WO2016199869A1 - ポリアリーレンスルフィドを製造する方法及びポリアリーレンスルフィド - Google Patents

ポリアリーレンスルフィドを製造する方法及びポリアリーレンスルフィド Download PDF

Info

Publication number
WO2016199869A1
WO2016199869A1 PCT/JP2016/067267 JP2016067267W WO2016199869A1 WO 2016199869 A1 WO2016199869 A1 WO 2016199869A1 JP 2016067267 W JP2016067267 W JP 2016067267W WO 2016199869 A1 WO2016199869 A1 WO 2016199869A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic amide
solvent
water
liquid
amide solvent
Prior art date
Application number
PCT/JP2016/067267
Other languages
English (en)
French (fr)
Inventor
道寿 宮原
鈴木 賢司
佑一 片寄
崇之 木村
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/735,838 priority Critical patent/US20180171079A1/en
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2017523701A priority patent/JP6295379B2/ja
Publication of WO2016199869A1 publication Critical patent/WO2016199869A1/ja
Priority to US16/235,900 priority patent/US10556992B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0277Post-polymerisation treatment
    • C08G75/0281Recovery or purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/025Preparatory processes
    • C08G75/0254Preparatory processes using metal sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/096Nitrogen containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a method for producing polyarylene sulfide and polyarylene sulfide.
  • PAS Polyarylene sulfide
  • PPS polyphenylene sulfide
  • PPS polyphenylene sulfide
  • PAS can be molded into various molded products, films, sheets, fibers, etc. by general melt processing methods such as extrusion molding, injection molding, compression molding, etc., so electrical equipment, electronic equipment, automotive equipment, packaging materials, etc. Widely used in a wide range of technical fields.
  • pDCB paradichlorobenzene
  • NMP N-methyl-2-pyrrolidone
  • DHA dihaloaromatic compound
  • S sulfur compound
  • a method is well known in which PAS is separated from a PAS-containing reaction solution obtained by a polymerization reaction under reduced conditions, and recovered through washing and drying.
  • This polymerization reaction is a desalting polycondensation reaction.
  • by-product alkali metal salts such as alkali metal halides (for example, NaCl)
  • low polymer such as dimers and trimers
  • Impurities volatile substances, high-boiling substances, etc.
  • these organic amide solvents, by-product alkali metal salts, low polymerization products, impurities, and the like are present between the PAS particles after the polymerization reaction, in the particles, or in the reaction solution.
  • the PAS separated from the PAS-containing reaction solution is thoroughly washed to remove the organic amide solvent, by-product alkali metal salt, low polymer, impurities, etc., and then recovered to obtain the quality of PAS as a product. To maintain and improve
  • the organic amide solvent removed by the above washing is desirably recovered and reused from the viewpoints of resource saving and cost reduction.
  • a water-containing solvent is used as a washing liquid in the washing, and as a method for recovering the organic amide solvent from the washing waste liquid containing the organic amide solvent and water, a method of directly distilling the washing waste liquid, Examples of the method include extraction using an organic solvent such as a specific branched alkyl alcohol (for example, Patent Documents 1 to 3).
  • the present invention has been made in view of the above problems.
  • an organic solvent is not used from a cleaning waste liquid generated by washing a raw material mixture containing PAS and an organic amide solvent with a water-containing solvent.
  • Another object of the present invention is to provide a method for producing PAS while efficiently recovering an organic amide solvent at a low energy cost, and a PAS produced by this method.
  • a second object of the present invention is to provide a method for producing PAS by reducing the amount of water supplied when the raw material mixture is washed with a water-containing solvent, and a PAS produced by this method. To do.
  • the inventors of the present invention have raised the temperature due to compression of distillate vapor generated by distillation of the washing waste liquid generated by washing the raw material mixture with a water-containing solvent and / or compression of the heat medium heat-exchanged with the distillate vapor.
  • heating in the above distillation is performed to obtain a recovered liquid composed of a water-containing solvent having a higher organic amide solvent content, and if necessary, the recovered liquid is distilled to obtain an organic amide. It has been found that the first object can be achieved by obtaining a concentrated liquid comprising a solvent having a higher solvent content.
  • the inventors of the present invention also provide a heat medium in which the temperature rise due to compression of distillate vapor generated by distillation of the washing waste liquid generated by washing the raw material mixture with a water-containing solvent and / or heat exchanged with the distillate vapor. It is found that the second object can be achieved by heating in the distillation using the temperature rise due to compression of the distillate and using the distillate composed of the condensate of the distillate vapor as the water-containing solvent. It was. Thus, the present inventors have completed the present invention.
  • a first embodiment of the present invention is a method for producing a polyarylene sulfide comprising the following steps: (A) A washing step in which a polyarylene sulfide and an organic amide solvent are mixed with a water-containing solvent to obtain a dispersion, and the organic amide solvent is dissolved in the water-containing solvent to wash the polyarylene sulfide.
  • a distillation step for separating into a recovered liquid is a method that uses a temperature increase due to compression of the distillate vapor and / or a temperature increase due to compression of the heat medium heat-exchanged with the distillate vapor.
  • This method further includes (D) An organic amide solvent concentration step for distilling the recovered liquid to obtain a concentrated solution composed of a solvent having a higher organic amide solvent content; May be included.
  • a second embodiment of the present invention is a method for producing polyarylene sulfide, comprising the following steps: (A) A washing step in which a polyarylene sulfide and an organic amide solvent are mixed with a water-containing solvent to obtain a dispersion, and the organic amide solvent is dissolved in the water-containing solvent to wash the polyarylene sulfide. ; (B) a separation step of solid-liquid separation of the dispersion in the washing step to obtain a separation liquid; (C) By heating the separated liquid obtained in the separation step, the separated liquid is separated from a distillate vapor composed of a water-containing solvent having a smaller content of the organic amide solvent and a water-containing solvent having a larger content of the organic amide solvent.
  • a distillation step for separating into a recovered liquid Including
  • the heating in the distillation step is performed by utilizing the temperature rise due to compression of the distillate vapor and / or the temperature rise due to compression of the heat medium heat-exchanged with the distillate vapor, This is a method of using a distillate composed of a condensed product of the distillate vapor as a water-containing solvent in the washing step.
  • a third embodiment of the present invention is a polyarylene sulfide produced by the above method.
  • the organic solvent can be efficiently and efficiently used without using an organic solvent.
  • a method for producing PAS and a PAS produced by this method can be provided while recovering the amide solvent.
  • the raw material mixture containing PAS and organic amide solvent is not particularly limited, and any mixture may be used as long as it contains PAS and organic amide solvent.
  • the raw material mixture contains PAS by polymerizing at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides in an organic amide solvent, for example, and a dihaloaromatic compound. It is obtained through a polymerization step to obtain a reaction solution.
  • the raw material mixture is, for example, A prewashing step of washing PAS by mixing PAS or a mixture containing PAS with a washing solution containing an organic amide solvent to obtain a dispersion; A pre-separation step in which the liquid dispersion in the pre-washing step is separated into a PAS-containing mixture and a separation liquid;
  • the PAS-containing mixture in the preliminary cleaning step is a polymerization reaction of at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and a dihaloaromatic compound in an organic amide solvent.
  • it is preferably obtained through a polymerization step for obtaining a reaction solution containing PAS.
  • At least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides is used as the sulfur source.
  • the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and a mixture of two or more thereof.
  • sodium sulfide and lithium sulfide are preferable because they can be obtained industrially at low cost.
  • alkali metal hydrosulfide examples include lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and a mixture of two or more thereof.
  • sodium hydrosulfide and lithium hydrosulfide are preferable because they can be obtained industrially at low cost.
  • alkali metal hydrosulfide a small amount of alkali metal hydrosulfide may be contained.
  • a small amount of alkali metal sulfide may be contained in the alkali metal hydrosulfide.
  • the total molar amount of the alkali metal sulfide and the alkali metal hydrosulfide becomes a sulfur source to be used for the polymerization reaction in the polymerization step after the dehydration step to be arranged, if necessary, that is, the “charged sulfur source”. .
  • an alkali metal hydroxide is used in combination.
  • the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and a mixture of two or more thereof.
  • sodium hydroxide and lithium hydroxide are preferable because they can be obtained industrially at low cost.
  • a dihaloaromatic compound is a dihalogenated aromatic compound having two halogen atoms directly bonded to an aromatic ring.
  • a halogen atom refers to each atom of fluorine, chlorine, bromine, and iodine. In the same dihaloaromatic compound, two halogen atoms may be the same or different. These dihaloaromatic compounds can be used alone or in combination of two or more.
  • dihaloaromatic compound examples include, for example, o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl ether, dihalodiphenyl sulfone. , Dihalodiphenyl sulfoxide, dihalodiphenyl ketone and the like.
  • p-dihalobenzene p-dihalobenzene, m-dihalobenzene, and a mixture of both are preferable, p-dihalobenzene is more preferable, and p-dichlorobenzene (pDCB) is particularly preferably used.
  • pDCB p-dichlorobenzene
  • Branching / crosslinking agent In order to introduce a branched or crosslinked structure into the produced PAS, a polyhalo compound having 3 or more halogen atoms bonded (not necessarily an aromatic compound), a polyhalo compound as a branching / crosslinking agent, Preferably, trihalobenzene is used.
  • Organic amide solvent An organic amide solvent which is an aprotic polar organic solvent is used as a solvent for the dehydration reaction and polymerization reaction.
  • Specific examples of the organic amide solvent include amide compounds such as N, N-dimethylformamide and N, N-dimethylacetamide; N-alkylcaprolactam compounds such as N-methyl- ⁇ -caprolactam; N-methyl-2-pyrrolidone, N-alkylpyrrolidone compounds or N-cycloalkylpyrrolidone compounds such as N-cyclohexyl-2-pyrrolidone; N, N-dialkylimidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone; tetramethylurea, etc.
  • Tetraalkylurea compounds hexaalkylphosphoric acid triamide compounds such as hexamethylphosphoric acid triamide.
  • These organic amide solvents may be used alone or in combination of two or more.
  • the difference between the boiling point of the organic amide solvent and the boiling point of water is preferably 50 ° C. or higher, more preferably 70 ° C. or higher. Even more preferably, it is 90 ° C. or higher.
  • the upper limit of the difference is not particularly limited, but is about 150 ° C.
  • N-alkylpyrrolidone compounds N-cycloalkylpyrrolidone compounds, N-alkylcaprolactam compounds, and N, N-dialkylimidazolidinone compounds are preferable, and in particular, N-methyl-2-pyrrolidone ( NMP), N-methyl- ⁇ -caprolactam, and 1,3-dialkyl-2-imidazolidinone are preferably used, and NMP is particularly preferred.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl- ⁇ -caprolactam
  • 1,3-dialkyl-2-imidazolidinone 1,3-dialkyl-2-imidazolidinone
  • polymerization aids Various polymerization aids can be used as necessary to promote the polymerization reaction.
  • Specific examples of polymerization aids include water, organic carboxylic acid metal salts, organic sulfonic acid metal salts, alkali metal halides such as lithium halides, alkaline earth metal halides, and aromatic carboxylic acids that are generally known as polymerization aids for PAS. Examples include alkaline earth metal salts of acids, alkali metal phosphates, alcohols, paraffinic hydrocarbons, and mixtures of two or more thereof.
  • the organic carboxylic acid metal salt an alkali metal carboxylate is preferable.
  • alkali metal carboxylate examples include lithium acetate, sodium acetate, potassium acetate, sodium propionate, lithium valerate, lithium benzoate, sodium benzoate, sodium phenylacetate, potassium p-toluate, and two types thereof. The mixture of the above can be mentioned.
  • sodium acetate is particularly preferable because it is inexpensive and easily available.
  • the amount of the polymerization aid used varies depending on the type of the compound, but is usually 0.01 to 10 mol, preferably 0.1 to 2 mol, more preferably 0.2 to 1.8 mol per mol of the charged sulfur source. Mol, particularly preferably in the range of 0.3 to 1.7 mol.
  • the polymerization assistant is an organic carboxylic acid metal salt, an organic sulfonate, and an alkali metal halide
  • the upper limit of the amount used is preferably 1 mol or less, more preferably 1 mol with respect to 1 mol of the charged sulfur source. It is desirable that it is 0.8 mol or less.
  • Phase Separation Agent Various phase separation agents are used in order to accelerate the polymerization reaction and obtain a high degree of polymerization PAS in a short time, or to cause phase separation and obtain granular PAS.
  • a phase separation agent is a compound that dissolves in an organic amide solvent by itself or in the presence of a small amount of water and has an action of reducing the solubility of PAS in an organic amide solvent.
  • the phase separation agent itself is a compound that is not a solvent for PAS.
  • phase separation agent a known compound known to function as a phase separation agent can be used.
  • the phase separation agent includes the compound used as the above-mentioned polymerization aid.
  • the phase separation agent is a step of performing a polymerization reaction in a phase separation state, that is, as a phase separation agent in the phase separation polymerization step. It means a compound used in an amount ratio that can function, or in an amount ratio sufficient to cause phase separation in the presence of the polymer after the end of polymerization.
  • phase separation agents include water, organic carboxylic acid metal salts, organic sulfonic acid metal salts, alkali metal halides such as lithium halides, alkaline earth metal halides, alkaline earth metal salts of aromatic carboxylic acids, phosphorus Examples include acid alkali metal salts, alcohols, and paraffinic hydrocarbons.
  • organic carboxylic acid metal salts include alkali metal carboxylic acids such as lithium acetate, sodium acetate, potassium acetate, sodium propionate, lithium valerate, lithium benzoate, sodium benzoate, sodium phenylacetate, and potassium p-toluate. Salts are preferred.
  • phase separation agents can be used alone or in combination of two or more. Among these phase separation agents, water that is inexpensive and easy to post-process, or a combination of water and an organic carboxylic acid metal salt such as an alkali metal carboxylate is particularly preferable.
  • the phase separation agent when water is used as the phase separation agent, it can be used in combination with other phase separation agents other than water from the viewpoint of efficiently performing the phase separation polymerization.
  • the total amount may be an amount that can cause phase separation.
  • the phase separation agent may coexist at least partially from the time when the polymerization reaction component is charged, but the phase separation agent may be added during the polymerization reaction or to form phase separation after the polymerization reaction. It is desirable to adjust to a sufficient amount.
  • Polymerization PAS is produced by polymerizing at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and DHA in an organic amide solvent to produce PAS.
  • a preferable polymerization step of the present invention includes at least one sulfur selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides in an organic amide solvent containing water derived from a polymerization aid, a phase separation agent, and the like.
  • This is a polymerization process in which a source and DHA are subjected to a polymerization reaction to generate a polymerization reaction solution containing PAS.
  • the polymerization method for producing PAS may be any polymerization method as long as the present invention is not impaired.
  • polymerization methods for producing granular PAS are broadly classified as follows: (i) the polymerization step includes a phase separation polymerization step, and after the phase separation polymerization, the method is gradually cooled; (ii) the phase separation agent is added after the polymerization reaction And (iii) a method using a polymerization aid such as lithium chloride, and (iv) a method of cooling the gas phase portion of the reaction vessel.
  • phase-separation polymerization a polymerization reaction step
  • phase-separation polymerization a polymerization reaction step
  • a phase separation state in which a polymer-rich phase and a polymer-rich phase are mixed in the polymerization reaction system in the presence of a phase separation agent by controlling polymerization conditions.
  • granular PAS is produced by a polymerization method including “step”
  • a granular PAS having a high degree of polymerization is obtained, so that the sieving efficiency in the separation step is increased, and the yield and productivity are increased. Will improve. Therefore, it is an advantageous polymerization method for increasing the PAS yield of granular products having a high degree of polymerization.
  • the polymerization process in this case will be described in detail.
  • the polymerization process included in the production method for producing PAS can be carried out through the following preparation process.
  • a mixture remaining in the system and DHA are mixed in a dehydration step that is arranged as desired, and an alkali metal hydroxide and water are added as necessary to prepare an organic amide solvent, a sulfur source (a charged sulfur source). ), A feed mixture containing moisture and DHA is prepared.
  • the amount of DHA used is usually 0.90 to 1.50 mol, preferably 0.92 to 1.10 mol, and more preferably 0.95 to 1.05 mol with respect to 1 mol of the charged sulfur source.
  • the charged molar ratio of DHA to the sulfur source becomes too large, it becomes difficult to produce a high molecular weight polymer.
  • the charged molar ratio of DHA to the sulfur source becomes too small, a decomposition reaction tends to occur, and it becomes difficult to carry out a stable polymerization reaction.
  • the amount of the alkali metal hydroxide used is usually 0.95 to 1.09 mol, preferably 0.98 to 1 mol with respect to 1 mol of the charged sulfur source.
  • the amount is 1.085 mol, more preferably 0.99 to 1.083 mol.
  • the sulfur source in the preparation process is called the “prepared sulfur source”.
  • the reason is that the amount of the sulfur source put into the reaction tank before the dehydration step varies in the dehydration step.
  • the charged sulfur source is consumed by reaction with DHA in the polymerization step, but the molar amount of the charged sulfur source is based on the molar amount in the charged step.
  • the amount of the organic amide solvent is usually 0.1 to 10 kg, preferably 0.13 to 5 kg, more preferably 0.15 to 2 kg per mol of the charged sulfur source.
  • Polymerization step In the polymerization step, the charge mixture prepared in the charge step is heated to a temperature of usually 170 to 290 ° C, preferably 180 to 280 ° C, more preferably 190 to 275 ° C to start a polymerization reaction, Allow polymerization to proceed.
  • the polymerization reaction time is generally in the range of 10 minutes to 72 hours, preferably 30 minutes to 48 hours.
  • the polymerization reaction is preferably performed in a two-stage process including a pre-stage polymerization process and a post-stage polymerization process.
  • this polymerization step in an organic amide solvent, at least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and DHA are generated in the polymerization reaction system in the presence of a phase separation agent. It includes a polymerization step in which a polymerization reaction is performed in a phase-separated state in which a polymer rich phase and a produced polymer dilute phase coexist. The polymerization reaction is performed at a temperature of 170 to 290 ° C.
  • the phase separation agent water described above, a compound known to function as a phase separation agent, or the like is preferably used.
  • At least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and a DHA are polymerized in an organic amide solvent at a temperature of 170 to 270 ° C.
  • a phase separation agent is added to the polymerization reaction mixture so that the phase separation agent is present in the polymerization reaction system, and then the polymerization reaction mixture is heated, It is preferable to continue the polymerization reaction at a temperature of 245 to 290 ° C. in a phase separation state in which the produced polymer rich phase and the produced polymer dilute phase coexist in the polymerization reaction system in the presence of the phase separation agent.
  • At least one sulfur source selected from the group consisting of an alkali metal sulfide and an alkali metal hydrosulfide is polymerized in an organic amide solvent, and the DHA has a conversion rate of 30. %, Preferably 80 to 99% of the pre-polymerization step; and in the presence of a phase separation agent, polymerization is performed in a phase-separated state in which the produced polymer rich phase and the produced polymer dilute phase coexist in the polymerization reaction system. It is preferable to carry out the polymerization reaction by at least two polymerization steps including a subsequent polymerization step in which the reaction is continued.
  • At least one sulfur source selected from the group consisting of alkali metal sulfides and alkali metal hydrosulfides and DHA are added in an amount of 0.01 per mole of charged sulfur source.
  • the polymerization reaction is performed by at least two stages of polymerization processes including a subsequent polymerization process in which the polymerization reaction is continued in a phase-separated state in which the rich phase and the resulting polymer dilute phase coexist. Masui.
  • the conversion rate of DHA is a value calculated by the following equation.
  • the amount of coexisting water in the reaction system in the pre-stage polymerization step is usually 0.01 to 2.0 mol, preferably 0.05 to 1.8 mol, more preferably 0.5 to 1.6 mol, per mol of the charged sulfur source. Particularly preferred is the range of 0.8 to 1.5 mol.
  • prepolymer In the former polymerization step, it is desirable to produce a polymer (sometimes referred to as “prepolymer”) having a melt viscosity of usually 0.1 to 30 Pa ⁇ s measured at a temperature of 310 ° C. and a shear rate of 1,216 sec ⁇ 1. .
  • the post-polymerization step is not a simple fractionation / granulation step of the polymer (prepolymer) produced in the pre-polymerization step, but is for causing an increase in the degree of polymerization of the polymer.
  • the subsequent polymerization step it is particularly preferable to use water as the phase separation agent, and more than 2.0 mol, more preferably less than 10 mol, more preferably more than 2.0 mol, more than 9 mol relative to 1 mol of the charged sulfur source It is preferable to adjust the amount of water in the polymerization reaction system so that 2.1 to 8 mol, particularly preferably 2.2 to 7 mol of water is present.
  • the degree of polymerization of the produced PAS may decrease.
  • water and another phase separation agent other than water can be used in combination.
  • the amount of water in the polymerization reaction system is 0.1 to 10 mol, preferably 0.3 to 10 mol, more preferably 0.4 to 9 mol, particularly preferably 0. It is preferable to adjust the amount within the range of 5 to 8 mol, and to make the phase separation agent other than water exist within the range of 0.001 to 3 mol per mol of the charged sulfur source.
  • phase separation agents that are particularly preferred to be used in combination with organic carboxylic acid metal salts, especially alkali metal carboxylates, in which case water is added in an amount of 0.5 to 1 mol per mol of the charged sulfur source. It is used within a range of 10 mol, preferably 0.6 to 7 mol, particularly preferably 0.8 to 5 mol, and alkali metal carboxylate is used in an amount of 0.001 to 0.7 mol, preferably 0.02 to It may be used within a range of 0.6 mol, particularly preferably 0.05 to 0.5 mol.
  • the polymerization temperature in the subsequent polymerization step is in the range of 245 to 290 ° C.
  • the polymerization temperature is less than 245 ° C., it is difficult to obtain a high degree of polymerization, and when it exceeds 290 ° C., the PAS and the organic amide solvent are decomposed. There is a fear.
  • a temperature range of 250 to 270 ° C. is preferable because a PAS having a high degree of polymerization can be easily obtained.
  • a dehydration step may be arranged as desired before the preparation step in carrying out the polymerization step.
  • water consisting of hydrated water (crystal water), an aqueous medium, by-product water and the like is dehydrated until it falls within the required amount.
  • the amount of coexisting water in the polymerization reaction system is usually 0.01 to 2.0 mol, preferably 0.05 to 1.8 mol, more preferably 0.5 to 0.1 mol with respect to 1 mol of the charged sulfur source. Dehydrate to 1.6 moles.
  • the sulfur source after the dehydration step and before the start of the polymerization step is referred to as “prepared sulfur source”.
  • water may be added to the desired amount of water before the polymerization step.
  • an alkali metal hydrosulfide When an alkali metal hydrosulfide is used as the sulfur source, 0.9 to 1.1 mol, preferably 0.91 per mol of the organic amide solvent, the alkali metal hydrosulfide, and the alkali metal hydrosulfide in the dehydration step.
  • the mixture containing ⁇ 1.08 mol, more preferably 0.92 to 1.07 mol, particularly preferably 0.93 to 1.06 mol of alkali metal hydroxide is heated to react, and the mixture is reacted. It is preferable that at least a part of the distillate containing water is discharged out of the system.
  • Pre-washing, pre-separation Pre-cleaning process
  • water-insoluble impurities mixed in the PAS or PAS-containing mixture such as PAS oligomers, decomposition products in the polymerization process, unreacted raw materials (for example, unreacted materials such as unreacted pDCB)
  • unreacted raw materials for example, unreacted materials such as unreacted pDCB
  • the PAS is washed using a washing solution containing an organic amide solvent.
  • the cleaning liquid containing an organic amide solvent examples include an organic amide solvent, a mixed solvent of an organic amide solvent and water, other solvents such as ketones, alcohols, and hexane.
  • a mixed solvent of an organic amide solvent and water. are preferred, and organic amide solvents are more preferred.
  • the ratio of the organic amide solvent in the cleaning liquid containing the organic amide solvent is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, and still more preferably 70 to 100% by mass. 80 to 100% by mass is even more preferable, and 90 to 100% by mass is particularly preferable.
  • the cleaning liquid in the preliminary cleaning process at least a part of the recovered liquid obtained in the distillation process described below and / or organic described below is used. It is preferable to use at least a part of the concentrate obtained in the amide solvent concentration step, and more preferable to use at least a part of the concentrate obtained in the organic amide solvent concentration step in terms of higher purity of the organic amide solvent. .
  • the second embodiment of the present invention it is preferable to use at least a part of the recovered liquid obtained in the distillation process described later as the cleaning liquid in the preliminary cleaning process. .
  • the dispersion in the preliminary washing step is subjected to solid-liquid separation, and separated into a PAS-containing mixture and a separation liquid.
  • the dispersion may be a dispersion being washed in the preliminary washing step or a dispersion after washing in the preliminary washing step.
  • the dispersion during the washing is a dispersion when it is difficult to clearly distinguish between the preliminary washing step and the preliminary separation step as in the case of washing and separation in a continuous washing tower or the like.
  • This dispersion is a dispersion in which the preliminary washing step and the preliminary separation step can be clearly distinguished.
  • the opening diameter of the screen used for separation by sieving in the preliminary separation step is usually 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh), preferably 90 ⁇ m (170 mesh) to 150 ⁇ m (100 mesh). ). At least one screen in this range is used, but it may be used in multiple stages. Usually, a screen having an opening diameter of 150 ⁇ m (100 mesh) is often used.
  • water-containing solvent examples include water, a mixed solvent of water and an organic amide solvent, alcohols, ketones, and the like, and a mixed solvent of water, water and an organic amide solvent is preferable, and water and organic A mixed solvent with an amide solvent is more preferable.
  • the ratio of water in the water-containing solvent is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, still more preferably 90 to 100% by mass, and 95 to 100% by mass. Even more preferably, it is particularly preferably 98 to 100% by mass.
  • the dispersion in the washing process is subjected to solid-liquid separation to obtain a separation liquid.
  • the dispersion may be a dispersion being washed in the washing process or a dispersion after washing in the washing process.
  • the dispersion during washing is a dispersion when it is difficult to clearly distinguish between the washing step and the separation step as in the case of washing and separation in a continuous washing tower or the like.
  • the liquid is a dispersion in which the washing process and the separation process can be clearly distinguished. Solid-liquid separation in the separation step can be performed in the same manner as in the preliminary separation step.
  • the recovery rate of PAS recovered as a product is obtained as the PAS mass (theoretical amount) when it is assumed that all of the available sulfur components in the charged sulfur source present in the reaction vessel after the dehydration step have been converted to PAS. Calculated as the total amount of PAS produced.
  • This recovery rate depends on the sieve opening of the screen, but in the case of at least one screen having an opening of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh), it is usually 80% by mass or more. Is 83% by mass or more, and in some cases, 85% by mass or more.
  • the upper limit of the recovery rate is about 99.5% by mass.
  • the average particle diameter of the obtained PAS depends on the opening diameter of the screen of the sieve, but in the case of at least one screen having an opening diameter of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh),
  • the thickness is 100 to 5,000 ⁇ m, preferably 120 to 3,000 ⁇ m, more preferably 130 to 1,500 ⁇ m.
  • the melt viscosity of the obtained PAS depends on the mesh opening diameter of the sieve screen, but in the case of at least one screen having an opening diameter of 75 ⁇ m (200 mesh) to 180 ⁇ m (80 mesh), the melt viscosity of PAS Is usually 0.5 to 5,000 Pa ⁇ s, preferably 1 to 4,500 Pa ⁇ s, more preferably 2 to 4 as measured under conditions of a temperature of 310 ° C. and a shear rate of 1,216 sec ⁇ 1. 000 Pa ⁇ s.
  • Distillation step In the distillation step, by heating the separated liquid obtained in the separation step, the separated liquid is separated into a distillate vapor comprising a water-containing solvent having a lower organic amide solvent content and water having a higher organic amide solvent content. It isolate
  • the heating in the distillation step is performed by utilizing the temperature increase due to compression of the distillate vapor and / or the temperature increase due to compression of the heat medium exchanged with the distillate vapor.
  • the heating may be performed in combination with other temperature raising means, and at the time of the combined use, the heating is mainly caused by the temperature rise due to compression of the distillate vapor and / or heat exchange with the distillate vapor.
  • the recovered liquid composed of the water-containing solvent having a high content of the organic amide solvent contains the organic amide solvent with sufficient concentration and quality, at least a part of the recovered liquid is used as the reaction solvent in the polymerization step. Can be used as
  • the distillation step since distillation is performed using a so-called heat pump, a large amount of energy consumed for evaporating water from the separation liquid obtained in the separation step is recovered again as energy and used for heating the separation liquid. be able to. As a result, the distillation can be performed with an energy of about 10% to 40%, compared to the case where the distillation is performed without using a heat pump.
  • a distillate composed of the condensed vapor of the distillate vapor (hereinafter also referred to as “distillate in the distillation step”) is used as the water-containing solvent in the washing step.
  • water can be reused, and the amount of water supplied from the outside can be reduced.
  • a distillate derived from distillate vapor by distillation in the organic amide solvent concentration step described later (hereinafter also referred to as “distillate in the organic amide solvent concentration step”) is washed. It can also be used as a water-containing solvent.
  • the distillate in the organic amide solvent concentration step is an impurity. Therefore, it is preferable to mainly use the distillate in the distillation step as a water-containing solvent in the washing step.
  • a method of performing distillation using a so-called heat pump is not particularly limited, and examples thereof include a method using an apparatus described in JP-A-2014-168740.
  • the distillation method may be a single-stage type or a multi-stage type, and is preferably a single-stage type.
  • the heat medium that exchanges heat with the distillate vapor is not particularly limited, and examples thereof include fluorocarbons such as Freon, ammonia, and hydrocarbons.
  • Organic Amide Solvent Concentration Step In the organic amide solvent concentration step, the recovered liquid separated in the distillation step is distilled to obtain a concentrated solution composed of a solvent having a higher organic amide solvent content.
  • the distillation method is not particularly limited, and a known method can be employed.
  • distillation of the recovered liquid is performed by separating the recovered liquid and the separated liquid separated in the preliminary separation step. May be carried out by distillation.
  • the distillate derived from the distillate vapor by distillation in the organic amide solvent concentration step may be discarded, or the total amount of the distillate or the distillate not discarded above.
  • the remaining portion may be reused, for example, as a cleaning liquid in the cleaning process.
  • the amount of water separated in the distillate is greatly reduced, even if at least a part of the distillate is discarded, it is possible to save resources, reduce costs, etc. Can be kept low.
  • the ratio of the organic amide solvent in the concentrated liquid obtained by the organic amide solvent concentration step is preferably 50 to 100% by mass, more preferably 60 to 100% by mass, and 70 to 100% by mass. Even more preferably, it is 80 to 100% by mass, still more preferably 90 to 100% by mass.
  • the concentrate obtained by the organic amide solvent concentration step contains an organic amide solvent having a sufficient concentration and quality
  • at least a part of the concentrate may be used as a reaction solvent in the polymerization step.
  • At least a part of the concentrated liquid may be used in combination with at least a part of the recovered liquid.
  • FIG. 1 shows the method of the present invention for producing a PAS while recovering an organic amide solvent from a washing waste liquid generated by washing a raw material mixture containing PAS and an organic amide solvent with a water-containing solvent. It is a schematic diagram shown.
  • FIG. 2 is a schematic view showing a conventional method for producing PAS while recovering an organic amide solvent from a washing waste liquid generated by washing a raw material mixture containing PAS and an organic amide solvent with a water-containing solvent. It is.
  • the raw material mixture A containing PAS and NMP is washed with NMP in the preliminary washing / separation apparatus 1 and separated into a PAS-containing mixture B containing PAS and NMP and NMP E.
  • the PAS-containing mixture B is washed with a water-containing solvent in the washing / separation apparatus 2 and separated into a product PAS C containing PAS and water and a water-containing solvent F.
  • the water-containing solvent F contains water having a higher content of distillate H and NMP derived from a distillate vapor composed of a water-containing solvent having a lower content of NMP by means of a heat recovery distillation apparatus 3 using a so-called heat pump. It isolate
  • the distillate H is reused as a cleaning liquid in the cleaning / separation apparatus 2.
  • the recovered liquid I is mixed with NMP E in the mixing tank 4, and the water-containing solvent J is distilled in the distillation apparatus 5 and separated into NMP D and water K.
  • NMP D is reused as NMP used in the preliminary cleaning / separation apparatus 1.
  • the water K is discarded.
  • FIG. 2 is the same as FIG. 1 except that the water-containing solvent F is directly charged into the mixing tank 4 and the distillate H is not supplied to the cleaning / separation apparatus 2 without using the heat recovery distillation apparatus 3. It is the same.
  • Table 1 shows an example of the material balance in FIG.
  • Table 2 shows an example of the material balance in FIG.
  • the unit of the numerical value in Table 1 and 2 is a mass part.
  • the amount of water G supplied to the cleaning / separation device 2 (125 parts by mass) is approximately compared with the conventional method (1475 parts by mass). It is reduced to 1/10.
  • the amount of water (50 parts by mass) in the water-containing solvent J is greatly reduced compared to the conventional method (1400 parts by mass). The amount of energy used to separate NMP and water has been greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

ポリアリーレンスルフィド(PAS)と有機アミド溶媒とを含有する原料混合物を水含有溶媒で洗浄して生じた洗浄廃液から、有機溶媒を用いずに、低エネルギーコストで効率的に有機アミド溶媒を回収しつつ、PASを製造する方法;該原料混合物を水含有溶媒で洗浄する際に供給される水の量を低減してPASを製造する方法;及び該方法により製造されるPASを提供する。 本発明に係る方法は、PASと有機アミド溶媒とを含有する原料混合物を水含有溶媒と混合して、PASを洗浄する工程;固液分離により分離液を得る工程;加熱により、該分離液を、有機アミド溶媒含有量がより少ない留出蒸気と有機アミド溶媒含有量がより多い回収液とに分離する工程;を含み、該加熱は、該留出蒸気の圧縮及び/又は該留出蒸気と熱交換された熱媒体の圧縮による温度上昇を利用して行う。

Description

ポリアリーレンスルフィドを製造する方法及びポリアリーレンスルフィド
 本発明は、ポリアリーレンスルフィドを製造する方法及びポリアリーレンスルフィドに関する。
 ポリフェニレンスルフィド(以下、「PPS」と略記することがある。)に代表されるポリアリーレンスルフィド(以下、「PAS」と略記することがある。)は、耐熱性、耐薬品性、難燃性、機械的強度、電気特性、寸法安定性などに優れたエンジニアリングプラスチックである。PASは、押出成形、射出成形、圧縮成形などの一般的溶融加工法により、各種成形品、フィルム、シート、繊維等に成形可能であるため、電気機器、電子機器、自動車機器、包装材料などの広範な技術分野において汎用されている。
 PASの代表的な製造方法としては、N-メチル-2-ピロリドン(以下、「NMP」と略記することがある。)などの有機アミド溶媒中で、パラジクロルベンゼン(以下、「pDCB」と略記することがある。)などのジハロ芳香族化合物(以下、「DHA」と略記することがある。)と、硫黄源としてのアルカリ金属硫化物、アルカリ金属水硫化物等の硫黄化合物とを加熱条件下で重合反応させて得られるPAS含有反応液からPASを分離し、洗浄、乾燥を経て回収する方法がよく知られている。
 この重合反応は、脱塩重縮合反応であり、反応物であるPASの他に、例えば、アルカリ金属ハロゲン化物(例えば、NaCl)などの副生アルカリ金属塩、ダイマー、トリマー等の低重合物、不純物(揮発性物質、高沸点物質等)等が生成し、反応後には、未反応の原料が残存する。このため、重合反応後のPASの粒子間や粒子内あるいは反応液には、これら有機アミド溶媒、副生アルカリ金属塩、低重合物、不純物等が存在することとなる。したがって、PAS含有反応液から分離したPASは、充分な洗浄により、有機アミド溶媒、副生アルカリ金属塩、低重合物、不純物等を除去した上で、回収することにより、製品としてのPASの品質の維持向上を図っている。
 上記洗浄により除去された有機アミド溶媒は、省資源化、コスト削減等の観点から、回収し、再利用することが望ましい。有機アミド溶媒を除去するために上記洗浄において洗浄液として水含有溶媒を用い、有機アミド溶媒と水とを含有する洗浄廃液から有機アミド溶媒を回収する方法としては、上記洗浄廃液を直接蒸留する方法、特定の分枝状アルキルアルコール等の有機溶媒を用いて抽出する方法(例えば、特許文献1~3)等が挙げられる。
特公平6-53728号公報 特開2002-1008号公報 特開2007-269638号公報
 上記洗浄廃液を直接蒸留する方法の場合、以下の点が問題となる。通常、有機アミド溶媒の沸点は、水の沸点よりも高いため、上記蒸留に際しては、主に、水の蒸発に要するエネルギーが、蒸留に必要なエネルギーとなる。水の蒸発潜熱は大きいため、上記蒸留において水を蒸発させるためには、大きなエネルギーが必要であり、省資源化、コスト削減等を図りにくい。
 有機溶媒を用いる方法の場合、水、有機アミド溶媒以外の溶媒が必要であり、その結果、プロセスの複雑化、設備費やランニングコストの上昇が生じ、同様に省資源化、コスト削減等を図りにくい。
 なお、有機アミド溶媒を除去するために上記洗浄において洗浄液として水含有溶媒を用いる場合、省資源化、コスト削減等の観点から、水の供給量を低減することも求められる。
 本発明は、上記の課題に鑑みなされたものであって、第1に、PASと有機アミド溶媒とを含有する原料混合物を水含有溶媒で洗浄して生じた洗浄廃液から、有機溶媒を用いずに、低エネルギーコストで効率的に有機アミド溶媒を回収しつつ、PASを製造する方法及びこの方法により製造されるPASを提供することを目的とする。本発明は、第2に、上記原料混合物を水含有溶媒で洗浄する際に供給される水の量を低減してPASを製造する方法及びこの方法により製造されるPASを提供することを目的とする。
 本発明者らは、上記原料混合物を水含有溶媒で洗浄して生じた洗浄廃液の蒸留により生じた留出蒸気の圧縮による温度上昇及び/又は該留出蒸気と熱交換された熱媒体の圧縮による温度上昇を利用して、上記蒸留における加熱を行って、有機アミド溶媒の含有量がより多い水含有溶媒からなる回収液を得、また必要に応じてこの回収液を蒸留して、有機アミド溶媒の含有量が更に多い溶媒からなる濃縮液を得ることにより、上記第1の目的が達成されることを見出した。また、本発明者らは、上記原料混合物を水含有溶媒で洗浄して生じた洗浄廃液の蒸留により生じた留出蒸気の圧縮による温度上昇及び/又は該留出蒸気と熱交換された熱媒体の圧縮による温度上昇を利用して上記蒸留における加熱を行い、該留出蒸気の凝結物からなる留出液を上記水含有溶媒として用いることにより、上記第2の目的が達成されることを見出した。このようにして、本発明者らは、本発明を完成するに至った。
 かくして、本発明の第1の実施形態は、ポリアリーレンスルフィドを製造する方法であって、下記の工程;
(a)ポリアリーレンスルフィドと有機アミド溶媒とを含有する原料混合物を水含有溶媒と混合して分散液を得、有機アミド溶媒を水含有溶媒中に溶解させて、ポリアリーレンスルフィドを洗浄する洗浄工程;
(b)洗浄工程における分散液を固液分離し、分離液を得る分離工程;
(c)分離工程で得た分離液の加熱により、該分離液を、有機アミド溶媒の含有量がより少ない水含有溶媒からなる留出蒸気と有機アミド溶媒の含有量がより多い水含有溶媒からなる回収液とに分離する蒸留工程;
を含み、
 蒸留工程における加熱は、該留出蒸気の圧縮による温度上昇及び/又は該留出蒸気と熱交換された熱媒体の圧縮による温度上昇を利用して行う方法である。この方法は、更に、
(d)該回収液を蒸留して、有機アミド溶媒の含有量が更に多い溶媒からなる濃縮液を得る有機アミド溶媒濃縮工程;
を含んでもよい。
 本発明の第2の実施形態は、ポリアリーレンスルフィドを製造する方法であって、下記の工程;
(a)ポリアリーレンスルフィドと有機アミド溶媒とを含有する原料混合物を水含有溶媒と混合して分散液を得、有機アミド溶媒を水含有溶媒中に溶解させて、ポリアリーレンスルフィドを洗浄する洗浄工程;
(b)洗浄工程における分散液を固液分離し、分離液を得る分離工程;
(c)分離工程で得た分離液の加熱により、該分離液を、有機アミド溶媒の含有量がより少ない水含有溶媒からなる留出蒸気と有機アミド溶媒の含有量がより多い水含有溶媒からなる回収液とに分離する蒸留工程;
を含み、
 蒸留工程における加熱は、該留出蒸気の圧縮による温度上昇及び/又は該留出蒸気と熱交換された熱媒体の圧縮による温度上昇を利用して行い、
 該留出蒸気の凝結物からなる留出液を、洗浄工程における水含有溶媒として用いる方法である。
 本発明の第3の実施形態は、上記方法により製造されるポリアリーレンスルフィドである。
 本発明によれば、第1に、PASと有機アミド溶媒とを含有する原料混合物を水含有溶媒で洗浄して生じた洗浄廃液から、有機溶媒を用いずに、低エネルギーコストで効率的に有機アミド溶媒を回収しつつ、PASを製造する方法及びこの方法により製造されるPASを提供することができる。本発明によれば、第2に、上記原料混合物を水含有溶媒で洗浄する際に供給される水の量を低減してPASを製造する方法及びこの方法により製造されるPASを提供することができる。
PASと有機アミド溶媒とを含有する原料混合物を水含有溶媒で洗浄して生じた洗浄廃液から、有機アミド溶媒を回収しつつ、PASを製造する本発明の方法を示す模式図である。 PASと有機アミド溶媒とを含有する原料混合物を水含有溶媒で洗浄して生じた洗浄廃液から、有機アミド溶媒を回収しつつ、PASを製造する従来の方法を示す模式図である。
 PASと有機アミド溶媒とを含有する原料混合物は、特に限定されず、PASと有機アミド溶媒とを含有する限り、いかなる混合物でもよい。
 前記原料混合物は、例えば、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて、PASを含有する反応液を得る重合工程を経て得られる。
 あるいは、前記原料混合物は、例えば、
 PAS又はPAS含有混合物を、有機アミド溶媒を含有する洗浄液と混合して分散液を得て、PASを洗浄する予備洗浄工程;
 予備洗浄工程における分散液を固液分離し、PAS含有混合物と分離液とに分離する予備分離工程;
を経て得られる。ここで、予備洗浄工程における前記PAS含有混合物は、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて、PASを含有する反応液を得る重合工程を経て得られることが好ましい。
 以下、下記I.II.では、先ず、PASの製造の一例に関して述べる。なお、PASの製造方法及びその際の重合方法は、以下の方法に限定されず、本発明の効果を損なわない限り、如何なる方法でもよい。
I.PASの製造方法
1.硫黄源
 硫黄源としてアルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源を使用する。アルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウム、及びこれらの2種以上の混合物などを挙げることができる。
 これらの中でも、工業的に安価に入手できる点で、硫化ナトリウム及び硫化リチウムが好ましい。
 アルカリ金属水硫化物としては、水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化ルビジウム、水硫化セシウム、及びこれらの2種以上の混合物などを挙げることができる。これらの中でも、工業的に安価に入手できる点で、水硫化ナトリウム及び水硫化リチウムが好ましい。
 アルカリ金属硫化物の中には、少量のアルカリ金属水硫化物が含有されていてもよい。アルカリ金属水硫化物の中には、少量のアルカリ金属硫化物が含有されていてもよい。これらの場合、アルカリ金属硫化物とアルカリ金属水硫化物との総モル量が、必要により配置する脱水工程後の、重合工程で重合反応に供される硫黄源、すなわち「仕込み硫黄源」になる。
 アルカリ金属硫化物とアルカリ金属水硫化物とを混合して用いる場合には、当然、両者が混在したものが仕込み硫黄源となる。
 硫黄源がアルカリ金属水硫化物を含有するものである場合、アルカリ金属水酸化物を併用する。アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、及びこれらの2種以上の混合物が挙げられる。これらの中でも、工業的に安価に入手できる点で水酸化ナトリウム及び水酸化リチウムが好ましい。
2.ジハロ芳香族化合物
 ジハロ芳香族化合物(DHA)は、芳香環に直接結合した2個のハロゲン原子を有するジハロゲン化芳香族化合物である。ハロゲン原子とは、フッ素、塩素、臭素、及びヨウ素の各原子を指し、同一ジハロ芳香族化合物において、2つのハロゲン原子は、同じでも異なっていてもよい。これらのジハロ芳香族化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。ジハロ芳香族化合物の具体例としては、例えば、o-ジハロベンゼン、m-ジハロベンゼン、p-ジハロベンゼン、ジハロトルエン、ジハロナフタレン、メトキシ-ジハロベンゼン、ジハロビフェニル、ジハロ安息香酸、ジハロジフェニルエーテル、ジハロジフェニルスルホン、ジハロジフェニルスルホキシド、ジハロジフェニルケトン等が挙げられる。これらの中でも、p-ジハロベンゼン、m-ジハロベンゼン、及びこれら両者の混合物が好ましく、p-ジハロベンゼンがより好ましく、p-ジクロロベンゼン(pDCB)が、特に好ましく用いられる。
3.分岐・架橋剤
 生成PASに分岐または架橋構造を導入するために、3個以上のハロゲン原子が結合したポリハロ化合物(必ずしも芳香族化合物でなくてもよい)、分岐・架橋剤としてのポリハロ化合物として、好ましくはトリハロベンゼンが挙げられる。
4.有機アミド溶媒
 脱水反応及び重合反応の溶媒として、非プロトン性極性有機溶媒である有機アミド溶媒を用いる。有機アミド溶媒の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物;N-メチル-ε-カプロラクタム等のN-アルキルカプロラクタム化合物;N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン等のN-アルキルピロリドン化合物またはN-シクロアルキルピロリドン化合物;1,3-ジアルキル-2-イミダゾリジノン等のN,N-ジアルキルイミダゾリジノン化合物;テトラメチル尿素等のテトラアルキル尿素化合物;ヘキサメチルリン酸トリアミド等のヘキサアルキルリン酸トリアミド化合物等が挙げられる。これらの有機アミド溶媒は、それぞれ単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。なお、本発明においては、後述する蒸留工程における分離効率の観点から、有機アミド溶媒の沸点と水の沸点との差が50℃以上であることが好ましく、70℃以上であることがより好ましく、90℃以上であることが更により好ましい。上記差の上限は、特に限定されないが、150℃程度である。
 これらの有機アミド溶媒の中でも、N-アルキルピロリドン化合物、N-シクロアルキルピロリドン化合物、N-アルキルカプロラクタム化合物、及びN,N-ジアルキルイミダゾリジノン化合物が好ましく、特に、N-メチル-2-ピロリドン(NMP)、N-メチル-ε-カプロラクタム、及び1,3-ジアルキル-2-イミダゾリジノンが好ましく用いられ、NMPが特に好ましい。
5.重合助剤
 重合反応を促進させるために、必要に応じて、各種重合助剤を用いることができる。重合助剤の具体例としては、一般にPASの重合助剤として公知の水、有機カルボン酸金属塩、有機スルホン酸金属塩、ハロゲン化リチウムなどのアルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、パラフィン系炭化水素類、及びこれらの2種以上の混合物などが挙げられる。有機カルボン酸金属塩としては、アルカリ金属カルボン酸塩が好ましい。アルカリ金属カルボン酸塩としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、吉草酸リチウム、安息香酸リチウム、安息香酸ナトリウム、フェニル酢酸ナトリウム、p-トルイル酸カリウム、及びこれらの2種以上の混合物を挙げることができる。アルカリ金属カルボン酸塩としては、安価で入手しやすいことから、酢酸ナトリウムが特に好ましい。重合助剤の使用量は、化合物の種類により異なるが、仕込み硫黄源1モルに対し、通常0.01~10モル、好ましくは0.1~2モル、より好ましくは0.2~1.8モル、特に好ましくは0.3~1.7モルの範囲である。
 重合助剤が、有機カルボン酸金属塩、有機スルホン酸塩、及びアルカリ金属ハライドである場合には、その使用量の上限は、仕込み硫黄源1モルに対し、好ましくは1モル以下、より好ましくは0.8モル以下であることが望ましい。
6.相分離剤
 重合反応を促進させ、高重合度のPASを短時間で得るために、または相分離を生起し粒状PASを得るために、各種相分離剤を用いる。相分離剤とは、それ自身でまたは少量の水の共存下に、有機アミド溶媒に溶解し、PASの有機アミド溶媒に対する溶解性を低下させる作用を有する化合物である。相分離剤自体は、PASの溶媒ではない化合物である。
 相分離剤としては、相分離剤として機能することが知られている公知の化合物を用いることができる。相分離剤には、前記の重合助剤として使用される化合物も含まれるが、ここでは、相分離剤とは、相分離状態で重合反応を行う工程、すなわち相分離重合工程で相分離剤として機能し得る量比、または重合終了後その存在下で相分離を生起せしめるに十分な量比、で用いられる化合物を意味する。相分離剤の具体例としては、水、有機カルボン酸金属塩、有機スルホン酸金属塩、ハロゲン化リチウムなどのアルカリ金属ハライド、アルカリ土類金属ハライド、芳香族カルボン酸のアルカリ土類金属塩、リン酸アルカリ金属塩、アルコール類、パラフィン系炭化水素類などが挙げられる。有機カルボン酸金属塩としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、吉草酸リチウム、安息香酸リチウム、安息香酸ナトリウム、フェニル酢酸ナトリウム、p-トルイル酸カリウムなどのアルカリ金属カルボン酸塩が好ましい。これらの相分離剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。これらの相分離剤の中でも、コストが安価で、後処理が容易な水、または水とアルカリ金属カルボン酸塩などの有機カルボン酸金属塩との組み合わせが、特に好ましい。
 相分離剤として水を使用する場合でも、相分離重合を効率的に行う観点から、水以外の他の相分離剤と併用することができる。相分離重合工程において、水と他の相分離剤とを併用する場合、その合計量は、相分離を起こすことができる量であればよい。相分離剤は、少なくとも一部は、重合反応成分の仕込み時から共存していてもかまわないが、重合反応の途中で相分離剤を添加して、又は重合反応後に相分離を形成するのに充分な量に調整することが望ましい。
II.重合
 PASの製造は、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを重合反応させてPASを生成させることで行われる。
 また、本発明の好ましい重合工程は、重合助剤や相分離剤等に由来する水を含む有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを重合反応させ、PASを含む重合反応液を生成させる重合工程である。
 本発明では、PASを製造する重合方法については、本発明を損なわない限り、如何なる重合方法でもよい。
 一般には、粒状PASを製造する重合方法としては、大別して(i)重合工程が相分離重合工程を含み、相分離重合後、徐冷する方法、(ii)重合反応後、相分離剤を添加し、徐冷する方法、(iii)塩化リチウム等の重合助剤を用いる方法、及び(iv)反応缶気相部分の冷却を行う方法等がある。
 中でも、重合条件を制御して、相分離剤の存在下、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で行う重合反応の工程(以下、「相分離重合工程」と略記することがある。)を含む重合方法により粒状PASを製造した場合は、重合度の高い粒状PASが得られるため、分離工程での篩分効率が高くなり、収率や生産性が向上する。したがって、重合度の高い粒状製品のPASの収率を高める上で有利な重合方法となっている。この場合の重合工程を詳述する。
1.仕込み工程
 PASを製造する製造方法に含まれる重合工程は、以下の仕込み工程を経て実施することができる。
 仕込み工程は、所望により配置する脱水工程で系内に残存する混合物とDHAとを混合し、必要に応じてアルカリ金属水酸化物及び水を添加して、有機アミド溶媒、硫黄源(仕込み硫黄源)、水分、及びDHAを含有する仕込み混合物を調製する。
 DHAの使用量は、仕込み硫黄源1モルに対し、通常0.90~1.50モル、好ましくは0.92~1.10モル、より好ましくは0.95~1.05モルである。硫黄源に対するDHAの仕込みモル比が大きくなりすぎると、高分子量ポリマーを生成させることが困難になる。他方、硫黄源に対するDHAの仕込みモル比が小さくなりすぎると、分解反応が生じ易くなり、安定的な重合反応の実施が困難となる。
 仕込み硫黄源として、アルカリ金属水硫化物を用いる際には、アルカリ金属水酸化物の使用量は、仕込み硫黄源1モルに対し、通常0.95~1.09モル、好ましくは0.98~1.085モル、より好ましくは0.99~1.083モルである。
 脱水工程で使用する硫黄源と区別するために、仕込み工程での硫黄源を「仕込み硫黄源」と呼んでいる。その理由は、脱水工程前に反応槽内に投入する硫黄源の量は、脱水工程で変動するからである。仕込み硫黄源は、重合工程でのDHAとの反応により消費されるが、仕込み硫黄源のモル量は、仕込み工程でのモル量を基準とする。仕込み硫黄源の量は、〔仕込み硫黄源〕=〔総仕込み硫黄モル〕-〔脱水後の揮散硫黄モル〕の式により算出される。
 仕込み工程において、有機アミド溶媒の量は、仕込み硫黄源1モル当り、通常0.1~10kg、好ましくは0.13~5kg、より好ましくは0.15~2kgの範囲とすることが望ましい。
2.重合工程
 重合工程では、前記の仕込み工程により調整した仕込み混合物を、通常170~290℃、好ましくは180~280℃、より好ましくは190~275℃の温度に加熱して、重合反応を開始させ、重合を進行させる。重合反応時間は、一般に10分間~72時間の範囲であり、望ましくは30分間~48時間である。重合反応は、前段重合工程と後段重合工程の2段階工程で行うことが好ましい。
 この重合工程において、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを、相分離剤の存在下、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を行う重合工程を含んでおり、重合反応は、170~290℃の温度で重合反応させる。相分離剤としては、先に述べた水や、相分離剤として機能することが知られている化合物等が好ましく用いられる。
 さらには、重合工程において、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを、170~270℃の温度で重合反応させ、DHAの転化率が30%以上となった時点で、重合反応混合物中に、相分離剤を添加して、重合反応系内に相分離剤を存在させ、次いで、重合反応混合物を昇温し、245~290℃の温度で、相分離剤の存在下の重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を継続させることが、好ましい。
 さらには、重合工程において、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを重合反応させて、該DHAの転化率が30%以上、好ましくは80~99%のポリマーを生成させる前段重合工程;並びに、相分離剤の存在下、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を継続させる後段重合工程;を含む少なくとも2段階の重合工程により重合反応を行うことが好ましい。
 具体的には、重合工程において、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とDHAとを、仕込み硫黄源1モル当たり0.01~2.0モルの水が存在する状態で、170~270℃の温度で重合反応させて、該DHAの転化率が80~99%のポリマーを生成させる前段重合工程;並びに、仕込み硫黄源1モル当たり2.0モル超過10モル以下の水が存在する状態となるように重合反応系内の水量を調整するとともに、245~290℃の温度に加熱することにより、重合反応系内に生成ポリマー濃厚相と生成ポリマー希薄相とが混在する相分離状態で重合反応を継続させる後段重合工程;を含む少なくとも2段階の重合工程により重合反応を行うことがより好ましい。
 DHAの転化率は、以下の式により算出した値である。DHAを硫黄源よりモル比で過剰に添加した場合は、下記式
 転化率=〔〔DHA仕込み量(モル)-DHA残存量(モル)〕/〔DHA仕込み量(モル)-DHA過剰量(モル)〕〕×100
によって転化率を算出する。それ以外の場合には、下記式
 転化率=〔〔DHA仕込み量(モル)-DHA残存量(モル)〕/〔DHA仕込み量(モル)〕〕×100
によって転化率を算出する。
 前段重合工程における反応系の共存水量は、仕込み硫黄源1モル当たり、通常0.01~2.0モル、好ましくは0.05~1.8モル、より好ましくは0.5~1.6モル、特に好ましくは0.8~1.5モルの範囲である。
 前段重合工程において、温度310℃、剪断速度1,216sec-1で測定した溶融粘度が、通常0.1~30Pa・sのポリマー(「プレポリマー」ということがある。)を生成させることが望ましい。
 後段重合工程は、前段重合工程で生成したポリマー(プレポリマー)の単なる分別・造粒の工程ではなく、該ポリマーの重合度の上昇を起こさせるためのものである。
 後段重合工程では、相分離剤として、水を使用することが特に好ましく、仕込み硫黄源1モルに対して、2.0モル超過10モル以下、好ましくは、2.0モル超過9モル以下、より好ましくは2.1~8モル、特に好ましくは2.2~7モルの水が存在する状態となるように重合反応系内の水の量を調整することが好ましい。後段重合工程において、重合反応系中の共存水分量が仕込み硫黄源1モル当り2.0モル以下または10モル超過になると、生成PASの重合度が低下することがある。特に、共存水分量が2.2~7モルの範囲で後段重合を行うと、高重合度のPASが得られやすいので好ましい。
 より好ましい製造方法においては、少量の相分離剤で重合を実施するために、相分離剤として、水と水以外の他の相分離剤を併用することができる。この態様においては、重合反応系内の水量を、仕込み硫黄源1モル当り0.1~10モル、好ましくは0.3~10モル、更に好ましくは0.4~9モル、特に好ましくは0.5~8モルの範囲内に調整するとともに、水以外の他の相分離剤を、仕込み硫黄源1モル当り0.001~3モルの範囲内で存在させることが好ましい。水と併用することが特に好ましい他の相分離剤は、有機カルボン酸金属塩、中でも、アルカリ金属カルボン酸塩であり、その場合は、仕込み硫黄源1モルに対して、水を0.5~10モル、好ましくは0.6~7モル、特に好ましくは0.8~5モルの範囲内で使用するとともに、アルカリ金属カルボン酸塩を0.001~0.7モル、好ましくは0.02~0.6モル、特に好ましくは0.05~0.5モルの範囲内で使用すればよい。
 後段重合工程での重合温度は、245~290℃の範囲であり、重合温度が245℃未満では、高重合度のPASが得られにくく、290℃を越えると、PASや有機アミド溶媒が分解するおそれがある。特に、250~270℃の温度範囲が高重合度のPASが得られやすいので好ましい。
3.所望により配置する脱水工程
 PASの製造において、重合工程を実施する際の仕込み工程前に、所望により脱水工程を配置してもよい。
 脱水工程では、水和水(結晶水)や水媒体、副生水などからなる水分を必要量の範囲内になるまで脱水する。
 脱水工程では、重合反応系の共存水分量が、仕込み硫黄源1モルに対して、通常0.01~2.0モル、好ましくは0.05~1.8モル、より好ましくは0.5~1.6モルになるまで脱水する。前述したとおり、脱水工程後重合工程開始前の硫黄源を「仕込み硫黄源」と呼ぶ。脱水工程で水分量が少なくなり過ぎた場合は、重合工程の前に水を添加して所望の水分量に調節してもよい。
 硫黄源としてアルカリ金属水硫化物を用いる場合、脱水工程において、有機アミド溶媒、アルカリ金属水硫化物、及び該アルカリ金属水硫化物1モル当たり0.9~1.1モル、好ましくは0.91~1.08モル、より好ましくは0.92~1.07モル、特に好ましくは0.93~1.06モルのアルカリ金属水酸化物を含有する混合物を加熱して、反応させ、該混合物を含有する系内から水を含む留出物の少なくとも一部を系外に排出することが好ましい。
III.予備洗浄、予備分離
1.予備洗浄工程
 予備洗浄工程では、PAS又はPAS含有混合物中に混入している水不溶性不純物、例えば、PASオリゴマー、重合工程等における分解生成物、未反応の原料(例えば、未反応pDCB等の未反応DHA)等の低分子量成分を除去することを目的として、有機アミド溶媒を含有する洗浄液を用いてPASを洗浄する。
 有機アミド溶媒を含有する洗浄液としては、有機アミド溶媒、有機アミド溶媒と水、ケトン類、アルコール類、ヘキサン等の他の溶媒との混合溶媒等が挙げられ、有機アミド溶媒と水との混合溶媒が好ましく、有機アミド溶媒がより好ましい。有機アミド溶媒を含有する洗浄液における有機アミド溶媒の割合は、50~100質量%であることが好ましく、60~100質量%であることがより好ましく、70~100質量%であることが更により好ましく、80~100質量%であることが一層更により好ましく、90~100質量%であることが特に好ましい。
 なお、省資源化、コスト削減等の観点から、本発明の第1の実施形態において、予備洗浄工程における洗浄液としては、後述する蒸留工程で得られる回収液の少なくとも一部及び/又は後述する有機アミド溶媒濃縮工程で得られる濃縮液の少なくとも一部を用いることが好ましく、有機アミド溶媒の純度がより高い点で、有機アミド溶媒濃縮工程で得られる濃縮液の少なくとも一部を用いることがより好ましい。
 同様に、省資源化、コスト削減等の観点から、本発明の第2の実施形態において、予備洗浄工程における洗浄液としては、後述する蒸留工程で得られる回収液の少なくとも一部を用いることが好ましい。
2.予備分離工程
 予備分離工程では、予備洗浄工程における分散液を固液分離し、PAS含有混合物と分離液とに分離する。上記分散液は、予備洗浄工程における洗浄中の分散液であっても、予備洗浄工程における洗浄後の分散液であってもよい。上記洗浄中の分散液は、連続洗浄塔等において洗浄及び分離を行う場合のように、予備洗浄工程と予備分離工程とを明確に区別することが困難な場合の分散液であり、上記洗浄後の分散液は、予備洗浄工程と予備分離工程とを明確に区分できる場合の分散液である。
 予備分離工程では、例えば、スクリーンを用いる篩分や遠心分離機による遠心分離などを用いて、固液分離を行う。
 予備分離工程における篩分による分離に用いられるスクリーンの目開き径は、通常、目開き径75μm(200メッシュ)~180μm(80メッシュ)、好ましくは目開き径90μm(170メッシュ)~150μm(100メッシュ)である。この範囲のスクリーンを少なくとも1つ用いるが、多段で用いてもよい。通常、目開き径150μm(100メッシュ)のスクリーンが用いられることが多い。
IV.有機アミド溶媒及び/又は水の回収
1.洗浄工程
 洗浄工程では、PASと有機アミド溶媒とを含有する原料混合物を水含有溶媒と混合して分散液を得、有機アミド溶媒を水含有溶媒中に溶解させて、PASを洗浄する。
 水含有溶媒としては、水、水と有機アミド溶媒、アルコール類、ケトン類等の他の溶媒との混合溶媒等が挙げられ、水、水と有機アミド溶媒との混合溶媒が好ましく、水と有機アミド溶媒との混合溶媒がより好ましい。水含有溶媒における水の割合は、50~100質量%であることが好ましく、70~100質量%であることがより好ましく、90~100質量%であることが更により好ましく、95~100質量%であることが一層更により好ましく、98~100質量%であることが特に好ましい。
2.分離工程
 分離工程では、洗浄工程における分散液を固液分離し、分離液を得る。上記分散液は、洗浄工程における洗浄中の分散液であっても、洗浄工程における洗浄後の分散液であってもよい。上記洗浄中の分散液は、連続洗浄塔等において洗浄及び分離を行う場合のように、洗浄工程と分離工程とを明確に区別することが困難な場合の分散液であり、上記洗浄後の分散液は、洗浄工程と分離工程とを明確に区分できる場合の分散液である。
 分離工程における固液分離は、予備分離工程の場合と同様に行うことができる。
 なお、分離工程で分離されたPASは、製品として回収される。製品として回収されたPASの回収率は、脱水工程後の反応缶中に存在する仕込み硫黄源中の有効硫黄成分の全てがPASに転換したと仮定したときのPAS質量(理論量)を、得られるPASの全量として算出する。
 この回収率は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、通常80質量%以上、場合によっては83質量%以上、また場合によっては85質量%以上である。回収率の上限は、99.5質量%程度である。
 また、得られたPASの平均粒径は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、通常100~5,000μm、好ましくは、120~3,000μm、より好ましくは、130~1,500μmである。
 得られたPASの溶融粘度は、篩分のスクリーンの目開き径にもよるが、目開き径75μm(200メッシュ)~180μm(80メッシュ)の範囲の少なくとも1つのスクリーンの場合、PASの溶融粘度は、温度310℃、剪断速度1,216sec-1の条件下での測定で、通常、0.5~5,000Pa・s、好ましくは1~4,500Pa・s、より好ましくは、2~4,000Pa・sである。
3.蒸留工程
 蒸留工程では、分離工程で得た分離液の加熱により、該分離液を、有機アミド溶媒の含有量がより少ない水含有溶媒からなる留出蒸気と有機アミド溶媒の含有量がより多い水含有溶媒からなる回収液とに分離する。蒸留工程における加熱は、該留出蒸気の圧縮による温度上昇及び/又は該留出蒸気と熱交換された熱媒体の圧縮による温度上昇を利用して行う。上記加熱は、他の温度上昇手段を併用して行ってもよく、併用の際、上記加熱は、主に、該留出蒸気の圧縮による温度上昇及び/又は該留出蒸気と熱交換された熱媒体の圧縮による温度上昇を利用して行うことが好ましい。なお、該有機アミド溶媒の含有量が多い水含有溶媒からなる回収液は、十分な濃度及び品質の有機アミド溶媒を含有することから、該回収液の少なくとも一部を、上記重合工程における反応溶媒として用いることができる。
 上記蒸留工程では、いわゆるヒートポンプを利用して蒸留を行うため、分離工程で得た分離液から水を蒸発させるために消費された大量のエネルギーを再びエネルギーとして回収し、上記分離液の加熱に用いることができる。その結果、ヒートポンプを利用せずに蒸留を行った場合と比較して、10%程度~40%程度のエネルギーで蒸留を行うことができる。
 また、本発明の第2の実施形態においては、上記留出蒸気の凝結物からなる留出液(以下、「蒸留工程における留出液」ともいう。)を、洗浄工程における水含有溶媒として用いる。これにより、水を再利用することが可能となり、外部からの水の供給量を低減することができる。なお、水の再利用という観点では、後述の有機アミド溶媒濃縮工程における蒸留による留出蒸気由来の留出液(以下、「有機アミド溶媒濃縮工程における留出液」ともいう。)を、洗浄工程における水含有溶媒として用いることもできる。しかし、例えば、後述の通り、有機アミド溶媒濃縮工程において、蒸留の対象として、予備分離工程で分離された分離液を含む混合物を用いた場合には、有機アミド溶媒濃縮工程における留出液は不純物を含有しやすいため、蒸留工程における留出液を、主に、洗浄工程における水含有溶媒として用いることが好ましい。
 いわゆるヒートポンプを利用して蒸留を行う方法としては、特に限定されず、例えば、特開2014-168740に記載の装置を用いた方法が挙げられる。蒸留の方式は、単段式であっても、多段式であってもよく、単段式であることが好ましい。また、上記留出蒸気と熱交換される熱媒体としては、特に限定されず、例えば、フロンなどのフルオロカーボン類、アンモニア、炭化水素が挙げられる。
4.有機アミド溶媒濃縮工程
 有機アミド溶媒濃縮工程では、蒸留工程で分離された回収液を蒸留して、有機アミド溶媒の含有量が更に多い溶媒からなる濃縮液を得る。蒸留の方法としては、特に限定されず、公知の方法を採用することができる。
 前記原料混合物が予備洗浄工程と予備分離工程とを経て得られたものである場合、有機アミド溶媒濃縮工程において、前記回収液の蒸留は、該回収液と予備分離工程で分離された分離液との混合物を蒸留することにより行ってもよい。
 なお、有機アミド溶媒濃縮工程における蒸留による留出蒸気由来の留出液の少なくとも一部を廃棄してもよいし、該留出液の全量、又は、上記で廃棄しなかった該留出液の残部を、例えば、洗浄工程における洗浄液として再利用してもよい。本発明においては、該留出液中に分離される水の量が大幅に削減されているため、該留出液の少なくとも一部を廃棄しても、省資源化、コスト削減等の観点での影響を低く抑えることができる。
 有機アミド溶媒濃縮工程により得られる濃縮液における有機アミド溶媒の割合は、50~100質量%であることが好ましく、60~100質量%であることがより好ましく、70~100質量%であることが更により好ましく、80~100質量%であることが一層更により好ましく、90~100質量%であることが特に好ましい。
 なお、有機アミド溶媒濃縮工程で得られる濃縮液は、十分な濃度及び品質の有機アミド溶媒を含有することから、該濃縮液の少なくとも一部を、上記重合工程における反応溶媒として用いてもよい。該濃縮液の少なくとも一部を上記回収液の少なくとも一部と併用してもよい。
V.マテリアルバランスの例
 図1は、PASと有機アミド溶媒とを含有する原料混合物を水含有溶媒で洗浄して生じた洗浄廃液から、有機アミド溶媒を回収しつつ、PASを製造する本発明の方法を示す模式図である。一方、図2は、PASと有機アミド溶媒とを含有する原料混合物を水含有溶媒で洗浄して生じた洗浄廃液から、有機アミド溶媒を回収しつつ、PASを製造する従来の方法を示す模式図である。
 図1において、PASとNMPとを含む原料混合物Aは、予備洗浄・分離装置1において、NMPにより洗浄され、PASとNMPとを含むPAS含有混合物BとNMP Eとに分離される。PAS含有混合物Bは、洗浄・分離装置2において、水含有溶媒により洗浄され、PASと水とを含む製品PAS Cと水含有溶媒Fとに分離される。水含有溶媒Fは、いわゆるヒートポンプを利用した熱回収型蒸留装置3により、NMPの含有量がより少ない水含有溶媒からなる留出蒸気由来の留出液HとNMPの含有量がより多い水含有溶媒からなる回収液Iとに分離される。留出液Hは、洗浄・分離装置2における洗浄液として再利用される。一方、回収液Iは、混合槽4において、NMP Eと混合され、水含有溶媒Jは、蒸留装置5において、蒸留されて、NMP Dと水Kとに分離される。NMP Dは、予備洗浄・分離装置1で用いられるNMPとして再利用される。一方、水Kは、廃棄される。
 図2は、図1において、熱回収型蒸留装置3を用いずに、水含有溶媒Fが混合槽4に直接投入され、洗浄・分離装置2に留出液Hが供給されない以外は、図1と同様である。
 表1は、図1におけるマテリアルバランスの一例を示す。一方、表2は、図2におけるマテリアルバランスの一例を示す。なお、表1及び2における数値の単位は、質量部である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2から分かる通り、本発明の方法において、洗浄・分離装置2に供給される水Gの量(125質量部)は、従来の方法の場合(1475質量部)と比較して、約10分の1まで低減されている。また、本発明の方法において、水含有溶媒Jにおける水の量(50質量部)は、従来の方法の場合(1400質量部)と比較して、大幅に低減されているため、蒸留装置5によりNMPと水とを分離するのに要するエネルギー使用量が大幅に低減されている。
 1 予備洗浄・分離装置
 2 洗浄・分離装置
 3 熱回収型蒸留装置
 4 混合槽
 5 蒸留装置

Claims (13)

  1.  ポリアリーレンスルフィドを製造する方法であって、下記の工程;
    (a)ポリアリーレンスルフィドと有機アミド溶媒とを含有する原料混合物を水含有溶媒と混合して分散液を得、有機アミド溶媒を水含有溶媒中に溶解させて、ポリアリーレンスルフィドを洗浄する洗浄工程;
    (b)洗浄工程における分散液を固液分離し、分離液を得る分離工程;
    (c)分離工程で得た分離液の加熱により、該分離液を、有機アミド溶媒の含有量がより少ない水含有溶媒からなる留出蒸気と有機アミド溶媒の含有量がより多い水含有溶媒からなる回収液とに分離する蒸留工程;
    を含み、
     蒸留工程における加熱は、該留出蒸気の圧縮による温度上昇及び/又は該留出蒸気と熱交換された熱媒体の圧縮による温度上昇を利用して行う方法。
  2.  更に、
     (d)該回収液を蒸留して、有機アミド溶媒の含有量が更に多い溶媒からなる濃縮液を得る有機アミド溶媒濃縮工程;
    を含む請求項1に記載の方法。
  3.  前記原料混合物は、
     ポリアリーレンスルフィド又はポリアリーレンスルフィド含有混合物を、有機アミド溶媒を含有する洗浄液と混合して分散液を得て、ポリアリーレンスルフィドを洗浄する予備洗浄工程;
     予備洗浄工程における分散液を固液分離し、ポリアリーレンスルフィド含有混合物と分離液とに分離する予備分離工程;
    を経て得られる請求項1又は2に記載の方法。
  4.  前記回収液の少なくとも一部及び/又は前記濃縮液の少なくとも一部を、予備洗浄工程における洗浄液として用いる請求項3に記載の方法。
  5.  有機アミド溶媒濃縮工程において、前記回収液の蒸留は、該回収液と予備分離工程で分離された分離液との混合物を蒸留することにより行う請求項3又は4に記載の方法。
  6.  有機アミド溶媒濃縮工程における蒸留による留出蒸気由来の留出液の少なくとも一部を廃棄する請求項5に記載の方法。
  7.  ポリアリーレンスルフィドを製造する方法であって、下記の工程;
    (a)ポリアリーレンスルフィドと有機アミド溶媒とを含有する原料混合物を水含有溶媒と混合して分散液を得、有機アミド溶媒を水含有溶媒中に溶解させて、ポリアリーレンスルフィドを洗浄する洗浄工程;
    (b)洗浄工程における分散液を固液分離し、分離液を得る分離工程;
    (c)分離工程で得た分離液の加熱により、該分離液を、有機アミド溶媒の含有量がより少ない水含有溶媒からなる留出蒸気と有機アミド溶媒の含有量がより多い水含有溶媒からなる回収液とに分離する蒸留工程;
    を含み、
     蒸留工程における加熱は、該留出蒸気の圧縮による温度上昇及び/又は該留出蒸気と熱交換された熱媒体の圧縮による温度上昇を利用して行い、
     該留出蒸気の凝結物からなる留出液を、洗浄工程における水含有溶媒として用いる方法。
  8.  前記原料混合物は、
     ポリアリーレンスルフィド又はポリアリーレンスルフィド含有混合物を、有機アミド溶媒を含有する洗浄液と混合して分散液を得て、ポリアリーレンスルフィドを洗浄する予備洗浄工程;
     予備洗浄工程における分散液を固液分離し、ポリアリーレンスルフィド含有混合物と分離液とに分離する予備分離工程;
    を経て得られる請求項7に記載の方法。
  9.  前記回収液の少なくとも一部を、前記洗浄液として用いる請求項8に記載の方法。
  10.  前記原料混合物は、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて、ポリアリーレンスルフィドを含有する反応液を得る重合工程を経て得られる請求項1、2又は7に記載の方法。
  11.  予備洗浄工程における前記ポリアリーレンスルフィド含有混合物は、有機アミド溶媒中で、アルカリ金属硫化物及びアルカリ金属水硫化物からなる群より選ばれる少なくとも一種の硫黄源とジハロ芳香族化合物とを重合反応させて、ポリアリーレンスルフィドを含有する反応液を得る重合工程を経て得られる請求項3乃至6、8、及び9のいずれか1項に記載の方法。
  12.  前記有機アミド溶媒の沸点と水の沸点との差が50℃以上である請求項1乃至11のいずれか1項に記載の方法。
  13.  請求項1乃至12のいずれか1項に記載の方法により製造されるポリアリーレンスルフィド。
PCT/JP2016/067267 2015-06-12 2016-06-09 ポリアリーレンスルフィドを製造する方法及びポリアリーレンスルフィド WO2016199869A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/735,838 US20180171079A1 (en) 2015-06-12 2016-05-09 Method of manufacturing polyarylene sulfide, and polyarylene sulfide
JP2017523701A JP6295379B2 (ja) 2015-06-12 2016-06-09 ポリアリーレンスルフィドを製造する方法及びポリアリーレンスルフィド
US16/235,900 US10556992B2 (en) 2015-06-12 2018-12-28 Method of manufacturing polyarylene sulfide, and polyarylene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015119247 2015-06-12
JP2015-119247 2015-06-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/735,838 A-371-Of-International US20180171079A1 (en) 2015-06-12 2016-05-09 Method of manufacturing polyarylene sulfide, and polyarylene sulfide
US16/235,900 Division US10556992B2 (en) 2015-06-12 2018-12-28 Method of manufacturing polyarylene sulfide, and polyarylene

Publications (1)

Publication Number Publication Date
WO2016199869A1 true WO2016199869A1 (ja) 2016-12-15

Family

ID=57503448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067267 WO2016199869A1 (ja) 2015-06-12 2016-06-09 ポリアリーレンスルフィドを製造する方法及びポリアリーレンスルフィド

Country Status (3)

Country Link
US (2) US20180171079A1 (ja)
JP (1) JP6295379B2 (ja)
WO (1) WO2016199869A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114922A (ja) * 2015-12-21 2017-06-29 Dic株式会社 ポリアリーレンスルフィド樹脂の製造方法
WO2020261695A1 (ja) * 2019-06-28 2020-12-30 株式会社クレハ ポリアリーレンスルフィドの製造方法
KR20210017411A (ko) * 2019-08-08 2021-02-17 주식회사 엘지화학 폴리페닐렌 설파이드 제조 방법 및 제조 장치
JP2021511295A (ja) * 2018-12-18 2021-05-06 エルジー・ケム・リミテッド アミド系化合物の回収方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
JP2023508316A (ja) 2019-12-20 2023-03-02 ティコナ・エルエルシー ポリアリーレンスルフィドを形成するための方法
WO2023038889A1 (en) 2021-09-08 2023-03-16 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge
US12024596B2 (en) 2021-09-08 2024-07-02 Ticona Llc Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155284A (ja) * 2012-01-30 2013-08-15 Toray Ind Inc 非プロトン性極性溶媒の回収方法および非プロトン性極性溶媒の回収装置
JP2014005207A (ja) * 2012-06-21 2014-01-16 Dic Corp カルボキシアルキルアミノ基含有化合物および非プロトン性極性溶媒を含む溶液の製造方法ならびにアルカリ金属含有無機塩および非プロトン性極性溶媒を含む組成物の製造方法
JP2014168740A (ja) * 2013-03-04 2014-09-18 Nippon Refine Kk 溶液処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859781A (en) 1989-03-03 1989-08-22 Phillips Petroleum Company Recovery of N-methyl-2-pyrrolidone
JP4465697B2 (ja) 2000-06-21 2010-05-19 日本曹達株式会社 水溶液からの非プロトン性極性溶媒の回収方法
JP3989785B2 (ja) * 2002-07-18 2007-10-10 株式会社クレハ ポリアリーレンスルフィドの製造方法
JP2007269638A (ja) 2006-03-30 2007-10-18 Toray Ind Inc N−メチル−2−ピロリドンの回収方法およびポリアリーレンスルフィドの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155284A (ja) * 2012-01-30 2013-08-15 Toray Ind Inc 非プロトン性極性溶媒の回収方法および非プロトン性極性溶媒の回収装置
JP2014005207A (ja) * 2012-06-21 2014-01-16 Dic Corp カルボキシアルキルアミノ基含有化合物および非プロトン性極性溶媒を含む溶液の製造方法ならびにアルカリ金属含有無機塩および非プロトン性極性溶媒を含む組成物の製造方法
JP2014168740A (ja) * 2013-03-04 2014-09-18 Nippon Refine Kk 溶液処理装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114922A (ja) * 2015-12-21 2017-06-29 Dic株式会社 ポリアリーレンスルフィド樹脂の製造方法
JP2021511295A (ja) * 2018-12-18 2021-05-06 エルジー・ケム・リミテッド アミド系化合物の回収方法
US11220441B2 (en) 2018-12-18 2022-01-11 Lg Chem, Ltd. Process for recovering amide compounds
JP7025093B2 (ja) 2018-12-18 2022-02-24 エルジー・ケム・リミテッド アミド系化合物の回収方法
WO2020261695A1 (ja) * 2019-06-28 2020-12-30 株式会社クレハ ポリアリーレンスルフィドの製造方法
KR20210017411A (ko) * 2019-08-08 2021-02-17 주식회사 엘지화학 폴리페닐렌 설파이드 제조 방법 및 제조 장치
KR102608800B1 (ko) 2019-08-08 2023-11-30 주식회사 엘지화학 폴리페닐렌 설파이드 제조 방법 및 제조 장치

Also Published As

Publication number Publication date
US20190135982A1 (en) 2019-05-09
US20180171079A1 (en) 2018-06-21
US10556992B2 (en) 2020-02-11
JP6295379B2 (ja) 2018-03-14
JPWO2016199869A1 (ja) 2018-02-08

Similar Documents

Publication Publication Date Title
JP6295379B2 (ja) ポリアリーレンスルフィドを製造する方法及びポリアリーレンスルフィド
JP5623277B2 (ja) 粒状ポリアリーレンスルフィドの製造方法
KR101470723B1 (ko) 폴리아릴렌술피드의 제조 방법 및 폴리아릴렌술피드
JP5713402B2 (ja) ポリアリーレンスルフィド及びその製造方法
JP4777610B2 (ja) ポリアリーレンスルフィド及びその製造方法
JP6517337B2 (ja) 粒状ポリアリーレンスルフィドを製造する方法、及び粒状ポリアリーレンスルフィド
JP6419311B2 (ja) 微粉ポリアリーレンスルフィドを製造する方法及び微粉ポリアリーレンスルフィド
JP6418852B2 (ja) ポリアリーレンスルフィドの製造方法及びポリアリーレンスルフィド
JP6403779B2 (ja) ポリアリーレンスルフィドの製造方法、及び該製造方法により製造されたポリアリーレンスルフィド
WO2004060973A1 (ja) ポリアリーレンスルフィドの製造方法及び洗浄方法、並びに洗浄に使用した有機溶媒の精製方法
JP6456742B2 (ja) 微粉ポリアリーレンスルフィドを製造する製造方法及び微粉ポリアリーレンスルフィド
US11661482B2 (en) Separation and purification method of polyarylene sulfide
WO2015147090A1 (ja) 熱処理微粉ポリアリーレンスルフィド、及び該熱処理微粉ポリアリーレンスルフィドを製造する製造方法
US11597800B2 (en) Separation and recovery method of polyarlene sulfide
JP6999269B2 (ja) ポリアリーレンスルフィドの製造方法
JP7394987B2 (ja) ポリアリーレンスルフィドの製造方法
WO2020121785A1 (ja) ポリアリーレンスルフィドの製造方法
JP2021095539A (ja) ポリアリーレンスルフィドの製造方法
JP2020050845A (ja) ポリアリーレンスルフィドの回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523701

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15735838

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807575

Country of ref document: EP

Kind code of ref document: A1