvent that undergoes a polymerization reaction between DHA and at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides.
  • the polymerization step may include a dehydration step for dehydration (from the raw material mixture or the polymerization reaction solution).
  • Sulfur source At least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides is used as the sulfur source.
  • alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and a mixture of two or more thereof.
  • sodium sulfide and lithium sulfide are preferable because they can be obtained industrially at low cost.
  • alkali metal hydrosulfide examples include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and a mixture of two or more thereof.
  • sodium hydrosulfide and lithium hydrosulfide are preferable because they can be obtained industrially at low cost.
  • alkali metal hydrosulfide a small amount of alkali metal hydrosulfide may be contained.
  • a small amount of alkali metal sulfide may be contained in the alkali metal hydrosulfide.
  • the total molar amount of the alkali metal sulfide and the alkali metal hydrosulfide becomes a sulfur source to be used for the polymerization reaction in the polymerization step after the dehydration step to be arranged, if necessary, that is, the “charged sulfur source”. .
  • an alkali metal hydroxide is used in combination.
  • the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and a mixture of two or more thereof.
  • sodium hydroxide and lithium hydroxide are preferable because they can be obtained industrially at low cost.
  • a dihaloaromatic compound is a dihalogenated aromatic compound having two halogen atoms directly bonded to an aromatic ring.
  • a halogen atom refers to each atom of fluorine, chlorine, bromine, and iodine. In the same dihaloaromatic compound, two halogen atoms may be the same or different. These dihaloaromatic compounds can be used alone or in combination of two or more.
  • dihaloaromatic compound examples include, for example, o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenyl sulfone. , Dihalodiphenyl sulfoxide, dihalodiphenyl ketone and the like.
  • p-dihalobenzene p-dihalobenzene, m-dihalobenzene, and a mixture of both are preferable, p-dihalobenzene is more preferable, and p-dichlorobenzene (pDCB) is particularly preferably used.
  • pDCB p-dichlorobenzene
  • Branching / crosslinking agent In order to introduce a branched or crosslinked structure into the produced PAS, a polyhalo compound having 3 or more halogen atoms bonded (not necessarily an aromatic compound), a polyhalo compound as a branching / crosslinking agent, Preferably, trihalobenzene is used.
  • Organic amide solvent An organic amide solvent which is an aprotic polar organic solvent is used as a solvent for the dehydration reaction and polymerization reaction.
  • the organic amide solvent include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl- ⁇ -caprolactam; N-methyl-2-pyrrolidone, N-alkylpyrrolidone compounds or N-cycloalkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone; N, N-dialkylimidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone; tetramethylurea, etc. Tetraalkylurea compounds; hexaalkylphosphoric acid triamide compounds such as hexamethylphosphoric acid triamide. These organic amide solvents may be used alone or in combination of two or more.
  • N-alkylpyrrolidone compounds N-cycloalkylpyrrolidone compounds, N-alkylcaprolactam compounds, and N, N-dialkylimidazolidinone compounds are preferable, and in particular, N-methyl-2-pyrrolidone ( NMP), N-methyl- ⁇ -caprolactam, and 1,3-dialkyl-2-imidazolidinone are preferably used, and NMP is particularly preferred.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl- ⁇ -caprolactam
  • 1,3-dialkyl-2-imidazolidinone 1,3-dialkyl-2-imidazolidinone
  • polymerization aids Various polymerization aids can be used as necessary to promote the polymerization reaction.
  • Specific examples of polymerization aids include water, organic carboxylic acid metal salts, organic sulfonic acid metal salts, alkali metal halides such as lithium halides, alkaline earth metal halides, and aromatic carboxylic acids that are generally known as polymerization aids for PAS. Examples include alkaline earth metal salts of acids, alkali metal phosphates, alcohols, paraffinic hydrocarbons, and mixtures of two or more thereof.
  • the organic carboxylic acid metal salt an alkali metal carboxylate is preferable.
  • alkali metal carboxylate examples include lithium acetate, sodium acetate, potassium acetate, sodium propionate, lithium valerate, lithium benzoate, sodium benzoate, sodium phenylacetate, potassium p-toluate, and two types thereof. The mixture of the above can be mentioned.
  • sodium acetate is particularly preferable because it is inexpensive and easily available.
  • the amount of the polymerization aid used varies depending on the type of the compound, but is usually 0.01 to 10 mol, preferably 0.1 to 2 mol, more preferably 0.2 to 1.8 mol per mol of the charged sulfur source. Mol, particularly preferably in the range of 0.3 to 1.7 mol.
  • the polymerization assistant is an organic carboxylic acid metal salt, an organic sulfonate, and an alkali metal halide
  • the upper limit of the amount used is preferably 1 mol or less, more preferably 1 mol with respect to 1 mol of the charged sulfur source. It is desirable that it is 0.8 mol or less.
  • Phase Separation Agent Various phase separation agents are used in order to accelerate the polymerization reaction and obtain a high degree of polymerization PAS in a short time, or to cause phase separation and obtain granular PAS.
  • a phase separation agent is a compound that dissolves in an organic amide solvent by itself or in the presence of a small amount of water and has an action of reducing the solubility of PAS in an organic amide solvent.
  • the phase separation agent itself is a compound that is not a solvent for PAS.
  • phase separation agent a known compound known to function as a phase separation agent can be used.
  • the phase separation agent includes the compound used as the above-mentioned polymerization aid.
  • the phase separation agent is a step of performing a polymerization reaction in a phase separation state, that is, as a phase separation agent in the phase separation polymerization step. It means a compound used in an amount ratio that can function, or in an amount ratio sufficient to cause phase separation in the presence of the polymer after the end of polymerization.
  • phase separation agents include water, organic carboxylic acid metal salts, organic sulfonic acid metal salts, alkali metal halides such as lithium halides, alkaline earth metal halides, alkaline earth metal salts of aromatic carboxylic acids, phosphorus Examples include acid alkali metal salts, alcohols, and paraffinic hydrocarbons.
  • organic carboxylic acid metal salts include alkali metal carboxylic acids such as lithium acetate, sodium acetate, potassium acetate, sodium propionate, lithium valerate, lithium benzoate, sodium benzoate, sodium phenylacetate, and potassium p-toluate. Salts are preferred.
  • phase separation agents can be used alone or in combination of two or more. Among these phase separation agents, water that is inexpensive and easy to post-process, or a combination of water and an organic carboxylic acid metal salt such as an alkali metal carboxylate is particularly preferable.
  • phase separation agent other than water can be used in combination as a polymerization aid from the viewpoint of efficiently performing the phase separation polymerization.
  • the total amount may be an amount that can cause phase separation.
  • the phase separation agent may coexist at least partially from the time when the polymerization reaction component is charged, but the phase separation agent may be added during the polymerization reaction or to form phase separation after the polymerization reaction. It is desirable to adjust to a sufficient amount.
  • Polymerization, separation, and washing PAS is produced by polymerizing at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and DHA in an organic amide solvent to produce PAS.
  • a polymerization reaction solution containing PAS by polymerizing at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides in an organic amide solvent, and DHA.
  • the polymerization step for producing is essential.
  • a preferable polymerization step of the present invention includes at least one sulfur selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides in an organic amide solvent containing water derived from a polymerization aid, a phase separation agent, and the like.
  • This is a polymerization process in which a source and DHA are subjected to a polymerization reaction to generate a polymerization reaction solution containing PAS.
  • the polymerization method for producing PAS may be any polymerization method as long as the present invention is not impaired.
  • polymerization methods for producing granular PAS are broadly classified as follows: (i) the polymerization step includes a phase separation polymerization step, and after the phase separation polymerization, the method is gradually cooled; (ii) the phase separation agent is added after the polymerization reaction And (iii) a method using a polymerization aid such as lithium chloride, and (iv) a method of cooling the gas phase portion of the reaction vessel.
  • phase-separation polymerization a polymerization reaction step
  • phase-separation polymerization a polymerization reaction step
  • a phase separation state in which a polymer-rich phase and a polymer-rich phase are mixed in the polymerization reaction system in the presence of a phase separation agent by controlling polymerization conditions.
  • granular PAS is produced by a polymerization method including “step”
  • a granular PAS having a high degree of polymerization is obtained, so that the sieving efficiency in the separation step is increased, and the yield and productivity are increased. Will improve. Therefore, it is an advantageous polymerization method for increasing the PAS yield of granular products having a high degree of polymerization.
  • the polymerization process in this case will be described in detail.
  • the polymerization process included in the production method for producing PAS can be carried out through the following preparation process.
  • a mixture remaining in the system and DHA are mixed in a dehydration step that is arranged as desired, and an alkali metal hydroxide and water are added as necessary to prepare an organic amide solvent, a sulfur source (a charged sulfur source). ), A feed mixture containing moisture and DHA is prepared.
  • the amount of DHA used is usually 0.90 to 1.50 mol, preferably 0.92 to 1.10 mol, and more preferably 0.95 to 1.05 mol with respect to 1 mol of the charged sulfur source.
  • the charged molar ratio of DHA to the sulfur source becomes too large, it becomes difficult to produce a high molecular weight polymer.
  • the charged molar ratio of DHA to the sulfur source becomes too small, a decomposition reaction tends to occur, and it becomes difficult to carry out a stable polymerization reaction.
  • the amount of the alkali metal hydroxide used is usually 0.95 to 1.09 mol, preferably 0.98 to 1 mol with respect to 1 mol of the charged sulfur source.
  • the amount is 1.085 mol, more preferably 0.99 to 1.083 mol.
  • the sulfur source in the preparation process is called the “prepared sulfur source”.
  • the reason is that the amount of the sulfur source put into the reaction tank before the dehydration step varies in the dehydration step.
  • the charged sulfur source is consumed by reaction with DHA in the polymerization step, but the molar amount of the charged sulfur source is based on the molar amount in the charged step.
  • the amount of the organic amide solvent is usually 0.1 to 10 kg, preferably 0.13 to 5 kg, more preferably 0.15 to 2 kg per mol of the charged sulfur source.
  • Polymerization step In the polymerization step, the charge mixture prepared in the charge step is heated to a temperature of usually 170 to 290 ° C, preferably 180 to 280 ° C, more preferably 190 to 275 ° C to start a polymerization reaction, Allow polymerization to proceed.
  • the polymerization reaction time is generally in the range of 10 minutes to 72 hours, preferably 30 minutes to 48 hours.
  • the polymerization reaction is preferably performed in a two-stage process including a pre-stage polymerization process and a post-stage polymerization process.
  • this polymerization step in an organic amide solvent, at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and DHA are generated in the polymerization reaction system in the presence of a phase separation agent. It includes a polymerization step in which a polymerization reaction is performed in a phase-separated state in which a polymer rich phase and a produced polymer dilute phase coexist. The polymerization reaction is performed at a temperature of 170 to 290 ° C.
  • the phase separation agent water described above, a compound known to function as a phase separation agent, or the like is preferably used.
  • At least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and a DHA are polymerized in an organic amide solvent at a temperature of 170 to 270 ° C.
  • a phase separation agent is added to the polymerization reaction mixture so that the phase separation agent is present in the polymerization reaction system, and then the polymerization reaction mixture is heated, It is preferable to continue the polymerization reaction at a temperature of 245 to 290 ° C. in a phase separation state in which the produced polymer rich phase and the produced polymer dilute phase coexist in the polymerization reaction system in the presence of the phase separation agent.
  • At least one sulfur source selected from the group consisting of an alkali metal sulfide and an alkali metal hydrosulfide is polymerized in an organic amide solvent, and the DHA has a conversion rate of 30. %, Preferably 80 to 99% of the pre-polymerization step; and in the presence of a phase separation agent, polymerization is performed in a phase-separated state in which the produced polymer rich phase and the produced polymer dilute phase coexist in the polymerization reaction system. It is preferable to carry out the polymerization reaction by at least two polymerization steps including a subsequent polymerization step in which the reaction is continued.
  • At least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and DHA are added in an amount of 0.01 per mole of charged sulfur source.
  • the polymerization reaction is performed by at least two stages of polymerization processes including a subsequent polymerization process in which the polymerization reaction is continued in a phase-separated state in which the rich phase and the resulting polymer dilute phase are mixed. Masui.
  • the conversion rate of DHA is a value calculated by the following equation.
  • the amount of coexisting water in the reaction system in the pre-stage polymerization step is usually 0.01 to 2.0 mol, preferably 0.05 to 1.8 mol, more preferably 0.5 to 1.6 mol, per mol of the charged sulfur source. Particularly preferred is the range of 0.8 to 1.5 mol.
  • prepolymer In the former polymerization step, it is desirable to produce a polymer (sometimes referred to as “prepolymer”) having a melt viscosity of usually 0.1 to 30 Pa ⁇ s measured at a temperature of 310 ° C. and a shear rate of 1,216 sec ⁇ 1 . .
  • the post-polymerization step is not a simple fractionation / granulation step of the polymer (prepolymer) produced in the pre-polymerization step, but is for causing an increase in the degree of polymerization of the polymer.
  • the subsequent polymerization step it is particularly preferable to use water as the phase separation agent, and more than 2.0 mol, more preferably less than 10 mol, more preferably more than 2.0 mol, more than 9 mol, relative to 1 mol of the charged sulfur source. It is preferable to adjust the amount of water in the polymerization reaction system so that 2.1 to 8 mol, particularly preferably 2.2 to 7 mol of water is present.
  • the degree of polymerization of the produced PAS may decrease.
  • water and another phase separation agent other than water can be used in combination.
  • the amount of water in the polymerization reaction system is 0.1 to 10 mol, preferably 0.3 to 10 mol, more preferably 0.4 to 9 mol, particularly preferably 0. It is preferable to adjust the amount within the range of 5 to 8 mol, and to make the phase separation agent other than water exist within the range of 0.001 to 3 mol per mol of the charged sulfur source.
  • phase separation agents that are particularly preferred to be used in combination with organic carboxylic acid metal salts, especially alkali metal carboxylates, in which case water is added in an amount of 0.5 to 1 mol per mol of the charged sulfur source. It is used within a range of 10 mol, preferably 0.6 to 7 mol, particularly preferably 0.8 to 5 mol, and alkali metal carboxylate is used in an amount of 0.001 to 0.7 mol, preferably 0.02 to It may be used within a range of 0.6 mol, particularly preferably 0.05 to 0.5 mol.
  • the polymerization temperature in the subsequent polymerization step is in the range of 245 to 290 ° C.
  • the polymerization temperature is less than 245 ° C., it is difficult to obtain a high degree of polymerization, and when it exceeds 290 ° C., the PAS and the organic amide solvent are decomposed. There is a fear.
  • a temperature range of 250 to 270 ° C. is preferable because a PAS having a high degree of polymerization can be easily obtained.
  • a dehydration step may be arranged as desired before and / or during the preparation step and / or during the polymerization step in carrying out the polymerization step.
  • water consisting of hydrated water (crystal water), an aqueous medium, by-product water and the like is dehydrated until it falls within the required amount.
  • the dehydration step can be performed, for example, by steam distillation, and specifically by steam distillation in a steam distillation column.
  • the amount of coexisting water in the polymerization reaction system is usually 0.01 to 2.0 mol, preferably 0.05 to 1.8 mol, more preferably 0.5 to 0.1 mol with respect to 1 mol of the charged sulfur source. Dehydrate to 1.6 moles.
  • the sulfur source after the dehydration step and before the start of the polymerization step is referred to as “prepared sulfur source”. If the amount of water is too low in the dehydration step before charging or during charging, water may be added before the polymerization step to adjust the water content to a desired level.
  • an alkali metal hydrosulfide When an alkali metal hydrosulfide is used as the sulfur source, 0.9 to 1.1 mol, preferably 0.91 per mol of the organic amide solvent, the alkali metal hydrosulfide, and the alkali metal hydrosulfide in the dehydration step.
  • the mixture containing ⁇ 1.08 mol, more preferably 0.92 to 1.07 mol, particularly preferably 0.93 to 1.06 mol of alkali metal hydroxide is heated to react, and the mixture is reacted. It is preferable that at least a part of the distillate containing water is discharged out of the system.
  • the PAS production method of the present invention includes a separation step in which (b) the polymerization reaction solution that has undergone the polymerization step is separated into PAS and a separation solution by solid-liquid separation.
  • the PAS separation and recovery process after the polymerization step can be performed, for example, by a separation step using sieving.
  • the separation step after completion of the polymerization reaction, after cooling the product slurry, which is a reaction solution containing the produced PAS, the product slurry is diluted with water if necessary, and then sieved, so that the reaction is performed. PAS can be separated and recovered from the liquid.
  • granular PAS can be generated, and therefore separation by sieving using a screen is used. It is also possible to screen PAS from the product slurry at high temperature without cooling to about room temperature.
  • the opening diameter of the screen used for separation by sieving in the separation step is usually 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh), preferably 90 ⁇ m (170 mesh) to 150 ⁇ m (100 mesh). It is. At least one screen in this range is used, but it may be used in multiple stages. Usually, a screen having an opening diameter of 150 ⁇ m (100 mesh) is often used.
  • the recovery rate of the PAS recovered as a product is the PAS mass (assuming that all of the available sulfur components in the charged sulfur source present in the reaction can before charging or after the dehydration step during charging are converted to PAS ( Theoretical amount) is calculated as the total amount of PAS obtained.
  • This recovery rate depends on the sieve opening of the screen, but in the case of at least one screen having an opening of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh), it is usually 80% by mass or more. Is 83% by mass or more, and in some cases, 85% by mass or more.
  • the upper limit of the recovery rate is about 99.5% by mass.
  • the average particle diameter of the obtained PAS depends on the opening diameter of the screen of the sieve, but in the case of at least one screen having an opening diameter of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh),
  • the thickness is 100 to 5,000 ⁇ m, preferably 120 to 3,000 ⁇ m, more preferably 130 to 1,500 ⁇ m.
  • the melt viscosity of the obtained PAS depends on the mesh opening diameter of the sieve screen, but in the case of at least one screen having an opening diameter of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh), the melt viscosity of PAS Is usually 0.5 to 5,000 Pa ⁇ s, preferably 1 to 4,500 Pa ⁇ s, more preferably 2 to 4 as measured under conditions of a temperature of 310 ° C. and a shear rate of 1,216 sec ⁇ 1. 000 Pa ⁇ s.
  • the PAS production method of the present invention is separated in the separation process in order to minimize as much as possible NMP adhering to the PAS, unreacted DHA, unreacted sulfur source, and by-product alkali metal salts generated in the polymerization process.
  • the PAS can be cleaned with at least one cleaning solution selected from the group consisting of water, an organic solvent, and a mixed solution of water and an organic solvent.
  • the organic solvent used for the washing treatment is the same organic amide solvent as the polymerization solvent, or a hydrophilic organic solvent such as ketones (for example, methyl ethyl ketone or acetone), alcohols (for example, methanol, ethanol, isopropanol, or hexane). It is preferable to wash, and one kind of these may be used, or a plurality of kinds may be mixed and used.
  • the organic solvent is excellent in the effect of removing impurities (low molecular weight components) such as oligomers and decomposition products, and is also preferably acetone from the viewpoint of economy and safety.
  • the cleaning liquid it is more preferable to use it as a mixed solution of water and acetone.
  • a water-containing mixed solution having a water ratio of preferably 1 to 60% by mass, more preferably 1 to 30% by mass, and particularly preferably 1 to 20% by mass is used. It is preferable for increasing the removal efficiency of organic impurities.
  • the PAS production method of the present invention includes an inorganic acid (for example, hydrochloric acid) in addition to a cleaning treatment with at least one cleaning liquid selected from the group consisting of water, an organic solvent, and a mixed solution of water and an organic solvent.
  • an inorganic acid for example, hydrochloric acid
  • at least one cleaning liquid selected from the group consisting of water, an organic solvent, and a mixed solution of water and an organic solvent.
  • Acid washing for stabilizing the end group of PAS with an aqueous solution of an organic acid (for example, acetic acid) and a salt thereof (for example, ammonium chloride) can be performed before and after the above washing treatment.
  • the washed PAS is separated from the washing solution using a screen or a centrifuge.
  • a wet cake of PAS having a liquid content of usually 30 to 75% by mass, and often about 40 to 65% by mass is obtained.
  • the cleaning liquid used in the cleaning process, the water that has cleaned the wet cake, and the like are collected in a recovery tank as a cleaning waste liquid.
  • the method for producing PAS of the present invention includes (c) a water-containing mixed solution containing a separated liquid, without adding water other than the refluxed water in a steam distillation column.
  • This is a production method that always includes a recovery step of recovering unreacted DHA by steam distillation for adjusting the reflux ratio of water.
  • without adding water in addition to the refluxed water, without adding new water for adjusting the amount of water to the water-containing mixture, and also introducing water vapor that also serves as a heat source. It is not.
  • the method for producing a PAS of the present invention includes, in (c) the dehydration step, a water-containing mixed solution containing a raw material mixture and / or a polymerization reaction solution and / or a water-containing mixed steam in a steam distillation column.
  • the production method always includes a recovery step of recovering the unreacted dihaloaromatic compound by steam distillation that adjusts the reflux ratio of water without adding water in addition to the refluxed water.
  • without adding water means not adding new water for adjusting the amount of water to the water-containing mixed liquid and / or water-containing mixed steam in addition to the refluxed water, and also serves as a heat source. Also, no steam is introduced.
  • the recovery step is unreacted by steam distillation that adjusts the water reflux ratio without adding water to the water-containing mixed liquid and / or water-containing mixed steam without adding water in addition to the water to be refluxed. It is preferably a recovery step in which water containing DHA and an organic amide solvent are separated and unreacted DHA is recovered from water containing the unreacted DHA.
  • the waste water collected in the washing step arranged as desired may be mixed and used for the water-containing mixed liquid containing the separation liquid.
  • the PAS production method of the present invention further includes a washing step for washing the PAS separated in the separation step between the separation step and the collection step, and at that time, the water-containing mixed liquid in the collection step is separated. It is preferable that it is a water-containing liquid mixture containing a liquid and the washing
  • the top of the column is set in the range of 20 to 95 ° C. near the boiling point of the organic solvent used, the water-containing mixture is led to the distillation column for organic solvent recovery, and the organic solvent is recovered from the top of the column.
  • a water-containing mixed solution containing unreacted DHA, water, an organic amide solvent, and the like that is, a water-containing mixed solution containing impurities and containing unreacted DHA, water, an organic amide solvent, and the like is recovered.
  • the organic solvent recovered from the top of the column is reused as a cleaning liquid.
  • the top product from the top is condensed and water and unreacted DHA are separated from the top product. That is, it is separated into water containing impurities in a solubilized state (hereinafter sometimes simply referred to as “water”) and unreacted DHA.
  • water water containing impurities in a solubilized state
  • the melting point is 53.5 ° C., and therefore, it is preferable to stand and separate from water at a temperature equal to or higher than the melting point.
  • the reflux ratio is calculated by using the water in the distillate from the top of the steam distillation column, which is discharged without being refluxed, as the denominator and the refluxing water as the numerator.
  • the unreacted DHA in the lower part is detected and collected by visual detection or a detection device such as a density meter or a hydraulic pressure meter.
  • the steam distillation in the recovery step in the PAS production method of the present invention is preferably performed in a steam distillation tower equipped with a stationary reflux apparatus.
  • a static reflux apparatus a method of visually detecting and extracting the interface between unreacted DHA and water, or detecting the level of the interface between unreacted DHA and water by pressure (or unreacted DHA and water).
  • the sensor can detect the difference (detected with a hydrometer, refractive index sensor, etc.), and the extraction valve is opened when a certain condition is met, and is automatically removed when it falls below a certain value.
  • FIG. 1 is a schematic diagram of a steam distillation column (1) with a stationary reflux device (2).
  • a water-containing mixed solution (A) containing a separated liquid is converted into a steam distillation column (1) with a stationary reflux device (2).
  • the tower top (B) of the steam distillation tower is condensed by cooling with a condenser (not shown), led to the stationary reflux apparatus (2), unreacted DHA (F), and impurities in a solubilized state.
  • the tower bottom is heated with a heater (not shown).
  • the boiling point of pDCB at atmospheric pressure is 174 ° C., which is lower than the boiling point of NMP at 202 ° C.
  • the temperature at 190 to 230 ° C. preferably 200 to 220 ° C.
  • water and pDCB are separated as vapor at the top of the steam distillation column and NMP having a high boiling point is separated at the bottom of the column and recovered.
  • the temperature at the top of the column at atmospheric pressure is 90 to 110 ° C., preferably 95 to 105 ° C. However, these temperatures vary depending on the operating pressure of the steam distillation column.
  • the top (B) of the steam distillation column is condensed by cooling to become liquid pDCB and water. Since the melting point of pDCB is 53.5 ° C., the cooling temperature is higher than this temperature. Liquid pDCB (if solid, the density is a is about 1.25 g / cm 3) and water can be separated by the difference in liquid density.
  • the stationary reflux apparatus having the partition plate (4) of FIG. 2 is used, and water having a low liquid specific gravity is separated into two partitions using the partition plate (4), and the water is refluxed. Depending on the ratio, part of the water is refluxed to the steam distillation column. Moreover, the water which is not recirculated is discharged
  • the pDCB having a high liquid specific gravity at the bottom of the stationary reflux apparatus is set so that the interface between the pDCB and water comes to the observation window (3) of the discharge section using the siphon (5). See (3) and collect only pDCB.
  • FIG. 2 is a schematic diagram of separation of water and pDCB in the stationary reflux apparatus.
  • the height (hd) of pDCB in the siphon tube (5) is the height of water to the interface (hw) and the height of pDCB.
  • hd hw ⁇ ( ⁇ w / ⁇ p) + hp
  • the stationary reflux apparatus is provided with a partition plate that divides the tank horizontally into two in a horizontal tank, a discharge port is provided at the bottom of one partition, and a viewing window that communicates with the bottom at the bottom of one partition.
  • a discharge portion is provided, a discharge port is provided in the discharge portion, and an inverted U-shaped siphon tube is provided in the discharge port.
  • Adjusting the reflux ratio of water in steam distillation is to continuously control the amount of water in the column (water concentration) so that steam distillation is possible, that is, at least the amount of water near the top of the column.
  • the control is continuously performed so as to be in a heterogeneous phase state (a liquid-liquid two-phase state of unreacted pDCB and water).
  • the NMP-pDCB-water ternary system contains NMP that is compatible with both pDCB and water, and thus realizes a heterogeneous phase state (pDCB and water liquid-liquid two-phase state).
  • the NMP concentration needs to be low and the water concentration needs to be high. That is, there is almost no NMP in the vicinity of the top of the steam distillation column. Therefore, in order to realize a heterogeneous phase state (pDCB and water liquid-liquid two phase state), water should be refluxed. It is.
  • the partial pressure of water + pDCB is equal to the total pressure. Therefore, the amount ratio of pDCB and water in the distillate is constant regardless of the amount of pDCB in the water-containing mixture.
  • the reflux ratio must be determined so that all of the pDCB in the water-containing mixture introduced into the steam distillation column can be recovered using the composition of the distillate.
  • the reflux ratio is calculated using the water in the distillate from the top of the steam distillation column as the denominator of water that is not refluxed, and the refluxing water as the numerator. , Preferably 0.2 to 15, more preferably 0.4 to 7.5.
  • the recovery rate of the unreacted DHA recovered by the steam distillation of the present invention is 0.5 to 7% by mass, preferably 0.8 to 6% by mass, more preferably 1 based on the DHA used in the polymerization reaction. ⁇ 5% by mass.
  • the purity of the unreacted DHA recovered by the steam distillation of the present invention is usually 90 to 99.9% by mass, preferably 95 to 99.9% by mass, more preferably 97 to 99.9% by mass. Is obtained.
  • Unreacted DHA obtained by steam distillation from the water-containing mixture described above can be reused as part or all of DHA that is a polymerization raw material in the polymerization process of PAS.
  • the recovery step further includes purification of unreacted DHA after steam distillation.
  • the recovery step uses a water-containing mixed solution containing a separation liquid, or a water-containing mixed solution containing a separation liquid and a washing waste liquid collected in the washing step. It is preferable to use a recovery step of recovering unreacted DHA by steam distillation that adjusts the reflux ratio of water without adding water other than refluxing water, and further purifying the unreacted DHA.
  • Purification is a step of distilling unreacted DHA. Since the amount of processing at one time is small, unreacted DHA recovered by steam distillation is collected and generally performed by batch processing. In this case, the distillation purification is performed in a purification distillation column. High-purity unreacted DHA is obtained from the top of the purified distillation column, and high-boiling impurities are separated from the bottom of the purified distillation column. This purification can be performed any number of times.
  • pDCB When pDCB is used as DHA, unreacted pDCB recovered from steam distillation is introduced into a purification distillation column, and the top of the column is set at 170 to 180 ° C., preferably 174 to 177 ° C. Usually, the operation is carried out with a reflux of a certain reflux ratio or more, and when the temperature is within the range, the distillate is recovered.
  • the unreacted DHA thus purified by distillation is usually 97.5 to 99.99% by mass, preferably 98.5 to 99.99% by mass, more preferably 99.0 to 99.99% by mass, particularly preferably. Can be obtained with a purity of 99.3 to 99.99% by mass.
  • the purity of the unreacted DHA to be reused needs to be 99.5% by mass or more, preferably 99.7% by mass or more.
  • the unreacted DHA purified by distillation DHA having a purity of 100% by mass is theoretically possible, but the productivity is reduced correspondingly, and the yield of unreacted DHA is reduced.
  • Organic Amide Solvent The recovered organic amide solvent, which is the bottom product of the steam distillation column, can be reused as it is, but in many cases, it is purified by a polymerization solvent purification distillation column.
  • NMP is used as the organic amide solvent
  • high-boiling impurities are often separated and purified by a polymerization solvent purification distillation column.
  • the purified NMP is reused as a polymerization solvent.
  • Step of Reusing Unreacted DHA In the method for producing PAS of the present invention, after the recovery step, (e) the unreacted DHA recovered in the recovery step is reused as part or all of the DHA in the polymerization step. It is preferable to provide a reuse process.
  • the recovered unreacted DHA can be directly used for PAS polymerization, but is usually mixed with DHA in a raw material tank and used for PAS polymerization.
  • Unreacted DHA may be mixed with commercially available DHA.
  • the mixing ratio of commercially available DHA and recovered unreacted DHA can be set to an appropriate mixing ratio depending on the purpose of use of PAS as a product.
  • the phenol concentration in the product slurry liquid that is the polymerization reaction liquid after the polymerization step is usually 500 to 3,500 ppm.
  • the preferred range is 500 to 3,000 ppm, and the most preferred range is 500 to 2,600 ppm.
  • the recovered unreacted DHA is reused as DHA in the polymerization process, followed by a polymerization process, a separation process, and a recovery process, and then the unreacted DHA recovered in this recovery process is recovered.
  • the polymerization process, the separation process, and the recovery process are reused as DHA in the polymerization process, and the unreacted DHA recovered in the recovery process is further reused as the DHA in the polymerization process.
  • the unreacted DHA recovered repeatedly can be reused as DHA in the polymerization process repeatedly through the recovery process.
  • the recovered unreacted DHA When the recovered unreacted DHA is used, it is appropriate to use it usually at 0.1 to 100% by mass, preferably 0.5 to 50% by mass, more preferably 1 to 30% by mass based on the total amount of DHA. In particular, when the purity of unreacted DHA is less than 99.5% by mass, it is 0.1 to 40% by mass, preferably 0.1 to 20% by mass, and particularly preferably 0.1 to 10% by mass. This is because the lower the degree of purification, the better the less unreacted DHA is used for stable control of melt viscosity.
  • the PAS obtained by reusing part or all of the recovered unreacted DHA of the present invention has an average particle size and melt viscosity equivalent to those of the PAS recovered as the above-mentioned product, and is thermally stable. The same properties can be obtained, and they can be sufficiently put into practical use.
  • melt viscosity was measured by Capillograph 1-C manufactured by Toyo Seiki.
  • capillary a flat die having a diameter of 1 mm ⁇ ⁇ length of 10 mm was used.
  • the set temperature was 310 ° C.
  • the polymer sample was introduced into the apparatus and held at 310 ° C. for 5 minutes, and then the melt viscosity was measured at a shear rate of 1,216 sec ⁇ 1 .
  • Thermal stability Using a Capillograph 1-C manufactured by Toyo Seiki, the melt viscosity (shear rate 1216 sec -1 ) after 5 minutes, 15 minutes, and 30 minutes of heating at a measurement temperature of 310 ° C is measured and heated. Thermal stability was evaluated based on the measured values after 5 minutes and the melt viscosity retention rate after 15 minutes and 30 minutes. A retention rate of 95% or more was evaluated as having good thermal stability.
  • Example 1 In Production Example 1, a liquid containing a mixture of the separation liquid stored in the separation liquid tank in the separation process and the cleaning waste liquid stored in the cleaning drainage tank in the cleaning process was used as a water-containing mixed liquid. By using a distillation column for organic solvent recovery, the water-containing mixture was distilled to recover acetone at the top of the column, and the water-containing mixture at the bottom of the column was used in the recovery step.
  • Example 2 (Recovery process of unreacted pDCB) PDCB was recovered in the same manner as in Example 1 except that the reflux ratio was 1.5. The purity of pDCB recovered by steam distillation was 98.5% by mass. The recovery rate of the recovered pDCB was 2% by mass based on the pDCB used in Production Example 1.
  • Example 3 (Recovery process of unreacted pDCB) PDCB was recovered in the same manner as in Example 1 except that the reflux ratio was 5.0. The purity of pDCB recovered by steam distillation was 99.01% by mass. The recovery rate of the recovered pDCB was 2% by mass based on the pDCB used in Production Example 1.
  • Example 4 Purification of unreacted pDCB
  • the pDCB recovered in the same manner as in Example 1 was distilled using a purification distillation column. Those having a boiling point of 174 ° C. to 178 ° C. were collected from the top of the column and recovered as pDCB. The purity of pDCB thus purified was 99.8% by mass. The recovery rate of this pDCB was 1.8% by mass based on the pDCB used in Production Example 1.
  • Example 5 Purification of unreacted pDCB
  • the pDCB recovered in the same manner as in Example 2 was distilled using a purification distillation column.
  • the purity of the pDCB thus purified by distillation was 99.93% by mass.
  • the recovery rate of this pDCB was 1.7% by mass based on the pDCB used in Production Example 1.
  • the PAS of Examples 4 and 5 using the unreacted pDCB of the present invention has the same melt viscosity as that of the PAS of Production Example 1, and in terms of thermal stability, Production Example 1 There was no inferiority compared to PAS. Based on this result, it can be understood that PAS having a target melt viscosity can be sufficiently industrially produced even if the recovered pDCBs of Examples 4 and 5 are used as they are without blending.
  • water is newly added to the water-containing mixed solution containing the separated solution separated from the PAS by solid-liquid separation from the polymerization reaction solution after the polymerization of PAS, in addition to the refluxing water.
  • water vapor is not introduced as a heat source (in other words, water is not added), and water vapor distillation is performed to adjust the reflux ratio of water.
  • Reaction DHA was recovered.
  • PAS could be stably produced.
  • by incorporating it into a stationary reflux apparatus it has become possible to separate easily due to a difference in liquid specific gravity between unreacted DHA and water.
  • water is newly added to the water-containing mixed liquid and / or water-containing mixed steam discharged from the dehydration step performed during the polymerization reaction of PAS in addition to the refluxed water.
  • the reflux ratio of water without adjusting the amount, and without introducing water vapor as a heat source (in other words, without adding water)
  • high-purity distillation is performed. Unreacted DHA was recovered.
  • PAS could be stably produced.
  • by incorporating it into a stationary reflux apparatus it has become possible to separate easily due to a difference in liquid specific gravity between unreacted DHA and water.
  • the manufacturing cost can be reduced, the competitiveness of PAS as plastics can be increased, and waste can be reduced.
  • the molded product obtained by using the PAS stably produced by the production method of the present invention includes a wide range of materials such as electrical / electronic equipment parts materials, automotive equipment parts materials, chemical equipment parts materials, water-related parts materials, etc. Can be used in the technical field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

 ポリアリーレンスルフィドを製造する製造方法において、未反応ジハロ芳香族化合物を回収・再利用すること。 (a)重合工程;(b)分離工程;及び(c)該分離液を含む含水混合液である含水混合物から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応ジハロ芳香族化合物を回収する回収工程;を含むポリアリーレンスルフィドを製造する製造方法。または、(a)重合工程;(d)脱水工程;(c)該脱水工程において、原料混合物および/もしくは重合反応液を含む含水混合液並びに/または含水混合蒸気である含水混合物から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応ジハロ芳香族化合物を回収する回収工程;を含むポリアリーレンスルフィドを製造する製造方法。

Description

ポリアリーレンスルフィドの製造方法、及び該製造方法により製造されたポリアリーレンスルフィド
 本発明は、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させポリアリーレンスルフィドを含む重合反応液を生成する重合工程;重合工程を経た重合反応液から、固液分離によりポリアリーレンスルフィドと分離液とに分離する分離工程;を含むポリアリーレンスルフィドを製造する製造方法において、未反応ジハロ芳香族化合物を回収し、再利用するポリアリーレンスルフィドの製造方法に関する。
 また、本発明は、上記重合反応中に(原料混合物および/もしくは重合反応液からの)脱水を行う脱水工程;を含むポリアリーレンスルフィドを製造する製造方法において、未反応ジハロ芳香族化合物を回収し、再利用するポリアリーレンスルフィドの製造方法に関する。
 ポリフェニレンスルフィド(以下、「PPS」と略記することがある)に代表されるポリアリーレンスルフィド(以下、「PAS」と略記することがある)は、耐熱性、耐薬品性、難燃性、機械的強度、電気特性、寸法安定性などに優れたエンジニアリングプラスチックであり、電気・電子機器、自動車機器、化学機器等の広範な分野において樹脂部品の材料として汎用されている。
 PASの代表的な製造方法として、N-メチル-2-ピロリドン(以下、「NMP」と略記することがある)などの有機アミド溶媒中で、硫黄源とp-ジクロロベンゼン(以下、「pDCB」と略記することがある)などのジハロ芳香族化合物(以下、「DHA」と略記することがある)とを重合反応させる方法が知られている。
 近年、品質に対する要求とともに、製造コスト低減に対する市場からの要求から、PASの製造に使用する原料の回収及び再利用、すなわち(i)有機アミド溶媒、(ii)所望により実施されるPASの洗浄あるいは有機アミド溶媒の回収などで使用される有機溶媒の回収・再利用によるコスト低減が検討されてきた。
 しかし、重合反応中の脱水工程で排出する、かつ/または、重合反応後の重合反応液に残存する未反応DHA(とりわけpDCB)の回収・再利用は、十分に行われてこなかった。
 本発明者らは、その理由を解析し、次の4つに原因があると推論した。
 これは、一つには、費用対効果に関してである。PASの製造におけるDHAの転化率は、通常90%を超えるものであるため、重合反応後の重合反応液に残存する未反応DHAは、回収・再利用するには量が少なく、そのため少量の未反応DHAの回収にコスト(例えば蒸留のための熱エネルギーコストや運転のためのコスト)が、かかりすぎると、費用対効果が低くなることである。
 二つには、回収した未反応DHAを再利用してPASを製造した場合の品質や製造への影響(以下、単に「安定的なPASの製造」と略記することがある)である。すなわち、市場からの品質に対する要請に対応するため、製造品が多種類なものとなり、その結果、出発原料や、重合反応条件等が多岐にわたり、回収・再利用工程で回収された未反応DHAは、生成する不純物の種類やその量が異なっている。そのため、それらが原因となる未反応DHAの品質やPASの製造方法に与える影響が異なっていると考えるのは当然である。
 三つには、回収工程での高効率な運転性に関するものである。すなわち、各製造処方毎に重合反応中、あるいは、重合反応後の不純物の種類やその量に応じた、未反応DHAの回収工程での回収は、当然、不純物の種類やその量に応じて、回収装置の運転の継続/停止、更には運転条件をコントロールすることが必要と考えられる。
 したがって、仮に回収技術が開発され、プロセス化したとしても、コスト低減に見合うだけの高効率で安定的に連続的な運転性が実現されるか評価が困難であることである。
 四つには、前述した費用対効果の低さを考えた場合、未反応DHAを回収・再利用するのではなく、重合反応中の脱水工程での排液または排蒸気、分離工程での分離液、PASの洗浄工程での洗浄排液、及び有機アミド溶媒の回収に用いられる有機溶媒等から有機アミド溶媒を回収する際に得られる粗回収物として廃棄処理(例えば、焼却処理)することで、比較的安価で、環境問題をクリアーして対応することが可能であったためである。
 特開昭61-53325号公報(特許文献1)には、PAS反応液スラリーを縦型ジャケット付攪拌槽を蒸留釜とする精留塔の該攪拌槽内に供給し、スラリーを攪拌しつつ加熱し、蒸発成分を該精留塔で分留することからなるPAS反応液スラリーより溶媒の回収蒸留精製法が提案されている。回収の初期は沸点順序として水、次に若干の未反応の芳香族ハロゲン化物が初期に分留され、残りは大半を占める極性溶媒の回収になることが記載されている。しかし、初め精留塔は、全還流し塔内温度が安定した後若干の還流を行い、初留を受器で受け、水の留出の終了後、減圧にしてpDCB/NMP液が得られたとの記載があり、純度の高いpDCB回収法とはならない。
 特開2008-266181号公報(特許文献2)では、PASの重合溶液からPASを回収した少なくとも水、pDCB、NMP、NaClが含まれる回収溶媒を、n-ヘキサノールで抽出して、少なくとも水、n-ヘキサノール、pDCB、NMPを含む含水混合液からpDCBを回収し、PASの原料として使用するPASの製造方法が提案されている。しかし、この方法では、抽出回収物として得られる、NMP、n-ヘキサノール、pDCBおよび水の4成分含有混合液を分離精製する工程が必要となる。そのため蒸留装置を建設するために設備コストがかかり、その割には分離精製したpDCBの純度は99.6%止まりであり、工業的に実施する場合満足すべきものではない。
 特開2010-144085号公報(特許文献3)では、重合反応液よりPASを分離・回収したNMP溶液から水との共沸により未反応pDCBを回収する方法が提案されている。しかし、この方法は、共沸操作に先立って、PASを分離・回収したNMP溶液に水を添加して水分調整を必ず行わねばならない。また、回収された未反応pDCBを再利用した場合に、前述の4つの問題が解決され、とりわけ、安定的にPASが製造できるかどうか十分に解明されたものとは言えない。
 特開平10-007798(特許文献4)では、重合反応中の脱水工程で反応系外へ留出するポリハロ芳香族化合物の量を極力低減させるために、留出したポリハロ芳香族化合物を還流液として精留塔に戻す方法が提案されている。しかし、この方法ではポリハロ芳香族化合物の排出を完全に無くすことはできず、還流液となって戻されるポリハロ芳香族化合物中の不純物についても十分にコントロールされているとは言い難い。
 特開平10-158399号公報(特許文献5)では、重合反応中の脱水工程で反応系外へ留出するポリハロ芳香族化合物を防止するために、インタークーラー付の精留塔を用いる方法が提案されている。しかし、この方法では、複雑な構造の精留塔が必要になるため、設備コストが大きくなり、また、インタークーラーの使用によって熱エネルギーコストについても満足できるものとは言えない。
 本発明者らは、安定的なPASの製造を可能にする、未反応DHAを回収し、再利用する簡便な方法を探求した。
特開昭61-53325号公報 特開2008-266181号公報 特開2010-144085号公報 特開平10-007798号公報 特開平10-158399号公報
 本発明者らは、前述した未反応DHAの回収・再利用を妨げる問題、すなわち、一つには、費用対効果の問題、二つには、安定的なPASの製造の問題、三つには、高効率な運転性の問題を解決する製造方法を探求した。
 重合反応中の脱水工程で得られる排液あるいは排蒸気には、有機アミド溶液、不純物、未反応硫黄、水、および未反応DHAが含まれている。また、重合反応後の分離工程により得られた分離液には、有機アミド溶媒、副生アルカリ金属塩、低重合物、不純物、未反応硫黄源、水及び未反応DHA以外にも、生成したPASの分離できない微粒子等が含まれている。したがって、重合反応中の脱水工程で得られる排液、または、分離液を含む混合液は、含水混合液と言える。また、重合反応中の脱水工程で得られる排蒸気は、含水混合蒸気と言える。なお、本明細書において、含水混合液と含水混合蒸気とを包括的に「含水混合物」という場合がある。さらには、洗浄工程での洗浄排液等を分離液に混合し、未回収DHAを回収する場合は、含水混合液には、洗浄工程に用いる水、有機溶媒等も含まれている。
 このような様々な成分を含む含水混合液あるいは含水混合蒸気から、前述した問題を解決する未反応DHAの回収を、本発明者らは探求した。
 とりわけ、二つ目の問題である未反応DHAを再利用してもPASの製造を安定的に行うことが可能な未反応DHAの回収、換言すれば、PASの製造を安定的に行えないような不純物が確実に低減されている未反応DHAの回収は、最も重要である。このことは、回収工程では、さらなる不純物の生成等が起こらないこと等が必要であることを意味する。
 さらに、三つ目の回収工程での未反応DHAが高効率で運転性よく回収されることが実現されることも重要であり、このことにより回収コスト低減も期待できるものとなる。このことは、一つ目の問題である費用対効果の問題につながる。
 本発明者らは、含水混合液あるいは含水混合蒸気から各成分を分離する回収工程としては、蒸留が適するが、対象とする含水混合液中あるいは含水混合蒸気の各成分の蒸留による不測の熱分解等による新たな不純物等の生成を回避し、未反応DHAを回収するため、蒸留よりも低温でできる水蒸気蒸留が適切ではないかと想到した。
 すなわち、本発明者らは、未反応DHAを回収するためには、有機アミド溶媒、水、未反応DHAを水蒸気蒸留で効率的に分離することが必要であることを想到した。
 さらに、PASの重合機構から考えて、重合反応により生成する不純物には、例えば、反応成分である硫黄源に由来する硫黄含有化合物及び酸素含有化合物等の親水性の不純物が含まれると考えられる。これらの親水性の不純物は水に可溶化する可能性があることを想到した。
 水蒸気蒸留は、一般に、「スチルに水蒸気を吹き込み、水に不溶な熱分解しやすい沸点の高い含水混合液から、不揮発性物質を不純物の残渣として分離する操作を水蒸気蒸留と呼び、水蒸気は熱源と系全体の分圧を下げる双方に寄与する。」(社団法人化学工学協会編「改訂五版 化学工学便覧」丸善株式会社 第466頁左欄中段(1988年3月18日発行))とされている。なお、本発明において、水蒸気蒸留とは、重合工程後の重合反応液から、固液分離により分離した分離液等を含む含水混合液を用いて、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整して行う蒸留であって、塔底部を加熱し、水蒸気蒸留塔内に存在する水から水蒸気を発生させることも含む。また、本発明において、水蒸気蒸留とは、重合反応中の脱水工程で得られる排液あるいは排蒸気を含む含水混合液あるいは含水混合蒸気を用いて、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整して行う蒸留であって、加熱により、水蒸気蒸留塔内に存在する水から水蒸気を発生させることも含む。
 この水蒸気蒸留により、有機アミド溶媒と水(未反応DHA、不純物を含む)とを安定的に分離し、これにより有機アミド溶媒を回収し、併せて、水から不純物の低減された未反応DHAの分離・回収が精度よいものにならないかを、本発明者らは検討した。このことが可能であるならば、未反応DHAに含まれる不純物が効果的に低減され、しかも、分離のためのランニングコストや熱エネルギーコストが低減されることとなる。
 しかし、前述したように、製造処方が異なった重合反応液、分離液や洗浄排液等を含む含水混合液あるいは含水混合蒸気から有機アミド溶媒と水(未反応DHAを含む)とが回収される場合であっても、運転を停止したり、あるいは運転条件を調整する必要がなく、高効率な運転性が達成できるか、また、回収された未反応DHAを再利用した場合、PASの製造に対する影響のない未反応DHAを回収できるか等解明しなければならない課題は多かった。
 すなわち、未反応DHAを確実に水蒸気蒸留で回収するためには、(i)水蒸気蒸留塔を継続的に制御すること、(ii)この制御のための頻繁な蒸留塔内の温度制御や、時には、運転の停止が必要となる場合があり、高効率な運転性の実現が困難となるおそれがあること、(iii)水蒸気蒸留塔塔頂部物(「留出物」と略記することもある)から得られる未反応DHAに含まれる不純物等の種類や量が、製造処方毎に、広範囲にバラツかないかどうか等、検討しなければならない問題点は多かった。
 PASの製造において、DHAとしてpDCBを用い、有機アミド溶媒としてNMPを用い、さらに相分離剤や洗浄に水を用いた場合、分離液等を含む含水混合液あるいは含水混合蒸気の組成は、大まかに言って、NMP-pDCB-水の3成分系となる。
 このNMP-pDCB-水の3成分系は、水の量(濃度)が低いところでは、単相(均一相)状態であるが、NMPの量(濃度)が低くなり水の量(濃度)が高くなるにつれてpDCB濃度の高い相と水濃度の高い相の液-液2相(不均一相)状態を呈するようになることが知られている。このことは、NMPは、pDCBや水との親和性があるため、NMPの割合が増えていくと、pDCBと水は、液-液2相状態ではなくなってしまう、逆に言うと、NMP濃度が低く、水濃度が高まれば、pDCBと水の液-液2相状態が実現しやすくなるということを意味している。
 この3成分系において、水蒸気蒸留塔塔底部からは、NMP、塔頂部からは、水(pDCBを含む)が得られるように水蒸気蒸留する、すなわち、塔頂部からの留出物から水とpDCBとを分離するためには、少なくとも水蒸気蒸留塔内の塔頂付近がpDCB濃度の高い相と水濃度の高い相の液-液2相(不均一相)状態であることが重要である。すなわち、この水蒸気蒸留は、pDCBと水とを安定的に分離することを一つの目的としているので、少なくとも水蒸気蒸留塔塔頂付近でpDCB濃度の高い相と水濃度の高い相の液-液2相(不均一相)状態であることが必要である。
 含水混合液の水蒸気蒸留を可能とする、すなわち、少なくとも塔頂付近で、不均一相状態(pDCBと水の液-液2相状態)を実現するためには、具体的には、温度毎のNMP-pDCB-水の3成分系相図から、pDCB濃度の高い相と水濃度の高い相の不均一相状態となる量比を推察する必要がある。すなわち、水蒸気蒸留塔塔頂部の温度および圧力が定まれば、不均一相状態で留出するpDCBと水の量比が定まることとなり、必要な水の量が決定できる。
 そこで、本発明者らは、少なくとも水蒸気蒸留塔塔頂付近での水の量比を制御するために、分離液や洗浄排液等を含む含水混合液あるいは含水混合蒸気の水蒸気蒸留において、従来技術にある水蒸気蒸留前の含水混合液あるいは含水混合蒸気への水の添加による水量の調整や、熱源を兼ねての水蒸気蒸留塔への水蒸気の導入ではなく、水の還流比を調整する水蒸気蒸留を行うことを想到した。
 すなわち、本発明者らは、水蒸気蒸留塔塔頂付近で還流を行い、還流する水以外に新たに水を添加して水の量を調整したりせずに、また、熱源を兼ねての水蒸気蒸留塔への水蒸気の導入をせずに(換言すれば、水蒸気蒸留塔に導入する含水混合液あるいは含水混合蒸気に新たな水を添加することなく、また塔底部に熱源を兼ねての水蒸気などの新たな水を添加することなく)、水の還流比を調整することにより、水蒸気蒸留塔内で、簡便に、水蒸気蒸留を可能とする、すなわち、少なくとも塔頂付近での不均一相状態(pDCBと水の液-液2相状態)を実現することができることを見出した。
 同時に、本発明者らは、水蒸気蒸留塔塔頂部からの留出物を、後述する方法で、水と未反応pDCBとに分離することにより、この未反応pDCBから、本発明の目的とする、未反応pDCBに含まれる、例えばフェノールに代表されるような重合反応に悪影響を及ぼすと考えられる不純物が低減されることを見出した。
 この不純物の低減には、以下の2つのメカニズムが作用しているものと推察される。一つには、還流により、水が塔頂付近より塔内にシャワー効果とも言うべき状態で下降、すなわち、塔内を上昇するpDCB(不純物を含む)と水との液液向流接触により、不純物は水に移行し、次いでこの水が塔中間部付近のNMPと接触することにより、不純物がNMPに移行し不純物は、NMPとともに塔底部に戻ることで、塔頂部留出物の不純物が低減されること、二つには、塔頂部から留出して凝縮物となったpDCBと水の混合液は、静置される中で、不純物がpDCBから水に移行し、pDCB中の不純物が低減されることであると推察される。
 このことは、後述する実施例でも明らかなとおり、水の還流比を高くすると、回収された未反応pDCBを用いて製造したPAS中のフェノール量が低減することからも首肯できる。
 この回収された未反応pDCBをPASの製造に再利用したところ、製造されたPASは、溶融粘度、熱的安定性等の点で、市販されたpDCBを用いたPASと遜色なかった。
 このことは、水蒸気蒸留塔に導入される含水混合液あるいは含水混合蒸気の成分比、特に水量(水の濃度)等にあまり影響されず、NMPと水とが分離でき、併せて、不純物が除去された高純度の未反応pDCBが分離でき、しかも高効率での連続運転が確認でき、かつ、精留塔やインタークーラーのような高コストな装置は必要ないと言うことである。
 すなわち、各製造処方毎に重合反応中あるいは重合反応後の不純物の種類やその量に応じた水蒸気蒸留を行う必要がなく、製造処方が変わっても、水蒸気蒸留を停止する必要がなく、運転を継続できる。
 さらに、この還流に当たっては、未反応pDCBと水との分離も液比重差を利用して、効率よく分離する静置型還流装置を用いることにより、還流時に未反応pDCBを選択的に分離することができることを見出した。
 このようにして、高純度な未反応pDCBが回収され、これらをPASの製造に再利用しても、安定してPASが製造することが可能となり、本発明に到達した。
 本発明によれば、(1)PASを製造する製造方法であって、下記の工程;
(a)有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを重合反応させPASを含む重合反応液を生成させる重合工程;
(b)重合工程を経た重合反応液から、固液分離によりPASと分離液とに分離する分離工程;及び
(c)該分離液を含む含水混合液である含水混合物から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応ジハロ芳香族化合物を回収する回収工程;
を含むPASを製造する製造方法が提供される。
 本発明によれば、(2)PASを製造する製造方法であって、下記の工程;
(a)有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを含む原料混合物を重合反応させポリアリーレンスルフィドを含む重合反応液を生成させる重合工程;
(d)上記の重合反応中に該原料混合物および/もしくは重合反応液を含む含水混合液並びに/または含水混合蒸気である含水混合物から、水蒸気蒸留により、水分を除去する脱水工程;及び
(c)該脱水工程において、該含水混合物から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応ジハロ芳香族化合物を回収する回収工程;
を含むPASを製造する製造方法が提供される。
 本発明によれば、(3)前記(1)または(2)の製造方法において、(c)該回収工程が、該含水混合物から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応DHAを含む水と、有機アミド溶媒とを分離し、併せて、該未反応DHAを含む水から未反応DHAを回収する回収工程である製造方法が提供される。
 本発明によれば、(4)前記(1)から(3)のいずれか1の製造方法において、(c)該回収工程での水蒸気蒸留を、静置型還流装置付きの水蒸気蒸留塔で行う製造方法が提供される。
 本発明によれば、(5)前記(1)または(2)の製造方法において、(c)該回収工程が、(c’)該含水混合物から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応DHAを回収し、さらに、該未反応DHAを精製する回収工程である製造方法が提供される。
 本発明によれば、(6)前記(5)の製造方法において、(c’)該回収工程での精製が、蒸留である製造方法が提供される。
 本発明によれば、(7)前記(1)または(2)の製造方法において、水蒸気蒸留塔の塔頂部からの留出物中の水のうち、還流されないで排出される水を分母とし、還流する水を分子として算出した水の還流比が、0.1~30である製造方法が提供される。
 本発明によれば、(8)前記(1)の製造方法において、(b)該分離工程と(c)該回収工程との間に、さらに、(b’)該分離工程で分離したPASを洗浄する洗浄工程:を設ける製造方法であって、その際、(c)該回収工程での含水混合物が、該分離液と該洗浄工程において回収する洗浄排液とを含む含水混合液である製造方法が提供される。
 本発明によれば、(9)前記(1)、(2)、または(5)の製造方法において、(c)該回収工程または(c’)該回収工程の次に、さらに、(e)該回収工程で回収された該未反応DHAを、該重合工程でのDHAの一部または全部として再利用する再利用工程;を設ける製造方法が提供される。
 本発明によれば、(10)温度310℃、剪断速度1,216sec-1での測定された溶融粘度が、0.5~5,000Pa・sであり、かつ、平均粒径が、100~5,000μmである、前記(8)の製造方法により製造されたPASが提供される。
 本発明によれば、有機アミド溶媒の回収時に、併せて、高純度な未反応DHAを選択的に分離し、回収することができるようになった。同時に、回収された未反応DHAを再利用しても、安定的にPASが製造できる。
 また、本発明によれば、重合反応中の脱水時に、併せて、高純度な未反応DHAを選択的に分離し、回収することができるようになった。同時に、回収された未反応DHAを再利用しても、安定的にPASが製造できる。
 更に、各製造処方毎の重合反応液、分離液を含む含水混合液あるいは含水混合蒸気を用いても、還流する水以外に新たに水を添加して水の量を調整したりせずに、また、熱源を兼ねて水蒸気を導入せずに(換言すれば、水を添加せずに)、水の還流比を調整することによって、高効率な運転性が確保できる。
 この結果、回収された未反応DHAを再利用することで、製造コストが低減でき、PASのプラスチックとしての競争力が増し、さらには、廃棄物を少なくすることが可能となり、資源環境問題に寄与できる。
 さらに、本発明の製造方法により安定的に製造されたPASを用いて得られた成形品は、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料、水廻り関連部品材料など広範な技術分野に用いることができる。
図1は、本発明の水蒸気蒸留の模式図である。 図2は、本発明の静置型還流装置の模式図である。
I.PASの製造方法
 PASは、重合工程、分離工程を含む製造方法により製造する。
 すなわち、本発明のPASの製造方法は、(a)有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを重合反応させPASを含む重合反応液を生成させる重合工程;(b)重合工程を経た重合反応液から、固液分離によりPASと分離液とに分離する分離工程を含む。
 また、上記の重合工程に、(原料混合物もしくは重合反応液からの)脱水を行う脱水工程を含んでいてもよい。
1.硫黄源
 硫黄源としてアルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源を使用する。アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム、及びこれらの2種以上の混合物などを挙げることができる。
 これらの中でも、工業的に安価に入手できる点で、硫化ナトリウム及び硫化リチウムが好ましい。
 アルカリ金属水硫化物としては、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウム、及びこれらの2種以上の混合物などを挙げることができる。これらの中でも、工業的に安価に入手できる点で、水硫化ナトリウム及び水硫化リチウムが好ましい。
 アルカリ金属硫化物の中には、少量のアルカリ金属水硫化物が含有されていてもよい。アルカリ金属水硫化物の中には、少量のアルカリ金属硫化物が含有されていてもよい。これらの場合、アルカリ金属硫化物とアルカリ金属水硫化物との総モル量が、必要により配置する脱水工程後の、重合工程で重合反応に供される硫黄源、すなわち「仕込み硫黄源」になる。
 アルカリ金属硫化物とアルカリ金属水硫化物とを混合して用いる場合には、当然、両者が混在したものが仕込み硫黄源となる。
 硫黄源がアルカリ金属水硫化物を含有するものである場合、アルカリ金属水酸化物を併用する。アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、及びこれらの2種以上の混合物が挙げられる。これらの中でも、工業的に安価に入手できる点で水酸化ナトリウム及び水酸化リチウムが好ましい。
2.ジハロ芳香族化合物
 ジハロ芳香族化合物(DHA)は、芳香環に直接結合した2個のハロゲン原子を有するジハロゲン化芳香族化合物である。ハロゲン原子とは、フッ素、塩素、臭素、及びヨウ素の各原子を指し、同一ジハロ芳香族化合物において、2つのハロゲン原子は、同じでも異なっていてもよい。これらのジハロ芳香族化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。ジハロ芳香族化合物の具体例としては、例えば、o-ジハロベンゼン、m-ジハロベンゼン、p-ジハロベンゼン、ジハロトルエン、ジハロナフタレン、メトキシ-ジハロベンゼン、ジハロビフェニル、ジハロ安息香酸、ジハロジフェニルエーテル、ジハロジフェニルスルホン、ジハロジフェニルスルホキシド、ジハロジフェニルケトン等が挙げられる。これらの中でも、p-ジハロベンゼン、m-ジハロベンゼン、及びこれら両者の混合物が好ましく、p-ジハロベンゼンがより好ましく、p-ジクロロベンゼン(pDCB)が、特に好ましく用いられる。
3.分岐・架橋剤
 生成PASに分岐または架橋構造を導入するために、3個以上のハロゲン原子が結合したポリハロ化合物(必ずしも芳香族化合物でなくてもよい)、分岐・架橋剤としてのポリハロ化合物として、好ましくはトリハロベンゼンが挙げられる。
4.有機アミド溶媒
 脱水反応及び重合反応の溶媒として、非プロトン性極性有機溶媒である有機アミド溶媒を用いる。有機アミド溶媒の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物;N-メチル-ε-カプロラクタム等のN-アルキルカプロラクタム化合物;N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン等のN-アルキルピロリドン化合物またはN-シクロアルキルピロリドン化合物;1,3-ジアルキル-2-イミダゾリジノン等のN,N-ジアルキルイミダゾリジノン化合物;テトラメチル尿素等のテトラアルキル尿素化合物;ヘキサメチルリン酸トリアミド等のヘキサアルキルリン酸トリアミド化合物等が挙げられる。これらの有機アミド溶媒は、それぞれ単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 これらの有機アミド溶媒の中でも、N-アルキルピロリドン化合物、N-シクロアルキルピロリドン化合物、N-アルキルカプロラクタム化合物、及びN,N-ジアルキルイミダゾリジノン化合物が好ましく、特に、N-メチル-2-ピロリドン(NMP)、N-メチル-ε-カプロラクタム、及び1,3-ジアルキル-2-イミダゾリジノンが好ましく用いられ、NMPが特に好ましい。
5.重合助剤
 重合反応を促進させるために、必要に応じて、各種重合助剤を用いることができる。重合助剤の具体例としては、一般にPASの重合助剤として公知の水、有機カルボン酸金属塩、有機スルホン酸金属塩、ハロゲン化リチウムなどのアルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、パラフィン系炭化水素類、及びこれらの2種以上の混合物などが挙げられる。有機カルボン酸金属塩としては、アルカリ金属カルボン酸塩が好ましい。アルカリ金属カルボン酸塩としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、吉草酸リチウム、安息香酸リチウム、安息香酸ナトリウム、フェニル酢酸ナトリウム、p-トルイル酸カリウム、及びこれらの2種以上の混合物を挙げることができる。アルカリ金属カルボン酸塩としては、安価で入手しやすいことから、酢酸ナトリウムが特に好ましい。重合助剤の使用量は、化合物の種類により異なるが、仕込み硫黄源1モルに対し、通常0.01~10モル、好ましくは0.1~2モル、より好ましくは0.2~1.8モル、特に好ましくは0.3~1.7モルの範囲である。
 重合助剤が、有機カルボン酸金属塩、有機スルホン酸塩、及びアルカリ金属ハライドである場合には、その使用量の上限は、仕込み硫黄源1モルに対し、好ましくは1モル以下、より好ましくは0.8モル以下であることが望ましい。
6.相分離剤
 重合反応を促進させ、高重合度のPASを短時間で得るために、または相分離を生起し粒状PASを得るために、各種相分離剤を用いる。相分離剤とは、それ自身でまたは少量の水の共存下に、有機アミド溶媒に溶解し、PASの有機アミド溶媒に対する溶解性を低下させる作用を有する化合物である。相分離剤自体は、PASの溶媒ではない化合物である。
 相分離剤としては、相分離剤として機能することが知られている公知の化合物を用いることができる。相分離剤には、前記の重合助剤として使用される化合物も含まれるが、ここでは、相分離剤とは、相分離状態で重合反応を行う工程、すなわち相分離重合工程で相分離剤として機能し得る量比、または重合終了後その存在下で相分離を生起せしめるに十分な量比、で用いられる化合物を意味する。相分離剤の具体例としては、水、有機カルボン酸金属塩、有機スルホン酸金属塩、ハロゲン化リチウムなどのアルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、パラフィン系炭化水素類などが挙げられる。有機カルボン酸金属塩としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、吉草酸リチウム、安息香酸リチウム、安息香酸ナトリウム、フェニル酢酸ナトリウム、p-トルイル酸カリウムなどのアルカリ金属カルボン酸塩が好ましい。これらの相分離剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。これらの相分離剤の中でも、コストが安価で、後処理が容易な水、または水とアルカリ金属カルボン酸塩などの有機カルボン酸金属塩との組み合わせが、特に好ましい。
 相分離剤として水を使用する場合でも、相分離重合を効率的に行う観点から、水以外の他の相分離剤を重合助剤として併用することができる。相分離重合工程において、水と他の相分離剤とを併用する場合、その合計量は、相分離を起こすことができる量であればよい。相分離剤は、少なくとも一部は、重合反応成分の仕込み時から共存していてもかまわないが、重合反応の途中で相分離剤を添加して、又は重合反応後に相分離を形成するのに充分な量に調整することが望ましい。
II.重合、分離、洗浄
 PASの製造は、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを重合反応させてPASを生成させることで行われる。すなわち、本発明では、(a)有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを重合反応させ、PASを含む重合反応液を生成させる重合工程は必須である。
 また、本発明の好ましい重合工程は、重合助剤や相分離剤等に由来する水を含む有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを重合反応させ、PASを含む重合反応液を生成させる重合工程である。
 本発明では、PASを製造する重合方法については、本発明を損なわない限り、如何なる重合方法でもよい。
 一般には、粒状PASを製造する重合方法としては、大別して(i)重合工程が相分離重合工程を含み、相分離重合後、徐冷する方法、(ii)重合反応後、相分離剤を添加し、徐冷する方法、(iii)塩化リチウム等の重合助剤を用いる方法、及び(iv)反応缶気相部分の冷却を行う方法等がある。
 中でも、重合条件を制御して、相分離剤の存在下、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で行う重合反応の工程(以下、「相分離重合工程」と略記することがある。)を含む重合方法により粒状PASを製造した場合は、重合度の高い粒状PASが得られるため、分離工程での篩分効率が高くなり、収率や生産性が向上する。したがって、重合度の高い粒状製品のPASの収率を高める上で有利な重合方法となっている。この場合の重合工程を詳述する。
1.仕込み工程
 PASを製造する製造方法に含まれる重合工程は、以下の仕込み工程を経て実施することができる。
 仕込み工程は、所望により配置する脱水工程で系内に残存する混合物とDHAとを混合し、必要に応じてアルカリ金属水酸化物及び水を添加して、有機アミド溶媒、硫黄源(仕込み硫黄源)、水分、及びDHAを含有する仕込み混合物を調製する。
 DHAの使用量は、仕込み硫黄源1モルに対し、通常0.90~1.50モル、好ましくは0.92~1.10モル、より好ましくは0.95~1.05モルである。硫黄源に対するDHAの仕込みモル比が大きくなりすぎると、高分子量ポリマーを生成させることが困難になる。他方、硫黄源に対するDHAの仕込みモル比が小さくなりすぎると、分解反応が生じ易くなり、安定的な重合反応の実施が困難となる。
 仕込み硫黄源として、アルカリ金属水硫化物を用いる際には、アルカリ金属水酸化物の使用量は、仕込み硫黄源1モルに対し、通常0.95~1.09モル、好ましくは0.98~1.085モル、より好ましくは0.99~1.083モルである。
 脱水工程で使用する硫黄源と区別するために、仕込み工程での硫黄源を「仕込み硫黄源」と呼んでいる。その理由は、脱水工程前に反応槽内に投入する硫黄源の量は、脱水工程で変動するからである。仕込み硫黄源は、重合工程でのDHAとの反応により消費されるが、仕込み硫黄源のモル量は、仕込み工程でのモル量を基準とする。仕込み硫黄源の量は、〔仕込み硫黄源〕=〔総仕込み硫黄モル〕-〔脱水後の揮散硫黄モル〕の式により算出される。
 仕込み工程において、有機アミド溶媒の量は、仕込み硫黄源1モル当り、通常0.1~10kg、好ましくは0.13~5kg、より好ましくは0.15~2kgの範囲とすることが望ましい。
2.重合工程
 重合工程では、前記の仕込み工程により調整した仕込み混合物を、通常170~290℃、好ましくは180~280℃、より好ましくは190~275℃の温度に加熱して、重合反応を開始させ、重合を進行させる。重合反応時間は、一般に10分間~72時間の範囲であり、望ましくは30分間~48時間である。重合反応は、前段重合工程と後段重合工程の2段階工程で行うことが好ましい。
 この重合工程において、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを、相分離剤の存在下、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を行う重合工程を含んでおり、重合反応は、170~290℃の温度で重合反応させる。相分離剤としては、先に述べた水や、相分離剤として機能することが知られている化合物等が好ましく用いられる。
 さらには、重合工程において、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを、170~270℃の温度で重合反応させ、DHAの転化率が30%以上となった時点で、重合反応混合物中に、相分離剤を添加して、重合反応系内に相分離剤を存在させ、次いで、重合反応混合物を昇温し、245~290℃の温度で、相分離剤の存在下の重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を継続させることが、好ましい。
 さらには、重合工程において、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを重合反応させて、該DHAの転化率が30%以上、好ましくは80~99%のポリマーを生成させる前段重合工程;並びに、相分離剤の存在下、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を継続させる後段重合工程;を含む少なくとも2段階の重合工程により重合反応を行うことが好ましい。
 具体的には、重合工程において、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを、仕込み硫黄源1モル当たり0.01~2.0モルの水が存在する状態で、170~270℃の温度で重合反応させて、該DHAの転化率が80~99%のポリマーを生成させる前段重合工程;並びに、仕込み硫黄源1モル当たり2.0モル超過10モル以下の水が存在する状態となるように重合反応系内の水量を調整するとともに、245~290℃の温度に加熱することにより、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を継続させる後段重合工程;を含む少なくとも2段階の重合工程により重合反応を行うことがより好ましい。
 DHAの転化率は、以下の式により算出した値である。DHAを硫黄源よりモル比で過剰に添加した場合は、下記式
 転化率=〔〔DHA仕込み量(モル)-DHA残存量(モル)〕/〔DHA仕込み量(モル)-DHA過剰量(モル)〕〕×100
によって転化率を算出する。それ以外の場合には、下記式
 転化率=〔〔DHA仕込み量(モル)-DHA残存量(モル)〕/〔DHA仕込み量(モル)〕〕×100
によって転化率を算出する。
 前段重合工程における反応系の共存水量は、仕込み硫黄源1モル当たり、通常0.01~2.0モル、好ましくは0.05~1.8モル、より好ましくは0.5~1.6モル、特に好ましくは0.8~1.5モルの範囲である。
 前段重合工程において、温度310℃、剪断速度1,216sec-1で測定した溶融粘度が、通常0.1~30Pa・sのポリマー(「プレポリマー」ということがある。)を生成させることが望ましい。
 後段重合工程は、前段重合工程で生成したポリマー(プレポリマー)の単なる分別・造粒の工程ではなく、該ポリマーの重合度の上昇を起こさせるためのものである。
 後段重合工程では、相分離剤として、水を使用することが特に好ましく、仕込み硫黄源1モルに対して、2.0モル超過10モル以下、好ましくは、2.0モル超過9モル以下、より好ましくは2.1~8モル、特に好ましくは2.2~7モルの水が存在する状態となるように重合反応系内の水の量を調整することが好ましい。後段重合工程において、重合反応系中の共存水分量が仕込み硫黄源1モル当り2.0モル以下または10モル超過になると、生成PASの重合度が低下することがある。特に、共存水分量が2.2~7モルの範囲で後段重合を行うと、高重合度のPASが得られやすいので好ましい。
 より好ましい製造方法においては、少量の相分離剤で重合を実施するために、相分離剤として、水と水以外の他の相分離剤を併用することができる。この態様においては、重合反応系内の水量を、仕込み硫黄源1モル当り0.1~10モル、好ましくは0.3~10モル、更に好ましくは0.4~9モル、特に好ましくは0.5~8モルの範囲内に調整するとともに、水以外の他の相分離剤を、仕込み硫黄源1モル当り0.001~3モルの範囲内で存在させることが好ましい。水と併用することが特に好ましい他の相分離剤は、有機カルボン酸金属塩、中でも、アルカリ金属カルボン酸塩であり、その場合は、仕込み硫黄源1モルに対して、水を0.5~10モル、好ましくは0.6~7モル、特に好ましくは0.8~5モルの範囲内で使用するとともに、アルカリ金属カルボン酸塩を0.001~0.7モル、好ましくは0.02~0.6モル、特に好ましくは0.05~0.5モルの範囲内で使用すればよい。
 後段重合工程での重合温度は、245~290℃の範囲であり、重合温度が245℃未満では、高重合度のPASが得られにくく、290℃を越えると、PASや有機アミド溶媒が分解するおそれがある。特に、250~270℃の温度範囲が高重合度のPASが得られやすいので好ましい。
3.所望により配置する脱水工程
 PASの製造において、重合工程を実施する際の仕込み工程前、かつ/または仕込み工程中、かつ/または重合工程中に、所望により脱水工程を配置してもよい。
 脱水工程では、水和水(結晶水)や水媒体、副生水などからなる水分を必要量の範囲内になるまで脱水する。脱水工程は、例えば、水蒸気蒸留により実施することができ、具体的には、水蒸気蒸留塔での水蒸気蒸留により実施することができる。
 脱水工程では、重合反応系の共存水分量が、仕込み硫黄源1モルに対して、通常0.01~2.0モル、好ましくは0.05~1.8モル、より好ましくは0.5~1.6モルになるまで脱水する。前述したとおり、脱水工程後重合工程開始前の硫黄源を「仕込み硫黄源」と呼ぶ。仕込前もしくは仕込中の脱水工程で水分量が少なくなり過ぎた場合は、重合工程の前に水を添加して所望の水分量に調節してもよい。
 硫黄源としてアルカリ金属水硫化物を用いる場合、脱水工程において、有機アミド溶媒、アルカリ金属水硫化物、及び該アルカリ金属水硫化物1モル当たり0.9~1.1モル、好ましくは0.91~1.08モル、より好ましくは0.92~1.07モル、特に好ましくは0.93~1.06モルのアルカリ金属水酸化物を含有する混合物を加熱して、反応させ、該混合物を含有する系内から水を含む留出物の少なくとも一部を系外に排出することが好ましい。
4.分離工程
 本発明のPASの製造方法は、(b)重合工程を経た重合反応液から、固液分離によりPASと分離液とに分離する分離工程を含む。
 PASの製造方法において、重合工程後のPASの分離回収処理は、例えば篩分による分離工程により行うことができる。分離工程としては、重合反応終了後、生成したPASを含有する反応液である生成物スラリーを冷却した後、必要により水などで生成物スラリーを希釈してから、篩分することにより、該反応液からPASを分離して回収することができる。
 本発明のPASの製造方法によれば、粒状のPASを生成させることができるため、スクリーンを用いる篩分による分離が用いられる。
 また、室温程度まで冷却することなく、生成物スラリーから高温状態でPASを篩分けすることもできる。
 分離工程における篩分による分離に用いられるスクリーンの目開き径は、通常、目開き径75μm(200メッシュ)~180μm(80メッシュ)、好ましくは目開き径90μm(170メッシュ)~150μm(100メッシュ)である。この範囲のスクリーンを少なくとも1つ用いるが、多段で用いてもよい。通常、目開き径150μm(100メッシュ)のスクリーンが用いられることが多い。
 製品として回収されたPASの回収率は、仕込前もしくは仕込中の脱水工程後の反応缶中に存在する仕込み硫黄源中の有効硫黄成分の全てがPASに転換したと仮定したときのPAS質量(理論量)を、得られるPASの全量として算出する。
 この回収率は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、通常80質量%以上、場合によっては83質量%以上、また場合によっては85質量%以上である。回収率の上限は、99.5質量%程度である。
 また、得られたPASの平均粒径は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、通常100~5,000μm、好ましくは、120~3,000μm、より好ましくは、130~1,500μmである。
 得られたPASの溶融粘度は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、PASの溶融粘度は、温度310℃、剪断速度1,216sec-1の条件下での測定で、通常、0.5~5,000Pa・s、好ましくは1~4,500Pa・s、より好ましくは、2~4,000Pa・sである。
5.洗浄工程
 本発明のPASの製造方法は、PASに付着したNMPや、未反応DHA、未反応硫黄源や、重合工程で生成した副生アルカリ金属塩等をできるだけ少なくするために、分離工程で分離したPASを、所望により、水、有機溶媒、及び、水と有機溶媒との混合溶液からなる群より選ばれる少なくとも一種の洗浄液によって洗浄処理を行う洗浄工程を配置することができる。
 洗浄処理に使用する有機溶媒としては、重合溶媒と同じ有機アミド溶媒や、ケトン類(例えば、メチルエチルケトンまたはアセトン)、アルコール類(例えば、メタノール、エタノール、イソプロパノールまたはヘキサンール)等の親水性の有機溶媒で洗浄することが好ましく、これらの1種類を使用してもよいし、複数種類を混合して使用してもよい。有機溶媒は、オリゴマーや分解生成物などの不純物(低分子量成分)の除去効果に優れているとともに、経済性や安全性の観点からも、アセトンが好ましい。
 洗浄液としては、水とアセトンの混合溶液として使用することが、より好ましい。混合溶液としては、水の割合が好ましくは1~60質量%、より好ましくは1~30質量%、特に好ましくは1~20質量%の含水混合液を用いることが、オリゴマーや分解生成物などの有機不純物の除去効率を高める上で好ましい。
 また、本発明のPASの製造方法は、水、有機溶媒、及び、水と有機溶媒との混合溶液からなる群より選ばれる少なくとも一種の洗浄液による洗浄処理に加えて、無機酸(例えば、塩酸)、有機酸(例えば、酢酸)及びこれらの塩(例えば、塩化アンモニウム)などの水溶液によるPASの末端基安定化のための酸洗浄を、上記の洗浄処理の前後に実施することができる。
 洗浄工程では、スクリーンや遠心分離機などを用いて、洗浄したPASを洗浄液から分離する。スクリーンを用いて濾過を行うと、含液率が通常30~75質量%、多くの場合40~65質量%程度のPASのウエットケーキが得られる。また、洗浄工程で使用した洗浄液、及び、ウエットケーキを洗浄した水等は、洗浄排液として回収タンクに回収する。
III.未反応DHAの回収工程
 本発明のPASの製造法は、一実施形態において、(c)分離液を含む含水混合液から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応DHAを回収する回収工程を必ず含む製造方法である。この場合、水の添加を行わずにとは、還流する水以外に含水混合液に水分量を調整するための新たな水の添加を行わずに、また、熱源を兼ねた水蒸気の導入も行わないことである。
 また、本発明のPASの製造法は、別の実施形態において、(c)脱水工程において、原料混合物および/または重合反応液を含む含水混合液並びに/または含水混合蒸気から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応ジハロ芳香族化合物を回収する回収工程を必ず含む製造方法である。この場合、水の添加を行わずにとは、還流する水以外に含水混合液および/または含水混合蒸気に水分量を調整するための新たな水の添加を行わずに、また、熱源を兼ねた水蒸気の導入も行わないことである。
 また、該回収工程が、該含水混合液および/または含水混合蒸気から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応DHAを含む水と、有機アミド溶媒とを分離し、併せて、該未反応DHAを含む水から未反応DHAを回収する回収工程であることが好ましい。
 分離液を含む含水混合液には、分離工程で回収された分離液に加えて、所望により配置される洗浄工程において回収された洗浄排液を混合して使用することもある。
 すなわち、本発明のPASの製造方法は、分離工程と回収工程との間に、さらに、分離工程で分離したPASを洗浄する洗浄工程を設け、その際、回収工程での含水混合液が、分離液と洗浄工程において回収される洗浄排液とを含む含水混合液であることが好ましい。
1.含水混合液から有機溶媒の回収
 含水混合液が洗浄排液を含む場合、とりわけ、洗浄液として、アルコール、アセトン等の有機溶媒を用いた場合、未反応DHAの回収工程の前に、まず、含水混合液から、アルコール、アセトン等の有機溶媒を分離回収する。有機溶媒がアセトンの場合、低沸点の有機溶媒は容易に蒸留により分離可能であり、有機溶媒回収用の蒸留塔を設ければよい。
 その場合、塔頂部を20~95℃の範囲で、使用した有機溶媒の沸点近傍に設定し、含水混合液を有機溶媒回収用の蒸留塔に導き、塔頂部から有機溶媒を回収し、塔底部から、未反応DHA、水及び有機アミド溶媒等を含む含水混合液、すなわち、不純物を含有し、未反応DHA、水及び有機アミド溶媒等を含む含水混合液が回収される。塔頂部から回収した有機溶媒は洗浄液として再利用される。
2.含水混合液からの未反応DHAの回収、
 有機溶媒回収用の蒸留塔を用いて、アルコール、アセトン等の有機溶媒を分離回収し、該蒸留塔底部から回収された含水混合液は、還流装置付きの水蒸気蒸留塔で、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留で、塔底部物と塔頂部物に分離される。
 還流装置において、塔頂から出た塔頂物は凝縮され、塔頂物から、水と未反応DHAとを分離する。すなわち、不純物が可溶化状態で含有されている水(以下、単に「水」と略記する場合がある)と未反応DHAとに分離する。例えば、DHAがpDCBの場合、融点が、53.5℃なので、融点以上の温度で、水と静置分離することが好ましい。
 したがって、上部の水と下部の未反応DHAとの分離は、静置することにより分離することが好ましい。
 上部の水は、水の還流比に基づいて、一部は水蒸気蒸留塔に還流し、残部は不純物と共に排出する。すなわち、還流比は、水蒸気蒸留塔の塔頂部からの留出物中の水のうち、還流されないで排出される水を分母とし、還流する水を分子として算出される。
 下部の未反応DHAは、目視や、密度計、液圧計のような検出機器で、未反応DHAを検知し回収する。
 本発明のPASの製造方法における回収工程での水蒸気蒸留は、静置型還流装置付きの水蒸気蒸留塔で行うことが好ましい。
 更に静置型還流装置として、未反応DHAと水との界面を目視で検知して抜き出し操作する方法や、未反応DHA-水との界面のレベルを圧力で検知して(あるいは未反応DHAと水との違いを検出できるセンサー(比重計や屈折率等のセンサー等)で検知して)、一定の条件になった際に抜出バルブを開き、一定値以下になったら閉じるという自動制御で抜き出すような方法がある。
 図1は、静置型還流装置(2)付きの水蒸気蒸留塔(1)の模式図であり、分離液を含む含水混合液(A)を静置型還流装置(2)付きの水蒸気蒸留塔(1)に導き、塔底部物(C)と塔頂部物(B)に分離する。
 水蒸気蒸留塔の塔頂部物(B)は、凝縮器(図示せず)で冷却により凝縮され、静置型還流装置(2)に導かれ、未反応DHA(F)と、可溶化状態にある不純物を含む水(D、E)に分離する。一部の水(D)を還流比に応じて還流する。塔底部は、加熱器(図示せず)で加熱する。
 DHAとしてpDCBを用い、有機アミド溶媒としてNMPを用いた場合、大気圧でのpDCBの沸点は174℃であり、NMPの沸点202℃より低いため、通常、大気圧での塔底部の温度は、190~230℃、好ましくは200~220℃とすることにより、水とpDCBが、蒸気として水蒸気蒸留塔の塔頂部に、沸点の高いNMPが塔底部に分離され、回収される。通常、大気圧での塔頂部の温度は、90~110℃、好ましくは95~105℃である。ただし、これらの温度は、水蒸気蒸留塔の操作圧力によって変化する。
 水蒸気蒸留塔の塔頂部物(B)は、冷却により凝縮され液体状のpDCBと水となる。pDCBの融点は53.5℃なので、冷却温度は、この温度以上である。
 液体状のpDCB(固体状の場合、密度は1.25g/cm程度である)と水とは、液比重の差で分離可能である。その際、図2の仕切り板(4)を有する静置型還流装置を利用し、液比重の軽い水は、仕切り板(4)を利用し2つの仕切部に区画して分離し、水の還流比に応じて、水の一部は水蒸気蒸留塔に還流される。また、還流されない水は、必要に応じて、排水処理された後、不純物と共に排出される。
 また、静置型還流装置底部の液比重の重いpDCBは、サイホン(5)を利用して、排出部の、のぞき窓(3)に、pDCBと水との界面が来るように設定され、のぞき窓(3)を見て、pDCBのみを回収する。
 図2は、静置型還流装置における水とpDCBの分離の模式図であり、サイホン管(5)におけるpDCBの高さ(hd)は、界面までの水の高さ(hw)、pDCBの高さ(hp)、水の密度(ρw)及びpDCBの密度(ρp)とすると、以下の式が成り立つ。
 hd=hw×(ρw/ρp)+hp
 このようにして、簡便な静置型還流装置により、未反応のpDCBは回収される。
 静置型還流装置は、横型槽に、槽を横に2分する仕切り板を設け、一方の仕切り部の底部に排出口を設け、一方の仕切り部の底部に、底部に連通したのぞき窓を有する排出部を設け、排出部に排出口を設け、この排出口に、逆U字型のサイホン管を設けたものである。
 水蒸気蒸留における水の還流比を調整することは、塔内の水の量(水の濃度)を水蒸気蒸留が可能なように継続的に制御すること、すなわち、少なくとも塔頂付近の水の量を不均一相状態(未反応pDCBと水の液-液2相状態)にするように継続的に制御することである。
 一般に、水蒸気蒸留塔塔内の温度および圧力が定まれば、NMP-pDCB-水の3成分系の相図における不均一相状態(pDCBと水の液-液2相状態)であるpDCBと水の量比の範囲が定まることとなり、これに必要な水の量を満足するための、水の還流比の範囲が決定できる。
 このことは、NMP-pDCB-水の3成分系では、pDCBとも水とも親和性のあるNMPが含まれているため、不均一相状態(pDCBと水の液-液2相状態)を実現するためには、NMP濃度が低く、水濃度が高くなる必要があるということである。
 すなわち、水蒸気蒸留塔塔頂付近では、NMPがほとんど存在せず、したがって、不均一相状態(pDCBと水の液-液2相状態)を実現するためには、水を還流すればよいということである。
 具体的には、水蒸気蒸留塔塔頂付近では、NMPがほとんど存在しないため、水の分圧+pDCBの分圧が全圧と等しくなる。したがって、留出物中のpDCBと水の量比は含水混合液中のpDCBの量には無関係に一定となる。還流比はこの留出物の組成を用いて水蒸気蒸留塔に導入される含水混合液中のpDCBを全て回収できるように決める必要がある。
 還流比は、水蒸気蒸留塔の塔頂部からの留出物中の水のうち、還流されないで排出される水を分母とし、還流する水を分子として算出されるが、通常、0.1~30、好ましくは0.2~15、より好ましくは0.4~7.5である。
 還流比が大きすぎると、pDCB回収のためのコスト、すなわち、熱エネルギーが増加し、少ないとpDCB中の不純物が増加する。さらに、還流比が、極端に少ないと含水混合液中に含まれるpDCBの全量回収が困難となる。
 本発明の水蒸気蒸留で回収される未反応DHAの回収率は、重合反応に用いられたDHAを基準として、0.5~7質量%、好ましくは0.8~6質量%、より好ましくは1~5質量%である。
 本発明の水蒸気蒸留で回収される未反応DHAの純度は、通常90~99.9質量%、好ましくは、95~99.9質量%、より好ましくは97~99.9質量%の純度のものが得られる。
3.未反応DHAの精製
 前述した含水混合液から水蒸気蒸留して得られた未反応のDHAは、PASの重合工程での重合原料であるDHAの一部または全部として再利用し得るが、さらに、回収工程で蒸留精製してもよく、本発明のPASの製造方法は、回収工程が、水蒸気蒸留の後、さらに、未反応DHAの精製を含むことが好ましい。
 すなわち、本発明のPASの製造方法は、回収工程が、分離液を含む含水混合液、あるいは分離液と洗浄工程において回収される洗浄排液とを含む含水混合液から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応DHAを回収し、さらに、該未反応DHAを精製する回収工程とすることが好ましい。
 精製は、未反応DHAを蒸留する工程である。一回の処理量が少ないため、水蒸気蒸留で回収した未反応DHAを集めて、一般的にはバッチ処理で行われる。
 この場合、蒸留精製は精製蒸留塔で行われる。精製蒸留塔塔頂部からは、高純度の未反応DHAが得られ、精製蒸留塔塔底部からは、高沸点の不純物が分離される。
 この精製は、何回行ってもよい。
 DHAとして、pDCBを用いる場合、水蒸気蒸留から回収された未反応pDCBを精製蒸留塔に導き、塔頂部を170~180℃、好ましくは174~177℃に設定して行う。通常、一定の還流比以上の還流を掛けて運転して、その温度範囲になったら留出物を回収する。
 こうして、蒸留精製された未反応DHAは、通常97.5~99.99質量%、好ましくは、98.5~99.99質量%、より好ましくは99.0~99.99質量%、特に好ましくは99.3~99.99質量%の純度のものが得られる。
 安定的にPASの製造を行うためには、再利用する未反応DHAの純度を99.5質量%以上、好ましくは99.7質量%以上とする必要がある。なお、蒸留精製された未反応DHAとして、純度100質量%のDHAも、理論的には可能ではあるが、その分生産性が低下し、未反応DHAの収量が少なくなってしまう。
4.有機アミド溶媒
 水蒸気蒸留塔の塔底部物である回収された有機アミド溶媒は、そのまま再利用することもできるが、多くの場合、重合溶媒精製蒸留塔により精製される。
 有機アミド溶媒として、NMPを用いた場合は、重合溶媒精製蒸留塔により、高沸点の不純物を分離して精製することも多い。精製されたNMPは重合溶媒として再利用する。
5.未反応DHAの再利用工程
 本発明のPASの製造方法は、回収工程の次に、さらに(e)回収工程で回収された未反応DHAを重合工程でのDHAの一部または全部として再利用する再利用工程を設けることが好ましい。
 回収された未反応DHAは、そのままPASの重合に利用できるが、通常、原料タンクのDHAに混合してPASの重合に使用される。
 未反応DHAを市販のDHAと混合して用いてもよい。
 市販のDHAと回収された未反応DHAの混合比は、製品としてのPASの利用目的によって適宜の混合比とすることができる。
 本発明により回収された未反応DHAを、重合工程でのDHAの全てとして再利用した場合、重合工程後の重合反応液である生成物スラリー液中のフェノール濃度は、通常、500~3,500ppm、好ましくは500~3,000ppm、特に好ましくは500~2,600ppmの範囲である。
 フェノール濃度がこの範囲であるならば、回収された未反応DHAを重合工程でのDHAとして再利用する重合工程、分離工程、回収工程を経、次いで、この回収工程で回収された未反応DHAを、重合工程でのDHAとして再利用する重合工程、分離工程、回収工程を経、次いで更に、この回収工程で回収された未反応DHAを、重合工程でのDHAとして再利用する重合工程、分離工程、回収工程を経るというように、繰り返し、回収された未反応DHAを重合工程でのDHAとして再利用することができる。
 回収された未反応DHAを用いる場合、DHA全量基準で、通常0.1~100質量%、好ましくは0.5~50質量%、より好ましくは1~30質量%で用いることが適切である。特に未反応DHAの純度が99.5質量%未満の場合は0.1~40質量%、好ましくは0.1~20質量%、特に好ましくは0.1~10質量%である。精製度が低い未反応DHAを用いる場合ほど、溶融粘度の安定的制御のために少ない方がよいからである。
 本発明の回収された未反応DHAの一部または全部を再利用して得られるPASは、前述した製品として回収されたPASと同等の平均粒径、溶融粘度を有し、また、熱的安定性も同等なものが得られ、十分実用に耐えうるものである。
 以下、実施例・製造例を挙げて、本発明をより具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
1.溶融粘度の測定
 乾燥ポリマー約20gを用いて、東洋精機製キャピログラフ1-Cにより溶融粘度を測定した。キャピラリーとして、直径1mmφ×長さ10mmのフラットダイを使用した。設定温度は、310℃とした。ポリマー試料を装置に導入し、310℃で5分間保持した後、剪断速度1,216sec-1で溶融粘度を測定した。
2.熱的安定性
 東洋精機製キャピログラフ1-Cを使用して、測定温度310℃で加熱保持時間5分、15分、30分後の溶融粘度(剪断速度1216sec-1)を測定して、加熱保持時間5分後の測定値を基準に加熱保持時間15分及び30分後の溶融粘度の保持率で熱的安定性を評価した。
 保持率が、95%以上を熱的安定性がよいと評価した。
3.純度の測定
 DHAの純度の測定は、ガスクロマトグラフィーで行った。
4.スラリー液の分析
 重合後のスラリー液の一部を分取し、内部標準を添加してFID-GCで、スラリー液中のフェノール濃度(量)を測定した。
<製造例1>PASの調製
(脱水工程)
 反応槽にNMP600kg、濃度62.4質量%水硫化ナトリウム185kg(NaSH換算で2,042モル)、及び、濃度73.6質量%水酸化ナトリウム110kg(2,158モル)を仕込み、反応槽内の温度が200℃に達するまで加熱して脱水工程を行った。この脱水工程で揮散した硫化水素量は0.57kg(17モル)であった。この値を用いて、反応槽内の硫黄源(仕込み硫黄源)の量を算出したところ、2,025モルであった。
(重合工程)
 この反応槽内に、PAS製造用の原料として市販されたpDCB303.6kg(2,065モル)を仕込み(pDCB/硫黄源(モル比)=1.02)、220℃まで昇温し1時間反応させたのち230℃に昇温しさらに1.5時間反応させた。次いで、水14.6kgを反応槽内に投入し、260℃まで昇温して5時間反応させた(pDCBの転化率98%)。重合終了後、反応槽を室温付近まで冷却し、薄緑色のスラリー状態の反応生成物を含有する反応液を得た。このスラリー液中のフェノール量は1,430ppmであった。
(分離工程)
 反応液を目開き150μm(100メッシュ)のスクリーンにより篩分けして、スクリーン上のPASを含有するウェットケーキと、スクリーンを通過した成分とに分離した。この分離液を分離液タンクに保存した。
(洗浄工程)
 ウエットケーキを、ウエットケーキに対して5倍質量のアセトンと室温で10分間攪拌しながら接触させた後、目開き150μmのスクリーンにより篩分けして、スクリーン上に残ったポリマー成分と、スクリーン通過成分とに分離した。スクリーン上に残ったポリマー成分に対して、上記の洗浄操作を再度行った。スクリーンを通過した洗浄排液は、全量回収し、pDCBの回収に使用するため、洗浄排液タンクに保存した。スクリーン上に残ったPASを、PASに対して5倍質量のイオン交換水と室温で10分間攪拌しながら接触させ、次いで、目開き150μmのスクリーンにより篩分けして、再びスクリーン上に残ったPASを回収した。さらにこの操作を2回繰り返した。スクリーンを通過した水による洗浄排液も洗浄排液タンクに保存した。
 その後、必要に応じて、室温でイオン交換水等と接触させPASを回収した。この操作を数回行い、スクリーン上に残ったPASを回収し、105℃で乾燥した。この洗浄排液も、洗浄排液タンクに保存した。
 用いられたpDCBの純度とPASの溶融粘度を表1に示す。
[実施例1]
 製造例1において分離工程で分離液タンクに保存された分離液と、洗浄工程で洗浄排液タンクに保存された洗浄排液が混合された液を含水混合液とした。
 有機溶媒回収用の蒸留塔を使用し、含水混合液を蒸留することにより、塔頂部物のアセトンを回収し、塔底部の含水混合液を回収工程に使用した。
(未反応pDCBの回収工程)
 静置型還流装置付き水蒸気蒸留塔を使用し、塔底部の温度を210℃、塔頂部の温度を100℃に設定し、水蒸気蒸留により、塔頂部から塔頂部物(留出物)を回収した。
 塔頂部物は、仕切り板を有する静置型還流装置に導かれ、液比重差を利用して、水とpDCBを分離し、分離された水は還流比に応じて還流した。還流比は、0.5であった。
 静置型還流装置ののぞき窓からの視認により、pDCBが回収されたことを確認した。
 水蒸気蒸留で回収されたpDCBの純度は、98.0質量%であった。
 回収されたpDCBの回収率は、製造例1で用いたpDCBを基準として、2質量%であった。
(未反応pDCBの再利用工程)
 製造例1で用いたpDCBの代わりに、全て水蒸気蒸留で回収されたpDCBを用い、重合反応スケールを200分の一にした他は製造例1のPASの製造方法と同じにして、PASを製造した。得られたスラリー液中のフェノール量は、2,550ppmであった。
 回収されたpDCBを用いて製造されたPASの溶融粘度は、30Pa・sであった。また、成形時の熱的安定性は製造例1と同等であった。
 回収された未反応pDCBの純度とPASの溶融粘度を表1に示す。
[実施例2]
(未反応pDCBの回収工程)
 還流比を1.5にした他は実施例1と同じにして、pDCBを回収した。
 水蒸気蒸留で回収されたpDCBの純度は、98.5質量%であった。
 回収されたpDCBの回収率は、製造例1で用いたpDCBを基準として、2質量%であった。
(未反応pDCBの再利用工程)
 水蒸気蒸留で回収されたpDCBを全て用い、他は実施例1のPASの製造方法と同じにして、PASを製造した。得られたスラリー液中のフェノール量は2,000ppmであった。
 回収されたpDCBを用いて製造されたPASの溶融粘度は、45Pa・sであった。また、成形時の熱的安定性は製造例1と同等であった。
 回収された未反応pDCBの純度とPASの溶融粘度を表1に示す。
[実施例3]
(未反応pDCBの回収工程)
 還流比を5.0にした他は、実施例1と同じにして、pDCBを回収した。
 水蒸気蒸留で回収されたpDCBの純度は、99.01質量%であった。
 回収されたpDCBの回収率は、製造例1で用いたpDCBを基準として、2質量%であった。
(未反応pDCBの再利用工程)
 水蒸気蒸留で回収されたpDCBを全て用い、他は実施例1と同じにして、PASを製造した。得られたスラリー液中のフェノール量は1,500ppmであった。
 回収されたpDCBを用いて製造されたPASの溶融粘度は、95Pa・sであった。また、成形時の熱的安定性は製造例1と同等であった。
 回収された未反応pDCBの純度とPASの溶融粘度を表1に示す。
[実施例4]
(未反応pDCBの精製)
 実施例1と同様にして回収されたpDCBを、精製蒸留塔により、蒸留した。塔頂部より、沸点174℃から178℃のものを集めてpDCBとして回収した。このようにして精製されたpDCBの純度は99.8質量%であった。
 このpDCBの回収率は、製造例1で用いたpDCBを基準として、1.8質量%であった。
(未反応pDCBの再利用工程)
 蒸留精製されたpDCBを、全て使用し、他は実施例1と同じにして、PASを製造した。得られたスラリー液中のフェノール量は2,150ppmであった。
 回収されたpDCBを用いて製造されたPASの溶融粘度は、217Pa・sであった。また、成形時の熱的安定性は製造例1と同等であった。
 未反応pDCBの純度とPASの溶融粘度を表1に示す。
[実施例5]
(未反応pDCBの精製)
 実施例2と同様にして回収されたpDCBを精製蒸留塔により蒸留した。このようにして蒸留精製されたpDCBの純度は99.93質量%であった。
 このpDCBの回収率は、製造例1で用いたpDCBを基準として、1.7質量%であった。
(未反応pDCBの再利用)
 蒸留精製されたpDCBを、全て使用し、他は実施例1のPASの製造方法と同じにして、PASを製造した。得られたスラリー液中のフェノール量は1,760ppmであった。
 回収されたpDCBを用いて製造されたPASの溶融粘度は、260Pa・sであった。また、成形時の熱的安定性は製造例1と同等であった。
 未反応pDCBの純度とPASの溶融粘度を表1に示す。
 なお、実施例1~5において、pDCBの仕込み量は、純度を考慮して計算した量である。
Figure JPOXMLDOC01-appb-T000001
考察:
 表1に示す結果から明らかなように、本発明の水蒸気蒸留で回収した未反応pDCBを使用した実施例1~3のPASは、製造例1のPASと比較して、溶融粘度は低いものの目的とする数値範囲内である。また熱的安定性の点で、製造例1のPASと比較して遜色はなかった。
 この結果を基にすれば、目標とするPASの溶融粘度に応じて、純pDCBと回収した未反応pDCBを、ブレンドし用いることによって、PASを十分に工業的生産することができることがわかる。
 本発明の未反応pDCBを使用した実施例4、5のPASは、製造例1のPASと比較して、その溶融粘度は同じレベルのものであり、熱的安定性の点で、製造例1のPASと比較して遜色はなかった。
 この結果を基にすれば、実施例4,5の回収したpDCBを、ブレンドせずにそのまま用いても、目標とする溶融粘度のPASを十分に工業的生産することができることがわかる。
 本発明によれば、PASの重合後の重合反応液から固液分離によりPASから分離された分離液を含む含水混合液に対して、還流する水以外に新たに水を添加して水の量を調整したりせず、また、熱源を兼ねて水蒸気を導入せずに(換言すれば、水を添加せずに)、水の還流比を調整する水蒸気蒸留を行うことにより、高純度の未反応DHAが回収された。
 同時に、回収された未反応DHAを再利用しても、安定的にPASが製造できた。さらに、静置型還流装置に組み込むことによって、未反応DHAと水の液比重差により容易に分離することができるようになった。
 また、本発明によれば、PASの重合反応中に行われる脱水工程より排出された含水混合液および/およびまたは含水混合蒸気に対して、還流する水以外に新たに水を添加して水の量を調整したりせず、また、熱源を兼ねて水蒸気を導入せずに(換言すれば、水を添加せずに)、水の還流比を調整する水蒸気蒸留を行うことにより、高純度の未反応DHAが回収された。
 同時に、回収された未反応DHAを再利用しても、安定的にPASが製造できた。さらに、静置型還流装置に組み込むことによって、未反応DHAと水の液比重差により容易に分離することができるようになった。
 この結果、回収された未反応DHAを再利用することで、製造コストが低減でき、PASのプラスチックスとしての競争力が増し、さらには、廃棄物を少なくすることが可能となり、資源環境問題に寄与できる。
 さらに、本発明の製造方法により安定的に製造されたPASを用いて得られた成形品は、電気・電子機器部品材料、自動車機器部品材料、化学機器部品材料、水廻り関連部品材料など広範な技術分野に用いることができる。
1.水蒸気蒸留塔
2.静置型還流装置
3.のぞき窓
4.仕切り板
5.サイホン管
A:含水混合液
B:塔頂部物
C:塔底部物
D:水
E:水
F:未反応DHA

Claims (10)

  1.  ポリアリーレンスルフィドを製造する製造方法であって、下記の工程;
    (a)有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させポリアリーレンスルフィドを含む重合反応液を生成させる重合工程;
    (b)重合工程を経た重合反応液から、固液分離によりポリアリーレンスルフィドと分離液とに分離する分離工程;及び
    (c)該分離液を含む含水混合液である含水混合物から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応ジハロ芳香族化合物を回収する回収工程;
    を含むポリアリーレンスルフィドを製造する製造方法。
  2.  ポリアリーレンスルフィドを製造する製造方法であって、下記の工程;
    (a)有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを含む原料混合物を重合反応させポリアリーレンスルフィドを含む重合反応液を生成させる重合工程;
    (d)上記の重合反応中に該原料混合物および/もしくは重合反応液を含む含水混合液並びに/または含水混合蒸気である含水混合物から、水蒸気蒸留により、水分を除去する脱水工程;及び
    (c)該脱水工程において、該含水混合物から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応ジハロ芳香族化合物を回収する回収工程;
    を含むポリアリーレンスルフィドを製造する製造方法。
  3.  請求項1または2に記載の製造方法において、(c)該回収工程が、該含水混合物から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応ジハロ芳香族化合物を含む水と、有機アミド溶媒とを分離し、併せて、該未反応ジハロ芳香族化合物を含む水から未反応ジハロ芳香族化合物を回収する回収工程である製造方法。
  4.  請求項1から3のいずれか1項に記載の製造方法において、(c)該回収工程での水蒸気蒸留を、静置型還流装置付きの水蒸気蒸留塔で行う製造方法。
  5.  請求項1または2記載の製造方法において、(c)該回収工程が、(c’)該含水混合物から、水蒸気蒸留塔での、還流する水以外に水の添加を行わずに水の還流比を調整する水蒸気蒸留により、未反応ジハロ芳香族化合物を回収し、さらに、該未反応ジハロ芳香族化合物を精製する回収工程である製造方法。
  6.  請求項5に記載の製造方法において、(c’)該回収工程での精製が、蒸留である製造方法。
  7.  請求項1または2記載の製造方法において、水蒸気蒸留塔の塔頂部からの留出物中の水のうち、還流されないで排出される水を分母とし、還流する水を分子として算出した水の還流比が、0.1~30である製造方法。
  8.  請求項1記載の製造方法において、(b)該分離工程と(c)該回収工程との間に、さらに、(b’)該分離工程で分離したポリアリーレンスルフィドを洗浄する洗浄工程:を設ける製造方法であって、その際、(c)該回収工程での含水混合物が、該分離液と該洗浄工程において回収する洗浄排液とを含む含水混合液である製造方法。
  9.  請求項1、2、または5に記載の製造方法において、(c)該回収工程または(c’)該回収工程の次に、さらに、(e)該回収工程で回収された該未反応ジハロ芳香族化合物を、該重合工程でのジハロ芳香族化合物の一部または全部として再利用する再利用工程;を設ける製造方法。
  10.  温度310℃、剪断速度1,216sec-1での測定された溶融粘度が、0.5~5,000Pa・sであり、かつ、平均粒径が、100~5,000μmである、請求項8記載の製造方法により製造されたポリアリーレンスルフィド。
PCT/JP2015/071971 2014-08-06 2015-08-03 ポリアリーレンスルフィドの製造方法、及び該製造方法により製造されたポリアリーレンスルフィド WO2016021557A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/327,472 US10196486B2 (en) 2014-08-06 2015-08-03 Polyarylene sulfide production method and polyarylene sulfide produced using production method
JP2016540223A JP6403779B2 (ja) 2014-08-06 2015-08-03 ポリアリーレンスルフィドの製造方法、及び該製造方法により製造されたポリアリーレンスルフィド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-160389 2014-08-06
JP2014160389 2014-08-06

Publications (1)

Publication Number Publication Date
WO2016021557A1 true WO2016021557A1 (ja) 2016-02-11

Family

ID=55263822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071971 WO2016021557A1 (ja) 2014-08-06 2015-08-03 ポリアリーレンスルフィドの製造方法、及び該製造方法により製造されたポリアリーレンスルフィド

Country Status (3)

Country Link
US (1) US10196486B2 (ja)
JP (1) JP6403779B2 (ja)
WO (1) WO2016021557A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074055A1 (ja) * 2017-10-12 2019-04-18 株式会社クレハ 芳香族環状オリゴマーの連続製造方法および連続製造装置、並びに芳香族重合体の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6668506B2 (ja) * 2017-10-12 2020-03-18 株式会社クレハ 重合体の連続製造装置および連続製造方法
WO2020067797A1 (ko) * 2018-09-28 2020-04-02 주식회사 엘지화학 아미드계 화합물의 회수 방법 및 장치
KR102294876B1 (ko) * 2018-09-28 2021-08-27 주식회사 엘지화학 아미드계 화합물의 회수 방법 및 장치
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
JP2023508316A (ja) 2019-12-20 2023-03-02 ティコナ・エルエルシー ポリアリーレンスルフィドを形成するための方法
WO2023038889A1 (en) 2021-09-08 2023-03-16 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge
JP2024535216A (ja) * 2021-09-08 2024-09-30 ティコナ・エルエルシー ポリアリーレンスルフィド廃棄汚泥から有機溶媒を回収するための逆溶媒技術
CN115960354B (zh) * 2022-12-30 2024-05-24 四川大学 一种聚芳醚的纯化方法及高纯度聚芳醚

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136523A (ja) * 1984-12-07 1986-06-24 Toyo Soda Mfg Co Ltd ポリアリ−レン・サルフアイドの製造法
JPH107798A (ja) * 1996-06-27 1998-01-13 Dainippon Ink & Chem Inc ポリアリーレンスルフィドの製造方法
JP2001503085A (ja) * 1996-10-02 2001-03-06 ティコナ・ゲーエムベーハー イオウ含有ポリマーの製造法
JP2001504154A (ja) * 1996-11-16 2001-03-27 ティコナ・ゲーエムベーハー 硫黄含有ポリマー類を製造するための方法
WO2010013545A1 (ja) * 2008-07-31 2010-02-04 株式会社クレハ 粒状ポリアリーレンスルフィドの製造方法
JP2010144085A (ja) * 2008-12-19 2010-07-01 Tosoh Corp ポリフェニレンスルフィドの製造方法
JP2011148870A (ja) * 2010-01-20 2011-08-04 Toray Ind Inc ポリアリーレンスルフィドの製造方法
WO2011145428A1 (ja) * 2010-05-19 2011-11-24 株式会社クレハ ポリアリーレンスルフィドの製造方法、及びポリアリーレンスルフィド

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153325A (ja) 1984-08-23 1986-03-17 Toyo Soda Mfg Co Ltd ポリアリ−レン・サルフアイド反応液スラリ−より溶媒の回収蒸留精製法
JPH10158399A (ja) 1996-11-29 1998-06-16 Dainippon Ink & Chem Inc ポリアリーレンスルフィドの製造方法
JP2008266181A (ja) 2007-04-19 2008-11-06 Toray Ind Inc 疎水性有機溶媒の回収方法およびポリアリーレンスルフィドの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136523A (ja) * 1984-12-07 1986-06-24 Toyo Soda Mfg Co Ltd ポリアリ−レン・サルフアイドの製造法
JPH107798A (ja) * 1996-06-27 1998-01-13 Dainippon Ink & Chem Inc ポリアリーレンスルフィドの製造方法
JP2001503085A (ja) * 1996-10-02 2001-03-06 ティコナ・ゲーエムベーハー イオウ含有ポリマーの製造法
JP2001504154A (ja) * 1996-11-16 2001-03-27 ティコナ・ゲーエムベーハー 硫黄含有ポリマー類を製造するための方法
WO2010013545A1 (ja) * 2008-07-31 2010-02-04 株式会社クレハ 粒状ポリアリーレンスルフィドの製造方法
JP2010144085A (ja) * 2008-12-19 2010-07-01 Tosoh Corp ポリフェニレンスルフィドの製造方法
JP2011148870A (ja) * 2010-01-20 2011-08-04 Toray Ind Inc ポリアリーレンスルフィドの製造方法
WO2011145428A1 (ja) * 2010-05-19 2011-11-24 株式会社クレハ ポリアリーレンスルフィドの製造方法、及びポリアリーレンスルフィド

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074055A1 (ja) * 2017-10-12 2019-04-18 株式会社クレハ 芳香族環状オリゴマーの連続製造方法および連続製造装置、並びに芳香族重合体の製造方法
US11203666B2 (en) 2017-10-12 2021-12-21 Kureha Corporation Continuous production method and continuous production apparatus for aromatic cyclic oligomer, and production method for aromatic polymer

Also Published As

Publication number Publication date
JP6403779B2 (ja) 2018-10-10
US10196486B2 (en) 2019-02-05
JPWO2016021557A1 (ja) 2017-04-27
US20170158820A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP6403779B2 (ja) ポリアリーレンスルフィドの製造方法、及び該製造方法により製造されたポリアリーレンスルフィド
JP5788871B2 (ja) ポリアリーレンスルフィドの製造方法、及びポリアリーレンスルフィド
JP5713402B2 (ja) ポリアリーレンスルフィド及びその製造方法
JP6295379B2 (ja) ポリアリーレンスルフィドを製造する方法及びポリアリーレンスルフィド
JP4310279B2 (ja) ポリアリーレンスルフィドの製造方法及び洗浄方法、並びに洗浄に使用した有機溶媒の精製方法
WO2013147141A1 (ja) 粒状ポリアリーレンスルフィド及びその製造方法
JPWO2015152032A1 (ja) ポリアリーレンスルフィドの製造方法
JP6418852B2 (ja) ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィド
JP2005194312A (ja) ポリアリーレンスルフィド及びその製造方法
JPWO2016159234A1 (ja) 微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド
US6331608B1 (en) Process for producing poly(arylene sulfide)
JPWO2016199894A1 (ja) 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド
WO2004060974A1 (ja) ポリアリーレンスルフィドの製造方法
JP6456742B2 (ja) 微粉ポリアリーレンスルフィドを製造する製造方法及び微粉ポリアリーレンスルフィド
US11661482B2 (en) Separation and purification method of polyarylene sulfide
JP6366683B2 (ja) 熱処理微粉ポリアリーレンスルフィド、及び該熱処理微粉ポリアリーレンスルフィドを製造する製造方法
JP2010144085A (ja) ポリフェニレンスルフィドの製造方法
CN112041374B (zh) 聚芳硫醚的分离和回收方法
WO2020026918A1 (ja) ポリアリーレンスルフィドの製造方法、ポリアリーレンスルフィドプレポリマーおよびその製造方法
WO2001019876A1 (en) Methanol extraction of polar organic compounds and modifier compounds from poly(arylene sulfide) polymer and oligomer streams
JP2020050845A (ja) ポリアリーレンスルフィドの回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540223

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15327472

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830410

Country of ref document: EP

Kind code of ref document: A1