WO2016159234A1 - 微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド - Google Patents

微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド Download PDF

Info

Publication number
WO2016159234A1
WO2016159234A1 PCT/JP2016/060656 JP2016060656W WO2016159234A1 WO 2016159234 A1 WO2016159234 A1 WO 2016159234A1 JP 2016060656 W JP2016060656 W JP 2016060656W WO 2016159234 A1 WO2016159234 A1 WO 2016159234A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
solid
pas
liquid
separation
Prior art date
Application number
PCT/JP2016/060656
Other languages
English (en)
French (fr)
Inventor
明寛 昆野
浩幸 佐藤
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to KR1020177021868A priority Critical patent/KR101984418B1/ko
Priority to JP2017510187A priority patent/JP6419311B2/ja
Priority to US15/559,188 priority patent/US10280264B2/en
Priority to CN201680009361.XA priority patent/CN107207743B/zh
Publication of WO2016159234A1 publication Critical patent/WO2016159234A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0209Polyarylenethioethers derived from monomers containing one aromatic ring
    • C08G75/0213Polyarylenethioethers derived from monomers containing one aromatic ring containing elements other than carbon, hydrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0259Preparatory processes metal hydrogensulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification

Definitions

  • the present invention relates to a production method for producing finely divided polyarylene sulfide from a dispersion containing granular polyarylene sulfide and a finely divided polyarylene sulfide.
  • PAS Polyarylene sulfide
  • PPS polyphenylene sulfide
  • PPS polyphenylene sulfide
  • PAS can be molded into various molded products, films, sheets, fibers, etc. by general melt processing methods such as extrusion molding, injection molding, compression molding, etc., so electrical equipment, electronic equipment, automotive equipment, packaging materials, etc. Widely used in a wide range of technical fields.
  • pDCB paradichlorobenzene
  • NMP N-methyl-2-pyrrolidone
  • DHA dihaloaromatic compound
  • S sulfur compound
  • a method is well known in which PAS is separated from a PAS-containing reaction solution obtained by a polymerization reaction under reduced conditions, and recovered through washing and drying.
  • This polymerization reaction is a desalting polycondensation reaction.
  • by-product alkali metal salts such as alkali metal halides (for example, NaCl)
  • low polymer such as dimers and trimers
  • Impurities volatile substances, high-boiling substances, etc.
  • these organic amide solvents, by-product alkali metal salts, low polymerization products, impurities, and the like are present between the PAS particles after the polymerization reaction, in the particles, or in the reaction solution.
  • the PAS separated from the PAS-containing reaction solution is thoroughly washed to remove the organic amide solvent, by-product alkali metal salt, low polymer, impurities, etc., and then recovered to obtain the quality of PAS as a product. To maintain and improve
  • the separated liquid obtained by separating PAS from the PAS-containing reaction liquid by solid-liquid separation contains fine particulate PAS (hereinafter sometimes abbreviated as “raw material fine powder PAS”).
  • raw material fine powder PAS is inferior in quality (molecular weight, color tone, odor, gas generation, etc.) compared to the PAS of the product, it is discarded without being recovered as a product.
  • raw material fine powder PAS is recovered from the separated liquid by solid-liquid separation such as by filtration, and then, if necessary, The organic amide solvent, by-product alkali metal salt, low polymer, impurities, etc. that are present between and within the fine powder PAS are removed by washing, and after confirming conformity with environmental standards (for example, landfill or It is currently incinerated.
  • the raw material fine powder PAS was commercialized, so it was not industrially useful and there were few problems even if discarded (hereinafter, the raw material fine powder PAS was recovered and commercialized. In some cases, the amount is abbreviated as “product rate”).
  • Patent Document 1 discloses a PAS oligomer obtained by performing polymerization at a reaction temperature of 260 ° C. for 3.0 hours, separating a granular polymer with a 60 mesh screen, and removing NaCl from the separated liquid. It has been proposed that water is added to a mixed solution containing water and a solvent to aggregate the oligomers, and then the PAS oligomers are separated by centrifugation.
  • an oligomer having a particle size of 250 ⁇ m or less is selected. That is, in Patent Document 1, a PAS polymer having a particle diameter of 250 ⁇ m or more is produced from a polymerization method, and a PAS oligomer having a particle diameter of 250 ⁇ m or less is separated.
  • Patent Document 2 proposes to perform polymerization using a phase separation agent to separate the PAS oligomer from the slurry containing granular PAS, PAS oligomer, organic polar solvent, water, and alkali metal halide salt.
  • a phase separation agent to separate the PAS oligomer from the slurry containing granular PAS, PAS oligomer, organic polar solvent, water, and alkali metal halide salt.
  • the PAS oligomer is further separated by a glass filter having an opening of 10 to 16 ⁇ m.
  • the obtained PAS oligomer is a PAS oligomer having a particle size distribution having a lower limit of 10 to 16 ⁇ m and an upper limit of 175 ⁇ m.
  • Patent Document 3 proposes a method for producing a PAS resin in which the PAS oligomer obtained by the method of Patent Document 2 is thermally oxidized at 150 to 260 ° C. in a gas-phase oxidizing atmosphere in order to reduce volatile components. Yes.
  • the present inventors have recovered raw materials recovered as solids by solid-liquid separation such as filtration from a separated liquid produced by solid-liquid separation of a PAS-containing reaction liquid. Fine powder PAS was intended to be commercialized.
  • the inventors of the present invention are that the main factor that inhibits the recovery of the raw fine powder PAS as a product is that (i) the ratio of the low polymer that is easily thermally decomposed is higher than that of the granular PAS of the product. (Iii) a fine particulate matter (hereinafter sometimes abbreviated as “fine powder”), and (iii) a heat treatment performed for the purpose of reforming such as volatile content reduction. I thought it was not working as expected.
  • the PAS polymer is known to have different thermal stability depending on the molecular weight, and among them, the lower polymer tends to be thermally decomposed more easily than the higher molecular weight one, There is a problem that the raw fine powder PAS contains many such low polymers.
  • the low polymer contained in the raw material fine powder PAS is not easily removed by washing because it forms a part of the fine powder that is a fine particulate matter, and because it is fine powder.
  • organic amide solvents, by-product alkali metal salts, impurities (volatile substances, high-boiling substances), etc. remain between the fine powders and in the fine powders. In commercialization, the impact on quality is expected to increase.
  • the present inventors in the production of fine powder PAS, solid-liquid separation such as filtration from a separated liquid obtained by separating a granular PAS-containing dispersion into granular PAS and separated liquid.
  • solid-liquid separation such as filtration from a separated liquid obtained by separating a granular PAS-containing dispersion into granular PAS and separated liquid.
  • the object of the present invention is to maintain the wettability of the fine powder PAS in the solid powder containing fine powder PAS after the solid-liquid separation from the separated liquid obtained by separating the granular PAS into the granular PAS and the separated liquid. It is to provide a method for producing finely divided PAS with reduced impurities such as alkali metal salts and / or PAS oligomers, and finely divided PAS.
  • a method for producing a finely divided polyarylene sulfide comprising the following steps: (A) a separation step of separating the granular polyarylene sulfide and the separated liquid from the dispersion containing the granular polyarylene sulfide by solid-liquid separation using at least one screen having an opening diameter of 75 to 180 ⁇ m; (B) a solid-liquid separation step for solid-liquid separation of the separated liquid to obtain a finely divided polyarylene sulfide-containing solid; (C) a heating step of heating the fine polyarylene sulfide-containing solid to reduce the amount of organic solvent to obtain a wet cake; (D) a washing step of washing the wet cake with an aqueous solvent; Including A method is provided in which the moisture content of the wet cake after the heating step is 30% by weight or more.
  • a method for producing finely divided polyarylene sulfide comprising the following steps: (A) a separation step of separating the granular polyarylene sulfide and the separated liquid from the dispersion containing the granular polyarylene sulfide by solid-liquid separation using at least one screen having an opening diameter of 75 to 180 ⁇ m; (B) a solid-liquid separation step for solid-liquid separation of the separated liquid to obtain a finely divided polyarylene sulfide-containing solid; (C) a heating step of heating the fine polyarylene sulfide-containing solid to reduce the amount of organic solvent to obtain a wet cake; (D) a washing step of washing the wet cake with an aqueous solvent; Including There is provided a method further comprising a water addition step of adding water to the separation liquid after the separation step and before the heating step.
  • a method for producing finely divided polyarylene sulfide comprising the following steps: (A) a separation step of separating the granular polyarylene sulfide and the separated liquid from the dispersion containing the granular polyarylene sulfide by solid-liquid separation using at least one screen having an opening diameter of 75 to 180 ⁇ m; (B) a solid-liquid separation step for solid-liquid separation of the separated liquid to obtain a finely divided polyarylene sulfide-containing solid; (C) a heating step of heating the fine polyarylene sulfide-containing solid to reduce the amount of organic solvent to obtain a wet cake; (D) a washing step of washing the wet cake with an aqueous solvent; Including Specific surface area retention ratio A2 / specific surface area A2 of the finely divided polyarylene sulfide contained in the wet cake after the heating step relative to the specific surface area A1 of the finely divided polyarylene sul
  • a method for producing finely divided polyarylene sulfide comprising the following steps: (A) a separation step of separating the granular polyarylene sulfide and the separated liquid from the dispersion containing the granular polyarylene sulfide by solid-liquid separation using at least one screen having an opening diameter of 75 to 180 ⁇ m; (B) a solid-liquid separation step for solid-liquid separation of the separated liquid to obtain a finely divided polyarylene sulfide-containing solid; (C) a heating step of heating the fine polyarylene sulfide-containing solid to reduce the amount of organic solvent to obtain a wet cake; (D) a washing step of washing the wet cake with an aqueous solvent; Including A method is provided in which the heating temperature in the heating step is 85 ° C. or lower on average.
  • finely divided polyarylene sulfide has an average particle size of 1 to 200 ⁇ m
  • a finely divided polyarylene sulfide in which the melt viscosity of the finely divided polyarylene sulfide is 1 Pa ⁇ s or more.
  • the present invention while maintaining the wettability of the fine powder PAS in the fine powder PAS-containing solid after the solid-liquid separation from the separated liquid obtained by separating the granular PAS into the granular PAS and the separated liquid.
  • the method for producing a finely divided polyarylene sulfide according to the present invention includes the following steps: (A) a separation step of separating the granular polyarylene sulfide and the separated liquid from the dispersion containing the granular polyarylene sulfide by solid-liquid separation using at least one screen having an opening diameter of 75 to 180 ⁇ m; (B) a solid-liquid separation step for solid-liquid separation of the separated liquid to obtain a finely divided polyarylene sulfide-containing solid; (C) a heating step of heating the fine polyarylene sulfide-containing solid to reduce the amount of organic solvent to obtain a wet cake; (D) a washing step of washing the wet cake with an aqueous solvent; Including The moisture content of the wet cake after the heating step is 30% by weight or more.
  • the method for producing a finely divided polyarylene sulfide according to the present invention includes the following steps: (A) a separation step of separating the granular polyarylene sulfide and the separated liquid from the dispersion containing the granular polyarylene sulfide by solid-liquid separation using at least one screen having an opening diameter of 75 to 180 ⁇ m; (B) a solid-liquid separation step for solid-liquid separation of the separated liquid to obtain a finely divided polyarylene sulfide-containing solid; (C) a heating step of heating the fine polyarylene sulfide-containing solid to reduce the amount of organic solvent to obtain a wet cake; (D) a washing step of washing the wet cake with an aqueous solvent; Including The method further includes a water addition step of adding water to the separation liquid after the separation step and before the heating step.
  • the method for producing a finely divided polyarylene sulfide according to the present invention includes the following steps: (A) a separation step of separating the granular polyarylene sulfide and the separated liquid from the dispersion containing the granular polyarylene sulfide by solid-liquid separation using at least one screen having an opening diameter of 75 to 180 ⁇ m; (B) a solid-liquid separation step for solid-liquid separation of the separated liquid to obtain a finely divided polyarylene sulfide-containing solid; (C) a heating step of heating the fine polyarylene sulfide-containing solid to reduce the amount of organic solvent to obtain a wet cake; (D) a washing step of washing the wet cake with an aqueous solvent; Including Specific surface area retention ratio A2 / specific surface area A2 of the finely divided polyarylene sulfide contained in the wet cake after the heating step relative to the specific surface area A1 of the finely divided polyarylene sulf
  • the method for producing finely divided polyarylene sulfide according to the present invention includes the following steps: (A) a separation step of separating the granular polyarylene sulfide and the separated liquid from the dispersion containing the granular polyarylene sulfide by solid-liquid separation using at least one screen having an opening diameter of 75 to 180 ⁇ m; (B) a solid-liquid separation step for solid-liquid separation of the separated liquid to obtain a finely divided polyarylene sulfide-containing solid; (C) a heating step of heating the fine polyarylene sulfide-containing solid to reduce the amount of organic solvent to obtain a wet cake; (D) a washing step of washing the wet cake with an aqueous solvent; Including The heating temperature in the heating step is 85 ° C. or lower on average.
  • the production method for producing the fine powder PAS according to the present invention is a production method that necessarily includes the separation step (a), the solid-liquid separation step (b), and the liquid removal step (c), and other steps.
  • a step of concentrating or diluting the reaction solution or the separation solution, a washing step, a drying step or the like may be additionally used, or the steps (a) to (c) described above, particularly (b) One or both of the steps (e) and (e) may be additionally used.
  • the dispersion containing the granular PAS is not particularly limited, and may be any dispersion as long as it contains the granular PAS.
  • the organic amide solvent from the group consisting of alkali metal sulfide and alkali metal hydrosulfide Examples thereof include a reaction liquid containing granular PAS produced in a polymerization process in which at least one selected sulfur source and a dihaloaromatic compound are subjected to a polymerization reaction.
  • Sulfur source At least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides is used as the sulfur source.
  • alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and a mixture of two or more thereof.
  • alkali metal hydrosulfide include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and a mixture of two or more thereof.
  • the alkali metal sulfide any of an anhydride, a hydrate, and an aqueous solution may be used. Among these, sodium sulfide and lithium sulfide are preferable because they can be obtained industrially at low cost.
  • the alkali metal sulfide is preferably used as an aqueous mixture such as an aqueous solution (that is, a mixture with fluid water) from the viewpoint of processing operation, measurement, and the like.
  • the alkali metal hydrosulfide may be any of anhydride, hydrate, and aqueous solution. Among these, sodium hydrosulfide and lithium hydrosulfide are preferable because they can be obtained industrially at low cost.
  • the alkali metal hydrosulfide is preferably used as an aqueous solution or an aqueous mixture (that is, a mixture with fluid water) from the viewpoint of processing operation, measurement, and the like.
  • the alkali metal sulfide a small amount of alkali metal hydrosulfide may be contained.
  • the total molar amount of the alkali metal sulfide and the alkali metal hydrosulfide becomes a sulfur source to be used for the polymerization reaction in the polymerization step after the dehydration step to be arranged as necessary, that is, the “charged sulfur source”.
  • alkali metal hydrosulfide a small amount of alkali metal sulfide may be contained. In this case, the total molar amount of the alkali metal hydrosulfide and the alkali metal sulfide becomes the charged sulfur source.
  • the alkali metal sulfide and the alkali metal hydrosulfide are mixed and used, naturally, a mixture of both becomes a charged sulfur source.
  • an alkali metal hydroxide is used in combination.
  • the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and a mixture of two or more thereof.
  • sodium hydroxide and lithium hydroxide are preferable because they can be obtained industrially at low cost.
  • the alkali metal hydroxide is preferably used as an aqueous solution or an aqueous mixture.
  • the water to be dehydrated in the dehydration step is hydrated water, an aqueous medium of an aqueous solution, water produced as a by-product due to a reaction between an alkali metal hydrosulfide and an alkali metal hydroxide, or the like.
  • a dihaloaromatic compound is a dihalogenated aromatic compound having two halogen atoms directly bonded to an aromatic ring.
  • a halogen atom refers to each atom of fluorine, chlorine, bromine, and iodine. In the same dihaloaromatic compound, two halogen atoms may be the same or different. These dihaloaromatic compounds can be used alone or in combination of two or more.
  • dihaloaromatic compound examples include, for example, o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenyl sulfone. , Dihalodiphenyl sulfoxide, dihalodiphenyl ketone and the like.
  • p-dihalobenzene p-dihalobenzene, m-dihalobenzene, and a mixture of both are preferable, p-dihalobenzene is more preferable, and p-dichlorobenzene (pDCB) is particularly preferably used.
  • pDCB p-dichlorobenzene
  • Branching / crosslinking agent In order to introduce a branched or crosslinked structure into the produced PAS, a polyhalo compound (not necessarily an aromatic compound) having 3 or more halogen atoms bonded thereto, an active hydrogen-containing halogenated aromatic compound, halogen Aromatic nitro compounds can be used in combination.
  • the polyhalo compound as the branching / crosslinking agent is preferably trihalobenzene.
  • a monohalo compound can be used in combination in order to form a terminal with a specific structure in the produced PAS resin, or to adjust a polymerization reaction or a molecular weight.
  • the monohalo compound not only a monohaloaromatic compound but also a monohaloaliphatic compound can be used.
  • the branching / crosslinking agent is used in the range of 0.0001 to 0.01 mol, preferably 0.0002 to 0.008 mol, more preferably 0.0003 to 0.005 mol per mol of the charged sulfur source.
  • Organic amide solvent An organic amide solvent which is an aprotic polar organic solvent is used as a solvent for the dehydration reaction and polymerization reaction.
  • the organic amide solvent is preferably stable to alkali at high temperatures.
  • Specific examples of the organic amide solvent include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl- ⁇ -caprolactam; N-methyl-2-pyrrolidone, N-alkylpyrrolidone compounds or N-cycloalkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone; N, N-dialkylimidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone; tetramethylurea, etc. Tetraalkylurea compounds; hexaalkylphosphoric acid triamide compounds such as hexamethylphosphoric acid triamide. These organic amide solvents may
  • N-alkylpyrrolidone compounds N-cycloalkylpyrrolidone compounds, N-alkylcaprolactam compounds, and N, N-dialkylimidazolidinone compounds are preferable, and in particular, N-methyl-2-pyrrolidone ( NMP), N-methyl- ⁇ -caprolactam, and 1,3-dialkyl-2-imidazolidinone are preferably used, and NMP is particularly preferred.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl- ⁇ -caprolactam
  • 1,3-dialkyl-2-imidazolidinone 1,3-dialkyl-2-imidazolidinone
  • polymerization aids Various polymerization aids can be used as necessary to promote the polymerization reaction.
  • Specific examples of polymerization aids include water, organic carboxylic acid metal salts, organic sulfonic acid metal salts, alkali metal halides such as lithium halides, alkaline earth metal halides, and aromatic carboxylic acids that are generally known as polymerization aids for PAS. Examples include alkaline earth metal salts of acids, alkali metal phosphates, alcohols, paraffinic hydrocarbons, and mixtures of two or more thereof.
  • the organic carboxylic acid metal salt an alkali metal carboxylate is preferable.
  • alkali metal carboxylate examples include lithium acetate, sodium acetate, potassium acetate, sodium propionate, lithium valerate, lithium benzoate, sodium benzoate, sodium phenylacetate, potassium p-toluate, and two types thereof. The mixture of the above can be mentioned.
  • sodium acetate is particularly preferable because it is inexpensive and easily available.
  • the amount of the polymerization aid used varies depending on the type of the compound, but is usually 0.01 to 10 mol, preferably 0.1 to 2 mol, more preferably 0.2 to 1.8 mol per mol of the charged sulfur source. Mol, particularly preferably in the range of 0.3 to 1.7 mol.
  • the polymerization assistant is an organic carboxylic acid metal salt, an organic sulfonate, and an alkali metal halide
  • the upper limit of the amount used is preferably 1 mol or less, more preferably 1 mol with respect to 1 mol of the charged sulfur source. It is desirable that it is 0.8 mol or less.
  • Phase Separation Agent Various phase separation agents are used in order to accelerate the polymerization reaction and obtain a high degree of polymerization PAS in a short time, or to cause phase separation and obtain granular PAS.
  • a phase separation agent is a compound that dissolves in an organic amide solvent by itself or in the presence of a small amount of water and has an action of reducing the solubility of PAS in an organic amide solvent.
  • the phase separation agent itself is a compound that is not a solvent for PAS.
  • phase separation agent a compound known to function as a phase separation agent in the technical field of PAS can be used.
  • the phase separation agent includes the compound used as the above-mentioned polymerization aid.
  • the phase separation agent is a step of performing a polymerization reaction in a phase separation state, that is, as a phase separation agent in the phase separation polymerization step. It means a compound used in an amount ratio that can function, or in an amount ratio sufficient to cause phase separation in the presence of the polymer after the end of polymerization.
  • phase separation agents include water, organic carboxylic acid metal salts, organic sulfonic acid metal salts, alkali metal halides such as lithium halides, alkaline earth metal halides, alkaline earth metal salts of aromatic carboxylic acids, phosphorus Examples include acid alkali metal salts, alcohols, and paraffinic hydrocarbons.
  • organic carboxylic acid metal salts include alkali metal carboxylic acids such as lithium acetate, sodium acetate, potassium acetate, sodium propionate, lithium valerate, lithium benzoate, sodium benzoate, sodium phenylacetate, and potassium p-toluate. Salts are preferred.
  • phase separation agents can be used alone or in combination of two or more. Among these phase separation agents, water that is inexpensive and easy to post-process, or a combination of water and an organic carboxylic acid metal salt such as an alkali metal carboxylate is particularly preferable.
  • phase separation agent other than water can be used in combination as a polymerization aid from the viewpoint of efficiently performing the phase separation polymerization.
  • the total amount may be an amount that can cause phase separation.
  • the phase separation agent may coexist at least partially from the time when the polymerization reaction component is charged, but the phase separation agent may be added during the polymerization reaction or to form phase separation after the polymerization reaction. It is desirable to adjust to a sufficient amount.
  • Polymerization Step PAS is produced by subjecting at least one sulfur source selected from the group consisting of an alkali metal sulfide and an alkali metal hydrosulfide to a polymerization reaction with a dihaloaromatic compound in an organic amide solvent to produce a granular PAS. Is done.
  • the polymerization method for producing granular PAS may be any polymerization method as long as the present invention is not impaired.
  • polymerization methods for producing granular PAS are broadly classified as follows: (i) the polymerization step includes a phase separation polymerization step, and after the phase separation polymerization, the method is gradually cooled; (ii) the phase separation agent is added after the polymerization reaction And (iii) a method using a polymerization aid such as lithium chloride, and (iv) a method of cooling the gas phase portion of the reaction vessel.
  • phase-separation polymerization a polymerization reaction step
  • phase-separation polymerization a polymerization reaction step
  • a phase separation state in which a polymer-rich phase and a polymer-rich phase are mixed in the polymerization reaction system in the presence of a phase separation agent by controlling polymerization conditions.
  • the granular PAS is produced by a polymerization method including a “step” in some cases, a granular PAS having a high degree of polymerization can be obtained, so that the opening diameter of the screen of the sieve can be reduced. Therefore, it is an advantageous polymerization method for increasing the recovery rate of granular PAS of products having a high degree of polymerization.
  • the polymerization step in this case is performed by polymerizing at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides with a dihaloaromatic compound in an organic amide solvent to form granular PAS.
  • This is a polymerization step including a polymerization reaction in a phase-separated state where a product polymer rich phase and a product polymer dilute phase coexist.
  • the polymerization process in this case will be described in detail.
  • the polymerization step can be carried out through the following preparation steps.
  • the charging step the mixture remaining in the system and the dihaloaromatic compound are mixed in a dehydration step that is arranged as desired, and an alkali metal hydroxide and water are added as necessary to prepare an organic amide solvent, a sulfur source ( A charged mixture containing a charged sulfur source), an alkali metal hydroxide, moisture, and a dihaloaromatic compound is prepared.
  • a sulfur source A charged mixture containing a charged sulfur source
  • an alkali metal hydroxide moisture
  • a dihaloaromatic compound is prepared.
  • an organic amide solvent may be added in the preparation step.
  • a sulfur source may be added in the charging step.
  • adjustment of each component amount in the preparation step needs to be performed in consideration of the amount of each component in the mixture obtained in the dehydration step. .
  • the amount of the dihaloaromatic compound used is usually 0.90 to 1.50 mol, preferably 0.92 to 1.10 mol, more preferably 0.95 to 1.05 mol with respect to 1 mol of the charged sulfur source. is there. If the charged molar ratio of the dihaloaromatic compound to the sulfur source becomes too large, it becomes difficult to produce a high molecular weight polymer. On the other hand, if the charged molar ratio of the dihaloaromatic compound to the sulfur source becomes too small, a decomposition reaction tends to occur, and it becomes difficult to carry out a stable polymerization reaction.
  • alkali metal hydrosulfide when used as a sulfur source, when hydrogen sulfide is volatilized in the dehydration step, an alkali metal hydroxide is generated by an equilibrium reaction and remains in the system. Therefore, it is necessary to accurately grasp the volatilization amount and determine the molar ratio of the alkali metal hydroxide to the sulfur source in the preparation process.
  • the total number of moles of alkali metal hydroxide produced during dehydration, the number of moles of alkali metal hydroxide added before dehydration, and the number of moles of alkali metal hydroxide added after dehydration is determined after the dehydration step.
  • the sulfur source in the preparation process is referred to as “prepared sulfur source”.
  • prepared sulfur source the sulfur source in the preparation process.
  • the reason is that the amount of the sulfur source put into the reaction tank before the dehydration step varies in the dehydration step.
  • the charged sulfur source is consumed by the reaction with the dihaloaromatic compound in the polymerization step, but the molar amount of the charged sulfur source is based on the molar amount in the charged step.
  • the organic amide solvent is likely to be altered, and abnormal reactions and decomposition reactions during polymerization are likely to occur. In addition, the yield and quality of the produced PAS are often lowered. It is preferable to carry out the polymerization reaction with a small excess of alkali metal hydroxide in order to stably carry out the polymerization reaction and obtain a high-quality PAS.
  • the amount of the organic amide solvent is usually 0.1 to 10 kg, preferably 0.13 to 5 kg, more preferably 0.15 to 2 kg per mol of the charged sulfur source.
  • Polymerization step In the polymerization step, the charge mixture prepared in the charge step is heated to a temperature of usually 170 to 290 ° C, preferably 180 to 280 ° C, more preferably 190 to 275 ° C to start a polymerization reaction, Allow polymerization to proceed.
  • a heating method a method of maintaining a constant temperature, a stepwise or continuous temperature raising method, or a combination of both methods is used.
  • the polymerization reaction time is generally in the range of 10 minutes to 72 hours, preferably 30 minutes to 48 hours.
  • the polymerization reaction is preferably performed in a two-stage process including a pre-stage polymerization process and a post-stage polymerization process. In this case, the polymerization time is the total time of the pre-stage polymerization process and the post-stage polymerization process.
  • the polymerization process includes a polymerization step in which a polymerization reaction is performed in a phase-separated state in which a produced polymer rich phase and a produced polymer dilute phase coexist.
  • a phase separation agent water described above, a compound known to function as a phase separation agent, or the like is preferably used.
  • At least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and a dihaloaromatic compound are polymerized in an organic amide solvent at a temperature of 170 to 270 ° C.
  • a phase separation agent is added to the polymerization reaction mixture so that the phase separation agent is present in the polymerization reaction system, and then the polymerization reaction is performed.
  • the temperature of the mixture is increased, and the polymerization reaction can be continued at a temperature of 245 to 290 ° C. in a phase separation state in which the produced polymer rich phase and the produced polymer dilute phase are mixed in the polymerization reaction system in the presence of the phase separation agent. ,preferable.
  • At least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides is polymerized with a dihaloaromatic compound, and the dihaloaromatic compound is reacted.
  • a pre-polymerization step for producing a polymer having a compound conversion rate of 30% or more, preferably 80 to 99%; and in the presence of a phase separation agent, a mixed polymer phase and a diluted polymer phase are mixed in the polymerization reaction system. It is preferable to carry out the polymerization reaction by at least two stages of polymerization processes including a subsequent polymerization process in which the polymerization reaction is continued in a phase separated state.
  • At least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and a dihaloaromatic compound are added per mole of the charged sulfur source.
  • a pre-stage polymerization step in which a polymerization reaction is carried out at a temperature of 170 to 270 ° C.
  • polymerization is performed by heating to a temperature of 245 to 290 ° C.
  • a post-stage polymerization step including a post-polymerization step in which the polymerization reaction is continued in a phase-separated state where the produced polymer rich phase and the produced polymer dilute phase coexist in the reaction system. It is more preferable to perform the focus reaction.
  • the pre-stage polymerization process is a stage where the conversion rate of the dihaloaromatic compound reaches 80 to 99%, preferably 85 to 98%, more preferably 90 to 97% after the start of the polymerization reaction.
  • the polymerization temperature is too high, side reactions and decomposition reactions tend to occur.
  • the conversion rate of the dihaloaromatic compound is a value calculated by the following formula.
  • DHA dihaloaromatic compound
  • Conversion [[DHA charge (mol) ⁇ DHA remaining amount ( Mol)] / [DHA charge (mol) -DHA excess (mol)]] ⁇ 100 To calculate the conversion.
  • Conversion [[DHA charge (mol) ⁇ DHA remaining amount (mol)] / [DHA charge (mol)]] ⁇ 100 To calculate the conversion.
  • Conversion [[DHA charge (mol) ⁇ DHA remaining amount (mol)] / [DHA charge (mol)]] ⁇ 100 To calculate the conversion.
  • the amount of coexisting water in the reaction system in the pre-stage polymerization step is usually 0.01 to 2.0 mol, preferably 0.05 to 1.8 mol, more preferably 0.5 to 1.6 mol, per mol of the charged sulfur source. Particularly preferred is the range of 0.8 to 1.5 mol.
  • the amount of coexisting water in the pre-stage polymerization step may be small, but if it is too small, an undesirable reaction such as decomposition of the produced PAS may easily occur. If the amount of coexisting water exceeds 2.0 mol, the polymerization rate is remarkably reduced, and the organic amide solvent and the produced PAS are likely to be decomposed.
  • the polymerization is carried out within a temperature range of 170 to 270 ° C., preferably 180 to 265 ° C. If the polymerization temperature is too low, the polymerization rate becomes too slow. Conversely, if the polymerization temperature is higher than 270 ° C., the produced PAS and the organic amide solvent are liable to decompose, and the degree of polymerization of the produced PAS becomes extremely low.
  • prepolymer In the former polymerization step, it is desirable to produce a polymer (sometimes referred to as “prepolymer”) having a melt viscosity of usually 0.5 to 30 Pa ⁇ s measured at a temperature of 310 ° C. and a shear rate of 1,216 sec ⁇ 1 . .
  • the post-polymerization step is not a simple fractionation / granulation step of the polymer (prepolymer) produced in the pre-polymerization step, but is for causing an increase in the degree of polymerization of the polymer.
  • phase separation agent polymerization aid
  • the subsequent polymerization step it is particularly preferable to use water as the phase separation agent, and more than 2.0 mol, more preferably less than 10 mol, more preferably more than 2.0 mol, more than 9 mol relative to 1 mol of the charged sulfur source It is preferable to adjust the amount of water in the polymerization reaction system so that 2.1 to 8 mol, particularly preferably 2.2 to 7 mol of water is present.
  • the degree of polymerization of the produced PAS may decrease.
  • water and another phase separation agent other than water can be used in combination.
  • the amount of water in the polymerization reaction system is 0.1 to 10 mol, preferably 0.3 to 10 mol, more preferably 0.4 to 9 mol, particularly preferably 0. It is preferable to adjust the amount within the range of 5 to 8 mol, and to make the phase separation agent other than water exist within the range of 0.01 to 3 mol per mol of the charged sulfur source.
  • phase separation agents that are particularly preferred to be used in combination with organic carboxylic acid metal salts, especially alkali metal carboxylates, in which case water is added in an amount of 0.5 to 1 mol per mol of the charged sulfur source. It is used within a range of 10 mol, preferably 0.6 to 7 mol, particularly preferably 0.8 to 5 mol, and alkali metal carboxylate is used in an amount of 0.001 to 0.7 mol, preferably 0.02 to It may be used within a range of 0.6 mol, particularly preferably 0.05 to 0.5 mol.
  • the polymerization temperature in the subsequent polymerization step is in the range of 245 to 290 ° C. If the polymerization temperature is less than 245 ° C., it is difficult to obtain a granular PAS with a high degree of polymerization, and if it exceeds 290 ° C., the granular PAS and organic amide solvent There is a risk of disassembly. In particular, a temperature range of 250 to 270 ° C. is preferable because granular PAS having a high degree of polymerization can be easily obtained.
  • water may be added late in the polymerization reaction or at the end to increase the water content. It can.
  • the polymerization reaction system may be a batch system, a continuous system, or a combination of both systems. In the batch polymerization, for the purpose of shortening the polymerization cycle time, a system using two or more reaction vessels can be used as desired.
  • a dehydration step may be arranged as desired before the preparation step in carrying out the polymerization step.
  • the dehydration step is preferably carried out by a method of heating and reacting a mixture containing an organic amide solvent and an alkali metal sulfide in an inert gas atmosphere and discharging water out of the system by distillation.
  • an alkali metal hydrosulfide is used as the sulfur source
  • the reaction is carried out by heating and reacting a mixture containing the alkali metal hydrosulfide and the alkali metal hydroxide, and discharging water out of the system by distillation.
  • the dehydration step water consisting of hydrated water (crystal water), an aqueous medium, by-product water and the like is dehydrated until it falls within the required amount.
  • water and the organic amide solvent are distilled as a vapor by heating. Therefore, the distillate contains water and an organic amide solvent.
  • a part of the distillate may be circulated in the system in order to suppress the discharge of the organic amide solvent out of the system.
  • at least one of the distillates containing water is used. The part is discharged out of the system.
  • a small amount of organic amide solvent is discharged out of the system together with water.
  • hydrogen sulfide is volatilized due to the sulfur source. As at least part of the distillate containing water is discharged out of the system, the volatilized hydrogen sulfide is also discharged out of the system.
  • the amount of coexisting water in the polymerization reaction system is usually 0.01 to 2.0 mol, preferably 0.05 to 1.8 mol, more preferably 0.5 to 0.1 mol with respect to 1 mol of the charged sulfur source. Dehydrate to 1.6 moles.
  • the sulfur source after the dehydration step and before the start of the polymerization step is referred to as “prepared sulfur source”.
  • water may be added to the desired amount of water before the polymerization step.
  • an alkali metal hydrosulfide When an alkali metal hydrosulfide is used as the sulfur source, 0.9 to 1.1 mol, preferably 0.91 per mol of the organic amide solvent, the alkali metal hydrosulfide, and the alkali metal hydrosulfide in the dehydration step.
  • the mixture containing ⁇ 1.08 mol, more preferably 0.92 to 1.07 mol, particularly preferably 0.93 to 1.06 mol of alkali metal hydroxide is heated to react, and the mixture is reacted. It is preferable that at least a part of the distillate containing water is discharged out of the system.
  • the alkali metal hydrosulfide contains a small amount of alkali metal sulfide, and the amount of the sulfur source is the total amount of the alkali metal hydrosulfide and the alkali metal sulfide. Further, even if a small amount of alkali metal sulfide is mixed, in the present invention, the molar ratio with the alkali metal hydroxide is calculated based on the content (analytical value) of the alkali metal hydrosulfide. Adjust the ratio.
  • each raw material is generally charged into the reaction vessel in a temperature range from room temperature (5-35 ° C.) to 300 ° C., preferably from room temperature to 200 ° C.
  • the order in which the raw materials are charged can be arbitrarily set, and further, the respective raw materials may be additionally charged during the dehydration operation.
  • An organic amide solvent is used as a solvent used in the dehydration step. This solvent is preferably the same as the organic amide solvent used in the polymerization step, and NMP is particularly preferred.
  • the amount of the organic amide solvent used is usually about 0.1 to 10 kg per mole of sulfur source charged into the reaction tank.
  • the mixture after the raw materials are charged into the reaction vessel is usually heated at a temperature of 300 ° C. or lower, preferably 100 to 250 ° C., usually for 15 minutes to 24 hours, preferably 30 minutes to 10 hours. Done.
  • a heating method there are a method for maintaining a constant temperature, a stepwise or continuous temperature raising method, or a method in which both are combined.
  • the dehydration step is performed by a batch method, a continuous method, or a combination method of both methods.
  • the apparatus for performing the dehydration step may be the same as or different from the reaction vessel (reaction can) used in the subsequent polymerization step.
  • the material of the device is preferably a corrosion resistant material such as titanium.
  • a method of adjusting to an amount sufficient to form phase separation after the completion of polymerization and slowly cooling is preferred.
  • the separation step the granular PAS and the separation liquid are separated from the dispersion containing the granular PAS by solid-liquid separation using at least one screen having an opening diameter of 75 to 180 ⁇ m.
  • the finely divided PAS of the present invention is obtained from a separated liquid obtained by solid-liquid separation in the above-described production method for producing finely divided PAS, while granular PAS is produced and recovered from the solid content after solid-liquid separation.
  • recovered as a product is illustrated.
  • the separation and recovery process of granular PAS can be performed, for example, by a separation process using sieving.
  • the reaction liquid containing the granular PAS produced in the polymerization step is used as the dispersion containing the granular PAS
  • the product slurry that is the reaction liquid containing the produced granular PAS after the polymerization reaction is used as the separation step.
  • the product slurry is diluted with water or the like as necessary, and then sieved to separate and recover the granular PAS from the reaction solution.
  • the opening diameter of the screen used for separation by sieving in the separation step is usually 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh), preferably 90 ⁇ m (170 mesh) to 150 ⁇ m (100 mesh). It is. At least one screen in this range is used, but it may be used in multiple stages. Usually, a screen having an opening diameter of 150 ⁇ m (100 mesh) is often used.
  • the recovery rate of the granular PAS recovered as a product is the PAS mass (theoretical amount) when it is assumed that all of the effective sulfur components in the charged sulfur source present in the reaction vessel after the dehydration step have been converted to PAS. Calculated as the total amount of PAS obtained.
  • This recovery rate depends on the sieve opening of the screen, but in the case of at least one screen having an opening of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh), it is usually 80% by mass or more. Is 83% by mass or more, and in some cases, 85% by mass or more. The upper limit of the recovery rate is about 99.5% by mass.
  • the average particle diameter of the obtained granular PAS depends on the mesh opening diameter of the screen, but in the case of at least one screen having an opening diameter of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh), Usually, it is 130 to 1,500 ⁇ m, preferably 150 to 1,500 ⁇ m, and more preferably 180 to 1,500 ⁇ m.
  • the weight average molecular weight of the obtained granular PAS depends on the screen diameter of the sieve screen, but in the case of at least one screen having an opening diameter of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh), the granular PAS
  • the weight average molecular weight is usually 30,000 or more, preferably 33,000 or more, more preferably 35,000 or more.
  • the upper limit of the weight average molecular weight is about 90,000.
  • the peak top molecular weight of the obtained granular PAS depends on the aperture diameter of the sieve screen, but in the case of at least one screen having an aperture diameter of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh), It is 35,000 or more, preferably 38,000 or more, more preferably 40,000 or more.
  • the upper limit of the peak top molecular weight is about 100,000.
  • the melt viscosity of the obtained granular PAS depends on the screen diameter of the sieve screen, but in the case of at least one screen having a mesh diameter of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh),
  • the melt viscosity is usually 5 Pa ⁇ s or higher, preferably 10 Pa ⁇ s or higher, more preferably 15 Pa ⁇ s or higher.
  • the upper limit of the melt viscosity is about 500 Pa ⁇ s.
  • As the melt viscosity a 1 mm ⁇ ⁇ 10 mmL flat die was used as the capillary, and the set temperature was 310 ° C. A polymer sample is introduced into the apparatus and held for 5 minutes before measuring the melt viscosity at a shear rate of 1,216 sec ⁇ 1 .
  • the separation liquid separated from the granular PAS produced in the above separation step includes raw material fine powder PAS, by-product alkali metal salts (such as NaCl), oligomers, volatile substances, high-boiling substances, etc. Containing impurities, organic amide solvents, phase separation agents (such as water), and the like.
  • the fine powder PAS of the present invention is separated from the dispersion containing the granular PAS into the granular PAS and the separated liquid by solid-liquid separation using at least one screen having a mesh size of 75 to 180 ⁇ m. It is a fine powder PAS produced from the resulting separation liquid.
  • the fine powder PAS of the present invention is subjected to a solid-liquid separation step for solid-liquid separation of the separated liquid to obtain a fine powder PAS-containing solid, and then the organic powder is heated to heat the fine powder PAS-containing solid. It is a fine powder PAS obtained by performing a heating process to obtain a wet cake, and then performing a washing process of washing the wet cake with an aqueous solvent, which is useful as a product.
  • a solid-liquid separation step is immediately performed from the separated solution, or a preliminary solid-liquid separation step described later is performed on the separated solution.
  • a solid-liquid separation process is performed later is included.
  • a solid-liquid separation process, a heating process, and a washing process are performed in the following processes.
  • the solid-liquid separation step is a step of solid-liquid separation of the separated liquid to obtain a fine powder PAS-containing solid.
  • the solid-liquid separation is performed by filtration, centrifugation, sieving, sedimentation, or the like.
  • filtration often uses a filtration device using a normal filter cloth for fine powder.
  • a suction filtration device is advantageous in view of the processing time and the like.
  • the solid-liquid separation step can be either a continuous type or a batch type. As a continuous type, there is a horizontal belt type filter. In the case of the batch type, when the raw material fine powder PAS concentration is low, it is preferable that the filtration apparatus is performed by a filter press in view of the processing amount.
  • the weight average molecular weight of the raw material fine powder PAS in the obtained fine powder PAS-containing solid is at least 1 in the range of the opening diameter of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh), although it depends on the opening diameter of the screen of the sieve. In the case of one screen, it is preferably 15,000 or more, more preferably 18,000 or more, and even more preferably 20,000 or more. The upper limit of the weight average molecular weight is about 75,000.
  • the peak top molecular weight of the raw fine powder PAS in the obtained fine powder PAS-containing solid depends on the opening diameter of the screen of the sieve, but the opening diameter is in the range of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh). In the case of at least one screen, it is preferably 30,000 or more, more preferably 33,000 or more, and even more preferably 35,000 or more. The upper limit of the peak top molecular weight is about 85,000.
  • the average particle size of the raw material fine powder PAS in the obtained fine powder PAS-containing solid is a value measured by a laser diffraction particle size distribution measuring device, preferably 1 to 80 ⁇ m, more preferably 2 to 80 ⁇ m, and still more preferably. 3 to 80 ⁇ m.
  • the melt viscosity of the raw fine powder PAS in the obtained fine powder PAS-containing solid is preferably 0.2 Pa ⁇ s or more, more preferably 0.6 Pa ⁇ s or more, and even more preferably 1.0 Pa ⁇ s or more.
  • the upper limit of the melt viscosity is about 50 Pa ⁇ s.
  • the method for measuring the melt viscosity is as described above.
  • (Ii) Heating step In the heating step, the fine powder PAS-containing solid is heated to reduce the amount of organic solvent to obtain a wet cake.
  • the concentration of the organic solvent contained in the waste liquid after the washing step can be effectively reduced.
  • the origin of the organic solvent is not particularly limited.
  • the organic solvent was included in an organic solvent added in an organic solvent washing step (described later) performed before the solid-liquid separation step or a dispersion containing granular PAS. An organic solvent etc. are mentioned.
  • the heat treatment can be either a continuous type or a batch type.
  • the heat treatment can be performed using a drier such as a normal tank drier, a tank rotation drier, an airflow drier, or a fluidized bed drier.
  • the fine powder PAS-containing solid may be in a stationary state, but when a large amount of fine powder PAS-containing solid is uniformly heated, it is desirable to cause the fine powder PAS-containing solid to flow by some method. Examples of the method of heating the finely powdered PAS-containing solid while flowing include a method of using a dryer equipped with a fluidized bed, a stirring blade, a paddle, or a stirring screw.
  • the heat treatment can be performed in air, a low oxygen concentration atmosphere, or an inert gas atmosphere such as nitrogen gas, carbon dioxide gas, or water vapor. Moreover, it can carry out in any state of normal pressure, pressure reduction, and pressurization.
  • the average heating temperature is preferably 85 ° C. or lower, more preferably 80 ° C. to 25 ° C., and even more preferably 75 ° C. to 30 ° C.
  • the heating temperature is an average temperature in the heating process.
  • the heating temperature is 85 ° C. or less, the finely powdered PAS-containing solid does not dry too much, and is included in the wet cake after the heating step with respect to the specific surface area of the finely powdered PAS-containing solid before the heating step. Since the specific surface area retention ratio of the specific surface area of the fine powder PAS is less likely to be low, the wettability of the fine powder PAS is difficult to decrease. Moreover, the amount of organic solvents can be effectively reduced as heating temperature is more than the said minimum. In 4th embodiment of this invention, the heating temperature in a heating process is 85 degrees C or less.
  • the heating time is preferably 0.3 to 10 hours, more preferably 0.5 to 6 hours, and even more preferably 1.0 to 4 hours.
  • the degree of reduced pressure is in the range of 70 to 101 KPa.
  • the moisture content of the wet cake after the heating step is preferably 30% by mass or more, more preferably 33 to 50% by mass, and even more preferably 35 to 45% by mass. If the moisture content of the wet cake after the heating step is 30% by mass or more, the wettability of the fine powder PAS is easily secured. Further, when the moisture content of the wet cake after the heating step is not more than the above upper limit, the handleability of the wet cake is likely to be improved.
  • the method for keeping the moisture content of the wet cake after the heating step in the above range is not particularly limited. For example, a method of providing a water addition step (described later) for adding water to the separation liquid after the separation step and before the heating step. Is mentioned. Water is preferably added in the form of a water-containing organic solvent (described later). In 1st embodiment of this invention, the moisture content of the wet cake after a heating process is 30 mass% or more.
  • the specific surface area retention ratio A2 / A1 of the specific surface area A2 of the fine powder PAS contained in the wet cake after the heating step with respect to the specific surface area A1 of the fine powder PAS contained in the solid material containing the fine powder PAS before the heating step is preferably 0.2. Or more (that is, 20% or more), more preferably 0.25 or more (that is, 25% or more), and even more preferably 0.3 or more (that is, 30% or more). If the specific surface area retention rate is 20% or more, the interior of the fine powder PAS contained in the wet cake after the heating step has a sufficient space communicating with the outside, and the aqueous solvent easily penetrates into the washing step.
  • the upper limit of the specific surface area retention is 1 (that is, 100%).
  • the method for maintaining the specific surface area retention within the above range is not particularly limited, and examples thereof include a method in which the heating temperature in the heating step is set lower than the glass transition point (Tg) of PAS.
  • Tg glass transition point
  • the specific surface area is measured by the BET method by nitrogen adsorption.
  • the specific surface area retention A2 / A1 is 20% or more.
  • Water addition step may be performed after the separation step and before the heating step.
  • the water addition step is a step of adding water to the separation liquid.
  • the organic solvent in the water-containing organic solvent include an organic solvent having a lower boiling point than water, preferably an organic solvent that dissolves an organic amide solvent in addition to a lower boiling point than water, and more preferably a ketone.
  • a solvent, and even more preferably acetone The water content in the water-containing organic solvent is not particularly limited, and examples thereof include 20 to 70% by mass, preferably 25 to 50% by mass.
  • the concentration of the organic solvent does not become too low, for example, it is easy to ensure the washing effect by the organic solvent, the removal effect of the organic amide solvent, etc., and even after the heating step, The wettability of fine powder PAS is difficult to decrease.
  • the water addition step is performed after the separation step and before the heating step.
  • washing step In the washing step, the wet cake is washed with an aqueous solvent.
  • the purpose of this washing step is to reduce the alkali metal concentration (for example, Na concentration) derived from the by-product alkali metal salt in the fine powder PAS and to reduce the PAS oligomer concentration in the fine powder PAS.
  • aqueous solvent for example, water; an aqueous solution of an acid such as acetic acid or hydrochloric acid, or an aqueous solution of a salt such as acetate is preferable.
  • water is used.
  • filtration may be performed. The same number of filtrations is performed according to the number of washings.
  • a drying step After the washing step, a drying step may be performed.
  • the drying process is a process of drying the wet cake washed in the washing process.
  • the drying process can be either a continuous process or a batch process.
  • the drying treatment can be performed using a heat treatment apparatus such as a normal hot air heat treatment machine, a heating device with a stirring blade, a fluidized bed heat treatment machine, a tank rotary heat treatment machine or the like.
  • the dryer for the heating process and the heat treatment apparatus for the drying process may be performed using the same apparatus.
  • the drying treatment may be in a stationary state, but when a large amount of wet cake is uniformly dried, it is desirable to cause the wet cake to flow by some method.
  • Examples of the method for drying the wet cake while flowing include a method using a heat treatment apparatus equipped with a fluidized bed, stirring blades, paddles, or a stirring screw.
  • the drying treatment can be performed in air or a low oxygen concentration atmosphere, or in an inert gas atmosphere such as nitrogen gas, carbon dioxide gas, or water vapor. Moreover, it can carry out in any state of normal pressure, pressure reduction, and pressurization.
  • the degree of vacuum is sufficient if it is in the range of 70 to 101 KPa.
  • the drying treatment can be performed up to a temperature lower than the melting point of the fine powder PAS, but is preferably performed at 100 to 260 ° C, more preferably 120 to 250 ° C, and further preferably 140 to 240 ° C.
  • the drying treatment time is usually 0.5 to 10 hours, preferably 1 to 8 hours, more preferably 2 to 5 hours. You may perform a drying process in a pressure-reduced state.
  • the preliminary solid-liquid separation step is a step in which the separated liquid is solid-liquid separated into the raw material fine powder PAS and the filtrate by a preliminary solid-liquid separation means such as filtration.
  • Organic solvent washing process In the organic solvent washing step, acetone or the like is added to the raw fine powder PAS, the organic amide solvent contained in the raw fine powder PAS is washed, and the washed raw fine powder PAS is obtained again by separation means such as filtration. It is.
  • the by-product alkali metal salt removing step is a step of washing the raw fine powder PAS after the preliminary solid-liquid separation step with water to dissolve and remove the by-product alkali metal salt.
  • the liquid containing the raw fine powder PAS that has undergone the preliminary solid-liquid separation step, organic solvent washing step, and by-product alkali metal salt removal step thus obtained is preferably 0.1 to 15% by mass of the raw fine powder PAS, more preferably The liquid is about 0.15 to 10% by mass, more preferably about 0.2 to 5% by mass.
  • the separation by filtration in the solid-liquid separation step is performed by centrifugal filtration or filtration using a filter press to obtain the raw material fine powder PAS.
  • the solid content is recovered in the form of a wet cake.
  • Fine powder PAS after the washing step is used as a product. Usually, the entire amount is recovered and used, but further separation by sieving may be performed, and fine powder PPS having a certain particle diameter or more may be used. For example, when granular PAS is sieved with a screen having an opening diameter of 150 ⁇ m (100 mesh), fine powder PAS obtained from the separated liquid is separated by sieving with a screen having an opening diameter of 75 ⁇ m (200 mesh), etc. It is to be. However, when the fine powder PAS is separated by sieving, the productization rate is lowered.
  • the fine powder PAS of the present invention is a fine powder PAS produced by the production method according to the present invention.
  • the fine powder PAS of the present invention is The fine particle PAS has an average particle size of 1 to 200 ⁇ m, The fine powder PAS has a melt viscosity of 1 Pa ⁇ s or more.
  • the fine powder PAS of the present invention in the sixth embodiment is manufactured by, for example, the manufacturing method according to the present invention.
  • the fine powder PAS of the present invention is reduced in impurities such as alkali metal salts and PAS oligomers.
  • the fine powder PAS of the present invention can be used as a resin composition (compound) by mixing with a granular PAS obtained from a sieved product in a sieving in the above-described separation step, which is a conventional product.
  • the weight average molecular weight of the fine powder PAS of the present invention is preferably 30,000 or more, more preferably 33,000 or more, and even more preferably 35,000 or more.
  • the upper limit of the weight average molecular weight is about 90,000.
  • the peak top molecular weight of the fine powder PAS of the present invention is preferably 32,000 or more, more preferably 34,000 or more, and even more preferably 36,000 or more.
  • the upper limit of the peak top molecular weight is about 100,000.
  • the melt viscosity of the fine powder PAS of the present invention is preferably 50% to 150%, more preferably 55% to 130%, and even more preferably the melt viscosity of the granular PAS compared to the melt viscosity of the granular PAS obtained in the separation step. It is preferably 58% to 120%, particularly preferably 65% to 110%. The melt viscosity is measured as described above.
  • the melt viscosity is usually 1 Pa ⁇ s or more, preferably 3 Pa ⁇ s or more, more preferably 5 Pa ⁇ s, particularly preferably 10 Pa ⁇ s or more.
  • the upper limit of the melt viscosity is about 500 Pa ⁇ s.
  • the average particle size of the fine powder PAS of the present invention is usually 1 to 200 ⁇ m, preferably 2 to 100 ⁇ m, more preferably 3 to 80 ⁇ m as measured by a laser diffraction particle size distribution measuring apparatus.
  • the generated gas may be a sulfur-containing benzene compound, a halogen-containing benzene compound, a nitrogen-containing halogen compound, an organic substance, a sulfur-containing low-boiling substance, or the like.
  • the alkali metal content of the fine powder PAS of the present invention is preferably 1500 ppm or less, more preferably 1000 ppm or less, and even more preferably 500 ppm or less.
  • the lower limit is 0 ppm, but is practically about 10 ppm.
  • Recovery rate of granular PAS (% by mass)
  • the granular PAS recovery rate is calculated by calculating the PAS mass (theoretical amount) as the total amount of PAS, assuming that all of the available sulfur components in the charged sulfur source present in the reaction vessel after the dehydration step have been converted to PAS. . That is, the recovery rate of granular PAS was calculated by the mass of recovered granular PAS / PAS mass (theoretical amount).
  • the average particle diameter of the recovered granular PAS is mesh # 7 (mesh diameter 2,800 ⁇ m), # 12 (mesh diameter 1,410 ⁇ m), # 16 (mesh) Aperture diameter 1,000 ⁇ m), # 24 (aperture diameter 710 ⁇ m), # 32 (aperture diameter 500 ⁇ m), # 60 (aperture diameter 250 ⁇ m), # 100 (aperture diameter 150 ⁇ m), # 145 (aperture diameter 105 ⁇ m) ), # 200 (aperture diameter 75 ⁇ m), and measured by a sieving method.
  • Average particle diameter of fine powder PAS The average particle diameter of fine powder PAS was measured with a laser diffraction particle size distribution measuring device (SALD, manufactured by Shimadzu Corporation).
  • Weight average molecular weight and peak top molecular weight The weight average molecular weight (Mw) of PAS was measured using a high temperature gel permeation chromatograph (GPC) SSC-7101 manufactured by Senshu Kagaku Co., Ltd. under the following conditions. The weight average molecular weight and peak top molecular weight were calculated as polystyrene equivalent values.
  • Solvent 1-chloronaphthalene, Temperature: 210 ° C Detector: UV detector (360 nm), Sample injection volume: 200 ⁇ l (concentration: 0.1% by mass), Flow rate: 0.7 ml / min, Standard polystyrene: Five standard polystyrenes of 616,000, 113,000, 26,000, 8,200, and 600.
  • melt Viscosity Using about 20 g of a dry product of PAS, the melt viscosity was measured by Capillograph 1-C manufactured by Toyo Seiki. At this time, the capillary used a flat die of 1 mm ⁇ ⁇ 10 mmL, and the set temperature was 310 ° C. The PAS sample was introduced into the apparatus and held for 5 minutes, and then the melt viscosity at a shear rate of 1,216 sec ⁇ 1 was measured.
  • Moisture content The moisture content of the wet cake was calculated from the mass difference before and after drying by drying the wet cake at 60 ° C. for 3 hours under reduced pressure (90 KPa) (the mass difference / the mass of the wet cake ⁇ 100 ( %)).
  • the ratio (g / mol) of NMP / prepared sulfur source (hereinafter abbreviated as “prepared S”) in the can is 375, pDCB / added S (mol / mol) is 1.050, H 2 O / prepared. S (mol / mol) was 1.50. The conversion rate of pDCB in the former polymerization was 92%.
  • the granular PPS on the sieve was subjected to a usual recovery process such as washing and drying to obtain a granular PPS as a product with a recovery rate of 88% by mass.
  • the average particle size was 360 ⁇ m
  • the weight average molecular weight was 42,800
  • the peak top molecular weight was 51,200.
  • the melt viscosity was 35 Pa ⁇ s.
  • Example 1 The following treatment was performed on the sieving liquid in the separation process using the sieving of Production Example 1.
  • the separated liquid was filtered and subjected to preliminary solid-liquid separation into the raw material fine powder PPS and the filtrate (preliminary solid-liquid separation step).
  • the raw material fine powder PPS was washed twice with water-containing acetone having a water content of 50% by mass and filtered again to separate the raw material fine powder PPS and the filtrate (organic solvent washing step).
  • the raw material fine powder PPS was heated at 70 ° C. in a normal pressure state for 5 hours (water content after heating: 35 mass%) (heating step).
  • the specific surface area of the raw material fine powder PPS before heating was 115 m 2 / g, and the specific surface area of the raw material fine powder PPS after heating was 89 m 2 / g.
  • the specific surface area retention was 0.77 (ie 77%).
  • washing was performed several times with distilled water (water washing step), and solid-liquid separation was performed by filtration to obtain a wet cake.
  • the obtained wet cake was dried under reduced pressure (90 KPa) at 60 ° C. for 3 hours to obtain fine powder PPS (drying step).
  • the average particle diameter, melt viscosity, and Na ion amount of this fine powder PPS were measured. As a result, the average particle size was 95 ⁇ m, the melt viscosity was 25 Pa ⁇ s, and the amount of Na ions was 150 ppm.
  • the melt viscosity of the raw material fine powder PPS sufficiently washed and dried was less than 2 Pa ⁇ s.
  • Example 2 In the drying step, the measurement was performed in the same manner as in Example 1 except that the wet cake was dried under reduced pressure (90 KPa) at 30 ° C. for 12 hours to obtain fine powder PPS. As a result, the average particle size was 91 ⁇ m, the melt viscosity was 23 Pa ⁇ s, and the amount of Na ions was 185 ppm.
  • Example 3 In the drying step, the measurement was performed in the same manner as in Example 1 except that the wet cake was dried at 120 ° C. for 5 hours under normal pressure to obtain fine powder PPS. As a result, the average particle size was 84 ⁇ m, the melt viscosity was 28 Pa ⁇ s, and the amount of Na ions was 198 ppm.
  • Example 4 In the drying step, the measurement was performed in the same manner as in Example 1 except that the wet cake was dried at 120 ° C. for 5 hours in a nitrogen atmosphere at normal pressure to obtain fine powder PPS. As a result, the average particle size was 98 ⁇ m, the melt viscosity was 24 Pa ⁇ s, and the amount of Na ions was 170 ppm.
  • Example 1 In the heating step, measurement was performed in the same manner as in Example 1 except that the raw material fine powder PPS was heated at 140 ° C. for 12 hours in a reduced pressure state (90 KPa). As a result, the average particle size was 88 ⁇ m, the melt viscosity was 3 Pa ⁇ s, and the amount of Na ions was 4,500 ppm.
  • Example 2 In the organic solvent washing step, measurement was performed in the same manner as in Example 1 except that anhydrous acetone was used. As a result, the average particle size was 80 ⁇ m, the melt viscosity was 2 Pa ⁇ s, and the amount of Na ions was 4,000 ppm. The specific surface area was 13 m 2 / g, and the specific surface area retention was 11%.
  • the fine powder PAS of the present invention can be reused as a component of a compound.
  • the fine powder PAS of the present invention is produced from the raw fine powder PAS in the separation liquid that has not been discarded or used in the past, and it is very significant that it can be reused without polluting the work environment. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

 粒状ポリアリーレンスルフィド(以下、PAS)を含有する分散液から粒状PASと分離液とに分離して得た分離液からの固液分離後の微粉PAS含有固形物中の微粉PASの濡れ性を保ちつつ、アルカリ金属塩及び/又はPASオリゴマー等の不純物が低減された微粉PASを製造する方法及び微粉PASを提供する。 本発明に係る微粉PASを製造する方法は、下記の工程;(a)粒状PASを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状PASと分離液とに分離する分離工程;(b)該分離液を固液分離し、微粉PAS含有固形物を得る固液分離工程;(c)該微粉PAS含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;(d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程を含み、該加熱工程後のウエットケーキの含水率が30重量%以上である。

Description

微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド
 本発明は、粒状ポリアリーレンスルフィドを含有する分散液から微粉ポリアリーレンスルフィドを製造する製造方法及び微粉ポリアリーレンスルフィドに関する。
 ポリフェニレンスルフィド(以下、「PPS」と略記することがある。)に代表されるポリアリーレンスルフィド(以下、「PAS」と略記することがある。)は、耐熱性、耐薬品性、難燃性、機械的強度、電気特性、寸法安定性などに優れたエンジニアリングプラスチックである。PASは、押出成形、射出成形、圧縮成形などの一般的溶融加工法により、各種成形品、フィルム、シート、繊維等に成形可能であるため、電気機器、電子機器、自動車機器、包装材料などの広範な技術分野において汎用されている。
 PASの代表的な製造方法としては、N-メチル-2-ピロリドン(以下、「NMP」と略記することがある。)などの有機アミド溶媒中で、パラジクロルベンゼン(以下、「pDCB」と略記することがある。)などのジハロ芳香族化合物(以下、「DHA」と略記することがある。)と、硫黄源としてのアルカリ金属硫化物、アルカリ金属水硫化物等の硫黄化合物とを加熱条件下で重合反応させて得られるPAS含有反応液からPASを分離し、洗浄、乾燥を経て回収する方法がよく知られている。
 この重合反応は、脱塩重縮合反応であり、反応物であるPASの他に、例えば、アルカリ金属ハロゲン化物(例えば、NaCl)などの副生アルカリ金属塩、ダイマー、トリマー等の低重合物、不純物(揮発性物質、高沸点物質等)等が生成する。このため、重合反応後のPASの粒子間や粒子内あるいは反応液には、これら有機アミド溶媒、副生アルカリ金属塩、低重合物、不純物等が存在することとなる。したがって、PAS含有反応液から分離したPASは、充分な洗浄により、有機アミド溶媒、副生アルカリ金属塩、低重合物、不純物等を除去した上で、回収することにより、製品としてのPASの品質の維持向上を図っている。
 一方、PAS含有反応液から固液分離によりPASを分離した分離液には、微細な粒子状PAS(以下、「原料微粉PAS」と略記することがある。)が含まれている。しかし、この原料微粉PASは、製品のPASに比べ、品質面(分子量、色調、におい、ガス発生等)で劣るため、製品として回収されずに廃棄されている。原料微粉PASの廃棄は、具体的には、廃棄する際の環境基準に適合させるために、分離液から濾別等による固液分離により原料微粉PASを回収し、次いで、必要に応じて、原料微粉PASの微粉間や微粉内に存在する有機アミド溶媒、副生アルカリ金属塩、低重合物、不純物等を洗浄により除去し、環境基準への適合を確認した上で廃棄処分(例えば、埋め立てや焼却など)されているのが現状である。
 また、原料微粉PASを製品化したとしても、製品となる量は少ないため、工業的に利用価値がなく、廃棄しても問題は少なかった(以下、原料微粉PASを回収して、製品化した場合、その量を「製品化率」と略記することがある)。
 しかし、PASは市場化されてから、約30年経過し、品質に対する要求と共に、コスト低減に対する市場からの要求は、年々厳しさを増している。そのため、PASの製造工程の全般にわたって見直しが行われてきている。
 このような中で、PASのコスト低減及び環境問題の観点から、分離液から回収されて、従来廃棄処分をされてきた原料微粉PASも、製品として回収する方向で検討が進められてきた。
 特許文献1には、具体的には、反応温度260℃で3.0時間重合を行った後、60メッシュのスクリーンで粒状のポリマーを分離し、分離液からNaClを除いた後の、PASオリゴマーと溶媒とが含まれている混合液に、水を加えてオリゴマーの凝集をした後に、遠心分離によりPASオリゴマーを分離することが提案されている。
 この場合、60メッシュは目開き250μmであるから、250μm以下の粒径のオリゴマーを選択していることになる。すなわち、特許文献1では、重合方法に由来してか、250μm以上の粒径のPASポリマーを製品化し、粒径250μm以下のPASオリゴマーを分離していることになる。
 特許文献2には、相分離剤を用いて、重合を行い、顆粒状PAS、PASオリゴマー、有機極性溶媒、水、及びハロゲン化アルカリ金属塩を含有するスラリーから、PASオリゴマーを分離することが提案されている。具体的には、80メッシュ(175μm)の篩で顆粒状PASを分離した後、さらに、目開き10~16μmのガラスフィルターで、PASオリゴマーを分離している。この場合、得られるPASオリゴマーは、下限が10~16μm、上限が175μmの粒径分布のPASオリゴマーを選択していることになる。
 特許文献3には、特許文献2の手法で得たPASオリゴマーを、揮発分を低減させるために気相酸化性雰囲気下で150~260℃で熱酸化処理するPAS樹脂の製造方法が提案されている。
 しかしながら、これらの先行文献には、分離液から回収される原料微粉PASを製品として回収する際の問題点や、正常品である製品に比べ品質上どのような問題があるのか、具体的な開示はない。
特開平5-93068号公報 特開2007-2172号公報 特開2007-16142号公報
 本発明者らは、市場からのコスト低減や環境問題改善の要望に応えるために、PAS含有反応液の固液分離により生ずる分離液から、濾別等による固液分離により固形分として回収した原料微粉PASを、製品化することを意図した。
 本発明者らは、原料微粉PASを、製品として回収することを阻害する主要な要因が、製品の粒状PASに比較して、(i)熱的に分解しやすい低重合物の比率が高いこと、(ii)微細な粒子状物(以下、「微粉」と略記することがある。)であることであり、さらには、(iii)揮発分低減等の改質目的として行われる熱処理が、目標どおりに機能していないこと、にあるのではないかと考えた。
 すなわち、PAS重合物は、分子量により熱的安定性が異なることが知られており、その中でもより低重合物が、より高分子量物のものに比べて、熱的に分解しやすい傾向にあり、原料微粉PASには、このような低重合物が多く含有されていることが問題となる。
 さらに、原料微粉PASに含有される低重合物は、微細な粒子状物である微粉の一部を形成しているため洗浄によって、容易に除去されるものではなく、その上微粉であるために、洗浄による効果が充分得られにくく、その結果有機アミド溶媒、副生アルカリ金属塩、不純物(揮発性物質、高沸点物質)等が微粉間と微粉内とに残存することとなり、原料微粉PASの製品化に当たって、品質への影響が大きくなるものと考えられる。
 本発明者らは、このような状況で、微粉PASの製品化に当たって、粒状PASを含有する分散液から粒状PASと分離液とに分離して得た分離液からの濾別等の固液分離後の微粉PAS含有固形物中の有機溶媒量を減らす目的で、微粉PAS含有固形物を加熱し乾燥させると、微粉PASの濡れ性が極端に低下するため、このような微粉PASを水性溶媒により洗浄しようとしても、特に、微粉内や微粉間への水性溶媒の浸透が阻害されて、微粉内や微粉間に残存するアルカリ金属塩やPASオリゴマー等の不純物が洗浄により除去されにくくなることを見出した。
 本発明者らは、上記加熱後の含水率、水の添加時期、加熱前後での微粉PASの比表面積保持率、又は加熱時の温度を調整することにより、微粉PASの濡れ性を保ちつつ、微粉PASからアルカリ金属塩やPASオリゴマー等の不純物を除去することができることを見出し、本発明に想到した。
 本発明の目的は、粒状PASを含有する分散液から粒状PASと分離液とに分離して得た分離液からの固液分離後の微粉PAS含有固形物中の微粉PASの濡れ性を保ちつつ、アルカリ金属塩及び/又はPASオリゴマー等の不純物が低減された微粉PASを製造する方法及び微粉PASを提供することである。
 かくして、本発明によれば、微粉ポリアリーレンスルフィドを製造する方法であって、下記の工程;
(a)粒状ポリアリーレンスルフィドを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状ポリアリーレンスルフィドと分離液とに分離する分離工程;
(b)該分離液を固液分離し、微粉ポリアリーレンスルフィド含有固形物を得る固液分離工程;
(c)該微粉ポリアリーレンスルフィド含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;
(d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程;
を含み、
 該加熱工程後のウエットケーキの含水率が30重量%以上である方法が提供される。
 また、本発明によれば、微粉ポリアリーレンスルフィドを製造する方法であって、下記の工程;
(a)粒状ポリアリーレンスルフィドを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状ポリアリーレンスルフィドと分離液とに分離する分離工程;
(b)該分離液を固液分離し、微粉ポリアリーレンスルフィド含有固形物を得る固液分離工程;
(c)該微粉ポリアリーレンスルフィド含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;
(d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程;
を含み、
 該分離工程後、該加熱工程前に、該分離液に水を添加する水添加工程を更に含む方法が提供される。
 更に、本発明によれば、微粉ポリアリーレンスルフィドを製造する方法であって、下記の工程;
(a)粒状ポリアリーレンスルフィドを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状ポリアリーレンスルフィドと分離液とに分離する分離工程;
(b)該分離液を固液分離し、微粉ポリアリーレンスルフィド含有固形物を得る固液分離工程;
(c)該微粉ポリアリーレンスルフィド含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;
(d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程;
を含み、
 該加熱工程前の微粉ポリアリーレンスルフィド含有固形物に含まれる微粉ポリアリーレンスルフィドの比表面積A1に対する、該加熱工程後のウエットケーキに含まれる微粉ポリアリーレンスルフィドの比表面積A2の比表面積保持率A2/A1が20%以上である方法が提供される。
 更に、本発明によれば、微粉ポリアリーレンスルフィドを製造する方法であって、下記の工程;
(a)粒状ポリアリーレンスルフィドを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状ポリアリーレンスルフィドと分離液とに分離する分離工程;
(b)該分離液を固液分離し、微粉ポリアリーレンスルフィド含有固形物を得る固液分離工程;
(c)該微粉ポリアリーレンスルフィド含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;
(d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程;
を含み、
 該加熱工程における加熱温度が平均して85℃以下である方法が提供される。
 更に、本発明によれば、本発明に係る製造方法により製造される微粉ポリアリーレンスルフィドが提供される。
 更に、本発明によれば、微粉ポリアリーレンスルフィドであって、
 該微粉ポリアリーレンスルフィドの平均粒子径が1~200μmであり、
 該微粉ポリアリーレンスルフィドの溶融粘度が1Pa・s以上である
微粉ポリアリーレンスルフィドが提供される。
 本発明によれば、粒状PASを含有する分散液から粒状PASと分離液とに分離して得た分離液からの固液分離後の微粉PAS含有固形物中の微粉PASの濡れ性を保ちつつ、アルカリ金属塩及び/又はPASオリゴマー等の不純物が低減された微粉PASを製造する方法及び微粉PASを提供することができる。
 第一の実施形態において、本発明に係る微粉ポリアリーレンスルフィドを製造する方法は、下記の工程;
(a)粒状ポリアリーレンスルフィドを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状ポリアリーレンスルフィドと分離液とに分離する分離工程;
(b)該分離液を固液分離し、微粉ポリアリーレンスルフィド含有固形物を得る固液分離工程;
(c)該微粉ポリアリーレンスルフィド含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;
(d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程;
を含み、
 該加熱工程後のウエットケーキの含水率が30重量%以上である。
 第二の実施形態において、本発明に係る微粉ポリアリーレンスルフィドを製造する方法は、下記の工程;
(a)粒状ポリアリーレンスルフィドを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状ポリアリーレンスルフィドと分離液とに分離する分離工程;
(b)該分離液を固液分離し、微粉ポリアリーレンスルフィド含有固形物を得る固液分離工程;
(c)該微粉ポリアリーレンスルフィド含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;
(d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程;
を含み、
 該分離工程後、該加熱工程前に、該分離液に水を添加する水添加工程を更に含む。
 第三の実施形態において、本発明に係る微粉ポリアリーレンスルフィドを製造する方法は、下記の工程;
(a)粒状ポリアリーレンスルフィドを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状ポリアリーレンスルフィドと分離液とに分離する分離工程;
(b)該分離液を固液分離し、微粉ポリアリーレンスルフィド含有固形物を得る固液分離工程;
(c)該微粉ポリアリーレンスルフィド含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;
(d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程;
を含み、
 該加熱工程前の微粉ポリアリーレンスルフィド含有固形物に含まれる微粉ポリアリーレンスルフィドの比表面積A1に対する、該加熱工程後のウエットケーキに含まれる微粉ポリアリーレンスルフィドの比表面積A2の比表面積保持率A2/A1が20%以上である。
 第四の実施形態において、本発明に係る微粉ポリアリーレンスルフィドを製造する方法は、下記の工程;
(a)粒状ポリアリーレンスルフィドを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状ポリアリーレンスルフィドと分離液とに分離する分離工程;
(b)該分離液を固液分離し、微粉ポリアリーレンスルフィド含有固形物を得る固液分離工程;
(c)該微粉ポリアリーレンスルフィド含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;
(d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程;
を含み、
 該加熱工程における加熱温度が平均して85℃以下である。
 本発明に係る微粉PASを製造する製造方法は、上記(a)の分離工程、(b)の固液分離工程、及び(c)の脱液工程を必ず含む製造方法であり、これ以外の工程、例えば必要により、反応液や分離液を濃縮または希釈する工程、洗浄工程、あるいは乾燥工程等を追加して用いてもよいし、あるいは上記(a)~(c)の工程、特に(b)及び(e)の工程のうち一方又は両方の工程を追加して用いることもできる。
 粒状PASを含有する分散液としては、特に限定されず、粒状PASを含有する限り、いかなる分散液でもよく、例えば、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させる重合工程において生成した粒状PASを含有する反応液が挙げられる。以下、下記I.II.では、先ず、粒状PASの製造に関して述べる。
I.重合反応成分
1.硫黄源
 硫黄源としてアルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源を使用する。アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム、及びこれらの2種以上の混合物などを挙げることができる。アルカリ金属水硫化物としては、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウム、及びこれらの2種以上の混合物などを挙げることができる。
 アルカリ金属硫化物は、無水物、水和物、水溶液のいずれを用いてもよい。これらの中でも、工業的に安価に入手できる点で、硫化ナトリウム及び硫化リチウムが好ましい。アルカリ金属硫化物は、水溶液などの水性混合物(すなわち、流動性のある水との混合物)として用いることが、処理操作や計量などの観点から好ましい。
 アルカリ金属水硫化物は、無水物、水和物、水溶液のいずれを用いてもよい。これらの中でも、工業的に安価に入手できる点で、水硫化ナトリウム及び水硫化リチウムが好ましい。アルカリ金属水硫化物は、水溶液または水性混合物(すなわち、流動性のある水との混合物)として用いることが、処理操作や計量などの観点から好ましい。
 アルカリ金属硫化物の中には、少量のアルカリ金属水硫化物が含有されていてもよい。この場合、アルカリ金属硫化物とアルカリ金属水硫化物との総モル量が、必要により配置する脱水工程後の、重合工程で重合反応に供される硫黄源、すなわち「仕込み硫黄源」になる。
 アルカリ金属水硫化物の中には、少量のアルカリ金属硫化物が含有されていてもよい。この場合、アルカリ金属水硫化物とアルカリ金属硫化物との総モル量が、仕込み硫黄源になる。アルカリ金属硫化物とアルカリ金属水硫化物とを混合して用いる場合には、当然、両者が混在したものが仕込み硫黄源となる。
 硫黄源がアルカリ金属水硫化物を含有するものである場合、アルカリ金属水酸化物を併用する。アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、及びこれらの2種以上の混合物が挙げられる。これらの中でも、工業的に安価に入手できる点で水酸化ナトリウム及び水酸化リチウムが好ましい。アルカリ金属水酸化物は、水溶液または水性混合物として用いることが好ましい。
 PASの製造方法において、脱水工程で脱水されるべき水分とは、水和水、水溶液の水媒体、及びアルカリ金属水硫化物とアルカリ金属水酸化物との反応などにより副生する水などである。
2.ジハロ芳香族化合物
 ジハロ芳香族化合物(DHA)は、芳香環に直接結合した2個のハロゲン原子を有するジハロゲン化芳香族化合物である。ハロゲン原子とは、フッ素、塩素、臭素、及びヨウ素の各原子を指し、同一ジハロ芳香族化合物において、2つのハロゲン原子は、同じでも異なっていてもよい。これらのジハロ芳香族化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。ジハロ芳香族化合物の具体例としては、例えば、o-ジハロベンゼン、m-ジハロベンゼン、p-ジハロベンゼン、ジハロトルエン、ジハロナフタレン、メトキシ-ジハロベンゼン、ジハロビフェニル、ジハロ安息香酸、ジハロジフェニルエーテル、ジハロジフェニルスルホン、ジハロジフェニルスルホキシド、ジハロジフェニルケトン等が挙げられる。これらの中でも、p-ジハロベンゼン、m-ジハロベンゼン、及びこれら両者の混合物が好ましく、p-ジハロベンゼンがより好ましく、p-ジクロロベンゼン(pDCB)が、特に好ましく用いられる。
3.分岐・架橋剤
 生成PASに分岐または架橋構造を導入するために、3個以上のハロゲン原子が結合したポリハロ化合物(必ずしも芳香族化合物でなくてもよい)、活性水素含有ハロゲン化芳香族化合物、ハロゲン化芳香族ニトロ化合物等を併用することができる。分岐・架橋剤としてのポリハロ化合物として、好ましくはトリハロベンゼンが挙げられる。また、生成PAS樹脂に特定構造の末端を形成したり、あるいは重合反応や分子量を調節したりするために、モノハロ化合物を併用することができる。モノハロ化合物は、モノハロ芳香族化合物だけではなく、モノハロ脂肪族化合物も使用することができる。
 分岐・架橋剤は、仕込み硫黄源1モル当たり0.0001~0.01モル、好ましくは0.0002~0.008モル、より好ましくは、0.0003~0.005モルの範囲で用いられる。
4.有機アミド溶媒
 脱水反応及び重合反応の溶媒として、非プロトン性極性有機溶媒である有機アミド溶媒を用いる。有機アミド溶媒は、高温でアルカリに対して安定なものが好ましい。有機アミド溶媒の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物;N-メチル-ε-カプロラクタム等のN-アルキルカプロラクタム化合物;N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン等のN-アルキルピロリドン化合物またはN-シクロアルキルピロリドン化合物;1,3-ジアルキル-2-イミダゾリジノン等のN,N-ジアルキルイミダゾリジノン化合物;テトラメチル尿素等のテトラアルキル尿素化合物;ヘキサメチルリン酸トリアミド等のヘキサアルキルリン酸トリアミド化合物等が挙げられる。これらの有機アミド溶媒は、それぞれ単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
 これらの有機アミド溶媒の中でも、N-アルキルピロリドン化合物、N-シクロアルキルピロリドン化合物、N-アルキルカプロラクタム化合物、及びN,N-ジアルキルイミダゾリジノン化合物が好ましく、特に、N-メチル-2-ピロリドン(NMP)、N-メチル-ε-カプロラクタム、及び1,3-ジアルキル-2-イミダゾリジノンが好ましく用いられ、NMPが特に好ましい。
5.重合助剤
 重合反応を促進させるために、必要に応じて、各種重合助剤を用いることができる。重合助剤の具体例としては、一般にPASの重合助剤として公知の水、有機カルボン酸金属塩、有機スルホン酸金属塩、ハロゲン化リチウムなどのアルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、パラフィン系炭化水素類、及びこれらの2種以上の混合物などが挙げられる。有機カルボン酸金属塩としては、アルカリ金属カルボン酸塩が好ましい。アルカリ金属カルボン酸塩としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、吉草酸リチウム、安息香酸リチウム、安息香酸ナトリウム、フェニル酢酸ナトリウム、p-トルイル酸カリウム、及びこれらの2種以上の混合物を挙げることができる。アルカリ金属カルボン酸塩としては、安価で入手しやすいことから、酢酸ナトリウムが特に好ましい。重合助剤の使用量は、化合物の種類により異なるが、仕込み硫黄源1モルに対し、通常0.01~10モル、好ましくは0.1~2モル、より好ましくは0.2~1.8モル、特に好ましくは0.3~1.7モルの範囲である。
 重合助剤が、有機カルボン酸金属塩、有機スルホン酸塩、及びアルカリ金属ハライドである場合には、その使用量の上限は、仕込み硫黄源1モルに対し、好ましくは1モル以下、より好ましくは0.8モル以下であることが望ましい。
6.相分離剤
 重合反応を促進させ、高重合度のPASを短時間で得るために、または相分離を生起し粒状PASを得るために、各種相分離剤を用いる。相分離剤とは、それ自身でまたは少量の水の共存下に、有機アミド溶媒に溶解し、PASの有機アミド溶媒に対する溶解性を低下させる作用を有する化合物である。相分離剤自体は、PASの溶媒ではない化合物である。
 相分離剤としては、一般にPASの技術分野において、相分離剤として機能することが知られている化合物を用いることができる。相分離剤には、前記の重合助剤として使用される化合物も含まれるが、ここでは、相分離剤とは、相分離状態で重合反応を行う工程、すなわち相分離重合工程で相分離剤として機能し得る量比、または重合終了後その存在下で相分離を生起せしめるに十分な量比、で用いられる化合物を意味する。相分離剤の具体例としては、水、有機カルボン酸金属塩、有機スルホン酸金属塩、ハロゲン化リチウムなどのアルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、パラフィン系炭化水素類などが挙げられる。有機カルボン酸金属塩としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、吉草酸リチウム、安息香酸リチウム、安息香酸ナトリウム、フェニル酢酸ナトリウム、p-トルイル酸カリウムなどのアルカリ金属カルボン酸塩が好ましい。これらの相分離剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。これらの相分離剤の中でも、コストが安価で、後処理が容易な水、または水とアルカリ金属カルボン酸塩などの有機カルボン酸金属塩との組み合わせが、特に好ましい。
 相分離剤として水を使用する場合でも、相分離重合を効率的に行う観点から、水以外の他の相分離剤を重合助剤として併用することができる。相分離重合工程において、水と他の相分離剤とを併用する場合、その合計量は、相分離を起こすことができる量であればよい。相分離剤は、少なくとも一部は、重合反応成分の仕込み時から共存していてもかまわないが、重合反応の途中で相分離剤を添加して、又は重合反応後に相分離を形成するのに充分な量に調整することが望ましい。
II.重合工程
 PASの製造は、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて粒状PASを生成させることで行われる。
 本発明では、粒状PASを製造する重合方法については、本発明を損なわない限り、如何なる重合方法でもよい。
 一般には、粒状PASを製造する重合方法としては、大別して(i)重合工程が相分離重合工程を含み、相分離重合後、徐冷する方法、(ii)重合反応後、相分離剤を添加し、徐冷する方法、(iii)塩化リチウム等の重合助剤を用いる方法、及び(iv)反応缶気相部分の冷却を行う方法等がある。
 中でも、重合条件を制御して、相分離剤の存在下、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で行う重合反応の工程(以下、「相分離重合工程」と略記することがある。)を含む重合方法により粒状PASを製造した場合は、重合度の高い粒状PASが得られるため、篩のスクリーンの目開き径を小さくすることができる。したがって、重合度の高い製品の粒状PASの回収率を高める上で有利な重合方法となっている。
 すなわち、この場合の重合工程は、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて粒状PASを生成させる際に、生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応させることを含む重合工程である。
 この場合の重合工程を詳述する。
1.仕込み工程
 重合工程は、以下の仕込み工程を経て実施することができる。
 仕込み工程は、所望により配置する脱水工程で系内に残存する混合物とジハロ芳香族化合物とを混合し、必要に応じてアルカリ金属水酸化物及び水を添加して、有機アミド溶媒、硫黄源(仕込み硫黄源)、アルカリ金属水酸化物、水分、及びジハロ芳香族化合物を含有する仕込み混合物を調製する。脱水工程で有機アミド溶媒の留出量が多すぎる場合は、仕込み工程で有機アミド溶媒を追加させてもよい。また、仕込み硫黄源を調整するために仕込み工程で硫黄源を追加させてもよい。一般に、脱水工程において各成分の含有量及び量比が変動するため、仕込み工程での各成分量の調整は、脱水工程で得られた混合物中の各成分の量を考慮して行う必要がある。
 ジハロ芳香族化合物の使用量は、仕込み硫黄源1モルに対し、通常0.90~1.50モル、好ましくは0.92~1.10モル、より好ましくは0.95~1.05モルである。硫黄源に対するジハロ芳香族化合物の仕込みモル比が大きくなりすぎると、高分子量ポリマーを生成させることが困難になる。他方、硫黄源に対するジハロ芳香族化合物の仕込みモル比が小さくなりすぎると、分解反応が生じ易くなり、安定的な重合反応の実施が困難となる。
 特に、硫黄源としてアルカリ金属水硫化物を用いる場合には、脱水工程で硫化水素が揮散すると、平衡反応により、アルカリ金属水酸化物が生成し、系内に残存することになる。したがって、揮散する量を正確に把握して、仕込み工程でのアルカリ金属水酸化物の硫黄源に対するモル比を決定する必要がある。脱水時に生成するアルカリ金属水酸化物のモル数と脱水前に添加したアルカリ金属水酸化物のモル数と脱水後に添加するアルカリ金属水酸化物のモル数との総モル数が、脱水工程後に系内に存在する硫黄源、すなわち仕込み硫黄源1モル当たり1.005~1.09モル、より好ましくは1.01~1.08モル、特に好ましくは1.015~1.075モルとなり、かつ、水のモル数が仕込み硫黄源1モル当たり0.01~2.0モル、好ましくは0.05~1.8モル、より好ましくは0.5~1.6モルとなるように調整することが望ましい。
 本発明では、脱水工程で使用する硫黄源と区別するために、仕込み工程での硫黄源を「仕込み硫黄源」と呼んでいる。その理由は、脱水工程前に反応槽内に投入する硫黄源の量は、脱水工程で変動するからである。仕込み硫黄源は、重合工程でのジハロ芳香族化合物との反応により消費されるが、仕込み硫黄源のモル量は、仕込み工程でのモル量を基準とする。仕込み硫黄源の量は、〔仕込み硫黄源〕=〔総仕込み硫黄モル〕-〔脱水後の揮散硫黄モル〕の式により算出される。
 仕込み硫黄源1モル当たりのアルカリ金属水酸化物のモル比が大きすぎると、有機アミド溶媒の変質を増大させたり、重合時の異常反応や分解反応を引き起こしやすい。また、生成PASの収率の低下や品質の低下を引き起こすことが多くなる。アルカリ金属水酸化物が少過剰の状態で重合反応を行うことが、重合反応を安定的に実施し、高品質のPASを得る上で好ましい。
 仕込み工程において、有機アミド溶媒の量は、仕込み硫黄源1モル当り、通常0.1~10kg、好ましくは0.13~5kg、より好ましくは0.15~2kgの範囲とすることが望ましい。
2.重合工程
 重合工程では、前記の仕込み工程により調整した仕込み混合物を、通常170~290℃、好ましくは180~280℃、より好ましくは190~275℃の温度に加熱して、重合反応を開始させ、重合を進行させる。加熱方法は、一定温度を保持する方法、段階的または連続的な昇温方法、または両方法の組み合わせが用いられる。重合反応時間は、一般に10分間~72時間の範囲であり、望ましくは30分間~48時間である。重合反応は、前段重合工程と後段重合工程の2段階工程で行うことが好ましく、その場合の重合時間は前段重合工程と後段重合工程との合計時間である。
 この重合工程において、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを、相分離剤の存在下、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を行う重合工程を含んでおり、重合反応は、170~290℃の温度で重合反応させる。相分離剤としては、先に述べた水や、相分離剤として機能することが知られている化合物等が好ましく用いられる。
 さらには、重合工程において、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを、170~270℃の温度で重合反応させ、ジハロ芳香族化合物の転化率が30%以上となった時点で、重合反応混合物中に、相分離剤を添加して、重合反応系内に相分離剤を存在させ、次いで、重合反応混合物を昇温し、245~290℃の温度で、相分離剤の存在下の重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を継続させることが、好ましい。
 さらには、重合工程において、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて、該ジハロ芳香族化合物の転化率が30%以上、好ましくは80~99%のポリマーを生成させる前段重合工程;並びに、相分離剤の存在下、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を継続させる後段重合工程;を含む少なくとも2段階の重合工程により重合反応を行うことが好ましい。
 具体的には、重合工程において、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを、仕込み硫黄源1モル当たり0.01~2.0モルの水が存在する状態で、170~270℃の温度で重合反応させて、該ジハロ芳香族化合物の転化率が80~99%のポリマーを生成させる前段重合工程;並びに、仕込み硫黄源1モル当たり2.0モル超過10モル以下の水が存在する状態となるように重合反応系内の水量を調整するとともに、245~290℃の温度に加熱することにより、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を継続させる後段重合工程;を含む少なくとも2段階の重合工程により重合反応を行うことがより好ましい。
 前段重合工程とは、先に述べたとおり、重合反応開始後、ジハロ芳香族化合物の転化率が80~99%、好ましくは85~98%、より好ましくは90~97%に達した段階であって、前段重合工程において、重合温度を高くしすぎると、副反応や分解反応が生じ易くなる。
 ジハロ芳香族化合物の転化率は、以下の式により算出した値である。ジハロ芳香族化合物(以下、「DHA」と略記することがある。)を硫黄源よりモル比で過剰に添加した場合は、下記式
 転化率=〔〔DHA仕込み量(モル)-DHA残存量(モル)〕/〔DHA仕込み量(モル)-DHA過剰量(モル)〕〕×100
によって転化率を算出する。それ以外の場合には、下記式
 転化率=〔〔DHA仕込み量(モル)-DHA残存量(モル)〕/〔DHA仕込み量(モル)〕〕×100
によって転化率を算出する。
 前段重合工程における反応系の共存水量は、仕込み硫黄源1モル当たり、通常0.01~2.0モル、好ましくは0.05~1.8モル、より好ましくは0.5~1.6モル、特に好ましくは0.8~1.5モルの範囲である。前段重合工程での共存水量は、少なくてもよいが、過度に少なすぎると、生成PASの分解等の望ましくない反応が起こり易くなることがある。共存水分量が2.0モルを超過すると、重合速度が著しく小さくなったり、有機アミド溶媒や生成PASの分解が生じ易くなるので、いずれも好ましくない。重合は、170~270℃、好ましくは180~265℃の温度範囲内で行われる。重合温度が低すぎると、重合速度が遅くなり過ぎ、逆に、270℃を越える高温になると、生成PASと有機アミド溶媒が分解を起こし易く、生成するPASの重合度が極めて低くなる。
 前段重合工程において、温度310℃、剪断速度1,216sec-1で測定した溶融粘度が、通常0.5~30Pa・sのポリマー(「プレポリマー」ということがある。)を生成させることが望ましい。
 後段重合工程は、前段重合工程で生成したポリマー(プレポリマー)の単なる分別・造粒の工程ではなく、該ポリマーの重合度の上昇を起こさせるためのものである。
 後段重合工程では、重合反応系に相分離剤(重合助剤)を存在させて、生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を継続することが好ましい。
 後段重合工程では、相分離剤として、水を使用することが特に好ましく、仕込み硫黄源1モルに対して、2.0モル超過10モル以下、好ましくは、2.0モル超過9モル以下、より好ましくは2.1~8モル、特に好ましくは2.2~7モルの水が存在する状態となるように重合反応系内の水の量を調整することが好ましい。後段重合工程において、重合反応系中の共存水分量が仕込み硫黄源1モル当り2.0モル以下または10モル超過になると、生成PASの重合度が低下することがある。特に、共存水分量が2.2~7モルの範囲で後段重合を行うと、高重合度のPASが得られやすいので好ましい。
 より好ましい製造方法においては、少量の相分離剤で重合を実施するために、相分離剤として、水と水以外の他の相分離剤を併用することができる。この態様においては、重合反応系内の水量を、仕込み硫黄源1モル当り0.1~10モル、好ましくは0.3~10モル、更に好ましくは0.4~9モル、特に好ましくは0.5~8モルの範囲内に調整するとともに、水以外の他の相分離剤を、仕込み硫黄源1モル当り0.01~3モルの範囲内で存在させることが好ましい。水と併用することが特に好ましい他の相分離剤は、有機カルボン酸金属塩、中でも、アルカリ金属カルボン酸塩であり、その場合は、仕込み硫黄源1モルに対して、水を0.5~10モル、好ましくは0.6~7モル、特に好ましくは0.8~5モルの範囲内で使用するとともに、アルカリ金属カルボン酸塩を0.001~0.7モル、好ましくは0.02~0.6モル、特に好ましくは0.05~0.5モルの範囲内で使用すればよい。
 後段重合工程での重合温度は、245~290℃の範囲であり、重合温度が245℃未満では、高重合度の粒状PASが得られにくく、290℃を越えると、粒状PASや有機アミド溶媒が分解するおそれがある。特に、250~270℃の温度範囲が高重合度の粒状PASが得られやすいので好ましい。
 生成PAS中の副生アルカリ金属塩(例えば、NaCl)や不純物の含有量を低下させたり、PASを粒状で回収する目的で、重合反応後期あるいは終了時に水を添加し、水分を増加させることができる。重合反応方式は、バッチ式、連続式、あるいは両方式の組み合わせでもよい。バッチ式重合では、重合サイクル時間を短縮する目的のために、所望により2つ以上の反応槽を用いる方式を用いることができる。
3.所望により配置する脱水工程
 本発明の熱処理微粉PASの製造において、重合工程を実施する際の仕込み工程前に、所望により脱水工程を配置してもよい。
 重合工程の前工程として、脱水工程を配置して反応系内の水分量を調節することが好ましい。脱水工程は、好ましくは不活性ガス雰囲気下で、有機アミド溶媒とアルカリ金属硫化物とを含む混合物を加熱して反応させ、蒸留により水を系外へ排出する方法により実施する。硫黄源としてアルカリ金属水硫化物を用いる場合には、アルカリ金属水硫化物とアルカリ金属水酸化物とを含む混合物を加熱して反応させ、蒸留により水を系外へ排出する方法により実施する。
 脱水工程では、水和水(結晶水)や水媒体、副生水などからなる水分を必要量の範囲内になるまで脱水する。
 また、脱水工程では、加熱により水及び有機アミド溶媒が蒸気となって留出する。したがって、留出物には、水と有機アミド溶媒とが含まれる。留出物の一部は、有機アミド溶媒の系外への排出を抑制するために、系内に環流してもよいが、水分量を調節するために、水を含む留出物の少なくとも一部は系外に排出する。留出物を系外に排出する際に、微量の有機アミド溶媒が水と同伴して系外に排出される。
 また、脱水工程では、硫黄源に起因するが硫化水素が揮散する。水を含む留出物の少なくとも一部を系外に排出するのに伴い、揮散した硫化水素も系外に排出される。
 脱水工程では、重合反応系の共存水分量が、仕込み硫黄源1モルに対して、通常0.01~2.0モル、好ましくは0.05~1.8モル、より好ましくは0.5~1.6モルになるまで脱水する。前述したとおり、脱水工程後重合工程開始前の硫黄源を「仕込み硫黄源」と呼ぶ。脱水工程で水分量が少なくなり過ぎた場合は、重合工程の前に水を添加して所望の水分量に調節してもよい。
 硫黄源としてアルカリ金属水硫化物を用いる場合、脱水工程において、有機アミド溶媒、アルカリ金属水硫化物、及び該アルカリ金属水硫化物1モル当たり0.9~1.1モル、好ましくは0.91~1.08モル、より好ましくは0.92~1.07モル、特に好ましくは0.93~1.06モルのアルカリ金属水酸化物を含有する混合物を加熱して、反応させ、該混合物を含有する系内から水を含む留出物の少なくとも一部を系外に排出することが好ましい。アルカリ金属水硫化物には、多くの場合、少量のアルカリ金属硫化物が含まれており、硫黄源の量は、アルカリ金属水硫化物とアルカリ金属硫化物との合計量になる。また、少量のアルカリ金属硫化物が混入していても、本発明では、アルカリ金属水硫化物の含有量(分析値)を基準に、アルカリ金属水酸化物とのモル比を算出し、そのモル比を調整する。
 脱水工程でのアルカリ金属水硫化物1モル当たりのアルカリ金属水酸化物のモル比が小さすぎると、脱水工程で揮散する硫黄成分(硫化水素)の量が多くなりすぎて、硫黄源量の低下による生産性の低下を招いたり、脱水後に残存する仕込み硫黄源に多硫化成分が増加することによる異常反応、生成PASの品質低下が起こり易くなる。アルカリ金属水硫化物1モル当たりのアルカリ金属水酸化物のモル比が大きすぎると、有機アミド溶媒の変質が増大したり、重合反応を安定して実施することが困難になったり、生成PASの収率や品質が低下することがある。
 脱水工程での各原料の反応槽への投入は、一般的には、常温(5~35℃)から300℃、好ましくは常温から200℃の温度範囲内で行われる。原料の投入順序は、任意に設定することができ、さらには、脱水操作途中で各原料を追加投入してもかまわない。脱水工程に使用される溶媒としては、有機アミド溶媒を用いる。この溶媒は、重合工程に使用される有機アミド溶媒と同一であることが好ましく、NMPが特に好ましい。有機アミド溶媒の使用量は、反応槽に投入する硫黄源1モル当たり、通常0.1~10kg程度である。
 脱水操作は、反応槽内へ原料を投入後の混合物を、通常、300℃以下、好ましくは100~250℃の温度範囲で、通常、15分間から24時間、好ましくは30分間~10時間、加熱して行われる。加熱方法は、一定温度を保持する方法、段階的または連続的な昇温方法、または両者を組み合わせた方法がある。脱水工程は、バッチ式、連続式、または両方式の組み合わせ方式などにより行われる。
 脱水工程を行う装置は、後続する重合工程に用いられる反応槽(反応缶)と同じであってもよいし、異なるものであってもよい。装置の材質は、チタンのような耐食性材料が好ましい。
 他の粒状PASを得る好ましい態様として、重合終了後に相分離を形成するのに充分な量に調整し、徐冷する方法が好ましい。
III.分離工程
 分離工程では、粒状PASを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状PASと分離液とに分離する。
 本発明の微粉PASは、前述した微粉PASを製造する製造方法において固液分離して得られる分離液から得られるものであり、一方固液分離後の固形分からは、粒状PASが製造され回収される。
 以下に、製品として回収される好ましい粒状PASの性状について例示する。
 粒状PASの分離回収処理は、例えば篩分による分離工程により行うことができる。粒状PASを含有する分散液として、上記重合工程において生成した粒状PASを含有する反応液を用いる場合、分離工程としては、重合反応終了後、生成した粒状PASを含有する反応液である生成物スラリーを冷却した後、必要により水などで生成物スラリーを希釈してから、篩分することにより、該反応液から粒状PASを分離して回収することができる。
 前述のとおり、粒状PASの製造方法によれば、粒状PASを生成させることができるため、スクリーンを用いる篩分による分離が用いられる。
 また、粒状PASを含有する分散液として、上記重合工程において生成した粒状PASを含有する反応液を用いる場合、室温程度まで冷却することなく、生成物スラリーから高温状態で粒状PASを篩分けすることもできる。
 分離工程における篩分による分離に用いられるスクリーンの目開き径は、通常、目開き径75μm(200メッシュ)~180μm(80メッシュ)、好ましくは目開き径90μm(170メッシュ)~150μm(100メッシュ)である。この範囲のスクリーンを少なくとも1つ用いるが、多段で用いてもよい。通常、目開き径150μm(100メッシュ)のスクリーンが用いられることが多い。
 製品として回収された粒状PASの回収率は、脱水工程後の反応缶中に存在する仕込み硫黄源中の有効硫黄成分の全てがPASに転換したと仮定したときのPAS質量(理論量)を、得られるPASの全量として算出する。
 この回収率は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、通常80質量%以上、場合によっては83質量%以上、また場合によっては85質量%以上である。回収率の上限は、99.5質量%程度である。
 また、得られた粒状PASの平均粒子径は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、通常130~1,500μm、好ましくは、150~1,500μm、より好ましくは、180~1,500μmである。
 得られた粒状PASの重量平均分子量は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、粒状PASの重量平均分子量は、通常30,000以上、好ましくは33,000以上、より好ましくは、35,000以上である。重量平均分子量の上限は、90,000程度である。
 また得られた粒状PASのピークトップ分子量は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、通常35,000以上、好ましくは38,000以上、より好ましくは、40,000以上である。ピークトップ分子量の上限は、100,000程度である。
 得られた粒状PASの溶融粘度は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、粒状PASの溶融粘度は、通常、5Pa・s以上、好ましくは10Pa・s以上、より好ましくは、15Pa・s以上である。溶融粘度の上限は、500Pa・s程度である。溶融粘度は、キャピラリーとして、1mmφ×10mmLのフラットダイを使用し、設定温度は、310℃とした。ポリマー試料を装置に導入し、5分間保持した後、剪断速度1,216sec-1での溶融粘度を測定する。
IV.分離液からの微粉PASの製造(回収)
(IV-1)上記分離工程で生ずる、粒状PASと分離された分離液には、多くの場合、原料微粉PAS、副生アルカリ金属塩(NaCl等)、オリゴマー、揮発性物質や高沸点物質等を含有する不純物、有機アミド溶媒、相分離剤(水等)等が含まれている。
 すなわち、本発明の微粉PASは、粒状PASを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状PASと分離液とに分離する分離工程において生じた該分離液から製造された微粉PASである。
 本発明の微粉PASは、一態様において、該分離液を固液分離し、微粉PAS含有固形物を得る固液分離工程を行い、次いで、該微粉PAS含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程を行い、次いで、水性溶媒により、該ウエットケーキを洗浄する洗浄工程を行って得られた微粉PASであって、製品として有用な微粉PASである。
 この「該分離液を固液分離し、微粉PAS含有固形物を得る」には、分離液から、直ちに固液分離工程を行う場合や、分離液に後述する予備固液分離工程等を行った後に、固液分離工程を行う場合を含む。
 固液分離工程、加熱工程、洗浄工程は、以下の工程で行う。
(i)固液分離工程
 固液分離工程は、分離液を固液分離し、微粉PAS含有固形物を得る工程である。固液分離工程では、固液分離は、濾過、遠心分離、篩分、沈降等で行う。例えば濾過は、微粉用の通常の濾布を用いた濾過装置を用いることが多い。吸引濾過装置が、処理時間等からみて、有利である。固液分離工程は、連続式でもバッチ式のどちらの方法も可能である。連続式としては、水平ベルト型濾過機がある。バッチ式の場合、濾過装置としては、原料微粉PAS濃度が低い場合は、処理量からみて、フィルタープレスで行うことが好ましい。
 得られた微粉PAS含有固形物における原料微粉PASの重量平均分子量は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、好ましくは15,000以上、より好ましくは18,000以上、更により好ましくは、20,000以上である。重量平均分子量の上限は、75,000程度である。
 また、得られた微粉PAS含有固形物における原料微粉PASのピークトップ分子量は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、好ましくは30,000以上、より好ましくは33,000以上、更により好ましくは、35,000以上である。ピークトップ分子量の上限は、85,000程度である。
 得られた微粉PAS含有固形物における原料微粉PASの平均粒子径は、レーザ回折式粒子径分布測定装置による測定値であり、好ましくは1~80μm、より好ましくは、2~80μm、更により好ましくは、3~80μmである。
 得られた微粉PAS含有固形物における原料微粉PASの溶融粘度は、好ましくは0.2Pa・s以上、より好ましくは0.6Pa・s以上、更により好ましくは1.0Pa・s以上である。溶融粘度の上限は、50Pa・s程度である。溶融粘度の測定方法は前述のとおりである。
(ii)加熱工程
 加熱工程では、微粉PAS含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る。加熱工程において微粉PAS含有固形物中の有機溶媒量を減らすことにより、洗浄工程後の廃液中に含まれる有機溶媒の濃度を効果的に低減することができる。有機溶媒の由来としては、特に限定されず、例えば、固液分離工程の前に行われる有機溶媒洗浄工程(後述)で添加される有機溶媒や、粒状PASを含有する分散液に含まれていた有機溶媒等が挙げられる。
 加熱処理は、連続式、バッチ式のどちらの方法も可能である。加熱処理は、通常の槽型乾燥機、槽回転型乾燥機、気流型乾燥機、流動層型乾燥機等の乾燥機を使って行うことができる。微粉PAS含有固形物は、静置状態でも構わないが、大量の微粉PAS含有固形物を均一に加熱する場合には、何らかの方法で微粉PAS含有固形物を流動させることが望ましい。微粉PAS含有固形物を流動させながら加熱する方法としては、流動層、攪拌羽、パドル、または攪拌スクリューを備えた乾燥機を使用する方法が挙げられる。
 加熱処理は、空気、または低酸素濃度雰囲気下、あるいは窒素ガス、炭酸ガス、または水蒸気等の不活性ガス雰囲気下で行うことができる。
 また、常圧、減圧、加圧いずれの状態下でも行うことができる。
 加熱の温度は、平均して、好ましくは85℃以下、より好ましくは80℃~25℃、更により好ましくは75℃~30℃である。加熱の温度は、加熱工程における平均の温度である。加熱温度が85℃以下であると、微粉PAS含有固形物が乾燥しすぎず、また、加熱工程前の微粉PAS含有固形物に含まれる微粉PASの比表面積に対する、加熱工程後のウエットケーキに含まれる微粉PASの比表面積の比表面積保持率が低くなりにくいことから、微粉PASの濡れ性が低下しにくい。また、加熱温度が上記下限以上であると、有機溶媒量を効果的に減らすことができる。本発明の第四の実施形態において、加熱工程における加熱温度は85℃以下である。
 加熱の時間は、好ましくは0.3~10時間、より好ましくは0.5~6時間、更により好ましくは1.0~4時間である。
 加熱処理を減圧の状態下で行う場合、減圧度は、70~101KPaの範囲であれば充分である。
 加熱工程後のウエットケーキの含水率は、好ましくは30質量%以上、より好ましくは33~50質量%、更により好ましくは35~45質量%である。加熱工程後のウエットケーキの含水率が30質量%以上であると、微粉PASの濡れ性が十分に確保されやすい。また、加熱工程後のウエットケーキの含水率が上記上限以下であると、当該ウエットケーキの取り扱い性が向上しやすい。加熱工程後のウエットケーキの含水率を上記範囲に保つ方法としては、特に限定されず、例えば、分離工程後、加熱工程前に、分離液に水を添加する水添加工程(後述)を設ける方法が挙げられる。水は、含水有機溶媒(後述)の形態で添加することが好ましい。本発明の第一の実施形態において、加熱工程後のウエットケーキの含水率は30質量%以上である。
 加熱工程前の微粉PAS含有固形物に含まれる微粉PASの比表面積A1に対する、加熱工程後のウエットケーキに含まれる微粉PASの比表面積A2の比表面積保持率A2/A1は、好ましくは0.2以上(即ち、20%以上)、より好ましくは0.25以上(即ち、25%以上)、更により好ましくは0.3以上(即ち、30%以上)である。上記比表面積保持率が20%以上であると、加熱工程後のウエットケーキに含まれる微粉PASの内部には、外部と連通する空間が十分に存在し、水性溶媒が浸透しやすいため、洗浄工程において、アルカリ金属塩やPASオリゴマー等の不純物を除去しやすい。また、上記比表面積保持率の上限値は1(即ち、100%)である。上記比表面積保持率を上記範囲に保つ方法としては、特に限定されず、例えば、加熱工程における加熱温度をPASのガラス転移点(Tg)よりも低く設定する方法が挙げられる。なお、本明細書において、比表面積は、窒素吸着によるBET法で測定されたものである。本発明の第三の実施形態において、比表面積保持率A2/A1は20%以上である。
(iii)水添加工程
 分離工程後、該加熱工程前には、水添加工程を行ってもよい。水添加工程は、分離液に水を添加する工程である。水添加工程において、含水有機溶媒の形態で分離液に水を添加するのが好ましい。含水有機溶媒における有機溶媒としては、例えば、水より沸点の低い有機溶媒が挙げられ、好ましくは、水より沸点の低いことに加え、有機アミド溶媒を溶解する有機溶媒が挙げられ、より好ましくはケトン系溶媒が挙げられ、更により好ましくはアセトンが挙げられる。含水有機溶媒における含水率としては、特に限定されず、例えば、20~70質量%が挙げられ、好ましくは25~50質量%である。この含水率が上記範囲内であると、有機溶媒の濃度が低くなりすぎず、例えば、有機溶媒による洗浄効果や有機アミド溶媒の除去効果等を確保しやすく、また、加熱工程を経た後でも、微粉PASの濡れ性が低下しにくい。水添加工程は、後述の有機溶媒洗浄工程として行ってもよい。本発明の第二の実施形態においては、分離工程後、該加熱工程前に、水添加工程を行う。
(iv)洗浄工程
 洗浄工程では、水性溶媒により、ウエットケーキを洗浄する。この洗浄工程の目的は、微粉PAS中の副生アルカリ金属塩由来のアルカリ金属濃度(例えば、Na濃度)低減及び微粉PAS中のPASオリゴマー濃度低減が目的である。
 水性溶媒としては、例えば、水;酢酸、塩酸等の酸の水溶液、酢酸塩等の塩の水溶液が好ましい。好ましくは、水が用いられる。
 洗浄工程後は、濾別を行ってもよい。洗浄回数に合わせて濾別も同じ回数を行う。
(v)乾燥工程
 洗浄工程後には、乾燥工程を行ってもよい。乾燥工程は、洗浄工程で洗浄されたウエットケーキを乾燥させる工程である。乾燥処理は、連続式、バッチ式のどちらの方法も可能である。乾燥処理は、通常の熱風熱処理機、撹拌翼付の加熱装置、流動層熱処理機、槽回転式熱処理機等の熱処理装置を使って行うことができる。加熱工程の乾燥機と乾燥工程の熱処理装置を同じ装置を用いて行うこともできる。
 乾燥処理は、静置状態でも構わないが、大量のウエットケーキを均一に乾燥処理する場合には、何らかの方法でウエットケーキを流動させることが望ましい。ウエットケーキを流動させながら乾燥処理する方法としては、流動層、攪拌羽、パドル、または攪拌スクリューを備えた熱処理装置を使用する方法が挙げられる。
 乾燥処理は、空気、または低酸素濃度雰囲気下、あるいは窒素ガス、炭酸ガス、または水蒸気等の不活性ガス雰囲気下で行うことができる。
 また、常圧、減圧、加圧いずれの状態下でも行うことができる。減圧度は、70~101KPaの範囲であれば充分である。
 酸素が存在しない不活性ガス雰囲気下で乾燥処理を行うと、着色の程度が小さいというメリットがある。
 乾燥処理は、微粉PASの融点未満の温度で行うことまで可能であるが、好ましくは100~260℃、より好ましくは120~250℃、さらに好ましくは、140~240℃で行う。乾燥処理時間は、通常0.5~10時間、好ましくは1~8時間、より好ましくは2~5時間である。乾燥処理は、減圧状態で行ってもよい。
(IV-2)さらには、固液分離工程の前に、予備固液分離工程、有機溶媒洗浄工程、副生アルカリ金属塩除去工程を配置してもよい。
[予備固液分離工程]
 予備固液分離工程は、分離液を、濾過等の予備固液分離手段により、原料微粉PASと、濾液とに固液分離する工程である。
[有機溶媒洗浄工程]
 有機溶媒洗浄工程は、原料微粉PASに、アセトン等を添加し、原料微粉PASに含まれた有機アミド溶媒等を洗浄し、再度、濾過等の分離手段により、洗浄された原料微粉PASを得る工程である。
[副生アルカリ金属塩除去工程]
 副生アルカリ金属塩除去工程は、予備固液分離工程後の、原料微粉PASを水で洗浄して、副生アルカリ金属塩を溶解させ除去する工程である。
 このようにして得た予備固液分離工程、有機溶媒洗浄工程、副生アルカリ金属塩除去工程を経た、原料微粉PASを含む液体は、好ましくは原料微粉PAS0.1~15質量%、より好ましくは0.15~10質量%、さらに好ましくは0.2~5質量%程度の液体となっている。
 この場合、固液分離工程での濾過による分離は、遠心濾過やフィルタープレスを用いて濾過を行い、原料微粉PASを得ることが望ましい。この場合、固形分が、ウエットケーキの形で回収される。
(IV-3)洗浄工程後の微粉PASを製品として用いる。通常は、全量回収して用いるが、さらに篩分による分離を行い、一定の粒径以上の微粉PPSを用いてもよい。例えば、粒状PASを、目開き径150μm(100メッシュ)のスクリーンで篩分した場合、分離液から得られた微粉PASを、目開き径75μm(200メッシュ)のスクリーンによる篩分による分離を行う等することである。ただし、微粉PASの篩分による分離を行った場合は、製品化率は下がる。
V.微粉PAS
 第五の実施形態において、本発明の微粉PASは、本発明に係る製造方法により製造された微粉PASである。
 第六の実施形態において、本発明の微粉PASは、
 該微粉PASの平均粒子径が1~200μmであり、
 該微粉PASの溶融粘度が1Pa・s以上である
微粉PASである。第六の実施形態における本発明の微粉PASは、例えば、本発明に係る製造方法により製造される。
 本発明の微粉PASは、アルカリ金属塩、PASオリゴマー等の不純物が低減されている。
 本発明の微粉PASは、製品として、従来製品である上述の分離工程での篩分における篩上物から得られる粒状PASに混合して、樹脂組成物(コンパウンド)として用いることができる。
 本発明の微粉PASの重量平均分子量は、好ましくは30,000以上、より好ましくは33,000以上、更により好ましくは、35,000以上である。重量平均分子量の上限は、90,000程度である。
 本発明の微粉PASのピークトップ分子量は、好ましくは32,000以上、より好ましくは34,000以上、更により好ましくは、36,000以上である。ピークトップ分子量の上限は、100,000程度である。
 本発明の微粉PASの溶融粘度は、分離工程で得た粒状PASの溶融粘度と対比して、粒状PASの溶融粘度の好ましくは50%から150%、より好ましくは55%から130%、更により好ましくは58%から120%、特に好ましくは65%から110%である。溶融粘度の測定は、前述のとおり行う。
 また、その溶融粘度は、通常1Pa・s以上、好ましくは3Pa・s以上、更に好ましくは5Pa・s、特に好ましくは10Pa・s以上である。溶融粘度の上限は、500Pa・s程度である。
 本発明の微粉PASの平均粒子径は、レーザ回折式粒子径分布測定装置による測定値で、通常1~200μm、好ましくは、2~100μm、より好ましくは、3~80μmである。
 発生ガスとしては、硫黄含有ベンゼン系化合物、ハロゲン含有ベンゼン系化合物、窒素含有ハロゲン化合物、有機物、硫黄含有低沸点物等が考えられる。
 本発明の微粉PASのアルカリ金属含有量は、好ましくは1500ppm以下、より好ましくは1000ppm以下、更により好ましくは500ppm以下である。下限値は0ppmであるが、実用上は10ppm程度である。
 以下、本発明について、製造例、実施例及び比較例を挙げて、より具体的に説明する。本発明は、これらの実施例のみに限定されるものではない。以下の実施例及び比較例において、部及び%は、特に断りがない限り、質量基準である。
 以下に各種物性の測定法を示す。
(1)粒状PASの回収率(質量%)
 粒状PAS回収率は、脱水工程後の反応缶中に存在する仕込み硫黄源中の有効硫黄成分の全てがPASに転換したと仮定したときのPAS質量(理論量)を、PASの全量として算出する。
 すなわち、粒状PASの回収率は、回収した粒状PASの質量/PAS質量(理論量)で算出した。
(2)粒状PASの平均粒子径
 回収した粒状PASの平均粒子径は、使用篩として、メッシュ#7(目開き径2,800μm)、#12(目開き径1,410μm)、#16(目開き径1,000μm)、#24(目開き径710μm)、#32(目開き径500μm)、#60(目開き径250μm)、#100(目開き径150μm)、#145(目開き径105μm)、#200(目開き径75μm)を用いた篩分法により測定した。
(3)微粉PASの平均粒子径
 微粉PASの平均粒子径は、レーザ回折式粒子径分布測定装置(SALD 株式会社島津製作所製)により、測定した。
(4)重量平均分子量、及びピークトップ分子量
 PASの重量平均分子量(Mw)は、株式会社センシュー科学製の高温ゲルパーミエーションクロマトグラフ(GPC)SSC-7101を用いて、以下の条件で測定した。重量平均分子量、及びピークトップ分子量は、ポリスチレン換算値として算出した。
溶媒: 1-クロロナフタレン、
温度: 210℃、
検出器: UV検出器(360nm)、
サンプル注入量: 200μl(濃度:0.1質量%)、
流速: 0.7ml/分、
標準ポリスチレン: 616,000、113,000、26,000、8,200、及び600の5種類の標準ポリスチレン。
(5)溶融粘度
 PASの乾燥品約20gを用いて、東洋精機製キャピログラフ1-Cにより溶融粘度を測定した。この際、キャピラリーは、1mmφ×10mmLのフラットダイを使用し、設定温度は、310℃とした。上記のPAS試料を装置に導入し、5分間保持した後、剪断速度1,216sec-1での溶融粘度を測定した。
(6)Naイオン量
 加熱した濃硫酸中でPASを分解した後、得られた分解物を過酸化水素水で処理して試料溶液を調製し、この試料溶液について、イオンクロマト法によりNaイオンを定量した。
(7)比表面積
 PASの比表面積は、以下の装置及び条件により測定した。なお、PAS中に水分等が残留しているときは、乾燥工程後に、更に真空乾燥機で室温にて24時間、PASを乾燥して、比表面積を測定した。
  装置:株式会社島津製作所製フローソープII2300
  測定:窒素吸着によるBET法により比表面積を決定
  温度:液体窒素温度
(8)含水率
 ウエットケーキの含水率は、ウエットケーキを減圧状態(90KPa)で60℃、3時間乾燥させて、乾燥前後の質量差から算出した(該質量差/ウエットケーキの質量×100(%))。
[製造例]
(脱水工程)
 20リットルのオートクレーブに、NMP6,001gと水硫化ナトリウム水溶液(NaSH:純度62質量%)2,000g、水酸化ナトリウム(NaOH:純度74.0質量%)1,171gを仕込んだ。
該オートクレーブ内を窒素ガスで置換後、約4時間かけて、撹拌機の回転数250rpmで撹拌しながら、徐々に200℃まで昇温し、水(HO)1,014g、NMP763g、及び硫化水素(HS)12gを留出させた。
(重合工程)
 上記脱水工程後、オートクレーブの内容物を150℃まで冷却し、pDCB3,360g、NMP2,707g、水酸化ナトリウム19g、及び水167gを加え、撹拌しながら、220℃の温度で5時間反応させて、前段重合を行った。
 缶内のNMP/仕込み硫黄源(以下、「仕込みS」と略記する。)の比率(g/モル)は、375、pDCB/仕込みS(モル/モル)は1.050、HO/仕込みS(モル/モル)は1.50であった。
 前段重合のpDCBの転化率は、92%であった。
 前段重合終了後、撹拌機の回転数を400rpmに上げ、オートクレーブの内容物を撹拌しながらイオン交換水443gを圧入した。HO/仕込みS(モル/モル)は2.63であった。イオン交換水の圧入後、255℃まで昇温し、4時間反応させて後段重合を行った。
(分離工程)
 後段重合終了後、室温付近まで冷却してから、内容物を目開き径150μm(100メッシュ)のスクリーンで篩分けし、篩上に、粒状PPSのウエットケーキ、篩下に分離液を得た。
 その後、篩上の粒状PPSに、通常の洗浄、乾燥等の回収工程を行い、回収率88質量%で、製品となる粒状PPSを得た。平均粒径は、360μmであり、重量平均分子量は、42,800、ピークトップ分子量は51,200であった。また、溶融粘度は、35Pa・sであった。
[実施例1]
 製造例1の篩分による分離工程での篩下の分離液に以下の処理を行った。
 分離液を、濾過し、原料微粉PPSと、濾液とに予備固液分離した(予備固液分離工程)。原料微粉PPSを含水率50質量%の含水アセトンにより2回洗浄し、再度、濾過を行い、原料微粉PPSと濾液とに分離した(有機溶媒洗浄工程)。原料微粉PPSは70℃の乾燥機で5時間常圧状態で加熱した(加熱後水分量;35質量%)(加熱工程)。加熱前の原料微粉PPSの比表面積は115m/g、加熱後の原料微粉PPSの比表面積は89m/gであった。よって、比表面積保持率は、0.77(即ち、77%)であった。次いで、蒸留水により数回洗浄を行い(水洗工程)、濾過により固液分離しウエットケーキを得た。得られたウエットケーキを、減圧状態(90KPa)で60℃、3時間乾燥し微粉PPSを得た(乾燥工程)。この微粉PPSの平均粒子径、溶融粘度、及びNaイオン量を測定した。その結果、平均粒径は95μmであり、溶融粘度は25Pa・sであり、Naイオン量は150ppmあった。なお、十分に水洗し、乾燥した上記原料微粉PPSの溶融粘度は2Pa・s未満であった。
[実施例2]
 乾燥工程において、ウエットケーキを、減圧状態(90KPa)で、30℃、12時間乾燥し微粉PPSを得た以外は実施例1と同様に測定を行った。その結果、平均粒径は91μmであり、溶融粘度は23Pa・sであり、Naイオン量は185ppmあった。
[実施例3]
 乾燥工程において、ウエットケーキを、常圧状態で、120℃、5時間乾燥し微粉PPSを得た以外は実施例1と同様に測定を行った。その結果、平均粒径は84μmであり、溶融粘度は28Pa・sであり、Naイオン量は198ppmあった。
[実施例4]
 乾燥工程において、ウエットケーキを、常圧の窒素雰囲気状態で、120℃、5時間乾燥し微粉PPSを得た以外は実施例1と同様に測定を行った。その結果、平均粒径は98μmであり、溶融粘度は24Pa・sであり、Naイオン量は170ppmあった。
[比較例1]
 加熱工程において、原料微粉PPSを、減圧状態(90KPa)で、140℃、12時間加熱した以外は実施例1と同様に測定を行った。その結果、平均粒径は88μmであり、溶融粘度は3Pa・sであり、Naイオン量は4,500ppmあった。
[比較例2]
 有機溶媒洗浄工程において、無水アセトンを用いた以外は実施例1と同様に測定を行った。その結果、平均粒径は80μmであり、溶融粘度は2Pa・sであり、Naイオン量は4,000ppmあった。また、比表面積は13m/gであり、比表面積保持率は11%であった。
 本発明の微粉PASは、コンパウンドの一成分として再利用が可能である。本発明の微粉PASは、従来廃棄されたりして用いられてこなかった分離液中の原料微粉PASから製造されるものであり、作業環境を汚染せずに、再利用できることは非常に有意義なことである。

Claims (9)

  1.  微粉ポリアリーレンスルフィドを製造する方法であって、下記の工程;
    (a)粒状ポリアリーレンスルフィドを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状ポリアリーレンスルフィドと分離液とに分離する分離工程;
    (b)該分離液を固液分離し、微粉ポリアリーレンスルフィド含有固形物を得る固液分離工程;
    (c)該微粉ポリアリーレンスルフィド含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;
    (d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程;
    を含み、
     該加熱工程後のウエットケーキの含水率が30重量%以上である方法。
  2.  微粉ポリアリーレンスルフィドを製造する方法であって、下記の工程;
    (a)粒状ポリアリーレンスルフィドを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状ポリアリーレンスルフィドと分離液とに分離する分離工程;
    (b)該分離液を固液分離し、微粉ポリアリーレンスルフィド含有固形物を得る固液分離工程;
    (c)該微粉ポリアリーレンスルフィド含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;
    (d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程;
    を含み、
     該分離工程後、該加熱工程前に、該分離液に水を添加する水添加工程を更に含む方法。
  3.  前記水添加工程において、含水有機溶媒の形態で前記分離液に水を添加する請求項2に記載の製造方法。
  4.  微粉ポリアリーレンスルフィドを製造する方法であって、下記の工程;
    (a)粒状ポリアリーレンスルフィドを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状ポリアリーレンスルフィドと分離液とに分離する分離工程;
    (b)該分離液を固液分離し、微粉ポリアリーレンスルフィド含有固形物を得る固液分離工程;
    (c)該微粉ポリアリーレンスルフィド含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;
    (d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程;
    を含み、
     該加熱工程前の微粉ポリアリーレンスルフィド含有固形物に含まれる微粉ポリアリーレンスルフィドの比表面積A1に対する、該加熱工程後のウエットケーキに含まれる微粉ポリアリーレンスルフィドの比表面積A2の比表面積保持率A2/A1が20%以上である方法。
  5.  微粉ポリアリーレンスルフィドを製造する方法であって、下記の工程;
    (a)粒状ポリアリーレンスルフィドを含有する分散液から、目開き径75~180μmの範囲の少なくとも1つのスクリーンを用いた固液分離により粒状ポリアリーレンスルフィドと分離液とに分離する分離工程;
    (b)該分離液を固液分離し、微粉ポリアリーレンスルフィド含有固形物を得る固液分離工程;
    (c)該微粉ポリアリーレンスルフィド含有固形物を加熱して有機溶媒量を減らし、ウエットケーキを得る加熱工程;
    (d)水性溶媒により、該ウエットケーキを洗浄する洗浄工程;
    を含み、
     該加熱工程における加熱温度が平均して85℃以下である方法。
  6.  粒状ポリアリーレンスルフィドを含有する前記分散液が、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させる重合工程において生成した粒状ポリアリーレンスルフィドを含有する反応液である請求項1乃至5のいずれか1項に記載の製造方法。
  7.  請求項1乃至6のいずれか1項に記載の製造方法により製造される微粉ポリアリーレンスルフィド。
  8.  微粉ポリアリーレンスルフィドであって、
     該微粉ポリアリーレンスルフィドの平均粒子径が1~200μmであり、
     該微粉ポリアリーレンスルフィドの溶融粘度が1Pa・s以上である
    微粉ポリアリーレンスルフィド。
  9.  前記微粉ポリアリーレンスルフィドのアルカリ金属含有量が1500ppm以下である請求項8に記載の微粉ポリアリーレンスルフィド。
PCT/JP2016/060656 2015-03-31 2016-03-31 微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド WO2016159234A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177021868A KR101984418B1 (ko) 2015-03-31 2016-03-31 미분 폴리아릴렌 설파이드를 제조하는 방법 및 미분 폴리아릴렌 설파이드
JP2017510187A JP6419311B2 (ja) 2015-03-31 2016-03-31 微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド
US15/559,188 US10280264B2 (en) 2015-03-31 2016-03-31 Method for manufacturing fine polyarylene sulfide powder, and fine polyarylene sulfide powder
CN201680009361.XA CN107207743B (zh) 2015-03-31 2016-03-31 制造微粉聚亚芳基硫醚的方法以及微粉聚亚芳基硫醚

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015071157 2015-03-31
JP2015-071157 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159234A1 true WO2016159234A1 (ja) 2016-10-06

Family

ID=57005892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060656 WO2016159234A1 (ja) 2015-03-31 2016-03-31 微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド

Country Status (5)

Country Link
US (1) US10280264B2 (ja)
JP (1) JP6419311B2 (ja)
KR (1) KR101984418B1 (ja)
CN (1) CN107207743B (ja)
WO (1) WO2016159234A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521307A (ja) * 2018-07-03 2021-08-26 エルジー・ケム・リミテッド ポリアリーレンスルフィドの製造方法
JP2021535952A (ja) * 2018-10-19 2021-12-23 エルジー・ケム・リミテッド ポリアリーレンスルフィドの分離精製方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147372B (zh) * 2017-12-05 2020-01-17 宜宾天原集团股份有限公司 聚苯硫醚生产中硫化钠反应前体的制备方法
WO2020080898A1 (ko) * 2018-10-19 2020-04-23 주식회사 엘지화학 폴리아릴렌 설파이드의 분리 정제 방법
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
US11319441B2 (en) 2019-12-20 2022-05-03 Ticona Llc Method for forming a polyarylene sulfide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215728A (ja) * 1987-01-23 1988-09-08 フィリップス・ペトロリウム・カンパニー ポリ(アリーレンスルフィド)反応混合物からのポリ(アリーレンスルフィド)オリゴマーの回収方法
JP2007002172A (ja) * 2005-06-27 2007-01-11 Toray Ind Inc ポリフェニレンスルフィドオリゴマーの回収方法
JP2009227972A (ja) * 2008-02-28 2009-10-08 Toray Ind Inc ポリアリーレンスルフィドとオリゴアリーレンスルフィドの分離方法
WO2013147141A1 (ja) * 2012-03-30 2013-10-03 株式会社クレハ 粒状ポリアリーレンスルフィド及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629320B2 (ja) * 1985-11-02 1994-04-20 東ソー株式会社 ポリフエニレンスルフイドおよびその製造方法
US4748231A (en) * 1986-11-21 1988-05-31 Phillips Petroleum Company Reprecipitation of poly(arylene sulfide) to increase molecular weight thereof
JP3042640B2 (ja) 1991-09-05 2000-05-15 出光石油化学株式会社 ポリアリーレンスルフィドオリゴマーの分離方法
US6201097B1 (en) * 1998-12-31 2001-03-13 Phillips Petroleum Company Process for producing poly (arylene sulfide)
JP4848688B2 (ja) 2005-07-08 2011-12-28 東レ株式会社 ポリフェニレンスルフィド樹脂の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215728A (ja) * 1987-01-23 1988-09-08 フィリップス・ペトロリウム・カンパニー ポリ(アリーレンスルフィド)反応混合物からのポリ(アリーレンスルフィド)オリゴマーの回収方法
JP2007002172A (ja) * 2005-06-27 2007-01-11 Toray Ind Inc ポリフェニレンスルフィドオリゴマーの回収方法
JP2009227972A (ja) * 2008-02-28 2009-10-08 Toray Ind Inc ポリアリーレンスルフィドとオリゴアリーレンスルフィドの分離方法
WO2013147141A1 (ja) * 2012-03-30 2013-10-03 株式会社クレハ 粒状ポリアリーレンスルフィド及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521307A (ja) * 2018-07-03 2021-08-26 エルジー・ケム・リミテッド ポリアリーレンスルフィドの製造方法
US11414521B2 (en) 2018-07-03 2022-08-16 Lg Chem, Ltd. Preparation method of polyarylene sulfide
JP7191344B2 (ja) 2018-07-03 2022-12-19 エルジー・ケム・リミテッド ポリアリーレンスルフィドの製造方法
JP2021535952A (ja) * 2018-10-19 2021-12-23 エルジー・ケム・リミテッド ポリアリーレンスルフィドの分離精製方法
JP7150385B2 (ja) 2018-10-19 2022-10-11 エルジー・ケム・リミテッド ポリアリーレンスルフィドの分離精製方法

Also Published As

Publication number Publication date
CN107207743B (zh) 2020-03-03
KR101984418B1 (ko) 2019-05-30
US10280264B2 (en) 2019-05-07
CN107207743A (zh) 2017-09-26
US20180112042A1 (en) 2018-04-26
KR20170103875A (ko) 2017-09-13
JP6419311B2 (ja) 2018-11-07
JPWO2016159234A1 (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6419311B2 (ja) 微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド
JP5713402B2 (ja) ポリアリーレンスルフィド及びその製造方法
JP5788871B2 (ja) ポリアリーレンスルフィドの製造方法、及びポリアリーレンスルフィド
JP5623277B2 (ja) 粒状ポリアリーレンスルフィドの製造方法
US9096723B2 (en) Production process of poly(arylene sulfide) and poly(arylene sulfide)
JP4994997B2 (ja) ポリアリーレンスルフィドの製造方法
JP4256506B2 (ja) ポリアリーレンスルフィドの製造方法
JP4310279B2 (ja) ポリアリーレンスルフィドの製造方法及び洗浄方法、並びに洗浄に使用した有機溶媒の精製方法
JP6517337B2 (ja) 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド
JP6418852B2 (ja) ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィド
WO2016199869A1 (ja) ポリアリーレンスルフィドを製造する方法及びポリアリーレンスルフィド
JP2543673B2 (ja) ハンドリング性のすぐれたポリアリ―レンスルフィドの製造法
JP6456742B2 (ja) 微粉ポリアリーレンスルフィドを製造する製造方法及び微粉ポリアリーレンスルフィド
JP6366683B2 (ja) 熱処理微粉ポリアリーレンスルフィド、及び該熱処理微粉ポリアリーレンスルフィドを製造する製造方法
US11661482B2 (en) Separation and purification method of polyarylene sulfide
US11597800B2 (en) Separation and recovery method of polyarlene sulfide
JP7394987B2 (ja) ポリアリーレンスルフィドの製造方法
JP2020094147A (ja) ポリアリーレンスルフィドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510187

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177021868

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15559188

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773114

Country of ref document: EP

Kind code of ref document: A1