WO2016021115A1 - 自動火災報知システムの子機、およびそれを用いた自動火災報知システム - Google Patents

自動火災報知システムの子機、およびそれを用いた自動火災報知システム Download PDF

Info

Publication number
WO2016021115A1
WO2016021115A1 PCT/JP2015/003490 JP2015003490W WO2016021115A1 WO 2016021115 A1 WO2016021115 A1 WO 2016021115A1 JP 2015003490 W JP2015003490 W JP 2015003490W WO 2016021115 A1 WO2016021115 A1 WO 2016021115A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
fire
pair
signal
slave
Prior art date
Application number
PCT/JP2015/003490
Other languages
English (en)
French (fr)
Inventor
一彦 五所野尾
友昭 水田
基弘 大井
冉 李
享 伊藤
雅裕 長田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP15829983.4A priority Critical patent/EP3179459A4/en
Publication of WO2016021115A1 publication Critical patent/WO2016021115A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/009Signalling of the alarm condition to a substation whose identity is signalled to a central station, e.g. relaying alarm signals in order to extend communication range
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/007Details of data content structure of message packets; data protocols

Definitions

  • the present invention generally relates to a slave unit of an automatic fire notification system, and an automatic fire notification system using the same, for example, a slave unit of an automatic fire notification system electrically connected to a master unit via a pair of electric wires, and The invention relates to an automatic fire alarm system using the same.
  • the P-type automatic fire alarm system detects the occurrence of a fire in a slave unit consisting of a heat detector, smoke detector, flame detector, etc., and notifies the master unit consisting of a receiver of the fire occurrence. It is configured to be.
  • the P-type automatic fire alarm system notifies the base unit consisting of receivers of the occurrence of a fire when the slave unit electrically short-circuits the pair of wires.
  • an automatic fire alarm system there is a system having a function of interlocking with other devices such as smoke prevention equipment and emergency broadcasting equipment.
  • the slave unit has a function of generating a linkage report for linking other devices, and the master unit receives the linkage report from the slave unit, thereby Execute linkage.
  • Patent Document 1 as a P-type automatic fire alarm system, a system in which a plurality of fire detectors as slave units are connected to a plurality of sensor lines derived from a fire receiver as a master unit. Is disclosed.
  • the slave unit performs a fire detection operation using the power supplied from the fire receiver, and outputs a fire report to the master unit when a fire is detected.
  • each of the plurality of slave units provided in the P-type automatic fire alarm system performs a fire detection operation at a predetermined time period based on a clock source provided in the own unit. Therefore, there is a possibility that a plurality of slave units perform a fire detection operation in the same time zone. If it does so, since electric power required for operation
  • the objective is the subunit
  • the slave unit of the automatic fire notification system is a slave unit of the automatic fire notification system electrically connected to a pair of electric wires to which a voltage is applied, and is uniquely identified by the own unit.
  • a storage unit storing information and a signal represented by a change in voltage applied to the pair of electric wires, and a synchronization signal transmitted from the parent unit to synchronize with another child unit
  • the communication unit that receives the synchronization signal is received by the communication unit, the power supplied from the parent device is used in the operation time zone assigned according to the identification information stored in the storage unit.
  • a processing unit for performing a fire detection operation is performed by the communication unit.
  • an automatic fire alarm system includes the above slave unit and a master unit that applies a voltage between the pair of electric wires.
  • the slave unit of the automatic fire alarm system and the automatic fire alarm system using the same can suppress an increase in current consumed in the same time zone.
  • FIG. 1 is a diagram illustrating a schematic configuration of the automatic fire notification system according to the first embodiment.
  • FIG. 2 is a diagram illustrating the overall configuration of the automatic fire notification system according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of a transmission circuit included in the slave unit of the first embodiment.
  • FIG. 4 is a flowchart for explaining the operation of the slave unit of the first embodiment.
  • FIG. 5A is a diagram illustrating allocation of operation time zones in the first embodiment.
  • FIG. 5B is a diagram illustrating allocation of operation time zones in the first embodiment.
  • FIG. 6 is a diagram illustrating a change in current drawn by the slave unit of the first embodiment.
  • FIG. 7 is a flowchart for explaining the operation of the slave unit of the second embodiment.
  • FIG. 8A is a diagram illustrating assignment of an operation time zone and a response time zone in the second embodiment.
  • FIG. 8B is a diagram illustrating assignment of an operation time zone and a response time zone in the second embodiment.
  • FIG. 9 is a diagram illustrating a change in current drawn by the slave unit of the second embodiment.
  • FIG. 10 is a flowchart for explaining the operation of the slave unit of the third embodiment.
  • FIG. 11A is a diagram illustrating assignment of operation time zones and response time zones in the third embodiment.
  • FIG. 11B is a diagram illustrating assignment of operation time zones and response time zones in the third embodiment.
  • Embodiment 1 Hereinafter, the automatic fire alarm system A1 of this embodiment will be described.
  • the automatic fire alarm system A1 includes at least one slave unit 10 and one master unit 20.
  • the master unit 20 includes an application unit 21 that applies a voltage between the pair of electric wires 51 and 52.
  • mobile_unit 10 is electrically connected to a pair of electric wires 51 and 52, and is provided with the communication part 14, the memory
  • FIG. 1 The subunit
  • the storage unit 17 stores identification information unique to the own device.
  • the communication unit 14 receives a synchronization signal transmitted from the parent device 20 in order to synchronize with another child device 10 due to a change in voltage applied to the pair of electric wires 51 and 52.
  • the processing unit 19 When the communication unit 14 receives the synchronization signal, the processing unit 19 performs a fire detection operation in the operation time zone assigned according to the identification information stored in the storage unit 17.
  • each of the slave units 10 of the automatic fire notification system A1 of the present embodiment performs a fire detection operation in the operation time zone assigned to the own unit.
  • the automatic fire notification system A1 is used for an apartment house (apartment) is illustrated.
  • the automatic fire notification system A1 is not limited to an apartment house, but may be a commercial facility, a hospital, a hotel, for example. It can be applied to various buildings such as multi-tenant buildings.
  • each of the plurality of slave units B1, B2, B3,... Is not particularly distinguished, it is simply referred to as “slave unit 10”.
  • a pair of electric wires 51 and 52 are wired for each of the first to fourth floors.
  • four sets of two sets of one set (two-wire type) of electric wires 51 and 52 are provided in the entire apartment house 60.
  • a maximum of 40 to 80 slave units 10 can be connected to each pair of electric wires 51 and 52.
  • a maximum of 50 to 200 lines (50 to 200 sets) of a pair of electric wires 51 and 52 can be connected to one base unit 20.
  • these numerical values are an example, Comprising: It is not the meaning limited to these numerical values.
  • the base unit 20 can detect the disconnection of the pair of electric wires 51 and 52 by monitoring the current flowing between the pair of electric wires 51 and 52.
  • the termination resistor 40 is not an essential configuration and may be omitted.
  • the automatic fire alarm system A1 basically detects the occurrence of a fire in the slave unit 10 including a heat detector, a smoke detector, a flame detector, and the like, and transfers the slave unit 10 to the master unit 20 as a receiver.
  • Fire notification (fire report) is made.
  • mobile_unit 10 may contain not only the sensor which detects generation
  • the transmitter has a push button switch (not shown), and when a person detects a fire, manually operates the push button switch to notify the master 20 of the occurrence of a fire (fire report). It is.
  • the automatic fire alarm system A1 causes the other device 30 such as smoke prevention equipment and emergency broadcast facility to be connected. Has an interlocking function for interlocking. For this reason, the automatic fire notification system A1 can control the fire door of the smoke prevention facility or notify the occurrence of the fire by sound or voice in the emergency broadcasting facility when a fire occurs.
  • the other device 30 can communicate with the parent device 20 by, for example, a wired connection, and interlocks with the automatic fire alarm system A1 in response to an instruction from the parent device 20.
  • the other devices 30 herein include various devices such as fire prevention facilities such as fire doors and smoke exhaust facilities, emergency broadcast facilities, external transfer devices, and fire extinguishing facilities such as sprinklers. It is not limited to (facility).
  • the external transfer device is a device that notifies external parties, fire fighting organizations, security companies, and the like.
  • P-type (Proprietary-type) systems exist in general automatic fire alarm systems.
  • the slave unit notifies the master unit of the occurrence of fire by electrically short-circuiting the pair of electric wires.
  • the automatic fire alarm system A1 of this embodiment is based on the P type. More specifically, in this embodiment, in the housing complex where the P-type automatic fire alarm system was installed, the existing wiring (the electric wires 51 and 52) is used as it is, and the receiver (the main unit 20) and the child are used. Assume that the machine (child machine 10) is replaced. Note that the automatic fire notification system A1 of the present embodiment can also be adopted as a newly introduced automatic fire notification system.
  • the base unit 20 receives P-type reception from the slave unit 10 (fire report) and a notification (link report) for interlocking other devices 30. Machine.
  • the base unit 20 is installed, for example, in a management room of a building (a collective housing 60).
  • the base unit 20 includes an application unit 21, a resistor 22, a reception unit 23, a transmission unit 24, a display unit 25 that performs various displays, and an operation that receives an operation input from a user.
  • the resistor 22 is connected between the applying unit 21 and at least one of the pair of electric wires 51 and 52.
  • the resistor 22 is inserted between one (high potential side) of the pair of electric wires 51, 52 and the application unit 21.
  • the resistor 22 may be inserted between the other (low potential side) electric wire 52 and the application unit 21, or both the pair of electric wires 51 and 52 and the application unit 21. Between them.
  • the receiving unit 23 receives a voltage signal obtained by converting a current signal from the slave unit 10 into a voltage change on the pair of electric wires 51 and 52 due to a voltage drop at the resistor 22.
  • the transmission unit 24 periodically transmits a synchronization signal to the slave unit 10.
  • this master unit 20 receives a fire occurrence notification (fire report) from the slave unit 10, the display unit 25 displays the location of the fire occurrence.
  • the processing unit 27 has a microcomputer as a main component, and realizes a desired function by executing a program stored in a memory (not shown). Note that the program may be written in the memory in advance, or may be provided by being stored in a storage medium such as a memory card. Specifically, the processing unit 27 controls the transmission unit 24 to transmit the transmission signal and the synchronization signal.
  • the master unit 20 has an interlocking unit 28 for interlocking with the other device 30.
  • the master unit 20 can issue an instruction to the other device 30 from the interlocking unit 28 to interlock the other device 30.
  • the base unit 20 applies the voltage between the pair of electric wires 51 and 52 from the applying unit 21, thereby including the slave unit 10 connected to the pair of electric wires 51 and 52.
  • the voltage applied by the application unit 21 between the pair of electric wires 51 and 52 is 24 V DC, but the present invention is not limited to this value.
  • the master unit 20 includes a standby power source 29 using a storage battery so that a power source for the operation of the automatic fire alarm system A1 can be secured even in the event of a power failure.
  • the main unit 20 uses a commercial power source, a private power generation facility, etc. (not shown) as a main power source.
  • the application unit 21 automatically switches the power supply source from the main power source to the standby power source 29 when the main power source is interrupted, and automatically switches from the standby power source 29 to the main power source when the main power source is restored.
  • the spare power supply 29 has a capacity and other specifications determined so as to satisfy the standards defined by the ministerial ordinance.
  • the resistor 22 has a first function for converting the current signal transmitted from the slave unit 10 into a voltage signal as described above, and the pair of wires 51 and 52 when the pair of wires 51 and 52 are short-circuited. It has two functions, a second function for limiting the flowing current. In short, the resistor 22 has a first function as a current-voltage conversion element and a second function as a current limiting element.
  • the resistance value of the resistor 22 is 400 ⁇ or 600 ⁇ , but the value is not limited to this value.
  • the receiving unit 23 and the transmitting unit 24 are electrically connected between the resistor 22 and the pair of electric wires 51 and 52.
  • the receiving unit 23 is not limited to the configuration connected between the resistor 22 and the pair of electric wires 51 and 52, and may be electrically connected between the applying unit 21 and the resistor 22, for example.
  • the receiving unit 23 receives the current signal from the slave unit 10 as a voltage signal (voltage change) on the pair of electric wires 51 and 52.
  • the current value of the current drawn by the slave unit 10 from the pair of electric wires 51 and 52 corresponds to the magnitude of the voltage drop at the resistor 22, so the receiving unit 23 receives the fire report from the slave unit 10.
  • interlocking reports can be received as voltage signals.
  • the receiving unit 23 receives a voltage signal corresponding to the current value of the drawn current in the slave unit 10 as a fire report or a linked report.
  • the transmission unit 24 transmits a current signal generated on the pair of electric wires 51 and 52 by changing the current flowing from the pair of electric wires 51 and 52 to the slave unit 10 as a synchronization signal.
  • the current signal sent (generated) by the transmitter 24 onto the pair of electric wires 51 and 52 is converted into a voltage signal by a voltage drop at the resistor 22, and the slave unit 10 outputs the voltage signal as a synchronization signal from the master unit 20.
  • Receive the voltage change (voltage signal) generated on the pair of electric wires 51 and 52 when the transmission unit 24 changes the current flowing from the pair of electric wires 51 and 52 is received by the slave unit 10 as a voltage signal. It will be.
  • the slave unit 10 includes a diode bridge 11, a power supply circuit 12, a sensor 13, a communication unit 14, a storage unit 17, a determination unit 18, and a processing unit 19. .
  • a pair of electric wires 51 and 52 are electrically connected to the input end side, and the power supply circuit 12 and the communication unit 14 are electrically connected to the output end side.
  • the power supply circuit 12 generates electric power for operation of the child device 10 from electric power on the pair of electric wires 51 and 52.
  • the sensor 13 detects the occurrence of a fire.
  • the communication unit 14 includes a transmission circuit 15 and a reception circuit 16.
  • the transmission circuit 15 transmits the current value of the current (drawn current) drawn from the pair of electric wires 51 and 52 to the parent device 20 as a current signal.
  • the current signal sent (generated) on the pair of electric wires 51 and 52 by the transmission circuit 15 is converted into a voltage signal by a voltage drop at the resistor 22, and the parent device 20 receives the voltage signal as a signal from the child device 10. To do.
  • the transmission circuit 15 adjusts the current value of the drawing current drawn from the pair of electric wires 51 and 52, a voltage signal corresponding to the current value is received by the parent device 20.
  • FIG. 3 shows a specific example of the transmission circuit 15. That is, as illustrated in FIG. 3, the transmission circuit 15 includes a first drawing portion 151 and a second drawing portion 152, and current is drawn by the first drawing portion 151 and the second drawing portion 152, respectively.
  • the first lead-in portion 151 has a series circuit of a semiconductor element 153, a resistor 154, and a light emitting diode (LED: Light Emitting Diode) 155 electrically connected between a pair of output terminals of the diode bridge 11.
  • the second lead-in part 152 has a series circuit of a semiconductor element 156 and a resistor 157 that are electrically connected between a pair of output terminals of the diode bridge 11.
  • each of the semiconductor elements 153 and 156 is made of an npn-type transistor, and the collector is electrically connected to the output terminal on the high potential side of the diode bridge 11. Furthermore, the emitter of the semiconductor element 153 is electrically connected to the circuit ground (the output terminal on the low potential side of the diode bridge 11) via the resistor 154 and the light emitting diode 155. The emitter of the semiconductor element 156 is electrically connected to the circuit ground (the output terminal on the low potential side of the diode bridge 11) via the resistor 157. The bases of the semiconductor elements 153 and 156 are electrically connected to the processing unit 19 described later. Note that the semiconductor elements 153 and 156 are not limited to npn transistors but may be pnp transistors, for example.
  • the transmission circuit 15 draws current in the first drawing unit 151 when the semiconductor element 153 is turned on by the processing unit 19, and the second drawing unit 152 when the semiconductor element 156 is turned on by the processing unit 19.
  • the current is drawn with. Therefore, the transmission circuit 15 has a current drawn in current when the current is drawn only by the first lead 151 and when the current is drawn by both the first lead 151 and the second lead 152. You can change the value.
  • the transmission circuit 15 can adjust the current value in four stages in total, that is, two stages with the first lead-in part 151 and two stages with the second lead-in part 152 in this way.
  • the slave unit 10 can raise the current value of the pull-in current in four stages by switching the current value of the pull-in current in the transmission circuit 15.
  • the transmission circuit 15 can turn on the light emitting diode 155 when the first drawing unit 151 draws current.
  • the light-emitting diode 155 is disposed at a position that is visible from the outside of the slave unit 10 and has a function of notifying that the slave unit 10 is in a fire report state by turning on.
  • the receiving circuit 16 receives the synchronization signal from the base unit 20 as a voltage signal (voltage change) on the pair of electric wires 51 and 52. That is, the current signal sent (generated) on the pair of electric wires 51 and 52 by the parent device 20 is converted into a voltage signal by the voltage drop at the resistor 22, so that the receiving circuit 16 is synchronized with the parent device 20. A voltage signal is received as a signal. In other words, the receiving circuit 16 receives, as a voltage signal, a voltage change (voltage signal) that occurs on the pair of electric wires 51 and 52 when the parent device 20 changes the current flowing from the pair of electric wires 51 and 52. become.
  • the storage unit 17 stores at least identification information (address) assigned in advance to the child device 10. That is, unique identification information is assigned to each of the plurality of slave units B1, B2, B3,. Each identification information is registered in the parent device 20 in association with each installation location (for example, a room number) of the plurality of child devices B1, B2, B3,.
  • the storage unit 17 stores determination conditions for the determination unit 18 to determine the operating state (fire report state, interlocked report state).
  • the determination condition is, for example, a threshold set for the output of the sensor 13 or the like. Note that the identification information and the determination conditions that are pre-assigned to the child device 10 may be stored in the same storage unit 17, or a plurality of storage units 17 may be provided and stored in separate storage units 17. Good.
  • Determining unit 18 determines an operation state including two states of a fire report state and a linked report state. Specifically, the determination unit 18 reads the output (sensor value) of the sensor 13 and determines the operation state by observing the determination conditions in the storage unit 17. In the present embodiment, as an example of the determination condition, when the read sensor value exceeds the first threshold, the determination unit 18 determines that the fire report state is present. When the read sensor value exceeds the second threshold value (> first threshold value), the determination unit 18 determines that the linked information state is present. However, the determination unit 18 starts the comparison between the sensor value and the second threshold value, for example, from the time when the determination of the fire report state is confirmed, so as to determine the interlocked report state after determining the fire report state. . Note that these determination conditions are merely examples, and can be changed as appropriate.
  • the determination unit 18 includes three states (fire report state, interlocked report state, non-reported state) including a non-reporting state (normal state) that is neither a fire report state nor a linked report state. To determine which of the current operating states corresponds. Note that the operation state determined by the determination unit 18 is not limited to three states, but may be only two states of a fire report state and a linked report state, or may be four states or more.
  • the processing unit 19 controls the transmission circuit 15 and the reception circuit 16 to transmit a current signal from the transmission circuit 15 by adjusting the current value of the drawn current according to the output of the sensor 13, or from the parent device 20 Are received by the receiving circuit 16.
  • the processing unit 19 has a microcomputer as a main component, and implements a desired function by executing a program stored in a memory (not shown).
  • the program may be written in the memory in advance, or may be provided by being stored in a storage medium such as a memory card.
  • the processing unit 19 starts the fire detection operation with the operation power generated by the power supply circuit 12 in the operation time zone assigned according to the identification information of the own device. To do. Specifically, the processing unit 19 causes the determination unit 18 to start reading the sensor value and determine the state in the operation time zone assigned according to the identification information of the own device, and according to the determination result of the determination unit 18 The transmitter circuit 15 is controlled to adjust the current value of the drawn current. As described above, when the determination result of the determination unit 18 is in the fire report state, the processing unit 19 adjusts the current value of the drawn current to a predetermined fire report level and generates a fire report.
  • the processing unit 19 adjusts the current value of the drawn current to a predetermined linked report level and generates a linked report.
  • the interlock report level is a value (current value) different from the fire report level, and in this embodiment, the current value is larger than the fire report level (interlock report level> fire report level).
  • the processing unit 19 transmits a transmission signal representing transmission data from the transmission circuit 15 when a predetermined waiting time has elapsed after adjusting the current value of the drawn current to a predetermined fire alarm level. . Specifically, the processing unit 19 transmits a transmission signal from the transmission circuit 15 by increasing or decreasing the current value of the drawn current between two values of the first level and the second level.
  • the transmission data is, for example, identification information of the slave unit 10.
  • the first level is the same value as the fire alert level
  • the handset 10 increases or decreases the current value of the drawn current based on the fire report level, it is possible to transmit a transmission signal in the fire report state.
  • the slave 10 when the handset 10 determines that a fire has occurred and a fire report has occurred, the slave 10 generates a fire report by adjusting the current value of the drawn current to the fire report level. Further, when determining that the slave unit 10 is in the interlocking report state, the slave unit 10 generates the interlocking report by adjusting the current value of the drawn current to the interlocking report state. Further, in the fire report state, the slave unit 10 transmits a transmission signal representing the identification information by increasing or decreasing the current value of the drawn current between the first level (fire report level) and the second level.
  • the slave unit 10 transmits data including at least the identification information stored in the storage unit 17 to the master unit 20 through communication using the transmission signal. Therefore, in the master unit 20, after receiving the fire report from the slave unit 10, the slave unit 10 that is the reporting source can be specified from the identification information represented by the transmission signal.
  • the determination unit 18 and the processing unit 19 are configured as separate bodies.
  • the determination unit 18 and the processing unit 19 are not limited to this example, and may be configured as a single unit.
  • FIG. 4 is a flowchart showing the operation of the child device 10.
  • the main unit 20 applies a constant voltage (for example, DC 24V) between the pair of electric wires 51 and 52 from the applying unit 21.
  • a constant voltage for example, DC 24V
  • the processing unit 19 of the child device 10 determines whether or not the receiving circuit 16 has received the synchronization signal transmitted from the parent device 20 (step S5).
  • step S5 If it is determined that it has been received (“Yes” in step S5), the processing unit 19 determines whether or not an operation time zone corresponding to the identification information of the own device has arrived (step S10).
  • step S10 When it is determined that the operating time zone has arrived (“Yes” in step S10), the processing unit 19 starts the operation of fire detection using the operating power generated by the power supply circuit 12.
  • the determination unit 18 reads the sensor value (step S15) and determines whether or not it is in a fire report state (step S20).
  • handset 10 basically does not draw current, and the current value of the drawn current is 0 (zero). Therefore, if the child device 10 performing the fire detection operation is in a non-reporting state, the current flowing through the pair of electric wires 51 and 52 is necessary for the current flowing through the termination resistor 40 and the child device 10 to operate. The sum of the currents. Therefore, it is unlikely that base unit 20 erroneously detects the fire report based on the current value of the current flowing through the pair of electric wires 51 and 52 in the non-reporting state.
  • step S20 When determining that the determination unit 18 is in the fire report state (“Yes” in step S20), the processing unit 19 increases the current value of the drawn current to adjust to the fire report level (step S25). This generates a fire report.
  • the processing unit 19 transmits a transmission signal representing the identification information of the own device from the transmission circuit 15 when a predetermined waiting time elapses from when the current value of the drawn current is increased (step S30). Thereby, the subunit
  • the determination unit 18 reads the sensor value (step S35) and determines whether or not it is in the interlocking report state (step S40).
  • step S40 If it is determined that it is in the interlocking state (“Yes” in step S40), the processing unit 19 increases the current value of the pull-in current and adjusts it to the interlocking report level (step S45).
  • the processing unit 19 determines whether or not the operation time period has ended after raising the current value of the pull-in current and adjusting it to the interlocking report level (step S50). If it is determined that the processing has ended (“Yes” in step S50), the processing unit 19 returns to step S5 and waits for reception of a synchronization signal.
  • step S60 determines whether or not the operation time period has ended. If it is determined that the processing has been completed (“Yes” in step S60), the processing unit 19 returns to step S5 and waits for reception of a synchronization signal. If it is determined that the process has not been completed (“No” in step S60), the process returns to step S15, and the determination unit 18 reads the sensor value.
  • step S65 determines whether or not the operation time period has ended. If it is determined that the processing has ended (“Yes” in step S65), the processing unit 19 returns to step S5 and waits for reception of a synchronization signal. If it is determined that the process has not been completed (“No” in step S65), the process returns to step S35, and the determination unit 18 reads the sensor value.
  • the entire interval (detection operation interval) Ta from when the synchronization signal is transmitted until all the slave units 10 operate is the synchronization signal transmission interval Ta1 and the notification. It consists of detection section Ta2.
  • the notification detection section Ta2 is composed of operation time zones T1, T2,..., T64 having the same time length. That is, the time length of the notification detection section Ta2 is the total time length of the operation time zones T1, T2,.
  • FIG. 5B is a diagram illustrating the transition of the fire detection operation.
  • one operating time zone is assigned to the 64 slave units 10 on a one-to-one basis.
  • the slave unit B1 performs a fire detection operation in the operation time period T1
  • the slave unit B2 detects the fire in the operation time period T2. Perform the operation.
  • the handset 10 to which the operation time zone is assigned sequentially performs the fire detection operation, and in the last operation time zone T64, the handset B64 performs the fire detection operation.
  • Each child device 10 performs a fire detection operation in an operation time zone corresponding to its own identification information, and enters a standby state in the other operation time zone.
  • the slave unit B1 is in a standby state in the operation time periods T2 to T64 other than the operation time period T1 in which the own device performs the fire detection operation.
  • the device enters a standby state in operation time zones T1, T3 to T64 other than the operation time zone T2 in which the own device performs the fire detection operation.
  • FIG. 6 shows changes in the current value flowing through the pair of electric wires 51 and 52, with the horizontal axis representing time and the vertical axis representing the current value.
  • a section (time length) from time t0 to time t5 shown in FIG. 6 is one operation time zone.
  • the handset 10 can switch the current value of the pull-in current so that the current value of the current flowing through the pair of electric wires 51 and 52 can be stepped up in three steps from the base current I0 to I1, I2 and I3. (I0 ⁇ I1 ⁇ I2 ⁇ I3).
  • the base current is a current flowing through the slave unit 10 when the slave unit 10 is in a non-reporting state.
  • the current value of the current flowing through the pair of electric wires 51 and 52 is basically “I0” as shown in FIG.
  • the slave 10 that is operating is in a non-reporting state during the period from time t0 to t1.
  • the current value of the current flowing through the pair of electric wires 51 and 52 increases from “I0” to “I1” as shown in FIG. To do.
  • the handset 10 detects a fire report state in the period from time t1 to time t4.
  • the slave unit 10 sets the current value of the drawn current to the first level when a predetermined waiting time Wa elapses from when the current value is increased from “I0” to “I1”, which is a current value indicating the fire alarm level.
  • a transmission signal representing transmission data is transmitted from the transmission circuit 15 by increasing or decreasing between the two values of the second level and the second level.
  • the slave unit 10 transmits a transmission signal, and the current value of the current flowing through the pair of electric wires 51 and 52 increases or decreases between “I1” and “I2”. To do.
  • the slave unit 10 is in the interlocking report state during the period from time t4 to t5.
  • the fire report level is assumed to be 20 mA to 25 mA
  • the interlocking report level is assumed to be about 40 mA to 45 mA
  • the difference between the first level and the second level when transmitting the transmission signal is 13 mA to 18 mA.
  • the fire report level is assumed to be 5 mA to 8 mA
  • the linked report level is assumed to be about 15 mA to 20 mA
  • the difference between the first level and the second level when transmitting a transmission signal is about 5 mA to 13 mA. It may be assumed.
  • the time length of the detection operation section Ta is assumed to be about 1 second. Then, when the total number of the slave units 10 is 64, the operation time zone assigned to each slave unit 10 is assumed to be about 15 milliseconds.
  • the current value of the drawn current is allowed to vary within a predetermined allowable range. If it is in each tolerance
  • the slave unit 10 of the automatic fire alarm system A1 in the present embodiment is electrically connected to the pair of electric wires 51 and 52 to which a voltage is applied.
  • mobile_unit 10 is provided with the memory
  • storage part 17 has memorize
  • the communication part 14 is a signal represented by the change of the voltage applied to a pair of electric wires 51 and 52,
  • the processing unit 19 detects the fire using the power supplied from the parent device 20 in the operation time zone assigned according to the identification information stored in the storage unit 17. Perform the operation.
  • the slave unit 10 performs a fire detection operation using the power supplied from the master unit 20 in the operation time zone assigned according to the identification information of the own unit. Therefore, the power consumed by each slave unit 10, that is, the current consumed by each slave unit 10, is distributed. Therefore, automatic fire alarm system A1 using cordless handset 10 can suppress an increase in current consumption in the same operation time zone.
  • the communication unit 14 includes a transmission circuit 15 that transmits a signal corresponding to the operation of the fire detection by changing the current drawn from the pair of electric wires 51 and 52.
  • the transmission circuit 15 transmits a fire report signal for notifying the occurrence of a fire and an interlock report signal for interlocking with other devices by a fire detection operation.
  • the first current value I1 of the current drawn from the pair of electric wires by the transmission circuit 15 when transmitting the fire report signal and the second current of the current drawn from the pair of electric wires by the transmission circuit 15 when transmitting the signal of the interlocking signal It may be different from the value I3.
  • the slave unit 10 can transmit the fire report and the linked report separately.
  • the communication unit 14 includes a transmission circuit 15 that transmits a fire report signal for notifying the occurrence of a fire by changing the current drawn from the pair of electric wires 51 and 52 in a fire detection operation.
  • the transmission circuit 15 may further transmit an identification signal representing identification information when a predetermined waiting time has elapsed since the fire report was transmitted.
  • the slave unit 10 transmits the transmission signal indicating the identification information when a predetermined waiting time has elapsed from the time when the fire report is transmitted, so the source device that transmitted the fire report is notified to the master unit 20. can do.
  • the automatic fire alarm system A1 may include the slave unit 10 and the master unit 20 that applies a voltage between the pair of electric wires.
  • the slave unit 10 of the automatic fire notification system performs a fire detection operation using the current consumption supplied from the master unit 20 in the operation time zone assigned according to the identification information of the own unit. Therefore, automatic fire alarm system A1 using cordless handset 10 can suppress an increase in current consumption in the same operation time zone.
  • Embodiment 2 The automatic fire alarm system A1 in the present embodiment will be described with a focus on differences from the first embodiment.
  • the basic configuration of the automatic fire alarm system A1 of the present embodiment is the same as that of the first embodiment, and the same components as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted as appropriate.
  • the slave unit 10 operating in the operating time zone transmits a fire report to the master unit 20
  • a transmission signal is transmitted after a predetermined time has elapsed from the transmission, that is, communication using the transmission signal is performed in the operating time zone.
  • base station 20 in the area different from an alert detection detection area is a point different from Embodiment 1.
  • the transmission unit 24 of the parent device 20 includes a first transmission circuit (not shown) that transmits a synchronization signal and a second transmission circuit (not shown) that transmits a request signal.
  • the first transmission circuit of the transmission unit 24 periodically transmits a synchronization signal. Since the method for transmitting the synchronization signal is the same as that in the first embodiment, description thereof is omitted here.
  • the 2nd transmission circuit of the transmission part 24 transmits the request signal which requests
  • the request signal is a signal for confirming survival, for example.
  • the receiving circuit 16 of the child device 10 periodically receives a request signal in addition to the synchronization signal at a timing different from the reception of the synchronization signal. Specifically, the receiving circuit 16 receives a request signal from the parent device 20 as a voltage signal (voltage change) on the pair of electric wires 51 and 52.
  • the transmission circuit 15 of the child device 10 transmits a current signal generated by drawing current from the pair of electric wires 51 and 52 to the parent device 20 as a transmission signal.
  • the transmission signal is transmission data representing the identification information of the own device.
  • the processing unit 19 of the child device 10 transmits the transmission signal from the transmission circuit 15 in the response time zone assigned according to the identification information of the own device.
  • FIG. 7 is a flowchart showing the operation of the child device 10.
  • the base unit 20 periodically transmits a request signal.
  • the processing unit 19 of the child device 10 determines whether or not the receiving circuit 16 has received the request signal transmitted from the parent device 20 (step S100).
  • step S100 If it is determined that it has been received (“Yes” in step S100), the processing unit 19 determines whether or not a response time zone corresponding to the identification information of the own device has arrived (step S105).
  • step S105 When it is determined that the response time zone has arrived (“Yes” in step S105), the processing unit 19 transmits a response signal from the transmission circuit 15 by raising the current value of the drawn current (step S110).
  • the processing unit 19 then performs a fire detection process (step S115).
  • a fire detection process is the same as the process shown in FIG. 4, detailed description thereof is omitted here.
  • the processing unit 19 of the slave unit 10 returns to step S100 when the operation time zone assigned to the slave unit 10 ends. Further, the processing unit 19 of the present embodiment performs step S35 after executing step S25 shown in FIG. That is, transmission signals are not transmitted during the operation time period.
  • the entire period from when the request signal and the synchronization signal are transmitted to when all the slave units 10 operate is the communication period Tb and the detection operation period. It consists of Ta.
  • the communication section Tb includes a request signal transmission section Tb1 and a response section Tb2.
  • the response section Tb2 includes response time zones TT1, TT2,..., TT64 having the same time length. That is, the time length of the notification detection section Tb2 is the total time length of the operation time zones TT1, TT2,.
  • One operation time zone is assigned one-to-one. Note that the configuration of the detection operation section Ta is the same as that of the first embodiment, and thus the description thereof is omitted here.
  • FIG. 8B is a diagram for explaining the transition of the response operation and the fire detection operation. Since the transition of the fire detection operation is the same as the transition shown in FIG. 5B, the description thereof is omitted here.
  • each slave device 10 performs a response operation when a waiting time determined by the identification information of the own device has elapsed.
  • FIG. 9 shows changes in the current value flowing through the pair of electric wires 51 and 52, with the horizontal axis representing time and the vertical axis representing the current value.
  • the section (time length) from time t0 to t3 shown in FIG. 9 is one response time zone
  • the section (time length) from time t4 to t7 is one operation time zone.
  • the handset 10 can switch the current value of the pull-in current so that the current value of the current flowing through the pair of electric wires 51 and 52 can be increased stepwise in three steps from the base currents I0 to I4, I1 and I3. (I0 ⁇ I4 ⁇ I1 ⁇ I3).
  • the current value of the current flowing through the pair of electric wires 51 and 52 is basically “I0” as shown in FIG.
  • the response signal is transmitted when the waiting time Wb elapses from the start time from the response section Tb2, that is, when the response time zone assigned according to the identification information of the own device arrives. (Refer to times t1 to t2 in FIG. 9). Specifically, the subunit
  • the current value of the current flowing through the pair of electric wires 51 and 52 increases from “I0” to “I1” as shown in FIG. To do.
  • the slave unit 10 detects a fire report state during the period from time t5 to t6.
  • the total time length of the detection operation section Ta and the communication section Tb is assumed to be about 1 second. Then, when the total number of slave units 10 is 64, each of the operation time zone and the response time zone assigned to each slave unit 10 is assumed to be about 7 milliseconds.
  • the current value of the drawn current is allowed to vary within a predetermined allowable range. If it is in each tolerance
  • the master unit 20 transmits a request signal as a transmission signal to the slave unit 10 and receives a response signal as a transmission signal from the slave unit 10. That is, the slave unit 10 and the master unit 20 can communicate transmission signals in both directions.
  • the present invention is not limited to this. Communication of transmission signals may be possible only in one direction.
  • transmission signals may be communicated in one direction from the parent device 20 to the child device 10.
  • the slave unit 10 when receiving the transmission signal, which is a data write command, for example, the slave unit 10 performs data write processing in the response time zone assigned to the own unit in the response interval. Thereby, the current consumed in the writing process is distributed.
  • the transmission signal representing the transmission data is not transmitted in the notification detection section.
  • transmission signals may be communicated in one direction from the slave unit 10 to the master unit 20.
  • the response section starts from the end point of the alert detection section.
  • mobile_unit 10 performs response operation
  • the automatic fire alarm system A1 can exchange various information between the master unit 20 and the slave unit 10 by using communication, the notification source of the slave unit 10 unit as described above can be used. In addition to the identification information, various functions can be added.
  • the communication unit 14 of the slave unit 10 of the automatic fire alarm system A1 in the present embodiment may operate as follows.
  • the communication unit 14 uses the power supplied from the parent device 20 in a communication section different from the alarm detection section having the total time length of the operation time zone assigned to each of the own device and the other child devices 10. Communication with the base unit 20 is performed.
  • the handset 10 is communicating with the base unit 20 in a communication section different from the alert detection section having the operation time zone assigned to the handset. Therefore, the subunit
  • the communication unit 14 may start communication when a time determined based on the identification information has elapsed after the start of the communication section.
  • the slave unit 10 starts communication when a time determined based on the identification information of the own unit has elapsed. Therefore, the automatic fire alarm system A1 using the slave unit 10 uses the current consumption used for communication. Can be dispersed.
  • Embodiment 3 The automatic fire alarm system A1 in the present embodiment will be described focusing on differences from the first and second embodiments.
  • the basic configuration of the automatic fire alarm system A1 of the present embodiment is the same as that of the second embodiment, and the same components as those of the second embodiment are denoted by the same reference numerals and description thereof is omitted as appropriate.
  • the point that the synchronization signal also serves as the request signal is different from the second embodiment.
  • the transmission unit 24 periodically transmits a synchronization signal to the plurality of slave units 10 as in the first embodiment.
  • the receiving circuit 16 of the child device 10 periodically receives the synchronization signal from the parent device 20.
  • the processing unit 19 of the child device 10 transmits the transmission signal from the transmission circuit 15 in the response time zone assigned according to the identification information of the own device in the response section. .
  • the processing unit 19 transmits the detection result from the transmission circuit 15 in the operation time zone assigned according to the identification information of the own device in the notification detection period.
  • FIG. 10 is a flowchart showing the operation of the child device 10.
  • the processing unit 19 of the child device 10 determines whether or not the receiving circuit 16 has received the synchronization signal transmitted from the parent device 20 (step S200).
  • step S200 When determining that it has been received (“Yes” in step S200), the processing unit 19 determines whether or not a response time zone corresponding to the identification information of the own device has arrived (step S205).
  • the processing unit 19 transmits a response signal from the transmission circuit 15 by raising the current value of the drawn current (step S210).
  • the processing unit 19 determines whether or not an operation time zone corresponding to the identification information of the own device has arrived (step S215).
  • step S220 When it is determined that the operating time zone has arrived (“Yes” in step S215), the processing unit 19 performs a fire detection process (step S220).
  • the fire detection process is the same as the process after step S15 in the process shown in FIG. 4, detailed description thereof is omitted here.
  • the processing unit 19 of the slave unit 10 returns to step S200 when the operation time zone assigned to the slave unit 10 ends.
  • the entire period from when the request signal and the synchronization signal are transmitted to when all the slave units 10 operate is as follows: It consists of a response interval Tb2 and a notification detection interval Ta2. Since the configuration of the response section Tb is the same as that of the second embodiment, and the configuration of the notification detection section Ta2 is the same as that of the first embodiment, description thereof is omitted here.
  • FIG. 11B is a diagram for explaining the transition of the response operation and the fire detection operation.
  • the child device B1 When a synchronization signal is received from the parent device 20 in the transmission section Ta1, the child device B1 performs a response operation in the response time zone TT1, and the child device B2 performs a response operation in the response time zone TT2. Thereafter, in each response time zone, the slave unit 10 to which the response time zone is assigned sequentially performs a response operation, and the slave unit B 64 performs a response operation in the last response time zone TT64.
  • the alarm detection section Ta2 After the end of the response section Tb2, the alarm detection section Ta2 is started, and the slave unit B1 performs the fire detection operation in the operation time period T1, and the slave unit B2 performs the fire detection operation in the operation time period T2. Thereafter, in each operation time zone, the handset 10 to which the operation time zone is assigned sequentially performs the fire detection operation, and in the last operation time zone T64, the handset B64 performs the fire detection operation. According to this, when each slave unit 10 receives the synchronization signal, it can be seen that each of the response intervals Tb2 and the alert detection interval Ta2 starts at different times.
  • the total time length of the synchronization signal transmission section Ta1, the response section Tb2, and the notification detection section Ta2 is assumed to be about 1 second. Then, when the total number of slave units 10 is 64, each of the operation time zone and the response time zone assigned to each slave unit 10 is assumed to be about 7 milliseconds.
  • the current value of the drawn current is allowed to vary within a predetermined allowable range. If it is in each tolerance
  • the slave unit 10 performs the response operation and the fire detection operation in the order of the response operation and the fire detection operation.
  • mobile_unit 10 may process in order of the operation
  • the processing unit 19 of the slave unit 10 of the automatic fire notification system A1 performs the fire detection operation and the response operation (communication). May be performed.
  • the slave unit 10 performs the communication detection in the communication section and the fire detection operation in the notification detection section with the reception of the synchronization signal as a trigger. Therefore, it is possible to share the triggers for the communication in the communication section and the operation in the notification detection section. Moreover, in the main
  • the alert detection section is time-divided by the number of slave units 10, but the present invention is not limited to this.
  • the alert detection section may be time-divided into at least two sections (operation time zones).
  • One or more cordless handsets 10 are assigned to each time-divided section. According to this, since not all the subunit
  • the determination unit 18 determines that the fire alarm state occurs when the sensor value exceeds the first threshold value, but the present invention is not limited to this.
  • the determination unit 18 may determine that there is a fire report state when a state where the read sensor value exceeds the first threshold value continues for a predetermined number of times (for example, three times).
  • the determination unit 18 determines that the state of the interlocking report is in a state where the read sensor value exceeds the second threshold value for a predetermined number of times (for example, three times). Good.
  • the transmission of the fire report and the interlocking report is a system in which a signal is transmitted by a change in the drawn current, but is not limited thereto.
  • the fire report may be transmitted by changing the voltage.
  • a method of transmitting a signal by changing the voltage may be used.
  • the slave 10 that is operating does not transmit a transmission signal during the operation time period, but the present invention is not limited to this.
  • the operating child device 10 may transmit a transmission signal in the operation time zone even when a response section is provided.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire Alarms (AREA)
  • Alarm Systems (AREA)

Abstract

 電圧が印加される一対の電線に電気的に接続された、自動火災報知システム(A1)の子機(10)は、記憶部(17)と、通信部(14)と、処理部(19)とを備える。記憶部(17)は、自機に固有の識別情報を記憶している。通信部(14)は、一対の電線に印加される電圧の変化により表される信号であって、他の子機(10)との同期をとるために親機(20)から送信された同期信号を受信する。処理部(19)は、通信部(14)で同期信号が受信されると、記憶部(17)に記憶された識別情報に応じて割り当てられた動作時間帯で、親機(20)から供給される消費電流を用いて火災検知の動作を行う。

Description

自動火災報知システムの子機、およびそれを用いた自動火災報知システム
 本発明は、一般に自動火災報知システムの子機、およびそれを用いた自動火災報知システムに関し、例えば、一対の電線を介して親機と電気的に接続された自動火災報知システムの子機、およびそれを用いた自動火災報知システムに関する発明である。
 従来、自動火災報知システム(自火報システム)として、P型(Proprietary-type)の自動火災報知システムが存在する。P型の自動火災報知システムは、熱感知器や煙感知器や炎感知器等からなる子機にて火災の発生を検知し、受信機からなる親機へ子機から火災発生の通知が為されるように構成されている。
 P型の自動火災報知システムは、子機が一対の電線間を電気的に短絡することで、受信機からなる親機に火災発生を通知する。
 また、自動火災報知システムとしては、防排煙設備や非常用放送設備等の他装置との連動機能を有するシステムもある。この種の自動火災報知システムにおいては、子機は、他装置を連動させるための連動報を発生する機能を有し、親機は、子機からの連動報を受信することで他装置との連動を実行する。
 ところで、例えば特許文献1には、P型の自動火災報知システムとして、親機である火災受信機より導出した複数の感知器回線に、子機である火災感知器を複数台接続した構成のシステムが開示されている。特許文献1に記載の自動火災報知システムでは、子機は、火災受信機から供給された電力を用いて火災検知の動作を行い、火災を検知した時には火災報を親機に出力している。
特開2002-8154号公報
 通常、P型の自動火災報知システムに備えられた複数の子機のそれぞれは、自機が備えるクロック源をもとに予め定められた時間周期で火災検知の動作を行っている。そのため、複数の子機が同一時間帯において、火災検知の動作を行う可能性がある。そうすると、複数の子機のそれぞれが動作に必要な電力がその時間帯に集中するので、その時間帯において多量の電流が一対の電線に流れることとなる。このような状況において、親機は消費される電流の変化により火災報を誤検知する可能性がある。
 そこで、本発明は、上記問題に鑑みてなされており、その目的は、同一時間帯で消費される電流の増加を抑えることができる自動火災報知システムの子機、およびそれを用いた自動火災報知システムを提供することにある。
 そこで、本発明の一態様に係る自動火災報知システムの子機は、電圧が印加される一対の電線に電気的に接続された自動火災報知システムの子機であって、自機に固有の識別情報を記憶している記憶部と、前記一対の電線に印加される電圧の変化により表される信号であって、他の子機との同期をとるために親機から送信された同期信号を受信する通信部と、前記通信部で前記同期信号が受信されると、前記記憶部に記憶された前記識別情報に応じて割り当てられた動作時間帯で、前記親機から供給される電力を用いて火災検知の動作を行う処理部とを備えることを特徴とする。
 また、本発明の一態様に係る自動火災報知システムは、上記の子機と、前記一対の電線間に電圧を印加する親機とを備えることを特徴とする。
 この構成によると、自動火災報知システムの子機、およびそれを用いた自動火災報知システムは、同一時間帯で消費される電流の増加を抑えることができる。
図1は、実施形態1の自動火災報知システムの概略構成を説明する図である。 図2は、実施形態1の自動火災報知システムの全体構成を説明する図である。 図3は、実施形態1の子機が有する送信回路の構成を説明する図である。 図4は、実施形態1の子機の動作を説明する流れ図である。 図5Aは、実施形態1における動作時間帯の割り当てを説明する図である。 図5Bは、実施形態1における動作時間帯の割り当てを説明する図である。 図6は、実施形態1の子機が引き込む電流の変化を説明する図である。 図7は、実施形態2の子機の動作を説明する流れ図である。 図8Aは、実施形態2における動作時間帯および応答時間帯の割り当てを説明する図である。 図8Bは、実施形態2における動作時間帯および応答時間帯の割り当てを説明する図である。 図9は、実施形態2の子機が引き込む電流の変化を説明する図である。 図10は、実施形態3の子機の動作を説明する流れ図である。 図11Aは、実施形態3における動作時間帯および応答時間帯の割り当てを説明する図である。 図11Bは、実施形態3における動作時間帯および応答時間帯の割り当てを説明する図である。
 以下では、本発明の実施の形態に係る自動火災報知システムの子機、およびそれを用いた自動火災報知システムについて、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。
 1.実施形態1
 以下、本実施形態の自動火災報知システムA1について説明する。
 1.1 概要
 本実施形態に係る自動火災報知システムA1は、図1に示すように、少なくとも1台の子機10と、1台の親機20とを備えている。
 親機20は、一対の電線51,52間に電圧を印加する印加部21を有している。
 子機10は、一対の電線51,52に電気的に接続されており、通信部14と記憶部17と処理部19とを備えている。
 記憶部17は、自機に固有の識別情報を記憶している。
 通信部14は、一対の電線51,52に印加される電圧の変化により他の子機10との同期をとるために親機20から送信された同期信号を受信する。
 処理部19は、通信部14で同期信号が受信されると、記憶部17に記憶された識別情報に応じて割り当てられた動作時間帯で、火災検知の動作を行う。
 すなわち、本実施形態の自動火災報知システムA1の子機10のそれぞれは、自機に割り当てられた動作時間帯で火災検知の動作を行っている。
 そのため、本実施形態の自動火災報知システムA1においては、同一時間帯で火災検知の動作を行う子機10の数を制限することができるので、同一時間帯で消費される電力の増加、つまりは消費される電流の増加を抑えることができる、という利点がある。
 以下、本実施形態に係る自動火災報知システムA1について詳しく説明する。ただし、以下に説明する構成は、本発明の一例に過ぎず、本発明は、下記実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
 1.2 全体構成
 本実施形態では、自動火災報知システムA1が集合住宅(マンション)に用いられる場合を例示するが、自動火災報知システムA1は、集合住宅に限らず、例えば商業施設、病院、ホテル、雑居ビル等、様々な建物に適用可能である。
 本実施形態の自動火災報知システムA1においては、図2に示すように1棟の集合住宅60に対して、1台の親機20と、複数台の子機B1,B2,B3,・・・とが設けられている。なお、複数台の子機B1,B2,B3,・・・の各々を特に区別しないときには単に「子機10」という。
 さらに、この自動火災報知システムA1では、一対の電線51,52が1~4階の階(フロア)ごとに配線されている。要するに、2本1組(2線式)の電線51,52は、集合住宅60全体で4組設けられている。ここでは、各組の電線51,52に対して最大40~80台の子機10が接続可能である。さらに、1台の親機20には、一対の電線51,52は最大で50~200回線(50~200組)接続可能である。したがって、例えば各組の電線51,52に最大40台の子機10が接続可能で、1台の親機20に最大で50回線の一対の電線51,52が接続可能である場合、子機10は、1台の親機20に対して最大で2000(=40×50)台まで接続可能である。なお、これらの数値は一例であって、これらの数値に限定する趣旨ではない。
 また、一対の電線51,52の終端(親機20と反対側の端部)においては、一対の電線51,52間が終端抵抗40を介して電気的に接続されている。そのため、親機20は、一対の電線51,52間に流れる電流を監視することで、一対の電線51,52の断線を検知することが可能である。ただし、終端抵抗40は必須の構成ではなく、省略されていてもよい。
 自動火災報知システムA1は、基本的には、熱感知器や煙感知器や炎感知器等からなる子機10にて火災の発生を検知し、子機10から受信機である親機20へ火災発生の通知(火災報)が為されるように構成されている。ただし、子機10は、火災の発生を検知する感知器に限らず、発信機などを含んでいてもよい。発信機は、押しボタンスイッチ(図示せず)を有し、人が火災を発見した場合に押しボタンスイッチを手動で操作することにより、親機20へ火災発生の通知(火災報)を行う装置である。
 また、自動火災報知システムA1は、他装置30を連動させるための通知(連動報)を子機10から親機20が受けた際、防排煙設備や非常用放送設備等の他装置30を連動させる連動機能を有している。そのため、自動火災報知システムA1は、火災の発生時に、防排煙設備の防火扉を制御したり、非常用放送設備にて音響または音声により火災の発生を報知したりすることが可能である。
 他装置30は、例えば有線接続により親機20との間で通信可能であり、親機20からの指示を受けて自動火災報知システムA1と連動する。ここでいう他装置30は、防火扉や排煙設備などの防排煙設備、非常用放送設備、外部移報装置、およびスプリンクラーなどの消火設備等、様々な装置を含んでおり、特定の装置(設備)には限定されない。なお、外部移報装置は、外部の関係者、消防機関、警備会社等へ通報する装置である。
 ところで、一般的な自動火災報知システムには、P型(Proprietary-type)のシステムが存在する。P型の自動火災報知システムは、子機が一対の電線間を電気的に短絡することで親機に火災発生を通知する。
 本実施形態の自動火災報知システムA1はP型を基本とする。より具体的には、本実施形態では、P型の自動火災報知システムが設置されていた集合住宅において、既存の配線(電線51,52)をそのまま使用し、受信機(親機20)および子機(子機10)を入れ替えた場合を想定する。なお、本実施形態の自動火災報知システムA1は、新規に導入される自動火災報知システムとしても採用可能である。
 1.3 親機20の構成
 本実施形態では、親機20は、子機10から火災発生の通知(火災報)、並びに他装置30を連動させるための通知(連動報)を受けるP型受信機である。親機20は、例えば建物(集合住宅60)の管理室に設置される。
 親機20は、図1に示すように、印加部21の他、抵抗22と、受信部23と、送信部24と、各種の表示を行う表示部25と、ユーザからの操作入力を受け付ける操作部26と、各部を制御する処理部27とを有している。
 抵抗22は、印加部21と一対の電線51,52の少なくとも一方との間に接続されている。図1の例では、抵抗22は、一対の電線51,52のうち一方(高電位側)の電線51と印加部21との間に挿入されている。ただし、この例に限らず、抵抗22は、他方(低電位側)の電線52と印加部21との間に挿入されていてもよいし、一対の電線51,52の両方と印加部21との間にそれぞれ挿入されていてもよい。
 受信部23は、子機10からの電流信号を抵抗22での電圧降下により一対の電線51,52上の電圧変化に変換してなる電圧信号を受信する。
 送信部24は、子機10に、定期的に同期信号を送信する。
 この親機20は、子機10から火災発生の通知(火災報)を受けると、表示部25にて火災の発生場所等の表示を行う。
 処理部27は、マイコン(マイクロコンピュータ)を主構成とし、メモリ(図示せず)に記憶されたプログラムを実行することにより所望の機能を実現する。なお、プログラムは、予めメモリに書き込まれていてもよいし、メモリカードのような記憶媒体に記憶されて提供されてもよい。具体的には、処理部27は、伝送信号および同期信号を送信するように送信部24を制御する。
 また、親機20は、他装置30を連動させるための連動部28を有している。これにより、親機20は、子機10から連動報を受けると、連動部28から他装置30へ指示を出し、他装置30を連動させることができる。
 親機20は、上述したように印加部21から一対の電線51,52間に電圧を印加することにより、一対の電線51,52に接続されている子機10を含め、自動火災報知システムA1全体の動作用の電源として機能する。ここでは一例として、印加部21が一対の電線51,52間に印加する電圧は直流24Vとするが、この値に限定する趣旨ではない。
 さらに、親機20は、停電に際しても自動火災報知システムA1の動作用の電源を確保できるように、蓄電池を用いた予備電源29を備えている。親機20は、図示しない商用電源、自家発電設備等を主電源とする。印加部21は、電力の供給元を、主電源の停電時に主電源から予備電源29に自動的に切り替え、主電源の復旧時には予備電源29から主電源に自動的に切り替える。予備電源29は、省令で定められる基準を満たすように容量等の仕様が決められている。
 また、抵抗22は、上述したように子機10から送信される電流信号を電圧信号に変換する第1の機能と、一対の電線51,52間が短絡したときに一対の電線51,52に流れる電流を制限する第2の機能との2つの機能を有している。要するに、抵抗22は、電流-電圧変換素子として第1の機能と、電流制限素子としての第2の機能とを兼ね備えている。ここでは一例として、抵抗22の抵抗値は400Ωあるいは600Ωとするが、この値に限定する趣旨ではない。
 受信部23および送信部24は、抵抗22と一対の電線51,52との間に電気的に接続されている。ただし、受信部23に関しては、抵抗22と一対の電線51,52との間に接続される構成に限らず、例えば印加部21と抵抗22との間に電気的に接続されていてもよい。
 ここで、受信部23は、子機10からの電流信号を、一対の電線51,52上の電圧信号(電圧変化)として受信する。つまり、子機10が一対の電線51,52から引き込む電流(引込電流)の電流値は、抵抗22での電圧降下の大きさに相当するので、受信部23は、子機10からの火災報や連動報を電圧信号として受信することができる。言い換えれば、受信部23は、子機10での引込電流の電流値に応じた電圧信号を、火災報や連動報として受信することになる。
 送信部24は、一対の電線51,52から流れ込む電流を変化させることで一対の電線51,52上に生じる電流信号を、同期信号として子機10に送信する。送信部24が一対の電線51,52上に送出する(生じさせる)電流信号は、抵抗22での電圧降下によって電圧信号に変換され、子機10は親機20からの同期信号として電圧信号を受信する。言い換えれば、送信部24が一対の電線51,52から流れ込む電流を変化させたときに一対の電線51,52上に生じる電圧変化(電圧信号)は、電圧信号として子機10にて受信されることになる。
 1.4 子機10の構成
 子機10は、ダイオードブリッジ11と、電源回路12と、センサ13と、通信部14と、記憶部17と、判断部18と、処理部19とを備えている。
 ダイオードブリッジ11は、入力端側に一対の電線51,52が電気的に接続され、出力端側に電源回路12、通信部14が電気的に接続されている。電源回路12は、一対の電線51,52上の電力から、子機10の動作用の電力を生成する。センサ13は、火災の発生を検知する。
 通信部14は、送信回路15と受信回路16とを備えている。
 送信回路15は、一対の電線51,52から引き込む電流(引込電流)の電流値を、電流信号として親機20に送信する。送信回路15が一対の電線51,52上に送出する(生じさせる)電流信号は、抵抗22での電圧降下によって電圧信号に変換され、親機20は子機10からの信号として電圧信号を受信する。言い換えれば、送信回路15が一対の電線51,52から引き込む引込電流の電流値を調節することで、該電流値に応じた電圧信号が親機20にて受信されることになる。
 図3は、送信回路15の具体例を示している。つまり、送信回路15は、図3に示すように、第1引込部151と第2引込部152とを備えており、第1引込部151と第2引込部152とでそれぞれ電流を引き込む。
 第1引込部151は、ダイオードブリッジ11の一対の出力端間に電気的に接続された半導体素子153と抵抗154と発光ダイオード(LED:Light Emitting Diode)155との直列回路を有している。第2引込部152は、ダイオードブリッジ11の一対の出力端間に電気的に接続された半導体素子156と抵抗157との直列回路を有している。
 ここでは、半導体素子153,156は、いずれもnpn型のトランジスタからなり、コレクタがダイオードブリッジ11の高電位側の出力端に電気的に接続されている。さらに、半導体素子153のエミッタは、抵抗154および発光ダイオード155を介して回路グランド(ダイオードブリッジ11の低電位側の出力端)に電気的に接続されている。半導体素子156のエミッタは、抵抗157を介して回路グランド(ダイオードブリッジ11の低電位側の出力端)に電気的に接続されている。各半導体素子153,156のベースは、それぞれ後述する処理部19に電気的に接続されている。なお、半導体素子153,156は、npn型のトランジスタに限らず、例えばpnp型のトランジスタであってもよい。
 これにより、送信回路15は、処理部19により半導体素子153がオンされると第1引込部151にて電流の引き込みを行い、処理部19により半導体素子156がオンされると第2引込部152にて電流の引き込みを行う。そのため、送信回路15は、第1引込部151のみで電流の引き込みを行う場合と、第1引込部151と第2引込部152との両方で電流の引き込みを行う場合とで、引込電流の電流値を変えることができる。
 さらに、半導体素子153のベース電流を2段階で切り替えることにより、第1引込部151で引き込む電流の電流値を2段階で切り替えることができる。同様に、半導体素子156のベース電流を2段階で切り替えることにより、第2引込部152で引き込む電流の電流値を2段階で切り替えることができる。本実施形態では、送信回路15は、このように第1引込部151で2段階、第2引込部152で2段階の計4段階の電流値の調整が可能である。以下では、子機10は、送信回路15で引込電流の電流値を切り替えることにより、引込電流の電流値を4段階で段階的に引き上げ可能であると仮定する。
 なお、第1引込部151で電流の引き込みを行う際には、送信回路15は発光ダイオード155を点灯させることができる。この発光ダイオード155は、子機10の外部から視認可能な位置に配置され、子機10が火災報状態にあることを点灯することによって報知する機能を持つ。
 受信回路16は、親機20からの同期信号を、一対の電線51,52上の電圧信号(電圧変化)として受信する。つまり、親機20が一対の電線51,52上に送出する(生じさせる)電流信号は、抵抗22での電圧降下によって電圧信号に変換されるので、受信回路16は、親機20からの同期信号として電圧信号を受信する。言い換えれば、受信回路16は、親機20が一対の電線51,52から流れ込む電流を変化させたときに一対の電線51,52上に生じる電圧変化(電圧信号)を、電圧信号として受信することになる。
 記憶部17は、子機10に予め割り当てられている識別情報(アドレス)を少なくとも記憶する。つまり、複数台の子機B1,B2,B3,・・・には、それぞれに固有の識別情報が割り当てられている。各識別情報は、複数台の子機B1,B2,B3,・・・の各々の設置場所(例えば部屋番号)と対応付けられて親機20に登録される。
 また、記憶部17には、判断部18が動作状態(火災報状態、連動報状態)を判断するための判断条件が記憶されている。判断条件は、例えばセンサ13の出力について設定された閾値などである。なお、子機10に予め割り当てられる識別情報と判断条件とは、同じ記憶部17に記憶されていてもよいし、記憶部17を複数設けて、それぞれ別々の記憶部17に記憶されていてもよい。
 判断部18は、火災報状態および連動報状態の2状態を含む動作状態を判断する。具体的には、判断部18は、センサ13の出力(センサ値)を読み込み、記憶部17内の判断条件に照らすことによって、動作状態を判断する。本実施形態では、判断条件の一例として、読み込んだセンサ値が第1の閾値を超える場合に、判断部18は、火災報状態と判断する。読み込んだセンサ値が第2の閾値(>第1の閾値)を超える場合に、判断部18は、連動報状態と判断する。ただし、判断部18は、火災報状態との判断を経てから連動報状態と判断するように、例えば火災報状態との判断が確定した時点からセンサ値と第2の閾値との比較を開始する。なお、これらの判断条件は一例に過ぎず、適宜変更可能である。
 本実施形態では、判断部18は、火災報状態と連動報状態とのいずれでもない非発報状態(平常状態)を含む3状態(火災報状態、連動報状態、非発報状態)のうち、現在の動作状態がいずれに当たるのかを判断する。なお、判断部18で判断される動作状態は、3状態に限らず、火災報状態および連動報状態の2状態のみであってもよいし、また、4状態以上であってもよい。
 処理部19は、送信回路15および受信回路16を制御して、センサ13の出力に応じて引込電流の電流値を調節することで送信回路15から電流信号を送信し、あるいは、親機20からの同期信号を受信回路16で受信する。ここでは、処理部19はマイコン(マイクロコンピュータ)を主構成とし、メモリ(図示せず)に記憶されたプログラムを実行することにより所望の機能を実現する。なお、プログラムは、予めメモリに書き込まれていてもよいし、メモリカードのような記憶媒体に記憶されて提供されてもよい。
 処理部19は、受信回路16が同期信号を受信すると、自機の識別情報に応じて割り当てられた動作時間帯で、電源回路12で生成された動作用の電力により、火災検知の動作を開始する。具体的には、処理部19は、自機の識別情報に応じて割り当てられた動作時間帯で、判断部18にセンサ値の読み込み、および状態判断を開始させ、判断部18の判断結果に応じて送信回路15を制御し引込電流の電流値を調節する。処理部19は、上述したように判断部18の判断結果が火災報状態になると、引込電流の電流値を所定の火災報レベルに調節して火災報を発生する。また、処理部19は、判断部18の判断結果が連動報状態になると、引込電流の電流値を所定の連動報レベルに調節して連動報を発生する。ここで、連動報レベルは、火災報レベルとは異なる値(電流値)であって、本実施形態では火災報レベルよりも大きな電流値である(連動報レベル>火災報レベル)。
 さらに、本実施形態においては、処理部19は、引込電流の電流値を所定の火災報レベルに調節した後、所定の待ち時間が経過すると、送信回路15から伝送データを表す伝送信号を送信する。具体的には、処理部19は、引込電流の電流値を第1レベルと第2レベルとの二値間で増減させることにより、送信回路15から伝送信号を送信する。ここで、伝送データは、例えば子機10の識別情報である。
 ここでは、第1レベルは火災報レベルと同値であって、第2レベルは火災報レベルよりも大きく且つ連動報レベルよりも小さな値であるとする(火災報レベル=第1レベル<第2レベル<連動報レベル)。要するに、子機10は、火災報レベルを基準に引込電流の電流値を増減させるため、火災報状態において伝送信号を送信することが可能である。
 この構成により、子機10は、火災が発生して火災報状態と判断すると、引込電流の電流値を火災報レベルに調節することにより、火災報を発生する。また、子機10は、連動報状態と判断すると、引込電流の電流値を連動報状態に調節することにより、連動報を発生する。さらに、火災報状態においては、子機10は、引込電流の電流値を第1レベル(火災報レベル)と第2レベルとの間で増減させることにより、識別情報を表す伝送信号を送信する。
 なお、本実施形態では、子機10は伝送信号を用いた通信により、少なくとも記憶部17に記憶されている識別情報を含むデータを親機20に送信する。そのため、親機20においては、子機10からの火災報を受けたあと、伝送信号で表される識別情報から、発報元の子機10を特定することができる。
 なお、本実施形態では、判断部18と処理部19とは別体として構成されている。ただし、この例に限らず、判断部18と処理部19とは一体として構成されていてもよい。
 1.5 動作
 以下、本実施形態に係る自動火災報知システムA1の動作について、図4を参照して説明する。図4は、子機10の動作を示す流れ図である。
 まず、非発報時(平常時)において、親機20は印加部21から一対の電線51,52間に一定電圧(例えば直流24V)を印加している。
 子機10の処理部19は、受信回路16が親機20から送信された同期信号を受信したか否かを判断する(ステップS5)。
 受信したと判断する場合(ステップS5における「Yes」)、処理部19は、自機の識別情報に応じた動作時間帯が到来したか否かを判断する(ステップS10)。
 動作時間帯が到来したと判断する場合(ステップS10における「Yes」)、処理部19は、電源回路12で生成された動作用の電力により、火災検知の動作を開始する。
 以下、火災検知の動作について説明する。
 判断部18は、センサ値を読み込み(ステップS15)、火災報状態か否かを判断する(ステップS20)。非発報状態においては、子機10は、基本的には電流の引き込みを行わず、引込電流の電流値は0(ゼロ)である。そのため、火災検知の動作を行っている子機10が非発報状態にあれば、一対の電線51,52を流れる電流は、終端抵抗40を流れる電流と、その子機10が動作するために必要な電流の合計となっている。そのため、親機20は、非発報状態において一対の電線51,52で流れる電流の電流値により火災報を誤検出する可能性は低い。
 判断部18が火災報状態であると判断する場合(ステップS20における「Yes」)、処理部19は、引込電流の電流値を引き上げて火災報レベルに調節する(ステップS25)。これにより、火災報が発生される。
 処理部19は、引込電流の電流値を引き上げた時から所定の待ち時間が経過すると、送信回路15から自機の識別情報を表す伝送信号を送信する(ステップS30)。これにより、子機10は、親機20へ自機の識別情報を送信することができる。
 その後、判断部18は、センサ値を読み込み(ステップS35)、連動報状態か否かを判断する(ステップS40)。
 連動状態であると判断する場合(ステップS40における「Yes」)、処理部19は、引込電流の電流値を引き上げて連動報レベルに調節する(ステップS45)。
 処理部19は、引込電流の電流値を引き上げて連動報レベルに調節した後、動作時間帯が終了したか否かを判断する(ステップS50)。終了したと判断する場合(ステップS50における「Yes」)、処理部19は、ステップS5へ戻り、同期信号の受信待ちとなる。
 火災報状態でないと判断する場合(ステップS20における「No」)、処理部19は、動作時間帯が終了したか否かを判断する(ステップS60)。終了したと判断する場合(ステップS60における「Yes」)、処理部19は、ステップS5へ戻り、同期信号の受信待ちとなる。終了していないと判断する場合(ステップS60における「No」)、処理はステップS15に戻り、判断部18がセンサ値を読み取る。
 連動報状態でないと判断する場合(ステップS40における「No」)、処理部19は、動作時間帯が終了したか否かを判断する(ステップS65)。終了したと判断する場合(ステップS65における「Yes」)、処理部19は、ステップS5へ戻り、同期信号の受信待ちとなる。終了していないと判断する場合(ステップS65における「No」)、処理はステップS35に戻り、判断部18がセンサ値を読み取る。
 1.6 具体例
 本実施形態における動作時間帯の割り当てについて、図5Aおよび図5Bを用いて説明する。
 本実施形態では、同期信号が送信されてからすべての子機10が動作を行うまでの全区間(検出動作区間)Taは、図5Aに示すように、同期信号の送信区間Ta1と、発報検出区間Ta2とから構成されている。発報検出区間Ta2は、同一時間長を有する動作時間帯T1,T2,・・・,T64から構成されている。つまり、発報検出区間Ta2の時間長は、動作時間帯T1,T2,・・・,T64の合計時間長である。ここでは、子機10は、子機B1,B2、・・・,B64の合計64台であるとし、各子機10には、自機の識別情報に応じて、動作時間帯T1,T2,・・・,T64のうち一の動作時間帯が1対1に割り当てられる。
 図5Bは、火災検知の動作の推移を説明する図である。上述したように、64台の子機10に対して、一の動作時間帯が1対1に割り当てられている。64台の子機10すべてが送信区間Ta1で親機20からの同期信号を受信すると、動作時間帯T1で子機B1が火災検知の動作を行い、動作時間帯T2で子機B2が火災検知の動作を行う。その後、各動作時間帯で、当該動作時間帯が割り当てられた子機10が火災検知の動作を順次行い、最後の動作時間帯T64で子機B64が火災検知の動作を行う。各子機10は、自機の識別情報に応じた動作時間帯で火災検知の動作を行い、他の動作時間帯は待機状態となる。例えば、子機B1は、自機が火災検知の動作を行う動作時間帯T1以外の動作時間帯T2からT64では待機状態となる。子機B2では、自機が火災検知の動作を行う動作時間帯T2以外の動作時間帯T1,T3からT64で待機状態となる。
 次に、一の動作時間帯での子機10が引き込む電流の変化について、図6を用いて説明する。
 図6は、横軸を時間、縦軸を電流値として、一対の電線51,52を流れる電流値の変化を表している。図6に示す時刻t0~t5までの区間(時間長)が一の動作時間帯である。図6では、子機10が引込電流の電流値を切り替えることにより、一対の電線51,52を流れる電流の電流値を、ベース電流I0からI1,I2,I3の3段階で段階的に引き上げ可能であると仮定する(I0<I1<I2<I3)。ここで、ベース電流とは、子機10が非発報状態である場合に子機10に流れる電流である。
 一対の電線51,52を流れる電流の電流値は、基本的には図6に示すように「I0」となる。図6の例では、時刻t0~t1の期間においては、動作中の子機10は非発報状態である。
 子機10において火災検知の結果が非発報状態から火災報状態に移行すると、図6に示すように一対の電線51,52を流れる電流の電流値は、「I0」から「I1」に増加する。図6の例では、子機10が、時刻t1~t4の期間において火災報状態を検知していることを示している。
 さらに、子機10は、電流値を、「I0」から火災報レベルを示す電流値である「I1」に引き上げた時点から所定の待ち時間Waが経過すると、引込電流の電流値を第1レベルと第2レベルとの二値間で増減させることにより、送信回路15から伝送データを表す伝送信号を送信する。図6の例では、時刻t2~t3の期間に、子機10が伝送信号を送信し、一対の電線51,52を流れる電流の電流値は、「I1」と「I2」との間で増減する。
 その後、子機10において判断結果が火災報状態から連動報状態に移行すると、図6に示すように一対の電線51,52を流れる電流の電流値は「I2」から「I3」に増加する。図6の例では、時刻t4~t5の期間に子機10が連動報状態となっている。
 なお、本実施形態では一例として、火災報レベルは20mA~25mA、連動報レベルは40mA~45mA程度と仮定され、伝送信号を送信する際の第1レベルと第2レベルとの差分は13mA~18mA程度と仮定される。また、別の例として、火災報レベルは5mA~8mA、連動報レベルは15mA~20mA程度と仮定され、伝送信号を送信する際の第1レベルと第2レベルとの差分は5mA~13mA程度と仮定されてもよい。
 また、検出動作区間Taの時間長は1秒程度と仮定される。そうすると、子機10の総台数が64台である場合には、各子機10に割り当てられる動作時間帯は、15ミリ秒程度と仮定される。
 ただし、これらの具体的な数値は実施形態を限定する趣旨ではなく、適宜変更可能である。例えば、本実施形態では、引込電流の電流値は所定の許容範囲内でばらつきが許容されている。親機20においては、各許容範囲内にあれば、そのときの子機10の動作状態が火災報状態であるか、連動報状態であるかを区別可能である。
 1.7 まとめ
 以上説明したように、本実施形態における自動火災報知システムA1の子機10は、電圧が印加される一対の電線51,52に電気的に接続されている。子機10は、記憶部17と、通信部14と、処理部19とを備える。記憶部17は、自機に固有の識別情報を記憶しており、通信部14は、一対の電線51,52に印加される電圧の変化により表される信号であって、他の子機10との同期をとるために親機20から送信された同期信号を受信する。処理部19は、通信部14で同期信号が受信されると、記憶部17に記憶された識別情報に応じて割り当てられた動作時間帯で、親機20から供給される電力を用いて火災検知の動作を行う。
 この構成によると、子機10は、自機の識別情報に応じて割り当てられた動作時間帯で、親機20から供給される電力を用いて火災検知の動作を行う。そのため、子機10のそれぞれで消費される電力、つまりは子機10のそれぞれで消費される電流は分散される。したがって、子機10を用いる自動火災報知システムA1は、同一動作時間帯での、消費電流の増加を抑えることができる。
 ここで、通信部14は、一対の電線51,52から引き込む電流を変化させることにより火災検知の動作に応じた信号を送信する送信回路15を備えている。送信回路15は、火災検知の動作により、火災の発生を報知する火災報の信号、および他の装置と連動させる連動報の信号を送信する。火災報の信号を送信する場合において送信回路15が一対の電線から引き込む電流の第1電流値I1と、連動報の信号を送信する場合において送信回路15が一対の電線から引き込む電流の第2電流値I3とは異なっていてもよい。
 この構成によると、子機10は、火災報と連動報とを区別して送信することができる。
 ここで、通信部14は、火災検知の動作において一対の電線51,52から引き込む電流を変化させることにより火災の発生を報知する火災報の信号を送信する送信回路15を備えている。送信回路15は、さらに、火災報を送信してから所定の待ち時間が経過した時点で、識別情報を表す識別信号を送信してもよい。
 この構成によると、子機10は、火災報を送信した時から所定の待ち時間が経過した時点で識別情報を表す伝送信号を送信するので、火災報を送信した送信元を親機20に通知することができる。
 また、本実施形態における自動火災報知システムA1は、上記の子機10と、前記一対の電線間に電圧を印加する親機20とを備えてもよい。
 この構成によると、自動火災報知システムの子機10は、自機の識別情報に応じて割り当てられた動作時間帯で、親機20から供給される消費電流を用いて火災検知の動作を行う。そのため、子機10を用いる自動火災報知システムA1は、同一動作時間帯での、消費電流の増加を抑えることができる。
 2.実施形態2
 本実施形態における自動火災報知システムA1について、実施形態1とは異なる点を中心に説明する。本実施形態の自動火災報知システムA1の基本構成は、実施形態1と同じであり、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
 実施形態1では、動作時間帯において動作中の子機10が火災報を親機20へ送信すると、その送信から所定時間が経過すると伝送信号を送信、つまり動作時間帯において伝送信号による通信を行っている。本実施形態の自動火災報知システムA1の子機10が発報検出区間とは異なる区間で親機20と通信を行う点が、実施形態1とは異なる点である。
 2.1 構成
 まず、本実施形態の親機20の送信部24について説明する。
 親機20の送信部24は、同期信号を送信する第1の送信回路(図示せず)と、要求信号を送信する第2の送信回路(図示せず)を備えている。送信部24の第1の送信回路は、同期信号を定期的に送信する。同期信号の送信方法は、実施形態1と同様であるので、ここでの説明は省略する。送信部24の第2の送信回路は、同期信号とは別のタイミングで、複数の子機10のそれぞれからの応答を要求する要求信号を定期的に複数の子機10へ送信する。具体的には、送信部24は、一対の電線51,52から流れ込む電流を変化させることで要求信号を送信する。ここで、要求信号とは、例えば生存を確認する信号である。
 次に、本実施形態の子機10について説明する。
 子機10の受信回路16は、同期信号の他、要求信号を同期信号の受信とは異なるタイミングで定期的に受信する。具体的には、受信回路16は、親機20からの要求信号を、一対の電線51,52上の電圧信号(電圧変化)として受信する。
 子機10の送信回路15は、要求信号が受信回路16で受信されると、一対の電線51,52から電流を引き込むことで生じる電流信号を、伝送信号として親機20へ送信する。ここで、伝送信号とは、自機の識別情報を表す伝送データである。
 子機10の処理部19は、要求信号が受信回路16で受信されると、自機の識別情報に応じて割り当てられた応答時間帯で伝送信号を送信回路15から送信する。
 2.2 動作
 以下、本実施形態に係る自動火災報知システムA1の動作について、図7を参照して説明する。図7は、子機10の動作を示す流れ図である。
 本実施形態では、親機20は、要求信号を定期的に送信している。
 子機10の処理部19は、受信回路16が親機20から送信された要求信号を受信したか否かを判断する(ステップS100)。
 受信したと判断する場合(ステップS100における「Yes」)、処理部19は、自機の識別情報に応じた応答時間帯が到来したか否かを判断する(ステップS105)。
 応答時間帯が到来したと判断する場合(ステップS105における「Yes」)、処理部19は、引込電流の電流値を引き上げることで、送信回路15から応答信号を送信する(ステップS110)。
 処理部19は、その後、火災検知処理を行う(ステップS115)。ここで、火災検知処理は、図4に示す処理と同一であるため、ここでの詳細な説明は省略する。なお、火災検知処理において、子機10の処理部19は、自機に割り当てられた動作時間帯が終了すると、ステップS100へ戻る。また、本実施形態の処理部19は、図4に示すステップS25を実行後、ステップS35を行う。つまり、動作時間帯においては伝送信号の送信は行わない。
 2.3 具体例
 本実施形態では、要求信号および同期信号が送信されてからすべての子機10が動作を行うまでの全区間は、図8Aに示すように、通信区間Tbと、検出動作区間Taとから構成されている。通信区間Tbは、要求信号の送信区間Tb1と、応答区間Tb2とから構成されている。応答区間Tb2は、同一時間長を有する応答時間帯TT1,TT2,・・・,TT64から構成されている。つまり、発報検出区間Tb2の時間長は、動作時間帯TT1,TT2,・・・,TT64の合計時間長である。ここでは、実施形態1と同様に、子機10は64台であるとし、各子機10には、自機の識別情報に応じて、応答時間帯TT1,TT2,・・・,TT64のうち一の動作時間帯が1対1に割り当てられる。なお、検出動作区間Taの構成については、実施形態1と同様であるので、ここでの説明は省略する。
 図8Bは、応答の動作および火災検知の動作の推移を説明する図である。なお、火災検知の動作の推移は図5Bで示した推移と同一であるので、ここでの説明は省略する。
 ここでは、応答動作の推移について説明する。
 送信区間Tb1で親機20からの要求信号を受信すると、応答時間帯TT1で子機B1が応答の動作を行い、応答時間帯TT2で子機B2が応答の動作を行う。その後、各応答時間帯で、当該応答時間帯が割り当てられた子機10が応答の動作を順次行い、最後の応答時間帯TT64で子機B64が応答の動作を行う。つまり、各子機10は、自機の識別情報で定まる待ち時間が経過した時点で応答の動作を行っていることが分かる。
 次に、一の応答時間帯および一の動作時間帯での子機10が引き込む電流の変化について、図9を用いて説明する。
 図9は、横軸を時間、縦軸を電流値として、一対の電線51,52を流れる電流値の変化を表している。ここで、図9に示す時刻t0~t3までの区間(時間長)が一の応答時間帯であり、時刻t4~t7までの区間(時間長)が一の動作時間帯である。図9では、子機10が引込電流の電流値を切り替えることにより、一対の電線51,52を流れる電流の電流値を、ベース電流I0からI4,I1,I3の3段階で段階的に引き上げ可能であると仮定する(I0<I4<I1<I3)。
 一対の電線51,52を流れる電流の電流値は、基本的には図9に示すように「I0」となる。
 子機10が親機20から要求信号を受信すると、応答区間Tb2から開始時点から待ち時間Wbが経過、つまり自機の識別情報に応じて割り当てられた応答時間帯が到来すると、応答信号を送信する(図9の時刻t1~t2参照)。具体的には、子機10は、引込電流の電流値を電流値I0と電流値I4との二値間で増減させることにより、送信回路15から応答信号を送信する。
 その後、時刻t4で自機に割り当てられた動作時間帯が到来すると火災検知の動作を開始する。
 子機10において火災検知の結果が非発報状態から火災報状態に移行すると、図9に示すように一対の電線51,52を流れる電流の電流値は、「I0」から「I1」に増加する。図9の例では、子機10が、時刻t5~t6の期間において火災報状態を検知していることを示している。
 子機10において判断結果が火災報状態から連動報状態に移行すると、図9に示すように一対の電線51,52を流れる電流の電流値は「I1」から「I3」に増加する(図9の時刻t6~t7参照)。
 なお、本実施形態では一例として、検出動作区間Taと通信区間Tbとの合計時間長は、1秒程度と仮定される。そうすると、子機10の総台数が64台である場合には、各子機10に割り当てられる動作時間帯および応答時間帯のそれぞれは、7ミリ秒程度と仮定される。
 ただし、これらの具体的な数値は実施形態を限定する趣旨ではなく、適宜変更可能である。例えば、本実施形態では、引込電流の電流値は所定の許容範囲内でばらつきが許容されている。親機20においては、各許容範囲内にあれば、そのときの子機10の動作状態が火災報状態であるか、連動報状態であるかを区別可能である。
 2.4 まとめ
 本実施形態では、親機20は伝送信号として要求信号を子機10へ送信し、伝送信号として応答信号を子機10から受信している。つまり、子機10および親機20は、双方向に伝送信号の通信が可能となっている。しかしながら、本発明は、これに限定されない。一方向のみに伝送信号の通信が可能であるとしてもよい。
 例えば、親機20から子機10の一方向で伝送信号の通信が可能であってもよい。このとき、子機10は、例えばデータの書き込み命令である伝送信号を受信すると、応答区間のうち自機に割り当てられた応答時間帯でデータの書き込み処理を行う。これにより、書き込み処理で消費される電流は分散される。なお、このとき、発報検出区間において、伝送データを表す伝送信号の送信は行われない。
 また、子機10から親機20の一方向で伝送信号の通信が可能であってもよい。この場合、応答区間は、発報検出区間の終了時点から開始される。子機10は、自機の識別情報で定まる待ち時間が経過した時点で応答の動作(例えば、識別情報の送信)を行う。これにより、応答の動作で消費される電流は分散される。
 また、本実施形態における自動火災報知システムA1は、通信を利用することで親機20-子機10間で様々な情報をやり取りできるので、上述したような子機10単位での発報元の識別情報に限らず、種々の機能を付加することができる。
 以上説明したように、本実施形態における自動火災報知システムA1の子機10の通信部14は、以下のように動作してもよい。通信部14は、自機および他の子機10のそれぞれに割り当てられた動作時間帯の合計時間長を有する発報検出区間とは異なる通信区間において、親機20から供給される電力を用いて親機20との通信を行う。
 この構成によると、子機10は、自機の割り当てられた動作時間帯を有する発報検出区間とは別の通信区間において親機20と通信を行っている。そのため、子機10は、火災報や連動報と区別して通信を行うことができる。例えば通信区間で子機10が親機20へ伝送データを送信した場合、親機20は受信した伝送データを火災報や連動報と誤認識することはない。
 ここで、通信部14は、通信区間の開始後、識別情報に基づいて定まる時間が経過した時点で通信を開始してもよい。
 この構成によると、子機10は、自機の識別情報に基づいて定まる時間が経過した時点で、通信を開始するので、子機10を用いる自動火災報知システムA1は、通信に用いられる消費電流を分散させることができる。
 3.実施形態3
 本実施形態における自動火災報知システムA1について、実施形態1および実施形態2とは異なる点を中心に説明する。本実施形態の自動火災報知システムA1の基本構成は、実施形態2と同じであり、実施形態2と同様の構成要素には同一の符号を付して説明を適宜省略する。
 本実施形態の自動火災報知システムA1では、同期信号が、要求信号をも兼ねている点が、実施形態2とは異なる点である。
 3.1 構成
 まず、本実施形態の親機20の送信部24について説明する。
 送信部24は、実施形態1と同様に、同期信号を定期的に複数の子機10へ送信する。
 次に、本実施形態の子機10について説明する。
 子機10の受信回路16は、親機20からの同期信号を定期的に受信する。
 子機10の処理部19は、同期信号が受信回路16で受信されると、応答区間のうち自機の識別情報に応じて割り当てられた応答時間帯で伝送信号を、送信回路15から送信する。処理部19は、同期信号が受信回路16で受信されると、発報検出区間のうち自機の識別情報に応じて割り当てられた動作時間帯で検出結果を、それぞれ送信回路15から送信する。
 3.2 動作
 以下、本実施形態に係る自動火災報知システムA1の動作について、図10を参照して説明する。図10は、子機10の動作を示す流れ図である。
 子機10の処理部19は、受信回路16が親機20から送信された同期信号を受信したか否かを判断する(ステップS200)。
 受信したと判断する場合(ステップS200における「Yes」)、処理部19は、自機の識別情報に応じた応答時間帯が到来したか否かを判断する(ステップS205)。
 応答時間帯が到来したと判断する場合(ステップS205における「Yes」)、処理部19は、引込電流の電流値を引き上げることで、送信回路15から応答信号を送信する(ステップS210)。
 処理部19は、その後、自機の識別情報に応じた動作時間帯が到来したか否かを判断する(ステップS215)。
 動作時間帯が到来したと判断する場合(ステップS215における「Yes」)、処理部19は、火災検知処理を行う(ステップS220)。ここで、火災検知処理は、図4に示す処理のうちステップS15以降の処理と同一であるため、ここでの詳細な説明は省略する。なお、火災検知処理において、子機10の処理部19は、自機に割り当てられた動作時間帯が終了すると、ステップS200へ戻る。
 3.3 具体例
 本実施形態では、要求信号および同期信号が送信されてからすべての子機10が動作を行うまでの全区間は、図11Aに示すように、同期信号の送信区間Ta1と、応答区間Tb2と、発報検出区間Ta2とから構成されている。応答区間Tbの構成は実施形態2と同様であり、発報検出区間Ta2の構成は実施形態1と同様であるので、ここでの説明は省略する。
 図11Bは、応答の動作および火災検知の動作の推移を説明する図である。
 送信区間Ta1で親機20からの同期信号を受信すると、応答時間帯TT1で子機B1が応答の動作を行い、応答時間帯TT2で子機B2が応答の動作を行う。その後、各応答時間帯で、当該応答時間帯が割り当てられた子機10が応答の動作を順次行い、最後の応答時間帯TT64で子機B64が応答の動作を行う。
 応答区間Tb2の終了後、続いて発報検出区間Ta2が開始され、動作時間帯T1で子機B1が火災検知の動作を行い、動作時間帯T2で子機B2が火災検知の動作を行う。その後、各動作時間帯で、当該動作時間帯が割り当てられた子機10が火災検知の動作を順次行い、最後の動作時間帯T64で子機B64が火災検知の動作を行う。これによると、各子機10は、同期信号を受信すると、異なる時刻で応答区間Tb2および発報検出区間Ta2のそれぞれを開始していることが分かる。
 なお、一の子機10が、自機に割り当てられた応答時間帯および動作時間帯で引き込む電流の変化については、実施形態2と同様であるので(図9参照)、ここでの説明は省略する。
 また、本実施形態では一例として、同期信号の送信区間Ta1と応答区間Tb2と発報検出区間Ta2との合計時間長は、1秒程度と仮定される。そうすると、子機10の総台数が64台である場合には、各子機10に割り当てられる動作時間帯および応答時間帯のそれぞれは、7ミリ秒程度と仮定される。
 ただし、これらの具体的な数値は実施形態を限定する趣旨ではなく、適宜変更可能である。例えば、本実施形態では、引込電流の電流値は所定の許容範囲内でばらつきが許容されている。親機20においては、各許容範囲内にあれば、そのときの子機10の動作状態が火災報状態であるか、連動報状態であるかを区別可能である。
 3.4 まとめ
 本実施形態の自動火災報知システムA1では、子機10は、応答動作および火災検知の動作を、応答動作および火災検知の動作の順序で行うとしたが、これに限定されない。子機10は、火災検知の動作、応答動作の順序で処理を行ってもよい。
 以上説明したように、本実施形態における自動火災報知システムA1の子機10の処理部19は、通信部14で同期信号が受信されると、火災検知の動作と、応答の動作(通信)とを行ってもよい。
 この構成によると、子機10は、同期信号の受信をトリガーにして、通信区間での通信および発報検出区間での火災検知の動作を行っている。そのため、通信区間での通信、および発報検出区間での動作のそれぞれのトリガーを共通化することができる。また、親機20においては、火災検知の動作と通信とのトリガーを別々にする場合と比べて、信号を送信する回路を低コストで実現することができる。例えば、子機10は、火災検知の動作と通信とのトリガーを別々にする場合には、実施形態2で説明したように、同期信号を送信する第1の送信回路と、要求信号を送信する第2の送信回路とを備える必要がある。しかしながら、火災検知の動作と通信とのトリガーを共通化することで、親機20は第1の送信回路または第2の送信回路のいずれかを備えればよい。そのため、親機20のコストが低減される。
 4.変形例
 以上、実施形態1から実施形態3に基づいて本発明について説明したが、本発明は上述した実施形態に限られない。例えば、以下のような変形例が考えられる。
 (1)上記各実施形態では、発報検出区間を子機10の台数分だけ時分割したが、これに限定されない。
 発報検出区間は少なくとも2つ以上の区間(動作時間帯)に時分割されればよい。時分割された各区間には、1台以上の子機10が割り当てられる。これによると、1つの区間で子機10すべてが割り当てられることはないので、火災検知の動作で消費される電流は分散される。
 (2)上記各実施形態では、判断部18は、センサ値が第1の閾値を超える場合に火災報状態と判断するとしたが、これに限定されない。判断部18は、読み込んだセンサ値が第1の閾値を超える状態が所定回数(例えば3回)連続する場合に、火災報状態と判断してもよい。
 また、連動報状態の判断においても同様に、判断部18は、読み込んだセンサ値が第2の閾値を超える状態が所定回数(例えば3回)連続する場合に、連動報状態と判断してもよい。
 (3)上記各実施形態では、火災報および連動報の送信は、引込電流の変化により信号を送信する方式としたが、これに限定されない。
 火災報の送信は、電圧を変化させることにより信号を送信する方式であってもよい。
 さらに、伝送信号を送信する場合も同様に、電圧を変化させることにより信号を送信する方式であってもよい。
 (4)上記実施形態2において、動作時間帯では、動作中の子機10は、伝送信号を送信しないとしたが、これに限定されない。
 動作中の子機10は、応答区間が設けられている場合であっても動作時間帯において伝送信号を送信してもよい。
 (5)上記実施形態および変形例を組み合わせてもよい。具体的には、その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
   10  子機
   14  通信部
   15  送信回路
   16  受信回路
   17  記憶部
   19  処理部
   20  親機
   21  印加部
   A1  自動火災報知システム

Claims (7)

  1.  電圧が印加される一対の電線に電気的に接続された自動火災報知システムの子機であって、
     自機に固有の識別情報を記憶している記憶部と、
     前記一対の電線に印加される電圧の変化により表される信号であって、他の子機との同期をとるために親機から送信された同期信号を受信する通信部と、
     前記通信部で前記同期信号が受信されると、前記記憶部に記憶された前記識別情報に応じて割り当てられた動作時間帯で、前記親機から供給される電力を用いて火災検知の動作を行う処理部とを備える
     自動火災報知システムの子機。
  2.  前記通信部は、自機および他の子機のそれぞれに割り当てられた前記動作時間帯の合計時間長を有する発報検出区間とは異なる通信区間において、前記親機から供給される電力を用いて前記親機との通信を行う
     請求項1に記載の自動火災報知システムの子機。
  3.  前記処理部は、前記通信部で前記同期信号が受信されると、前記火災検知の動作と、前記通信とを行う
     請求項2に記載の自動火災報知システムの子機。
  4.  前記通信部は、前記通信区間の開始後、前記識別情報に基づいて定まる時間が経過した時点で、前記通信を開始する
     請求項2または請求項3に記載の自動火災報知システムの子機。
  5.  前記通信部は、前記一対の電線から引き込む電流を変化させることにより前記火災検知の動作に応じた信号を送信する送信回路を備えており、
     前記送信回路は、前記火災検知の動作により、火災の発生を報知する火災報の信号、および他の装置と連動させる連動報の信号を送信し、
     前記火災報の信号を送信する場合において前記送信回路が前記一対の電線から引き込む電流の第1電流値と、前記連動報の信号を送信する場合において前記送信回路が前記一対の電線から引き込む電流の第2電流値とは異なる
     請求項1乃至請求項4のいずれか一項に記載の自動火災報知システムの子機。
  6.  前記通信部は、前記火災検知の動作において前記一対の電線から引き込む電流を変化させることにより火災の発生を報知する火災報の信号を送信する送信回路を備えており、
     前記送信回路は、さらに、前記火災報を送信してから所定の待ち時間が経過した時点で、前記識別情報を表す識別信号を送信する
     請求項1に記載の自動火災報知システムの子機。
  7.  請求項1乃至請求項6のいずれか一項に記載の子機と、
     前記一対の電線間に電圧を印加する親機と
     を備える自動火災報知システム。
PCT/JP2015/003490 2014-08-04 2015-07-10 自動火災報知システムの子機、およびそれを用いた自動火災報知システム WO2016021115A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15829983.4A EP3179459A4 (en) 2014-08-04 2015-07-10 Slave unit for automatic fire alarm system, and automatic fire alarm system in which same is used

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-158553 2014-08-04
JP2014158553A JP6471956B2 (ja) 2014-08-04 2014-08-04 自動火災報知システムの子機、およびそれを用いた自動火災報知システム

Publications (1)

Publication Number Publication Date
WO2016021115A1 true WO2016021115A1 (ja) 2016-02-11

Family

ID=55263414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003490 WO2016021115A1 (ja) 2014-08-04 2015-07-10 自動火災報知システムの子機、およびそれを用いた自動火災報知システム

Country Status (3)

Country Link
EP (1) EP3179459A4 (ja)
JP (1) JP6471956B2 (ja)
WO (1) WO2016021115A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237396B2 (ja) * 2016-05-17 2023-03-13 株式会社ユピテル 機器及びプログラム
JP6827218B2 (ja) * 2017-03-31 2021-02-10 パナソニックIpマネジメント株式会社 通信処理システム、及び通信システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133890U (ja) * 1982-03-02 1983-09-09 ホーチキ株式会社 多段階信号送出検出器
JP2004303038A (ja) * 2003-03-31 2004-10-28 Nohmi Bosai Ltd 火災報知設備
JP2007264784A (ja) * 2006-03-27 2007-10-11 Nohmi Bosai Ltd 警報移報システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228261A (ja) * 2000-02-15 2001-08-24 Seiko Precision Inc センシング装置
JP4004044B2 (ja) * 2002-12-20 2007-11-07 ホーチキ株式会社 警報器、監視制御方法及びプログラム
JP3862172B2 (ja) * 2003-02-28 2006-12-27 ホーチキ株式会社 火災報知システム
JP2006187316A (ja) * 2004-12-28 2006-07-20 Medical Electronic Science Inst Co Ltd 遠隔センシングシステム及びセンサユニット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133890U (ja) * 1982-03-02 1983-09-09 ホーチキ株式会社 多段階信号送出検出器
JP2004303038A (ja) * 2003-03-31 2004-10-28 Nohmi Bosai Ltd 火災報知設備
JP2007264784A (ja) * 2006-03-27 2007-10-11 Nohmi Bosai Ltd 警報移報システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3179459A4 *

Also Published As

Publication number Publication date
EP3179459A4 (en) 2017-07-26
EP3179459A1 (en) 2017-06-14
JP6471956B2 (ja) 2019-02-20
JP2016035683A (ja) 2016-03-17

Similar Documents

Publication Publication Date Title
JP2018190096A (ja) 中継システム及びそれを備える自火報システム
WO2016021115A1 (ja) 自動火災報知システムの子機、およびそれを用いた自動火災報知システム
JP6464519B2 (ja) 自動火災報知システムの子機、およびそれを用いた自動火災報知システム
JP2017084180A (ja) 自動火災報知システム
JP6566360B2 (ja) 自動火災報知システムの火災感知器、及びそれを用いた自動火災報知システム
JP6618003B2 (ja) 自動火災報知システムの子機、親機、およびそれを用いた自動火災報知システム
JP6497617B2 (ja) 自動火災報知システムの子機、親機およびそれらを用いた自動火災報知システム
JP6365971B2 (ja) 自動火災報知システム
JP6558695B2 (ja) 自動火災報知システム
JP6471968B2 (ja) 自動火災報知システムの子機およびそれを用いた自動火災報知システム
JP6481933B2 (ja) 自動火災報知システムの子機、およびそれを用いた自動火災報知システム
JP6814985B2 (ja) 親機、及び自動火災報知システム
JP6421912B2 (ja) 自動火災報知システムの子機及びそれを用いた自動火災報知システム
JP6519918B2 (ja) 自動火災報知システムの子機、自動火災報知システムの親機、およびそれらを用いた自動火災報知システム
JP6579510B2 (ja) 自動火災報知システムの子機、親機、およびそれを用いた自動火災報知システム
WO2017026098A1 (ja) 自動火災報知システムの子機、自動火災報知システム、および自動火災報知システムの親機
JP2016149029A (ja) 自動火災報知システムの子機、親機、およびそれを用いた自動火災報知システム
JP6646835B2 (ja) 親機、及び自動火災報知システム
JP2015207126A (ja) 通信端末及びそれを用いた自動火災報知システム
JP6827218B2 (ja) 通信処理システム、及び通信システム
JP2018190097A (ja) 制御装置、光警報装置及び自火報システム
JP6481934B2 (ja) 自動火災報知システムの子機、およびそれを用いた自動火災報知システム
JP2016192042A (ja) 自動火災報知システムの子機、自動火災報知システムの親機、およびそれらを用いた自動火災報知システム
JP2016192663A (ja) 通信装置およびそれを用いた通信システム
JP2020021263A (ja) 親機、自動火災報知システム、制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829983

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015829983

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829983

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE