WO2013147141A1 - 粒状ポリアリーレンスルフィド及びその製造方法 - Google Patents

粒状ポリアリーレンスルフィド及びその製造方法 Download PDF

Info

Publication number
WO2013147141A1
WO2013147141A1 PCT/JP2013/059497 JP2013059497W WO2013147141A1 WO 2013147141 A1 WO2013147141 A1 WO 2013147141A1 JP 2013059497 W JP2013059497 W JP 2013059497W WO 2013147141 A1 WO2013147141 A1 WO 2013147141A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
polymerization
phase separation
sieve
pas
Prior art date
Application number
PCT/JP2013/059497
Other languages
English (en)
French (fr)
Inventor
昆野明寛
高木健一
吉田唯
鈴木康弘
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to KR1020147021810A priority Critical patent/KR101660614B1/ko
Priority to EP13768784.4A priority patent/EP2840105A4/en
Priority to CN201380005933.3A priority patent/CN104144970B/zh
Priority to US14/378,854 priority patent/US9422400B2/en
Priority to JP2014508086A priority patent/JP6062924B2/ja
Publication of WO2013147141A1 publication Critical patent/WO2013147141A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0231Polyarylenethioethers containing chain-terminating or chain-branching agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0268Preparatory processes using disulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers

Definitions

  • the present invention relates to a granular polyarylene sulfide and a method for producing the same. More specifically, the present invention is a granular polyarylene sulfide having good thermal stability, low gas generation during molding, low halogen content and nitrogen content, low melt viscosity, and high performance balance. About. Furthermore, the present invention is a method for producing a granular polyarylene sulfide in which a sulfur source and a dihaloaromatic compound are polymerized in an organic amide solvent, wherein the polymerization reaction is performed in the presence of a disulfide compound in the polymerization step.
  • the present invention relates to a method for producing a granular polyarylene sulfide which is screened and recovered with high yield.
  • PAS Polyarylene sulfide
  • PPS polyphenylene sulfide
  • PPS polyphenylene sulfide
  • Engineering plastic with excellent stability.
  • PAS can be molded into various molded products, films, sheets, fibers, etc. by general melt processing methods such as extrusion molding, injection molding, compression molding, etc., so it can be used in a wide range of fields such as electrical / electronic equipment and automotive equipment. It is widely used.
  • PAS As a typical production method of PAS, a method of reacting a sulfur source with a dihaloaromatic compound in an organic amide solvent such as N-methyl-2-pyrrolidone (hereinafter abbreviated as “NMP”) is known. ing.
  • NMP N-methyl-2-pyrrolidone
  • the PAS obtained by this method usually tends to have a structure in which a halogen is bonded to the end of the polymer. Therefore, even if the separation and recovery after the polymerization reaction are sufficiently performed, the PAS has a high halogen content. When such a PAS having a high halogen content is used, environmental pollution has become a problem as seen in recent halogen regulations.
  • PAS has been increasingly used as a compound containing a filler, for example, glass fiber, in many fields such as electric and electronic equipment.
  • a filler for example, glass fiber
  • Such a compound usually contains about 30 to 50% by mass of glass fiber and is used in the field of electrical and electronic equipment, so that it not only has a problem of reducing the halogen content from the viewpoint of environmental regulations.
  • PAS PAS with good thermal stability, low generation of gas during molding, and low melt viscosity. This is because when such a compound is melt-formed, if the melt viscosity of the PAS is high, the PAS is likely to be thermally deteriorated due to local high temperatures due to friction, etc. due to kneading with hard glass fibers.
  • problems such as deterioration in thermal stability and increase in generated gas cause problems such as failure to obtain stable and good melt molding conditions.
  • Patent Document 1 in order to obtain a PAS having a low halogen content, a mercapto compound, a metal salt of a mercapto compound, a phenol compound, a metal salt of a phenol compound, and a disulfide compound are selected. It has been proposed to add one or more compounds.
  • Example 7 uses phenol
  • the chlorine content is only improved to about 1,200 to 2,100 ppm.
  • Example 8 which is the only example using the disulfide compound (diphenyl disulfide) of Patent Document 1, it was reported that the chlorine content was 1,800 ppm, and the chlorine content was still high. Amount.
  • Patent Document 1 as described in Example 1, “A powdered PAS... Was obtained”, the manufactured PAS was considered to be fine, not granular. It is done.
  • Patent Document 1 Furthermore, the thiophenol used in Patent Document 1 is easily oxidized during storage and handling (handling). Therefore, when industrial production is carried out, the molecular weight of PAS and halogen (chlorine) depend on the degree of oxidation. Fluctuations occur in the reduction effect, and there are difficulties in industrial production within a certain standard product.
  • the organic amide solvent such as NMP and the alkali metal hydroxide react by heating
  • a compound containing nitrogen element is generated as an impurity.
  • NMP and sodium hydroxide (NaOH) react with each other NMP opens and sodium methylaminobutanoate [(CH 3 ) NH—CH 2 —CH 2 —CH 2 —COONa] is generated.
  • This compound reacts with p-dichlorobenzene, a dihaloaromatic compound, to produce sodium chlorophenylmethylaminobutanoate.
  • they can be incorporated at the polymer ends during the PAS polymerization reaction. Dirt such as molds and dies caused by such a compound containing nitrogen atoms adversely affects the quality of the molded product, and thus requires frequent cleaning.
  • An object of the present invention is to provide a granular PAS having a low halogen content, good thermal stability, less gas generation during molding, and having a low melt viscosity, and efficiently obtaining the granular PAS.
  • An object of the present invention is to provide a method for producing granular PAS. That is, both a low halogen content and a low melt viscosity (high fluidity) can be achieved, and these characteristics can be stably obtained with a high yield and a PAS with a low nitrogen content. It is an object of the present invention to obtain the above.
  • the present inventors have created a liquid-liquid phase separation state in which a liquid polymer phase and a liquid polymer phase are mixed in the presence of a phase separation agent.
  • a low halogen content is obtained by performing a polymerization reaction in the presence of a disulfide compound, and sieving the produced polymer with a sieve having a specific sieve opening to obtain a sieved product. It was found that granular PAS having good thermal stability, less gas generation during molding, and low melt viscosity can be recovered in high yield.
  • the inventors of the present invention have developed a PAS filter paper recovery method and a granular method for PAS having a certain range of melt viscosity (3 to 100 Pa ⁇ s) measured under conditions of a temperature of 310 ° C. and a shear rate of 1,200 sec ⁇ 1.
  • the chlorine content and the like were examined for the recovery method (the sieve top with a sieve opening of 38 ⁇ m and the product with a sieve opening of 38 ⁇ m), the following surprising findings were obtained.
  • the fine powder that passed through the sieve and passed through the sieve by sieving contains a large amount of low molecular weight substances and oligomers having chlorine bonded to the end of the molecule.
  • the fine powder under the sieve has a chlorine content exceeding 20,000 ppm.
  • the chlorine content of the sieved material remaining on the sieve without passing through the sieve having a sieve opening of 38 ⁇ m was lower than 1,500 ppm.
  • the sieve is sieved with a sieve having a sieve opening of 150 ⁇ m, and the chlorine content of the sieved product remaining on the sieve without passing through the sieve is sieved with a sieve having a sieve opening of 38 ⁇ m and passed through the sieve.
  • the chlorine content of the sieved product remaining on the sieve was further reduced.
  • a polymerization reaction is performed in the presence of a disulfide compound, and the separation and recovery after polymerization have a specific sieve opening.
  • a sieve By sieving the produced polymer with a sieve, it is possible to efficiently produce granular PAS with a low halogen (low chlorine) content, good thermal stability, little gas generation during molding, and low melt viscosity. It can be recovered at a rate.
  • the present invention basically combines the three elements of occurrence of a liquid-liquid phase separation state in the polymerization process, presence of a disulfide compound in the polymerization process, and sieving in the separation / recovery process. There is a big effect.
  • the thermal stability mentioned here can be evaluated by a method for evaluating the thermal stability of conventional PAS or ordinary thermoplastic resin.
  • TGA thermogravimetric analysis
  • the generated gas at the time of molding can be evaluated substantially by the amount of mold deposit at the time of injection molding, or in the laboratory by generated gas analysis.
  • the granular PAS of the present invention has a low halogen content.
  • Strict adjustment of the ratio of dihaloaromatic compound / sulfur source reduced the number of polymer terminals having halogen.
  • the molecular weight was adjusted with a disulfide compound.
  • the molecular weight was adjusted by strict adjustment of the ratio of dihaloaromatic compound / sulfur source.
  • the yield was improved by adjusting the ratio of the phase separation agent for causing the liquid-liquid phase separation state and by strictly adjusting the ratio of the water / sulfur source.
  • the liquid-liquid phase separation state was changed by the disulfide compound, the separation of the low molecular weight product / oligomer and the polymer component became efficient, and the granular PAS component was efficiently recovered.
  • the present invention basically combines three elements: the occurrence of a liquid-liquid phase separation state in the polymerization process, the presence of a disulfide compound in the polymerization process, and sieving in the separation / recovery process.
  • the following great effects can be achieved.
  • the liquid-liquid phase separation state occurs due to the presence of the phase separation agent in the latter half of the polymerization, at the end of the polymerization or at the beginning of temperature reduction, and granulation is performed by cooling and solidification from the liquid-liquid phase separation state.
  • the present invention has been completed based on these findings.
  • a granular PAS comprising: (I) the granular PAS contains a substituent of —S— cleaved from a disulfide compound at the end; (Ii) The granular PAS is a sieved product after sieving with a sieve having a sieve opening of 38 ⁇ m or more, (Iii) the granular PAS has a halogen content of 1,500 ppm or less, and (Iv) A granular PAS having a melt viscosity of 3 to 100 Pa ⁇ s measured under conditions of a temperature of 310 ° C. and a shear rate of 1,200 sec ⁇ 1 is provided.
  • the polymerization step of polymerizing the sulfur source and the dihaloaromatic compound in the organic amide solvent, the cooling step of cooling the liquid phase containing the produced polymer after the polymerization step, and the produced polymer are separated.
  • a liquid-liquid phase separation state in which a phase separation agent is present during the polymerization step and / or before the cooling step, and the product polymer rich phase and the product polymer dilute phase coexist.
  • a process for producing a granular PAS comprising the step of causing (I) performing the polymerization reaction in the presence of a disulfide compound in the polymerization step; and (Ii) In the separation / recovery step, the above-mentioned method for producing granular PAS is provided, in which the produced polymer is sieved with a sieve having a sieve opening of 38 ⁇ m or more to obtain a sieved product.
  • a granular PAS having a high thermal stability, a low gas generation during molding, a low halogen content and a low melt viscosity, and a high balance between these properties is obtained in a high yield. be able to.
  • granular PAS with a reduced nitrogen content can be obtained.
  • the granular PAS of the present invention having a low halogen (low chlorine) content, good thermal stability, little gas generation during molding, and low melt viscosity is particularly required in the electric and electronic equipment field in recent years. It is useful as a low halogen (low chlorine) and low melt viscosity PAS.
  • FIG. 1 is a graph plotting the chlorine content and melt viscosity of sieve tops of 150 ⁇ m sieve sieves in Examples 1 to 4 and Comparative Examples 1, 6, and 7.
  • At least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides is used as the sulfur source.
  • the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and a mixture of two or more thereof.
  • the alkali metal hydrosulfide include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and a mixture of two or more thereof.
  • the alkali metal sulfide any of an anhydride, a hydrate, and an aqueous solution may be used. Among these, sodium sulfide and lithium sulfide are preferable because they can be obtained industrially at low cost.
  • the alkali metal sulfide is preferably used as an aqueous mixture such as an aqueous solution (that is, a mixture with fluid water) from the viewpoint of processing operation, measurement, and the like.
  • the alkali metal hydrosulfide may be any of anhydride, hydrate, and aqueous solution. Among these, sodium hydrosulfide and lithium hydrosulfide are preferable because they can be obtained industrially at low cost.
  • the alkali metal hydrosulfide is preferably used as an aqueous mixture such as an aqueous solution (that is, a mixture with fluid water) from the viewpoint of processing operation, measurement, and the like.
  • alkali metal hydrosulfide In the production process of alkali metal sulfide, generally, a small amount of alkali metal hydrosulfide is by-produced. A small amount of alkali metal hydrosulfide may be contained in the alkali metal sulfide used in the present invention. In this case, the total molar amount of the alkali metal sulfide and the alkali metal hydrosulfide becomes the charged sulfur source in the charging step after the dehydration step described later.
  • a small amount of alkali metal sulfide is generally produced as a by-product in the production process of alkali metal hydrosulfide.
  • a small amount of alkali metal sulfide may be contained in the alkali metal hydrosulfide used in the present invention.
  • the total molar amount of the alkali metal hydrosulfide and the alkali metal sulfide becomes the charged sulfur source in the charging step after the dehydration step.
  • a mixture of both serves as a charged sulfur source.
  • an alkali metal hydroxide is used in combination.
  • the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and a mixture of two or more thereof.
  • sodium hydroxide and lithium hydroxide are preferable because they can be obtained industrially at low cost.
  • the alkali metal hydroxide is preferably used as an aqueous mixture such as an aqueous solution.
  • the dihaloaromatic compound used in the present invention is a dihalogenated aromatic compound having two halogen atoms directly bonded to an aromatic ring.
  • Specific examples of the dihaloaromatic compound include, for example, o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenyl sulfone. , Dihalodiphenyl sulfoxide, dihalodiphenyl ketone and the like.
  • the halogen atom refers to each atom of fluorine, chlorine, bromine and iodine, and in the same dihaloaromatic compound, the two halogen atoms may be the same or different. Of these halogen atoms, a chlorine atom is preferred. These dihaloaromatic compounds can be used alone or in combination of two or more. p-Dichlorobenzene (p-DCB) is usually often used.
  • the charged amount of the dihaloaromatic compound is usually 1.005 to 1.040 mol, preferably 1.008 to 1.035 mol, more preferably 1.010 to 1.030 mol, especially 1 mol per mol of the charged sulfur source.
  • the amount is preferably 1.012 to 1.028 mol.
  • Branching / crosslinking agent and molecular weight control agent In order to introduce a branched or crosslinked structure into PAS, a polyhalo compound having 3 or more halogen atoms bonded thereto (not necessarily an aromatic compound), an active hydrogen-containing halogenated aromatic A compound, a halogenated aromatic nitro compound, or the like can be used in combination.
  • the polyhalo compound as the branching / crosslinking agent is preferably trihalobenzene.
  • a monohalo organic compound can be added at any stage of the polymerization process.
  • monohalo organic compounds include monohalo-substituted saturated or unsaturated aliphatic hydrocarbons such as monohalopropane, monohalobutane, monohaloheptane, monohalohexane, aryl halide and chloroprene; monohalo-substituted saturated cyclic such as monohalocyclohexane and monohalodecalin Hydrocarbon: monohalobenzene, monohalonaphthalene, 4-chlorobenzoic acid, methyl 4-chlorobenzoate, 4-chlorodiphenylsulfone, 4-chlorobenzonitrile, 4-chlorobenzotrifluoride, 4-chloronitrobenzene, 4-chloro Monohalo-substituted aromatic hydrocarbons such as chloroacetophenone, 4-chlorobenzophenone and
  • Halogen atoms refer to fluorine, chlorine, bromine, and iodine atoms. Of these halogen atoms, a chlorine atom is preferred. In addition, an organic compound substituted with one chlorine atom and having a substituent such as trifluoromethane, which is extremely less reactive than the chlorine atom, is also incorporated into the monohalo organic compound for convenience. I will do it.
  • Organic Amide Solvent in the present invention, an organic amide solvent that is an aprotic polar organic solvent is used as a solvent for the dehydration reaction and the polymerization reaction.
  • the organic amide solvent is preferably stable to alkali at high temperatures.
  • organic amide solvent examples include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl- ⁇ -caprolactam; N-methyl-2-pyrrolidone, N-alkylpyrrolidone compounds or N-cycloalkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone; N, N-dialkylimidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone; tetramethylurea, etc. Tetraalkylurea compounds; hexaalkylphosphoric acid triamide compounds such as hexamethylphosphoric acid triamide. These organic amide solvents may be used alone or in combination of two or more.
  • N-alkylpyrrolidone compounds, N-cycloalkylpyrrolidone compounds, N-alkylcaprolactam compounds, and N, N-dialkylimidazolidinone compounds are preferable, and in particular, N-methyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam and 1,3-dialkyl-2-imidazolidinone are preferably used.
  • the amount of the organic amide solvent used in the polymerization reaction of the present invention is usually in the range of 0.1 to 10 kg, preferably 0.15 to 5 kg, per mole of sulfur source. If the amount of the organic amide solvent used is less than 0.1 kg, it is difficult to carry out the polymerization reaction stably, and if it exceeds 10 kg, the production cost increases.
  • phase separation agents can be used in order to generate a liquid-liquid phase separation state and to obtain a PAS having a low halogen content and an adjusted melt viscosity in a short time.
  • a phase separation agent is a compound that dissolves in an organic amide solvent by itself or in the presence of a small amount of water and has an action of reducing the solubility of PAS in an organic amide solvent.
  • the phase separation agent itself is a compound that is not a solvent for PAS.
  • phase separation agent generally known compounds can be used as the phase separation agent for PAS.
  • phase separation agents include water, organic carboxylic acid metal salts such as alkali metal carboxylates, organic sulfonic acid metal salts, alkali metal halides such as lithium halides, alkaline earth metal halides, and aromatic carboxylic acids. Alkaline earth metal salts, alkali metal phosphates, alcohols, paraffin hydrocarbons and the like can be mentioned.
  • phase separation agents can be used alone or in combination of two or more. Among these, water and organic carboxylic acid metal salts are preferable because they are inexpensive.
  • organic carboxylic acid metal salt organic sulfonic acid metal salt, alkali metal halide such as lithium halide, alkaline earth metal halide, alkaline earth metal salt of aromatic carboxylic acid, alkali metal phosphate, etc. preferable.
  • phase separation agent water is particularly preferable.
  • organic carboxylic acid metal salts sodium acetate is preferable, and when used, it can be used as an aqueous solution of usually 25 to 35% by mass, preferably 30% by mass.
  • the amount of phase separation agent used varies depending on the type of compound used, but is generally in the range of 0.01 to 15 moles per mole of the charged sulfur source.
  • the amount is preferably 0.01 to 13 mol, more preferably 0.02 to 12 mol, and particularly preferably 0.03 to 10 mol.
  • the amount of the phase separation agent used is less than 0.01 mol, it is difficult to cause a liquid-liquid phase separation state, and when it exceeds 15 mol, it is difficult to proceed the polymerization reaction well.
  • the phase separation agent can be present either during the polymerization step and / or before the cooling step described later, thereby obtaining a step in which a liquid-liquid phase separation state occurs. Can do.
  • the polymerization reaction in the polymerization step is performed in the presence of a disulfide compound.
  • the disulfide compound may be added at any stage of the polymerization process. For example, when the polymerization process includes a two-stage process including a pre-stage polymerization process and a post-stage polymerization process, it may be added in the pre-stage polymerization process or in the post-stage polymerization process. Moreover, you may add to the preparation process at the time of a pre-stage polymerization process start.
  • the —S— substituent cleaved from the disulfide compound replaces the halogen group (chlorine group) at the terminal of the resulting PAS, thereby reducing the halogen content of the PAS. Presumed to play a role of reduction.
  • the PAS end includes —S—C 6 H 5 that has reacted with the end.
  • the terminal group component at the PAS end is mostly —Cl, —SC 6 H 5 , —SH in which the disulfide compound has reacted.
  • a nitrogen compound derived from an organic amide solvent can be analyzed quantitatively or qualitatively by elemental analysis, high-temperature NMR analysis, or IR analysis.
  • disulfide compounds can be obtained by quantitative analysis of -Cl by elemental analysis, quantitative determination of -SH by titration or derivatization reaction or IR method, and nitrogen analysis of organic amide solvent-derived nitrogen compounds. The amount of —S—C 6 H 5 reacted with can be calculated.
  • disulfide compounds are insoluble in water.
  • the disulfide compound is distributed to the polymer concentrated phase with a small amount of water component, and efficiently replaces the halogen at the PAS terminal, contributing to low halogenation. It is done.
  • the disulfide compound exhibits advantageous effects such as good reactivity even in a liquid-liquid phase separation state. That is, it is one of the features of the present invention that the reactivity of the disulfide compound is well expressed in a liquid-liquid phase separation state.
  • the addition timing of the disulfide compound may be determined based on the conversion rate of the dihaloaromatic compound.
  • the disulfide compound has a dihaloaromatic compound conversion rate of 0 to 100%, usually 45% or more, preferably 45 to 99.5%, more preferably 60 to 99% in the polymerization step. More preferably, it is added at a point of 70 to 98.5%, particularly preferably 80 to 98%, and can be present in the polymerization step.
  • disulfide compound examples include diphenyl disulfide (DPDS), p-p'ditolyl disulfide, dibenzyl disulfide, dibenzoyl disulfide, and dithiobenzoyl disulfide, and diphenyl disulfide is preferable.
  • DPDS diphenyl disulfide
  • p-p'ditolyl disulfide dibenzyl disulfide
  • dibenzoyl disulfide dibenzoyl disulfide
  • dithiobenzoyl disulfide diphenyl disulfide
  • the amount of the disulfide compound added when the polymerization reaction is carried out in the presence of the disulfide compound is 0.0005 to 0.015 mol, preferably 0.0007 to 0.005 mol per mol of the charged sulfur source. 01 mol, more preferably 0.0008 to 0.008 mol, still more preferably 0.0009 to 0.006 mol, and particularly preferably 0.001 to 0.005 mol.
  • the amount of disulfide compound added in this range is a granular PAS with good thermal stability, low gas generation during molding, low halogen content, low melt viscosity, and high performance balance. It is important in getting.
  • the production method comprises a polymerization step for polymerizing a sulfur source and a dihaloaromatic compound in an organic amide solvent, a cooling step for cooling the liquid phase containing the produced polymer after the polymerization step, and separation and recovery of the produced polymer. Including a separation / recovery step, and further a phase-separating agent is present during the polymerization step and / or before the cooling step to generate a liquid-liquid phase separation state in which the product polymer rich phase and the product polymer dilute phase coexist. It is a manufacturing method including a process.
  • phase separation polymerization in which the polymerization process is continued in a liquid-liquid phase separation state in which the liquid phase in the polymerization reaction system is mixed with a polymer rich phase and a polymer thin phase in the presence of a phase separation agent.
  • a process may be included.
  • a dehydration process As a pre-process of the polymerization process, it is preferable to arrange a dehydration process to adjust the amount of coexisting water (also referred to as water content) in the reaction system.
  • the dehydration step is preferably carried out by heating and reacting a mixture containing an organic amide solvent and an alkali metal sulfide in an inert gas atmosphere, and discharging water out of the system by distillation.
  • an alkali metal hydrosulfide is used as the sulfur source
  • the reaction is carried out by heating and reacting a mixture containing the alkali metal hydrosulfide and the alkali metal hydroxide, and discharging water out of the system by distillation.
  • the amount of water composed of hydrated water (crystal water), an aqueous medium, by-product water, etc. is preferably dehydrated until it falls within the range of the coexisting water amount required in the charging step described later. If the amount of coexisting water falls outside the range required in the preparation step, an additional amount of water shortage may be added.
  • an organic amide solvent an alkali metal hydrosulfide, and 0.95 to 1.07 mole of alkali metal hydroxide per mole of the alkali metal hydrosulfide It is preferable to heat and react the mixture containing water and to discharge at least a part of the distillate containing water from the system containing the mixture to the outside of the system.
  • the preferred mole of alkali metal hydroxide per mole of alkali metal hydrosulfide charged in this step is 0.96 to 1.06 mole, more preferably 0.97 to 1.05 mole.
  • Alkali metal hydrosulfides often contain a small amount of alkali metal sulfide, and the amount of sulfur source is the total amount of alkali metal hydrosulfide and alkali metal sulfide. Even if the alkali metal hydrosulfide contains an alkali metal sulfide, there is no problem as a raw material of PAS, but in order to produce the granular PAS of the present invention, the content is preferably as small as possible. In addition, even if a small amount of alkali metal sulfide is mixed, the present invention calculates the mole with the alkali metal hydroxide based on the content (analytical value) of the alkali metal hydrosulfide, adjust.
  • the order in which the raw materials are charged in the dehydration process may be in any order, and each raw material may be additionally charged during the dehydration process.
  • An organic amide solvent is used as a solvent used in the dehydration step. This solvent is preferably the same as the organic amide solvent used in the polymerization step, and N-methyl-2-pyrrolidone is particularly preferred.
  • the amount of the organic amide solvent used is usually 0.1 to 10 kg, preferably 0.15 to 5 kg, per mole of sulfur source charged into the reaction vessel.
  • the mixture after the raw materials are charged into the reaction vessel is usually heated at a temperature of 300 ° C. or lower, preferably 100 to 250 ° C., usually for 15 minutes to 24 hours, preferably 30 minutes to 10 hours. Done.
  • a heating method there are a method for maintaining a constant temperature, a stepwise or continuous temperature raising method, or a method in which both are combined.
  • the dehydration step is performed by a batch method, a continuous method, or a combination method of both methods.
  • the apparatus for performing the dehydration step may be the same as or different from the reaction vessel used in the subsequent polymerization step.
  • the material of the device is preferably a corrosion resistant material such as titanium.
  • part of the organic amide solvent is usually discharged with the water out of the reaction vessel. At that time, hydrogen sulfide is discharged out of the system as a gas.
  • the preparation step is performed according to the present invention “a polymerization step for polymerizing a sulfur source and a dihaloaromatic compound in an organic amide solvent, a cooling step for cooling a liquid phase containing the produced polymer after the polymerization step, and a produced polymer.
  • a liquid-liquid phase including a separation phase / recovery step for separating / recovering the liquid and a phase separation agent in the polymerization step and / or before the cooling step to coexist the product polymer rich phase and the product polymer dilute phase.
  • the ⁇ Production method including the step of causing a separation state '', the amount of phase separation agent with respect to the charged sulfur source, the amount of coexisting water with respect to the charged sulfur source, the amount of dihaloaromatic compound with respect to the charged sulfur source, and the charged sulfur source required in the polymerization step It is a step of adjusting the amount of alkali metal hydroxide with respect to the amount of disulfide compound with respect to the charged sulfur source.
  • an alkali metal hydroxide is generated by the equilibrium reaction and remains in the system. Therefore, it is necessary to accurately grasp the amount of volatilized hydrogen sulfide and determine the molar amount of the alkali metal hydroxide with respect to the sulfur source in the preparation step.
  • an alkali metal hydroxide and water can be added to the mixture remaining in the system after the dehydration step, if necessary.
  • the amount of coexisting water at the start of the polymerization reaction is usually 0.02 to 2 mol, preferably 0.05 to 1.9 mol, more preferably 0.5 to 1. mol, relative to 1 mol of the charged sulfur source in the charging step.
  • the range is preferably 8 mol. Within this range, the amount of coexisting water can be increased during the polymerization reaction.
  • the charged amount of the dihaloaromatic compound is usually 1.005 to 1.040 mol, preferably 1.008 to 1.035 mol, more preferably 1.010 to 1.030 mol, especially 1 mol per mol of the charged sulfur source.
  • the amount is preferably 1.012 to 1.028 mol.
  • the amount of alkali metal hydroxide per mole of the charged sulfur source is preferably 1.005 to 1.080 mol, more preferably 1.010 to 1.075 mol, especially The amount is preferably 1.020 to 1.073 mol. It is preferable to carry out the polymerization reaction with a small excess of alkali metal hydroxide in order to stably carry out the polymerization reaction and obtain a high-quality PAS.
  • the amount of the disulfide compound added when the polymerization reaction is carried out in the presence of the disulfide compound is 0.0005 to 0.015 mol, preferably 0.0007 to 0.005 mol per mol of the charged sulfur source. 01 mol, more preferably 0.0008 to 0.008 mol, still more preferably 0.0009 to 0.006 mol, and particularly preferably 0.001 to 0.005 mol.
  • the disulfide compound may be added alone in the polymerization step, or may be added as a mixture with an organic amide solvent.
  • the amount of the organic amide solvent is 0.1 to 10 kg, preferably 0.15 to 5 kg per mole of the sulfur source or the charged sulfur source.
  • the polymerization process is carried out by heating a sulfur source and a dihaloaromatic compound in an organic amide solvent.
  • a phase separation polymerization step in which the polymerization step is continued in a liquid-liquid phase separation state in which the liquid phase in the polymerization reaction system is a mixture of a polymer rich phase and a polymer thin phase in the presence of a phase separation agent. It is preferable to include.
  • phase separation agent may be added before the cooling step after the polymerization reaction.
  • the granular PAS can be separated and recovered by cooling the liquid phase containing the produced polymer in the liquid-liquid phase separation state.
  • Phase separation agents include water, organic carboxylic acid metal salts, organic sulfonic acid metal salts, alkali metal halides, alkaline earth metal halides, alkaline earth metal salts of aromatic carboxylic acids, alkali metal phosphates, alcohols, and It is at least one phase separation agent selected from the group consisting of paraffinic hydrocarbons.
  • the phase separation agent is usually 0.01 to 15 mol, preferably 0.01 to 13 mol, more preferably 0.02 to 12 mol, particularly preferably 0.03 to 10 mol per mol of the charged sulfur source. Use moles.
  • the polymerization reaction needs to be performed in the presence of a disulfide compound at some stage in the polymerization process.
  • the polymerization reaction in the polymerization step is 0.0005 to 0.015 mol, preferably 0.0007 to 0.01 mol, more preferably 0.0008 to 0.008 mol, and still more preferably, per mol of the charged sulfur source. It must be carried out in the presence of 0.0009 to 0.006 mol, particularly preferably 0.001 to 0.005 mol of disulfide compound.
  • a disulfide compound with a dihaloaromatic compound conversion rate of 45% or more it is preferable to add a disulfide compound with a dihaloaromatic compound conversion rate of 45% or more. Moreover, you may mix a polymerization adjuvant and other additives before a polymerization process or during a polymerization process.
  • the polymerization reaction is preferably carried out in a two-step process of a pre-stage polymerization process and a post-stage polymerization process, generally in the range of 170 to 290 ° C.
  • a heating method a method of maintaining a constant temperature, a stepwise or continuous temperature raising method, or a combination of both methods is used.
  • the polymerization reaction time is generally in the range of 10 minutes to 72 hours, preferably 30 minutes to 48 hours.
  • the organic amide solvent used in the polymerization step is usually 0.1 to 10 kg, preferably 0.15 to 5 kg, per mole of the charged sulfur source. Within this range, the amount may be changed during the polymerization reaction.
  • a method is preferred in which the polymerization reaction is continued by converting the liquid phase in the polymerization reaction system to a phase-separated state at the stage when the conversion of the dihaloaromatic compound reaches 80 to 99 mol% after the start of the polymerization reaction.
  • a phase separation agent or increase the amount of the additive acting as a phase separation agent.
  • limit especially as a phase-separation agent Water or an organic carboxylic acid metal salt and these combinations, especially water are preferable at the point which is cheap and the control of a polymerization reaction and post-processing are easy.
  • the polymerization reaction is carried out in the presence of a disulfide compound, and the polymerization step is performed at least in the following two-stage steps: (I) A sulfur source and a dihaloaromatic compound in an organic amide solvent are present in an amount of 0.02 to 2 mol of coexisting water and 1.005 to 1.040 mol of a dihaloaromatic compound per mol of the charged sulfur source. In the state, a polymerization reaction is carried out at a temperature of 170 to 270 ° C.
  • phase separation agent While present in the range of 0.01 to 10 moles per mole and heating to a temperature of 240 to 290 ° C., the liquid phase in the polymerization reaction system is converted to a phase separation state and the polymerization reaction is continued.
  • Post-polymerization step It is preferable to carry out by.
  • Prepolymerization step The amount of coexisting water in the reaction system in the prepolymerization step is 0.02 to 2 mol, preferably 0.05 to 1.9 mol, more preferably 0.5 to 1.8 mol, per mol of the charged sulfur source. Range. If the amount of coexisting water is too small, an undesirable reaction such as decomposition of PAS is likely to occur. Conversely, if it exceeds 2 moles, the polymerization rate is remarkably reduced, or the organic amide solvent and the produced PAS are likely to be decomposed. Neither is preferred.
  • the charged amount of the dihaloaromatic compound is usually 1.005 to 1.040 mol, preferably 1.008 to 1.035 mol, more preferably 1.010 to 1.030 mol, in particular, per mol of the charged sulfur source.
  • the amount is preferably 1.012 to 1.028 mol.
  • Polymerization is performed within a temperature range of 170 to 270 ° C., preferably 180 to 265 ° C. If the polymerization temperature is too low, the polymerization rate becomes too slow. Conversely, if the polymerization temperature is higher than 270 ° C., the produced PAS and the organic amide solvent are liable to decompose, and the degree of polymerization of the produced PAS becomes extremely low.
  • the polymerization temperature in the pre-stage polymerization step is preferably controlled within the range of 200 to 255 ° C.
  • the pre-stage polymerization step is a stage in which the conversion of the dihaloaromatic compound reaches 80 to 99%, preferably 85 to 98%, more preferably 90 to 97% after the start of the polymerization reaction, and the liquid phase Is a step before the phase separation state occurs.
  • the conversion rate of the dihaloaromatic compound was determined by gas chromatography to determine the amount of the dihaloaromatic compound remaining in the reaction mixture, and based on the residual amount, the charged amount of the dihaloaromatic compound, and the charged amount of the sulfur source, It is a value calculated by an equation.
  • conversion rate [[DHA charge (mol) ⁇ DHA remaining amount (mol)] / [DHA charge (mol)]] ⁇ 100 To calculate the conversion.
  • a polymer (also referred to as “prepolymer”) having a melt viscosity of usually 0.5 to 30 Pa ⁇ s measured at a temperature of 310 ° C. and a shear rate of 1,200 sec ⁇ 1 is produced. Is desirable.
  • the liquid phase in the polymerization reaction system includes a polymer rich phase having a high content of polymer (prepolymer) produced by the previous polymerization and a polymer dilute phase having a low content of the polymer. Phase separate. The phase separation state can be clearly observed visually.
  • the phase separation agent is generally used in an amount of 0.01 to 10 mol, preferably 0.03 to 8 mol, more preferably 0.04 to 7 mol, per mol of the charged sulfur source.
  • the amount of coexisting water in the reaction system in the latter polymerization step is usually 2 to 5 mol, preferably 2.1 to 4.5 mol, per mol of the charged sulfur source. More preferably, it is desirable to adjust to the range of 2.2 to 4 mol, particularly preferably 2.3 to 3.5 mol.
  • the amount of coexisting water in the reaction system is less than 2 mol or more than 5 mol, the degree of polymerization of the produced PAS decreases.
  • phase separation agent other than water (organic carboxylic acid metal salt, organic sulfonic acid metal salt, alkali metal halide, alkaline earth metal halide, alkaline earth metal salt of aromatic carboxylic acid, phosphorus
  • the phase separation agent is added in an amount of 0.01 to 3 per mole of the charged sulfur source. Mole, preferably 0.02 to 2 mol, more preferably 0.03 to 1 mol, particularly preferably 0.04 to 0.5 mol, is preferably present.
  • the phase separation agent water and other phase separation agents other than water can be used in combination.
  • the amount of coexisting water in the reaction system is 0.01 to 7 mol, preferably 0.1 to 4 mol, more preferably 1 to 3.5 mol, and other than water, per mol of the charged sulfur source.
  • the phase separation agent is preferably present in the range of 0.01 to 3 mol, preferably 0.02 to 1 mol, more preferably 0.03 to 0.5 mol, per mol of the charged sulfur source. Strict adjustment of the ratio of phase separation agent / feeding sulfur source leads to reduction of low molecular weight substances and oligomers.
  • the polymerization temperature in the post-stage polymerization step is in the range of 240 to 290 ° C. If the polymerization temperature in the subsequent polymerization step is less than 240 ° C, it is difficult to obtain a PAS having an adjusted melt viscosity, and if it exceeds 290 ° C, the produced PAS and the organic amide solvent may be decomposed. Further, a temperature range of 245 to 280 ° C., particularly 250 to 275 ° C. is preferable because a PAS having an adjusted melt viscosity is easily obtained.
  • the latter polymerization step in the present invention is not a simple fractionation / granulation step of the PAS prepolymer produced in the former polymerization step, but is for raising the degree of polymerization of the PAS prepolymer.
  • the polymerization reaction is continued in a phase separation state in which the liquid phase in the polymerization reaction system is mixed with the produced polymer rich phase and the produced polymer dilute phase in the presence of the phase separation agent.
  • the PAS concentration of the concentrated phase is usually 30 to 70% by mass, preferably 40 to 60% by mass, more preferably 45 to 55% by mass.
  • the PAS concentration of the dilute phase is usually 0.1 to 15% by mass, preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass.
  • the polymerization reaction method may be a batch method, a continuous method, or a combination of both methods.
  • a system using two or more reaction vessels can be used as desired.
  • Cooling step In the present invention, after the polymerization step and before the cooling step, the above-described phase separation agent is present to cause a liquid-liquid phase separation state in which the product polymer rich phase and the product polymer dilute phase coexist. be able to. If necessary, the occurrence of a liquid-liquid phase separation state can be adjusted by stirring.
  • the liquid phase containing the produced polymer is usually cooled from a high temperature state after the polymerization step.
  • the slow cooling it is preferable to cool the liquid phase by controlling the temperature decreasing rate at 2.0 to 0.1 ° C./min.
  • the slow cooling can be performed by a method in which the polymerization reaction system is exposed to an ambient temperature (for example, room temperature).
  • an ambient temperature for example, room temperature.
  • the temperature of the liquid phase in the polymerization reaction system is the polymerization temperature in the liquid-liquid phase separation polymerization process, or the temperature at which PAS is solidified and granulated from the liquid-liquid phase separation state (hereinafter referred to as “solidification / granulation”).
  • solidification / granulation the temperature at which PAS is solidified and granulated from the liquid-liquid phase separation state
  • granulation temperature for example, until it drops to about 240 to 200 ° C., preferably 2.0 to 0.1 ° C./min, more preferably 1.5 to 0.2 ° C./min, and more It is desirable to gradually cool the liquid phase by controlling the temperature drop rate at 1.3 to 0.3 ° C./min. Such control of the cooling rate can promote the granulation of the polymer.
  • the liquid phase can be cooled to a desired temperature without temperature control.
  • the polymerization reaction system can be allowed to stand at the ambient temperature, or the rate of temperature drop of the liquid phase can be increased.
  • the final cooling temperature is a temperature not lower than room temperature and lower than 220 ° C. at which separation and recovery processes such as sieving are easy.
  • it is 40 degreeC or more, More preferably, it is 45 degreeC or more.
  • the upper limit is preferably 200 ° C. or lower, and a slurry containing PAS that is sufficiently granulated can be obtained by setting the washing to preferably less than 100 ° C.
  • a method of separating / recovering granular PAS from a reaction solution by a method of sieving using a specific sieve opening sieve is provided.
  • Sieving may be performed while the product slurry is in a high temperature state (eg, a temperature of room temperature or higher and lower than 220 ° C.).
  • the produced PAS is sieved with a sieve having a sieve opening of 38 ⁇ m or more, and recovered as a sieved product after sieving.
  • the sieving may be performed after washing, which will be described later, or after drying.
  • sieving may be performed at each stage before washing, after washing, and after drying.
  • PAS may be washed with hot water or the like.
  • the produced PAS can also be treated with a salt such as an organic acid or ammonium chloride.
  • the organic acid is preferably acetic acid. After washing, it is dried according to a conventional method.
  • Granular PAS is a sieved product after sieving with a sieve having a sieve opening of 38 ⁇ m or more.
  • the sieve used for recovering the granular PAS is usually a sieve having a sieve opening selected from a range of 38 ⁇ m to 2,800 ⁇ m, preferably a sieve selected from a range of 38 ⁇ m to 1,500 ⁇ m.
  • a sieve most preferably a sieve having a sieve opening selected from the range of 38 ⁇ m to 300 ⁇ m is employed.
  • a sieve used for collecting a sieve having an opening specifically, a sieve having a sieve opening of 150 ⁇ m (100 mesh (number of meshes / inch)), a sieve opening of 105 ⁇ m (145 mesh (number of meshes / number) Inch)), a sieve having a sieve opening of 75 ⁇ m (200 mesh (number of meshes / inch)), and a sieve having a sieve opening of 38 ⁇ m (400 mesh (number of meshes / inch)), etc.
  • the oligomer can be removed. More preferably, it is desirable to use a sieve having a sieve opening of 150 ⁇ m (100 mesh (number of meshes / inch)) that can efficiently remove fine by-product salt.
  • the granular polymer collected as a sieved product by sieving with a sieve having a sieve opening of 38 ⁇ m or more is usually 80% by mass or more, preferably with respect to the total amount before sieving. It can be recovered in a yield of 80 to 99.5% by mass, more preferably 83 to 99% by mass, particularly preferably 85 to 98% by mass.
  • the granular PAS collected by a sieve having a sieve opening of 150 ⁇ m or more is usually 80% by mass or more, specifically 80 to 98% by mass, preferably 83 to 97% by mass, and particularly preferably 85 to 97% by mass. It can be recovered in a yield of 96% by weight.
  • the yields typified by these are also called sieved products (mass%).
  • the granular PAS sieve top (mass%) is obtained by sieving the PAS mass (theoretical amount) when it is assumed that all of the effective sulfur components in the charged sulfur source present in the reaction vessel after the dehydration step have been converted to PAS.
  • the total amount of PAS before dividing was used as a standard.
  • the sieved product (mass%) was calculated by (sieved product) / (total amount of PAS before sieving: PAS mass (theoretical amount)). If the charged sulfur source is charged in an excess molar ratio than the dihaloaromatic compound, not all of the charged sulfur source can be converted to PAS.
  • the sieved material (% by mass) is calculated based on the amount. Also in the case of filter paper collection, the recovery rate is calculated by the filter paper top / (total amount of PAS before sieving: PAS mass (theoretical amount)).
  • Polyarylene sulfide is a granular PAS, wherein (i) the granular PAS contains a substituent of -S- cleaved from a disulfide compound at the end, and (ii) the granular PAS is 38 ⁇ m or more. (Iii) The granular PAS has a halogen content of 1,500 ppm or less, and (iv) the granular polyarylene sulfide has a temperature of A granular PAS having a melt viscosity of 3 to 100 Pa ⁇ s measured under conditions of 310 ° C. and a shear rate of 1,200 sec ⁇ 1 is obtained.
  • the granular PAS is a polymerization step for polymerizing a sulfur source and a dihaloaromatic compound in an organic amide solvent, a cooling step for cooling a liquid phase containing the produced polymer after the polymerization step, And a recovery step for separating and recovering the produced polymer, and further a liquid-liquid in which a phase separating agent is present during the polymerization step and / or before the cooling step to mix the produced polymer rich phase and the produced polymer dilute phase.
  • a method for producing granular PAS comprising a step of causing a phase separation state, wherein (i) a polymerization reaction is performed in the presence of a disulfide compound in the polymerization step, and (ii) in the separation / recovery step
  • the produced polymer is sieved with a sieve having a sieve opening of 38 ⁇ m or more to obtain a sieved product, which is produced by a method for producing granular PAS.
  • the melt viscosity measured at a temperature of 310 ° C. and a shear rate of 1,200 sec ⁇ 1 is usually 3 to 100 Pa ⁇ s, preferably 7 to 80 Pa ⁇ s, more preferably 10 to 70 Pa.
  • a granular PAS of s, particularly preferably 13 to 60 Pa ⁇ s, more preferably 15 to 55 Pa ⁇ s, and most preferably 17 to 50 Pa ⁇ s can be obtained.
  • the halogen content (chlorine content) of the obtained granular PAS is 1,500 ppm or less, preferably 1,300 ppm or less, more preferably 1,250 ppm or less. Depending on the application, it may be 1,000 ppm or less, preferably 900 ppm or less, or 850 ppm or less.
  • the lower limit of the halogen content is usually about 100 ppm or 200 ppm.
  • the nitrogen content of the obtained granular PAS is 1,000 ppm or less, preferably 800 ppm or less, more preferably 700 ppm or less, even more preferably 650 ppm or less, and particularly preferably 600 ppm or less.
  • the lower limit of the nitrogen content is about 1 ppm or 2 ppm.
  • the average particle size of the obtained granular PAS is 50 to 2,500 ⁇ m, preferably 70 to 1,000 ⁇ m, more preferably 100 to 800 ⁇ m, particularly preferably 280 to 550 ⁇ m, most preferably. 300 to 500 ⁇ m.
  • the granular PAS of the present invention is used as it is or after being oxidatively cross-linked, either alone or by blending various synthetic resins, various fillers, various additives, and extrusion molding of various injection molded products, sheets, films, fibers, pipes, etc. Can be formed into a product.
  • Granular PAS is also useful as a sealing agent or coating agent for electronic components.
  • PPS is particularly preferable.
  • Resin Composition When the granular PAS of the present invention is used as a composition, the other components are as follows.
  • thermoplastic resins that are stable at high temperatures are preferable. Specific examples thereof include aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate; polytetrafluoroethylene, tetrafluoroethylene / hexafluoropropylene copolymers, Tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, vinylidene fluoride / hexafluoropropylene copolymer, propylene / tetrafluoroethylene copolymer, vinylidene fluoride / chlorotrifluoroethylene Fluororesin such as copolymer, ethylene / hexafluoropropylene copolymer; polyacetal, polystyrene, poly
  • thermoplastic resins can be used alone or in combination of two or more.
  • an inorganic filler such as glass fiber is blended
  • various synthetic resins are used so that good moldability can be obtained in accordance with the characteristics of the low melt viscosity PAS which is a feature of the present invention. It is important to select a material that has a low melt viscosity and an intrinsic viscosity and that provides a good melting behavior.
  • Examples of the various fillers include inorganic fiber materials such as glass fiber, carbon fiber, asbestos fiber, silica fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate whisker, stainless steel,
  • Examples include fibrous fillers such as metal fibrous materials such as aluminum, titanium, steel, and brass; high-melting organic fibrous materials such as polyamide, fluororesin, polyester resin, and acrylic resin;
  • Examples of the filler include mica, silica, talc, alumina, kaolin, calcium sulfate, calcium carbonate, titanium oxide, ferrite, glass powder, zinc oxide, nickel carbonate, iron oxide, quartz powder, magnesium carbonate, and barium sulfate.
  • a granular or plate-like filler such as clay.
  • These fillers can be used alone or in combination of two or more.
  • These fillers may be treated with a sizing agent or a surface treatment agent as necessary.
  • the sizing agent or surface treatment agent include functional compounds such as epoxy compounds, isocyanate compounds, silane compounds, and titanate compounds. These compounds may be used after having been subjected to surface treatment or focusing treatment on the filler in advance, or may be added simultaneously when the composition is adjusted.
  • the filler is usually blended in an amount of 0 to 800 parts by weight, preferably 0 to 500 parts by weight, more preferably 0 to 300 parts by weight with respect to 100 parts by weight of the granular PAS.
  • an inorganic fibrous filler such as glass fiber is blended as a filler, a resin composition and a molded article excellent in mechanical properties such as tensile strength can be obtained.
  • a compound containing a filler such as glass fiber it is particularly preferable to use as a compound containing a filler such as glass fiber.
  • the regulated value of the halogen content is set to 900 ppm or less.
  • the blending amount of glass fiber is about 30 to 50% by mass, so that when the granular PAS of the present invention is used, the chlorine content is sufficiently below the regulation value.
  • Various fillers include pigments, dyes, antioxidants, UV absorbers, lubricants, nucleating agents, flame retardants, resin modifiers, coupling agents, antistatic agents, conductive materials, carbon precursors, mold release agents, Examples include plasticizers.
  • the measuring method of physical properties and characteristics in the present invention is as follows.
  • the sieved product was calculated by (sieved product) / (total amount of PAS before sieving: PAS mass (theoretical amount)). If the charged sulfur source is charged in an excess molar ratio than the dihaloaromatic compound, not all of the charged sulfur source can be converted to PAS. The amount on the sieve (% by mass) was calculated based on the amount. Also in the case of filter paper recovery, the recovery rate was calculated as the filter paper top / (total amount of PAS before sieving: PAS mass (theoretical amount)).
  • the average particle diameter of the produced polymer (granular PAS) recovered in the separation / recovery step is 2,800 ⁇ m (7 mesh (number of meshes / inch)) as the sieve used, and 1 as the sieve opening.
  • Example 1 In a 20 liter autoclave, 6,001 g of N-methyl-2-pyrrolidone (hereinafter abbreviated as “NMP”), 2,000 g of aqueous sodium hydrosulfide (NaSH; purity 62 mass%), aqueous sodium hydroxide (NaOH; purity) (74.0% by mass) 1,171 g was charged. NaOH / NaSH (sulfur source) has a molar ratio of 0.98.
  • the content of the autoclave is cooled to 150 ° C., 3,264 g of p-dichlorobenzene (hereinafter abbreviated as “p-DCB”), 2,707 g of NMP, 19 g of sodium hydroxide, and 167 g of water are added, While stirring, the reaction was carried out at 220 ° C. for 5 hours to carry out prepolymerization.
  • the water / feed sulfur source is 1.5 in molar ratio.
  • the NaOH / feed sulfur source is 1.05 in molar ratio.
  • the NMP / feed sulfur source is 0.37 kg / mol.
  • the p-DCB / source sulfur source is 1.020 in molar ratio.
  • the conversion rate of p-DCB at the end of the previous polymerization was 93%.
  • DPDS diphenyl disulfide
  • NMP N-phenyl disulfide
  • DPDS / feed sulfur source 0.001 in molar ratio.
  • 443 g of water was injected, the temperature was raised to 255 ° C., and the reaction was carried out for 5 hours to carry out post polymerization.
  • the water / feed sulfur source is 2.63 in molar ratio.
  • the mixture was gradually cooled to 220 ° C. at a temperature drop rate of 1 ° C./min, and cooled to about room temperature from 220 ° C., and the contents were respectively set to 38 ⁇ m (400 mesh) and 150 ⁇ m (100 mesh) mesh opening ), And the granular PAS was washed with acetone three times and then with water three times. The granular PAS was washed once with an acetic acid aqueous solution adjusted to pH 4 and washed three times with water to obtain a washed granular PAS. The granular PAS thus obtained was dried at 100 ° C. overnight.
  • the average particle size of the granular PAS thus obtained was 442 ⁇ m.
  • a sieve opening of 150 ⁇ m (100 mesh) sieve has a melt viscosity of 39 Pa ⁇ s, a chlorine content of 1,150 ppm, a nitrogen content of 530 ppm, and a sieve opening of 38 ⁇ m (400 mesh) sieve is melted.
  • the viscosity was 38 Pa ⁇ s
  • the chlorine content was 1,200 ppm
  • the nitrogen content was 560 ppm.
  • the sieved product (mass%) of granular PAS was 91% with a sieved product of 150 ⁇ m (100 mesh), and was 93% with a sieved product with a sieve opening of 38 ⁇ m (400 mesh).
  • Example 2 Similar to Example 1, except that 14.3 g of DPDS was added when the conversion rate of p-DCB at the end of the pre-polymerization was 92%, and the molar ratio of DPDS / feeding sulfur source was 0.003. Went to.
  • the average particle size of the granular PAS thus obtained was 476 ⁇ m. Further, the sieved product having a sieve opening of 150 ⁇ m (100 mesh) had a melt viscosity of 19 Pa ⁇ s, a chlorine content of 950 ppm, and a nitrogen content of 550 ppm.
  • the sieve top with a sieve opening of 38 ⁇ m (400 mesh) has a melt viscosity of 19 Pa ⁇ s, a chlorine content of 1,100 ppm, a nitrogen content of 575 ppm, and passed through a sieve with a sieve opening of 38 ⁇ m (400 mesh) Recovered from the filter paper had a melt viscosity of less than 1 Pa ⁇ s and a chlorine content of 20,500 ppm.
  • the sieved product (mass%) of the granular PAS was 89% with a sieved product having a sieve opening of 150 ⁇ m (100 mesh) and 91% with a sieved product of 38 ⁇ m (400 mesh).
  • Example 3 The process up to the dehydration step was performed in the same manner as in Example 1. After the dehydration step, the contents of the autoclave are cooled to 150 ° C., p-DCB 3,280 g, NMP 2,708 g, sodium hydroxide 19 g, water 167 g and DPDS 9.5 g are added and reacted at 220 ° C. for 5 hours with stirring. And pre-stage polymerization was performed. When DPDS is added, that is, when the polymerization reaction starts, the conversion rate of p-DCB is 0%. The water / charged sulfur source is 1.50 in molar ratio. The NaOH / feed sulfur source is 1.05 in molar ratio.
  • the NMP / feed sulfur source is 0.38 kg / mol.
  • the p-DCB / charged sulfur source is 1.025 in molar ratio.
  • the DPDS / feed sulfur source is 0.002 in molar ratio.
  • the conversion rate of p-DCB at the end of the previous polymerization was 92%.
  • the average particle size of the granular PAS thus obtained was 398 ⁇ m.
  • the sieve opening of 150 ⁇ m (100 mesh) sieve has a melt viscosity of 41 Pa ⁇ s, chlorine content of 1,200 ppm, nitrogen content of 530 ppm, and sieve opening of 38 ⁇ m (400 mesh) sieve is melted.
  • the viscosity was 40 Pa ⁇ s
  • the chlorine content was 1,200 ppm
  • the nitrogen content was 560 ppm.
  • the sieved product (mass%) of the granular PAS was 91% for the sieved product having a sieve opening of 150 ⁇ m (100 mesh) and 93% for the sieved product having a sieve opening of 38 ⁇ m (400 mesh).
  • Example 4 The process up to the dehydration step was performed in the same manner as in Example 1. After the dehydration step, the contents of the autoclave are cooled to 150 ° C., 3,248 g of p-DCB, 2,707 g of NMP, 19 g of sodium hydroxide, and 167 g of water are added and reacted at 220 ° C. for 5 hours with stirring to perform pre-stage polymerization. Went.
  • the water / charged sulfur source is 1.50 in molar ratio.
  • the NaOH / feed sulfur source molar ratio is 1.05.
  • the NMP / feed sulfur source is 0.37 kg / mol.
  • the molar ratio of p-DCB / feeding sulfur source is 1.015.
  • the conversion rate of p-DCB at the end of the previous polymerization was 94%.
  • the DPDS / feed sulfur source has a molar ratio of 0.002.
  • 443 g of water was injected, the temperature was raised to 255 ° C., and the reaction was carried out for 5 hours to carry out post polymerization.
  • the water / feed sulfur source is 2.63 in molar ratio.
  • Example 2 After the post-stage polymerization was completed, the same procedure as in Example 1 was performed to obtain granular PAS.
  • the granular PAS thus obtained had an average particle size of 356 ⁇ m.
  • the sieve opening of 150 ⁇ m (100 mesh) has a melt viscosity of 23 Pa ⁇ s, a chlorine content of 800 ppm, and a nitrogen content of 580 ppm, and the sieve opening of 38 ⁇ m (400 mesh) has a melt viscosity of 22 Pa. S, chlorine content 800 ppm, nitrogen content 600 ppm.
  • the sieved product (mass%) of the granular PAS was 88% for the sieved product having a sieve opening of 150 ⁇ m (100 mesh), and 91% for the sieved product having a sieve opening of 38 ⁇ m (400 mesh).
  • Example 1 The same procedure as in Example 3 was performed except that DPDS was not added.
  • the obtained granular PAS had an average particle diameter of 651 ⁇ m.
  • the sieve opening 150 ⁇ m (100 mesh) sieve top has a melt viscosity of 128 Pa ⁇ s, chlorine content 1,100 ppm, nitrogen content 575 ppm, and sieve opening 38 ⁇ m (400 mesh) sieve top is melted.
  • the viscosity was 120 Pa ⁇ s
  • the chlorine content was 1,150 ppm
  • the nitrogen content was 580 ppm.
  • the sieved product (mass%) of the granular PAS was 89% with a sieved product having a sieve opening of 150 ⁇ m (100 mesh) and 91% with a sieved product having a sieve opening of 38 ⁇ m (400 mesh).
  • the conversion rate of p-DCB at the end of the previous polymerization was 92%.
  • 4.8 g of DPDS and 762 g of NMP were injected and reacted.
  • the DPDS / feed sulfur source is 0.001 in molar ratio.
  • 443 g of water was injected, the temperature was raised to 255 ° C., and the reaction was carried out for 5 hours to carry out post polymerization.
  • the water / feed sulfur source is 2.63 in molar ratio.
  • Post-stage polymerization, cooling, and separation / recovery were performed in the same manner as in Example 1 to obtain granular PAS.
  • the granular PAS thus obtained had an average particle size of 344 ⁇ m.
  • the sieve opening of 150 ⁇ m (100 mesh) sieve has a melt viscosity of 15 Pa ⁇ s, a chlorine content of 3,000 ppm, a nitrogen content of 650 ppm, and a sieve opening of 38 ⁇ m (400 mesh) sieve is melted.
  • the viscosity was 14 Pa ⁇ s
  • the chlorine content was 3,100 ppm
  • the nitrogen content was 700 ppm.
  • the sieved product (mass%) of granular PAS was 88% with a sieved product having a sieve opening of 150 ⁇ m (100 mesh) and 90% with a sieved product having a sieve opening of 38 ⁇ m (400 mesh).
  • Example 3 The same procedure as in Example 1 was performed until the previous polymerization. When the conversion rate of p-DCB was 93%, 4.8 g of DPDS and 762 g of NMP were injected and reacted. The DPDS / feed sulfur source is 0.001 in molar ratio. Next, while continuing stirring, the amount of water at the time of charging was kept without adding water, and the temperature was raised to 255 ° C. and allowed to react for 5 hours to carry out post polymerization.
  • the mixture was cooled to around room temperature, and the contents were sieved using a sieve having a sieve opening of 150 ⁇ m (100 mesh).
  • the sieving material containing fine powder (filter paper recovery, recovery rate 99%) had a chlorine content of 2,950 ppm and a nitrogen content of 2,000 ppm.
  • the melt viscosity was 5 Pa ⁇ s.
  • Example 4 The same procedure as in Example 1 was performed until the previous polymerization. The conversion rate of p-DCB at the end of the previous polymerization is 92%. Next, 95 g of DPDS and 762 g of NMP were injected and reacted. The DPDS / feed sulfur source is 0.020 in molar ratio. Next, while stirring, 443 g of water was injected, the temperature was raised to 255 ° C., and the reaction was carried out for 5 hours to carry out post polymerization. The water / feed sulfur source is 2.63 in molar ratio.
  • the same procedure as in Example 1 was performed to obtain granular PAS.
  • the granular PAS thus obtained had an average particle size of 268 ⁇ m.
  • the sieve opening of 150 ⁇ m (100 mesh) sieve has a melt viscosity of 1.5 Pa ⁇ s, a chlorine content of 1,000 ppm, a nitrogen content of 580 ppm, and a sieve opening of 38 ⁇ m (400 mesh).
  • the melt viscosity was 1 Pa ⁇ s
  • the chlorine content was 1,100 ppm
  • the nitrogen content was 630 ppm.
  • the sieved product (mass%) of the granular PAS was 51% for the sieved product having a sieve opening of 150 ⁇ m (100 mesh) and 55% for the sieved product of 38 ⁇ m (400 mesh).
  • Example 5 The same procedure as in Example 2 was performed except that the filter paper was used for collection.
  • the PAS of filter paper recovery (recovery rate 99%) had a melt viscosity of 8 Pa ⁇ s, a chlorine content of 2,800 ppm, and a nitrogen content of 1,030 ppm.
  • a sieve opening of 150 ⁇ m (100 mesh) sieve has a melt viscosity of 30 Pa ⁇ s, a chlorine content of 3,800 ppm, a nitrogen content of 830 ppm, and a sieve opening of 38 ⁇ m (400 mesh) sieve is melted.
  • the viscosity was 27 Pa ⁇ s
  • the chlorine content was 3,950 ppm
  • the nitrogen content was 870 ppm.
  • the granular PAS sieve top (mass%) was 88% with a sieve opening of 150 ⁇ m (100 mesh), and 93% with a sieve opening of 38 ⁇ m (400 mesh).
  • Example 7 After completion of the dehydration step, the same procedure as in Example 1 was performed except that 3263 g of p-DCB was added, 4750 g of NMP was added, and DPDS was not added. After completion of the pre-polymerization, 650 g of water was injected while stirring, and the temperature was raised to 255 ° C. and reacted for 5 hours to carry out post-polymerization.
  • the water / feed sulfur source is 3.16 in molar ratio.
  • Example 2 After the post-stage polymerization was completed, the same procedure as in Example 1 was performed to obtain granular PAS.
  • the granular PAS thus obtained had an average particle size of 1,200 ⁇ m.
  • the sieve opening of 150 ⁇ m (100 mesh) sieve has a melt viscosity of 300 Pa ⁇ s, a chlorine content of 700 ppm, and a nitrogen content of 350 ppm, and the sieve opening of 38 ⁇ m (400 mesh) sieve has a melt viscosity of 290 Pa. S, chlorine content 800 ppm, nitrogen content 380 ppm.
  • the sieved product (mass%) of the granular PAS was 84% for the sieved product having a sieve opening of 150 ⁇ m (100 mesh) and 85% for the sieved product having a sieve opening of 38 ⁇ m (400 mesh).
  • Comparative Example 1 is a case where DPDS was not added. In this case, the melt viscosity of the obtained granular PAS becomes a value outside the upper limit range of the present invention.
  • Comparative Example 2 the value of the dihaloaromatic compound relative to the charged sulfur source is outside the upper limit range. In this case, the chlorine content of the obtained granular PAS becomes a value outside the upper limit range of the present invention.
  • Comparative Example 3 is a case where the amount of coexisting water in the subsequent polymerization step is outside the lower limit of the present invention. When sieving with a sieve having a sieve opening of 150 ⁇ m, there is no sieve top as granular PAS.
  • Comparative Example 4 is a case where the amount of DPDS added is outside the upper limit range of the present invention. In this case, the melt viscosity of the obtained granular PAS becomes a value outside the lower limit of the present invention, and the yield is not good.
  • Comparative Example 5 is a case where sieving is not performed in Example 2.
  • the melt viscosity of PAS recovered from filter paper is outside the lower limit of the present invention, and the chlorine content is outside the upper limit of the present invention.
  • Comparative Examples 6 and 7 are cases where DPDS was not added.
  • Comparative Example 6 is a case where the value of the dihaloaromatic compound relative to the charged sulfur source is outside the upper limit range.
  • Comparative Examples 1, 6, and 7 show conventional technical levels that do not use DPDS, which are different from the present invention (hereinafter, indicated by numerical values of a sieve opening of 150 ⁇ m). That is, when the melt viscosity is reduced from 300 Pa ⁇ s (Comparative Example 7) to 128 Pa ⁇ s (Comparative Example 1) and then 30 Pa ⁇ s (Comparative Example 6), the chlorine content is changed from 700 ppm (Comparative Example 7) to 1100 ppm. (Comparative Example 1) and then rise to 3800 ppm (Comparative Example 6). That is, low melt viscosity (high fluidization) and low halogenation are in a trade-off relationship. This is clearly seen in FIG.
  • Examples 1 to 4 show a specific effect at a low melt viscosity and a low chlorine content, whereas in the comparative example, at a low melt viscosity, a high chlorine content ( Comparative Example 6) When the melt viscosity is high, the chlorine content is low (Comparative Example 7). Moreover, even if melt viscosity and chlorine content are reduced within the range of the prior art (Comparative Example 1), the low melt viscosity and low chlorine content of the examples are not reached.
  • the granular PAS of the present invention is suitable in a wide range of fields such as electrical / electronic equipment and automobile equipment because a granular PAS with a good balance of melt viscosity, halogen content, nitrogen content, thermal stability and yield can be obtained. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 粒状ポリアリーレンスルフィドであって、(i)該粒状ポリアリーレンスルフィドが、末端に、ジスルフィド化合物が開裂した-S-の置換基を含み、(ii)該粒状ポリアリーレンスルフィドが、38μm以上の篩目開きを有する篩での篩い分け後の篩上物であり、(iii)該粒状ポリアリーレンスルフィドが、ハロゲン含有量1,500ppm以下であり、かつ、(iv)該粒状ポリアリーレンスルフィドが、温度310℃及び剪断速度1,200sec-1の条件下で測定した溶融粘度が、3~100Pa・sである粒状ポリアリーレンスルフィドである、溶融粘度、ハロゲン含有量、窒素含有量、熱安定性、収率ともにバランスの取れた粒状ポリアリーレンスルフィドを得る。

Description

粒状ポリアリーレンスルフィド及びその製造方法
 本発明は、粒状ポリアリーレンスルフィド及びその製造方法に関する。さらに詳しくは、本発明は、熱安定性がよく、成形加工時のガスの発生が少なく、低いハロゲン含有量および窒素含有量、低い溶融粘度を有し、性能が高度にバランスした粒状ポリアリーレンスルフィドに関する。さらに、本発明は、有機アミド溶媒中で硫黄源とジハロ芳香族化合物とを重合させる粒状ポリアリーレンスルフィドの製造方法であって、重合工程の中で、重合反応をジスルフィド化合物の存在下で行い、かつ、重合反応途中、重合反応終了時またはその前後に相分離剤を存在させて液-液相分離状態を生起させ、その後冷却し、重合後の生成ポリマーを特定の篩目開きを有する篩で篩い分けを行って収率よく回収する粒状ポリアリーレンスルフィドの製造方法に関する。
 ポリフェニレンスルフィド(以下、「PPS」と略記する)に代表されるポリアリーレンスルフィド(以下、「PAS」と略記する)は、耐熱性、耐薬品性、難燃性、機械的強度、電気特性、寸法安定性などに優れたエンジニアリングプラスチックである。PASは、押出成形、射出成形、圧縮成形などの一般的溶融加工法により、各種成形品、フィルム、シート、繊維等に成形可能であるため、電気・電子機器、自動車機器等の広範な分野において汎用されている。
 PASの代表的な製造方法としては、N-メチル-2-ピロリドン(以下、「NMP」と略記する)などの有機アミド溶媒中で、硫黄源とジハロ芳香族化合物とを反応させる方法が知られている。この方法により得られるPASは、通常、ポリマーの末端にハロゲンが結合した構造となりやすいことから、重合反応後の分離・回収での洗浄を充分に行っても、ハロゲン含有量の多いものとなる。このようなハロゲン含有量の多いPASを使用した場合には、近年のハロゲン規制に見られるように、環境汚染が問題となってきている。PASは、相分離を伴わない通常の重合において、重合反応後、ほとんど微粉として分離・回収され、取扱性に劣るものとなっている。また、重合反応中に生成するポリマーは重合が進行するにつれ、有機アミド溶媒に溶解しにくくなり、生長反応が困難となり、この結果、低ハロゲン含有量で、目標どおりの溶融粘度を有するポリマーが得られにくいなど、依然として改善が求められている。上記問題点を改善するため、製造方法として、相分離剤の存在下で重合反応を行う方法が開発されている。しかし、この方法によっても、いまだ満足のゆく性能を有するPASは得られていない。
 近年、電気・電子機器分野等多くの分野において、PASは、充填剤、例えば、ガラス繊維を配合したコンパウンドとして用いられることが多くなってきている。このようなコンパウンドは、通常、ガラス繊維を30~50質量%程度配合しており、電気・電子機器分野等に使われるため、環境規制の観点からのハロゲン含有量の低減化の問題だけでなく、易成形加工に対する要求も強いものがあり、このための解決策として、熱安定性がよく、成形加工時のガスの発生が少ない、溶融粘度の低いPASが求められている。何故なら、このようなコンパウンドの溶融成形に際しては、PASの溶融粘度が高いものだと、堅いガラス繊維との混練のため、摩擦などによる局部的な高温化等により、PASの熱劣化が生じやすくなり、この結果、熱安定性が悪くなったり、発生ガスが増加することが原因となって、安定した良好な溶融成形条件が得られない等の問題が発生するからである。
 しかし、PASを低溶融粘度化するために、単に、低分子量化するのであれば、ハロゲン含有量の高いPASが製造されてしまい、ハロゲン含有量の低減化とは逆の方向となる。これは、低分子量化によって、PAS分子数が多くなり、この結果、PAS分子末端の数が多くなり、ハロゲンの結合したPAS分子末端が多くなるためと推察される。このように、低溶融粘度のPAS、すなわち、低分子量のPASは、高分子量のPASよりも、ポリマー末端数が多くなるため、高いハロゲン含有量とならざるを得ない。すなわち、低溶融粘度化(高流動化)と低ハロゲン化は、二律背反の関係にある。しかし、上述したように、近年、電気・電子機器分野では、環境への配慮のため低ハロゲン化の規制要求が高まり、熱安定性がよく、低いハロゲン含有量と低い溶融粘度を有するPASへの要望が一段と高まってきている。
 特開2010-126621号公報(特許文献1)では、ハロゲン含有量の少ないPASを得るために、メルカプト化合物、メルカプト化合物の金属塩、フェノール化合物、フェノール化合物の金属塩およびジスルフィド化合物からなる群から選ばれる1種以上の化合物を添加することが提案されている。
 しかし、この特許文献1のチオフェノールを用いた実施例1~6(実施例7は、フェノールを用いている)では、塩素含有量が1,200~2,100ppm程度の改善にとどまっている。また、この特許文献1のジスルフィド化合物(ジフェニルジスルフィド)を用いている唯一の実施例である実施例8では、塩素含有量は、1,800ppmであったことが報告されており、依然高い塩素含有量である。さらに、特許文献1には、実施例1において、「粉末状のPAS・・・を得た。」と記載されているように、製造されたPASは、粒状ではなく、微粉状であると考えられる。この微粉状PASを回収するには、濾過により回収する方法が取られるが、後述するように塩素含有量の多いオリゴマーも一緒に回収することになり、塩素含有量を充分に下げることが出来ないばかりでなく熱安定性がよく、成形加工時のガスの発生が少ないPASを得ることが困難であるという問題点があった。さらに、濾過して得た粉末状PASの回収率をみても、実施例1で、95%と低いものである。
 同様に、ジスルフィドを用いる特開昭59-215323号公報(特許文献2)において、ジフェニルジスルフィドを用いた実施例16の場合、濾過して得たPASの収率は、90.5%と低いものである。
 さらに、特許文献1で用いられるチオフェノールは、製造時の貯蔵や、取り扱い(ハンドリング)時に、酸化されやすいので、工業生産を行う場合、その酸化の程度により、PASの分子量や、ハロゲン(塩素)低減効果に変動が生じ、一定規格品内での工業的生産に困難が伴う。
 加えて、チオフェノール等は悪臭を有するので、製造工程・回収工程における環境問題が派生する。さらには、製造されたPASまでも悪臭汚染される場合がある。
 さらに、有機アミド溶媒中で、硫黄源とジハロ芳香族化合物とをアルカリ金属水酸化物の存在下に重合させると、NMPなどの有機アミド溶媒とアルカリ金属水酸化物とが加熱により反応して、窒素元素を含有する化合物が不純物として生成する。例えば、NMPと水酸化ナトリウム(NaOH)とが反応すると、NMPが開環してメチルアミノブタン酸ナトリウム〔(CH)NH-CH-CH-CH-COONa〕が生成する。この化合物は、ジハロ芳香族化合物であるp-ジクロロベンゼンと反応して、クロロフェニルメチルアミノブタン酸ナトリウムを生成する。更にこれらは、PAS重合反応時にポリマー末端に取り込まれうる。このような窒素原子を含有する化合物に起因する金型やダイスなどの汚れは、成形品の品質に悪影響を及ぼすため、頻繁に清掃をする必要が生じる。
 したがって、製造されたPASにおいて、窒素含有量が低減されていることも重要である。
 このように、従来技術では、ハロゲン含有量の低減を行いつつ、熱安定性がよく、成形加工時のガスの発生が少なく、低い溶融粘度を有し、窒素含有量が低減されている粒状PASを効率よく得ることが困難であり、改善が強く望まれていた。
特開2010-126621号公報 特開昭59-215323号公報
 本発明の課題は、低ハロゲン含有量で熱安定性がよく、成形加工時のガスの発生が少なく、低い溶融粘度を有する粒状PASを提供することであり、かつ、該粒状PASを効率よく得ることができる粒状PASの製造方法を提供することにある。すなわち、低ハロゲン含有量化と低溶融粘度(高流動性)が共に達成でき、これらの特性が安定してばらつきの少ないPASを高収率で得ること、加えて、窒素含有量が低減されたPASを得ることを、本発明の課題とする。
 本発明者らは、前記課題を解決するために鋭意研究した結果、相分離剤の存在下に、液相に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態を生起させる粒状PASの製造方法において、重合反応をジスルフィド化合物の存在下で行い、かつ、該生成ポリマーを、特定の篩目開きを有する篩で篩い分け、篩上物を得ることによって、低ハロゲン含有量で熱安定性がよく、成形加工時のガスの発生が少なく、低い溶融粘度を有する粒状PASを高収率で回収できることを見出した。
 すなわち、本発明者らは、生成PASについて、温度310℃及び剪断速度1,200sec-1の条件下で測定した一定範囲の溶融粘度(3~100Pa・s)を有するPASの濾紙回収法及び粒状回収法(篩目開き38μm篩の篩上物及び篩目開き38μm篩通過品)について、塩素含有量等を検討したところ、以下の驚くべき知見を得た。
(i)38μm篩通過品や濾紙回収品は、塩素含有量及び窒素含有量が極端に多い。
(ii)それに比べて、38μm篩篩上物では塩素含有量及び窒素含有量が少なく、38μm篩通過品や濾紙回収品とは大きな差異が存在する。これらの知見は、一般的に認識されている事実、すなわち低分子量になるに従いそれに比例してPAS分子数が多くなる、すなわち末端数が増えるため、塩素含有量が順次大きくなることと様相を異にする。
(iii)また、ジスルフィド化合物の相分離状態における、良好な反応性などの特異的効果により、分子の末端に塩素が結合した低分子量物やオリゴマー等の多くを効率的に排除すること等により、さらに低塩素化され、熱安定性がよく、成形加工時のガス発生の少ない粒状ポリマーを高収率で回収することができる。
 本発明者らの研究によれば、篩い分けにより、篩を通過して篩下となった微粉には、分子の末端に塩素が結合した低分子量物やオリゴマー等が多く含まれているため、一例を挙げると、篩目開き38μmの篩で篩い分けした場合、篩下の微粉は、驚くべきことに、20,000ppmを超えるような塩素含有量を有するものであることが見出された。これに対して、篩目開き38μmの篩で篩い分けし、篩を通過せずに篩上に残留している篩上物の塩素含有量は、1,500ppmよりも低いものであった。さらに、篩目開き150μmの篩で篩い分けし、篩を通過せずに篩上に残留している篩上物の塩素含有量は、篩目開き38μmの篩で篩い分けし、篩を通過せずに篩上に残留している篩上物の塩素含有量より、さらに小さくなった。
 すなわち、本発明によれば、液-液相分離状態を生起させる粒状PASの製造方法において、ジスルフィド化合物を存在させて重合反応を行い、重合後の分離・回収において、特定の篩目開きを有する篩で、生成ポリマーを篩い分けることにより効率的に、低ハロゲン(低塩素)含有量で、熱安定性がよく、成形加工時のガスの発生が少なく、低い溶融粘度を有する粒状PASを高収率で回収できる。
 すなわち、本発明は、基本的には、重合工程での液-液相分離状態の生起、重合工程でのジスルフィド化合物の存在、分離・回収工程での篩い分けの三つの要素を組み合わせることにより、大きな効果を奏する。
 ここで言う熱安定性とは、従来のPASや通常の熱可塑性樹脂の熱安定性を評価する方法で評価することができ、具体例を挙げれば、溶融(高温)滞留時の溶融粘度保持率、熱重量分析(TGA)を用いた熱重量減少挙動の解析及びポリマーの熱による着色試験等があげられる。また、成形時の発生ガスについては、実質的には射出成形時のモールドディポジット量により、また、実験室的には発生ガス分析により評価可能である。
 本発明者らの研究によれば、本発明の粒状PASが、低ハロゲン含有量になったことには、次の要因が主に考えられる。(1)ジハロ芳香族化合物/硫黄源の比率の厳格な調整によって、ハロゲンを有するポリマー末端が少なくなった。(2)ジスルフィド化合物により、ポリマー末端を封止することによって、ポリマー末端のハロゲン自体が少なくなった。(3)重合工程中及び/または冷却工程前に液-液相分離状態を生起させることにより、希薄液相に、ハロゲン含有量の多い低分子量物、オリゴマーあるいは副生塩等を移行させ、重合工程後の分離・回収工程で除去されやすいようにした。(4)ジスルフィド化合物は、液-液相分離状態においても、ポリマー末端と良好に反応し、ハロゲン含有量の少ない粒状PAS成分を効率的に回収できた。(5)分離・回収工程での篩い分けにより、ハロゲン含有量の高い、低分子量物、オリゴマー、副生塩が効率よく除去された。
 次に、熱安定性がよくなったことには、次の要因が主に考えられる。(1)重合工程中及び/または冷却工程前の液-液相分離状態の生起や分離・回収工程での篩い分けにより、粒状ポリマーの中に、窒素元素等を有する低分子量物や、オリゴマーが少なくなったので、熱安定性がよくなった。
 次に、成形加工時のガスの発生が少ないことには、次の原因が主に考えられる。(1)PASの溶融粘度を低減したため、成形加工性が改善され、溶融加工時の熱劣化が生じなくなった。(2)窒素元素等を有する低分子量物やオリゴマーが少なく、さらに上記に示す理由により熱安定性がよいため、成形加工時の発生ガスが少なくなった。
 次に、低溶融粘度については、次の要因が考えられる。(1)ジスルフィド化合物により分子量が調整された。(2)ジハロ芳香族化合物/硫黄源の比率の厳格な調整によって、分子量の調整がされた。
 次に、収率の向上には、次の原因が主に考えられる。(1)液-液相分離状態を生起させるための相分離剤の比率の調整や、水/硫黄源の比率の厳格な調整により収率が向上した。(2)ジスルフィド化合物により、液-液相分離状態が変化し、低分子量物・オリゴマーと高分子成分との分離が効率的になり、粒状PAS成分が効率的に回収された。
 水等の相分離剤のため、ジスルフィド化合物が、目的とする反応をし得ないと思われている中、本発明者らは、液-液相分離状態が生起した場合でも、ジスルフィド化合物が、上記のような目的とする反応をするという驚くべき知見を得た。
 本発明の粒状PASを得るためには、複雑に絡み合うこれらの要因をバランスよく、最適に選択する必要がある。
 上述したとおり、本発明は、基本的には、重合工程での液-液相分離状態の生起、重合工程でのジスルフィド化合物の存在、分離・回収工程での篩い分けの三つの要素を組み合わせることにより、以下のような、大きな効果を奏する。
(i)粒状回収物(篩目開き38μm(400メッシュ)以上)での温度310℃及び剪断速度1,200sec-1の条件で測定した一定範囲の溶融粘度のPASにおけるPAS末端ハロゲン(塩素)の低減。
(ii)低溶融粘度化(高流動性)の実現。
(iii)低溶融粘度化(高流動性)と低ハロゲン(塩素)化の両立達成。
(iv)重合工程でのジスルフィド化合物による相分離状態の制御。
(v)粒状回収物(篩目開き38μm(400メッシュ)以上の篩篩上物)の顕著な収率向上。
 本発明では、重合後半または重合終了時もしくは降温初期に相分離剤の存在による液―液相分離状態の生起とその液―液相分離状態からの冷却固化による造粒化がなされる。これにより、粒状PASとして、篩目開き38μm(400メッシュ)以上の篩での回収が可能となる。
 このことによって、篩目開き38μm以上の粒状物と未満の微粉とでは、塩素含有量に顕著な差が生じる。
 またジスルフィド化合物の添加における相分離状態での良好な反応性の影響を受け、ポリマー濃厚相からの篩目開き38μm以上の粒状物が高い収率で回収できるようになる。
 本発明は、これらの知見に基づいて完成するに至ったものである。
 本発明によれば、粒状PASであって、
(i)該粒状PASが、末端に、ジスルフィド化合物が開裂した-S-の置換基を含み、
(ii)該粒状PASが、38μm以上の篩目開きを有する篩での篩い分け後の篩上物であり、
(iii)該粒状PASが、ハロゲン含有量1,500ppm以下であり、かつ、
(iv)該粒状PASが、温度310℃及び剪断速度1,200sec-1の条件下で測定した溶融粘度が、3~100Pa・sである粒状PASが提供される。
 また、本発明によれば、有機アミド溶媒中で硫黄源とジハロ芳香族化合物とを重合する重合工程、該重合工程後の生成ポリマーを含有する液相を冷却する冷却工程、及び生成ポリマーを分離・回収する分離・回収工程を含み、さらに、該重合工程中及び/または冷却工程前に相分離剤を存在させて、生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態を生起させる工程を含む粒状PASの製造方法であって、
(i)該重合工程の中で、重合反応をジスルフィド化合物の存在下で行い、かつ、
(ii)該分離・回収工程において、生成ポリマーを、38μm以上の篩目開きを有する篩で篩い分け、篩上物を得る、前記の粒状PASの製造方法が提供される。
 本発明によれば、熱安定性がよく、成形加工時のガスの発生が少なく、低いハロゲン含有量と低溶融粘度を有し、これらの特性が高度にバランスした粒状PASを高収率で得ることができる。加えて、本発明では、窒素含有量が低減された粒状PASを得ることができる。本発明の低ハロゲン(低塩素)含有量で、熱安定性がよく、成形加工時のガスの発生が少なく、低い溶融粘度を有する粒状PASは、特に、近年、電気・電子機器分野で要求されている低ハロゲン(低塩素)・低溶融粘度のPASとして有用である。
図1は、実施例1~4と比較例1、6、7での、篩目開き150μm篩篩上物の塩素含有量と溶融粘度をプロットした図である。
1.原料
1-1.硫黄源
 本発明では、硫黄源としてアルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源を使用する。アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム、及びこれらの2種以上の混合物などを挙げることができる。アルカリ金属水硫化物としては、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウム、及びこれらの2種以上の混合物などを挙げることができる。
 アルカリ金属硫化物は、無水物、水和物、水溶液のいずれを用いてもよい。これらの中でも、工業的に安価に入手できる点で、硫化ナトリウム及び硫化リチウムが好ましい。アルカリ金属硫化物は、水溶液などの水性混合物(すなわち、流動性のある水との混合物)として用いることが、処理操作や計量などの観点から好ましい。
 アルカリ金属水硫化物は、無水物、水和物、水溶液のいずれを用いてもよい。これらの中でも、工業的に安価に入手できる点で、水硫化ナトリウム及び水硫化リチウムが好ましい。アルカリ金属水硫化物は、水溶液などの水性混合物(すなわち、流動性のある水との混合物)として用いることが、処理操作や計量などの観点から好ましい。
 アルカリ金属硫化物の製造工程では、一般に、少量のアルカリ金属水硫化物が副生する。本発明で使用するアルカリ金属硫化物の中には、少量のアルカリ金属水硫化物が含有されていてもよい。この場合、アルカリ金属硫化物とアルカリ金属水硫化物との総モル量が、後述する脱水工程後の仕込み工程における仕込み硫黄源になる。
 他方、アルカリ金属水硫化物の製造工程では、一般に、少量のアルカリ金属硫化物が副生する。本発明で使用するアルカリ金属水硫化物の中には、少量のアルカリ金属硫化物が含有されていてもよい。この場合、アルカリ金属水硫化物とアルカリ金属硫化物との総モル量が、脱水工程後の仕込み工程における仕込み硫黄源になる。アルカリ金属硫化物とアルカリ金属水硫化物とを混合して用いる場合には、両者が混在したものが仕込み硫黄源となる。
 硫黄源がアルカリ金属水硫化物を含有するものである場合、アルカリ金属水酸化物を併用する。アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、及びこれらの2種以上の混合物が挙げられる。これらの中でも、工業的に安価に入手できる点で水酸化ナトリウム及び水酸化リチウムが好ましい。アルカリ金属水酸化物は、水溶液などの水性混合物として用いることが好ましい。
1-2.ジハロ芳香族化合物
 本発明で使用するジハロ芳香族化合物は、芳香環に直接結合した2個のハロゲン原子を有するジハロゲン化芳香族化合物である。ジハロ芳香族化合物の具体例としては、例えば、o-ジハロベンゼン、m-ジハロベンゼン、p-ジハロベンゼン、ジハロトルエン、ジハロナフタレン、メトキシ-ジハロベンゼン、ジハロビフェニル、ジハロ安息香酸、ジハロジフェニルエーテル、ジハロジフェニルスルホン、ジハロジフェニルスルホキシド、ジハロジフェニルケトン等が挙げられる。
 ここで、ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素の各原子を指し、同一ジハロ芳香族化合物において、2つのハロゲン原子は、同じでも異なっていてもよい。これらのハロゲン原子の中でも塩素原子が好ましい。これらのジハロ芳香族化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。p-ジクロロベンゼン(p-DCB)が、通常、よく用いられる。
 ジハロ芳香族化合物の仕込み量は、仕込み硫黄源1モル当たり、通常1.005~1.040モル、好ましくは1.008~1.035モル、より好ましくは1.010~1.030モル、特に好ましくは1.012~1.028モルである。
 ジハロ芳香族化合物の仕込み量が少なすぎると、分解反応が生じやすくなり、多すぎると、PASの溶融粘度の調整をすることが困難になり、またハロゲン含有量が多くなる。低ハロゲン含有量のPASを得るためには、この比率の厳格な調整が必要である。
1-3.分岐・架橋剤及び分子量制御剤
 PASに分岐または架橋構造を導入するために、3個以上のハロゲン原子が結合したポリハロ化合物(必ずしも芳香族化合物でなくてもよい)、活性水素含有ハロゲン化芳香族化合物、ハロゲン化芳香族ニトロ化合物等を併用することができる。分岐・架橋剤としてのポリハロ化合物として、好ましくはトリハロベンゼンが挙げられる。
 PASの分子量や末端基を制御するために、モノハロ有機化合物を重合工程の任意の段階で添加することができる。モノハロ有機化合物としては、モノハロプロパン、モノハロブタン、モノハロヘプタン、モノハロヘキサン、アリールハライド、クロロプレンなどのモノハロ置換飽和または不飽和脂肪族炭化水素;モノハロシクロヘキサン、モノハロデカリンなどのモノハロ置換飽和環状炭化水素;モノハロベンゼン、モノハロナフタレン、4-クロロ安息香酸、4-クロロ安息香酸メチル、4-クロロジフェニルスルホン、4-クロロベンゾニトリル、4-クロロベンゾトリフルオリド、4-クロロニトロベンゼン、4-クロロアセトフェノン、4-クロロベンゾフェノン、塩化ベンジルなどのモノハロ置換芳香族炭化水素;などが挙げられる。
 ハロゲン原子は、フッ素、塩素、臭素、及びヨウ素の各原子を指す。これらのハロゲン原子の中でも塩素原子が好ましい。また、1個の塩素原子が置換した有機化合物であって、該塩素原子に比べて反応性が極めて低いトリフルオロメタンの如き置換基を有する有機化合物も、便宜のため、モノハロ有機化合物の中に組み入れることとする。
1-4.有機アミド溶媒
 本発明では、脱水反応及び重合反応の溶媒として、非プロトン性極性有機溶媒である有機アミド溶媒を用いる。有機アミド溶媒は、高温でアルカリに対して安定なものが好ましい。
 有機アミド溶媒の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物;N-メチル-ε-カプロラクタム等のN-アルキルカプロラクタム化合物;N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン等のN-アルキルピロリドン化合物またはN-シクロアルキルピロリドン化合物;1,3-ジアルキル-2-イミダゾリジノン等のN,N-ジアルキルイミダゾリジノン化合物;テトラメチル尿素等のテトラアルキル尿素化合物;ヘキサメチルリン酸トリアミド等のヘキサアルキルリン酸トリアミド化合物等が挙げられる。これらの有機アミド溶媒は、それぞれ単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 これらの有機アミド溶媒の中でも、N-アルキルピロリドン化合物、N-シクロアルキルピロリドン化合物、N-アルキルカプロラクタム化合物、及びN,N-ジアルキルイミダゾリジノン化合物が好ましく、特に、N-メチル-2-ピロリドン、N-メチル-ε-カプロラクタム、及び1,3-ジアルキル-2-イミダゾリジノンが好ましく用いられる。本発明の重合反応に用いられる有機アミド溶媒の使用量は、硫黄源1モル当たり、通常0.1~10kg、好ましくは0.15~5kgの範囲である。有機アミド溶媒の使用量が0.1kg未満では、重合反応を安定に行うことが困難であり、10kg超過では、製造コストが増大する等の問題がある。
1-5.相分離剤
 本発明では、液-液相分離状態を生起させ、低ハロゲン含有量で、溶融粘度を調整したPASを短時間で得るために、各種相分離剤を用いることができる。相分離剤とは、それ自身でまたは少量の水の共存下に、有機アミド溶媒に溶解し、PASの有機アミド溶媒に対する溶解性を低下させる作用を有する化合物である。相分離剤それ自体は、PASの溶媒ではない化合物である。
 相分離剤としては、一般にPASの相分離剤として公知の化合物を用いることができる。相分離剤の具体例としては、水、アルカリ金属カルボン酸塩などの有機カルボン酸金属塩、有機スルホン酸金属塩、ハロゲン化リチウムなどのアルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、パラフィン系炭化水素などが挙げられる。これらの相分離剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。これらの中でも、水及び有機カルボン酸金属塩が安価であるため好ましい。有機カルボン酸金属塩、有機スルホン酸金属塩、ハロゲン化リチウムなどのアルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩等を用いる場合は水溶液が好ましい。相分離剤としては、水が特に好ましい。有機カルボン酸金属塩の中では、酢酸ナトリウムが好ましいものであり、使用するに当たっては、通常25~35質量%、好ましくは30質量%の水溶液として用いることができる。相分離剤の使用量は、用いる化合物の種類により異なるが、仕込み硫黄源1モル当たり、一般に0.01~15モルとなる範囲である。好ましくは、0.01~13モル、より好ましくは0.02~12モル、特に好ましくは、0.03~10モルである。相分離剤の使用量が0.01モル未満では、液-液相分離状態を生起することが難しく、また、15モル超過では、重合反応を良好に進めることが困難になる。
 本発明では、相分離剤は、重合工程中及び/または後述する冷却工程前のいずれであっても、存在させることができ、これによって、液-液相分離状態を生起させた工程を得ることができる。
1-6.ジスルフィド化合物
 本発明では、重合工程での重合反応は、ジスルフィド化合物の存在下で行われる。ジスルフィド化合物の添加は、重合工程のどの段階でも良い。例えば、重合工程が、前段重合工程、後段重合工程の二段階工程を含む場合は、前段重合工程で添加しても良いし、後段重合工程で添加しても良い。また、前段重合工程開始時、すなわち、仕込み工程に添加してもよい。
 ジスルフィド化合物は、-S-S-部分を有するため、ジスルフィド化合物の開裂した-S-の置換基が、生成するPASの末端のハロゲン基(塩素基)を、置換し、PASのハロゲン含有量を低減する役目を果たすと推察される。例えば、ジスルフィド化合物がジフェニルジスルフィドの場合、PAS末端には、末端と反応した-S-Cが含まれる。
 すなわち、例えば、ジスルフィド化合物がジフェニルジスルフィドで、ジハロ芳香族化合物がジハロベンゼンの場合、PAS末端の末端基成分は、大部分が、-Cl、ジスルフィド化合物が反応した-S-C、-SH、及び有機アミド溶媒由来の窒素化合物からなる。これらの末端基成分の分析は、定量的にまたは定性的には、元素分析や高温NMR分析やIR分析により行うことができる。また、これらの具体的な定量方法例として、元素分析による-Clの定量、滴定や誘導体化反応やIR法による-SHの定量、有機アミド溶媒由来の窒素化合物を窒素分析することにより、ジスルフィド化合物が反応した-S-C量を算出できる。
 また水溶性のチオフェノール類と異なり、ジスルフィド化合物は水に不溶である。そのことにより、特に液-液相分離状態にある場合には、ジスルフィド化合物は、水成分の少ないポリマー濃厚相に分配されて効率的にPAS末端のハロゲンと置換し、低ハロゲン化に貢献すると考えられる。さらに驚くべきことに、ジスルフィド化合物は、液-液相分離状態でも良好な反応性を示すなどの有利な効果を示す。すなわち、ジスルフィド化合物の反応性が、液-液相分離状態において良好に発現されることも本発明の特徴の一つである。
 また、ジハロ芳香族化合物の転化率を基に、ジスルフィド化合物の添加時期を決めてもよい。具体的には、ジスルフィド化合物は、重合工程の中でジハロ芳香族化合物の転化率が0~100%、通常、45%以上、好ましくは、45~99.5%、より好ましくは60~99%、さらに好ましくは70~98.5%、特に好ましくは80~98%となった時点で添加し、重合工程の中で存在させることができる。
 ジスルフィド化合物としては、ジフェニルジスルフィド(DPDS)、p-p’ジトリルジスルフィド、ジベンジルジスルフィド、ジベンゾイルジスルフィド、ジチオベンゾイルジスルフィドが挙げられ、ジフェニルジスルフィドが好ましい。
 重合工程の中で、重合反応をジスルフィド化合物の存在下で行う場合のジスルフィド化合物の添加量は、仕込み硫黄源1モル当たり、0.0005~0.015モル、好ましくは、0.0007~0.01モル、より好ましくは、0.0008~0.008モル、さらに好ましくは0.0009~0.006モル、特に好ましくは0.001~0.005モルである。
 ジスルフィド化合物の添加量をこの範囲にすることが、熱安定性がよく、成形加工時のガスの発生が少なく、低いハロゲン含有量と、低い溶融粘度を有し、性能が高度にバランスした粒状PASを得る上で重要である。
2.製造方法
 製造方法は、有機アミド溶媒中で硫黄源とジハロ芳香族化合物とを重合する重合工程、該重合工程後の生成ポリマーを含有する液相を冷却する冷却工程及び生成ポリマーを分離・回収する分離・回収工程を含み、さらに、該重合工程中及び/または冷却工程前に相分離剤を存在させて、生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態を生起させる工程を含む製造方法である。
 また、重合工程が、相分離剤の存在下に、重合反応系内の液相に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態で重合反応を継続する相分離重合工程を含んでもよい。
2-1.脱水工程
 重合工程の前工程として、脱水工程を配置して反応系内の共存水量(水分量ともいう)を調節することが好ましい。脱水工程は、望ましくは不活性ガス雰囲気下、有機アミド溶媒とアルカリ金属硫化物とを含む混合物を加熱して反応させ、蒸留により水を系外へ排出する方法により実施する。硫黄源としてアルカリ金属水硫化物を用いる場合には、アルカリ金属水硫化物とアルカリ金属水酸化物とを含む混合物を加熱して反応させ、蒸留により水を系外へ排出する方法により実施する。
 脱水工程では、水和水(結晶水)や水媒体、副生水などからなる水分量を、好ましくは、後述する仕込み工程で必要とする共存水量の範囲内になるまで脱水する。共存水量が仕込み工程で必要とする範囲外となった場合は、水不足量を追加添加すればよい。
 硫黄源としてアルカリ金属水硫化物を用いる場合、脱水工程において、有機アミド溶媒、アルカリ金属水硫化物、及び該アルカリ金属水硫化物1モル当たり0.95~1.07モルのアルカリ金属水酸化物を含有する混合物を加熱して、反応させ、該混合物を含有する系内から水を含む留出物の少なくとも一部を系外に排出することが好ましい。
 この工程での仕込みアルカリ金属水硫化物1モル当たりのアルカリ金属水酸化物のモルが小さすぎると、脱水工程で揮散する硫黄成分(硫化水素)の量が多くなり、仕込み硫黄源量の低下による生産性の低下を招いたり、脱水後に残存する仕込み硫黄源に多硫化成分が増加することによる異常反応、PASの品質低下が起こり易くなる。仕込みアルカリ金属水硫化物1モル当たりのアルカリ金属水酸化物のモルが大きすぎると、有機アミド溶媒の変質が増大したり、重合反応を安定して実施することが困難になったり、PASの収率や品質が低下することがある。この工程での仕込みアルカリ金属水硫化物1モル当たりのアルカリ金属水酸化物の好ましいモルは、0.96~1.06モル、より好ましくは0.97~1.05モルである。
 アルカリ金属水硫化物には、多くの場合、少量のアルカリ金属硫化物が含まれており、硫黄源の量は、アルカリ金属水硫化物とアルカリ金属硫化物との合計量になる。アルカリ金属水硫化物は、アルカリ金属硫化物を含有していても、PASの原料としては問題ないが、本発明の粒状PASを製造するためには、その含有量は、少ないほど好ましい。また、少量のアルカリ金属硫化物が混入していても、本発明では、アルカリ金属水硫化物の含有量(分析値)を基準に、アルカリ金属水酸化物とのモルを算出し、そのモルを調整する。
 脱水工程での原料の投入順序は、順不同でよく、さらには、脱水工程途中で各原料を追加投入してもかまわない。脱水工程に使用される溶媒としては、有機アミド溶媒を用いる。この溶媒は、重合工程に使用される有機アミド溶媒と同一であることが好ましく、N-メチル-2-ピロリドンが特に好ましい。有機アミド溶媒の使用量は、反応槽に投入する硫黄源1モル当たり、通常0.1~10kg、好ましくは0.15~5kgである。
 脱水操作は、反応槽内へ原料を投入後の混合物を、通常、300℃以下、好ましくは100~250℃の温度範囲で、通常、15分間から24時間、好ましくは30分間~10時間、加熱して行われる。加熱方法は、一定温度を保持する方法、段階的または連続的な昇温方法、あるいは両者を組み合わせた方法がある。脱水工程は、バッチ式、連続式、または両方式の組み合わせ方式などにより行われる。
 脱水工程を行う装置は、後続する重合工程に用いられる反応槽と同じであっても、あるいは異なるものであってもよい。また、装置の材質は、チタンのような耐食性材料が好ましい。脱水工程では、通常、有機アミド溶媒の一部が水と同伴して反応槽外に排出される。その際、硫化水素は、ガスとして系外に排出される。
2-2.仕込み工程
 仕込み工程は、本発明の「有機アミド溶媒中で硫黄源とジハロ芳香族化合物とを重合する重合工程、該重合工程後の生成ポリマーを含有する液相を冷却する冷却工程、及び生成ポリマーを分離・回収する分離・回収工程を含み、さらに、該重合工程中及び/または冷却工程前に相分離剤を存在させて、生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態を生起させる工程を含む製造方法」において、重合工程で必要とされる、仕込み硫黄源に対する相分離剤量、仕込み硫黄源に対する共存水量、仕込み硫黄源に対するジハロ芳香族化合物量、仕込み硫黄源に対するアルカリ金属水酸化物量、仕込み硫黄源に対するジスルフィド化合物量等を調整する工程である。
 仕込み硫黄源とは、重合工程でジハロ芳香族化合物と反応させる硫黄源(「有効硫黄源」ともいう)を意味する。PASの製造工程では、一般に、脱水工程が配置されるので、仕込み硫黄源の量は、通常、[仕込み硫黄源]=[総仕込み硫黄モル]-[脱水後の揮散硫黄モル]の式により算出される。
 脱水工程で硫化水素が揮散すると、平衡反応により、アルカリ金属水酸化物が生成し、系内に残存することになる。したがって、揮散する硫化水素量を正確に把握して、仕込み工程でのアルカリ金属水酸化物の硫黄源に対するモル量を決定する必要がある。本発明では、脱水工程後、系内に残存する混合物に、必要に応じてアルカリ金属水酸化物及び水を添加することができる。
 重合反応開始時の共存水量は、仕込み工程において、仕込み硫黄源1モルに対して、通常0.02~2モル、好ましくは0.05~1.9モル、より好ましくは0.5~1.8モルの範囲とすることが好ましい。この範囲であれば、重合反応の途中で共存水量を増加させることができる。
 ジハロ芳香族化合物の仕込み量は、仕込み硫黄源1モル当たり、通常1.005~1.040モル、好ましくは1.008~1.035モル、より好ましくは1.010~1.030モル、特に好ましくは1.012~1.028モルである。
 アルカリ金属水硫化物を使用する場合、仕込み硫黄源1モル当たりのアルカリ金属水酸化物の量は、好ましくは1.005~1.080モル、より好ましくは1.010~1.075モル、特に好ましくは1.020~1.073モルである。アルカリ金属水酸化物が少過剰の状態で重合反応を行うことが、重合反応を安定的に実施し、高品質のPASを得る上で好ましい。
 重合工程の中で、重合反応をジスルフィド化合物の存在下で行う場合のジスルフィド化合物の添加量は、仕込み硫黄源1モル当たり、0.0005~0.015モル、好ましくは、0.0007~0.01モル、より好ましくは、0.0008~0.008モル、さらに好ましくは0.0009~0.006モル、特に好ましくは0.001~0.005モルである。
 ジスルフィド化合物は、重合工程の中で単独で添加してもよいし、あるいは有機アミド溶媒との混合物として添加してもよい。
 有機アミド溶媒量は、硫黄源あるいは仕込み硫黄源1モル当たり、0.1~10kg、好ましくは0.15~5kgである。
2-3.重合工程
 重合工程は、有機アミド溶媒中で硫黄源とジハロ芳香族化合物を加熱することにより行われる。重合工程が、相分離剤の存在下に、重合反応系内の液相に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態で重合反応を継続する相分離重合工程を含むことが好ましい。
 また、重合後の重合反応系内の液相に、相分離剤を存在させても生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態を作り出すことが出来る。すなわち、重合反応後の冷却工程前に相分離剤を添加しても良い。
 次いで、液-液相分離状態の生成ポリマーを含有する液相を冷却することにより粒状PASを分離・回収できる。
 相分離剤は、水、有機カルボン酸金属塩、有機スルホン酸金属塩、アルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、及びパラフィン系炭化水素からなる群より選ばれる少なくとも一種の相分離剤である。
 相分離剤を、仕込み硫黄源1モル当たり、通常、0.01~15モル、好ましくは0.01~13モル、より好ましくは、0.02~12モル、特に好ましくは、0.03~10モル用いる。
 重合工程のどこかの段階で、ジスルフィド化合物の存在下で重合反応が行われる必要がある。重合工程での重合反応が、仕込み硫黄源1モル当たり、0.0005~0.015モル、好ましくは0.0007~0.01モル、より好ましくは0.0008~0.008モル、さらに好ましくは0.0009~0.006モル、特に好ましくは0.001~0.005モルのジスルフィド化合物の存在下で行われる必要がある。
 一定範囲の溶融粘度のPASを得るため、ジハロ芳香族化合物の転化率が45%以上で、ジスルフィド化合物を添加することが好ましい。また、重合工程前または重合工程中に、重合助剤その他の添加物を混合してもよい。
 重合反応は、一般的に170~290℃の範囲で、前段重合工程と後段重合工程の2段階工程で行うことが好ましい。加熱方法は、一定温度を保持する方法、段階的または連続的な昇温方法、あるいは両方法の組み合わせが用いられる。重合反応時間は、一般に10分間~72時間の範囲であり、好ましくは30分間~48時間である。重合工程に使用される有機アミド溶媒は、仕込み硫黄源1モル当たり、通常、0.1~10kg、好ましくは0.15~5kgである。この範囲であれば、重合反応途中でその量を変化させてもかまわない。
 重合反応開始後、ジハロ芳香族化合物の転化率が80~99モル%に達した段階で、重合反応系内の液相を相分離状態に転換して重合反応を継続する方法が好ましい。高温状態にある液相を相分離状態に転換するには、相分離剤を添加したり、相分離剤として作用する添加剤の量を増大させたりすることが好ましい。相分離剤としては、特に制限されないが、安価で、重合反応の制御と後処理が容易である点で、水または有機カルボン酸金属塩及びこれらの組合せ、特に水が好ましい。
 本発明の製造方法では、重合反応をジスルフィド化合物の存在下で行うものであって、前記重合工程を少なくとも下記の2段階工程:
(I)有機アミド溶媒中で硫黄源とジハロ芳香族化合物とを、仕込み硫黄源1モル当たり0.02~2モルの共存水量、1.005~1.040モルのジハロ芳香族化合物が存在する状態で、170~270℃の温度で重合反応させて、該ジハロ芳香族化合物の転化率が80~99%のポリマーを生成させる前段重合工程;及び
(II)相分離剤を、仕込み硫黄源1モル当たり、0.01~10モルの範囲で存在させるとともに、240~290℃の温度に加熱することにより、重合反応系内の液相を相分離状態に転換して重合反応を継続して行う後段重合工程;
によって行うことが好ましい。
2-3-1.前段重合工程
 前段重合工程における反応系の共存水量は、仕込み硫黄源1モル当たり、0.02~2モル、好ましくは0.05~1.9モル、より好ましくは0.5~1.8モルの範囲である。共存水量が少なすぎると、PASの分解等の望ましくない反応が起こり易く、逆に、2モルを超過すると、重合速度が著しく小さくなったり、有機アミド溶媒や生成PASの分解が生じ易くなるので、いずれも好ましくない。ジハロ芳香族化合物の仕込量は、仕込み硫黄源1モル当たり、通常1.005~1.040モル、好ましくは1.008~1.035モル、より好ましくは1.010~1.030モル、特に好ましくは1.012~1.028モルである。
 重合は、170~270℃、好ましくは180~265℃の温度範囲内で行われる。重合温度が低すぎると、重合速度が遅くなり過ぎ、逆に、270℃を越える高温になると、生成PASと有機アミド溶媒が分解を起こし易く、生成するPASの重合度が極めて低くなる。低ハロゲン含有量で溶融粘度が調整されたPASを得るには、前段重合工程における重合温度を200~255℃の範囲内に制御することが好ましい。
 前段重合工程は、重合反応開始後、ジハロ芳香族化合物の転化率が80~99%、好ましくは85~98%、より好ましくは90~97%に達した段階であって、かつ、該液相が相分離状態となる前の工程である。ジハロ芳香族化合物の転化率は、反応混合物中に残存するジハロ芳香族化合物の量をガスクロマトグラフィにより求め、その残存量とジハロ芳香族化合物の仕込み量と硫黄源の仕込量に基づいて、以下の式により算出した値である。
 ジハロ芳香族化合物(「DHA」と略記)を硫黄源よりモルで過剰に添加した場合、下記式
 転化率=[〔DHA仕込み量(モル)-DHA残存量(モル)〕/〔DHA仕込み量(モル)-DHA過剰量(モル)〕]×100
によって転化率を算出する。
 それ以外の場合には、下記式
 転化率=[〔DHA仕込み量(モル)-DHA残存量(モル)〕/〔DHA仕込み量(モル)〕]×100
によって転化率を算出する。
 前記製造方法において、前段重合工程においては、温度310℃、剪断速度1,200sec-1で測定した溶融粘度が通常0.5~30Pa・sのポリマー(「プレポリマー」ともいう)を生成させることが望ましい。
 前段重合工程では、相分離状態は現れない。相分離剤を添加した後段重合工程では、重合反応系内の液相は、前段重合により生成したポリマー(プレポリマー)の含有量が多いポリマー濃厚相と該ポリマーの含有量が少ないポリマー希薄相とに相分離する。相分離状態は、目視によって明瞭に観察することができる。
2-3-2.後段重合工程
 後段重合工程で、相分離剤は、仕込み硫黄源1モル当たり、通常0.01~10モル、好ましくは0.03~8モル、より好ましくは、0.04~7モル用いる。
 後段重合工程で相分離剤として水を使用する場合には、後段重合工程における反応系の共存水量は、仕込み硫黄源1モル当たり、通常2~5モル、好ましくは2.1~4.5モル、さらに好ましくは2.2~4モル、特に好ましくは2.3~3.5モルの範囲に調整することが望ましい。反応系中の共存水量が2モル未満または5モル超過になると、生成PASの重合度が低下する。
 後段重合工程において、相分離剤として水以外の相分離剤(有機カルボン酸金属塩、有機スルホン酸金属塩、アルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、及びパラフィン系炭化水素からなる群より選ばれる少なくとも一種の相分離剤)を用いる場合には、該相分離剤を、仕込み硫黄源1モル当たり、0.01~3モル、好ましくは0.02~2モル、より好ましくは0.03~1モル、特に好ましくは0.04~0.5モルの範囲で存在させることが好ましい。
 相分離剤として、水と水以外の他の相分離剤を併用することができる。この態様においては、反応系中の共存水量を、仕込み硫黄源1モル当り0.01~7モル、好ましくは0.1~4モル、更に好ましくは1~3.5モル、水以外の他の相分離剤を、仕込み硫黄源1モル当り0.01~3モル、好ましくは0.02~1モル、更に好ましくは0.03~0.5モルの範囲で存在させることが好ましい。相分離剤/仕込み硫黄源の比率の厳格な調整は、低分子量物やオリゴマーの低減につながる。
 後段重合工程での重合温度は、240~290℃の範囲である。後段重合工程での重合温度が240℃未満では、溶融粘度が調整されたPASが得られにくく、290℃を越えると、生成PASや有機アミド溶媒が分解するおそれがある。更には、245~280℃、特に250~275℃の温度範囲が溶融粘度が調整されたPASが得られ易いので好ましい。本発明における後段重合工程は、前段重合工程で生成したPASプレポリマーの単なる分別・造粒の工程ではなく、PASプレポリマーの重合度の上昇を起こさせるためのものである。
 後段重合工程では、相分離剤の存在下に、重合反応系内の液相に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を継続する。濃厚相のPAS濃度は、通常30~70質量%、好ましくは40~60質量%、より好ましくは45~55質量%である。希薄相のPAS濃度は、通常0.1~15質量%、好ましくは0.5~10質量%、より好ましくは1~8質量%である。
 相分離剤の存在下に重合反応系内の液相に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態を作り出すと、攪拌によって、生成ポリマー希薄相中に生成ポリマー濃厚相が分散し、該濃厚相中でプレポリマー同士の縮合反応が効率的に進行する。
 重合反応方式は、バッチ式、連続式、あるいは両方式の組み合わせでもよい。バッチ式重合では、重合サイクル時間を短縮する目的のために、所望により2つ以上の反応槽を用いる方式を用いることができる。
2-4.冷却工程
 本発明では、重合工程後であって、冷却工程前に、前述した相分離剤を存在させて、生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態を生起させることができる。必要ならば、撹拌を行うことにより、液-液相分離状態の生起を調整することができる。
 冷却工程では、生成ポリマーを含有する液相を、通常、重合工程後の高温状態から冷却する。冷却工程では、溶剤のフラッシュなどにより液相を急冷するのではなく、徐冷することが、粒状ポリマーが得られやすいので好ましい。徐冷は、2.0~0.1℃/分の降温速度に制御して液相を冷却することが好ましい。徐冷は、重合反応系を周囲環境温度(例えば、室温)に曝す方法によって行うことができる。液相の冷却速度を制御するために、重合反応槽のジャケットに冷媒を流したり、液相をリフラックスコンデンサーで還流させたりする方法を採用することもできる。
 本発明の製造方法では、重合反応系内の液相の温度が液-液相分離重合工程の重合温度、または液-液相分離状態からPASが固化・粒状化する温度(以下、「固化・粒状化温度」と略記する)以下、例えば240~200℃程度に低下するまで、好ましくは2.0~0.1℃/分、更に好ましくは1.5~0.2℃/分、より好ましくは1.3~0.3℃/分の降温速度に制御して該液相を徐冷することが望ましい。このような冷却速度の制御によって、ポリマーの粒状化を促進することができる。例えば240~200℃程度からは温度制御することなく、液相を所望の温度にまで冷却することができる。例えば240~200℃程度からは、重合反応系を周囲環境温度に放置したり、あるいは液相の降温速度を速めたりすることができる。最終的な冷却温度は、篩別などの分離・回収工程が容易である室温以上220℃未満の温度とする。好ましくは、熱安定性がよく、成形加工時のガスの発生が少なく、低いハロゲン含有量と、低い溶融粘度を有し、性能がさらに高度にバランスした粒状PASを得るために、35℃以上、より好ましくは40℃以上、さらに好ましくは45℃以上とする。上限は、好ましくは200℃以下、洗浄を好ましくは100℃未満にすることにより充分に粒状化したPASを含むスラリーを得ることが出来る。
2-5.分離・回収工程
 本発明の製造方法によれば、粒状PASを生成させることができるため、特定の篩目開きの篩を用いて篩い分けする方法により粒状PASを反応液から分離・回収する方法を採用する。生成物スラリーが高温状態(例えば、室温以上220℃未満の温度)にある間に、篩い分けを行っても良い。本発明の製造方法においては、38μm以上の篩目開きを有する篩で生成PASの篩い分けを行い、篩い分け後の篩上物として回収する。篩い分けは、後述する洗浄後、または乾燥後に行ってもよい。また、篩い分けを、洗浄前、洗浄後、乾燥後の各段階で行ってよい。
 次に、常法に従い、洗浄、濾過を繰りかえす。例えば、PASを重合溶媒と同じ有機アミド溶媒やケトン類(例えば、アセトン)、アルコール類(例えば、メタノール)等の有機溶媒で洗浄することが好ましい。PASを高温水などで洗浄してもよい。生成PASを、有機酸や塩化アンモニウムのような塩で処理することもできる。有機酸は酢酸を用いることが好ましい。洗浄後、常法に従い、乾燥させる。
 粒状PASは、篩目開き38μm以上の篩での篩い分け後の篩上物である。粒状PASを回収するための使用篩は、通常、篩目開き38μm~2,800μmの範囲から選ばれる篩目開きを有する篩、好ましくは、篩目開き38μm~1,500μmの範囲から選ばれる篩目開きを有する篩、さらに好ましくは、篩目開き38μm~1,000μmの範囲から選ばれる篩目開きを有する篩、特に好ましくは、篩目開き38μm~500μmの範囲から選ばれる篩目開きを有する篩、最も好ましくは、篩目開き38μm~300μmの範囲から選ばれる篩目開きを有する篩を採用する。具体的には、開きを有する篩を回収するための使用篩として具体的には、篩目開き150μm(100メッシュ(目数/インチ))の篩、篩目開き105μm(145メッシュ(目数/インチ))、篩目開き75μm(200メッシュ(目数/インチ))の篩、及び篩目開き38μm(400メッシュ(目数/インチ))等の篩を用いることにより、効率よく、低分子量物や、オリゴマーを除去することができる。より好ましくは、微粒子状副生塩を効率的に除去することができる篩目開き150μm(100メッシュ(目数/インチ))の篩を用いることが望ましい。
 本発明の製造方法によれば、38μm以上の篩目開きを有する篩で篩い分け、篩上物として捕集した粒状ポリマーを、篩い分け前の全量に対して、通常、80質量%以上、好ましくは80~99.5質量%、より好ましくは83~99質量%、特に好ましくは85~98質量%の収率で回収することができる。
 また、150μm以上の篩目開きを有する篩で捕集した粒状PASを、通常、80質量%以上、具体的には、80~98質量%、好ましくは83~97質量%、特に好ましくは85~96質量%の収率で回収することができる。
 これらに代表される収率を、篩上物(質量%)ともいう。粒状PASの篩上物(質量%)は、脱水工程後の反応缶中に存在する仕込み硫黄源中の有効硫黄成分の全てがPASに転換したと仮定したときのPAS質量(理論量)を篩い分けする前のPASの全量として基準とした。篩上物(質量%)は、(篩上物)/(篩い分けする前のPASの全量:PAS質量(理論量))で算出した。仕込み硫黄源がジハロ芳香族化合物よりも過剰のモル比で仕込まれた場合は、仕込み硫黄源の全てがPASに転換することはあり得ない場合もあるが、その場合でも、一応仕込み硫黄源の量を基準として篩上物(質量%)を算出することとする。濾紙回収の場合も、濾紙上物/(篩い分けする前のPASの全量:PAS質量(理論量))で、回収率を算出する。
3.ポリアリーレンスルフィド
 本発明によれば、粒状PASであって、(i)該粒状PASが、末端に、ジスルフィド化合物が開裂した-S-の置換基を含み、(ii)該粒状PASが、38μm以上の篩目開きを有する篩での篩い分け後の篩上物であり、(iii)該粒状PASが、ハロゲン含有量1,500ppm以下であり、かつ、(iv)該粒状ポリアリーレンスルフィドが、温度310℃及び剪断速度1,200sec-1の条件下で測定した溶融粘度が、3~100Pa・sである粒状PASが得られる。また、本発明によれば、該粒状PASは、有機アミド溶媒中で硫黄源とジハロ芳香族化合物とを重合する重合工程、該重合工程後の生成ポリマーを含有する液相を冷却する冷却工程、及び生成ポリマーを分離・回収する回収工程を含み、さらに、該重合工程中及び/または冷却工程前に相分離剤を存在させて、生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態を生起させる工程を含む粒状PASの製造方法であって、(i)該重合工程の中で、重合反応をジスルフィド化合物の存在下で行い、かつ、(ii)該分離・回収工程において、生成ポリマーを、38μm以上の篩目開きを有する篩で篩い分け、篩上物を得る、粒状PASの製造方法で製造される。
 本発明によれば、低ハロゲン含有量で熱安定性がよく、成形加工時のガスの発生が少ない、低い溶融粘度を有する粒状PASを高収率で得ることができる。すなわち、本発明の製造方法によれば、温度310℃及び剪断速度1,200sec-1で測定した溶融粘度が、通常3~100Pa・s、好ましくは7~80Pa・s、より好ましくは10~70Pa・s、特に好ましくは13~60Pa・s、さらに好ましくは15~55Pa・s、最も好ましくは、17~50Pa・sの粒状PASを得ることができる。
 本発明の製造方法によれば、得られる粒状PASのハロゲン含有量(塩素含有量)は1,500ppm以下、好ましくは1,300ppm以下、より好ましくは1,250ppm以下である。用途によっては、さらに1,000ppm以下、好ましくは900ppm以下、850ppm以下とすることもできる。ハロゲン含有量の下限値は、通常100ppmあるいは200ppm程度である。
 本発明の製造方法によれば、得られる粒状PASの窒素含有量は、1,000ppm以下、好ましくは 800ppm以下、より好ましくは700ppm以下、更により好ましくは650ppm以下、特に好ましくは600ppm以下である。この窒素含有量の下限は、1ppmまたは2ppm程度である。
 本発明の製造方法によれば、得られる粒状PASの平均粒径は、50~2,500μm、好ましくは70~1,000μm、より好ましくは100~800μm、特に好ましくは280~550μm、最も好ましくは300~500μmである。
 本発明の粒状PASは、そのままあるいは酸化架橋させた後、単独でまたは各種合成樹脂、各種充填剤、各種添加剤を配合し、種々の射出成形品やシート、フィルム、繊維、パイプ等の押出成形品に成形することができる。粒状PASは、電子部品の封止剤や被覆剤としても有用である。PASとしては、PPSが特に好ましい。
4.樹脂組成物
 本発明の粒状PASを組成物として用いる場合、他の成分は次のとおりである。各種合成樹脂としては、高温において安定な熱可塑性樹脂が好ましく、その具体例としては、ポリエチレンテレフタレートやポリブチレンテレフタレート等の芳香族ポリエステル;ポリテトラフルオロエチレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、プロピレン/テトラフルオロエチレン共重合体、フッ化ビニリデン/クロロトリフルオロエチレン共重合体、エチレン/ヘキサフルオロプロピレン共重合体等のフッ素樹脂;ポリアセタール、ポリスチレン、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリアルキルアクリレート、ABS樹脂、ポリ塩化ビニルなどを挙げることができる。これらの熱可塑性樹脂は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。ガラス繊維などの無機充填剤を配合したコンパウンドとして使用する場合には、本発明の特徴である低溶融粘度PASの特性に合わせて、良好な成形加工性が得られるように、上記各種の合成樹脂は、溶融粘度や固有粘度が低く良好な溶融挙動が得られるものを選択することが重要である。
 各種充填剤としては、例えば、ガラス繊維、炭素繊維、アスベスト繊維、シリカ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリウムウィスカーなどの無機繊維状物;ステンレス、アルミニウム、チタン、鋼、真ちゅう等の金属繊維状物;ポリアミド、フッ素樹脂、ポリエステル樹脂、アクリル樹脂などの高融点の有機質繊維状物;等の繊維状充填剤が挙げられる。また、充填剤としては、例えば、マイカ、シリカ、タルク、アルミナ、カオリン、硫酸カルシウム、炭酸カルシウム、酸化チタン、フェライト、ガラス粉、酸化亜鉛、炭酸ニッケル、酸化鉄、石英粉末、炭酸マグネシウム、硫酸バリウム、クレー等の粉粒体状または板状の充填剤を挙げることができる。これらの充填剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。これらの充填剤は、必要に応じて、集束剤または表面処理剤により処理されていてもよい。集束剤または表面処理剤としては、例えば、エポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物などの官能性化合物が挙げられる。これらの化合物は、充填剤に対して、予め表面処理または集束処理を施して用いるか、あるいは組成物の調整の際に同時に添加してもよい。充填剤は、粒状PAS100質量部に対して、通常、0~800質量部、好ましくは0~500質量部、より好ましくは0~300質量部の範囲で配合する。特に、充填剤として、ガラス繊維などの無機繊維状充填剤を配合すると、引張強度などの機械的物性に優れた樹脂組成物と成形品を得ることができる。本発明では、特にガラス繊維などの充填剤を配合したコンパウンドとして使用することが好ましい。コンパウンドとして用いる場合は、多くの場合、PAS100質量部に対して、45~100質量部のガラス繊維を配合することが多い。コンパウンドとして用いられる場合、一般に、ハロゲン含有量の規制値は、900ppm以下とされている。電気・電子機器分野のコンパウンドの場合、ガラス繊維の配合量が30~50質量%程度なので、本発明の粒状PASを用いた場合、十分に規制値以下の塩素含有量となる。
 各種充填剤としては、顔料、染料、酸化防止剤、紫外線吸収剤、滑剤、核剤、難燃剤、樹脂改良剤、カップリング剤、帯電防止剤、導電性材料、炭素前駆体、離型剤、可塑剤などが挙げられる。
 以下に実施例及び比較例を挙げて、本発明についてより具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。本発明における物性及び特性の測定方法は、次のとおりである。
(1)粒状PASの回収率(篩上物(質量%))
  反応後、生成ポリマー(PAS)を、篩目開き38μm(400メッシュ(目数/インチ))または篩目開き150μm(100メッシュ(目数/インチ))の篩で篩別して分別し、洗浄した。粒状PASの篩上物(質量%)は、脱水工程後の反応缶中に存在する仕込み硫黄源中の有効硫黄成分の全てがPASに転換したと仮定したときのPAS質量(理論量)を篩い分けする前のPASの全量として基準とした。篩上物(質量%)は、(篩上物)/(篩い分けする前のPASの全量:PAS質量(理論量))で算出した。仕込み硫黄源がジハロ芳香族化合物よりも過剰のモル比で仕込まれた場合は、仕込み硫黄源の全てがPASに転換することはあり得ない場合もあるが、その場合でも、一応仕込み硫黄源の量を基準として篩上物(質量%)を算出することとした。濾紙回収の場合も、濾紙上物/(篩い分けする前のPASの全量:PAS質量(理論量))で、回収率を算出した。
(2)ハロゲン含有量の測定法
 粒状PAS中のハロゲン含有量として、塩素含有量を燃焼イオンクロマト法により測定した。
(測定条件)
イオンクロマトグラフ:DIONEX製 DX320
燃焼用前処理装置:三菱化学製 AQF-100,ABC,WS-100,GA-100
試料:10mg
ヒーター:Inlet Temp/900℃,Outlet Temp/1000℃
吸収液:H2O900ppm,内標準PO4 3- 25ppm
(3)溶融粘度の測定方法
 粒状PASの溶融粘度は、キャピラリーとして1.0mmφ、長さ10.0mmのノズルを装着した(株)東洋精機製作所製キャピログラフ1C(登録商標)により溶融粘度を測定した。設定温度を310℃とした。ポリマー試料を装置内に導入し、5分間保持した後、剪断速度1,200sec-1で溶融粘度を測定した。
(4)平均粒径
 分離・回収工程で回収した生成ポリマー(粒状PAS)の平均粒径は、使用篩として、篩目開き2,800μm(7メッシュ(目数/インチ))、篩目開き1,410μm(12メッシュ(目数/インチ))、篩目開き1,000μm(16メッシュ(目数/インチ))、篩目開き710μm(24メッシュ(目数/インチ))、篩目開き500μm(32メッシュ(目数/インチ))、篩目開き250μm(60メッシュ(目数/インチ))、篩目開き150μm(100メッシュ(目数/インチ))、篩目開き105μm(145メッシュ(目数/インチ))、篩目開き75μm(200メッシュ(目数/インチ))、篩目開き38μm(400メッシュ(目数/インチ))の篩を用いた篩分法により測定し、各篩の篩上物の質量から、累積質量が50%質量となる時の平均粒径を算出した。
(5)窒素含有量の測定
 粒状PAS10mgを微量窒素硫黄分析計(アステック株式会社製、機種「ANTEK7000」)を用いて窒素の含有量を測定した。(基準物質はピリジン)
[実施例1]
 20リットルのオートクレーブに、N-メチル-2-ピロリドン(以下、「NMP」と略記)6,001g、水硫化ナトリウム水溶液(NaSH;純度62質量%)2,000g、水酸化ナトリウム水溶液(NaOH;純度74.0質量%)1,171gを仕込んだ。NaOH/NaSH(硫黄源)は、モル比で0.98である。
 脱水工程として、該オートクレーブ内を窒素ガスで置換後、約4時間かけて、撹拌機の回転数250rpmで撹拌しながら、徐々に200℃まで昇温して、水(HO)1,014g、NMP763g、及び硫化水素(HS)12gを留出させた。
 上記脱水工程後、オートクレーブの内容物を150℃まで冷却し、p-ジクロロベンゼン(以下、「p-DCB」と略記)3,264g、NMP2,707g、水酸化ナトリウム19g、及び水167gを加え、撹拌しながら220℃で5時間反応させ、前段重合を行った。水/仕込み硫黄源は、モル比で1.5である。NaOH/仕込み硫黄源は、モル比で1.05である。NMP/仕込み硫黄源は、0.37kg/モルである。p-DCB/仕込み硫黄源は、モル比で1.020である。前段重合終了時のp-DCBの転化率は93%であった。
 次に、ジフェニルジスルフィド(以下、「DPDS」と略記)4.8g、NMP762gを圧入し反応させた。DPDS/仕込み硫黄源は、モル比で0.001である。次に撹拌を続けながら水443gを圧入し、255℃に昇温し5時間反応させ、後段重合を行った。水/仕込み硫黄源は、モル比で2.63である。
 後段重合終了後、1℃/分の降温速度で220℃まで徐冷し、220℃からは室温付近まで冷却し、内容物をそれぞれ節目開き38μm(400メッシュ)及び、篩目開き150μm(100メッシュ)の篩を用いて粒状ポリマーを篩別し、該粒状PASをアセトンで洗浄3回、次いで、水洗浄を3回行った。この粒状PASを、pH4に調整した酢酸水溶液洗浄1回、水洗浄3回をし、洗浄された粒状PASを得た。このようにして得られた粒状PASを100℃で一昼夜乾燥した。
 このようにして得られた粒状PASは、平均粒径が442μmであった。また、篩目開き150μm(100メッシュ)篩上物は、溶融粘度が39Pa・s、塩素含有量1,150ppm、窒素含有量530ppmであり、篩目開き38μm(400メッシュ)篩上物は、溶融粘度38Pa・s、塩素含有量1,200ppm、窒素含有量560ppmであった。粒状PASの篩上物(質量%)は、150μm(100メッシュ)の篩上物で91%であり、篩目開き篩目開き38μm(400メッシュ)の篩上物で93%であった。
[実施例2]
 前段重合終了時のp-DCBの転化率が92%の時に、DPDS14.3gを加えたこと、及びDPDS/仕込み硫黄源のモル比を0.003としたことを除いて、実施例1と同様に行った。
 このようにして得られた粒状PASは、平均粒径が476μmであった。また、篩目開き150μm(100メッシュ)の篩上物は、溶融粘度が19Pa・s、塩素含有量950ppm、窒素含有量550ppmであった。篩目開き38μm(400メッシュ)の篩上物は、溶融粘度が19Pa・s、塩素含有量1,100ppm、窒素含有量は575ppmであり、篩目開き38μm(400メッシュ)の篩を通過したものを濾紙回収したものは、溶融粘度1Pa・s未満、塩素含有量20,500ppmであった。粒状PASの篩上物(質量%)は、篩目開き篩目開き150μm(100メッシュ)の篩上物で89%であり、38μm(400メッシュ)の篩上物で91%であった。
[実施例3]
 脱水工程までは、実施例1と同様に行った。上記脱水工程後、オートクレーブの内容物を150℃まで冷却し、p-DCB3,280g、NMP2,708g、水酸化ナトリウム19g、及び水167g、DPDS9.5gを加え、撹拌しながら220℃で5時間反応させ、前段重合を行った。DPDS添加時、すなわち、重合反応開始時のp-DCBの転化率は0%である。水/仕込み硫黄源は、モル比で1.50である。NaOH/仕込み硫黄源は、モル比で1.05である。NMP/仕込み硫黄源は、0.38kg/モルである。p-DCB/仕込み硫黄源は、モル比で、1.025である。DPDS/仕込み硫黄源は、モル比で0.002である。前段重合終了時のp-DCBの転化率は92%であった。
 次に撹拌を続けながら水443gを圧入し、255℃に昇温し5時間反応させ、後段重合を行った。水/仕込み硫黄源は、モル比で2.63である。後段重合終了後、実施例1と同様にして、粒状PASを得た。
 このようにして得られた粒状PASは、平均粒径が398μmであった。また、篩目開き150μm(100メッシュ)篩上物は、溶融粘度が41Pa・s、塩素含有量1,200ppm、窒素含有量530ppmであり、篩目開き38μm(400メッシュ)篩上物は、溶融粘度40Pa・s、塩素含有量1,200ppm、窒素含有量560ppmであった。粒状PASの篩上物(質量%)は、篩目開き150μm(100メッシュ)の篩上物で91%であり、篩目開き38μm(400メッシュ)の篩上物で93%であった。
[実施例4]
 脱水工程までは、実施例1と同様に行った。上記脱水工程後、オートクレーブの内容物を150℃まで冷却し、p-DCB3,248g、NMP2,707g、水酸化ナトリウム19g、及び水167gを加え、撹拌しながら220℃で5時間反応させ、前段重合を行った。水/仕込み硫黄源は、モル比で1.50である。NaOH/仕込み硫黄源のモル比は、1.05である。NMP/仕込み硫黄源は、0.37kg/モルである。p-DCB/仕込み硫黄源はモル比で、1.015である。前段重合終了時のp-DCBの転化率は94%であった。
 次に、DPDS9.5g、NMP762gを圧入し反応させた。DPDS/仕込み硫黄源は、モル比は0.002である。次に撹拌を続けながら水443gを圧入し、255℃に昇温し5時間反応させ、後段重合を行った。水/仕込み硫黄源は、モル比で2.63である。
 後段重合終了後、実施例1と同様に行い、粒状PASを得た。このようにして得られた粒状PASは、平均粒径が356μmであった。また、篩目開き150μm(100メッシュ)篩上物は、溶融粘度が23Pa・s、塩素含有量800ppm、窒素含有量580ppmであり、篩目開き38μm(400メッシュ)篩上物は、溶融粘度22Pa・s、塩素含有量800ppm、窒素含有量600ppmであった。粒状PASの篩上物(質量%)は、篩目開き150μm(100メッシュ)の篩上物で88%であり、篩目開き38μm(400メッシュ)の篩上物で91%であった。
[比較例1]
 DPDSを添加しないことを除いて、実施例3と同様に行った。得られた粒状PASは、平均粒径が651μmであった。また、篩目開き150μm(100メッシュ)篩上物は、溶融粘度が128Pa・s、塩素含有量1,100ppm、窒素含有量575ppmであり、篩目開き38μm(400メッシュ)篩上物は、溶融粘度120Pa・s、塩素含有量1,150ppm、窒素含有量580ppmであった。粒状PASの篩上物(質量%)は、篩目開き150μm(100メッシュ)の篩上物で89%であり、篩目開き38μm(400メッシュ)の篩上物で91%であった。
[比較例2]
 脱水工程までは、実施例1と同様に行った。上記脱水工程後、オートクレーブの内容物を150℃まで冷却し、p-DCB3,360g、NMP2,707g、水酸化ナトリウム19g、及び水167gを加え、撹拌しながら220℃で5時間反応させ、前段重合を行った。水/仕込み硫黄源は、モル比で1.50である。NaOH/仕込み硫黄源のモル比は、1.05である。NMP/仕込み硫黄源は、0.38kg/モルである。p-DCB/仕込み硫黄源はモル比で、1.050である。前段重合終了時のp-DCBの転化率は92%であった。次に、DPDS4.8g、NMP762gを圧入し反応させた。DPDS/仕込み硫黄源は、モル比で0.001である。次に撹拌を続けながら水443gを圧入し、255℃に昇温し5時間反応させ、後段重合を行った。水/仕込み硫黄源は、モル比で2.63である。
 後段重合、冷却、及び分離・回収は、実施例1と同様に行い、粒状PASを得た。このようにして得られた粒状PASは、平均粒径が344μmであった。また、篩目開き150μm(100メッシュ)篩上物は、溶融粘度が15Pa・s、塩素含有量3,000ppm、窒素含有量650ppmであり、篩目開き38μm(400メッシュ)篩上物は、溶融粘度14Pa・s、塩素含有量3,100ppm、窒素含有量700ppmであった。粒状PASの篩上物(質量%)は、篩目開き150μm(100メッシュ)の篩上物で88%であり、篩目開き38μm(400メッシュ)の篩上物で90%であった。
[比較例3]
 前段重合までは、実施例1と同様に行った。p-DCBの転化率が93%の時、DPDS4.8g、NMP762gを圧入し反応させた。DPDS/仕込み硫黄源は、モル比で0.001である。次に撹拌を続けながら、仕込み時の水量のまま、水を加えることなく、255℃に昇温し5時間反応させ、後段重合を行った。
 後段重合終了後、室温付近まで冷却し、内容物を、篩目開き150μm(100メッシュ)の篩を用いて篩別したところ、篩上物は無かった。微粉を含む篩下物(濾紙回収、回収率99%)は、塩素含有量2,950ppm、窒素含有量2,000ppmであった。溶融粘度は、5Pa・sであった。
[比較例4]
 前段重合までは、実施例1と同様に行った。前段重合終了時のp-DCBの転化率は92%である。次に、DPDS95g、NMP762gを圧入し反応させた。DPDS/仕込み硫黄源は、モル比で0.020である。次に撹拌を続けながら水443gを圧入し、255℃に昇温し5時間反応させ、後段重合を行った。水/仕込み硫黄源は、モル比で2.63である。
 後段重合終了後、実施例1と同様に行い、粒状PASを得た。このようにして得られた粒状PASは、平均粒径が268μmであった。また、篩目開き150μm(100メッシュ)篩上物は、溶融粘度が1.5Pa・s、塩素含有量1,000ppm、窒素含有量580ppmであり、篩目開き38μm(400メッシュ)篩上物は、溶融粘度1Pa・s、塩素含有量1,100ppm、窒素含有量630ppmであった。粒状PASの篩上物(質量%)は、篩目開き150μm(100メッシュ)の篩上物で51%、篩目開き38μm(400メッシュ)篩上物で55%であった。
[比較例5]
 実施例2において濾紙を用いて回収した以外は同様に行った。濾紙回収(回収率99%)のPASは、溶融粘度8Pa・s、塩素含有量2,800ppm、窒素含有量1,030ppmであった。
[比較例6]
 脱水工程終了後、p-DCBを3392g添加し、DPDSを添加しなかったこと以外は実施例1と同様に行った。
 後段重合終了後、実施例1と同様に行い、粒状PASを得た。このようにして得られた粒状PASは、平均粒径が389μmであった。また、篩目開き150μm(100メッシュ)篩上物は、溶融粘度が30Pa・s、塩素含有量3,800ppm、窒素含有量830ppmであり、篩目開き38μm(400メッシュ)篩上物は、溶融粘度27Pa・s、塩素含有量3,950ppm、窒素含有量870ppmであった。粒状PASの篩上物(質量%)は、篩目開き150μm(100メッシュ)の篩上物で88%であり、篩目開き38μm(400メッシュ)の篩上物で93%であった。
[比較例7]
 脱水工程終了後、p-DCBを3263g添加し、NMPを4750g添加し、DPDSを添加しなかったこと以外は実施例1と同様に行った。前段重合終了後、撹拌を続けながら水650gを圧入し、255℃に昇温し5時間反応させ、後段重合を行った。水/仕込み硫黄源は、モル比で3.16である。
 後段重合終了後、実施例1と同様に行い、粒状PASを得た。このようにして得られた粒状PASは、平均粒径が1,200μmであった。また、篩目開き150μm(100メッシュ)篩上物は、溶融粘度が300Pa・s、塩素含有量700ppm、窒素含有量350ppmであり、篩目開き38μm(400メッシュ)篩上物は、溶融粘度290Pa・s、塩素含有量800ppm、窒素含有量380ppmであった。粒状PASの篩上物(質量%)は、篩目開き150μm(100メッシュ)の篩上物で84%であり、篩目開き38μm(400メッシュ)の篩上物で85%であった。
 実施例、比較例を表1、表2に表す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[考察]
 比較例1は、DPDSを添加しなかった場合である。この場合、得られた粒状PASの溶融粘度が、本発明の上限の範囲外の値となる。比較例2は、仕込み硫黄源に対するジハロ芳香族化合物の値が上限の範囲外の場合である。この場合、得られた粒状PASの塩素含有量が本発明の上限の範囲外の値となる。比較例3は、後段重合工程での共存水量が本発明の下限の範囲外の場合である。篩目開き150μmの篩で篩い分けた場合、粒状PASとしての篩上物はない。濾紙回収のPASの溶融粘度は、本発明の下限の範囲外となり、塩素含有量は、本発明の上限の範囲外となる。比較例4は、DPDSの添加量を本発明の上限の範囲外にした場合である。この場合、得られた粒状PASの溶融粘度は、本発明の下限の範囲外の値となり、また、収率が良くない。比較例5は、実施例2において、篩分けを行わない場合である。濾紙回収のPASの溶融粘度は、本発明の下限の範囲外となり、塩素含有量は、本発明の上限の範囲外となる。比較例6、7は、DPDSを添加しなかった場合である。加えて、比較例6は、仕込み硫黄源に対するジハロ芳香族化合物の値が上限の範囲外の場合である。
 比較例1、6、7は、本発明と異なる、DPDSを用いない従来の技術水準を示す(以下、篩目開き150μm篩篩上物の数値で示す)。すなわち、溶融粘度が、300Pa・s(比較例7)から128Pa・s(比較例1)、次いで30Pa・s(比較例6)と低下すると、塩素含有量は、700ppm(比較例7)から1100ppm(比較例1)、次いで3800ppm(比較例6)と上昇する。すなわち、低溶融粘度化(高流動化)と低ハロゲン化は、二律背反の関係にあることを示している。このことは、塩素含有量と溶融粘度とをプロットした図1を見ると、明確にわかる。すなわち、実施例1~4は、低溶融粘度、低塩素含有量で、特異的な効果を示しているのに対して、比較例では、低溶融粘度の時は、高塩素含有量であり(比較例6)、高溶融粘度の時は、低塩素含有量である(比較例7)。また、従来技術の範囲内で溶融粘度と塩素含有量を低めても(比較例1)、実施例の低溶融粘度、低塩素含有量には到達しない。
 これらに対して、実施例1~4では、溶融粘度、塩素含有量、窒素含有量、熱安定性、収率ともにバランスの取れた粒状PASが得られる。
 本発明の粒状PASは、溶融粘度、ハロゲン含有量、窒素含有量、熱安定性、収率ともにバランスの取れた粒状PASが得られるため、電気・電子機器、自動車機器等の広範な分野において好適に利用することができる。

Claims (21)

  1.  粒状ポリアリーレンスルフィドであって、
    (i)該粒状ポリアリーレンスルフィドが、末端に、ジスルフィド化合物が開裂した-S-の置換基を含み、
    (ii)該粒状ポリアリーレンスルフィドが、38μm以上の篩目開きを有する篩での篩い分け後の篩上物であり、
    (iii)該粒状ポリアリーレンスルフィドが、ハロゲン含有量1,500ppm以下であり、かつ、
    (iv)該粒状ポリアリーレンスルフィドが、温度310℃及び剪断速度1,200sec-1の条件下で測定した溶融粘度が、3~100Pa・sである粒状ポリアリーレンスルフィド。
  2.  有機アミド溶媒中で硫黄源とジハロ芳香族化合物とを重合する重合工程及び該重合工程後の生成ポリマーを含有する液相を冷却する冷却工程を含み、さらに、該重合工程中及び/または冷却工程前に相分離剤を存在させて、生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態を生起させる工程を含み、かつ、該重合工程の中で、重合反応をジスルフィド化合物の存在下で行う製造方法で製造された粒状ポリアリーレンスルフィドである請求項1記載の粒状ポリアリーレンスルフィド。
  3.  重合工程が、相分離剤の存在下に、重合反応系内の液相に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態で重合反応を継続する相分離重合工程を含む請求項1または2記載の粒状ポリアリーレンスルフィド。
  4.  粒状ポリアリーレンスルフィドが、窒素含有量650ppm以下である請求項1乃至3のいずれか1項に記載の粒状ポリアリーレンスルフィド。
  5.  ハロゲンが、塩素である請求項1乃至4のいずれか1項に記載の粒状ポリアリーレンスルフィド。
  6.  篩が、150μm以上の篩目開きを有する篩である請求項1乃至5のいずれか1項に記載の粒状ポリアリーレンスルフィド。
  7.  塩素含有量1,300ppm以下である請求項1乃至6のいずれか1項に記載の粒状ポリアリーレンスルフィド。
  8.  温度310℃及び剪断速度1,200sec-1の条件下で測定した溶融粘度が、15~55Pa・sである請求項1乃至7のいずれか1項に記載の粒状ポリアリーレンスルフィド。
  9.  有機アミド溶媒中で硫黄源とジハロ芳香族化合物とを重合する重合工程、該重合工程後の生成ポリマーを含有する液相を冷却する冷却工程、及び生成ポリマーを分離・回収する分離・回収工程を含み、さらに、該重合工程中及び/または冷却工程前に相分離剤を存在させて、生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態を生起させる工程を含む粒状ポリアリーレンスルフィドの製造方法であって、
    (i)該重合工程の中で、重合反応をジスルフィド化合物の存在下で行い、かつ、
    (ii)該分離・回収工程において、生成ポリマーを、38μm以上の篩目開きを有する篩で篩い分け、篩上物を得る、請求項1記載の粒状ポリアリーレンスルフィドの製造方法。
  10.  重合工程が、相分離剤の存在下に、重合反応系内の液相に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する液-液相分離状態で重合反応を継続する相分離重合工程を含む請求項9記載の粒状ポリアリーレンスルフィドの製造方法。
  11.  相分離剤が、水、有機カルボン酸金属塩、有機スルホン酸金属塩、アルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、及びパラフィン系炭化水素からなる群より選ばれる少なくとも一種の相分離剤である請求項9または10記載の粒状ポリアリーレンスルフィドの製造方法。
  12.  相分離剤を、仕込み硫黄源1モル当たり、0.01~15モル用いる請求項9乃至11のいずれか1項に記載の粒状ポリアリーレンスルフィドの製造方法。
  13.  重合工程での重合反応が、仕込み硫黄源1モル当たり、0.0005~0.015モルのジスルフィド化合物の存在下で行われる請求項9乃至12のいずれか1項に記載の粒状ポリアリーレンスルフィドの製造方法。
  14.  ジハロ芳香族化合物の転化率が45%以上となった時点で、ジスルフィド化合物を添加し、重合工程に存在させる請求項9乃至13のいずれか1項に記載の粒状ポリアリーレンスルフィドの製造方法。
  15.  ジスルフィド化合物が、ジフェニルジスルフィドである請求項9乃至14のいずれか1項に記載の粒状ポリアリーレンスルフィドの製造方法。
  16.  篩が、150μm以上の篩目開きを有する篩である請求項9乃至15のいずれか1項に記載の粒状ポリアリーレンスルフィドの製造方法。
  17.  150μm以上の篩目開きを有する篩での篩い分け後の篩上物が、篩い分け前の全量に対して、80質量%以上である請求項9乃至16のいずれか1項に記載の粒状ポリアリーレンスルフィドの製造方法。
  18.  重合工程を少なくとも下記の2段階工程:
    (I)有機アミド溶媒中で硫黄源とジハロ芳香族化合物とを、仕込み硫黄源1モル当たり0.02~2モルの共存水量、1.005~1.040モルのジハロ芳香族化合物が存在する状態で、170~270℃の温度で重合反応させて、該ジハロ芳香族化合物の転化率が80~99%のポリマーを生成させる前段重合工程;及び
    (II)相分離剤を、仕込み硫黄源1モル当たり、0.01~10モルの範囲で存在させるとともに、240~290℃の温度に加熱することにより、重合反応系内の液相を相分離状態に転換して重合反応を継続して行う後段重合工程;
    によって行う請求項9~17記載の粒状ポリアリーレンスルフィドの製造方法。
  19.  相分離剤が水の場合、仕込み硫黄源1モル当たり2~5モルの水が存在する状態となるように重合反応系内の共存水量を調整する請求項12記載の粒状ポリアリーレンスルフィドの製造方法。
  20.  相分離剤が、有機カルボン酸金属塩、有機スルホン酸金属塩、アルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、及びパラフィン系炭化水素からなる群より選ばれる少なくとも一種の相分離剤の場合、仕込み硫黄源1モル当たり、0.01~3モルの範囲で存在させる請求項12記載の粒状ポリアリーレンスルフィドの製造方法。
  21.  水と水以外の他の相分離剤を併用する場合、共存水量を、仕込み硫黄源1モル当り0.01~7モルに調整するとともに、水以外の他の相分離剤を、仕込み硫黄源1モル当り0.01~3モルの範囲で存在させる請求項12記載の粒状ポリアリーレンスルフィドの製造方法。
PCT/JP2013/059497 2012-03-30 2013-03-29 粒状ポリアリーレンスルフィド及びその製造方法 WO2013147141A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147021810A KR101660614B1 (ko) 2012-03-30 2013-03-29 입상 폴리아릴렌 설파이드 및 그 제조방법
EP13768784.4A EP2840105A4 (en) 2012-03-30 2013-03-29 GRANULAR POLY (ARYLENE SULFIDE) AND METHOD FOR PRODUCING THE SAME
CN201380005933.3A CN104144970B (zh) 2012-03-30 2013-03-29 粒状聚亚芳基硫醚及其制造方法
US14/378,854 US9422400B2 (en) 2012-03-30 2013-03-29 Granular polyarylene sulfide and process for manufacturing the same
JP2014508086A JP6062924B2 (ja) 2012-03-30 2013-03-29 粒状ポリアリーレンスルフィド及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012083010 2012-03-30
JP2012-083010 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147141A1 true WO2013147141A1 (ja) 2013-10-03

Family

ID=49260383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059497 WO2013147141A1 (ja) 2012-03-30 2013-03-29 粒状ポリアリーレンスルフィド及びその製造方法

Country Status (6)

Country Link
US (1) US9422400B2 (ja)
EP (1) EP2840105A4 (ja)
JP (1) JP6062924B2 (ja)
KR (1) KR101660614B1 (ja)
CN (1) CN104144970B (ja)
WO (1) WO2013147141A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050053A1 (ja) * 2013-10-01 2015-04-09 株式会社クレハ 分岐型ポリアリーレンスルフィド樹脂及びその製造方法、並びにその高分子改質剤としての使用
WO2015147090A1 (ja) * 2014-03-25 2015-10-01 株式会社クレハ 熱処理微粉ポリアリーレンスルフィド、及び該熱処理微粉ポリアリーレンスルフィドを製造する製造方法
US9388283B2 (en) 2013-09-25 2016-07-12 Ticona Llc Method of polyarylene sulfide crystallization
US9403948B2 (en) 2013-09-25 2016-08-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
WO2016159234A1 (ja) * 2015-03-31 2016-10-06 株式会社クレハ 微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
US9587074B2 (en) 2013-09-25 2017-03-07 Ticona Llc Multi-stage process for forming polyarylene sulfides
KR20170027724A (ko) 2014-06-30 2017-03-10 도레이 카부시키가이샤 폴리아릴렌설파이드 및 그 제조 방법
US9604156B2 (en) 2013-09-25 2017-03-28 Ticona Llc Method and system for separation of a polymer from multiple compounds
US9617387B2 (en) 2013-09-25 2017-04-11 Ticona Llc Scrubbing process for polyarylene sulfide formation
JP2019507825A (ja) * 2016-12-30 2019-03-22 浙江新和成特種材料有限公司Zhejiang Nhu Special Materials Co., Ltd. 低塩素含有量のポリフェニレンスルフィド及びその製造方法、樹脂組成物並びに成形体
WO2020026918A1 (ja) * 2018-07-31 2020-02-06 東レ株式会社 ポリアリーレンスルフィドの製造方法、ポリアリーレンスルフィドプレポリマーおよびその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6626444B2 (ja) * 2013-08-27 2019-12-25 ティコナ・エルエルシー 射出成形用の耐熱性強化熱可塑性組成物
WO2016133738A1 (en) 2015-02-19 2016-08-25 Ticona Llc Method for forming a low viscosity polyarylene sulfide
WO2016133739A1 (en) 2015-02-19 2016-08-25 Ticona Llc Method for forming a high molecular weight polyarylene sulfide
WO2016133740A1 (en) 2015-02-19 2016-08-25 Ticona Llc Method of polyarylene sulfide precipitation
WO2016153610A1 (en) 2015-03-25 2016-09-29 Ticona Llc Technique for forming a high melt viscosity polyarylene sulfide
JP7071235B2 (ja) * 2018-07-03 2022-05-18 ポリプラスチックス株式会社 多孔質成形体及びその製造方法
KR102251404B1 (ko) 2018-07-03 2021-05-12 주식회사 엘지화학 폴리아릴렌 설파이드의 제조 방법
KR102306017B1 (ko) * 2018-09-28 2021-09-27 주식회사 엘지화학 폴리아릴렌 설파이드의 제조 방법
KR102306016B1 (ko) * 2018-09-28 2021-09-27 주식회사 엘지화학 폴리아릴렌 설파이드의 제조 방법
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
JP2023508316A (ja) 2019-12-20 2023-03-02 ティコナ・エルエルシー ポリアリーレンスルフィドを形成するための方法
JP7262664B2 (ja) * 2020-03-24 2023-04-21 株式会社クレハ ポリアリーレンスルフィドの製造方法
US20230022693A1 (en) * 2021-07-06 2023-01-26 Northwestern University Polymer compositions for vertical channel organic electrochemical transistors and complementary logic circuits
WO2023038889A1 (en) 2021-09-08 2023-03-16 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge
JP2024535216A (ja) 2021-09-08 2024-09-30 ティコナ・エルエルシー ポリアリーレンスルフィド廃棄汚泥から有機溶媒を回収するための逆溶媒技術

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215323A (ja) 1983-05-17 1984-12-05 バイエル・アクチエンゲゼルシヤフト ポリアリ−レンサルフアイドの製造法
JPS62106929A (ja) * 1985-11-02 1987-05-18 Toyo Soda Mfg Co Ltd ポリフエニレンスルフイドおよびその製造方法
JP2002201274A (ja) * 2000-12-28 2002-07-19 Dic Ep Inc ポリアリーレンスルフィドの製造法
JP2010053335A (ja) * 2008-07-30 2010-03-11 Toray Ind Inc ポリアリーレンスルフィド樹脂の製造方法
JP2010126621A (ja) 2008-11-27 2010-06-10 Dic Corp ポリアリーレンスルフィドの製造方法
JP2011148870A (ja) * 2010-01-20 2011-08-04 Toray Ind Inc ポリアリーレンスルフィドの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820801A (en) * 1985-11-02 1989-04-11 Tosoh Corp. Polyphenylene sulfide containing covalently bonded chlorine in a reduced amount
JPH0816156B2 (ja) * 1988-12-22 1996-02-21 財団法人生産開発科学研究所 ポリアリーレンチオエーテルの製造法
US5280104A (en) * 1992-06-30 1994-01-18 Phillips Petroleum Company Process for the preparation of poly(arylene sulfide) with low metal contamination and polymer produced
US20020183481A1 (en) * 1999-12-30 2002-12-05 Vidaurri Fernando C. Method to decrease corrosiveness of reactants in poly(arylene sulfide) polymer production
EP1440996B1 (en) * 2001-09-27 2010-05-26 Kureha Corporation Process for production of polyarylene sulfide
US8680230B2 (en) * 2008-07-22 2014-03-25 Kureha Corporation Production process of poly(arylene sulfide) whose content of terminal halogen group has been reduced
KR101549205B1 (ko) * 2008-12-23 2015-09-02 에스케이케미칼 주식회사 폴리아릴렌 설파이드의 제조 방법
KR101554010B1 (ko) * 2008-12-31 2015-09-18 에스케이케미칼 주식회사 유리 요오드 저감 폴리아릴렌 설파이드의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215323A (ja) 1983-05-17 1984-12-05 バイエル・アクチエンゲゼルシヤフト ポリアリ−レンサルフアイドの製造法
JPS62106929A (ja) * 1985-11-02 1987-05-18 Toyo Soda Mfg Co Ltd ポリフエニレンスルフイドおよびその製造方法
JP2002201274A (ja) * 2000-12-28 2002-07-19 Dic Ep Inc ポリアリーレンスルフィドの製造法
JP2010053335A (ja) * 2008-07-30 2010-03-11 Toray Ind Inc ポリアリーレンスルフィド樹脂の製造方法
JP2010126621A (ja) 2008-11-27 2010-06-10 Dic Corp ポリアリーレンスルフィドの製造方法
JP2011148870A (ja) * 2010-01-20 2011-08-04 Toray Ind Inc ポリアリーレンスルフィドの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2840105A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617387B2 (en) 2013-09-25 2017-04-11 Ticona Llc Scrubbing process for polyarylene sulfide formation
US9388283B2 (en) 2013-09-25 2016-07-12 Ticona Llc Method of polyarylene sulfide crystallization
US9403948B2 (en) 2013-09-25 2016-08-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9604156B2 (en) 2013-09-25 2017-03-28 Ticona Llc Method and system for separation of a polymer from multiple compounds
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
US9587074B2 (en) 2013-09-25 2017-03-07 Ticona Llc Multi-stage process for forming polyarylene sulfides
US9938379B2 (en) 2013-09-25 2018-04-10 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9868824B2 (en) 2013-09-25 2018-01-16 Ticona Llc Method of polyarylene sulfide crystallization
WO2015050053A1 (ja) * 2013-10-01 2015-04-09 株式会社クレハ 分岐型ポリアリーレンスルフィド樹脂及びその製造方法、並びにその高分子改質剤としての使用
US10081710B2 (en) 2013-10-01 2018-09-25 Kureha Corporation Branched polyarylene sulfide resin, method for manufacturing same and use as polymer modifier
JPWO2015050053A1 (ja) * 2013-10-01 2017-03-09 株式会社クレハ 分岐型ポリアリーレンスルフィド樹脂及びその製造方法、並びにその高分子改質剤としての使用
WO2015147090A1 (ja) * 2014-03-25 2015-10-01 株式会社クレハ 熱処理微粉ポリアリーレンスルフィド、及び該熱処理微粉ポリアリーレンスルフィドを製造する製造方法
JPWO2015147090A1 (ja) * 2014-03-25 2017-04-13 株式会社クレハ 熱処理微粉ポリアリーレンスルフィド、及び該熱処理微粉ポリアリーレンスルフィドを製造する製造方法
EP3162839A4 (en) * 2014-06-30 2018-01-10 Toray Industries, Inc. Polyarylene sulfide and method for manufacturing same
KR20170027724A (ko) 2014-06-30 2017-03-10 도레이 카부시키가이샤 폴리아릴렌설파이드 및 그 제조 방법
JPWO2016159234A1 (ja) * 2015-03-31 2017-10-19 株式会社クレハ 微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド
WO2016159234A1 (ja) * 2015-03-31 2016-10-06 株式会社クレハ 微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド
US10280264B2 (en) 2015-03-31 2019-05-07 Kureha Corporation Method for manufacturing fine polyarylene sulfide powder, and fine polyarylene sulfide powder
JP2019507825A (ja) * 2016-12-30 2019-03-22 浙江新和成特種材料有限公司Zhejiang Nhu Special Materials Co., Ltd. 低塩素含有量のポリフェニレンスルフィド及びその製造方法、樹脂組成物並びに成形体
WO2020026918A1 (ja) * 2018-07-31 2020-02-06 東レ株式会社 ポリアリーレンスルフィドの製造方法、ポリアリーレンスルフィドプレポリマーおよびその製造方法

Also Published As

Publication number Publication date
US9422400B2 (en) 2016-08-23
EP2840105A1 (en) 2015-02-25
JP6062924B2 (ja) 2017-01-18
JPWO2013147141A1 (ja) 2015-12-14
CN104144970B (zh) 2016-10-12
EP2840105A4 (en) 2015-12-02
KR101660614B1 (ko) 2016-09-27
US20150065664A1 (en) 2015-03-05
KR20140109476A (ko) 2014-09-15
CN104144970A (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
JP6062924B2 (ja) 粒状ポリアリーレンスルフィド及びその製造方法
JP5221877B2 (ja) ポリアリーレンスルフィドの製造方法
JP5623277B2 (ja) 粒状ポリアリーレンスルフィドの製造方法
JP5731196B2 (ja) 末端ハロゲン基含量が低減されたポリアリーレンスルフィドの製造方法
JP6517337B2 (ja) 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド
US9587074B2 (en) Multi-stage process for forming polyarylene sulfides
KR101827231B1 (ko) 폴리아릴렌 설파이드의 제조 방법 및 폴리아릴렌 설파이드
JP5189293B2 (ja) 分岐型ポリアリーレンスルフィド樹脂及びその製造方法、並びにその高分子改質剤としての使用
CN108602954B (zh) 粒状聚亚芳基硫醚的制造方法、粒状聚亚芳基硫醚的平均粒径增大方法、粒状聚亚芳基硫醚的粒子强度提高方法以及粒状聚亚芳基硫醚
EP3524632B1 (en) Polyarylene sulfide preparation method
JP2016536443A (ja) ポリアリーレンスルフィド結晶化方法
JP6306601B2 (ja) 分岐型ポリアリーレンスルフィド樹脂及びその製造方法、並びにその高分子改質剤としての使用
JP7357695B2 (ja) ポリアリーレンスルフィドの製造方法
JP6889271B2 (ja) ポリアリーレンスルフィドの製造方法
JP2024021683A (ja) ポリアリーレンスルフィド樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508086

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147021810

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013768784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013768784

Country of ref document: EP

Ref document number: 14378854

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE