WO2015198521A1 - 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム - Google Patents

正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム Download PDF

Info

Publication number
WO2015198521A1
WO2015198521A1 PCT/JP2015/002479 JP2015002479W WO2015198521A1 WO 2015198521 A1 WO2015198521 A1 WO 2015198521A1 JP 2015002479 W JP2015002479 W JP 2015002479W WO 2015198521 A1 WO2015198521 A1 WO 2015198521A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
battery
particles
electrode active
Prior art date
Application number
PCT/JP2015/002479
Other languages
English (en)
French (fr)
Inventor
一顕 遠藤
本橋 一成
林 直輝
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to KR1020167035005A priority Critical patent/KR102125111B1/ko
Priority to CN201580032915.3A priority patent/CN106663790B/zh
Priority to JP2016528994A priority patent/JP6414214B2/ja
Priority to US15/316,259 priority patent/US10784498B2/en
Publication of WO2015198521A1 publication Critical patent/WO2015198521A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Definitions

  • This technology relates to a positive electrode, a battery, a battery pack, an electronic device, an electric vehicle, a power storage device, and a power system.
  • the present invention relates to a positive electrode including a lithium composite oxide.
  • Patent Document 1 as a positive electrode active material, the general formula Li 1 + n MXO 4 (n is a number from 0 to 1. M is obtained from the group consisting of Fe, Co, Ni, Mn, and Ti. And at least one element, X is P or Si.). Further, this document describes that the porosity of the positive electrode active material particles is 6% by volume or more.
  • Patent Document 1 the porosity is specified, but depending on the position and shape of the void, the filling property may be lowered, which may cause the volume energy density to be lowered. Further, in Patent Document 2, although the reaction resistance on the surface of the active material particles can be improved, it is difficult to improve the diffusion resistance of lithium (Li) into the particles. For this reason, improvement of load characteristics cannot be expected.
  • An object of the present technology is to provide a positive electrode, a battery, a battery pack, an electronic device, an electric vehicle, a power storage device, and a power system that can achieve both volumetric energy density and load characteristics.
  • the first invention Including a first active material and a second active material;
  • the first active material and the second active material include a lithium composite oxide containing at least manganese (Mn), nickel (Ni), and cobalt (Co) as a transition metal,
  • the first active material has a particulate shape, the average porosity V1 in the particles of the first active material is 10 [%] ⁇ V1 ⁇ 30 [%], and the average particle of the first active material
  • the diameter D1 is 6 [ ⁇ m] ⁇ D1 ⁇ 20 [ ⁇ m]
  • the second active material has a particulate shape, the average porosity V2 in the particles of the second active material is 0 [%] ⁇ V2 ⁇ 10 [%], and the average particle of the second active material
  • the positive electrode has a diameter D2 of 1 [ ⁇ m] ⁇ D2 ⁇ 6 [ ⁇ m].
  • the second invention is Including a positive electrode, a negative electrode, and an electrolyte;
  • the positive electrode includes a first active material and a second active material,
  • the first active material and the second active material include a lithium composite oxide containing at least manganese (Mn), nickel (Ni), and cobalt (Co) as a transition metal,
  • the first active material has a particulate shape, the average porosity V1 in the particles of the first active material is 10 [%] ⁇ V1 ⁇ 30 [%], and the average particle of the first active material
  • the diameter D1 is 6 [ ⁇ m] ⁇ D1 ⁇ 20 [ ⁇ m]
  • the second active material has a particulate shape, the average porosity V2 in the particles of the second active material is 0 [%] ⁇ V2 ⁇ 10 [%], and the average particle of the second active material
  • the battery has a diameter D2 of 1 [ ⁇ m] ⁇ D2 ⁇ 6 [ ⁇ m].
  • the third invention is A battery including a positive electrode, a negative electrode, and an electrolyte;
  • the positive electrode includes a first active material and a second active material,
  • the first active material and the second active material include a lithium composite oxide containing at least manganese (Mn), nickel (Ni), and cobalt (Co) as a transition metal,
  • the first active material has a particulate shape, the average porosity V1 in the particles of the first active material is 10 [%] ⁇ V1 ⁇ 30 [%], and the average particle of the first active material
  • the diameter D1 is 6 [ ⁇ m] ⁇ D1 ⁇ 20 [ ⁇ m]
  • the second active material has a particulate shape, the average porosity V2 in the particles of the second active material is 0 [%] ⁇ V2 ⁇ 10 [%], and the average particle of the second active material
  • the battery pack has a diameter D2 of 1 [ ⁇ m] ⁇ D2 ⁇ 6 [ ⁇ m].
  • the fourth invention is: A battery including a positive electrode, a negative electrode, and an electrolyte;
  • the positive electrode includes a first active material and a second active material,
  • the first active material and the second active material include a lithium composite oxide containing at least manganese (Mn), nickel (Ni), and cobalt (Co) as a transition metal,
  • the first active material has a particulate shape, the average porosity V1 in the particles of the first active material is 10 [%] ⁇ V1 ⁇ 30 [%], and the average particle of the first active material
  • the diameter D1 is 6 [ ⁇ m] ⁇ D1 ⁇ 20 [ ⁇ m]
  • the second active material has a particulate shape, the average porosity V2 in the particles of the second active material is 0 [%] ⁇ V2 ⁇ 10 [%], and the average particle of the second active material
  • the diameter D2 is 1 [ ⁇ m] ⁇ D2 ⁇ 6 [ ⁇ m], An electronic device that is supplied with power from a battery
  • the fifth invention is: Battery, A conversion device that receives power supplied from the battery and converts it into driving force of the vehicle; A control device that performs information processing related to vehicle control based on information related to the battery,
  • the battery includes a positive electrode, a negative electrode, and an electrolyte.
  • the positive electrode includes a first active material and a second active material
  • the first active material and the second active material include a lithium composite oxide containing at least manganese (Mn), nickel (Ni), and cobalt (Co) as a transition metal
  • the first active material has a particulate shape, the average porosity V1 in the particles of the first active material is 10 [%] ⁇ V1 ⁇ 30 [%], and the average particle of the first active material
  • the diameter D1 is 6 [ ⁇ m] ⁇ D1 ⁇ 20 [ ⁇ m]
  • the second active material has a particulate shape, the average porosity V2 in the particles of the second active material is 0 [%] ⁇ V2 ⁇ 10 [%], and the average particle of the second active material
  • the electric vehicle has a diameter D2 of 1 [ ⁇ m] ⁇ D2 ⁇ 6 [ ⁇ m].
  • the sixth invention is: A battery including a positive electrode, a negative electrode, and an electrolyte;
  • the positive electrode includes a first active material and a second active material,
  • the first active material and the second active material include a lithium composite oxide containing at least manganese (Mn), nickel (Ni), and cobalt (Co) as a transition metal,
  • the first active material has a particulate shape, the average porosity V1 in the particles of the first active material is 10 [%] ⁇ V1 ⁇ 30 [%], and the average particle of the first active material
  • the diameter D1 is 6 [ ⁇ m] ⁇ D1 ⁇ 20 [ ⁇ m]
  • the second active material has a particulate shape, the average porosity V2 in the particles of the second active material is 0 [%] ⁇ V2 ⁇ 10 [%], and the average particle of the second active material
  • the diameter D2 is 1 [ ⁇ m] ⁇ D2 ⁇ 6 [ ⁇ m],
  • a power storage device that supplies electric power to an
  • the seventh invention A battery including a positive electrode, a negative electrode, and an electrolyte;
  • the positive electrode includes a first active material and a second active material,
  • the first active material and the second active material include a lithium composite oxide containing at least manganese (Mn), nickel (Ni), and cobalt (Co) as a transition metal,
  • the first active material has a particulate shape, the average porosity V1 in the particles of the first active material is 10 [%] ⁇ V1 ⁇ 30 [%], and the average particle of the first active material
  • the diameter D1 is 6 [ ⁇ m] ⁇ D1 ⁇ 20 [ ⁇ m]
  • the second active material has a particulate shape, the average porosity V2 in the particles of the second active material is 0 [%] ⁇ V2 ⁇ 10 [%], and the average particle of the second active material
  • the diameter D2 is 1 [ ⁇ m] ⁇ D2 ⁇ 6 [ ⁇ m], This is a power system in which power is supplied from a
  • both the volume energy density and the load characteristic can be achieved.
  • FIG. 4 is a cross-sectional view of a wound electrode body taken along line IV-IV in FIG. 3. It is a block diagram showing an example of 1 composition of a battery pack and electronic equipment concerning a 3rd embodiment of this art. It is the schematic which shows the example of 1 structure of the electrical storage system which concerns on 4th Embodiment of this technique.
  • FIG. 8A shows the SEM image of the positive electrode active material layer of Example 1.
  • FIG. 8B shows an SEM image of the positive electrode active material particles of Example 1.
  • FIG. 8C shows an SEM image of the positive electrode active material particles of Comparative Example 1.
  • the present inventors have intensively studied to provide a lithium-rich positive electrode capable of satisfying both volumetric energy density and load characteristics. The outline will be described below.
  • the use of a lithium-rich positive electrode active material as the positive electrode active material can be expected to increase the capacity of the positive electrode.
  • the diffusion resistance in the bulk of lithium (Li) in the lithium-rich positive electrode active material is different from other positive electrode active materials. Much higher than in materials. For this reason, in a lithium-excess type positive electrode active material, when positive electrode active material particles having a large particle diameter are produced, load characteristics are deteriorated.
  • lithium-rich positive electrode active material particles are produced so that there are voids in the particles depending on coprecipitation conditions and firing conditions, diffusion resistance in the bulk of lithium (Li) is reduced and load characteristics are improved.
  • the filling property (volume energy density) is lowered by the voids in the particles.
  • the load characteristics can be improved as in the case described above. The volume energy density) cannot be improved, and the slurry properties are likely to deteriorate.
  • the present inventors have conducted extensive studies based on the above points, and as a result, even if there are no intra-particle voids or at least small lithium (Li) particles having low intra-particle diffusion resistance, It was found that the volume energy density and the load characteristics can be compatible by using a combination of large particles with reduced diffusion resistance in the bulk of lithium (Li) provided with voids. It has also been found that particularly good volume energy density and load characteristics can be obtained when the mixing ratio of both particles is set within a predetermined range.
  • Embodiments of the present technology will be described in the following order. 1. First embodiment (example of cylindrical battery) 2. Second Embodiment (Example of flat battery) 3. Third Embodiment (Example of Battery Pack and Electronic Device) 4). Fourth embodiment (an example of a power storage system) 5. Fifth embodiment (example of electric vehicle)
  • This nonaqueous electrolyte secondary battery is, for example, a so-called lithium ion secondary battery in which the capacity of the negative electrode is represented by a capacity component due to insertion and extraction of lithium (Li) as an electrode reactant.
  • This non-aqueous electrolyte secondary battery is a so-called cylindrical type, and a pair of strip-like positive electrode 21 and strip-like negative electrode 22 are laminated and wound inside a substantially hollow cylindrical battery can 11 via a separator 23. The wound electrode body 20 is rotated.
  • the battery can 11 is made of iron (Fe) plated with nickel (Ni), and has one end closed and the other end open. Inside the battery can 11, an electrolytic solution as an electrolyte is injected and impregnated in the positive electrode 21, the negative electrode 22, and the separator 23. In addition, a pair of insulating plates 12 and 13 are respectively disposed perpendicular to the winding peripheral surface so as to sandwich the winding electrode body 20.
  • a battery lid 14 At the open end of the battery can 11, a battery lid 14, a safety valve mechanism 15 provided inside the battery lid 14, and a thermal resistance element (Positive16Temperature ⁇ Coefficient; PTC element) 16 are provided via a sealing gasket 17. It is attached by caulking. Thereby, the inside of the battery can 11 is sealed.
  • the battery lid 14 is made of, for example, the same material as the battery can 11.
  • the safety valve mechanism 15 is electrically connected to the battery lid 14, and when the internal pressure of the battery exceeds a certain level due to an internal short circuit or external heating, the disk plate 15A is reversed and wound with the battery lid 14. The electrical connection with the rotating electrode body 20 is cut off.
  • the sealing gasket 17 is made of, for example, an insulating material, and the surface is coated with asphalt.
  • a center pin 24 is inserted in the center of the wound electrode body 20.
  • a positive electrode lead 25 made of aluminum (Al) or the like is connected to the positive electrode 21 of the spirally wound electrode body 20, and a negative electrode lead 26 made of nickel or the like is connected to the negative electrode 22.
  • the positive electrode lead 25 is electrically connected to the battery lid 14 by being welded to the safety valve mechanism 15, and the negative electrode lead 26 is welded to and electrically connected to the battery can 11.
  • the open circuit voltage (that is, the battery voltage) in the fully charged state per pair of the positive electrode 21 and the negative electrode 22 may be 4.2 V or less, but from 4.2 V May be designed to be within a range of 4.4V to 6.0V, more preferably 4.4V to 5.0V.
  • 4.2 V May be designed to be within a range of 4.4V to 6.0V, more preferably 4.4V to 5.0V.
  • the positive electrode 21 is a so-called lithium-rich positive electrode and has, for example, a structure in which a positive electrode active material layer 21B is provided on both surfaces of a positive electrode current collector 21A. Although not shown, the positive electrode active material layer 21B may be provided only on one surface of the positive electrode current collector 21A.
  • the positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.
  • the positive electrode active material layer 21B includes, for example, a lithium-excess type positive electrode active material that can occlude and release lithium (Li) as an electrode reactant.
  • the positive electrode active material layer 21B may further contain an additive as necessary. As the additive, for example, at least one of a conductive agent and a binder can be used.
  • the positive electrode active material includes a first positive electrode active material and a second positive electrode active material.
  • the first positive electrode active material and the second positive electrode active material contain a lithium composite oxide containing at least manganese (Mn), nickel (Ni), and cobalt (Co) as a transition metal.
  • the first positive electrode active material and the second positive electrode active material include a lithium composite oxide in which at least manganese (Mn), nickel (Ni), and cobalt (Co) are dissolved as transition metals. Yes.
  • the average composition of the lithium composite oxide is preferably represented by the following formula (1).
  • M3 is aluminum (Al), magnesium (Mg), zirconium (Zr), titanium (Ti), barium (Ba), boron (B), silicon (Si) and iron (Fe).
  • Al aluminum
  • Mg magnesium
  • Zr zirconium
  • Ti titanium
  • Fe iron
  • At least one of aluminum (Al), magnesium (Mg) and titanium (Ti) where a is 0 ⁇ a ⁇ 0.25 and b is 0.3 ⁇ b ⁇ .
  • c is 0 ⁇ c ⁇ 1-b, d is 0 ⁇ d ⁇ 1, and e is 0 ⁇ e ⁇ 1.
  • the first positive electrode active material has a particulate shape. That is, the first positive electrode active material is made of powder of particles containing the first positive electrode active material (hereinafter referred to as “first positive electrode active material particles”).
  • the first positive electrode active material particles have voids in the particles.
  • the average porosity V1 in the particles of the first positive electrode active material is 10 [%] ⁇ V1 ⁇ 30 [%]
  • the average particle diameter D1 of the first positive electrode active material is 6 [ ⁇ m] ⁇ D1 ⁇ . 20 [ ⁇ m].
  • the average porosity V1 and the average particle diameter D1 in the particles are obtained from a cross-sectional photograph of the positive electrode active material layer 21B.
  • the second positive electrode active material has a particulate shape. That is, the second positive electrode active material is made of powder of particles containing the second positive electrode active material (hereinafter referred to as “second positive electrode active material particles”).
  • the second positive electrode active material particles do not have voids in the particles or have voids in the particles.
  • the average porosity V2 in the particles of the second positive electrode active material is 0 [%] ⁇ V2 ⁇ 10 [%], and the average particle diameter D2 is 1 [ ⁇ m] ⁇ D2 ⁇ 6 [ ⁇ m].
  • the average porosity V2 and the average particle diameter D2 in the particles are obtained from a cross-sectional photograph of the positive electrode active material layer 21B.
  • V1 when V1 is V1 ⁇ 10 [%], the diffusion resistance of lithium (Li) in the particles of the first positive electrode active material is increased, and the load characteristics are deteriorated.
  • V1 when V1 is 30 [%] ⁇ V1, the filling property of the first positive electrode active material is lowered, and the volume energy density is lowered.
  • D1 is D1 ⁇ 6 [ ⁇ m]
  • D1 is 20 ⁇ D1 [ ⁇ m]
  • the diffusion resistance of lithium (Li) in the particles of the first positive electrode active material is increased, and the load characteristics are deteriorated.
  • V2 is 10 [%] ⁇ V2
  • the filling property of the second positive electrode active material is lowered, and the volume energy density is lowered.
  • D2 is D2 ⁇ 1 [ ⁇ m]
  • the filling property of the second positive electrode active material is lowered, and the volume energy density is lowered.
  • D2 is 6 ⁇ D2 [ ⁇ m]
  • the diffusion resistance of lithium (Li) in the particles of the second positive electrode active material is increased, and the load characteristics are degraded.
  • the weight ratio of the first positive electrode active material to the second positive electrode active material is preferably 95: 5 or more and 70:30 or less. By setting this range, particularly good volume energy density and load characteristics can be obtained.
  • the first positive electrode active material particles have voids in the particles.
  • the voids are preferably distributed throughout the first positive electrode active material particles.
  • voids having such a distribution voids that are three-dimensionally distributed so as to surround the center or almost the center of the first positive electrode active material particles, specifically, voids having an annual ring shape are preferable.
  • the void When the void has a shape such as an annual ring and is distributed throughout the first positive electrode active material particle, the void is localized at the center of the first positive electrode active material particle, etc. In comparison, it is possible to suppress the occurrence of uneven potential distribution in the first positive electrode active material particles and to prevent capacity deterioration. Further, the first positive electrode active material particles can be prevented from collapsing due to expansion / contraction associated with charging / discharging, and charging / discharging can be performed more stably. Therefore, cycle characteristics (capacity maintenance ratio) can be improved.
  • the annual ring-shaped voids are composed of, for example, a plurality of void layers having different sizes (diameters) provided three-dimensionally so as to surround the center or almost the center of the particles.
  • Each void layer constituting the annual ring may be composed of one continuous space, or may be composed of a discontinuous distribution of many voids.
  • Specific examples of annual rings include, for example, a substantially concentric sphere, a substantially concentric elliptical sphere, and an indefinite shape, but are not limited to these shapes.
  • the gap in the cross section is sized so as to surround the center or almost the center of the first positive electrode active material particles ( It is preferable that a plurality of annular void layers having different diameters are formed.
  • the shape of the annular void layer include, but are not limited to, a substantially circular shape, a substantially elliptical shape, and an indefinite shape.
  • the second positive electrode active material particles may also have voids in the particles.
  • interval is not specifically limited, From a viewpoint of suppressing the diffusion resistance in lithium (Li) particle
  • the weight ratio of the first positive electrode active material to the second positive electrode active material is preferably 95: 5 to 70:30. With this weight ratio range, particularly good volume energy density and load characteristics can be obtained.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resin materials. At least one selected from copolymers and the like mainly composed of is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the conductive agent examples include carbon materials such as graphite, carbon black, and ketjen black, and one or more of them are used in combination.
  • a metal material or a conductive polymer material may be used as long as it is a conductive material.
  • the negative electrode 22 has, for example, a structure in which a negative electrode active material layer 22B is provided on both surfaces of a negative electrode current collector 22A. Although not shown, the negative electrode active material layer 22B may be provided only on one surface of the negative electrode current collector 22A.
  • the negative electrode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.
  • the negative electrode active material layer 22B contains one or more negative electrode active materials capable of inserting and extracting lithium as a negative electrode active material.
  • the negative electrode active material layer 22B may further contain an additive such as a binder as necessary.
  • the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium is larger than the electrochemical equivalent of the positive electrode 21, In the middle, lithium metal does not deposit on the negative electrode 22.
  • Examples of the negative electrode material capable of occluding and releasing lithium include materials capable of occluding and releasing lithium and containing at least one of a metal element and a metalloid element as a constituent element.
  • the negative electrode 22 containing such a negative electrode material is referred to as an alloy-based negative electrode. This is because a high energy density can be obtained by using such a material. In particular, the use with a carbon material is more preferable because a high energy density can be obtained and excellent cycle characteristics can be obtained.
  • the negative electrode material may be a single element, alloy or compound of a metal element or metalloid element, or may have at least a part of one or more of these phases.
  • the alloy includes an alloy including one or more metal elements and one or more metalloid elements in addition to an alloy composed of two or more metal elements.
  • the nonmetallic element may be included.
  • Some of the structures include a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or two or more of them.
  • metal elements or metalloid elements constituting the negative electrode material examples include magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), and germanium (Ge). ), Tin (Sn), lead (Pb), bismuth (Bi), cadmium (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd) ) Or platinum (Pt). These may be crystalline or amorphous.
  • the negative electrode material a material containing a 4B group metal element or a semimetal element in the short-period type periodic table as a constituent element is preferable, and at least one of silicon (Si) and tin (Sn) is particularly preferable. It is included as an element. This is because silicon (Si) and tin (Sn) have a large ability to occlude and release lithium (Li), and a high energy density can be obtained.
  • tin (Sn) As an alloy of tin (Sn), for example, as a second constituent element other than tin (Sn), silicon (Si), nickel (Ni), copper (Cu), iron (Fe), cobalt (Co), manganese (Mn), zinc (Zn), indium (In), silver (Ag), titanium (Ti), germanium (Ge), bismuth (Bi), antimony (Sb), and chromium (Cr) The thing containing at least 1 sort is mentioned.
  • Si As an alloy of silicon (Si), for example, as a second constituent element other than silicon (Si), tin (Sn), nickel (Ni), copper (Cu), iron (Fe), cobalt (Co), manganese (Mn), zinc (Zn), indium (In), silver (Ag), titanium (Ti), germanium (Ge), bismuth (Bi), antimony (Sb), and chromium (Cr).
  • Si silicon
  • Si tin
  • Ni nickel
  • Cu copper
  • iron (Fe) cobalt
  • Mn manganese
  • Zn zinc
  • indium (In) silver (Ag), titanium (Ti), germanium (Ge), bismuth (Bi), antimony (Sb), and chromium (Cr).
  • Cr chromium
  • tin (Sn) compound or silicon (Si) compound examples include those containing oxygen (O) or carbon (C). In addition to tin (Sn) or silicon (Si), the above-described compounds are used. Two constituent elements may be included. Specific examples of the tin (Sn) compound include silicon oxide represented by SiO v (0.2 ⁇ v ⁇ 1.4).
  • Examples of the negative electrode material capable of inserting and extracting lithium include non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, and fired organic polymer compounds And carbon materials such as carbon fiber or activated carbon.
  • graphite it is preferable to use spheroidized natural graphite or substantially spherical artificial graphite.
  • artificial graphite artificial graphite obtained by graphitizing mesocarbon microbeads (MCMB) or artificial graphite obtained by graphitizing and pulverizing a coke raw material is preferable.
  • Examples of the coke include pitch coke, needle coke, and petroleum coke.
  • An organic polymer compound fired body refers to a carbonized material obtained by firing a polymer material such as phenol resin or furan resin at an appropriate temperature, and part of it is non-graphitizable carbon or graphitizable carbon.
  • graphite is preferable because it has a high electrochemical equivalent and can provide a high energy density.
  • non-graphitizable carbon is preferable because excellent characteristics can be obtained.
  • those having a low charge / discharge potential specifically, those having a charge / discharge potential close to that of lithium metal are preferable because a high energy density of the battery can be easily realized.
  • Examples of the negative electrode material capable of inserting and extracting lithium further include other metal compounds or polymer materials.
  • Examples of other metal compounds include oxides such as MnO 2 , V 2 O 5 , and V 6 O 13 , sulfides such as NiS and MoS, and lithium nitrides such as LiN 3 , and polymer materials include polyacetylene. , Polyaniline or polypyrrole.
  • Carbon materials are generally used for the negative electrode active material of lithium ion secondary batteries. With the recent increase in functionality of electronic devices, their power consumption has increased remarkably, and large-capacity secondary batteries are becoming increasingly necessary. However, as long as carbon materials are used, the needs will be met in the near future. It becomes difficult. Therefore, negative electrode active materials made of Sn-based materials and Si-based materials, which are materials having a higher capacity than carbon materials, are being actively developed. However, a negative electrode active material made of Sn-based material or Si-based material generally has a large irreversible capacity at the time of initial charge.
  • the positive electrode active material containing the first positive electrode active material and the second positive electrode active material described above is suitable. That is, a negative electrode active material including at least one of silicon (Si) and tin (Sn) and a positive electrode active material including the first positive electrode active material and the second positive electrode active material described above are used in combination. preferable.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resin materials. At least one selected from copolymers and the like mainly composed of is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • the separator 23 is made of, for example, a porous film made of synthetic resin made of polytetrafluoroethylene, polypropylene, polyethylene, or the like, or a porous film made of ceramic, and these two or more kinds of porous films are laminated. It may be a structure. Among these, a porous film made of polyolefin is preferable because it is excellent in the effect of preventing short circuit and can improve the safety of the battery due to the shutdown effect.
  • polyethylene is preferable as a material constituting the separator 23 because it can obtain a shutdown effect within a range of 100 ° C. or higher and 160 ° C. or lower and is excellent in electrochemical stability.
  • Polypropylene is also preferable.
  • any resin having chemical stability can be used by copolymerizing or blending with polyethylene or polypropylene.
  • the separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte.
  • the electrolytic solution contains a solvent and an electrolyte salt dissolved in the solvent.
  • the electrolytic solution may contain a known additive in order to improve battery characteristics.
  • cyclic carbonates such as ethylene carbonate or propylene carbonate can be used, and it is preferable to use one of ethylene carbonate and propylene carbonate, particularly a mixture of both. This is because the cycle characteristics can be improved.
  • the solvent in addition to these cyclic carbonates, it is preferable to use a mixture of chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate or methylpropyl carbonate. This is because high ionic conductivity can be obtained.
  • the solvent preferably further contains 2,4-difluoroanisole or vinylene carbonate. This is because 2,4-difluoroanisole can improve discharge capacity, and vinylene carbonate can improve cycle characteristics. Therefore, it is preferable to use a mixture of these because the discharge capacity and cycle characteristics can be improved.
  • examples of the solvent include butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- Dioxolane, methyl acetate, methyl propionate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropironitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N-dimethyl Examples include imidazolidinone, nitromethane, nitroethane, sulfolane, dimethyl sulfoxide, and trimethyl phosphate.
  • a compound obtained by substituting at least a part of hydrogen in these non-aqueous solvents with fluorine may be preferable because the reversibility of the electrode reaction may be improved depending on the type of electrode to be combined.
  • lithium salt As electrolyte salt, lithium salt is mentioned, for example, 1 type may be used independently, and 2 or more types may be mixed and used for it.
  • Lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 , LiCl, difluoro [oxolato-O, O ′] lithium borate, lithium bisoxalate borate, or LiBr.
  • LiPF 6 is preferable because it can obtain high ion conductivity and can improve cycle characteristics.
  • lithium ions when charged, for example, lithium ions are released from the positive electrode active material layer 21B and inserted into the negative electrode active material layer 22B through the electrolytic solution.
  • lithium ions when discharging is performed, for example, lithium ions are released from the negative electrode active material layer 22B and inserted into the positive electrode active material layer 21B through the electrolytic solution.
  • a first positive electrode active material, a second positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and this positive electrode mixture is mixed with N-methyl-2-
  • a paste-like positive electrode mixture slurry is prepared by dispersing in a solvent such as pyrrolidone (NMP).
  • NMP pyrrolidone
  • this positive electrode mixture slurry is applied to the positive electrode current collector 21 ⁇ / b> A, the solvent is dried, and the positive electrode active material layer 21 ⁇ / b> B is formed by compression molding with a roll press or the like, thereby forming the positive electrode 21.
  • a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and this negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to obtain a paste-like negative electrode mixture slurry Is made.
  • the negative electrode mixture slurry is applied to the negative electrode current collector 22A, the solvent is dried, and the negative electrode active material layer 22B is formed by compression molding using a roll press or the like, and the negative electrode 22 is manufactured.
  • the positive electrode lead 25 is attached to the positive electrode current collector 21A by welding or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22A by welding or the like.
  • the positive electrode 21 and the negative electrode 22 are wound through the separator 23.
  • the front end of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the front end of the negative electrode lead 26 is welded to the battery can 11, and the wound positive electrode 21 and negative electrode 22 are connected with the pair of insulating plates 12 and 13. It is housed inside the sandwiched battery can 11.
  • the electrolytic solution is injected into the battery can 11 and impregnated in the separator 23.
  • the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are fixed to the opening end of the battery can 11 by caulking through a sealing gasket 17. Thereby, the secondary battery shown in FIG. 1 is obtained.
  • First positive electrode active material positive electrode having an average porosity V1 in the particles of 10 [%] ⁇ V1 ⁇ 30 [%] and an average particle diameter D1 of 6 [ ⁇ m] ⁇ D1 ⁇ 20 [ ⁇ m]
  • Second positive electrode active material the average porosity V2 in the particles is 0 [%] ⁇ V2 ⁇ 10 [%], and the average particle diameter D2 is 1 [ ⁇ m] ⁇ D2 ⁇ 6 [ ⁇ m]
  • first positive electrode active material When the weight ratio of the first positive electrode active material to the second positive electrode active material (first positive electrode active material: second positive electrode active material) is within the range of 95: 5 to 70:30 Particularly good volume energy density and load characteristics can be obtained.
  • FIG. 3 is an exploded perspective view showing a configuration example of the nonaqueous electrolyte secondary battery according to the second embodiment of the present technology.
  • a flat wound electrode body 30 to which a positive electrode lead 31 and a negative electrode lead 32 are attached is housed in a film-like exterior member 40, and is reduced in size, weight and thickness. It is possible.
  • the positive electrode lead 31 and the negative electrode lead 32 are each led out from the inside of the exterior member 40 to the outside, for example, in the same direction.
  • the positive electrode lead 31 and the negative electrode lead 32 are each made of, for example, a metal material such as aluminum, copper, nickel, or stainless steel, and each have a thin plate shape or a mesh shape.
  • the exterior member 40 is made of, for example, a rectangular aluminum laminated film in which a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order.
  • the exterior member 40 is disposed so that the polyethylene film side and the wound electrode body 30 face each other, and the outer edge portions are in close contact with each other by fusion bonding or an adhesive.
  • An adhesive film 41 is inserted between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32 to prevent intrusion of outside air.
  • the adhesion film 41 is made of a material having adhesion to the positive electrode lead 31 and the negative electrode lead 32, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene.
  • the exterior member 40 may be configured by a laminated film having another structure, a polymer film such as polypropylene, or a metal film instead of the above-described aluminum laminated film.
  • FIG. 4 is a cross-sectional view showing an enlarged part of the spirally wound electrode body shown in FIG.
  • the wound electrode body 30 is obtained by laminating the positive electrode 21 and the negative electrode 22 via the separator 23 and the electrolyte layer 33 and winding the outermost peripheral portion with a protective tape (not shown). Also good.
  • the electrolyte layer 33 is provided between the positive electrode 21 and the separator 23, and is provided between the negative electrode 22 and the separator 23.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the electrolyte layer 33 includes an electrolytic solution and a polymer compound serving as a holding body that holds the electrolytic solution, and has a so-called gel shape.
  • the gel electrolyte layer 33 is preferable because high ion conductivity can be obtained and battery leakage can be prevented.
  • the composition of the electrolytic solution is the same as that of the nonaqueous electrolyte secondary battery according to the first embodiment.
  • polymer compound examples include polyacrylonitrile, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, and polysiloxane.
  • polyacrylonitrile, polyvinylidene fluoride, polyhexafluoropropylene or polyethylene oxide is preferable from the viewpoint of electrochemical stability.
  • a precursor solution containing a solvent, an electrolyte salt, a polymer compound, and a mixed solvent is applied to each of the positive electrode 21 and the negative electrode 22, and the mixed solvent is volatilized to form the electrolyte layer 33.
  • the positive electrode lead 31 is attached to the end of the positive electrode current collector 21A by welding, and the negative electrode lead 32 is attached to the end of the negative electrode 22 by welding.
  • the laminated body is wound in the longitudinal direction, and a protective tape is adhered to the outermost peripheral portion to form the wound electrode body 30.
  • the wound electrode body 30 is sandwiched between the exterior members 40, and the outer edges of the exterior members 40 are sealed and sealed by heat fusion or the like.
  • the adhesion film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the exterior member 40. Thereby, the nonaqueous electrolyte secondary battery shown in FIG. 3 is obtained.
  • the nonaqueous electrolyte secondary battery according to the second embodiment of the present technology may be manufactured as follows. First, the positive electrode lead 31 and the negative electrode lead 32 are attached to the positive electrode 21 and the negative electrode 22. Next, the positive electrode 21 and the negative electrode 22 are laminated and wound via the separator 23, and a protective tape is bonded to the outermost peripheral portion to form a wound body that is a precursor of the wound electrode body 30. Next, the wound body is sandwiched between the exterior members 40, and the outer peripheral edge except for one side is heat-sealed to form a bag shape, which is then stored inside the exterior member 40.
  • an electrolyte composition including a solvent, an electrolyte salt, a monomer that is a raw material of the polymer compound, a polymerization initiator, and other materials such as a polymerization inhibitor as necessary is prepared, and the exterior member Inject into 40.
  • the opening of the exterior member 40 is heat-sealed in a vacuum atmosphere and sealed.
  • the gelled electrolyte layer 33 is formed by applying heat to polymerize the monomer to obtain a polymer compound.
  • the nonaqueous electrolyte secondary battery shown in FIG. 3 is obtained.
  • the operation and effect of the nonaqueous electrolyte secondary battery according to the second embodiment are the same as those of the nonaqueous electrolyte secondary battery according to the first embodiment.
  • the electronic device 400 includes an electronic circuit 401 of the electronic device body and a battery pack 300.
  • the battery pack 300 is electrically connected to the electronic circuit 401 via the positive terminal 331a and the negative terminal 331b.
  • the electronic device 400 has a configuration in which the battery pack 300 is detachable by a user.
  • the configuration of the electronic device 400 is not limited to this, and the battery pack 300 is built in the electronic device 400 so that the user cannot remove the battery pack 300 from the electronic device 400. May be.
  • the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of a charger (not shown), respectively.
  • the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of the electronic circuit 401, respectively.
  • Examples of the electronic device 400 include a notebook personal computer, a tablet computer, a mobile phone (for example, a smartphone), a portable information terminal (Personal Digital Assistants: PDA), an imaging device (for example, a digital still camera, a digital video camera, etc.), Audio equipment (for example, portable audio player), game equipment, cordless phone, e-book, electronic dictionary, radio, headphones, navigation system, memory card, pacemaker, hearing aid, electric tool, electric shaver, refrigerator, air conditioner, TV, stereo , Water heaters, microwave ovens, dishwashers, washing machines, dryers, lighting equipment, toys, medical equipment, robots, road conditioners, traffic lights, etc., but are not limited thereto.
  • the electronic circuit 401 includes, for example, a CPU, a peripheral logic unit, an interface unit, a storage unit, and the like, and controls the entire electronic device 400.
  • the battery pack 300 includes an assembled battery 301 and a charge / discharge circuit 302.
  • the assembled battery 301 is configured by connecting a plurality of secondary batteries 301a in series and / or in parallel.
  • the plurality of secondary batteries 301a are connected, for example, in n parallel m series (n and m are positive integers).
  • FIG. 5 shows an example in which six secondary batteries 301a are connected in two parallel three series (2P3S).
  • the nonaqueous electrolyte secondary battery according to the first or second embodiment is used as the secondary battery 301a.
  • the charging / discharging circuit 302 controls charging of the assembled battery 301.
  • the charging / discharging circuit 302 controls the discharging of the electronic device 400.
  • a power storage system that includes the nonaqueous electrolyte secondary battery according to the first or second embodiment in a power storage device will be described.
  • This power storage system may be anything as long as it uses power, and includes a simple power device.
  • This power system includes, for example, a smart grid, a home energy management system (HEMS), a vehicle, and the like, and can also store electricity.
  • HEMS home energy management system
  • This power storage system 100 is a residential power storage system, from a centralized power system 102 such as a thermal power generation 102a, a nuclear power generation 102b, and a hydropower generation 102c through a power network 109, an information network 112, a smart meter 107, a power hub 108, etc. Electric power is supplied to the power storage device 103. At the same time, power is supplied to the power storage device 103 from an independent power source such as the home power generation device 104. The electric power supplied to the power storage device 103 is stored. Electric power used in the house 101 is fed using the power storage device 103. The same power storage system can be used not only for the house 101 but also for buildings.
  • the house 101 is provided with a home power generation device 104, a power consumption device 105, a power storage device 103, a control device 110 that controls each device, a smart meter 107, a power hub 108, and a sensor 111 that acquires various information.
  • Each device is connected by a power network 109 and an information network 112.
  • a solar cell, a fuel cell, or the like is used as the home power generation device 104, and the generated power is supplied to the power consumption device 105 and / or the power storage device 103.
  • the power consuming device 105 is a refrigerator 105a, an air conditioner 105b, a television receiver 105c, a bath 105d, or the like.
  • the electric power consumption device 105 includes an electric vehicle 106.
  • the electric vehicle 106 is an electric vehicle 106a, a hybrid car 106b, and an electric motorcycle 106c.
  • the power storage device 103 includes the nonaqueous electrolyte secondary battery according to the first or second embodiment.
  • the smart meter 107 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
  • the power network 109 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
  • the various sensors 111 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by various sensors 111 is transmitted to the control device 110. Based on the information from the sensor 111, the weather state, the state of a person, and the like can be grasped, and the power consumption device 105 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 110 can transmit information regarding the house 101 to an external power company or the like via the Internet.
  • the power hub 108 performs processing such as branching of power lines and DC / AC conversion.
  • the communication method of the information network 112 connected to the control device 110 includes a method using a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), Bluetooth (registered trademark), ZigBee, Wi-Fi.
  • a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), Bluetooth (registered trademark), ZigBee, Wi-Fi.
  • the Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication.
  • ZigBee uses a physical layer of IEEE (Institute of Electrical and Electronics Electronics) 802.15.4. IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
  • the control device 110 is connected to an external server 113.
  • the server 113 may be managed by any one of the house 101, the power company, and the service provider.
  • the information transmitted and received by the server 113 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device in the home (for example, a television receiver) or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, such as a television receiver, a mobile phone, or a PDA (Personal Digital Assistant).
  • a display function such as a television receiver, a mobile phone, or a PDA (Personal Digital Assistant).
  • the control device 110 that controls each unit includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 103 in this example.
  • the control device 110 is connected to the power storage device 103, the home power generation device 104, the power consumption device 105, the various sensors 111, the server 113 and the information network 112, and adjusts, for example, the amount of commercial power used and the amount of power generation. It has a function. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
  • the power generated by the home power generation device 104 is supplied to the power storage device 103.
  • the power generated by the home power generation device 104 can be stored. Therefore, even if the generated power of the home power generation device 104 fluctuates, it is possible to perform control such that the amount of power to be sent to the outside is constant or discharge is performed as necessary.
  • the electric power obtained by solar power generation is stored in the power storage device 103, and midnight power with a low charge is stored in the power storage device 103 at night, and the power stored by the power storage device 103 is discharged during a high daytime charge. You can also use it.
  • control device 110 is stored in the power storage device 103 .
  • control device 110 may be stored in the smart meter 107 or may be configured independently.
  • the power storage system 100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
  • the hybrid vehicle 200 is a hybrid vehicle that employs a series hybrid system.
  • the series hybrid system is a vehicle that runs on the power driving force conversion device 203 using electric power generated by a generator that is driven by an engine or electric power that is temporarily stored in a battery.
  • the hybrid vehicle 200 includes an engine 201, a generator 202, a power driving force conversion device 203, driving wheels 204a, driving wheels 204b, wheels 205a, wheels 205b, a battery 208, a vehicle control device 209, various sensors 210, and a charging port 211. Is installed.
  • the battery 208 the nonaqueous electrolyte secondary battery according to the first or second embodiment is used.
  • Hybrid vehicle 200 travels using electric power / driving force conversion device 203 as a power source.
  • An example of the power driving force conversion device 203 is a motor.
  • the electric power / driving force converter 203 is operated by the electric power of the battery 208, and the rotational force of the electric power / driving force converter 203 is transmitted to the driving wheels 204a and 204b.
  • DC-AC DC-AC
  • AC-DC conversion AC-DC conversion
  • the power driving force converter 203 can be applied to either an AC motor or a DC motor.
  • the various sensors 210 control the engine speed via the vehicle control device 209 and control the opening (throttle opening) of a throttle valve (not shown).
  • the various sensors 210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the rotational force of the engine 201 is transmitted to the generator 202, and the electric power generated by the generator 202 by the rotational force can be stored in the battery 208.
  • the resistance force at the time of deceleration is applied as a rotational force to the power driving force conversion device 203, and the regenerative electric power generated by the power driving force conversion device 203 by this rotational force is used as the battery 208. Accumulated in.
  • the battery 208 is connected to an external power source of the hybrid vehicle 200 via the charging port 211, so that it is possible to receive power from the external power source using the charging port 211 as an input port and store the received power. is there.
  • an information processing apparatus that performs information processing related to vehicle control based on information related to the nonaqueous electrolyte secondary battery may be provided.
  • an information processing apparatus for example, there is an information processing apparatus that displays a battery remaining amount based on information on the remaining amount of a nonaqueous electrolyte secondary battery.
  • the series hybrid vehicle that runs on the motor using the electric power generated by the generator that is driven by the engine or the electric power that is temporarily stored in the battery has been described as an example.
  • the present technology is also effective for a parallel hybrid vehicle that uses both engine and motor outputs as drive sources and switches between the three modes of running with only the engine, running with only the motor, and running with the engine and motor. Applicable.
  • the present technology can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
  • the 1st positive electrode active material was produced as follows. First, a precursor was prepared by precipitating a hydroxide salt by a coprecipitation method which is generally performed industrially. CoSO 4 ⁇ 7H 2 O (manufactured by Nippon Chemical Industry Co., Ltd.), MnSO 4 ⁇ H 2 O (manufactured by Nippon Chemical Industry Co., Ltd.), NiSO 4 ⁇ 6H 2 O (manufactured by Shodo Chemical Industry Co., Ltd.) as transition metal raw materials , And Al (NO 3 ) 3 .9H 2 O and NaOH as an alkali raw material were weighed so as to have the metal ratio shown in Table 1 and dissolved in water. In addition, ammonia water (manufactured by Kanto Chemical Co., Inc.) was used as a chelating agent for stable coprecipitation.
  • a precursor was prepared by a coprecipitation method as follows. While stirring the inside of the 0.5 L reaction tank at 1000 rpm, the alkali raw material was dropped into the constant flow rate transition metal raw material and the chelating agent so that the pH was constant, and overflow from the 50 ° C. reaction tank After collecting the precipitate by the above, the collected product was filtered and sufficiently dried. Thereby, the precursor was obtained.
  • Li: Mn: Co: Ni: Al 1.13: 0.522: 0.174: 0.174: 0.01 (atomic ratio) Li 2 CO 3 (manufactured by Honjo Chemical Co., Ltd., UF-200) was mixed, and the resulting mixture was calcined in air at 850 ° C. for 12 hours. Thereby, a lithium composite oxide having an average composition (Li 1.13 [Mn 0.6 Co 0.2 Ni 0.2 ] 0.87 Al 0.01 O 2 ) shown in Table 1 was obtained. This lithium composite oxide was used as the first positive electrode active material.
  • a second positive electrode active material was prepared as follows.
  • the average composition (Li 1.13 [Mn 0.6 Co 0.2 ] shown in Table 1 was obtained in the same manner as in the first positive electrode active material production step except that the firing conditions of the mixture were 850 ° C. and 12 hours instead of 1050 ° C. and 12 hours.
  • a lithium composite oxide having Ni 0.2 ] 0.87 Al 0.01 O 2 was obtained.
  • This lithium composite oxide was further pulverized with a planetary mill at 1000 rpm for 15 minutes. This pulverized lithium composite oxide was used as the second positive electrode active material.
  • the positive electrode active material is obtained by mixing the first positive electrode active material M1 and the second positive electrode active material M2 obtained as described above in a weight ratio (M1: M2) of 80:20. It was.
  • a nonaqueous electrolyte secondary battery was produced as shown below.
  • the following single-sided coating sample of the positive electrode and the negative electrode was produced separately, and the charge capacity of the positive electrode and the negative electrode was determined by the counter electrode Li coin cell of each electrode.
  • the electric capacity when charged to the initial charging voltage of each example is measured.
  • the negative electrode after 0 V at a constant current, until the current value becomes 1/10 of the constant current value. The electric capacity when charged at a low voltage was measured, and the charge capacity per mixture thickness of each electrode was determined. Using this value, the thickness of the positive electrode and the negative electrode was adjusted according to the solid content of the positive electrode and negative electrode mixture slurry, the coating speed, etc. so that (charge capacity of the positive electrode / charge capacity of the negative electrode) was 0.5.
  • a positive electrode was produced as follows. First, 90% by weight of the mixed positive electrode active material, 5% by weight of amorphous carbon powder (Ketjen Black) and 5% by weight of polyvinylidene fluoride (PVdF) were mixed to prepare a positive electrode mixture. This positive electrode mixture was dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a positive electrode mixture slurry, and then this positive electrode mixture slurry was uniformly applied to both sides of a strip-shaped aluminum foil (positive electrode current collector). Thus, a coating film was formed.
  • NMP N-methyl-2-pyrrolidone
  • the coating film was dried with hot air, and then compression molded with a roll press (roll temperature 130 ° C., linear pressure 0.7 t / cm, press speed 10 m / min) to form a positive electrode sheet.
  • this positive electrode sheet was cut into a 48 mm ⁇ 300 mm band to produce a positive electrode.
  • a positive electrode lead was attached to the exposed portion of the positive electrode current collector of the positive electrode.
  • the average porosity V1 and the average particle diameter D in the first positive electrode active material particles were determined as follows. First, a cross section of the positive electrode after pressing was prepared using an ion milling system E-3500 manufactured by HITACHI, and the cross section was 5000 times at 3 kV using a scanning electron microscope (SEM) manufactured by HITACHI. A cross-sectional image (hereinafter referred to as “cross-sectional SEM image”) was taken. Thereafter, ten first positive electrode active material particles were randomly selected from the cross-sectional SEM image using image analysis software ImageJ, and the void ratio and particle size in each of these particles were calculated.
  • SEM scanning electron microscope
  • This operation was performed on 20 cross-sectional SEM images, and the average porosity (V1) in the particles was obtained by simply averaging (arithmetic average) the porosity in the obtained particles. Moreover, the average particle diameter D1 was calculated
  • the second method is the same as that for obtaining the average porosity V1 and average particle size D1 in the first positive electrode active material particles.
  • the average porosity V2 and the average particle diameter D2 in the positive electrode active material particles were determined.
  • FIG. 8A and 8B show cross-sectional SEM images of the positive electrode of Example 1.
  • FIG. 8A and FIG. 8B show that annual ring-shaped voids are formed in the first positive electrode active material particles.
  • a negative electrode was produced as follows. First, SiO particles having an average particle diameter of 7 ⁇ m as a negative electrode active material and an NMP solution containing 20% by weight of a polyimide binder are mixed so that the weight ratio (SiO particles: NMP solution) is 7: 2, and a negative electrode mixture A slurry was prepared. Next, the negative electrode mixture slurry was applied to both sides of a 15 ⁇ m thick copper foil (negative electrode current collector) using a bar coater having a gap of 35 ⁇ m to form a coating film, and the coating film was dried at 80 ° C. Next, after compression-molding the coating film with a roll press machine, the negative electrode sheet was formed by heating at 700 ° C. for 3 hours. This negative electrode sheet was cut into a strip of 50 mm ⁇ 310 mm to produce a negative electrode. Next, the negative electrode lead was attached to the negative electrode current collector exposed portion of the negative electrode.
  • the produced positive electrode and negative electrode are closely attached via a separator made of a microporous polyethylene film having a thickness of 25 ⁇ m, wound in the longitudinal direction, and a protective tape is attached to the outermost peripheral portion, whereby a flat-shaped winding An electrode body was produced.
  • this wound electrode body was loaded between the exterior members, and three sides of the exterior member were heat-sealed, and one side had an opening without being thermally fused.
  • a moisture-proof aluminum laminate film in which a 25 ⁇ m-thick nylon film, a 40 ⁇ m-thick aluminum foil, and a 30 ⁇ m-thick polypropylene film were laminated in order from the outermost layer was used.
  • LiPF6 lithium hexafluorophosphate
  • Example 2 The nonaqueous electrolyte secondary is the same as in Example 1 except that the first positive electrode active material M1 and the second positive electrode active material M2 are mixed so that the weight ratio (M1: M2) is 90:10. A battery was produced.
  • Example 3 Graphite was used as the negative electrode active material. Further, the thicknesses of the positive electrode and the negative electrode were adjusted by the solid content of the positive electrode and the negative electrode mixture slurry, the coating speed, and the like so that (charge capacity of the positive electrode / charge capacity of the negative electrode) was 0.9. Except for this, a nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1.
  • Example 4 A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that silicon (Si) was used as the negative electrode active material.
  • Example 5 The grinding conditions were changed in the production process of the second positive electrode active material, the average particle diameter D2 of the second positive electrode active material particles was 5.5 [ ⁇ m], and the average porosity V2 in the particles was 2 [%].
  • a nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that.
  • Example 7 The grinding conditions were changed in the production process of the second positive electrode active material, the average particle diameter D2 of the second positive electrode active material particles was 1.1 [ ⁇ m], and the average porosity V2 in the particles was 1 [%].
  • a nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that.
  • Example 8 A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that in the first and second cathode active material preparation steps, the mixture of the precursor and the Li source was baked in a nitrogen atmosphere.
  • Example 9 A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the reaction layer temperature (coprecipitation temperature) was set to 55 ° C. in the first and second cathode active material manufacturing steps.
  • Example 10 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the firing temperature was 800 ° C. in the production process of the first positive electrode active material.
  • Example 11 A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the firing temperature was set to 950 ° C. in the production process of the second positive electrode active material.
  • Example 13 The nonaqueous electrolyte secondary is the same as in Example 1 except that the first positive electrode active material M1 and the second positive electrode active material M2 are mixed so that the weight ratio (M1: M2) is 60:40. A battery was obtained.
  • Example 14 A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that sodium carbonate was used as the alkali source in the first and second positive electrode active material manufacturing steps. In the positive electrode of Example 14, it was confirmed by a cross-sectional SEM image that an irregularly shaped void was localized in the center of the first positive electrode active material particle.
  • Example 16> A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the temperature of the reaction vessel was set to 35 ° C. in the first and second positive electrode active material manufacturing steps.
  • Example 1 A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the firing temperature was set to 950 ° C. in the first and second positive electrode active material manufacturing steps.
  • FIG. 8C shows a cross-sectional SEM image of the positive electrode of Comparative Example 1.
  • FIG. 8C shows that very small voids are sparsely scattered in the first positive electrode active material particles.
  • particles having a certain size of voids are also observed. In this case, it can be seen that the voids of a certain size are localized at the center of the first positive electrode active material particles.
  • Example 3 A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the positive electrode mixture was prepared without mixing the second positive electrode active material.
  • Example 4 A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the temperature of the reaction vessel was changed to 60 ° C. in the first and second positive electrode active material manufacturing steps.
  • Example 5 A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the firing temperature in the production process of the second positive electrode active material was set to 900 ° C.
  • Example 6 A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that in the first and second cathode active material manufacturing steps, the temperature of the reaction vessel was 55 ° C. and the stirring speed was 600 rpm.
  • Example 7 A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that the temperature of the reaction vessel was set to 25 ° C. in the first positive electrode active material manufacturing step.
  • Example 8 A nonaqueous electrolyte secondary battery was obtained in the same manner as in Example 1 except that in the step of producing the second positive electrode active material, the pulverization time of the planetary mill was set to 30 minutes.
  • the initial volume energy density was determined as follows. First, charging / discharging was performed 2 cycles under the following charging / discharging conditions, and the discharge capacity (mAh / g) per positive electrode active material weight in the second cycle was measured. Next, the volume energy density (mAh / cc) was calculated by multiplying the measured discharge capacity by the volume density (g / cc) of the positive electrode active material layer. Charging conditions: environmental temperature 23 ° C, charging voltage 4.55V, charging current 0.5A, charging time 2.5 hours Discharging conditions: environmental temperature 23 ° C, discharging current 0.2A, final voltage 2.0V
  • Table 1 shows the configurations and evaluation results of the nonaqueous electrolyte secondary batteries of Examples 1 to 16.
  • Table 2 shows the configurations and evaluation results of the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 8.
  • M1, M2, D1, D2, V1, V2, and (* 1) have the following meanings.
  • Table 1 shows the following.
  • the average porosity V1 in the particles of the first positive electrode active material satisfies 10 [%] ⁇ V1 ⁇ 30 [%]
  • the average particle diameter D1 of the first positive electrode active material is 6 [ ⁇ m] ⁇ D1 ⁇ 20 [ ⁇ m]
  • the average porosity V2 in the particles of the second positive electrode active material satisfies 0 [%] ⁇ V2 ⁇ 10 [%]
  • the average particle diameter D2 of the second positive electrode active material is 1 [ ⁇ m] ⁇ .
  • D2 ⁇ 6 [ ⁇ m] is satisfied. For this reason, good volume energy density, load characteristics, and capacity retention ratio are obtained.
  • lithium composite oxides with a limited number of values of a, b, c, d, and e have been studied. However, the above effects are not limited to this example. Absent. For example, when the lithium composite oxide having the average composition represented by the formula (1) in the first embodiment is used, the above effect can be obtained.
  • Comparative Example 3 since the second positive electrode active material is not used, the filling property of the positive electrode active material is not improved, and the volume energy density is reduced. In addition, a positive electrode active material having a large particle size has a higher diffusion resistance of Li than a positive electrode active material having a small particle size, and Li desorption / insertion from the inside of the particle becomes difficult, and load characteristics tend to be deteriorated. Therefore, in Comparative Example 3 in which the weight ratio of the first positive electrode active material having a large particle diameter is 100, the load characteristics are deteriorated. Similarly, the cycle characteristics tend to deteriorate due to the diffusion resistance of Li.
  • Comparative Example 6 since the average porosity V1 in the first positive electrode active material particles exceeds 30 [%], the filling rate of the positive electrode active material is reduced and the volume energy density is reduced. In Comparative Example 6, since the first positive electrode active material has large voids, it lacks structural stability, collapses when the cycle is repeated, and is easily isolated from the conductive auxiliary agent. It is thought that there is. Since the load characteristics are measured at the beginning of the cycle, it is considered that the ionic resistance of Li is low and the decrease in load characteristics is small due to the large number of voids.
  • the weight ratio of the first positive electrode active material to the second positive electrode active material was 95: 5 or more. It can be seen that particularly good volume energy density, load characteristics and capacity retention ratio can be obtained when the ratio is 70:30 or less.
  • the volume energy density can be improved as compared with the case of using graphite as the negative electrode active material, It can be seen that the volume energy density can be particularly improved when SiO is used.
  • the positive electrode is not limited to this example, and is used in a general lithium ion secondary battery as the positive electrode. What is currently used may be used.
  • the present technology is applied to a battery having a winding structure.
  • the structure of the battery is not limited to this, and a structure in which a positive electrode and a negative electrode are folded, or The present technology can also be applied to a battery having a stacked structure.
  • the present technology is applied to a battery having a cylindrical shape or a flat shape.
  • the shape of the battery is not limited to this, and a coin shape
  • the present technology can also be applied to a battery of a button type or a square type.
  • the present technology can also employ the following configurations.
  • the first active material and the second active material include a lithium composite oxide containing at least manganese (Mn), nickel (Ni), and cobalt (Co) as a transition metal,
  • the first active material has a particulate shape, the average porosity V1 in the particles of the first active material is 10 [%] ⁇ V1 ⁇ 30 [%], and the first active material Average particle diameter D1 of 6 [ ⁇ m] ⁇ D1 ⁇ 20 [ ⁇ m],
  • the second active material has a particulate shape, the average porosity V2 in the particles of the second active material is 0 [%] ⁇ V2 ⁇ 10 [%], and the second active material
  • a positive electrode having an average particle diameter D2 of 1 [ ⁇ m] ⁇ D2 ⁇ 6 [ ⁇ m].
  • the average composition of the said lithium complex oxide is a positive electrode as described in (1) represented by the following formula
  • M3 is at least one of aluminum (Al), magnesium (Mg), zirconium (Zr), titanium (Ti), barium (Ba), boron (B), silicon (Si) and iron (Fe).
  • A is 0 ⁇ a ⁇ 0.25, b is 0.3 ⁇ b ⁇ 0.7, c is 0 ⁇ c ⁇ 1-b, d is 0 ⁇ d ⁇ 1, and e is 0 ⁇ e ⁇ 1.
  • the weight ratio of the first active material to the second active material is 95: 5 or more and 70:30 or less (1) to (4)
  • the positive electrode in any one of. (6) M3 in said formula (1) is a positive electrode as described in (2) which is at least 1 sort (s) of aluminum (Al), magnesium (Mg), and titanium (Ti).
  • the negative electrode includes at least one of silicon (Si) and tin (Sn).
  • the negative electrode includes silicon oxide.
  • a battery pack comprising the battery according to any one of (7) to (10).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 正極は、第1の活物質と第2の活物質とを含み、第1の活物質および第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含む。第1の活物質は粒子状を有し、第1の活物質の粒子内空隙率V1が10[%]≦V1≦30[%]であり、かつ、第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、第2の活物質は粒子状を有し、第2の活物質の粒子内空隙率V2が0[%]≦V2≦10[%]であり、かつ、第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]である。

Description

正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
 本技術は、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システムに関する。詳しくは、リチウム複合酸化物を含む正極に関する。
 近年の携帯電子技術のめざましい発達により、携帯電話やノートブックコンピューターなどの電子機器は高度情報化社会を支える基盤技術と認知されている。また、これらの電子機器の高機能化に関する研究開発が精力的に進められており、これらの電子機器の消費電力も比例して増加の一途を辿っている。その反面、これらの電子機器には長時間の駆動が求められており、駆動電源である二次電池の高エネルギー密度化が必然的に望まれている。また、電子機器に内蔵される電池の占有体積や質量などの観点より、電池のエネルギー密度は高いほど望ましい。このため、現在では、優れたエネルギー密度を有するリチウムイオン二次電池が、殆どの機器に内蔵されるに至っている。
 近年では、リチウムイオン二次電池のエネルギー密度を更に向上すべく、種々の研究がなされており、その一つとして高容量正極材料についての研究がある。高容量正極材料としては、リチウム過剰となるLi2MnO3-LiMO2(M=Co、Niなど)固溶体が注目されている。
 特許文献1では、正極活物質として、一般式Li1+nMXO4(nは、0~1の数である。Mは、Fe、Co、Ni、Mn、およびTiからなる群から得らばれた少なくとも1種の元素である。Xは、PまたはSiである。)で表される化合物を用いることが記載されている。また、同文献には、正極活物質粒子の空孔率を6体積%以上とすることが記載されている。
 特許文献2では、正極活物質として、一般式Li2-0.5xMn1-x1.5x3(Mは、NiαCoβMnγ1 δ(M1はアルミニウム(Al)、鉄(Fe)、銅(Cu)、マグネシウム(Mg)およびチタン(Ti)からなる群より選ばれる少なくとも1種を示し、α、β、γおよびδは、0<α≦0.5、0≦β≦0.33、0<γ≦0.5、0<δ≦0.1、α+β+γ+δ=1の関係を満足する。)を示し、xは、0<x<1.00、好ましくは0.1≦x≦0.5の関係を満足する。)で表され、結晶構造が空間群C2/mに帰属される層状遷移金属酸化物を酸性溶液に浸漬することにより得られるものを用いることが記載されている。
特開2013-214394号公報
特開2012-185913号公報
 特許文献1では、空隙率を規定しているが、空隙の位置や形状によっては充填性の低下を招き、これにより体積エネルギー密度の低下を招く虞がある。また、特許文献2では、活物質粒子の表面における反応抵抗を改善できるが、粒子内へのリチウム(Li)の拡散抵抗を改善することは困難である。このため、負荷特性の向上は望めない。
 本技術の目的は、体積エネルギー密度と負荷特性を両立できる正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システムを提供することにある。
 上述の課題を解決するために、第1の発明は、
 第1の活物質と第2の活物質とを含み、
 第1の活物質および第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
 第1の活物質は粒子状を有し、第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
 第2の活物質は粒子状を有し、第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]である正極である。
 第2の発明は、
 正極と負極と電解質とを含み、
 正極は、第1の活物質と第2の活物質とを含み、
 第1の活物質および第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
 第1の活物質は粒子状を有し、第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
 第2の活物質は粒子状を有し、第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]である電池である。
 第3の発明は、
 正極と、負極と、電解質とを含む電池を備え、
 正極は、第1の活物質と第2の活物質とを含み、
 第1の活物質および第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
 第1の活物質は粒子状を有し、第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
 第2の活物質は粒子状を有し、第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]である電池パックである。
 第4の発明は、
 正極と、負極と、電解質とを含む電池を備え、
 正極は、第1の活物質と第2の活物質とを含み、
 第1の活物質および第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
 第1の活物質は粒子状を有し、第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
 第2の活物質は粒子状を有し、第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]であり、
 電池から電力の供給を受ける電子機器である。
 第5の発明は、
 電池と、
 電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
 電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
 を備え、
 電池は、正極と、負極と、電解質とを含み、
 正極は、第1の活物質と第2の活物質とを含み、
 第1の活物質および第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
 第1の活物質は粒子状を有し、第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
 第2の活物質は粒子状を有し、第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]である電動車両である。
 第6の発明は、
 正極と、負極と、電解質とを含む電池を備え、
 正極は、第1の活物質と第2の活物質とを含み、
 第1の活物質および第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
 第1の活物質は粒子状を有し、第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
 第2の活物質は粒子状を有し、第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]であり、
 電池に接続される電子機器に電力を供給する蓄電装置である。
 第7の発明は、
 正極と、負極と、電解質とを含む電池を備え、
 正極は、第1の活物質と第2の活物質とを含み、
 第1の活物質および第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
 第1の活物質は粒子状を有し、第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
 第2の活物質は粒子状を有し、第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]であり、
 電池から電力の供給を受け、または、発電装置もしくは電力網から電池に電力が供給される電力システムである。
 以上説明したように、本技術によれば、体積エネルギー密度と負荷特性を両立できる。
本技術の第1の実施形態に係る非水電解質二次電池の一構成例を示す断面図である。 図1に示した巻回電極体の一部を拡大して表す断面図である。 本技術の第2の実施形態に係る非水電解質二次電池の一構成例を示す分解斜視図である。 図3のIV-IV線に沿った巻回電極体の断面図である。 本技術の第3の実施形態に係る電池パックおよび電子機器の一構成例を示すブロック図である。 本技術の第4の実施形態に係る蓄電システムの一構成例を示す概略図である。 本技術の第5の実施形態に係る電動車両の一構成を示す概略図である。 図8Aは、実施例1の正極活物質層のSEM像を示す。図8Bは、実施例1の正極活物質粒子のSEM像を示す。図8Cは、比較例1の正極活物質粒子のSEM像を示す。
 本発明者らは、体積エネルギー密度と負荷特性を両立できるリチウム過剰型の正極を提供すべく、鋭意検討を行った。以下にその概要について説明する。
 正極活物質としてリチウム過剰型の正極活物質を用いることで、正極の高容量化を期待できるが、リチウム過剰型の正極活物質におけるリチウム(Li)のバルク内の拡散抵抗は、他の正極活物質におけるものと比較して格段に高い。このため、リチウム過剰型の正極活物質では、粒径の大きい正極活物質粒子を作製すると、負荷特性が悪化する。一方、共沈条件や焼成条件によって、粒子内に空隙が存在するようにリチウム過剰型の正極活物質粒子を作製すれば、リチウム(Li)のバルク内の拡散抵抗を低減し、負荷特性を改善できるが、粒子内の空隙によって充填性(体積エネルギー密度)が低下してしまう。また、粒径の小さいリチウム過剰型の正極活物質粒子を作製すれば、上記の場合と同様に、負荷特性を改善できるが、このような粒径の小さい正極活物質粒子だけでは、充填性(体積エネルギー密度)の向上は見込めず、更にはスラリー性状も悪化しやすい。
 そこで、本発明者らは、上記の点を踏まえて鋭意検討を重ねた結果、粒子内空隙がなくても、または少なくてもリチウム(Li)の粒子内拡散抵抗の低い小粒子と、粒子内に空隙を設けてリチウム(Li)のバルク内の拡散抵抗を低減した大粒子とを組み合わせて用いることで、体積エネルギー密度と負荷特性を両立できることを見出した。また、両粒子の混合比率を所定範囲に設定した場合には、特に良好な体積エネルギー密度と負荷特性が得られることも見出した。
 本技術の実施形態について以下の順序で説明する。
1.第1の実施形態(円筒型電池の例)
2.第2の実施形態(扁平型電池の例)
3.第3の実施形態(電池パックおよび電子機器の例)
4.第4の実施形態(蓄電システムの例)
5.第5の実施形態(電動車両の例)
<1.第1の実施形態>
[電池の構成]
 以下、図1を参照しながら、本技術の第1の実施形態に係る非水電解質二次電池の一構成例について説明する。この非水電解質二次電池は、例えば、負極の容量が、電極反応物質であるリチウム(Li)の吸蔵および放出による容量成分により表されるいわゆるリチウムイオン二次電池である。この非水電解質二次電池はいわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、一対の帯状の正極21と帯状の負極22とがセパレータ23を介して積層し巻回された巻回電極体20を有している。電池缶11は、ニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、電解質としての電解液が注入され、正極21、負極22およびセパレータ23に含浸されている。また、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12、13がそれぞれ配置されている。
 電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)16とが、封口ガスケット17を介してかしめられることにより取り付けられている。これにより、電池缶11の内部は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15は、電池蓋14と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合に、ディスク板15Aが反転して電池蓋14と巻回電極体20との電気的接続を切断するようになっている。封口ガスケット17は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。
 巻回電極体20の中心には、例えばセンターピン24が挿入されている。巻回電極体20の正極21にはアルミニウム(Al)などよりなる正極リード25が接続されており、負極22にはニッケルなどよりなる負極リード26が接続されている。正極リード25は安全弁機構15に溶接されることにより電池蓋14と電気的に接続されており、負極リード26は電池缶11に溶接され電気的に接続されている。
 第1の実施形態に係る非水電解質二次電池では、一対の正極21および負極22当たりの完全充電状態における開回路電圧(すなわち電池電圧)は、4.2V以下でもよいが、4.2Vよりも高く、好ましくは4.4V以上6.0V以下、より好ましくは4.4V以上5.0V以下の範囲内になるように設計されていてもよい。電池電圧を高くすることにより、高いエネルギー密度を得ることができる。
 以下、図2を参照しながら、非水電解質二次電池を構成する正極21、負極22、セパレータ23、および電解液について順次説明する。
(正極)
 正極21は、いわゆるリチウム過剰型の正極であり、例えば、正極集電体21Aの両面に正極活物質層21Bが設けられた構造を有している。なお、図示はしないが、正極集電体21Aの片面のみに正極活物質層21Bを設けるようにしてもよい。正極集電体21Aは、例えば、アルミニウム箔、ニッケル箔あるいはステンレス箔などの金属箔により構成されている。正極活物質層21Bは、例えば、電極反応物質であるリチウム(Li)を吸蔵および放出することが可能なリチウム過剰型の正極活物質を含んでいる。正極活物質層21Bは、必要に応じて添加剤をさらに含んでいてもよい。添加剤としては、例えば、導電剤および結着剤のうちの少なくとも1種を用いることができる。
(正極活物質)
 正極活物質は、第1の正極活物質および第2の正極活物質を含んでいる。第1の正極活物質および第2の正極活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含んでいる。具体的には、第1の正極活物質および第2の正極活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)が固溶されたリチウム複合酸化物を含んでいる。
 リチウム複合酸化物の平均組成は、好ましくは以下の式(1)で表される。
 Li1+a(MnbCocNi1-b-c1-aM3d2-e   ・・・(1)
(但し、式(1)中、M3はアルミニウム(Al)、マグネシウム(Mg)、ジルコニウム(Zr)、チタン(Ti)、バリウム(Ba)、ホウ素(B)、ケイ素(Si)および鉄(Fe)のうちの少なくとも1種、好ましくはアルミニウム(Al)、マグネシウム(Mg)およびチタン(Ti)のうちの少なくとも1種である。aは0<a<0.25、bは0.3≦b<0.7、cは0≦c<1-b、dは0≦d≦1、eは0≦e≦1である。)
 第1の正極活物質は、粒子状を有している。すなわち、第1の正極活物質は、第1の正極活物質を含む粒子(以下「第1の正極活物質粒子」という。)の粉末からなる。第1の正極活物質粒子は、粒子内に空隙を有している。第1の正極活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、第1の正極活物質の平均粒径D1が6[μm]≦D1≦20[μm]である。ここで、粒子内の平均空隙率V1および平均粒径D1は、正極活物質層21Bの断面写真から求められるものである。
 第2の正極活物質は、粒子状を有している。すなわち、第2の正極活物質は、第2の正極活物質を含む粒子(以下「第2の正極活物質粒子」という。)の粉末からなる。第2の正極活物質粒子は、粒子内に空隙を有していないか、もしくは粒子内に空隙を有している。第2の正極活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、平均粒径D2が1[μm]≦D2≦6[μm]である。ここで、粒子内の平均空隙率V2および平均粒径D2は、正極活物質層21Bの断面写真から求められるものである。
 上記の関係を満たす第1の正極活物質と第2の正極活物質とを組み合わせて用いることで、体積エネルギー密度と負荷特性を両立できる。
 具体的には、V1がV1<10[%]であると、第1の正極活物質の粒子内におけるリチウム(Li)の拡散抵抗が高くなり、負荷特性が低下する。一方、V1が30[%]<V1であると、第1の正極活物質の充填性が低下し、体積エネルギー密度が低下する。D1がD1<6[μm]であると、第1の正極活物質の充填性が低下し、体積エネルギー密度が低下する。一方、D1が20<D1[μm]であると、第1の正極活物質の粒子内におけるリチウム(Li)の拡散抵抗が高くなり、負荷特性が低下する。
 V2が10[%]<V2であると、第2の正極活物質の充填性が低下し、体積エネルギー密度が低下する。D2がD2<1[μm]であると、第2の正極活物質の充填性が低下し、体積エネルギー密度が低下する。一方、D2が6<D2[μm]であると、第2の正極活物質の粒子内におけるリチウム(Li)の拡散抵抗が高くなり、負荷特性が低下する。
 第1の正極活物質と第2の正極活物質の重量比(第1の正極活物質:第2の正極活物質)が95:5以上70:30以下であることが好ましい。この範囲にすることで、特に良好な体積エネルギー密度と負荷特性を得ることができる。
 上述したように、第1の正極活物質粒子は粒子内に空隙を有している。この空隙は、第1の正極活物質粒子内の全体に分布していることが好ましい。このような分布を有する空隙としては、第1の正極活物質粒子の中心またはほぼ中心を囲むように三次元的に分布した空隙、具体的には年輪状を有する空隙が好ましい。
 空隙が年輪状などの形状を有し、第1の正極活物質粒子内の全体に分布している場合には、空隙が第1の正極活物質粒子の中心などに局在している場合に比べて、第1の正極活物質粒子内における電位分布のムラの発生を抑制し、容量劣化を防ぐことができる。また、充放電に伴う膨張収縮による第1の正極活物質粒子の崩壊を抑制し、充放電をより安定して行うことができる。したがって、サイクル特性(容量維持率)を向上できる。
 年輪状の空隙は、例えば、粒子の中心またはほぼ中心を囲むように三次元的に設けられた、大きさ(径)が異なる複数の空隙層により構成されている。年輪を構成する各空隙層は、連続的な一つ空間により構成されていてもよいし、不連続的な多数の空隙の分布により構成されていてもよい。年輪状の具体例としては、例えば、ほぼ同心球状、ほぼ同心楕円球状、不定形状などが挙げられるが、これらの形状に限定されるものではない。
 第1の正極活物質粒子をそのほぼ中心を通るようにして任意の方向で切断した場合、その断面において空隙は、第1の正極活物質粒子の中心またはほぼ中心を囲むように、大きさ(径)が異なる複数の環状の空隙層を構成していることが好ましい。環状の空隙層の形状としては、例えば、ほぼ円形状、ほぼ楕円形状、不定形状などが挙げられるが、これらの形状に限定されるものではない。
 上述したように、第2の正極活物質粒子も粒子内に空隙を有していてもよい。この空隙は、特に限定されるものではないが、リチウム(Li)の粒子内拡散抵抗を抑制する観点からすると、第2の正極活物質粒子内の全体に分布していることが好ましい。
 第1の正極活物質と第2の正極活物質の重量比(第1の正極活物質:第2の正極活物質)は、95:5以上70:30以下であることが好ましい。この重量比の範囲により、特に良好な体積エネルギー密度と負荷特性を得ることができる。
(結着剤)
 結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)などの樹脂材料、ならびにこれら樹脂材料を主体とする共重合体などから選択される少なくとも1種が用いられる。
(導電剤)
 導電剤としては、例えば、黒鉛、カーボンブラックあるいはケッチェンブラックなどの炭素材料が挙げられ、それらのうちの1種または2種以上が混合して用いられる。また、炭素材料の他にも、導電性を有する材料であれば金属材料あるいは導電性高分子材料などを用いるようにしてもよい。
(負極)
 負極22は、例えば、負極集電体22Aの両面に負極活物質層22Bが設けられた構造を有している。なお、図示はしないが、負極集電体22Aの片面のみに負極活物質層22Bを設けるようにしてもよい。負極集電体22Aは、例えば、銅箔、ニッケル箔あるいはステンレス箔などの金属箔により構成されている。
 負極活物質層22Bは、負極活物質として、リチウムを吸蔵および放出することが可能な1種または2種以上の負極活物質を含んでいる。負極活物質層22Bは、必要に応じて結着剤などの添加剤をさらに含んでいてもよい。
 なお、第1の実施形態に係る非水電解質二次電池では、リチウムを吸蔵および放出することが可能な負極材料の電気化学当量が、正極21の電気化学当量よりも大きくなっており、充電の途中において負極22にリチウム金属が析出しないようになっている。
 リチウムを吸蔵および放出することが可能な負極材料としては、例えば、リチウムを吸蔵および放出することが可能であり、金属元素および半金属元素のうちの少なくとも1種を構成元素として含む材料が挙げられる。ここでは、このような負極材料を含む負極22を合金系負極と称する。このような材料を用いれば、高いエネルギー密度を得ることができるからである。特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。この負極材料は金属元素あるいは半金属元素の単体でも合金でも化合物でもよく、またこれらの1種または2種以上の相を少なくとも一部に有するようなものでもよい。なお、本技術において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうちの2種以上が共存するものがある。
 この負極材料を構成する金属元素あるいは半金属元素としては、例えば、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)あるいは白金(Pt)が挙げられる。これらは結晶質のものでもアモルファスのものでもよい。
 中でも、この負極材料としては、短周期型周期表における4B族の金属元素あるいは半金属元素を構成元素として含むものが好ましく、特に好ましいのはケイ素(Si)およびスズ(Sn)の少なくとも一方を構成元素として含むものである。ケイ素(Si)およびスズ(Sn)は、リチウム(Li)を吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。
 スズ(Sn)の合金としては、例えば、スズ(Sn)以外の第2の構成元素として、ケイ素(Si)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)、およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。ケイ素(Si)の合金としては、例えば、ケイ素(Si)以外の第2の構成元素として、スズ(Sn)、ニッケル(Ni)、銅(Cu)、鉄(Fe)、コバルト(Co)、マンガン(Mn)、亜鉛(Zn)、インジウム(In)、銀(Ag)、チタン(Ti)、ゲルマニウム(Ge)、ビスマス(Bi)、アンチモン(Sb)およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。
 スズ(Sn)の化合物あるいはケイ素(Si)の化合物としては、例えば、酸素(O)あるいは炭素(C)を含むものが挙げられ、スズ(Sn)またはケイ素(Si)に加えて、上述した第2の構成元素を含んでいてもよい。スズ(Sn)の化合物の具体例としては、SiOv(0.2<v<1.4)で表される酸化ケイ素が挙げられる。
 リチウムを吸蔵および放出することが可能な負極材料としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維あるいは活性炭などの炭素材料も挙げられる。黒鉛としては、球形化処理などを施した天然黒鉛、略球状の人造黒鉛を用いることが好ましい。人造黒鉛としては、メソカーボンマイクロビーズ(MCMB)を黒鉛化した人造黒鉛、またはコークス原料を黒鉛化、粉砕した人造黒鉛が好ましい。コークス類には、ピッチコークス、ニードルコークスあるいは石油コークスなどがある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。また、高分子材料としてはポリアセチレンあるいはポリピロールなどがある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。また、難黒鉛化性炭素は、優れた特性が得られるので好ましい。更にまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。
 リチウムを吸蔵および放出することが可能な負極材料としては、更に、他の金属化合物あるいは高分子材料が挙げられる。他の金属化合物としては、MnO2、V25、V613などの酸化物、NiS、MoSなどの硫化物、あるいはLiN3などのリチウム窒化物が挙げられ、高分子材料としてはポリアセチレン、ポリアニリンあるいはポリピロールなどが挙げられる。
 リチウムイオン二次電池の負極活物質には、一般には炭素材料が使用されている。近年の電子機器の多機能化に伴いその消費電力が著しく増加しており、大容量の二次電池がますます必要となっているが、炭素材料を用いている限り、近い将来そのニーズに応えるのは困難になる。そこで、炭素材料よりも高容量の材料であるSn系材料やSi系材料からなる負極活物質の開発が活発になされている。しかし、Sn系材料やSi系材料からなる負極活物質は、一般的に初回充電時の不可逆容量が大きい。したがって、これら負極活物質が有する高容量の特性を活用するためには、これら負極活物質を、高容量でありかつ適切な不可逆容量を有する正極活物質と組み合わせて使用することが好ましい。このような正極活物質としては、上述した第1の正極活物質および第2の正極活物質を含む正極活物質が好適である。すなわち、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を含む負極活物質と、上述した第1の正極活物質および第2の正極活物質を含む正極活物質とを組み合わせて用いることが好ましい。
(結着剤)
 結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)などの樹脂材料、ならびにこれら樹脂材料を主体とする共重合体などから選択される少なくとも1種が用いられる。
(セパレータ)
 セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ23は、例えば、ポリテトラフルオロエチレン、ポリプロピレンあるいはポリエチレンなどよりなる合成樹脂製の多孔質膜、またはセラミック製の多孔質膜により構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリオレフィン製の多孔質膜は短絡防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特にポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、かつ電気化学的安定性にも優れているので、セパレータ23を構成する材料として好ましい。また、ポリプロピレンも好ましく、他にも、化学的安定性を備えた樹脂であればポリエチレンあるいはポリプロピレンと共重合させたり、またはブレンド化することで用いることができる。
(電解液)
 セパレータ23には、液状の電解質である電解液が含浸されている。電解液は、溶媒と、この溶媒に溶解された電解質塩とを含んでいる。電解液が、電池特性を向上するために、公知の添加剤を含んでいてもよい。
 溶媒としては、炭酸エチレンあるいは炭酸プロピレンなどの環状の炭酸エステルを用いることができ、炭酸エチレンおよび炭酸プロピレンのうちの一方、特に両方を混合して用いることが好ましい。サイクル特性を向上させることができるからである。
 溶媒としては、また、これらの環状の炭酸エステルに加えて、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルあるいは炭酸メチルプロピルなどの鎖状の炭酸エステルを混合して用いることが好ましい。高いイオン伝導性を得ることができるからである。
 溶媒としては、さらにまた、2,4-ジフルオロアニソールあるいは炭酸ビニレンを含むこと好ましい。2,4-ジフルオロアニソールは放電容量を向上させることができ、また、炭酸ビニレンはサイクル特性を向上させることができるからである。よって、これらを混合して用いれば、放電容量およびサイクル特性を向上させることができるので好ましい。
 これらの他にも、溶媒としては、炭酸ブチレン、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピロニトリル、N,N-ジメチルフォルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドあるいはリン酸トリメチルなどが挙げられる。
 なお、これらの非水溶媒の少なくとも一部の水素をフッ素で置換した化合物は、組み合わせる電極の種類によっては、電極反応の可逆性を向上させることができる場合があるので、好ましい場合もある。
 電解質塩としては、例えばリチウム塩が挙げられ、1種を単独で用いてもよく、2種以上を混合して用いてもよい。リチウム塩としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C654、LiCH3SO3、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、LiAlCl4、LiSiF6、LiCl、ジフルオロ[オキソラト-O,O']ホウ酸リチウム、リチウムビスオキサレートボレート、あるいはLiBrなどが挙げられる。中でも、LiPF6は高いイオン伝導性を得ることができるとともに、サイクル特性を向上させることができるので好ましい。
 上述の構成を有する非水電解質二次電池では、充電を行うと、例えば、正極活物質層21Bからリチウムイオンが放出され、電解液を介して負極活物質層22Bに吸蔵される。また、放電を行うと、例えば、負極活物質層22Bからリチウムイオンが放出され、電解液を介して正極活物質層21Bに吸蔵される。
[電池の製造方法]
 次に、本技術の第1の実施形態に係る非水電解質二次電池の製造方法の一例について説明する。
 まず、例えば、第1の正極活物質と、第2の正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN-メチル-2-ピロリドン(NMP)などの溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体21Aに塗布し溶剤を乾燥させ、ロールプレス機などにより圧縮成型することにより正極活物質層21Bを形成し、正極21を形成する。
 また、例えば、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN-メチル-2-ピロリドンなどの溶剤に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体22Aに塗布し溶剤を乾燥させ、ロールプレス機などにより圧縮成型することにより負極活物質層22Bを形成し、負極22を作製する。
 次に、正極集電体21Aに正極リード25を溶接などにより取り付けるとともに、負極集電体22Aに負極リード26を溶接などにより取り付ける。次に、正極21と負極22とをセパレータ23を介して巻回する。次に、正極リード25の先端部を安全弁機構15に溶接するとともに、負極リード26の先端部を電池缶11に溶接して、巻回した正極21および負極22を一対の絶縁板12、13で挟み電池缶11の内部に収納する。次に、正極21および負極22を電池缶11の内部に収納したのち、電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。次に、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16を封口ガスケット17を介してかしめることにより固定する。これにより、図1に示した二次電池が得られる。
[効果]
 第1の実施形態によれば、以下の第1の正極活物質と第2の正極活物質を組み合わせて用いることで、リチウム過剰型の正極21の体積エネルギー密度と負荷特性を両立できる。
 第1の正極活物質:粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、平均粒径D1が6[μm]≦D1≦20[μm]である正極活物質
 第2の正極活物質:粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、平均粒径D2が1[μm]≦D2≦6[μm]である正極活物質
 第1の正極活物質と第2の正極活物質との重量比(第1の正極活物質:上記第2の正極活物質)を95:5以上70:30以下の範囲内とした場合には、特に良好な体積エネルギー密度と負荷特性を得ることができる。
<2.第2の実施形態>
[電池の構成]
 図3は、本技術の第2の実施形態に係る非水電解質二次電池の一構成例を示す分解斜視図である。この二次電池は、正極リード31および負極リード32が取り付けられた扁平形状の巻回電極体30をフィルム状の外装部材40の内部に収容したものであり、小型化、軽量化および薄型化が可能となっている。
 正極リード31および負極リード32は、それぞれ、外装部材40の内部から外部に向かい例えば同一方向に導出されている。正極リード31および負極リード32は、例えば、アルミニウム、銅、ニッケルまたはステンレスなどの金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。
 外装部材40は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムをこの順に貼り合わせた矩形状のアルミラミネートフィルムにより構成されている。外装部材40は、例えば、ポリエチレンフィルム側と巻回電極体30とが対向するように配設されており、各外縁部が融着あるいは接着剤により互いに密着されている。外装部材40と正極リード31および負極リード32との間には、外気の侵入を防止するための密着フィルム41が挿入されている。密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレンなどのポリオレフィン樹脂により構成されている。
 なお、外装部材40は、上述したアルミラミネートフィルムに代えて、他の構造を有するラミネートフィルム、ポリプロピレンなどの高分子フィルムまたは金属フィルムにより構成するようにしてもよい。
 図4は、図3に示した巻回電極体の一部を拡大して表す断面図である。巻回電極体30は、正極21と負極22とをセパレータ23および電解質層33を介して積層し、巻回したものであり、最外周部を保護テープ(図示せず)により保護するようにしてもよい。電解質層33は、正極21とセパレータ23との間に設けられるとともに、負極22とセパレータ23との間に設けられている。第2の実施形態において第1の実施形態と同様の箇所には同一の符号を付して説明を省略する。
 電解質層33は、電解液と、この電解液を保持する保持体となる高分子化合物とを含み、いわゆるゲル状となっている。ゲル状の電解質層33は高いイオン伝導率を得ることができるとともに、電池の漏液を防止することができるので好ましい。電解液の組成は、第1の実施形態に係る非水電解質二次電池と同様である。高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレンまたはポリカーボネートが挙げられる。特に電気化学的な安定性の点からはポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンあるいはポリエチレンオキサイドが好ましい。
[電池の製造方法]
 次に、本技術の第2の実施形態に係る非水電解質二次電池の製造方法の一例について説明する。まず、正極21および負極22のそれぞれに、溶媒と、電解質塩と、高分子化合物と、混合溶剤とを含む前駆溶液を塗布し、混合溶剤を揮発させて電解質層33を形成する。次に、正極集電体21Aの端部に正極リード31を溶接により取り付けるとともに、負極22の端部に負極リード32を溶接により取り付ける。次に、正極21と負極22とをセパレータ23を介して積層し積層体としたのち、この積層体をその長手方向に巻回して、最外周部に保護テープを接着して巻回電極体30を形成する。最後に、例えば、外装部材40の間に巻回電極体30を挟み込み、外装部材40の外縁部同士を熱融着などにより密着させて封入する。その際、正極リード31および負極リード32と外装部材40との間には密着フィルム41を挿入する。これにより、図3に示した非水電解質二次電池が得られる。
 また、本技術の第2の実施形態に係る非水電解質二次電池を、次のようにして作製してもよい。まず、正極21および負極22に正極リード31および負極リード32を取り付ける。次に、正極21と負極22とをセパレータ23を介して積層して巻回し、最外周部に保護テープを接着して、巻回電極体30の前駆体である巻回体を形成する。次に、この巻回体を外装部材40に挟み、一辺を除く外周縁部を熱融着して袋状とし、外装部材40の内部に収納する。次に、溶媒と、電解質塩と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを含む電解質用組成物を用意し、外装部材40の内部に注入する。
 次に、電解質用組成物を外装部材40内に注入したのち、外装部材40の開口部を真空雰囲気下で熱融着して密封する。次に、熱を加えてモノマーを重合させて高分子化合物とすることによりゲル状の電解質層33を形成する。以上により、図3に示した非水電解質二次電池が得られる。
 この第2の実施形態に係る非水電解質二次電池の作用および効果は、第1の実施形態に係る非水電解質二次電池と同様である。
<3.第3の実施形態>
 第3の実施形態では、第1または第2の実施形態に係る非水電解質二次電池を備える電池パックおよび電子機器について説明する。
 以下、図5を参照して、本技術の第3の実施形態に係る電池パック300および電子機器400の構成の一例について説明する。電子機器400は、電子機器本体の電子回路401と、電池パック300とを備える。電池パック300は、正極端子331aおよび負極端子331bを介して電子回路401に対して電気的に接続されている。電子機器400は、例えば、ユーザにより電池パック300を着脱自在な構成を有している。なお、電子機器400の構成はこれに限定されるものではなく、ユーザにより電池パック300を電子機器400から取り外しできないように、電池パック300が電子機器400内に内蔵されている構成を有していてもよい。
 電池パック300の充電時には、電池パック300の正極端子331a、負極端子331bがそれぞれ、充電器(図示せず)の正極端子、負極端子に接続される。一方、電池パック300の放電時(電子機器400の使用時)には、電池パック300の正極端子331a、負極端子331bがそれぞれ、電子回路401の正極端子、負極端子に接続される。
 電子機器400としては、例えば、ノート型パーソナルコンピュータ、タブレット型コンピュータ、携帯電話(例えばスマートフォンなど)、携帯情報端末(Personal Digital Assistants:PDA)、撮像装置(例えばデジタルスチルカメラ、デジタルビデオカメラなど)、オーディオ機器(例えばポータブルオーディオプレイヤー)、ゲーム機器、コードレスフォン子機、電子書籍、電子辞書、ラジオ、ヘッドホン、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器、ロボット、ロードコンディショナー、信号機などが挙げられるが、これに限定されるものでなない。
(電子回路)
 電子回路401は、例えば、CPU、周辺ロジック部、インターフェース部および記憶部などを備え、電子機器400の全体を制御する。
(電池パック)
 電池パック300は、組電池301と、充放電回路302とを備える。組電池301は、複数の二次電池301aを直列および/または並列に接続して構成されている。複数の二次電池301aは、例えばn並列m直列(n、mは正の整数)に接続される。なお、図5では、6つの二次電池301aが2並列3直列(2P3S)に接続された例が示されている。二次電池301aとしては、第1または第2の実施形態に係る非水電解質二次電池が用いられる。
 充電時には、充放電回路302は、組電池301に対する充電を制御する。一方、放電時(すなわち電子機器400の使用時)には、充放電回路302は、電子機器400に対する放電を制御する。
<4.第4の実施形態>
 第4の実施形態では、第1または第2の実施形態に係る非水電解質二次電池を蓄電装置に備える蓄電システムについて説明する。この蓄電システムは、およそ電力を使用するものである限り、どのようなものであってもよく、単なる電力装置も含む。この電力システムは、例えば、スマートグリッド、家庭用エネルギー管理システム(HEMS)、車両など含み、蓄電も可能である。
[蓄電システムの構成]
 以下、図6を参照して、第4の実施形態に係る蓄電システム(電力システム)100の構成例について説明する。この蓄電システム100は、住宅用の蓄電システムであり、火力発電102a、原子力発電102b、水力発電102cなどの集中型電力系統102から電力網109、情報網112、スマートメータ107、パワーハブ108などを介し、電力が蓄電装置103に供給される。これと共に、家庭内発電装置104などの独立電源から電力が蓄電装置103に供給される。蓄電装置103に供給された電力が蓄電される。蓄電装置103を使用して、住宅101で使用する電力が給電される。住宅101に限らずビルに関しても同様の蓄電システムを使用できる。
 住宅101には、家庭内発電装置104、電力消費装置105、蓄電装置103、各装置を制御する制御装置110、スマートメータ107、パワーハブ108、各種情報を取得するセンサ111が設けられている。各装置は、電力網109および情報網112によって接続されている。家庭内発電装置104として、太陽電池、燃料電池などが利用され、発電した電力が電力消費装置105および/または蓄電装置103に供給される。電力消費装置105は、冷蔵庫105a、空調装置105b、テレビジョン受信機105c、風呂105dなどである。さらに、電力消費装置105には、電動車両106が含まれる。電動車両106は、電気自動車106a、ハイブリッドカー106b、電気バイク106cである。
 蓄電装置103は、第1または第2の実施形態に係る非水電解質二次電池を備えている。スマートメータ107は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網109は、直流給電、交流給電、非接触給電の何れか一つまたは複数の組み合わせであってもよい。
 各種のセンサ111は、例えば人感センサ、照度センサ、物体検知センサ、消費電力センサ、振動センサ、接触センサ、温度センサ、赤外線センサなどである。各種のセンサ111により取得された情報は、制御装置110に送信される。センサ111からの情報によって、気象の状態、人の状態などが把握されて電力消費装置105を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置110は、住宅101に関する情報をインターネットを介して外部の電力会社などに送信することができる。
 パワーハブ108によって、電力線の分岐、直流交流変換などの処理がなされる。制御装置110と接続される情報網112の通信方式としては、UART(Universal Asynchronous Receiver-Transceiver:非同期シリアル通信用送受信回路)などの通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee、Wi-Fiなどの無線通信規格によるセンサーネットワークを利用する方法がある。Bluetooth(登録商標)方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers)802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network) またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。
 制御装置110は、外部のサーバ113と接続されている。このサーバ113は、住宅101、電力会社、およびサービスプロバイダーのいずれかによって管理されていてもよい。サーバ113が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信してもよいが、家庭外の装置(たとえば、携帯電話機など)から送受信してもよい。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)などに、表示されてもよい。
 各部を制御する制御装置110は、CPU(Central Processing Unit )、RAM(Random Access Memory)、ROM(Read Only Memory)などで構成され、この例では、蓄電装置103に格納されている。制御装置110は、蓄電装置103、家庭内発電装置104、電力消費装置105、各種のセンサ111、サーバ113と情報網112により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能などを備えていてもよい。
 以上のように、電力が火力発電102a、原子力発電102b、水力発電102cなどの集中型電力系統102のみならず、家庭内発電装置104(太陽光発電、風力発電)の発電電力を蓄電装置103に蓄えることができる。したがって、家庭内発電装置104の発電電力が変動しても、外部に送出する電力量を一定にしたり、または、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置103に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置103に蓄え、昼間の料金が高い時間帯に蓄電装置103によって蓄電した電力を放電して利用するといった使い方もできる。
 なお、この例では、制御装置110が蓄電装置103内に格納される例を説明したが、スマートメータ107内に格納されてもよいし、単独で構成されていてもよい。さらに、蓄電システム100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。
<5.第5の実施形態>
 第5の実施形態では、第1または第2の実施形態に係る非水電解質二次電池を備える電動車両について説明する。
 図7を参照して、本技術の第5の実施形態に係る電動車両の一構成について説明する。このハイブリッド車両200は、シリーズハイブリッドシステムを採用するハイブリッド車両である。シリーズハイブリッドシステムは、エンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置203で走行する車である。
 このハイブリッド車両200には、エンジン201、発電機202、電力駆動力変換装置203、駆動輪204a、駆動輪204b、車輪205a、車輪205b、バッテリー208、車両制御装置209、各種センサ210、充電口211が搭載されている。バッテリー208としては、第1または第2の実施形態に係る非水電解質二次電池が用いられる。
 ハイブリッド車両200は、電力駆動力変換装置203を動力源として走行する。電力駆動力変換装置203の一例は、モータである。バッテリー208の電力によって電力駆動力変換装置203が作動し、この電力駆動力変換装置203の回転力が駆動輪204a、204bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置203が交流モータでも直流モータでも適用可能である。各種センサ210は、車両制御装置209を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ210には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。
 エンジン201の回転力は発電機202に伝えられ、その回転力によって発電機202により生成された電力をバッテリー208に蓄積することが可能である。
 図示しない制動機構によりハイブリッド車両200が減速すると、その減速時の抵抗力が電力駆動力変換装置203に回転力として加わり、この回転力によって電力駆動力変換装置203により生成された回生電力がバッテリー208に蓄積される。
 バッテリー208は、充電口211を介してハイブリッド車両200の外部の電源に接続されることで、その外部電源から充電口211を入力口として電力供給を受け、受けた電力を蓄積することも可能である。
 図示しないが、非水電解質二次電池に関する情報に基づいて車両制御に関する情報処理を行なう情報処理装置を備えていてもよい。このような情報処理装置としては、例えば、非水電解質二次電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置などがある。
 なお、以上は、エンジンで動かす発電機で発電された電力、またはそれをバッテリーに一旦貯めておいた電力を用いて、モータで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモータの出力をいずれも駆動源とし、エンジンのみで走行、モータのみで走行、エンジンとモータ走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本技術は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本技術は有効に適用可能である。
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。
<実施例1>
(第1の正極活物質の作製工程)
 第1の正極活物質を以下のようにして作製した。まず、一般に工業的に行われている共沈法により水酸化物の塩を析出させることによって前駆体を作製した。遷移金属原料としてのCoSO4・7H2O(日本化学産業株式会社製)、MnSO4・H2O(日本化学産業株式会社製)、NiSO4・6H2O(正同化学工業株式会社製)、およびAl(NO33・9H2Oと、アルカリ原料としてのNaOHとを、表1に示す金属比となるように秤量して水に溶解して用いた。また、安定に共沈させるために、キレート剤としてアンモニア水(関東化学株式会社製)を用いた。
 具体的には、以下のようにして、共沈法により前駆体を作製した。0.5Lの反応槽内を1000rpmにて撹拌させながら、一定流量の遷移金属原料およびキレート剤に対して、一定のpHとなるようにアルカリ原料を滴下投入し、50℃の反応槽からのオーバーフローにより析出物の回収を行った後に、回収物をろ過し、十分に乾燥させた。これにより、前駆体が得られた。
 次に、Li:Mn:Co:Ni:Al=1.13:0.522:0.174:0.174:0.01(原子比)となるように、得られた前駆体と、Li源としてのLi2CO3(本荘ケミカル株式会社製、UF-200)とを混合し、得られた混合物を空気中において850℃で12時間焼成した。これにより、表1に示す平均組成(Li1.13[Mn0.6Co0.2Ni0.20.87Al0.012)を有するリチウム複合酸化物が得られた。このリチウム複合酸化物を第1の正極活物質として用いた。
(第2の正極活物質の作製工程)
 第2の正極活物質を以下のようにして作製した。混合物の焼成条件を850℃、12時間に代えて1050℃、12時間とする以外は第1の正極活物質の作製工程と同様にして、表1に示す平均組成(Li1.13[Mn0.6Co0.2Ni0.20.87Al0.012)を有するリチウム複合酸化物を得た。このリチウム複合酸化物をさらに遊星ミルにて1000rpmにて15分間粉砕した。この粉砕したリチウム複合酸化物を第2の正極活物質として用いた。
(第1、第2の正極活物質の混合工程)
 上述のようにして得られた第1の正極活物質M1と第2の正極活物質M2とを重量比(M1:M2)で80:20となるように混合することにより、正極活物質を得た。
(非水電解質二次電池の設計)
 以上のようにして得られた正極活物質として用いて、以下に示すようにして非水電解質二次電池を作製した。なお、下記の正極および負極の片面塗布試料を別途作製し、各電極の対極Liコインセルにより、正極および負極の充電容量を求めた。具体的には、正極の場合、各実施例の初回充電電圧まで充電したときの電気容量を測定し、負極の場合、定電流で0V後、電流値が定電流値の1/10となるまで低電圧充電したときの電気容量を測定し、各電極の合剤厚み当たりの充電容量を求めた。この値を用いて、(正極の充電容量/負極の充電容量)が0.5となるように、正極、負極の厚みを正極、負極合剤スラリーの固形分や塗布速度などにより調整した。
(正極の作製工程)
 正極を以下のようにして作製した。まず、混合した正極活物質90重量%、アモルファス性炭素粉(ケッチェンブラック)5重量%と、ポリフッ化ビニリデン(PVdF)5重量%とを混合して正極合剤を調製した。この正極合剤をN-メチル-2-ピロリドン(NMP)に分散させて正極合剤スラリーを作製した後、この正極合剤スラリーを帯状アルミニウム箔(正極集電体)の両面に均一に塗布して、塗膜を形成した。次に、この塗膜を温風乾燥した後、ロールプレス機で圧縮成型(ロール温度130℃、線圧0.7t/cm、プレス速度10m/min)し、正極シートを形成した。次に、この正極シートを48mm×300mmの帯状に切り出して、正極を作製した。次に、正極の正極集電体露出部分に正極リードを取り付けた。
(粒子内の平均空隙率、平均粒径の算出方法)
 第1の正極活物質粒子の粒子内の平均空隙率V1、平均粒径Dを以下のようにして求めた。まず、HITACHI製、イオンミリングシステムE-3500を用いて、プレス後の正極の断面を作製し、その断面をHITACHI製の走査電子顕微鏡(Scanning Electron Microscope;SEM)を用いて3kVにて5000倍の断面画像(以下「断面SEM像」という。)を撮った。その後、画像解析ソフトImageJを用いて、断面SEM像中から無作為に10個の第1の正極活物質粒子を選び出し、それらの粒子それぞれの粒子内の空隙率および粒径を算出した。この操作を20枚の断面SEM像について行い、得られた粒子内の空隙率を単純に平均(算術平均)して粒子内の平均空隙率V1を求めた。また、得られた粒径を単純に平均(算術平均)して平均粒径D1を求めた。
 断面SEM像中から第2の正極活物質粒子を選び出す以外のことは、第1の正極活物質粒子の粒子内の平均空隙率V1、平均粒径D1を求めたのと同様にして、第2の正極活物質粒子の粒子内の平均空隙率V2、平均粒径D2を求めた。
 図8A、図8Bに、実施例1の正極の断面SEM像を示す。図8A、図8Bから、第1の正極活物質粒子に年輪状の空隙が形成されていることがわかる。
(負極の作製工程)
 負極を以下のようにして作製した。まず、負極活物質としての平均粒径7μmのSiO粒子とポリイミドバインダーを20重量%含むNMP溶液とを重量比(SiO粒子:NMP溶液)で7:2となるように混合して、負極合剤スラリーを作製した。次に、負極合剤スラリーをギャップ35μmのバーコーターを用いて15μm厚の銅箔(負極集電体)の両面に塗布して塗膜を形成し、この塗膜を80℃で乾燥させた。次に、ロールプレス機で塗膜を圧縮成型した後、700℃で3時間加熱して負極シートを形成した。この負極シートを50mm×310mmの帯状に切り出して、負極を作製した。次に、負極の負極集電体露出部分に負極リードを取り付けた。
(ラミネートセルの作製工程)
 まず、作製した正極および負極を、厚み25μmの微孔性ポリエチレンフィルムよりなるセパレータを介して密着させ、長手方向に巻回して、最外周部に保護テープを貼り付けることにより、扁平形状の巻回電極体を作製した。次に、この巻回電極体を外装部材の間に装填し、外装部材の3辺を熱融着し、一辺は熱融着せずに開口を有するようにした。外装部材としては、最外層から順に25μm厚のナイロンフィルムと、40μm厚のアルミニウム箔と、30μm厚のポリプロピレンフィルムとが積層された防湿性のアルミラミネートフィルムを用いた。
(電解液の調製および注液工程)
 まず、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、質量比がEC:EMC=5:5となるようにして混合した混合溶媒を調製した。次に、この混合溶媒に、電解質塩として六フッ化リン酸リチウム(LiPF6)を1mol/lとなるように溶解させて電解液を調製した。この電解液を外装部材の開口から注入し、外装部材の残りの1辺を減圧下において熱融着し、密封した。これにより、目的とする非水電解質二次電池が得られた。
<実施例2>
 第1の正極活物質M1と第2の正極活物質M2とを重量比(M1:M2)で90:10となるように混合したこと以外は、実施例1と同様にして非水電解質二次電池を作製した。
<実施例3>
 負極活物質として黒鉛を用いた。また、(正極の充電容量/負極の充電容量)が0.9となるように、正極、負極の厚みを正極、負極合剤スラリーの固形分や塗布速度などにより調整した。これ以外のことは実施例1と同様に非水電解質二次電池を得た。
<実施例4>
 負極活物質としてケイ素(Si)を用いたこと以外は実施例1と同様に非水電解質二次電池を得た。
<実施例5>
 第2の正極活物質の作製工程において粉砕条件を変更し、第2の正極活物質粒子の平均粒径D2を5.5[μm]、粒子内の平均空隙率V2を2[%]としたこと以外は実施例1と同様に非水電解質二次電池を得た。
<実施例6>
 硝酸アルミニウム九水和物(Al(NO33・9H2O)を加えずに、Li:Mn:Co:Ni=1.2:0.48:0.16:0.16(原子比)となるように原料を混合したこと以外は実施例1と同様にして非水電解質二次電池を得た。
<実施例7>
 第2の正極活物質の作製工程において粉砕条件を変更し、第2の正極活物質粒子の平均粒径D2を1.1[μm]、粒子内の平均空隙率V2を1[%]としたこと以外は実施例1と同様に非水電解質二次電池を得た。
<実施例8>
 第1、第2の正極活物質の作製工程において、前駆体およびLi源の混合物を窒素雰囲気下で焼成すること以外は実施例1と同様にして非水電解質二次電池を得た。
<実施例9>
 第1、第2の正極活物質の作製工程において、反応層の温度(共沈温度)を55℃としたこと以外は実施例1と同様にして非水電解質二次電池を得た。
<実施例10>
 第1の正極活物質の作製工程において、焼成温度を800℃としたこと以外は実施例1と同様にして非水電解質二次電池を作製した。
<実施例11>
 第2の正極活物質の作製工程において、焼成温度を950℃としたこと以外は実施例1と同様にして非水電解質二次電池を得た。
<実施例12>
 Li:Mn:Co:Ni:Ti=1.13:0.522:0.261:0.087:0.01(原子比)となるように原料を混合したこと以外は実施例1と同様にして非水電解質二次電池を得た。
<実施例13>
 第1の正極活物質M1と第2の正極活物質M2とを重量比(M1:M2)で60:40となるように混合したこと以外は、実施例1と同様にして非水電解質二次電池を得た。
<実施例14>
 第1、第2の正極活物質の作製工程において、アルカリ源として炭酸ナトリウムを用いたこと以外は実施例1と同様にして非水電解質二次電池を得た。なお、実施例14の正極では、不定形状の空隙が第1の正極活物質粒子の中心部に局在していることが断面SEM像により確認された。
<実施例15>
 Li:Mn:Co:Ni:Mg=1.13:0.522:0.261:0.087:0.01(原子比)となるように原料を混合したこと以外は実施例1と同様にして非水電解質二次電池を得た。
<実施例16>
 第1、第2の正極活物質の作製工程において、反応槽の温度を35℃としたこと以外は実施例1と同様にして非水電解質二次電池を得た。
<比較例1>
 第1、第2の正極活物質の作製工程において、焼成温度を950℃としたこと以外は実施例1と同様にして非水電解質二次電池を得た。
 図8Cは、比較例1の正極の断面SEM像を示す。図8Cから、非常に小さい空隙が第1の正極活物質粒子内にまばらに点在していることがわかる。また、ある程度の大きさの空隙を有する粒子も観察されるが、その場合には、ある程度の大きさの空隙は第1の正極活物質粒子の中心部に局在していることがわかる。
<比較例2>
 第2の正極活物質の製造工程において粉砕条件を変更し、第2の正極活物質の平均粒径D2を6.4[μm]、粒子内の平均空隙率V2を4[%]としたこと以外は実施例1と同様にして非水電解質二次電池を得た。
<比較例3>
 第2の正極活物質を混合せずに正極合剤を作製したこと以外は実施例1と同様にして非水電解質二次電池を得た。
<比較例4>
 第1、第2の正極活物質の作製工程において、反応槽の温度を60℃としたこと以外は実施例1と同様にして非水電解質二次電池を得た。
<比較例5>
 第2の正極活物質の作製工程における焼成温度を900℃としたこと以外は実施例1と同様にして非水電解質二次電池を得た。
<比較例6>
 第1、第2の正極活物質の作製工程において、反応槽の温度を55℃とし、さらに撹拌速度を600rpmとしたこと以外は実施例1と同様にして非水電解質二次電池を得た。
<比較例7>
 第1の正極活物質の作製工程において、反応槽の温度を25℃とすること以外は実施例1と同様にして非水電解質二次電池を得た。
<比較例8>
 第2の正極活物質の作製工程において、遊星ミルの粉砕時間を30分としたこと以外は実施例1と同様にして非水電解質二次電池を得た。
(電池特性の評価)
 上述のようにして得られた実施例1~16、比較例1~9の非水電解質二次電池について、以下の評価を行った。
(初期の体積エネルギー密度)
 初期の体積エネルギー密度を以下のようにして求めた。まず、以下の充放電条件にて、充放電を2サイクル行い、2サイクル目の正極活物質重量あたりの放電容量(mAh/g)を測定した。次に、測定した放電容量を、正極活物質層の体積密度(g/cc)と掛け合わせることで、体積エネルギー密度(mAh/cc)を算出した。
 充電条件:環境温度23℃、充電電圧4.55V、充電電流0.5A、充電時間2.5時間
 放電条件:環境温度23℃、放電電流0.2A、終止電圧2.0V
(負荷特性)
 負荷特性を以下のようにして評価した。まず、上述の充放電条件にて充放電を行い、放電電流0.2Aでの放電容量を測定した。次に、充電電流0.5A、充電時間2.5時間の条件で充電を行った後、放電電流2.0A、終止電圧2.0Vの条件で放電を行い、放電電流値2.0Aでの放電容量を測定した。次に、測定した放電電流0.2Aでの放電容量および放電電流値2.0Aでの放電容量を以下の式に代入して、負荷特性を求めた。
 負荷特性[%]=(放電電流値2.0Aでの放電容量)/(放電電流0.2Aでの放電容量)×100
(容量維持率)
 容量維持率を以下のようにして求めた。まず、上述の充放電条件にて、充放電を行い、1サイクル目の放電容量を測定した。次に、上述の充放電条件にて充放電を繰り返した後、300サイクル目の放電容量を測定した。次に、測定した1サイクル目の放電容量および300サイクル目の放電容量を以下の式に代入して、300サイクル後の容量維持率を求めた。
 300サイクル後の容量維持率[%]=(300サイクル目の放電容量/1サイクル目の放電容量)×100
 表1は、実施例1~16の非水電解質二次電池の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表2は、比較例1~8の非水電解質二次電池の構成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
 なお、表1、表2中において、M1、M2、D1、D2、V1、V2、(*1)は、以下の意味を示す。
 M1:第1の正極活物質
 M2:第2の正極活物質
 D1:第1の正極活物質の平均粒径
 D2:第2の正極活物質の平均粒径
 V1:第1の正極活物質の粒子内の平均空隙率
 V2:第2の正極活物質の粒子内の平均空隙率
 (*1):不定形状の空隙が第1の正極活物質の中心部に局在
 表1から以下のことがわかる。
 実施例1~16では、第1の正極活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]を満たし、かつ、第1の正極活物質の平均粒径D1が6[μm]≦D1≦20[μm]を満たしている。また、第2の正極活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]を満たし、かつ、第2の正極活物質の平均粒径D2が1[μm]≦D2≦6[μm]を満たしている。このため、良好な体積エネルギー密度、負荷特性および容量維持率が得られている。
 なお、実施例1~16では、a、b、c、dおよびeの数値が幾つかの限られたリチウム複合酸化物について検討を行っているが、上記効果はこの例に限定されるものではない。例えば、リチウム複合酸化物として第1の実施形態にて式(1)で示した平均組成を有するものを用いた場合には、上記効果を奏することができる。
 比較例1では、第1の正極活物質の粒子内の平均空隙率V1が10[%]未満であるため、第1の正極活物質の粒子内におけるリチウム(Li)の拡散抵抗が高くなり、負荷特性および容量維持率が低下している。
 比較例2では、第2の正極活物質の平均粒径D2が6[μm]を超えているため、正極活物質の充填性が低下するとともに、第2の正極活物質の粒子内におけるLiの拡散抵抗が高くなり、体積エネルギー密度、負荷特性および容量維持率が低下している。
 比較例3では、第2の正極活物質を用いていないため、正極活物質の充填性が向上せず、体積エネルギー密度が低下している。また、大粒径の正極活物質の方が、小粒径の正極活物質に比してLiの拡散抵抗が高く、粒子内部からのLi脱挿入が困難となり負荷特性は悪くなる傾向がある。したがって、大粒径を有する第1の正極活物質の重量比が100である比較例3では、負荷特性が悪くなる。同様にLiの拡散抵抗の理由から、サイクル特性も悪化しやすい傾向にある。
 比較例4では、第1の正極活物質の平均粒径D1が20[μm]を超えているため、第1の正極活物質の粒子内におけるリチウム(Li)の拡散抵抗が高くなり、負荷特性および容量維持率が低下している。また、大粒径の正極活物質の粒径が大きくなると、粒子内空隙および粒子間空隙の両方が増える結果となり、さらに、大粒径ゆえに粒子内部へのLiの拡散抵抗が大きいため、容量も得られにくくなる。これらの2点の相乗効果により、大粒径の正極活物質の粒径が大きくなりすぎると、大きく体積容量密度は低下する。したがって、大粒径を有する第1の正極活物質の粒径が大きすぎる比較例4では、体積容量密度は低下する。
 比較例5では、第2の正極活物質の粒子内の平均空隙率V2が13[%]を超えているため、正極活物質の充填性が低下し、体積エネルギー密度が低下している。
 比較例6では、第1の正極活物質の粒子内の平均空隙率V1が30[%]を超えているため、正極活物質の充填率が低下し、体積エネルギー密度が低下している。また、比較例6では、第1の正極活物質は空隙が大きい分、構造安定性に欠け、サイクルを重ねた際に崩れ、導電助剤からの孤立が起こりやすいため、サイクル特性が低下していると考えられる。負荷特性はサイクル初期で計測しているため、空隙が多い分、Liのイオン抵抗が低く、負荷特性の低下は小さくなっていると考えられる。
 比較例7では、第1の正極活物質の平均粒径D1が6[μm]未満であるため、正極活物質の充填率が低下し、体積エネルギー密度が低下している。
 比較例8では、第2の正極活物質の平均粒径D2が1[μm]未満であるため、正極活物質の充填率が低下し、体積エネルギー密度が低下している。
 実施例1、2、13の評価結果の比較から、第1の正極活物質と第2の正極活物質の重量比(第1の正極活物質:第2の正極活物質)が95:5以上70:30以下であると、特に良好な体積エネルギー密度、負荷特性および容量維持率が得られることがわかる。
 実施例1、3、4の評価結果の比較から、負極活物質としてSiまたはSiOを用いた場合には、負極活物質として黒鉛を用いた場合に比べて、体積エネルギー密度を向上できることができ、SiOを用いた場合に、体積エネルギー密度を特に向上できることがわかる。
 実施例1、14の評価結果の比較から、空隙を年輪状とすることで、容量維持率を向上できることがわかる。
 以上、本技術の実施形態について具体的に説明したが、本技術は、上述の実施形態に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
 また、上述の実施形態の構成、方法、工程、形状、材料および数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、上述の実施形態では、正極としてリチウム過剰型の正極を用いる場合を例として説明したが、正極はこの例に限定されるものではなく、正極として一般的なリチウムイオン二次電池にて用いられているものを用いてもよい。
 また、上述の実施形態では、巻回構造を有する電池に対して本技術を適用した例について説明したが、電池の構造はこれに限定されるものではなく、正極および負極を折り畳んだ構造、または積み重ねた構造を有する電池などに対しても本技術は適用可能である。
 また、上述の実施形態およびその変形例では、円筒型または扁平型を有する電池に対して本技術を適用した例について説明したが、電池の形状はこれに限定されるものではなく、コイン型、ボタン型、または角型などの電池に対しても本技術は適用可能である。
 また、本技術は以下の構成を採用することもできる。
(1)
 第1の活物質と第2の活物質とを含み、
 上記第1の活物質および上記第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
 上記第1の活物質は粒子状を有し、上記第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、上記第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
 上記第2の活物質は粒子状を有し、上記第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、上記第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]である正極。
(2)
 上記リチウム複合酸化物の平均組成は、以下の式(1)で表される(1)に記載の正極。
 Li1+a(MnbCocNi1-b-c1-aM3d2-e   ・・・(1)
(但し、M3はアルミニウム(Al)、マグネシウム(Mg)、ジルコニウム(Zr)、チタン(Ti)、バリウム(Ba)、ホウ素(B)、ケイ素(Si)および鉄(Fe)のうちの少なくとも1種である。aは0<a<0.25、bは0.3≦b<0.7、cは0≦c<1-b、dは0≦d≦1、eは0≦e≦1である。)
(3)
 上記第1の活物質は、粒子内全体に分布した空隙を有する(1)または(2)に記載の正極。
(4)
 上記第1の活物質は、粒子内に年輪状の空隙を有する(1)または(2)に記載の正極。
(5)
 上記第1の活物質と上記第2の活物質の重量比(上記第1の活物質:上記第2の活物質)は、95:5以上70:30以下である(1)から(4)のいずれかに記載の正極。
(6)
 上記式(1)中のM3は、アルミニウム(Al)、マグネシウム(Mg)およびチタン(Ti)のうちの少なくとも1種である(2)に記載の正極。
(7)
 正極と負極と電解質とを含み、
 上記正極は、(1)から(6)のいずれかに記載の正極である電池。
(8)
 上記負極は、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を含む(7)に記載の電池。
(9)
 上記負極は、酸化ケイ素を含む(7)に記載の電池。
(10)
 一対の上記正極および上記負極当たりの完全充電状態における開回路電圧が、4.4V以上6.00V以下の範囲内である(7)から(9)のいずれかに記載の電池。
(11)
 (7)から(10)のいずれかに記載の電池を備える電池パック。
(12)
 (7)から(10)のいずれかに記載の電池を備え、
 上記電池から電力の供給を受ける電子機器。
(13)
 (7)から(10)のいずれかに記載の電池と、
 上記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
 上記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
 を備える電動車両。
(14)
 (7)から(10)のいずれかに記載の電池を備え、
 上記電池に接続される電子機器に電力を供給する蓄電装置。
(15)
 他の機器とネットワークを介して信号を送受信する電力情報制御装置を備え、
 上記電力情報制御装置が受信した情報に基づき、上記電池の充放電制御を行う(14)に記載の蓄電装置。
(16)
 (7)から(10)のいずれかに記載の電池を備え、
 上記電池から電力の供給を受け、または、発電装置もしくは電力網から上記電池に電力が供給される電力システム。
 11  電池缶
 12、13  絶縁板
 14  電池蓋
 15  安全弁機構
 15A  ディスク板
 16  熱感抵抗素子
 17  ガスケット
 20  巻回電極体
 21  正極
 21A  正極集電体
 21B  正極活物質層
 22  負極
 22A  負極集電体
 22B  負極活物質層
 23  セパレータ
 24  センターピン
 25  正極リード
 26  負極リード

Claims (16)

  1.  第1の活物質と第2の活物質とを含み、
     上記第1の活物質および上記第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
     上記第1の活物質は粒子状を有し、上記第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、上記第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
     上記第2の活物質は粒子状を有し、上記第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、上記第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]である正極。
  2.  上記リチウム複合酸化物の平均組成は、以下の式(1)で表される請求項1に記載の正極。
     Li1+a(MnbCocNi1-b-c1-aM3d2-e   ・・・(1)
    (但し、M3はアルミニウム(Al)、マグネシウム(Mg)、ジルコニウム(Zr)、チタン(Ti)、バリウム(Ba)、ホウ素(B)、ケイ素(Si)および鉄(Fe)のうちの少なくとも1種である。aは0<a<0.25、bは0.3≦b<0.7、cは0≦c<1-b、dは0≦d≦1、eは0≦e≦1である。)
  3.  上記第1の活物質は、粒子内全体に分布した空隙を有する請求項1に記載の正極。
  4.  上記第1の活物質は、粒子内に年輪状の空隙を有する請求項1に記載の正極。
  5.  上記第1の活物質と上記第2の活物質の重量比(上記第1の活物質:上記第2の活物質)は、95:5以上70:30以下である請求項1に記載の正極。
  6.  上記式(1)中のM3は、アルミニウム(Al)、マグネシウム(Mg)およびチタン(Ti)のうちの少なくとも1種である請求項2に記載の正極。
  7.  正極と負極と電解質とを含み、
     上記正極は、第1の活物質と第2の活物質とを含み、
     上記第1の活物質および上記第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
     上記第1の活物質は粒子状を有し、上記第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、上記第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
     上記第2の活物質は粒子状を有し、上記第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、上記第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]である電池。
  8.  上記負極は、ケイ素(Si)およびスズ(Sn)のうちの少なくとも一方を含む請求項7に記載の電池。
  9.  上記負極は、酸化ケイ素を含む請求項7に記載の電池。
  10.  一対の上記正極および上記負極当たりの完全充電状態における開回路電圧が、4.4V以上6.00V以下の範囲内である請求項7に記載の電池。
  11.  正極と、負極と、電解質とを含む電池を備え、
     上記正極は、第1の活物質と第2の活物質とを含み、
     上記第1の活物質および上記第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
     上記第1の活物質は粒子状を有し、上記第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、上記第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
     上記第2の活物質は粒子状を有し、上記第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、上記第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]である電池パック。
  12.  正極と、負極と、電解質とを含む電池を備え、
     上記正極は、第1の活物質と第2の活物質とを含み、
     上記第1の活物質および上記第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
     上記第1の活物質は粒子状を有し、上記第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、上記第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
     上記第2の活物質は粒子状を有し、上記第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、上記第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]であり、
     上記電池から電力の供給を受ける電子機器。
  13.  電池と、
     上記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
     上記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
     を備え、
     上記電池は、正極と、負極と、電解質とを含み、
     上記正極は、第1の活物質と第2の活物質とを含み、
     上記第1の活物質および第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
     上記第1の活物質は粒子状を有し、上記第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、上記第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
     上記第2の活物質は粒子状を有し、上記第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、上記第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]である電動車両。
  14.  正極と、負極と、電解質とを含む電池を備え、
     上記正極は、第1の活物質と第2の活物質とを含み、
     上記第1の活物質および上記第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
     上記第1の活物質は粒子状を有し、上記第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、上記第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
     上記第2の活物質は粒子状を有し、上記第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、上記第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]であり、
     上記電池に接続される電子機器に電力を供給する蓄電装置。
  15.  他の機器とネットワークを介して信号を送受信する電力情報制御装置を備え、
     上記電力情報制御装置が受信した情報に基づき、上記電池の充放電制御を行う請求項14に記載の蓄電装置。
  16.  正極と、負極と、電解質とを含む電池を備え、
     上記正極は、第1の活物質と第2の活物質とを含み、
     上記第1の活物質および上記第2の活物質は、遷移金属として少なくともマンガン(Mn)、ニッケル(Ni)およびコバルト(Co)を含むリチウム複合酸化物を含み、
     上記第1の活物質は粒子状を有し、上記第1の活物質の粒子内の平均空隙率V1が10[%]≦V1≦30[%]であり、かつ、上記第1の活物質の平均粒径D1が6[μm]≦D1≦20[μm]であり、
     上記第2の活物質は粒子状を有し、上記第2の活物質の粒子内の平均空隙率V2が0[%]≦V2≦10[%]であり、かつ、上記第2の活物質の平均粒径D2が1[μm]≦D2≦6[μm]であり、
     上記電池から電力の供給を受け、または、発電装置もしくは電力網から上記電池に電力が供給される電力システム。
PCT/JP2015/002479 2014-06-26 2015-05-18 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム WO2015198521A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167035005A KR102125111B1 (ko) 2014-06-26 2015-05-18 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
CN201580032915.3A CN106663790B (zh) 2014-06-26 2015-05-18 正极、电池、电池组、电子装置、电动车辆、蓄电装置及电力系统
JP2016528994A JP6414214B2 (ja) 2014-06-26 2015-05-18 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US15/316,259 US10784498B2 (en) 2014-06-26 2015-05-18 Positive electrode, battery, battery pack, electronic device, electric vehicle, electricity storage device, and electric power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014131757 2014-06-26
JP2014-131757 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015198521A1 true WO2015198521A1 (ja) 2015-12-30

Family

ID=54937633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002479 WO2015198521A1 (ja) 2014-06-26 2015-05-18 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Country Status (5)

Country Link
US (1) US10784498B2 (ja)
JP (1) JP6414214B2 (ja)
KR (1) KR102125111B1 (ja)
CN (1) CN106663790B (ja)
WO (1) WO2015198521A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055802A (ja) * 2016-09-26 2018-04-05 株式会社Gsユアサ 蓄電素子
WO2018061815A1 (ja) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極
JP2019102260A (ja) * 2017-12-01 2019-06-24 トヨタ自動車株式会社 リチウムイオン二次電池
CN110178253A (zh) * 2016-12-22 2019-08-27 株式会社Posco 正极活性物质及其制备方法以及包括该物质的锂二次电池
WO2019163483A1 (ja) * 2018-02-22 2019-08-29 三洋電機株式会社 非水電解質二次電池
JPWO2019117282A1 (ja) * 2017-12-15 2021-01-07 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
WO2021095394A1 (ja) * 2019-11-12 2021-05-20 Jx金属株式会社 全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池及び全固体リチウムイオン電池用正極活物質の製造方法
JP2021120937A (ja) * 2020-01-30 2021-08-19 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、正極、及びリチウムイオン二次電池
JP7422121B2 (ja) 2021-12-27 2024-01-25 プライムアースEvエナジー株式会社 リチウムイオン二次電池

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI561430B (en) * 2015-12-01 2016-12-11 Ind Tech Res Inst Integrated power module and electric vehicle having the same
EP3451424B1 (en) * 2016-04-26 2021-09-08 Murata Manufacturing Co., Ltd. Negative electrode for magnesium secondary battery, method for producing same, and magnesium secondary battery
JP6388978B1 (ja) * 2017-03-31 2018-09-12 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7070573B2 (ja) * 2017-08-25 2022-05-18 株式会社村田製作所 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR102453273B1 (ko) * 2018-05-23 2022-10-11 주식회사 엘지에너지솔루션 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN110690418B (zh) * 2018-07-06 2023-07-25 Sk新能源株式会社 锂二次电池
EP3933972B1 (en) * 2019-02-28 2024-10-02 Panasonic Energy Co., Ltd. Non-aqueous electrolyte secondary battery
KR20210031325A (ko) * 2019-09-11 2021-03-19 주식회사 엘지화학 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
EP3909916B1 (en) * 2019-10-02 2023-06-28 LG Chem, Ltd. Positive electrode active material for lithium secondary battery and method for preparing said positive electrode active material
CN111276757B (zh) * 2020-02-19 2021-01-05 苏州睿邦工业设计有限公司 一种动力型锂离子电池的制备方法
CN111916664B (zh) * 2020-09-08 2022-09-23 珠海冠宇电池股份有限公司 一种正极片及制备方法、电池
CN113690412A (zh) * 2021-06-16 2021-11-23 浙江锂威能源科技有限公司 一种活性浆料及其制备方法、正极片、锂离子电池
JP7503095B2 (ja) * 2022-05-11 2024-06-19 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
KR20240052159A (ko) * 2022-10-13 2024-04-23 주식회사 엘지에너지솔루션 음극 및 이차전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110942A (ja) * 2007-10-10 2009-05-21 Hitachi Maxell Ltd 非水二次電池およびこれを用いた機器
JP2013065468A (ja) * 2011-09-16 2013-04-11 Panasonic Corp リチウムイオン二次電池
WO2013191179A1 (ja) * 2012-06-21 2013-12-27 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP2015026594A (ja) * 2013-06-20 2015-02-05 株式会社Gsユアサ リチウム二次電池用混合活物質、リチウム二次電池用電極、及びリチウム二次電池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112204A (en) * 1977-02-22 1978-09-05 Ilc Technology, Inc. Battery terminal seal structure
US5647965A (en) * 1994-03-25 1997-07-15 Crose; James R. Apparatus and method for separating a charged substance from a conductive fluid
CN1195911C (zh) * 1999-03-25 2005-04-06 昭和电工株式会社 碳纤维、其制造方法和电池用电极
AU2001284982A1 (en) * 2000-08-15 2002-02-25 Board Of Trustees Of The University Of Illinois Method of forming microparticles
US7655196B2 (en) * 2005-11-16 2010-02-02 Fuelcell Energy, Inc. Reforming catalyst and method and apparatus for making and loading same
US8237538B2 (en) * 2007-04-09 2012-08-07 The Board Of Trustees Of The University Of Illinois Porous battery electrode for a rechargeable battery and method of making the electrode
US8013569B2 (en) * 2009-03-06 2011-09-06 Sustainable Structures LLC Renewable energy vehicle charging station
JP5566723B2 (ja) * 2010-03-01 2014-08-06 古河電気工業株式会社 微粒子混合物、活物質凝集体、正極活物質材料、正極、2次電池及びこれらの製造方法
GB201014706D0 (en) * 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
JP5614729B2 (ja) 2011-03-03 2014-10-29 日産自動車株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2013065467A (ja) * 2011-09-16 2013-04-11 Panasonic Corp リチウムイオン二次電池
JP5637316B2 (ja) * 2012-02-29 2014-12-10 新神戸電機株式会社 リチウムイオン電池
JP5620005B2 (ja) * 2012-02-29 2014-11-05 新神戸電機株式会社 リチウムイオン電池
JP2013214394A (ja) * 2012-04-02 2013-10-17 Sanyo Electric Co Ltd 非水電解質二次電池用電極及び非水電解質二次電池
US9093705B2 (en) * 2013-03-15 2015-07-28 GM Global Technology Operations LLC Porous, amorphous lithium storage materials and a method for making the same
US10629912B2 (en) * 2013-11-29 2020-04-21 Murata Manufacturing Co., Ltd. Electrode and battery
CN106030889A (zh) * 2014-02-25 2016-10-12 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110942A (ja) * 2007-10-10 2009-05-21 Hitachi Maxell Ltd 非水二次電池およびこれを用いた機器
JP2013065468A (ja) * 2011-09-16 2013-04-11 Panasonic Corp リチウムイオン二次電池
WO2013191179A1 (ja) * 2012-06-21 2013-12-27 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP2015026594A (ja) * 2013-06-20 2015-02-05 株式会社Gsユアサ リチウム二次電池用混合活物質、リチウム二次電池用電極、及びリチウム二次電池

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055802A (ja) * 2016-09-26 2018-04-05 株式会社Gsユアサ 蓄電素子
JPWO2018061815A1 (ja) * 2016-09-30 2019-07-18 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極
WO2018061815A1 (ja) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極
JP2020514972A (ja) * 2016-12-22 2020-05-21 ポスコPosco 正極活物質、その製造方法、およびこれを含むリチウム二次電池
CN110178253A (zh) * 2016-12-22 2019-08-27 株式会社Posco 正极活性物质及其制备方法以及包括该物质的锂二次电池
JP7421039B2 (ja) 2016-12-22 2024-01-24 ポスコホールディングス インコーポレーティッド 正極活物質、その製造方法、およびこれを含むリチウム二次電池
JP2021177491A (ja) * 2016-12-22 2021-11-11 ポスコPosco 正極活物質、その製造方法、およびこれを含むリチウム二次電池
CN110178253B (zh) * 2016-12-22 2022-05-10 株式会社Posco 正极活性物质及其制备方法以及包括该物质的锂二次电池
US11462725B2 (en) 2016-12-22 2022-10-04 Posco Cathode active material for lithium secondary battery
JP2019102260A (ja) * 2017-12-01 2019-06-24 トヨタ自動車株式会社 リチウムイオン二次電池
JP7069668B2 (ja) 2017-12-01 2022-05-18 トヨタ自動車株式会社 リチウムイオン二次電池
JPWO2019117282A1 (ja) * 2017-12-15 2021-01-07 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP7296044B2 (ja) 2017-12-15 2023-06-22 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
WO2019163483A1 (ja) * 2018-02-22 2019-08-29 三洋電機株式会社 非水電解質二次電池
US11888147B2 (en) 2018-02-22 2024-01-30 Panasonic Holdings Corporation Nonaqueous electrolyte secondary batteries
JP7264792B2 (ja) 2019-11-12 2023-04-25 Jx金属株式会社 全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池及び全固体リチウムイオン電池用正極活物質の製造方法
JP2021077565A (ja) * 2019-11-12 2021-05-20 Jx金属株式会社 全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池及び全固体リチウムイオン電池用正極活物質の製造方法
WO2021095394A1 (ja) * 2019-11-12 2021-05-20 Jx金属株式会社 全固体リチウムイオン電池用正極活物質、全固体リチウムイオン電池用正極、全固体リチウムイオン電池及び全固体リチウムイオン電池用正極活物質の製造方法
JP2021120937A (ja) * 2020-01-30 2021-08-19 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、正極、及びリチウムイオン二次電池
JP7439541B2 (ja) 2020-01-30 2024-02-28 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、正極、及びリチウムイオン二次電池
JP7422121B2 (ja) 2021-12-27 2024-01-25 プライムアースEvエナジー株式会社 リチウムイオン二次電池

Also Published As

Publication number Publication date
KR102125111B1 (ko) 2020-06-19
US20170149049A1 (en) 2017-05-25
US10784498B2 (en) 2020-09-22
JPWO2015198521A1 (ja) 2017-04-27
KR20170022990A (ko) 2017-03-02
CN106663790A (zh) 2017-05-10
CN106663790B (zh) 2020-01-03
JP6414214B2 (ja) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6414214B2 (ja) 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US10727530B2 (en) Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
KR102334085B1 (ko) 정극 활물질, 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
KR102300465B1 (ko) 정극 활물질, 정극, 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
US10629904B2 (en) Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
WO2017104117A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP7243879B2 (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2018012528A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013222502A (ja) 正極活物質およびその製造方法、正極、電池、電池パック、電子機器、電動車両、蓄電装置ならびに電力システム
JP6536354B2 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013222503A (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2017017910A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2016152213A (ja) 負極活物質粒子およびその製造方法、負極、電池、ならびに導電性粒子
WO2018135061A1 (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2018198967A1 (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528994

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15316259

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167035005

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812378

Country of ref document: EP

Kind code of ref document: A1