WO2018012528A1 - 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム - Google Patents
電池、電池パック、電子機器、電動車両、蓄電装置および電力システム Download PDFInfo
- Publication number
- WO2018012528A1 WO2018012528A1 PCT/JP2017/025390 JP2017025390W WO2018012528A1 WO 2018012528 A1 WO2018012528 A1 WO 2018012528A1 JP 2017025390 W JP2017025390 W JP 2017025390W WO 2018012528 A1 WO2018012528 A1 WO 2018012528A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- battery
- area density
- material layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present technology relates to a battery including a wound positive electrode and negative electrode, a battery pack including the battery, an electronic device, an electric vehicle, a power storage device, and a power system.
- Batteries having a structure in which a long positive electrode and a negative electrode are wound are widely used.
- a structure in which a positive electrode active material layer is covered so that both surfaces of the positive electrode current collector are not exposed at both ends on the inner peripheral side and the outer peripheral side of the positive electrode in order to improve safety hereinafter referred to as the positive electrode active material layer.
- the positive electrode active material layer a structure in which a positive electrode active material layer is covered so that both surfaces of the positive electrode current collector are not exposed at both ends on the inner peripheral side and the outer peripheral side of the positive electrode in order to improve safety
- the flexibility of the electrode plate is improved by partially reducing the active material density on the inner peripheral side of the electrode group of at least one of the positive electrode plate and the negative electrode plate from the active material density on the outer peripheral side.
- the electrode plate is prevented from being cut when the electrode plate is processed into a sheet shape and when the electrode plate is wound.
- the portion having a small active material density is formed in a range from the innermost coating end to one turn with respect to the longitudinal direction of the electrode group.
- Patent Document 1 there is no description about a technique for suppressing the breakage of the positive electrode that occurs from the position of one round outer side from the winding start end.
- the step is smaller than in the case of the current collector non-exposed structure. Hard to do. Therefore, it can be said that the breakage of the positive electrode, which occurs from the position one turn outside from the winding start end, is a phenomenon that is particularly likely to occur in a battery having a current collector non-exposed structure.
- An object of the present technology is to provide a battery having a current collector non-exposed structure at an inner peripheral side end and an outer peripheral side end of the positive electrode, a battery capable of suppressing the disconnection of the positive electrode, a battery pack including the battery, an electronic device, an electric vehicle, An object is to provide a power storage device and a power system.
- a battery of the present technology includes a wound positive electrode and a negative electrode, and the positive electrode is a positive electrode current collector and a first positive electrode active material provided on an inner surface of the positive electrode current collector And a second positive electrode active material layer provided on an outer surface of the positive electrode current collector, and an inner peripheral side end and an outer peripheral side end of the positive electrode current collector are covered with the first positive electrode active material layer.
- the first positive electrode active material layer has a low area density portion in a portion facing the inner peripheral side end of the positive electrode.
- the battery of the present technology includes a wound electrode, and the electrode is provided on the current collector, the first active material layer provided on the inner surface of the current collector, and the outer surface of the current collector.
- a second active material layer, and an inner peripheral end and an outer peripheral end of the current collector are covered with the first active material layer and the second active material layer, and the first active material layer is A low area density portion is provided at a portion facing the inner peripheral end of the electrode.
- the battery pack, electronic device, electric vehicle, power storage device, and power system of the present technology include the above-described battery.
- FIG. 1 is a cross-sectional view illustrating a configuration example of the nonaqueous electrolyte secondary battery according to the first embodiment of the present technology.
- FIG. 2A is a cross-sectional view showing a configuration example of the wound electrode body in an unwound state.
- FIG. 2B is a cross-sectional view illustrating an example of a positive electrode winding structure.
- FIG. 3A is a cross-sectional view illustrating a configuration example of a wound electrode body in an unwound state.
- FIG. 3B is a cross-sectional view showing an example of a positive electrode winding structure.
- FIG. 4A is a cross-sectional view illustrating a configuration example of the wound electrode body in an unwound state.
- FIG. 4B is a cross-sectional view showing an example of a positive electrode winding structure.
- FIG. 5A is a cross-sectional view illustrating a configuration example of a wound electrode body in an unwound state.
- FIG. 5B is a cross-sectional view showing an example of a positive electrode winding structure.
- FIG. 6 is a block diagram illustrating a configuration example of an electronic device according to the second embodiment of the present technology.
- FIG. 7 is a schematic diagram illustrating a configuration example of a power storage system according to the third embodiment of the present technology.
- FIG. 8 is a schematic diagram illustrating a configuration example of an electric vehicle according to the fourth embodiment of the present technology.
- FIG. 9A is a cross-sectional view showing a configuration of a wound electrode body in an unwound state.
- FIG. 9B is a cross-sectional view showing the winding structure of the positive electrode.
- FIG. 10A is a cross-sectional view illustrating a configuration of a wound electrode body in an unwound state.
- FIG. 10B is a cross-sectional view showing the winding structure of the positive electrode.
- Embodiments of the present technology will be described in the following order. 1 First Embodiment (Example of Cylindrical Battery) 2 Second embodiment (example of battery pack and electronic device) 3 Third Embodiment (Example of Power Storage System) 4 Fourth Embodiment (Example of Electric Vehicle)
- FIG. 1 a configuration example of the nonaqueous electrolyte secondary battery (hereinafter simply referred to as “battery”) according to the first embodiment of the present technology will be described with reference to FIG. 1.
- This battery is, for example, a so-called lithium ion secondary battery in which the capacity of the negative electrode is represented by a capacity component due to insertion and extraction of lithium (Li) as an electrode reactant.
- This non-aqueous electrolyte secondary battery is called a so-called cylindrical type, and a pair of strip-like positive electrode 21 and strip-like negative electrode 22 are disposed inside a cylindrical battery can 11 having one end opened and the other end closed.
- the battery can 11 is made of iron (Fe) plated with nickel (Ni), and has one end closed and the other end open. Inside the battery can 11, an electrolytic solution as a liquid electrolyte is injected and impregnated in the positive electrode 21, the negative electrode 22, and the separator 23.
- a pair of insulating plates 12 and 13 are respectively disposed perpendicular to the winding peripheral surface so as to sandwich the winding electrode body 20.
- a battery lid 14 At the open end of the battery can 11, a battery lid 14, a safety valve mechanism 15 provided inside the battery lid 14, and a thermal resistance element (Positive16Temperature ⁇ Coefficient; PTC element) 16 are provided via a sealing gasket 17. It is attached by caulking. Thereby, the inside of the battery can 11 is sealed.
- the battery lid 14 is made of, for example, the same material as the battery can 11.
- the safety valve mechanism 15 is electrically connected to the battery lid 14, and when the internal pressure of the battery exceeds a certain level due to an internal short circuit or external heating, the disk plate 15A is reversed and wound with the battery lid 14. The electrical connection with the rotating electrode body 20 is cut off.
- the sealing gasket 17 is made of, for example, an insulating material, and the surface is coated with asphalt.
- the center of the wound electrode body 20 has a through hole 20A, and a center pin 24 is inserted into the through hole 20A.
- a positive electrode lead 25 made of aluminum (Al) or the like is connected to the positive electrode 21 of the spirally wound electrode body 20, and a negative electrode lead 26 made of nickel or the like is connected to the negative electrode 22.
- the positive electrode lead 25 is electrically connected to the battery lid 14 by being welded to the safety valve mechanism 15, and the negative electrode lead 26 is welded to and electrically connected to the battery can 11.
- the open circuit voltage (that is, the battery voltage) in the fully charged state per pair of the positive electrode 21 and the negative electrode 22 may be 4.2 V or lower, but is higher than 4.2 V, preferably It may be designed to be in the range of 4.25V to 6.00V, more preferably 4.3V to 5.0V, and even more preferably 4.35V to 4.60V.
- a layered rock salt type lithium composite oxide is used as the positive electrode active material, if the open circuit voltage at the time of full charge is 4.25 V or more, the same positive electrode active material as compared to the 4.20 V battery Even so, since the amount of lithium released per unit mass increases, a high energy density can be obtained.
- the positive electrode 21 is provided on a positive electrode current collector 21A, a first positive electrode active material layer 21B provided on the inner surface of the positive electrode current collector 21A, and an outer surface of the positive electrode current collector 21A. And a second positive electrode active material layer 21C.
- “inside” and “outside” mean inside and outside of the positive electrode current collector 21A in a wound state.
- the positive electrode 21 has a positive electrode current collector exposed portion in which both surfaces of the positive electrode current collector 21A are exposed without being covered with the first and second positive electrode active material layers 21B and 21C in the middle peripheral portion thereof.
- a positive electrode lead 25 is connected to the exposed portion of the positive electrode current collector.
- both surfaces of the positive electrode current collector 21A are covered with the first and second positive electrode active material layers 21B and 21C. That is, the positive electrode 21 has a structure in which the positive electrode current collector 21 ⁇ / b> A is not exposed at the inner peripheral end and the outer peripheral end of the positive electrode 21.
- the first positive electrode active material layer 21B has a low area density portion 21D locally at a portion facing the inner peripheral side end portion (tip portion) of the positive electrode 21, as shown in FIGS. 2A and 2B.
- illustration of the negative electrode 22 is omitted in order to facilitate understanding of the positional relationship between the inner peripheral side end of the positive electrode 21 and the low area density portion 21D.
- the first positive electrode active material layer 21 ⁇ / b> B has the low area density portion 21 ⁇ / b> D, it is possible to prevent the positive electrode 21 from being cut at a portion facing the inner peripheral side end of the positive electrode 21 when the positive electrode 21 is wound. .
- the low area density portion 21D has a lower area density than the average area density of the first positive electrode active material layer 21B. Whether or not the positive electrode 21 has the low area density portion 21D can be confirmed as follows. That is, a cross-sectional TEM (Transmission Electron Microscope) image of the portion of the first positive electrode active material layer 21B facing the inner peripheral end of the positive electrode 21 and the other portion of the first positive electrode active material layer 21B is acquired. By comparing these cross-sectional TEM images, it can be confirmed whether or not the positive electrode 21 has the low area density portion 21D.
- TEM Transmission Electron Microscope
- the surface of the low area density portion 21D has a concave shape with respect to the surface of other portions, the surface of the low area density portion 21D has a concave shape.
- the thickness of the low area density portion 21D may be the same as or substantially the same as that of the other portions.
- the hole diameter of the through hole 20 ⁇ / b> A means the width of the through hole 20 ⁇ / b> A in a direction perpendicular to the central axis of the cylindrical wound electrode body 1.
- the hole diameter of the through hole 20A having the maximum value is defined as the hole diameter of the through hole 20A.
- the area density ratio D A / D B between the area density D A of the low area density portion 21D of the first positive electrode active material layer 21B and the average area density D B of the first positive electrode active material layer 21B is preferably D A / D. B ⁇ 0.98, more preferably 0.1 ⁇ D A / D B ⁇ 0.98 is satisfied. If the area density ratio D A / D B is 0.98 ⁇ D A / D B , the area density of the low area density portion 21D is too high, and the flexibility of the positive electrode 21 in the low area density portion 21D may be reduced. There is.
- the area density ratio D A / D B is D A / D B ⁇ 0.1, the area density of the low area density part 21D is too low, and the low area density part 21D is wound when the positive electrode 21 is wound.
- the positive electrode current collector 21A may be exposed.
- the area density D A of the low area density portion 21D of the first positive electrode active material layer 21B is obtained as follows. First, the battery is completely discharged and then disassembled, the positive electrode 21 is taken out, washed with a solvent (for example, DMC (dimethyl carbonate), etc.), and then sufficiently dried. Next, the second positive electrode active material layer 21C is removed with a nonwoven fabric or the like soaked with a solvent (for example, NMP (N-methyl-2-pyrrolidone)).
- a solvent for example, DMC (dimethyl carbonate), etc.
- sample A the mass of the measurement sample A (hereinafter referred to as" mass MA1 ) is measured.
- the above measurement operation is performed on 100 batteries, and the mass MA1, mass MA2, and area S of 100 cut batteries are simply averaged (arithmetic average), respectively, and the average value of mass MA1 and the average value of mass MA2 The average value of the area S is obtained.
- Area density D A [mg / cm 2 ] ((average value of mass MA1) ⁇ (average value of mass MA2)) / (average value of area S of measurement sample A)
- the positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.
- the first and second positive electrode active material layers 21 ⁇ / b> B and 21 ⁇ / b> C contain, for example, a positive electrode active material capable of inserting and extracting lithium as an electrode reactant.
- the first and second positive electrode active material layers 21B and 21C may further contain an additive as necessary.
- the additive for example, at least one of a conductive agent and a binder can be used.
- lithium-containing compounds such as lithium oxide, lithium phosphorous oxide, lithium sulfide, or an intercalation compound containing lithium are suitable. May be used in combination.
- a lithium-containing compound containing lithium, a transition metal element, and oxygen (O) is preferable.
- examples of such a lithium-containing compound include a lithium composite oxide having a layered rock salt structure shown in Formula (A) and a lithium composite phosphate having an olivine structure shown in Formula (B).
- the lithium-containing compound includes at least one selected from the group consisting of cobalt (Co), nickel, manganese (Mn), and iron as a transition metal element.
- lithium composite oxide containing Ni examples include a lithium composite oxide (NCM) containing lithium, nickel, cobalt, manganese and oxygen, and a lithium composite oxide (NCA) containing lithium, nickel, cobalt, aluminum and oxygen. ) Etc. can be used.
- NCM lithium composite oxide
- NCA lithium composite oxide
- lithium-containing compound as described above examples include a lithium composite oxide having a layered rock salt type structure represented by the formula (C), formula (D), or formula (E), and a spinel type represented by the formula (F).
- a lithium composite phosphate having the olivine structure shown in Formula (G) specifically, LiNi 0.50 Co 0.20 Mn 0.30 O 2 , Li a CoO 2 (a ⁇ 1), Li b NiO 2 (b ⁇ 1), Li c1 Ni c2 Co 1-c2 O 2 (c1 ⁇ 1, 0 ⁇ c2 ⁇ 1), Li d Mn 2 O 4 (d ⁇ 1)
- M1 represents at least one element selected from Groups 2 to 15 excluding nickel and manganese.
- X represents at least one of Group 16 and Group 17 elements other than oxygen.
- P, q, y, z are 0 ⁇ p ⁇ 1.5, 0 ⁇ q ⁇ 1.0, 0 ⁇ r ⁇ 1.0, ⁇ 0.10 ⁇ y ⁇ 0.20, 0 ⁇ (The value is within the range of z ⁇ 0.2.)
- M2 represents at least one element selected from Group 2 to Group 15.
- a and b are 0 ⁇ a ⁇ 2.0 and 0.5 ⁇ b ⁇ 2.0. It is a value within the range.
- Li f Mn (1-gh) Ni g M3 h O (2-j) F k (C) (However, in Formula (C), M3 is cobalt, magnesium (Mg), aluminum, boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron, copper (Cu), zinc ( Zn, Zr, Mo (Mo), Tin (Sn), Calcium (Ca), Strontium (Sr), and Tungsten (W) are represented by at least one of f, g, h, j and k are 0.8 ⁇ f ⁇ 1.2, 0 ⁇ g ⁇ 0.5, 0 ⁇ h ⁇ 0.5, g + h ⁇ 1, ⁇ 0.1 ⁇ j ⁇ 0.2, 0 ⁇ k ⁇ (The value is in the range of 0.1. Note that the composition of lithium varies depending on the state of charge and discharge, and the value of f represents a value in a fully discharged state.)
- M4 is at least one selected from the group consisting of cobalt, manganese, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten.
- M, n, p and q are 0.8 ⁇ m ⁇ 1.2, 0.005 ⁇ n ⁇ 0.5, ⁇ 0.1 ⁇ p ⁇ 0.2, 0 ⁇ q ⁇ 0. (The value is within a range of 1.
- the composition of lithium varies depending on the state of charge and discharge, and the value of m represents a value in a fully discharged state.
- M5 is at least one selected from the group consisting of nickel, manganese, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten.
- Represents one, r, s, t and u are 0.8 ⁇ r ⁇ 1.2, 0 ⁇ s ⁇ 0.5, ⁇ 0.1 ⁇ t ⁇ 0.2, 0 ⁇ u ⁇ 0.1 (Note that the composition of lithium varies depending on the state of charge and discharge, and the value of r represents the value in a fully discharged state.)
- M6 is at least one selected from the group consisting of cobalt, nickel, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten.
- V, w, x, and y are 0.9 ⁇ v ⁇ 1.1, 0 ⁇ w ⁇ 0.6, 3.7 ⁇ x ⁇ 4.1, and 0 ⁇ y ⁇ 0.1. (Note that the lithium composition varies depending on the state of charge and discharge, and the value of v represents a value in a fully discharged state.)
- Li z M7PO 4 (G) (In the formula (G), M7 is composed of cobalt, manganese, iron, nickel, magnesium, aluminum, boron, titanium, vanadium, niobium (Nb), copper, zinc, molybdenum, calcium, strontium, tungsten and zirconium. Represents at least one member of the group, z is a value in the range of 0.9 ⁇ z ⁇ 1.1, wherein the composition of lithium varies depending on the state of charge and discharge, and the value of z is a fully discharged state Represents the value at.)
- positive electrode materials capable of inserting and extracting lithium include inorganic compounds not containing lithium, such as MnO 2 , V 2 O 5 , V 6 O 13 , NiS, and MoS.
- the positive electrode material capable of inserting and extracting lithium may be other than the above.
- the positive electrode material illustrated above may be mixed 2 or more types by arbitrary combinations.
- binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and these resin materials. At least one selected from copolymers and the like mainly composed of is used.
- PVdF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- PAN polyacrylonitrile
- SBR styrene butadiene rubber
- CMC carboxymethyl cellulose
- the conductive agent examples include carbon materials such as graphite, carbon black, and ketjen black, and one or more of them are used in combination.
- a metal material or a conductive polymer material may be used as long as it is a conductive material.
- the negative electrode 22 is provided on the negative electrode current collector 22A, the first negative electrode active material layer 22B provided on the inner surface of the negative electrode current collector 22A, and the outer surface of the negative electrode current collector 22A. And a second negative electrode active material layer 22C.
- the inner side and the outer side mean the inner side and the outer side in the wound negative electrode current collector 22A.
- the negative electrode 22 has negative electrode current collector exposed portions where the negative electrode current collector 22A is exposed without being covered with the first and second negative electrode active material layers 22B and 22C at both ends on the inner and outer peripheral sides thereof. Yes.
- a negative electrode lead 26 is connected to the negative electrode current collector exposed portion.
- the negative electrode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.
- the first and second negative electrode active material layers 22B and 22C contain one or more negative electrode active materials capable of inserting and extracting lithium.
- the first and second negative electrode active material layers 22B and 22C may further contain additives such as a binder and a conductive agent as necessary.
- the electrochemical equivalent of the negative electrode 54 or the negative electrode active material is larger than the electrochemical equivalent of the positive electrode 21, so that theoretically lithium metal does not deposit on the negative electrode 22 during charging. It is preferable that
- Examples of the negative electrode active material include carbon materials such as non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, carbon fibers, and activated carbon. Is mentioned.
- examples of coke include pitch coke, needle coke, and petroleum coke.
- An organic polymer compound fired body refers to a carbonized material obtained by firing a polymer material such as phenol resin or furan resin at an appropriate temperature, and part of it is non-graphitizable carbon or graphitizable carbon.
- These carbon materials are preferable because the change in crystal structure that occurs during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained.
- graphite is preferable because it has a high electrochemical equivalent and can provide a high energy density.
- non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained.
- those having a low charge / discharge potential, specifically, those having a charge / discharge potential close to that of lithium metal are preferable because a high energy density of the battery can be easily realized.
- a material containing at least one of a metal element and a metalloid element as a constituent element for example, an alloy, a compound, or a mixture
- a high energy density can be obtained by using such a material.
- the use with a carbon material is more preferable because a high energy density can be obtained and excellent cycle characteristics can be obtained.
- the alloy includes an alloy including one or more metal elements and one or more metalloid elements in addition to an alloy composed of two or more metal elements.
- the nonmetallic element may be included.
- Examples of such a negative electrode active material include a metal element or a metalloid element capable of forming an alloy with lithium.
- a metal element or a metalloid element capable of forming an alloy with lithium.
- magnesium, boron, aluminum, titanium, gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin, lead (Pb), bismuth (Bi), cadmium (Cd), Silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd), or platinum (Pt) can be used. These may be crystalline or amorphous.
- the negative electrode active material preferably contains a group 4B metal element or metalloid element in the short-period periodic table as a constituent element, and more preferably contains at least one of silicon and tin as a constituent element. This is because silicon and tin have a large ability to occlude and release lithium, and a high energy density can be obtained.
- Examples of such a negative electrode active material include a simple substance, an alloy or a compound of silicon, a simple substance, an alloy or a compound of tin, or a material having one or more phases thereof at least in part.
- Examples of the silicon alloy include, as the second constituent element other than silicon, tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony (Sb), and chromium.
- the thing containing at least 1 sort (s) of a group is mentioned.
- As an alloy of tin for example, as a second constituent element other than tin, among the group consisting of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium The thing containing at least 1 sort (s) of these is mentioned.
- tin compound or the silicon compound examples include those containing oxygen or carbon, and may contain the second constituent element described above in addition to tin or silicon.
- the Sn-based negative electrode active material cobalt, tin, and carbon are included as constituent elements, the carbon content is 9.9 mass% or more and 29.7 mass% or less, and tin and cobalt A SnCoC-containing material in which the proportion of cobalt with respect to the total is 30% by mass to 70% by mass is preferable. This is because a high energy density can be obtained in such a composition range, and excellent cycle characteristics can be obtained.
- This SnCoC-containing material may further contain other constituent elements as necessary.
- other constituent elements for example, silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus (P), gallium, or bismuth are preferable, and two or more kinds may be included. This is because the capacity or cycle characteristics can be further improved.
- This SnCoC-containing material has a phase containing tin, cobalt, and carbon, and this phase preferably has a low crystallinity or an amorphous structure.
- this SnCoC-containing material it is preferable that at least a part of carbon that is a constituent element is bonded to a metal element or a metalloid element that is another constituent element.
- the decrease in cycle characteristics is thought to be due to the aggregation or crystallization of tin or the like, but this is because such aggregation or crystallization can be suppressed by combining carbon with other elements. .
- XPS X-ray photoelectron spectroscopy
- the peak of the carbon 1s orbital (C1s) appears at 284.5 eV in an energy calibrated apparatus so that the peak of the gold atom 4f orbital (Au4f) is obtained at 84.0 eV if it is graphite. .
- Au4f gold atom 4f orbital
- it will appear at 284.8 eV.
- the charge density of the carbon element increases, for example, when carbon is bonded to a metal element or a metalloid element, the C1s peak appears in a region lower than 284.5 eV.
- the peak of the synthetic wave of C1s obtained for the SnCoC-containing material appears in a region lower than 284.5 eV
- at least a part of the carbon contained in the SnCoC-containing material is a metal element or a half of other constituent elements. Combined with metal elements.
- the C1s peak is used to correct the energy axis of the spectrum.
- the C1s peak of the surface-contaminated carbon is set to 284.8 eV, which is used as an energy standard.
- the waveform of the C1s peak is obtained as a shape including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. Therefore, by analyzing using, for example, commercially available software, the surface contamination The carbon peak and the carbon peak in the SnCoC-containing material are separated. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
- Examples of other negative electrode active materials include metal oxides or polymer compounds that can occlude and release lithium.
- Examples of the metal oxide include lithium titanium oxide containing titanium and lithium, such as lithium titanate (Li 4 Ti 5 O 12 ), iron oxide, ruthenium oxide, or molybdenum oxide.
- Examples of the polymer compound include polyacetylene, polyaniline, and polypyrrole.
- binder examples include at least one selected from resin materials such as polyvinylidene fluoride, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber and carboxymethyl cellulose, and copolymers mainly composed of these resin materials. Is used.
- resin materials such as polyvinylidene fluoride, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber and carboxymethyl cellulose, and copolymers mainly composed of these resin materials. Is used.
- the conductive agent the same carbon material as the first and second positive electrode active material layers 21B and 21C can be used.
- the inner peripheral side end of the separator 23 is wound longer than the inner peripheral side end of the positive electrode 21.
- the outer peripheral end of the separator 23 is wound longer than the outer peripheral end of the positive electrode 21.
- the separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
- the separator 23 is made of, for example, a porous film made of a resin such as polytetrafluoroethylene, polypropylene, or polyethylene, and may have a structure in which two or more kinds of these porous films are laminated.
- a porous film made of polyolefin is preferable because it is excellent in the effect of preventing short circuit and can improve the safety of the battery due to the shutdown effect.
- polyethylene is preferable as a material constituting the separator 23 because it can obtain a shutdown effect within a range of 100 ° C. or higher and 160 ° C. or lower and is excellent in electrochemical stability.
- the porous film may have a structure of three or more layers in which a polypropylene layer, a polyethylene layer, and a polypropylene layer are sequentially laminated.
- the separator 23 may be provided with a resin layer on one side or both sides of a porous film as a base material.
- the resin layer is a porous matrix resin layer on which an inorganic substance is supported. Thereby, oxidation resistance can be obtained and deterioration of the separator 23 can be suppressed.
- the matrix resin for example, polyvinylidene fluoride, hexafluoropropylene (HFP), polytetrafluoroethylene, or the like can be used, and a copolymer thereof can also be used.
- the inorganic substance a metal, a semiconductor, or an oxide or nitride thereof can be given.
- the metal include aluminum and titanium
- examples of the semiconductor include silicon and boron.
- a thing with substantially no electroconductivity and a large heat capacity is preferable. This is because a large heat capacity is useful as a heat sink during heat generation of the current, and the thermal runaway of the battery can be further suppressed.
- inorganic substances examples include alumina (Al 2 O 3 ), boehmite (alumina monohydrate), talc, boron nitride (BN), aluminum nitride (AlN), titanium dioxide (TiO 2 ), and silicon oxide (SiOx). ) And the like.
- the particle size of the inorganic substance is preferably in the range of 1 nm to 10 ⁇ m. If it is smaller than 1 nm, it is difficult to obtain, and even if it can be obtained, it is not worth the cost. If it is larger than 10 ⁇ m, the distance between the electrodes becomes large, and a sufficient amount of active material cannot be obtained in a limited space, resulting in a low battery capacity.
- a slurry composed of a matrix resin, a solvent, and an inorganic substance is applied on a base material (porous film), and is passed through a poor solvent for the matrix resin and a parent solvent bath for the solvent. It can be formed by separating and then drying.
- the puncture strength of the separator 23 is preferably within a range of 100 gf to 1000 gf. More preferably, it is 100 gf to 480 gf. This is because if the piercing strength is low, a short circuit may occur, and if the piercing strength is high, the ionic conductivity decreases.
- the air permeability of the separator 23 is preferably in the range of 30 sec / 100 cc to 1000 sec / 100 cc. More preferably, it is 30 sec / 100 cc to 680 sec / 100 cc. This is because when the air permeability is low, a short circuit may occur, and when the air permeability is high, the ion conductivity decreases.
- the inorganic substance mentioned above may be contained in the porous membrane as a base material.
- the electrolyte solution impregnated in the first and second positive electrode active material layers 21B and 21C, the first and second negative electrode active material layers 22B and 22C, and the separator 23 includes a solvent and an electrolyte salt dissolved in the solvent. It is out.
- the electrolytic solution may contain a known additive in order to improve battery characteristics.
- cyclic carbonates such as ethylene carbonate or propylene carbonate can be used, and it is preferable to use one of ethylene carbonate and propylene carbonate, particularly a mixture of both. This is because the cycle characteristics can be improved.
- a chain carbonate such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, or methyl propyl carbonate is preferably mixed and used. This is because high ionic conductivity can be obtained.
- the solvent further contains 2,4-difluoroanisole or vinylene carbonate. This is because 2,4-difluoroanisole can improve discharge capacity, and vinylene carbonate can improve cycle characteristics. Therefore, it is preferable to use a mixture of these because the discharge capacity and cycle characteristics can be improved.
- examples of the solvent include butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- Dioxolane, methyl acetate, methyl propionate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropironitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N-dimethyl Examples include imidazolidinone, nitromethane, nitroethane, sulfolane, dimethyl sulfoxide, and trimethyl phosphate.
- a compound obtained by substituting at least a part of hydrogen in these non-aqueous solvents with fluorine may be preferable because the reversibility of the electrode reaction may be improved depending on the type of electrode to be combined.
- lithium salt As electrolyte salt, lithium salt is mentioned, for example, 1 type may be used independently, and 2 or more types may be mixed and used for it.
- Lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 , LiCl, difluoro [oxolato-O, O ′] lithium borate, lithium bisoxalate borate, or LiBr.
- LiPF 6 is preferable because it can obtain high ion conductivity and can improve cycle characteristics.
- a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and this positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP).
- NMP N-methyl-2-pyrrolidone
- a paste-like positive electrode mixture slurry is prepared.
- the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A, the solvent is dried, and the first and second positive electrode active material layers 21B and 21C are formed by compression molding with a roll press machine or the like, The positive electrode 21 is produced.
- the low area density portion 21D is formed in the first positive electrode active material layer 21B so that the low area density portion 21D comes to a position one turn outside from the winding start end portion of the positive electrode 21 when the positive electrode 21 is wound.
- a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and this negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to obtain a paste-like negative electrode mixture slurry Is made.
- the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A, the solvent is dried, and the first and second negative electrode active material layers 22B and 22C are formed by compression molding with a roll press machine or the like, The negative electrode 22 is produced.
- the positive electrode lead 25 is attached to the positive electrode current collector 21A by welding or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22A by welding or the like.
- the positive electrode 21 and the negative electrode 22 are wound through the separator 23.
- the front end of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the front end of the negative electrode lead 26 is welded to the battery can 11, and the wound positive electrode 21 and negative electrode 22 are connected with the pair of insulating plates 12 and 13. It is housed inside the sandwiched battery can 11.
- the electrolytic solution is injected into the battery can 11 and impregnated in the separator 23.
- the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are fixed to the opening end of the battery can 11 by caulking through a sealing gasket 17. Thereby, the battery shown in FIG. 1 is obtained.
- the positive electrode 21 has a low area density portion 21 ⁇ / b> D that is locally provided at a position one circle outside from one end (tip) on the inner peripheral side of the positive electrode 21.
- the flexibility of the positive electrode 21 at a position one outer circumference from one end on the inner peripheral side of the positive electrode 21 is increased. Can be secured. Therefore, when the spirally wound electrode body 20 is manufactured, it is possible to prevent the positive electrode 21 from being cut off at a position one circumference outside from one end on the inner peripheral side of the positive electrode 21.
- the low area density portion 21 ⁇ / b> D may be continuously provided from the inner peripheral side end (tip) of the positive electrode 21 over a range exceeding one turn.
- the step at the inner peripheral side end of the positive electrode 21 is reduced, the damage given to the separator 23 by the inner peripheral side end of the positive electrode 21 is suppressed when an impact is applied to the battery due to dropping or the like. be able to. Therefore, in addition to the effect of suppressing the breakage of the positive electrode 21 described above, an effect of suppressing the occurrence of a short circuit in the inner peripheral portion of the wound electrode body 20 can also be obtained.
- the area density ratio D A / D B between the area density D A of the low area density portion 21D of the first positive electrode active material layer 21B and the average area density D B of the first positive electrode active material layer 21B is preferably D A / D. B ⁇ 0.98, more preferably 0.1 ⁇ D A / D B ⁇ 0.98 is satisfied. If the area density ratio D A / D B is 0.98 ⁇ D A / D B , the area density of the low area density portion 21D is too high, and the flexibility of the positive electrode 21 in the low area density portion 21D may be reduced. There is.
- the area density of the low area density portion 21 ⁇ / b> D is too high, and there is a risk that the reduction of the step at the inner peripheral side end portion of the positive electrode 21 may be insufficient. Therefore, when an impact is applied to the battery due to dropping or the like, there is a possibility that damage given to the separator 23 by the inner peripheral end of the positive electrode 21 cannot be sufficiently suppressed.
- the area density ratio D A / D B is D A / D B ⁇ 0.1, the area density of the low area density part 21D is too low, and the low area density part 21D is wound when the positive electrode 21 is wound.
- the positive electrode current collector 21A may be exposed.
- the low area density portion 21 ⁇ / b> D may be locally provided at two locations, that is, the inner peripheral side end portion of the positive electrode 21 and the inner peripheral side one end (tip) of the positive electrode 21 and a location one cycle outside. In this case, the same effect as described above can be obtained.
- the first positive electrode active material layer 21 ⁇ / b> B may further include a low area density portion 21 ⁇ / b> D at the outer peripheral side end portion of the positive electrode 21.
- the step at the outer peripheral side end of the positive electrode 21 is reduced, it is possible to suppress damage given to the separator 23 by the outer peripheral side end of the positive electrode 21 when an impact is applied to the battery due to dropping or the like. it can. Therefore, occurrence of a short circuit at the outer peripheral portion of the wound electrode body 20 can be suppressed.
- Area density ratio D C / D B area density D C of the low area density portion 21D at the outer end portion and an average area density D B of the first positive electrode active material layer 21B of the first positive electrode active material layer 21B is preferably Satisfies the relationship of D C / D B ⁇ 0.98, more preferably 0.1 ⁇ D C / D B ⁇ 0.98. If the area density ratio D C / D B is 0.98 ⁇ D C / D B , the area density of the low area density portion 21D is too high, and the step at the outer peripheral side end of the positive electrode 21 is not sufficiently reduced. There is a risk of becoming.
- the area density ratio D C / D B is D C / D B ⁇ 0.1, the area density of the low area density portion 21D is too low and the low area density portion 21D is wound when the positive electrode 21 is wound.
- the positive electrode current collector 21A may be exposed.
- Area density D C of the low area density portion 21D at the outer end portion of the first cathode active material layer 21B is determined as follows. First, the positive electrode 21 from which the second positive electrode active material layer 21C has been removed is produced in the same manner as the method for obtaining the area density D A. Next, the position of the bottom area density portion 21D of the positive electrode 21 from which the second positive electrode active material layer 21C has been removed is specified by a cross-sectional TEM image or the like, and the portion corresponding to the bottom area density 21D is the outer peripheral side (winding end side) end. After cutting out from the section to prepare a measurement sample (hereinafter referred to as “measurement sample C”), the mass of the measurement sample C (hereinafter referred to as “mass MC1”) is measured.
- the above measurement operation is performed on 100 batteries, and the mass MC1, mass MC2, and area S of 100 cut out batteries are simply averaged (arithmetic average), respectively, and the average value of mass MC1 and the average value of mass MC2 The average value of the area S is obtained.
- Area density D C [mg / cm 2 ] ((average value of mass MC1) ⁇ (average value of mass MC2)) / (average value of area S of measurement sample C)
- FIGS. 4A and 4B show a configuration in which the first positive electrode active material layer 21B has low area density portions 21D at both the inner peripheral side and the outer peripheral side of the positive electrode 21, the first positive electrode active material layer 21B.
- a configuration having a low area density portion 21 ⁇ / b> D only at the outer peripheral side end portion of the positive electrode 21 may be adopted.
- the second positive electrode active material layer 21 ⁇ / b> C may further include low area density portions 21 ⁇ / b> E at both ends on the inner peripheral side and the outer peripheral side of the positive electrode 21.
- the steps at the inner peripheral side and the outer peripheral side of the positive electrode 21 are further reduced. Therefore, when an impact is applied to the battery due to dropping or the like, the positive electrode 21 has an inner peripheral side and an outer peripheral side.
- the damage given to the separator 23 can be further suppressed. Therefore, it is possible to further suppress the occurrence of a short circuit in the inner peripheral portion and the outer peripheral portion of the wound electrode body 20.
- the low area density portion 21E has a lower area density than the average area density of the second positive electrode active material layer 21C. From the viewpoint of suppressing damage to the separator 23 when an impact is applied to the battery due to dropping or the like, the low area density portion 21D is preferably concave.
- Area density ratio D D / D E between the average area density D E of the second positive electrode active material layer and the area density D D low area density portion 21E of the inner circumferential end of the 21C second positive electrode active material layer 21C is, Preferably, the relationship of D D / D E ⁇ 0.98, more preferably 0.1 ⁇ D D / D E ⁇ 0.98 is satisfied.
- An area density ratio D F / D E between the area density D F of the low area density portion 21E and the average area density D E of the second cathode active material layer 21C at the outer peripheral side end of the second cathode active material layer 21C is preferable. Satisfies the relationship of D F / D E ⁇ 0.98, more preferably 0.1 ⁇ D F / D E ⁇ 0.98.
- Area density D D except for making a measurement sample cut out a portion corresponding to the bottom area density 21E from the inner peripheral end of the positive electrode 21 obtained by removing the first the cathode active material layer 21B, the calculated area density D C It is obtained in the same way as
- the average area density D E is to prepare a first positive electrode 21 active material layer 21B have been removed, except for this a measurement sample, obtained in the same manner as of determining the average area density D B.
- Area density D F except that cut out portion corresponding from the outer peripheral side end portion of the positive electrode 21 obtained by removing the first positive electrode active material layer 21B on the bottom area density 21E to produce a measurement sample, of obtaining the area density D C It is obtained in the same way as
- 5A and 5B show a configuration having low area density portions 21E on both the inner peripheral side and the outer peripheral side of the positive electrode 21, but the inner peripheral side and the outer peripheral side of the positive electrode 21 You may make it have the low area density part 21E in one of them. However, from the viewpoint of suppressing the occurrence of short-circuits at both the inner and outer peripheral portions of the wound electrode body 20, a configuration having low area density portions 21E at both the inner peripheral side and the outer peripheral side of the positive electrode 21 is adopted. It is preferable.
- 5A and 5B show a configuration in which the positive electrode 21 has both of the low area density portions 21D and 21E on the inner peripheral portion, but the positive electrode 21 has the lower area density portions 21D and 21E on the inner peripheral portion.
- a configuration may be adopted so as to have one.
- 5A and 5B show a configuration in which the positive electrode 21 has both the low area density portions 21D and 21E on the outer peripheral portion, but the positive electrode 21 has one of the low area density portions 21D and 21E on the outer peripheral portion.
- the present technology is also applied to a secondary battery other than the lithium ion secondary battery and a primary battery. Is possible. However, the present technology is particularly effective when applied to a lithium ion secondary battery.
- the packaging material that accommodates the wound electrode body is a battery can has been described as an example, but the packaging material may be a flexible packaging material such as a laminate film.
- the electrolyte is an electrolytic solution
- the electrolyte may be a polymer compound swollen with an electrolytic solution (for example, a gel electrolyte). Further, it may be a solid electrolyte or a combination thereof.
- Second Embodiment> a battery pack and an electronic device including the battery according to the first embodiment or a modification thereof will be described.
- the electronic device 400 includes an electronic circuit 401 of the electronic device body and a battery pack 300.
- the battery pack 300 is electrically connected to the electronic circuit 401 via the positive terminal 331a and the negative terminal 331b.
- the electronic device 400 has a configuration in which the battery pack 300 is detachable by a user.
- the configuration of the electronic device 400 is not limited to this, and the battery pack 300 is built in the electronic device 400 so that the user cannot remove the battery pack 300 from the electronic device 400. May be.
- the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of a charger (not shown), respectively.
- the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of the electronic circuit 401, respectively.
- the electronic device 400 for example, a notebook personal computer, a tablet computer, a mobile phone (for example, a smartphone), a portable information terminal (Personal Digital Assistant: PDA), a display device (LCD, EL display, electronic paper, etc.), imaging, etc.
- Devices eg digital still cameras, digital video cameras, etc.
- audio equipment eg portable audio players
- game machines cordless phones, e-books, electronic dictionaries, radio, headphones, navigation systems, memory cards, pacemakers, hearing aids, Electric tools, electric shavers, refrigerators, air conditioners, TVs, stereos, water heaters, microwave ovens, dishwashers, washing machines, dryers, lighting equipment, toys, medical equipment, robots, road conditioners, traffic lights Etc.
- the electronic circuit 401 includes, for example, a CPU, a peripheral logic unit, an interface unit, a storage unit, and the like, and controls the entire electronic device 400.
- the battery pack 300 includes an assembled battery 301 and a charge / discharge circuit 302.
- the assembled battery 301 is configured by connecting a plurality of secondary batteries 301a in series and / or in parallel.
- the plurality of secondary batteries 301a are connected, for example, in n parallel m series (n and m are positive integers).
- FIG. 6 shows an example in which six secondary batteries 301a are connected in two parallel three series (2P3S).
- the secondary battery 301a the battery according to the first embodiment or its modification is used.
- the charging / discharging circuit 302 is a control unit that controls charging / discharging of the assembled battery 301. Specifically, during charging, the charging / discharging circuit 302 controls charging of the assembled battery 301. On the other hand, at the time of discharging (that is, when the electronic device 400 is used), the charging / discharging circuit 302 controls the discharging of the electronic device 400.
- the battery pack 300 includes the assembled battery 301 including a plurality of secondary batteries 301 a has been described as an example. However, the battery pack 300 is replaced with one assembled battery 301. You may employ
- a power storage system including the battery according to the first embodiment or the modification thereof in a power storage device will be described.
- This power storage system may be anything as long as it uses power, and includes a simple power device.
- This power system includes, for example, a smart grid, a home energy management system (HEMS), a vehicle, and the like, and can also store electricity.
- HEMS home energy management system
- This power storage system 100 is a residential power storage system, from a centralized power system 102 such as a thermal power generation 102a, a nuclear power generation 102b, and a hydropower generation 102c through a power network 109, an information network 112, a smart meter 107, a power hub 108, etc. Electric power is supplied to the power storage device 103. At the same time, power is supplied to the power storage device 103 from an independent power source such as the home power generation device 104. The electric power supplied to the power storage device 103 is stored. Electric power used in the house 101 is fed using the power storage device 103. The same power storage system can be used not only for the house 101 but also for buildings.
- the house 101 is provided with a home power generation device 104, a power consumption device 105, a power storage device 103, a control device 110 that controls each device, a smart meter 107, a power hub 108, and a sensor 111 that acquires various information.
- Each device is connected by a power network 109 and an information network 112.
- a solar cell, a fuel cell, or the like is used as the home power generation device 104, and the generated power is supplied to the power consumption device 105 and / or the power storage device 103.
- the power consuming device 105 is a refrigerator 105a, an air conditioner 105b, a television receiver 105c, a bath 105d, or the like.
- the electric power consumption device 105 includes an electric vehicle 106.
- the electric vehicle 106 is an electric vehicle 106a, a hybrid car 106b, an electric motorcycle 106c, or the like.
- the power storage device 103 includes the battery according to the first embodiment or a modification thereof.
- the smart meter 107 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
- the power network 109 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
- the various sensors 111 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by various sensors 111 is transmitted to the control device 110. Based on the information from the sensor 111, the weather state, the state of a person, and the like can be grasped, and the power consumption device 105 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 110 can transmit information regarding the house 101 to an external power company or the like via the Internet.
- the power hub 108 performs processing such as branching of power lines and DC / AC conversion.
- the communication method of the information network 112 connected to the control device 110 includes a method using a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), Bluetooth (registered trademark), ZigBee, Wi-Fi.
- a communication interface such as UART (Universal Asynchronous Receiver-Transceiver), Bluetooth (registered trademark), ZigBee, Wi-Fi.
- the Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication.
- ZigBee uses a physical layer of IEEE (Institute of Electrical and Electronics Electronics) 802.15.4. IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
- the control device 110 is connected to an external server 113.
- the server 113 may be managed by any one of the house 101, the power company, and the service provider.
- the information transmitted and received by the server 113 is, for example, information related to power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device in the home (for example, a television receiver) or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, such as a television receiver, a mobile phone, or a PDA (Personal Digital Assistant).
- a display function such as a television receiver, a mobile phone, or a PDA (Personal Digital Assistant).
- the control device 110 that controls each unit includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 103 in this example.
- the control device 110 is connected to the power storage device 103, the home power generation device 104, the power consumption device 105, the various sensors 111, the server 113 and the information network 112, and adjusts, for example, the amount of commercial power used and the amount of power generation. It has a function. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
- the power generated by the home power generation device 104 is supplied to the power storage device 103.
- the power generated by the home power generation device 104 can be stored. Therefore, even if the generated power of the home power generation device 104 fluctuates, it is possible to perform control such that the amount of power to be sent to the outside is constant or discharge is performed as necessary.
- the electric power obtained by solar power generation is stored in the power storage device 103, and midnight power with a low charge is stored in the power storage device 103 at night, and the power stored by the power storage device 103 is discharged during a high daytime charge. You can also use it.
- control device 110 is stored in the power storage device 103 .
- control device 110 may be stored in the smart meter 107 or may be configured independently.
- the power storage system 100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
- the hybrid vehicle 200 is a hybrid vehicle that employs a series hybrid system.
- the series hybrid system is a vehicle that runs on the power driving force conversion device 203 using electric power generated by a generator that is driven by an engine or electric power that is temporarily stored in a battery.
- the hybrid vehicle 200 includes an engine 201, a generator 202, a power driving force conversion device 203, driving wheels 204a, driving wheels 204b, wheels 205a, wheels 205b, a battery 208, a vehicle control device 209, various sensors 210, and a charging port 211. Is installed.
- the battery 208 the battery according to the first embodiment or a modification thereof is used.
- Hybrid vehicle 200 travels using electric power / driving force conversion device 203 as a power source.
- An example of the power driving force conversion device 203 is a motor.
- the electric power / driving force converter 203 is operated by the electric power of the battery 208, and the rotational force of the electric power / driving force converter 203 is transmitted to the driving wheels 204a and 204b.
- DC-AC DC-AC
- AC-DC conversion AC-DC conversion
- the power driving force converter 203 can be applied to either an AC motor or a DC motor.
- the various sensors 210 control the engine speed via the vehicle control device 209 and control the opening (throttle opening) of a throttle valve (not shown).
- the various sensors 210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
- the rotational force of the engine 201 is transmitted to the generator 202, and the electric power generated by the generator 202 by the rotational force can be stored in the battery 208.
- the resistance force at the time of deceleration is applied as a rotational force to the power driving force conversion device 203, and the regenerative electric power generated by the power driving force conversion device 203 by this rotational force is used as the battery 208. Accumulated in.
- the battery 208 is connected to an external power source of the hybrid vehicle 200 via the charging port 211, so that it is possible to receive power from the external power source using the charging port 211 as an input port and store the received power. is there.
- an information processing apparatus that performs information processing related to vehicle control based on information related to the battery may be provided.
- an information processing apparatus for example, there is an information processing apparatus that displays a remaining battery level based on information on the remaining battery level.
- the series hybrid vehicle that runs on the motor using the electric power generated by the generator that is driven by the engine or the electric power that is temporarily stored in the battery has been described as an example.
- the present technology is also effective for a parallel hybrid vehicle that uses both engine and motor outputs as drive sources and switches between the three modes of running with only the engine, running with only the motor, and running with the engine and motor. Applicable.
- the present technology can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
- Example 1 (Production process of positive electrode)
- the positive electrode 21 was produced as follows. First, 94 parts by mass of NCM (nickel-cobalt-manganese) as a positive electrode active material, 3 parts by mass of DB (denka black) as a conductive agent, and 3 parts by mass of PVDF (polyvinylidene fluoride) as a binder were mixed. After preparing the positive electrode mixture, it was dispersed in N-methyl-2-pyrrolidone as a solvent to obtain a paste-like positive electrode mixture slurry.
- NCM nickel-cobalt-manganese
- DB denka black
- PVDF polyvinylidene fluoride
- a positive electrode mixture slurry is applied to both surfaces of a positive electrode current collector 21A made of a strip-shaped aluminum foil (15 ⁇ m thick), dried, and then compression-molded with a roll press machine, whereby the first and second positive electrodes Active material layers 21B and 21C were formed.
- the first positive electrode active material layer 21 ⁇ / b> B is arranged so that the low area density portion 21 ⁇ / b> D comes to a position one turn outside from the winding start end portion of the positive electrode 21 when the positive electrode 21 is wound.
- a low area density portion 21D was formed. This obtained the positive electrode 21 with an electrode width of 58 mm.
- the positive electrode lead 25 made of aluminum was welded and attached to the middle periphery of the positive electrode current collector 21A.
- the volume density of each of the first and second positive electrode active material layers 21B and 21C obtained as described above is 3.7 g / cm 3 , and the average area of each of the first and second positive electrode active material layers 21B and 21C.
- the density was 28 mg / cm 2
- the area density D A of the low area density portion 21D of the first positive electrode active material layer 21B was 20 mg / cm 2 .
- the negative electrode 22 was produced as follows. First, after mixing 96 parts by weight of natural graphite as a negative electrode active material, 2 parts by weight of DB (Denka Black) as a conductive agent, and 2 parts by weight of SBR (styrene butadiene rubber) as a binder, a negative electrode mixture was prepared. By dispersing in N-methyl-2-pyrrolidone, a paste-like negative electrode mixture slurry was obtained. Next, after applying and drying the negative electrode mixture slurry on both surfaces of the negative electrode current collector 22A made of a strip-shaped copper foil (12 ⁇ m thick), the first and second negative electrodes are compressed by a roll press machine. Active material layers 22B and 22C were formed. Next, a nickel negative electrode lead 26 was attached to one end of the negative electrode current collector 22A.
- the volume density of each of the first and second negative electrode active material layers 22B and 22C obtained as described above is 1.5 g / cm 3 , and the average area of each of the first and second positive electrode active material layers 21B and 21C. density was 13 mg / cm 2.
- An electrolytic solution was prepared as follows.
- the battery was assembled as follows. First, the positive electrode 21 and the negative electrode 22 produced as described above are laminated in the order of the negative electrode 22, the separator 23, the positive electrode 21, and the separator 23 through a separator 23 made of a microporous polyethylene stretched film having a thickness of 16 ⁇ m. A jelly roll type wound electrode body 20 was obtained by winding them around a core having a diameter of 3.0 mm and winding the wound core many times.
- the wound electrode body 20 is sandwiched between the pair of insulating plates 12 and 13, the negative electrode lead 26 is welded to the battery can 11, and the positive electrode lead 25 is welded to the safety valve mechanism 15.
- the battery can 11 was housed inside.
- the battery can 11 is caulked through the insulating sealing gasket 17, thereby providing a safety valve mechanism.
- the PTC element 16 and the battery lid 14 were fixed, and a cylindrical battery having an outer diameter (diameter) of 18.20 mm and a height of 65 mm was produced.
- Example 2 As shown in FIG. 3A and FIG. 3B, the embodiment is performed except that the low area density portion 21D is continuously formed over a range exceeding one turn from the inner peripheral side end portion (tip) of the first positive electrode active material layer 21B.
- a battery was obtained in the same manner as in Example 1.
- the area density D A of the low area density portion 21D of the first positive electrode active material layer 21B was 20 mg / cm 2 .
- Example 3 As shown in FIGS. 4A and 4B, a battery was obtained in the same manner as in Example 2 except that a low area density portion 21D was further formed at the outer peripheral side end portion of the first positive electrode active material layer 21B.
- Example 4 As shown in FIGS. 5A and 5B, a battery was obtained in the same manner as in Example 3 except that low area density portions 21E were further formed on both inner and outer peripheral sides of the second positive electrode active material layer 21C. It was.
- the area densities D E and DF of the low area density portion 21E at the inner peripheral side end portion and the outer peripheral side end portion of the second positive electrode active material layer 21C were both 20 mg / cm 2 .
- Example 1 As shown in FIGS. 9A and 9B, a battery was obtained in the same manner as in Example 1 except that the low area density portion 21D was not formed in the first positive electrode active material layer 21B.
- Example 2 As shown in FIG. 10A and FIG. 10B, the embodiment is implemented except that the low area density portion 21D is continuously formed over a range of less than one turn from the inner peripheral side end (tip) of the first positive electrode active material layer 21B.
- a battery was obtained in the same manner as in Example 1.
- the area density D A of the low area density portion 21D of the first positive electrode active material layer 21B was 20 mg / cm 2 .
- Table 1 shows the configurations and evaluation results of the batteries of Examples 1 to 4 and Comparative Examples 1 and 2.
- the first positive electrode active material layer 21 ⁇ / b> B provided on the inner surface of the positive electrode current collector 21 ⁇ / b> A has a low area density portion 21 ⁇ / b> D at a portion facing the inner peripheral side end portion of the positive electrode 21, whereby the winding start end of the positive electrode 21. Since the flexibility of the positive electrode 21 can be ensured at a position one round outside from the part, it is possible to suppress the occurrence of breakage in the positive electrode 21 during winding (Examples 1 to 4).
- the first positive electrode active material layer 21 ⁇ / b> B does not have the low area density portion 21 ⁇ / b> D in the portion facing the inner peripheral side end portion of the positive electrode 21, In this case, the flexibility of the positive electrode 21 cannot be ensured, so that the positive electrode 21 is cut during winding (Comparative Example 1). Even when the first positive electrode active material layer 21B has the low area density portion 21D continuously over a range less than one turn from the inner peripheral side end (tip), the first positive electrode active material layer 21B is Since the flexibility of the positive electrode 21 cannot be secured at a position outside the circumference, the positive electrode 21 is cut during winding (Comparative Example 2).
- the first positive electrode active material layer 21B has the low area density portion 21D continuously over a range exceeding one turn from the inner peripheral side end (tip), the probability of occurrence of a short circuit due to a drop test can be suppressed. (Example 2). This is because the step at the inner peripheral side end of the positive electrode 21 is reduced by the low area density portion 21D, and the damage given to the separator 23 by the inner peripheral side end of the positive electrode 21 is suppressed.
- the first positive electrode active material layer 21B has the low area density portion 21D at both the inner peripheral end and the outer peripheral end, the probability of occurrence of a short circuit due to a drop test can be further suppressed (Example 3). This is because the low area density portion 21D reduces steps at both ends on the inner peripheral side and outer peripheral side of the positive electrode 21, and the damage given to the separator 23 by the inner peripheral side end portion and the outer peripheral side end portion of the positive electrode 21 is suppressed. This is because the.
- the first positive electrode active material layer 21B has a low area density portion 21D at both the inner peripheral end and the outer peripheral end
- the second positive active material layer 21C has an inner peripheral end and an outer peripheral end.
- the present technology can also employ the following configurations.
- the positive electrode includes a positive electrode current collector, a first positive electrode active material layer provided on an inner surface of the positive electrode current collector, and a second positive electrode active material layer provided on an outer surface of the positive electrode current collector.
- An inner peripheral side end and an outer peripheral side end of the positive electrode current collector are covered with the first positive electrode active material layer and the second positive electrode active material layer,
- the first positive electrode active material layer has a low area density portion in a portion facing an inner peripheral side end portion of the positive electrode.
- the area density ratio D A / D B between the area density D A of the low area density portion and the average area density D B of the first positive electrode active material layer satisfies the relationship of D A / D B ⁇ 0.98 ( The battery according to 1) or (2).
- the first positive electrode active material layer further includes a low area density portion at an outer peripheral side end portion of the positive electrode.
- the second positive electrode active material layer further includes a low area density portion in at least one of an inner peripheral end and an outer peripheral end of the positive electrode.
- a separator wound together with the positive electrode and the negative electrode The battery according to (4) or (6), wherein the inner peripheral end of the separator is wound longer than the inner peripheral end of the positive electrode.
- a separator wound together with the positive electrode and the negative electrode The battery according to (5) or (6), wherein an outer peripheral end of the separator is wound longer than an outer peripheral end of the positive electrode.
- the low area density portion provided in a portion facing the inner peripheral side end of the positive electrode is locally provided in a portion facing the inner peripheral side end of the positive electrode (1) to (8).
- the battery according to any one of the above. (10) The battery according to any one of (1) to (8), further including a cylindrical battery can that accommodates the positive electrode and the negative electrode.
- the electrode With a wound electrode, The electrode includes a current collector, a first active material layer provided on an inner surface of the current collector, and a second active material layer provided on an outer surface of the current collector, An inner peripheral side end and an outer peripheral side end of the current collector are covered with the first active material layer and the second active material layer, The battery in which the first active material layer has a low area density portion at a portion facing an inner peripheral side end of the electrode.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Primary Cells (AREA)
Abstract
電池は、巻回された正極および負極を備え、正極は、正極集電体と、正極集電体の内側面に設けられた第1正極活物質層と、正極集電体の外側面に設けられた第2正極活物質層とを備える。正極集電体の内周側端部および外周側端部は、第1正極活物質層により覆われており、第1正極活物質層は、正極の内周側端部に対向する部分に低面積密度部を有する。
Description
本技術は、巻回された正極および負極を備える電池、それを備える電池パック、電子機器、電動車両、蓄電装置および電力システムに関する。
長尺状の正極および負極を巻回した構造の電池は広く用いられている。この巻回構造の電池では、安全性の向上のために、正極の内周側および外周側の両端部において正極集電体の両面が露出しないように、正極活物質層により覆った構造(以下「集電体非露出構造」という。)のものがある。
特許文献1では、正極板および負極板の少なくともいずれか一方の電極群の内周側の活物質密度を外周側の活物質密度より部分的に小さくすることで、電極板の柔軟性を向上し、電極板をシート形状で加工する際および電極板を巻回する際の電極板の切れを抑制することが記載されている。また、活物質密度の小さい箇所は、電極群の長手方向に対して最内周の塗工端部から一巻き分までの範囲で形成されることが記載されている。
集電体非露出構造の電池の場合、電池素子を形成するために正極および負極を巻回した際に、巻始め端部から1周外側の位置を起点として正極に切れが発生することがある。これは内周側の正極端部の厚み(=「正極集電体の厚み」+「正極集電体の両面の正極活物質層の厚みの総和」)による段差で巻始め端部から1周外側の正極が折れるためである。上記の特許文献1では、巻始め端部から1周外側の位置を起点として発生する正極の切れを抑制する技術については記載されていない。
なお、正極の内周側端部にて正極集電体の片面または両面が露出している構造の場合、段差は集電体非露出構造の場合に比べて小さくなるため、正極の切れは発生しにくい。したがって、巻始め端部から1周外側の位置を起点として発生する正極の切れは、集電体非露出構造の電池において特に発生しやすい現象といえる。
本技術の目的は、正極の内周側端部および外周側端部に集電体非露出構造を有する電池において、正極の切れを抑制できる電池、それを備える電池パック、電子機器、電動車両、蓄電装置および電力システムを提供することにある。
上述の課題を解決するために、本技術の電池は、巻回された正極および負極を備え、正極は、正極集電体と、正極集電体の内側面に設けられた第1正極活物質層と、正極集電体の外側面に設けられた第2正極活物質層とを備え、正極集電体の内周側端部および外周側端部は、第1正極活物質層により覆われており、第1正極活物質層は、正極の内周側端部に対向する部分に低面積密度部を有する。
また、本技術の電池は、巻回された電極を備え、電極は、集電体と、集電体の内側面に設けられた第1活物質層と、集電体の外側面に設けられた第2活物質層とを備え、集電体の内周側端部および外周側端部は、第1活物質層および第2活物質層により覆われており、第1活物質層は、電極の内周側端部に対向する部分に低面積密度部を有する。
本技術の電池パック、電子機器、電動車両、蓄電装置および電力システムは、上述の電池を備えるものである。
以上説明したように、本技術によれば、正極の内周側端部および外周側端部に非露出構造を有する電池において、正極の切れを抑制できる。
本技術の実施形態について以下の順序で説明する。
1 第1の実施形態(円筒型電池の例)
2 第2の実施形態(電池パックおよび電子機器の例)
3 第3の実施形態(蓄電システムの例)
4 第4の実施形態(電動車両の例)
1 第1の実施形態(円筒型電池の例)
2 第2の実施形態(電池パックおよび電子機器の例)
3 第3の実施形態(蓄電システムの例)
4 第4の実施形態(電動車両の例)
<1 第1の実施形態>
[電池の構成]
以下、図1を参照しながら、本技術の第1の実施形態に係る非水電解質二次電池(以下単に「電池」という。)の一構成例について説明する。この電池は、例えば、負極の容量が、電極反応物質であるリチウム(Li)の吸蔵および放出による容量成分により表されるいわゆるリチウムイオン二次電池である。この非水電解質二次電池はいわゆる円筒型といわれるものであり、一端が開放され、他端が閉鎖された円筒状の電池缶11の内部に、一対の帯状の正極21と帯状の負極22とが帯状のセパレータ23を介して積層され、巻回された巻回電極体20を有している。正極21、負極22およびセパレータ23は、それらの長手方向の一端が巻回電極体20の内周側となり、それらの長手方向の他端が巻回電極体20の外周側となるように巻回されている。電池缶11は、ニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、液状の電解質としての電解液が注入され、正極21、負極22およびセパレータ23に含浸されている。また、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12、13がそれぞれ配置されている。
[電池の構成]
以下、図1を参照しながら、本技術の第1の実施形態に係る非水電解質二次電池(以下単に「電池」という。)の一構成例について説明する。この電池は、例えば、負極の容量が、電極反応物質であるリチウム(Li)の吸蔵および放出による容量成分により表されるいわゆるリチウムイオン二次電池である。この非水電解質二次電池はいわゆる円筒型といわれるものであり、一端が開放され、他端が閉鎖された円筒状の電池缶11の内部に、一対の帯状の正極21と帯状の負極22とが帯状のセパレータ23を介して積層され、巻回された巻回電極体20を有している。正極21、負極22およびセパレータ23は、それらの長手方向の一端が巻回電極体20の内周側となり、それらの長手方向の他端が巻回電極体20の外周側となるように巻回されている。電池缶11は、ニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、液状の電解質としての電解液が注入され、正極21、負極22およびセパレータ23に含浸されている。また、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12、13がそれぞれ配置されている。
電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)16とが、封口ガスケット17を介してかしめられることにより取り付けられている。これにより、電池缶11の内部は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15は、電池蓋14と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合に、ディスク板15Aが反転して電池蓋14と巻回電極体20との電気的接続を切断するようになっている。封口ガスケット17は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。
巻回電極体20の中心には、貫通孔20Aを有し、この貫通孔20Aにセンターピン24が挿入されている。巻回電極体20の正極21にはアルミニウム(Al)などよりなる正極リード25が接続されており、負極22にはニッケルなどよりなる負極リード26が接続されている。正極リード25は安全弁機構15に溶接されることにより電池蓋14と電気的に接続されており、負極リード26は電池缶11に溶接され電気的に接続されている。
第1の実施形態に係る電池では、一対の正極21および負極22当たりの完全充電状態における開回路電圧(すなわち電池電圧)は、4.2V以下でもよいが、4.2Vよりも高く、好ましくは4.25V以上6.00V以下、より好ましくは4.3V以上5.0V以下、さらにより好ましくは4.35V以上4.60V以下の範囲内になるように設計されていてもよい。正極活物質として例えば層状岩塩型リチウム複合酸化物などを用いた場合において、完全充電時における開回路電圧が4.25V以上とされると、4.20Vの電池と比較して、同じ正極活物質であっても単位質量当たりのリチウムの放出量が多くなるので、高いエネルギー密度が得られる。
以下、電池を構成する正極21、負極22、セパレータ23、および電解液について順次説明する。
(正極)
正極21は、図2Aに示すように、正極集電体21Aと、正極集電体21Aの内側面に設けられた第1正極活物質層21Bと、正極集電体21Aの外側面に設けられた第2正極活物質層21Cとを備える。ここで、内側、外側とは、巻回された状態にある正極集電体21Aにおいて内側、外側であることを意味している。正極21は、その中周部に正極集電体21Aの両面が第1、第2正極活物質層21B、21Cに覆われずに露出した正極集電体露出部を有している。この正極集電体露出部に正極リード25が接続されている。
正極21は、図2Aに示すように、正極集電体21Aと、正極集電体21Aの内側面に設けられた第1正極活物質層21Bと、正極集電体21Aの外側面に設けられた第2正極活物質層21Cとを備える。ここで、内側、外側とは、巻回された状態にある正極集電体21Aにおいて内側、外側であることを意味している。正極21は、その中周部に正極集電体21Aの両面が第1、第2正極活物質層21B、21Cに覆われずに露出した正極集電体露出部を有している。この正極集電体露出部に正極リード25が接続されている。
正極21の内周側端部および外周側端部において、正極集電体21Aの両面は第1、第2正極活物質層21B、21Cにより覆われている。すなわち、正極21は、正極21の内周側端部および外周側端部において、正極集電体21Aが露出しない構造を有している。
第1正極活物質層21Bは、図2A、図2Bに示すように、正極21の内周側端部(先端部)に対向する部分に局所的に低面積密度部21Dを有する。なお、図2Bでは、正極21の内周側端部と低面積密度部21Dとの位置関係の理解を容易とするために、負極22の図示を省略している。第1正極活物質層21Bが低面積密度部21Dを有することで、正極21の巻回時に、正極21の内周側端部に対向する部分にて正極21に切れが発生することを抑制できる。
ここで、低面積密度部21Dは、第1正極活物質層21Bの平均面積密度に比べて低い面積密度を有する。正極21が低面積密度部21Dを有しているか否かは以下のようにして確認することができる。すなわち、正極21の内周側端部に対向する部分の第1正極活物質層21Bと、それ以外の部分の第1正極活物質層21Bとの断面TEM(Transmission Electron Microscope)像を取得して、それらの断面TEM像を比較することで、正極21が低面積密度部21Dを有しているか否かを確認することができる。
なお、図2A、図2Bでは、低面積密度部21Dの表面がそれ以外の部分の表面に対して凹状を有している構成を示しているが、低面積密度部21Dの表面が凹状を有しておらず、低面積密度部21Dの厚みがそれ以外の部分と同一またはほぼ同一の厚みとなっていてもよい。
低面積密度部21Dによる正極21の切れの発生を抑制する効果は、貫通孔20Aの孔径(直径)が3.0mm以下である場合に、より顕著に発現する。ここで、貫通孔20Aの孔径とは、円柱状の巻回電極体1の中心軸に対して垂直な方向における貫通孔20Aの幅を意味する。貫通孔20Aの孔径が方向によって異なる場合、貫通孔20Aの孔径のうち最大の値を有するものを貫通孔20Aの孔径と定義する。
第1正極活物質層21Bの低面積密度部21Dの面積密度DAと第1正極活物質層21Bの平均面積密度DBとの面積密度比DA/DBが、好ましくはDA/DB≦0.98、より好ましくは0.1≦DA/DB≦0.98の関係を満たしている。面積密度比DA/DBが0.98<DA/DBであると、低面積密度部21Dの面積密度が高すぎて、低面積密度部21Dにおける正極21の柔軟性が低下する虞がある。一方、面積密度比DA/DBがDA/DB<0.1であると、低面積密度部21Dの面積密度が低すぎて、正極21の巻回時に低面積密度部21Dにて正極集電体21Aが露出する虞がある。
第1正極活物質層21Bの低面積密度部21Dの面積密度DAは、以下のようにして求められる。まず、電池を完全放電させてから解体して正極21を取り出し、溶剤(例えばDMC(ジメチルカーボネート)など)で洗浄した後、充分に乾燥させる。次に、溶剤(例えばNMP(N-メチル-2-ピロリドン)など)を浸み込ませた不織布などで第2正極活物質層21Cを除去する。次に、第2正極活物質層21Cが除去された正極21の底面積密度部21Dの位置を断面TEM像などにより特定し、底面積密度21Dに相当する部分を切り出して測定サンプル(以下「測定サンプルA」という。)を作製した後、この測定サンプルAの質量(以下「質量MA1」という。)を測定する。
次に、溶剤を浸み込ませた不織布などで測定サンプルAの第1正極活物質層21Bを除去し、質量(以下「質量MA2」という。)および面積S(=(切り出し長さL)×(切り出し幅W))を測定する。上記の測定作業を100個の電池について行い、切り出した電池100個分の質量MA1、質量MA2、面積Sをそれぞれ単純に平均(算術平均)して、質量MA1の平均値、質量MA2の平均値、面積Sの平均値を求める。次に、下記の式から第1正極活物質層21Bの低面積密度部21Dの(平均)面積密度DAを求める。
面積密度DA[mg/cm2]=((質量MA1の平均値)-(質量MA2の平均値))/(測定サンプルAの面積Sの平均値)
面積密度DA[mg/cm2]=((質量MA1の平均値)-(質量MA2の平均値))/(測定サンプルAの面積Sの平均値)
第1正極活物質層21Bの平均面積密度DBは、以下のようにして求められる。まず、上記の面積密度DAの求め方と同様にして、第2正極活物質層21Cが除去された正極21を作製して、これを測定サンプル(以下「測定サンプルB」という。)とし、この測定サンプルBの質量(以下「質量MB1」という。)を測定する。次に、溶剤を浸み込ませた不織布などで測定サンプルBの第1正極活物質層21Bを除去し、質量(以下「質量MB2」という。)を測定する。次に、下記の式から第1正極活物質層21Bの平均面積密度DBを求める。
平均面積密度DB[mg/cm2]=(質量MB1-質量MB2)/(正極集電体露出部を除く測定サンプルBの面積S)
平均面積密度DB[mg/cm2]=(質量MB1-質量MB2)/(正極集電体露出部を除く測定サンプルBの面積S)
正極集電体21Aは、例えば、アルミニウム箔、ニッケル箔あるいはステンレス箔などの金属箔により構成されている。第1、第2正極活物質層21B、21Cは、例えば、電極反応物質であるリチウムを吸蔵および放出することが可能な正極活物質を含んでいる。第1、第2正極活物質層21B、21Cは、必要に応じて添加剤をさらに含んでいてもよい。添加剤としては、例えば、導電剤および結着剤のうちの少なくとも1種を用いることができる。
リチウムを吸蔵および放出することが可能な正極材料としては、例えば、リチウム酸化物、リチウムリン酸化物、リチウム硫化物あるいはリチウムを含む層間化合物などのリチウム含有化合物が適当であり、これらの2種以上を混合して用いてもよい。エネルギー密度を高くするには、リチウムと遷移金属元素と酸素(O)とを含むリチウム含有化合物が好ましい。このようなリチウム含有化合物としては、例えば、式(A)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(B)に示したオリビン型の構造を有するリチウム複合リン酸塩などが挙げられる。リチウム含有化合物としては、遷移金属元素として、コバルト(Co)、ニッケル、マンガン(Mn)および鉄からなる群のうちの少なくとも1種を含むものであればより好ましい。Niを含むリチウム複合酸化物としては、例えば、リチウムとニッケルとコバルトとマンガンと酸素とを含むリチウム複合酸化物(NCM)、リチウムとニッケルとコバルトとアルミニウムと酸素とを含むリチウム複合酸化物(NCA)などを用いることできる。
上述のようなリチウム含有化合物としては、例えば、式(C)、式(D)もしくは式(E)に示した層状岩塩型の構造を有するリチウム複合酸化物、式(F)に示したスピネル型の構造を有するリチウム複合酸化物、または式(G)に示したオリビン型の構造を有するリチウム複合リン酸塩などが挙げられ、具体的には、LiNi0.50Co0.20Mn0.30O2、LiaCoO2(a≒1)、LibNiO2(b≒1)、Lic1Nic2Co1-c2O2(c1≒1,0<c2<1)、LidMn2O4(d≒1)あるいはLieFePO4(e≒1)などがある。
LipNi(1-q-r)MnqM1rO(2-y)Xz ・・・(A)
(但し、式(A)中、M1は、ニッケル、マンガンを除く2族~15族から選ばれる元素のうち少なくとも一種を示す。Xは、酸素以外の16族元素および17族元素のうち少なくとも1種を示す。p、q、y、zは、0≦p≦1.5、0≦q≦1.0、0≦r≦1.0、-0.10≦y≦0.20、0≦z≦0.2の範囲内の値である。)
(但し、式(A)中、M1は、ニッケル、マンガンを除く2族~15族から選ばれる元素のうち少なくとも一種を示す。Xは、酸素以外の16族元素および17族元素のうち少なくとも1種を示す。p、q、y、zは、0≦p≦1.5、0≦q≦1.0、0≦r≦1.0、-0.10≦y≦0.20、0≦z≦0.2の範囲内の値である。)
LiaM2bPO4 ・・・(B)
(但し、式(B)中、M2は、2族~15族から選ばれる元素のうち少なくとも一種を示す。a、bは、0≦a≦2.0、0.5≦b≦2.0の範囲内の値である。)
(但し、式(B)中、M2は、2族~15族から選ばれる元素のうち少なくとも一種を示す。a、bは、0≦a≦2.0、0.5≦b≦2.0の範囲内の値である。)
LifMn(1-g-h)NigM3hO(2-j)Fk ・・・(C)
(但し、式(C)中、M3は、コバルト、マグネシウム(Mg)、アルミニウム、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種を表す。f、g、h、jおよびkは、0.8≦f≦1.2、0<g<0.5、0≦h≦0.5、g+h<1、-0.1≦j≦0.2、0≦k≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、fの値は完全放電状態における値を表している。)
(但し、式(C)中、M3は、コバルト、マグネシウム(Mg)、アルミニウム、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種を表す。f、g、h、jおよびkは、0.8≦f≦1.2、0<g<0.5、0≦h≦0.5、g+h<1、-0.1≦j≦0.2、0≦k≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、fの値は完全放電状態における値を表している。)
LimNi(1-n)M4nO(2-p)Fq ・・・(D)
(但し、式(D)中、M4は、コバルト、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。m、n、pおよびqは、0.8≦m≦1.2、0.005≦n≦0.5、-0.1≦p≦0.2、0≦q≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、mの値は完全放電状態における値を表している。)
(但し、式(D)中、M4は、コバルト、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。m、n、pおよびqは、0.8≦m≦1.2、0.005≦n≦0.5、-0.1≦p≦0.2、0≦q≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、mの値は完全放電状態における値を表している。)
LirCo(1-s)M5sO(2-t)Fu ・・・(E)
(但し、式(E)中、M5は、ニッケル、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。r、s、tおよびuは、0.8≦r≦1.2、0≦s<0.5、-0.1≦t≦0.2、0≦u≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、rの値は完全放電状態における値を表している。)
(但し、式(E)中、M5は、ニッケル、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。r、s、tおよびuは、0.8≦r≦1.2、0≦s<0.5、-0.1≦t≦0.2、0≦u≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、rの値は完全放電状態における値を表している。)
LivMn2-wM6wOxFy ・・・(F)
(但し、式(F)中、M6は、コバルト、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。v、w、xおよびyは、0.9≦v≦1.1、0≦w≦0.6、3.7≦x≦4.1、0≦y≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、vの値は完全放電状態における値を表している。)
(但し、式(F)中、M6は、コバルト、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。v、w、xおよびyは、0.9≦v≦1.1、0≦w≦0.6、3.7≦x≦4.1、0≦y≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、vの値は完全放電状態における値を表している。)
LizM7PO4 ・・・(G)
(但し、式(G)中、M7は、コバルト、マンガン、鉄、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、ニオブ(Nb)、銅、亜鉛、モリブデン、カルシウム、ストロンチウム、タングステンおよびジルコニウムからなる群のうちの少なくとも1種を表す。zは、0.9≦z≦1.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、zの値は完全放電状態における値を表している。)
(但し、式(G)中、M7は、コバルト、マンガン、鉄、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、ニオブ(Nb)、銅、亜鉛、モリブデン、カルシウム、ストロンチウム、タングステンおよびジルコニウムからなる群のうちの少なくとも1種を表す。zは、0.9≦z≦1.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、zの値は完全放電状態における値を表している。)
リチウムを吸蔵および放出することが可能な正極材料としては、これらの他にも、MnO2、V2O5、V6O13、NiS、MoSなどのリチウムを含まない無機化合物も挙げられる。
リチウムを吸蔵および放出することが可能な正極材料は、上記以外のものであってもよい。また、上記で例示した正極材料は、任意の組み合わせで2種以上混合されてもよい。
結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)などの樹脂材料、ならびにこれら樹脂材料を主体とする共重合体などから選択される少なくとも1種が用いられる。
導電剤としては、例えば、黒鉛、カーボンブラックあるいはケッチェンブラックなどの炭素材料が挙げられ、それらのうちの1種または2種以上が混合して用いられる。また、炭素材料の他にも、導電性を有する材料であれば金属材料あるいは導電性高分子材料などを用いるようにしてもよい。
(負極)
負極22は、図2Aに示すように、負極集電体22Aと、負極集電体22Aの内側面に設けられた第1負極活物質層22Bと、負極集電体22Aの外側面に設けられた第2負極活物質層22Cとを備える。ここで、内側、外側とは、巻回された状態にある負極集電体22Aにおいて内側、外側であることを意味している。
負極22は、図2Aに示すように、負極集電体22Aと、負極集電体22Aの内側面に設けられた第1負極活物質層22Bと、負極集電体22Aの外側面に設けられた第2負極活物質層22Cとを備える。ここで、内側、外側とは、巻回された状態にある負極集電体22Aにおいて内側、外側であることを意味している。
負極22は、その内周側および外周側の両端部に負極集電体22Aが第1、第2負極活物質層22B、22Cに覆われずに露出した負極集電体露出部を有している。この負極集電体露出部に負極リード26が接続されている。負極集電体22Aは、例えば、銅箔、ニッケル箔あるいはステンレス箔などの金属箔により構成されている。
第1、第2負極活物質層22B、22Cは、リチウムを吸蔵および放出することが可能な1種または2種以上の負極活物質を含んでいる。第1、第2負極活物質層22B、22Cは、必要に応じて結着剤や導電剤などの添加剤をさらに含んでいてもよい。
なお、この非水電解質電池では、負極54または負極活物質の電気化学当量が、正極21の電気化学当量よりも大きくなっており、理論上、充電の途中において負極22にリチウム金属が析出しないようになっていることが好ましい。
負極活物質としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維あるいは活性炭などの炭素材料が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスあるいは石油コークスなどがある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。また、難黒鉛化性炭素は、優れたサイクル特性が得られるので好ましい。更にまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。
また、高容量化が可能な他の負極活物質としては、金属元素および半金属元素のうちの少なくとも1種を構成元素(例えば、合金、化合物または混合物)として含む材料も挙げられる。このような材料を用いれば、高いエネルギー密度を得ることができるからである。特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。なお、本技術において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうちの2種以上が共存するものがある。
このような負極活物質としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、マグネシウム、ホウ素、アルミニウム、チタン、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム(Y)、パラジウム(Pd)あるいは白金(Pt)が挙げられる。これらは結晶質のものでもアモルファスのものでもよい。
負極活物質としては、短周期型周期表における4B族の金属元素あるいは半金属元素を構成元素として含むものが好ましく、より好ましいのはケイ素およびスズの少なくとも一方を構成元素として含むものである。ケイ素およびスズは、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。このような負極活物質としては、例えば、ケイ素の単体、合金または化合物や、スズの単体、合金または化合物や、それらの1種または2種以上の相を少なくとも一部に有する材料が挙げられる。
ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン(Sb)およびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。スズの合金としては、例えば、スズ以外の第2の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。
スズの化合物あるいはケイ素の化合物としては、例えば、酸素あるいは炭素を含むものが挙げられ、スズまたはケイ素に加えて、上述した第2の構成元素を含んでいてもよい。
中でも、Sn系の負極活物質としては、コバルトと、スズと、炭素とを構成元素として含み、炭素の含有量が9.9質量%以上29.7質量%以下であり、かつスズとコバルトとの合計に対するコバルトの割合が30質量%以上70質量%以下であるSnCoC含有材料が好ましい。このような組成範囲において高いエネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるからである。
このSnCoC含有材料は、必要に応じて更に他の構成元素を含んでいてもよい。他の構成元素としては、例えば、ケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン(P)、ガリウムまたはビスマスが好ましく、2種以上を含んでいてもよい。容量またはサイクル特性を更に向上させることができるからである。
なお、このSnCoC含有材料は、スズと、コバルトと、炭素とを含む相を有しており、この相は結晶性の低いまたは非晶質な構造を有していることが好ましい。また、このSnCoC含有材料では、構成元素である炭素の少なくとも一部が、他の構成元素である金属元素または半金属元素と結合していることが好ましい。サイクル特性の低下はスズなどが凝集あるいは結晶化することによるものであると考えられるが、炭素が他の元素と結合することにより、そのような凝集あるいは結晶化を抑制することができるからである。
元素の結合状態を調べる測定方法としては、例えばX線光電子分光法(XPS)が挙げられる。XPSでは、炭素の1s軌道(C1s)のピークは、グラファイトであれば、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正された装置において、284.5eVに現れる。また、表面汚染炭素であれば、284.8eVに現れる。これに対して、炭素元素の電荷密度が高くなる場合、例えば炭素が金属元素または半金属元素と結合している場合には、C1sのピークは、284.5eVよりも低い領域に現れる。すなわち、SnCoC含有材料について得られるC1sの合成波のピークが284.5eVよりも低い領域に現れる場合には、SnCoC含有材料に含まれる炭素の少なくとも一部が他の構成元素である金属元素または半金属元素と結合している。
なお、XPS測定では、スペクトルのエネルギー軸の補正に、例えばC1sのピークを用いる。通常、表面には表面汚染炭素が存在しているので、表面汚染炭素のC1sのピークを284.8eVとし、これをエネルギー基準とする。XPS測定では、C1sのピークの波形は、表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形として得られるので、例えば市販のソフトウエアを用いて解析することにより、表面汚染炭素のピークと、SnCoC含有材料中の炭素のピークとを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
その他の負極活物質としては、例えば、リチウムを吸蔵および放出することが可能な金属酸化物または高分子化合物なども挙げられる。金属酸化物としては、例えば、チタン酸リチウム(Li4Ti5O12)などのチタンとリチウムとを含むリチウムチタン酸化物、酸化鉄、酸化ルテニウムまたは酸化モリブデンなどが挙げられる。高分子化合物としては、例えば、ポリアセチレン、ポリアニリンまたはポリピロールなどが挙げられる。
結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリロニトリル、スチレンブタジエンゴムおよびカルボキシメチルセルロースなどの樹脂材料、ならびにこれら樹脂材料を主体とする共重合体などから選択される少なくとも1種が用いられる。導電剤としては、第1、第2正極活物質層21B、21Cと同様の炭素材料などを用いることができる。
(セパレータ)
セパレータ23の内周側端部は、正極21の内周側端部よりも長く巻回されている。一方、セパレータ23の外周側端部は、正極21の外周側端部よりも長く巻回されている。セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。
セパレータ23の内周側端部は、正極21の内周側端部よりも長く巻回されている。一方、セパレータ23の外周側端部は、正極21の外周側端部よりも長く巻回されている。セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。
セパレータ23は、例えば、ポリテトラフルオロエチレン、ポリプロピレンあるいはポリエチレンなどの樹脂製の多孔質膜によって構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリオレフィン製の多孔質膜は短絡防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特にポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、かつ電気化学的安定性にも優れているので、セパレータ23を構成する材料として好ましい。他にも、化学的安定性を備えた樹脂を、ポリエチレンあるいはポリプロピレンと共重合またはブレンド化した材料を用いることができる。あるいは、多孔質膜は、ポリプロピレン層と、ポリエチレン層と、ポリプロピレン層とを順次に積層した3層以上の構造を有していてもよい。
また、セパレータ23は、基材である多孔質膜の片面または両面に樹脂層が設けられていてもよい。樹脂層は、無機物が担持された多孔性のマトリックス樹脂層である。これにより、耐酸化性を得ることができ、セパレータ23の劣化を抑制できる。マトリックス樹脂としては、例えば、ポリフッ化ビニリデン、ヘキサフルオロプロピレン(HFP)、ポリテトラフルオロエチレンなどを用いることができ、また、これらの共重合体を用いることも可能である。
無機物としては、金属、半導体、またはこれらの酸化物、窒化物を挙げることができる。例えば、金属としては、アルミニウム、チタンなど、半導体としては、ケイ素、ホウ素などを挙げることができる。また、無機物としては、実質的に導電性がなく、熱容量の大きいものが好ましい。熱容量が大きいと、電流発熱時のヒートシンクとして有用であり、電池の熱暴走をより抑制することが可能になるからである。このような無機物としては、アルミナ(Al2O3)、ベーマイト(アルミナの一水和物)、タルク、窒化ホウ素(BN)、窒化アルミニウム(AlN)、二酸化チタン(TiO2)、酸化ケイ素(SiOx)などの酸化物または窒化物が挙げられる。
無機物の粒径としては、1nm~10μmの範囲内が好ましい。1nmより小さいと、入手が困難であり、また入手できたとしてもコスト的に見合わない。10μmより大きいと電極間距離が大きくなり、限られたスペースで活物質充填量が十分得られず電池容量が低くなるからである。
樹脂層の形成方法としては、例えば、マトリックス樹脂、溶媒および無機物からなるスラリーを基材(多孔質膜)上に塗布し、マトリックス樹脂の貧溶媒且つ上記溶媒の親溶媒浴中を通過させて相分離させ、その後、乾燥させることで形成できる。
また、セパレータ23の突き刺し強度としては、100gf~1000gfの範囲内であることが好ましい。さらに好ましくは、100gf~480gfである。突き刺し強度が低いとショートが発生することがあり、高いとイオン伝導性が低下してしまうからである。
また、セパレータ23の透気度としては、30sec/100cc~1000sec/100ccの範囲内であることが好ましい。さらに好ましくは、30sec/100cc~680sec/100ccである。透気度が低いとショートが発生することがあり、高いとイオン伝導性が低下してしまうからである。
なお、上述した無機物は、基材としての多孔質膜に含有されていてもよい。
(電解液)
第1、第2正極活物質層21B、21C、第1、第2負極活物質層22B、22Cおよびセパレータ23に含浸される電解液は、溶媒と、この溶媒に溶解された電解質塩とを含んでいる。電解液が、電池特性を向上するために、公知の添加剤を含んでいてもよい。
第1、第2正極活物質層21B、21C、第1、第2負極活物質層22B、22Cおよびセパレータ23に含浸される電解液は、溶媒と、この溶媒に溶解された電解質塩とを含んでいる。電解液が、電池特性を向上するために、公知の添加剤を含んでいてもよい。
溶媒としては、炭酸エチレンまたは炭酸プロピレンなどの環状の炭酸エステルを用いることができ、炭酸エチレンおよび炭酸プロピレンのうちの一方、特に両方を混合して用いることが好ましい。サイクル特性を向上させることができるからである。
溶媒としては、また、これらの環状の炭酸エステルに加えて、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルまたは炭酸メチルプロピルなどの鎖状の炭酸エステルを混合して用いることが好ましい。高いイオン伝導性を得ることができるからである。
溶媒としては、さらにまた、2,4-ジフルオロアニソールまたは炭酸ビニレンを含むこと好ましい。2,4-ジフルオロアニソールは放電容量を向上させることができ、また、炭酸ビニレンはサイクル特性を向上させることができるからである。よって、これらを混合して用いれば、放電容量およびサイクル特性を向上させることができるので好ましい。
これらの他にも、溶媒としては、炭酸ブチレン、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピロニトリル、N,N-ジメチルフォルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドまたはリン酸トリメチルなどが挙げられる。
なお、これらの非水溶媒の少なくとも一部の水素をフッ素で置換した化合物は、組み合わせる電極の種類によっては、電極反応の可逆性を向上させることができる場合があるので、好ましい場合もある。
電解質塩としては、例えばリチウム塩が挙げられ、1種を単独で用いてもよく、2種以上を混合して用いてもよい。リチウム塩としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C6H5)4、LiCH3SO3、LiCF3SO3、LiN(SO2CF3)2、LiC(SO2CF3)3、LiAlCl4、LiSiF6、LiCl、ジフルオロ[オキソラト-O,O']ホウ酸リチウム、リチウムビスオキサレートボレート、またはLiBrなどが挙げられる。中でも、LiPF6は高いイオン伝導性を得ることができるとともに、サイクル特性を向上させることができるので好ましい。
[電池の動作]
上述の構成を有する電池では、充電を行うと、例えば、第1、第2正極活物質層21B、21Cからリチウムイオンが放出され、セパレータ23に含浸された電解液を介して第1、第2負極活物質層22B、22Cに吸蔵される。また、放電を行うと、例えば、第1、第2負極活物質層22B、22Cからリチウムイオンが放出され、セパレータ23に含浸された電解液とを介して第1、第2正極活物質層21B、21Cに吸蔵される。
上述の構成を有する電池では、充電を行うと、例えば、第1、第2正極活物質層21B、21Cからリチウムイオンが放出され、セパレータ23に含浸された電解液を介して第1、第2負極活物質層22B、22Cに吸蔵される。また、放電を行うと、例えば、第1、第2負極活物質層22B、22Cからリチウムイオンが放出され、セパレータ23に含浸された電解液とを介して第1、第2正極活物質層21B、21Cに吸蔵される。
[電池の製造方法]
次に、本技術の第1の実施形態に係る電池の製造方法の一例について説明する。
次に、本技術の第1の実施形態に係る電池の製造方法の一例について説明する。
まず、例えば、正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN-メチル-2-ピロリドン(NMP)などの溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体21Aの両面に塗布し溶剤を乾燥させ、ロールプレス機などにより圧縮成型することにより第1、第2正極活物質層21B、21Cを形成し、正極21を作製する。この際、正極21の巻回時に正極21の巻始め端部から1周外側の位置に低面積密度部21Dがくるように、第1正極活物質層21Bに低面積密度部21Dを形成する。
また、例えば、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN-メチル-2-ピロリドンなどの溶剤に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体22Aの両面に塗布し溶剤を乾燥させ、ロールプレス機などにより圧縮成型することにより第1、第2負極活物質層22B、22Cを形成し、負極22を作製する。
次に、正極集電体21Aに正極リード25を溶接などにより取り付けるとともに、負極集電体22Aに負極リード26を溶接などにより取り付ける。次に、正極21と負極22とをセパレータ23を介して巻回する。次に、正極リード25の先端部を安全弁機構15に溶接するとともに、負極リード26の先端部を電池缶11に溶接して、巻回した正極21および負極22を一対の絶縁板12、13で挟み電池缶11の内部に収納する。次に、正極21および負極22を電池缶11の内部に収納したのち、電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。次に、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16を封口ガスケット17を介してかしめることにより固定する。これにより、図1に示した電池が得られる。
[効果]
第1の実施形態に係る電池では、正極21が、正極21の内周側の一端(先端)から1周外側の箇所に局所的に設けられた低面積密度部21Dを有している。これにより、高容量化のために第1、第2正極活物質層21B、21Cを高面密度化しても、正極21の内周側の一端から1周外側の箇所にて正極21の柔軟性を確保できる。したがって、巻回電極体20の作製時に、正極21の内周側の一端から1周外側の箇所にて正極21の切れが発生することを抑制できる。
第1の実施形態に係る電池では、正極21が、正極21の内周側の一端(先端)から1周外側の箇所に局所的に設けられた低面積密度部21Dを有している。これにより、高容量化のために第1、第2正極活物質層21B、21Cを高面密度化しても、正極21の内周側の一端から1周外側の箇所にて正極21の柔軟性を確保できる。したがって、巻回電極体20の作製時に、正極21の内周側の一端から1周外側の箇所にて正極21の切れが発生することを抑制できる。
[変形例1]
図3A、図3Bに示すように、低面積密度部21Dが、正極21の内周側端部(先端)から1周を超える範囲に渡って連続的に設けられていてもよい。この場合、正極21の内周側端部における段差が低減されるため、落下などにより電池に衝撃が加えられた場合に、正極21の内周側端部によりセパレータ23に与えられるダメージを抑制することができる。したがって、上記の正極21の切れを抑制する効果に加えて、巻回電極体20の内周部におけるショート発生を抑制する効果も得ることができる。
図3A、図3Bに示すように、低面積密度部21Dが、正極21の内周側端部(先端)から1周を超える範囲に渡って連続的に設けられていてもよい。この場合、正極21の内周側端部における段差が低減されるため、落下などにより電池に衝撃が加えられた場合に、正極21の内周側端部によりセパレータ23に与えられるダメージを抑制することができる。したがって、上記の正極21の切れを抑制する効果に加えて、巻回電極体20の内周部におけるショート発生を抑制する効果も得ることができる。
第1正極活物質層21Bの低面積密度部21Dの面積密度DAと第1正極活物質層21Bの平均面積密度DBとの面積密度比DA/DBが、好ましくはDA/DB≦0.98、より好ましくは0.1≦DA/DB≦0.98の関係を満たしている。面積密度比DA/DBが0.98<DA/DBであると、低面積密度部21Dの面積密度が高すぎて、低面積密度部21Dにおける正極21の柔軟性が低下する虞がある。また、低面積密度部21Dの面積密度が高すぎて、正極21の内周側端部における段差の低減が不十分になる虞がある。したがって、落下などにより電池に衝撃が加えられた場合に、正極21の内周側端部によりセパレータ23に与えられるダメージを十分に抑制できなくなる虞がある。一方、面積密度比DA/DBがDA/DB<0.1であると、低面積密度部21Dの面積密度が低すぎて、正極21の巻回時に低面積密度部21Dにて正極集電体21Aが露出する虞がある。
正極21の内周側端部と正極21の内周側の一端(先端)から1周外側の箇所との2箇所にそれぞれ局所的に低面積密度部21Dを設けるようにしてもよい。この場合にも、上記と同様の効果を得ることができる。
[変形例2]
図4A、図4Bに示すように、第1正極活物質層21Bは、正極21の外周側端部に低面積密度部21Dをさらに有するようにしてもよい。この場合、正極21の外周側端部における段差が低減されるため、落下などにより電池に衝撃が加えられた場合に、正極21の外周側端部によりセパレータ23に与えられるダメージを抑制することができる。したがって、巻回電極体20の外周部におけるショート発生を抑制できる。
図4A、図4Bに示すように、第1正極活物質層21Bは、正極21の外周側端部に低面積密度部21Dをさらに有するようにしてもよい。この場合、正極21の外周側端部における段差が低減されるため、落下などにより電池に衝撃が加えられた場合に、正極21の外周側端部によりセパレータ23に与えられるダメージを抑制することができる。したがって、巻回電極体20の外周部におけるショート発生を抑制できる。
第1正極活物質層21Bの外周側端部における低面積密度部21Dの面積密度DCと第1正極活物質層21Bの平均面積密度DBとの面積密度比DC/DBが、好ましくはDC/DB≦0.98、より好ましくは0.1≦DC/DB≦0.98の関係を満たしている。面積密度比DC/DBが0.98<DC/DBであると、低面積密度部21Dの面積密度が高すぎて、正極21の外周側端部における段差の低減が不十分になる虞がある。したがって、落下などにより電池に衝撃が加えられた場合に、正極21の外周側端部によりセパレータ23に与えられるダメージを十分に抑制できなくなる虞がある。一方、面積密度比DC/DBがDC/DB<0.1であると、低面積密度部21Dの面積密度が低すぎて、正極21の巻回時に低面積密度部21Dにて正極集電体21Aが露出する虞がある。
第1正極活物質層21Bの外周側端部における低面積密度部21Dの面積密度DCは、以下のようにして求められる。まず、面積密度DAの求め方と同様にして第2正極活物質層21Cが除去された正極21を作製する。次に、第2正極活物質層21Cが除去された正極21の底面積密度部21Dの位置を断面TEM像などにより特定し、底面積密度21Dに相当する部分を外周側(巻き終わり側)端部から切り出して測定サンプル(以下「測定サンプルC」という。)を作製した後、この測定サンプルCの質量(以下「質量MC1」という。)を測定する。
次に、溶剤を浸み込ませた不織布などで測定サンプルCの第1正極活物質層21Bを除去し、質量(以下「質量MC2」という。)および面積S(=(切り出し長さL)×(切り出し幅W))を測定する。上記の測定作業を100個の電池について行い、切り出した電池100個分の質量MC1、質量MC2、面積Sをそれぞれ単純に平均(算術平均)して、質量MC1の平均値、質量MC2の平均値、面積Sの平均値を求める。次に、下記の式から第1正極活物質層21Bの外周側端部の(平均)面積密度DCを求める。
面積密度DC[mg/cm2]=((質量MC1の平均値)-(質量MC2の平均値))/(測定サンプルCの面積Sの平均値)
面積密度DC[mg/cm2]=((質量MC1の平均値)-(質量MC2の平均値))/(測定サンプルCの面積Sの平均値)
図4A、図4Bでは、第1正極活物質層21Bが正極21の内周側および外周側の両端部に低面積密度部21Dを有する構成が示されているが、第1正極活物質層21Bが正極21の外周側端部にのみ低面積密度部21Dを有する構成を採用するようにしてもよい。
[変形例3]
図5A、図5Bに示すように、第2正極活物質層21Cが正極21の内周側および外周側の両端部に低面積密度部21Eをさらに有するようにしてもよい。この場合、正極21の内周側および外周側の両端部における段差が更に低減されるため、落下などにより電池に衝撃が加えられた場合に、正極21の内周側および外周側の両端部によりセパレータ23に与えられるダメージを更に抑制することができる。したがって、巻回電極体20の内周部および外周部におけるショート発生を更に抑制できる。
図5A、図5Bに示すように、第2正極活物質層21Cが正極21の内周側および外周側の両端部に低面積密度部21Eをさらに有するようにしてもよい。この場合、正極21の内周側および外周側の両端部における段差が更に低減されるため、落下などにより電池に衝撃が加えられた場合に、正極21の内周側および外周側の両端部によりセパレータ23に与えられるダメージを更に抑制することができる。したがって、巻回電極体20の内周部および外周部におけるショート発生を更に抑制できる。
ここで、低面積密度部21Eは、第2正極活物質層21Cの平均面積密度に比べて低い面積密度を有する。なお、落下などにより電池に衝撃が加えられた場合におけるセパレータ23のダメージを抑制する観点からすると、低面積密度部21Dが凹状となっていることが好ましい。
第2正極活物質層21Cの内周側端部における低面積密度部21Eの面積密度DDと第2正極活物質層21Cの平均面積密度DEとの面積密度比DD/DEが、好ましくはDD/DE≦0.98、より好ましくは0.1≦DD/DE≦0.98の関係を満たしている。
第2正極活物質層21Cの外周側端部における低面積密度部21Eの面積密度DFと第2正極活物質層21Cの平均面積密度DEとの面積密度比DF/DEが、好ましくはDF/DE≦0.98、より好ましくは0.1≦DF/DE≦0.98の関係を満たしている。
面積密度DDは、第1正極活物質層21Bを除去した正極21の内周側端部から底面積密度21Eに相当する部分を切り出して測定サンプルを作製する以外は、面積密度DCの求め方と同様にして求められる。平均面積密度DEは、第1正極活物質層21Bが除去された正極21を作製して、これを測定サンプルとする以外は、平均面積密度DBの求め方と同様にして求められる。面積密度DFは、第1正極活物質層21Bを除去した正極21の外周側端部から底面積密度21Eに相当する部分を切り出して測定サンプルを作製する以外は、面積密度DCの求め方と同様にして求められる。
図5A、図5Bでは、正極21の内周側および外周側の両端部の両方に低面積密度部21Eを有する構成が示されているが、正極21の内周側および外周側の両端部のうちの一方に低面積密度部21Eを有するようにしてもよい。但し、巻回電極体20の内周部および外周部の両方のショート発生を抑制する観点からすると、正極21の内周側および外周側の両端部に低面積密度部21Eを有する構成を採用することが好ましい。
図5A、図5Bでは、正極21が内周部に低面積密度部21D、21Eの両方を有する構成が示されているが、正極21が内周部に低面積密度部21D、21Eのうちの一方を有するように構成を採用してもよい。但し、巻回電極体20の内周部のショート発生を抑制する観点からすると、正極21が内周部に低面積密度部21D、21Eの両方を有する構成を採用することが好ましい。
図5A、図5Bでは、正極21が外周部に低面積密度部21D、21Eの両方を有する構成が示されているが、正極21が外周部に低面積密度部21D、21Eのうちの一方を有するように構成を採用してもよい。但し、巻回電極体20の外周部のショート発生を抑制する観点からすると、正極21が外周部に低面積密度部21D、21Eの両方を有する構成を採用することが好ましい。
[その他の変形例]
上述の第1の実施形態では、正極に本技術を適用した例について説明したが、負極に本技術を適用してもよいし、正極および負極の両方に本技術を適用してもよい。
上述の第1の実施形態では、正極に本技術を適用した例について説明したが、負極に本技術を適用してもよいし、正極および負極の両方に本技術を適用してもよい。
上述の第1の実施形態では、リチウムイオン二次電池に対して本技術を適用した例について説明したが、本技術はリチウムイオン二次電池以外の二次電池、および一次電池に対しても適用可能である。但し、本技術はリチウムイオン二次電池に適用することが特に有効である。
上述の第1の実施形態では、円筒型の電池に本技術を適用した例について説明したが、角型または扁平型の電池に本技術を適用してもよい。
上述の第1の実施形態では、巻回電極体を収容する外装材が電池缶である場合を例として説明したが、外装材はラミネートフィルムなどのフレキシブルな外装材であってもよい。
上述の第1の実施形態では、電解質が電解液である場合を例として説明したが、電解質は、電解液により高分子化合物を膨潤させたもの(例えばゲル状の電解質)であってもよいし、固体電解質であってもよいし、それらが組み合わされたものであってもよい。
<2.第2の実施形態>
第2の実施形態では、第1の実施形態またはその変形例に係る電池を備える電池パックおよび電子機器について説明する。
第2の実施形態では、第1の実施形態またはその変形例に係る電池を備える電池パックおよび電子機器について説明する。
[電池パックおよび電子機器の構成]
以下、図6を参照して、本技術の第2の実施形態に係る電池パック300および電子機器400の一構成例について説明する。電子機器400は、電子機器本体の電子回路401と、電池パック300とを備える。電池パック300は、正極端子331aおよび負極端子331bを介して電子回路401に対して電気的に接続されている。電子機器400は、例えば、ユーザにより電池パック300を着脱自在な構成を有している。なお、電子機器400の構成はこれに限定されるものではなく、ユーザにより電池パック300を電子機器400から取り外しできないように、電池パック300が電子機器400内に内蔵されている構成を有していてもよい。
以下、図6を参照して、本技術の第2の実施形態に係る電池パック300および電子機器400の一構成例について説明する。電子機器400は、電子機器本体の電子回路401と、電池パック300とを備える。電池パック300は、正極端子331aおよび負極端子331bを介して電子回路401に対して電気的に接続されている。電子機器400は、例えば、ユーザにより電池パック300を着脱自在な構成を有している。なお、電子機器400の構成はこれに限定されるものではなく、ユーザにより電池パック300を電子機器400から取り外しできないように、電池パック300が電子機器400内に内蔵されている構成を有していてもよい。
電池パック300の充電時には、電池パック300の正極端子331a、負極端子331bがそれぞれ、充電器(図示せず)の正極端子、負極端子に接続される。一方、電池パック300の放電時(電子機器400の使用時)には、電池パック300の正極端子331a、負極端子331bがそれぞれ、電子回路401の正極端子、負極端子に接続される。
電子機器400としては、例えば、ノート型パーソナルコンピュータ、タブレット型コンピュータ、携帯電話(例えばスマートフォンなど)、携帯情報端末(Personal Digital Assistants:PDA)、表示装置(LCD、ELディスプレイ、電子ペーパなど)、撮像装置(例えばデジタルスチルカメラ、デジタルビデオカメラなど)、オーディオ機器(例えばポータブルオーディオプレイヤー)、ゲーム機器、コードレスフォン子機、電子書籍、電子辞書、ラジオ、ヘッドホン、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器、ロボット、ロードコンディショナー、信号機などが挙げられるが、これに限定されるものでなない。
(電子回路)
電子回路401は、例えば、CPU、周辺ロジック部、インターフェース部および記憶部などを備え、電子機器400の全体を制御する。
電子回路401は、例えば、CPU、周辺ロジック部、インターフェース部および記憶部などを備え、電子機器400の全体を制御する。
(電池パック)
電池パック300は、組電池301と、充放電回路302とを備える。組電池301は、複数の二次電池301aを直列および/または並列に接続して構成されている。複数の二次電池301aは、例えばn並列m直列(n、mは正の整数)に接続される。なお、図6では、6つの二次電池301aが2並列3直列(2P3S)に接続された例が示されている。二次電池301aとしては、第1の実施形態またはその変形例に係る電池が用いられる。
電池パック300は、組電池301と、充放電回路302とを備える。組電池301は、複数の二次電池301aを直列および/または並列に接続して構成されている。複数の二次電池301aは、例えばn並列m直列(n、mは正の整数)に接続される。なお、図6では、6つの二次電池301aが2並列3直列(2P3S)に接続された例が示されている。二次電池301aとしては、第1の実施形態またはその変形例に係る電池が用いられる。
充放電回路302は、組電池301の充放電を制御する制御部である。具体的には、充電時には、充放電回路302は、組電池301に対する充電を制御する。一方、放電時(すなわち電子機器400の使用時)には、充放電回路302は、電子機器400に対する放電を制御する。
[変形例]
上述の第2の実施形態では、電池パック300が、複数の二次電池301aにより構成される組電池301を備える場合を例として説明したが、電池パック300が、組電池301に代えて1つの二次電池301aを備える構成を採用してもよい。
上述の第2の実施形態では、電池パック300が、複数の二次電池301aにより構成される組電池301を備える場合を例として説明したが、電池パック300が、組電池301に代えて1つの二次電池301aを備える構成を採用してもよい。
<3.第3の実施形態>
第3の実施形態では、第1の実施形態またはその変形例に係る電池を蓄電装置に備える蓄電システムについて説明する。この蓄電システムは、およそ電力を使用するものである限り、どのようなものであってもよく、単なる電力装置も含む。この電力システムは、例えば、スマートグリッド、家庭用エネルギー管理システム(HEMS)、車両など含み、蓄電も可能である。
第3の実施形態では、第1の実施形態またはその変形例に係る電池を蓄電装置に備える蓄電システムについて説明する。この蓄電システムは、およそ電力を使用するものである限り、どのようなものであってもよく、単なる電力装置も含む。この電力システムは、例えば、スマートグリッド、家庭用エネルギー管理システム(HEMS)、車両など含み、蓄電も可能である。
[蓄電システムの構成]
以下、図7を参照して、第3の実施形態に係る蓄電システム(電力システム)100の構成例について説明する。この蓄電システム100は、住宅用の蓄電システムであり、火力発電102a、原子力発電102b、水力発電102cなどの集中型電力系統102から電力網109、情報網112、スマートメータ107、パワーハブ108などを介し、電力が蓄電装置103に供給される。これと共に、家庭内発電装置104などの独立電源から電力が蓄電装置103に供給される。蓄電装置103に供給された電力が蓄電される。蓄電装置103を使用して、住宅101で使用する電力が給電される。住宅101に限らずビルに関しても同様の蓄電システムを使用できる。
以下、図7を参照して、第3の実施形態に係る蓄電システム(電力システム)100の構成例について説明する。この蓄電システム100は、住宅用の蓄電システムであり、火力発電102a、原子力発電102b、水力発電102cなどの集中型電力系統102から電力網109、情報網112、スマートメータ107、パワーハブ108などを介し、電力が蓄電装置103に供給される。これと共に、家庭内発電装置104などの独立電源から電力が蓄電装置103に供給される。蓄電装置103に供給された電力が蓄電される。蓄電装置103を使用して、住宅101で使用する電力が給電される。住宅101に限らずビルに関しても同様の蓄電システムを使用できる。
住宅101には、家庭内発電装置104、電力消費装置105、蓄電装置103、各装置を制御する制御装置110、スマートメータ107、パワーハブ108、各種情報を取得するセンサ111が設けられている。各装置は、電力網109および情報網112によって接続されている。家庭内発電装置104として、太陽電池、燃料電池などが利用され、発電した電力が電力消費装置105および/または蓄電装置103に供給される。電力消費装置105は、冷蔵庫105a、空調装置105b、テレビジョン受信機105c、風呂105dなどである。さらに、電力消費装置105には、電動車両106が含まれる。電動車両106は、電気自動車106a、ハイブリッドカー106b、電気バイク106cなどである。
蓄電装置103は、第1の実施形態またはその変形例に係る電池を備えている。スマートメータ107は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網109は、直流給電、交流給電、非接触給電の何れか一つまたは複数の組み合わせであってもよい。
各種のセンサ111は、例えば人感センサ、照度センサ、物体検知センサ、消費電力センサ、振動センサ、接触センサ、温度センサ、赤外線センサなどである。各種のセンサ111により取得された情報は、制御装置110に送信される。センサ111からの情報によって、気象の状態、人の状態などが把握されて電力消費装置105を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置110は、住宅101に関する情報を、インターネットを介して外部の電力会社などに送信することができる。
パワーハブ108によって、電力線の分岐、直流交流変換などの処理がなされる。制御装置110と接続される情報網112の通信方式としては、UART(Universal Asynchronous Receiver-Transceiver:非同期シリアル通信用送受信回路)などの通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee、Wi-Fiなどの無線通信規格によるセンサーネットワークを利用する方法がある。Bluetooth(登録商標)方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBeeは、IEEE(Institute of Electrical and Electronics Engineers)802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network) またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。
制御装置110は、外部のサーバ113と接続されている。このサーバ113は、住宅101、電力会社、およびサービスプロバイダーのいずれかによって管理されていてもよい。サーバ113が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信してもよいが、家庭外の装置(たとえば、携帯電話機など)から送受信してもよい。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)などに、表示されてもよい。
各部を制御する制御装置110は、CPU(Central Processing Unit )、RAM(Random Access Memory)、ROM(Read Only Memory)などで構成され、この例では、蓄電装置103に格納されている。制御装置110は、蓄電装置103、家庭内発電装置104、電力消費装置105、各種のセンサ111、サーバ113と情報網112により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能などを備えていてもよい。
以上のように、電力が火力発電102a、原子力発電102b、水力発電102cなどの集中型電力系統102のみならず、家庭内発電装置104(太陽光発電、風力発電)の発電電力を蓄電装置103に蓄えることができる。したがって、家庭内発電装置104の発電電力が変動しても、外部に送出する電力量を一定にしたり、または、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置103に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置103に蓄え、昼間の料金が高い時間帯に蓄電装置103によって蓄電した電力を放電して利用するといった使い方もできる。
なお、この例では、制御装置110が蓄電装置103内に格納される例を説明したが、スマートメータ107内に格納されてもよいし、単独で構成されていてもよい。さらに、蓄電システム100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。
<4.第4の実施形態>
第4の実施形態では、第1の実施形態またはその変形例に係る電池を備える電動車両について説明する。
第4の実施形態では、第1の実施形態またはその変形例に係る電池を備える電動車両について説明する。
[電動車両の構成]
図8を参照して、本技術の第4の実施形態に係る電動車両の一構成について説明する。このハイブリッド車両200は、シリーズハイブリッドシステムを採用するハイブリッド車両である。シリーズハイブリッドシステムは、エンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置203で走行する車である。
図8を参照して、本技術の第4の実施形態に係る電動車両の一構成について説明する。このハイブリッド車両200は、シリーズハイブリッドシステムを採用するハイブリッド車両である。シリーズハイブリッドシステムは、エンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置203で走行する車である。
このハイブリッド車両200には、エンジン201、発電機202、電力駆動力変換装置203、駆動輪204a、駆動輪204b、車輪205a、車輪205b、バッテリー208、車両制御装置209、各種センサ210、充電口211が搭載されている。バッテリー208としては、第1の実施形態またはその変形例に係る電池が用いられる。
ハイブリッド車両200は、電力駆動力変換装置203を動力源として走行する。電力駆動力変換装置203の一例は、モータである。バッテリー208の電力によって電力駆動力変換装置203が作動し、この電力駆動力変換装置203の回転力が駆動輪204a、204bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置203が交流モータでも直流モータでも適用可能である。各種センサ210は、車両制御装置209を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサ210には、速度センサ、加速度センサ、エンジン回転数センサなどが含まれる。
エンジン201の回転力は発電機202に伝えられ、その回転力によって発電機202により生成された電力をバッテリー208に蓄積することが可能である。
図示しない制動機構によりハイブリッド車両200が減速すると、その減速時の抵抗力が電力駆動力変換装置203に回転力として加わり、この回転力によって電力駆動力変換装置203により生成された回生電力がバッテリー208に蓄積される。
バッテリー208は、充電口211を介してハイブリッド車両200の外部の電源に接続されることで、その外部電源から充電口211を入力口として電力供給を受け、受けた電力を蓄積することも可能である。
図示しないが、電池に関する情報に基づいて車両制御に関する情報処理を行なう情報処理装置を備えていてもよい。このような情報処理装置としては、例えば、電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置などがある。
なお、以上は、エンジンで動かす発電機で発電された電力、またはそれをバッテリーに一旦貯めておいた電力を用いて、モータで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモータの出力をいずれも駆動源とし、エンジンのみで走行、モータのみで走行、エンジンとモータ走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本技術は有効に適用可能である。さらに、エンジンを用いず駆動モータのみによる駆動で走行する所謂、電動車両に対しても本技術は有効に適用可能である。
以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。なお、以下の実施例においては、上述の実施形態と対応する部分には同一の符号を付す。また、以下の実施例における面積密度DA、DC、DD、DFおよび平均面積密度DB、DEは、第1の実施形態およびその変形例にて説明した方法により求められたものである。
[実施例1]
(正極の作製工程)
正極21を次にようにして作製した。まず、正極活物質としてNCM(ニッケル-コバルト-マンガン)94質量部と、導電剤としてDB(デンカブラック)3質量部と、結着剤としてPVDF(ポリフッ化ビニリデン)3質量部とを混合して正極合剤としたのち、溶剤としてN-メチル-2-ピロリドンに分散させることにより、ペースト状の正極合剤スラリーとした。次に、帯状のアルミニウム箔(15μm厚)からなる正極集電体21Aの両面に正極合剤スラリーを塗布して乾燥させたのち、ロールプレス機で圧縮成型することにより、第1、第2正極活物質層21B、21Cを形成した。この際、図2A、図2Bに示すように、正極21の巻回時に正極21の巻始め端部から1周外側の位置に低面積密度部21Dがくるように、第1正極活物質層21Bに低面積密度部21Dを形成した。これにより、電極幅58mmの正極21を得た。次に、正極集電体21Aの中周部にアルミニウム製の正極リード25を溶接して取り付けた。
(正極の作製工程)
正極21を次にようにして作製した。まず、正極活物質としてNCM(ニッケル-コバルト-マンガン)94質量部と、導電剤としてDB(デンカブラック)3質量部と、結着剤としてPVDF(ポリフッ化ビニリデン)3質量部とを混合して正極合剤としたのち、溶剤としてN-メチル-2-ピロリドンに分散させることにより、ペースト状の正極合剤スラリーとした。次に、帯状のアルミニウム箔(15μm厚)からなる正極集電体21Aの両面に正極合剤スラリーを塗布して乾燥させたのち、ロールプレス機で圧縮成型することにより、第1、第2正極活物質層21B、21Cを形成した。この際、図2A、図2Bに示すように、正極21の巻回時に正極21の巻始め端部から1周外側の位置に低面積密度部21Dがくるように、第1正極活物質層21Bに低面積密度部21Dを形成した。これにより、電極幅58mmの正極21を得た。次に、正極集電体21Aの中周部にアルミニウム製の正極リード25を溶接して取り付けた。
なお、上述のようにして得られた第1、第2正極活物質層21B、21Cそれぞれの体積密度は3.7g/cm3、第1、第2正極活物質層21B、21Cそれぞれの平均面積密度は28mg/cm2、第1正極活物質層21Bの低面積密度部21Dの面積密度DAは20mg/cm2であった。
(負極の作製工程)
負極22を次のようにして作製した。まず、負極活物質として天然黒鉛96質量部と、導電剤としてDB(デンカブラック)2質量部と、結着剤としてSBR(スチレンブタジエンゴム)2質量部とを混合して負極合剤としたのち、N-メチル-2-ピロリドンに分散させることにより、ペースト状の負極合剤スラリーとした。次に、帯状の銅箔(12μm厚)からなる負極集電体22Aの両面に負極合剤スラリーを塗布して乾燥させたのち、ロールプレス機で圧縮成型することにより、第1、第2負極活物質層22B、22Cを形成した。次に、負極集電体22Aの一端に、ニッケル製の負極リード26を取り付けた。
負極22を次のようにして作製した。まず、負極活物質として天然黒鉛96質量部と、導電剤としてDB(デンカブラック)2質量部と、結着剤としてSBR(スチレンブタジエンゴム)2質量部とを混合して負極合剤としたのち、N-メチル-2-ピロリドンに分散させることにより、ペースト状の負極合剤スラリーとした。次に、帯状の銅箔(12μm厚)からなる負極集電体22Aの両面に負極合剤スラリーを塗布して乾燥させたのち、ロールプレス機で圧縮成型することにより、第1、第2負極活物質層22B、22Cを形成した。次に、負極集電体22Aの一端に、ニッケル製の負極リード26を取り付けた。
なお、上述のようにして得られた第1、第2負極活物質層22B、22Cそれぞれの体積密度は1.5g/cm3、第1、第2正極活物質層21B、21Cそれぞれの平均面積密度は13mg/cm2であった。
(電解液の調整工程)
電解液を次のようにして調製した。溶媒としてエチレンカーボネート(EC)およびジメチルカーボネート(DMC)と電解質塩としてLiPF6とをEC:DMC:LiPF6=25:55:20の質量比で混合して非水電解液を調製した。
電解液を次のようにして調製した。溶媒としてエチレンカーボネート(EC)およびジメチルカーボネート(DMC)と電解質塩としてLiPF6とをEC:DMC:LiPF6=25:55:20の質量比で混合して非水電解液を調製した。
(電池の組み立て工程)
電池を次のようにして組み立てた。まず、上述のようにして作製した正極21と負極22とを厚み16μmの微多孔性ポリエチレン延伸フィルムよりなるセパレータ23を介して、負極22、セパレータ23、正極21、セパレータ23の順に積層し、Φ(直径)3.0mmの巻芯にそれらを巻き付けて多数回巻回することによりジェリーロール型の巻回電極体20を得た。
電池を次のようにして組み立てた。まず、上述のようにして作製した正極21と負極22とを厚み16μmの微多孔性ポリエチレン延伸フィルムよりなるセパレータ23を介して、負極22、セパレータ23、正極21、セパレータ23の順に積層し、Φ(直径)3.0mmの巻芯にそれらを巻き付けて多数回巻回することによりジェリーロール型の巻回電極体20を得た。
次に、巻回電極体20を一対の絶縁板12、13で挟み、負極リード26を電池缶11に溶接すると共に、正極リード25を安全弁機構15に溶接して、巻回電極体20を円筒状の電池缶11の内部に収納した。最後に、巻回電極体20が収容された電池缶11内に、上述のようにして調製した電解液を注入した後、絶縁封口ガスケット17を介して電池缶11をかしめることにより、安全弁機構15、PTC素子16および電池蓋14を固定し、外径(直径)18.20mm、高さ65mmの円筒型の電池を作製した。
[実施例2]
図3A、図3Bに示すように、第1正極活物質層21Bの内周側端部(先端)から1周を超える範囲に渡って連続的に低面積密度部21Dを形成すること以外は実施例1と同様にして電池を得た。なお、第1正極活物質層21Bの低面積密度部21Dの面積密度DAは20mg/cm2であった。
図3A、図3Bに示すように、第1正極活物質層21Bの内周側端部(先端)から1周を超える範囲に渡って連続的に低面積密度部21Dを形成すること以外は実施例1と同様にして電池を得た。なお、第1正極活物質層21Bの低面積密度部21Dの面積密度DAは20mg/cm2であった。
[実施例3]
図4A、図4Bに示すように、第1正極活物質層21Bの外周側端部に低面積密度部21Dをさらに形成すること以外は実施例2と同様にして電池を得た。なお、第1正極活物質層21Bの内周側端部および外周側端部の低面積密度部21DA、DCの面積密度はいずれも20mg/cm2であった。
図4A、図4Bに示すように、第1正極活物質層21Bの外周側端部に低面積密度部21Dをさらに形成すること以外は実施例2と同様にして電池を得た。なお、第1正極活物質層21Bの内周側端部および外周側端部の低面積密度部21DA、DCの面積密度はいずれも20mg/cm2であった。
[実施例4]
図5A、図5Bに示すように、第2正極活物質層21Cの内周側および外周側の両端部に低面積密度部21Eをさらに形成すること以外は実施例3と同様にして電池を得た。なお、第2正極活物質層21Cの内周側端部および外周側端部の低面積密度部21Eの面積密度DE、DFはいずれも20mg/cm2であった。
図5A、図5Bに示すように、第2正極活物質層21Cの内周側および外周側の両端部に低面積密度部21Eをさらに形成すること以外は実施例3と同様にして電池を得た。なお、第2正極活物質層21Cの内周側端部および外周側端部の低面積密度部21Eの面積密度DE、DFはいずれも20mg/cm2であった。
[比較例1]
図9A、図9Bに示すように、第1正極活物質層21Bに低面積密度部21Dを形成しないこと以外は実施例1と同様にして電池を得た。
図9A、図9Bに示すように、第1正極活物質層21Bに低面積密度部21Dを形成しないこと以外は実施例1と同様にして電池を得た。
[比較例2]
図10A、図10Bに示すように、第1正極活物質層21Bの内周側端部(先端)から1周未満の範囲に渡って連続的に低面積密度部21Dを形成すること以外は実施例1と同様にして電池を得た。なお、第1正極活物質層21Bの低面積密度部21Dの面積密度DAは20mg/cm2であった。
図10A、図10Bに示すように、第1正極活物質層21Bの内周側端部(先端)から1周未満の範囲に渡って連続的に低面積密度部21Dを形成すること以外は実施例1と同様にして電池を得た。なお、第1正極活物質層21Bの低面積密度部21Dの面積密度DAは20mg/cm2であった。
[評価]
上述のようにして得られた電池について以下の評価を行った。
上述のようにして得られた電池について以下の評価を行った。
(巻回時における正極の巻き切れ発生の有無)
巻回時における正極21の巻き切れ発生の有無を以下のようにして確認した。まず、上述の実施例1~4、比較例1、2の電池の作製に用いたのと同様の正極21、負極22およびセパレータ23を準備した。次に、負極22、セパレータ23、正極21、セパレータ23の順に積層し、Φ3.0mmの巻芯に巻き付けて巻回電極体20を形成したときに、正極21に巻き切れが発生するか否かを確認した。なお、上述の実施例1~4、比較例1、2では、実施例1~4、比較例1、2のいずれの巻回電極体20においても正極21に巻き切れが発生する確率が低いΦ(直径)3.5mmの巻芯を用いた。
巻回時における正極21の巻き切れ発生の有無を以下のようにして確認した。まず、上述の実施例1~4、比較例1、2の電池の作製に用いたのと同様の正極21、負極22およびセパレータ23を準備した。次に、負極22、セパレータ23、正極21、セパレータ23の順に積層し、Φ3.0mmの巻芯に巻き付けて巻回電極体20を形成したときに、正極21に巻き切れが発生するか否かを確認した。なお、上述の実施例1~4、比較例1、2では、実施例1~4、比較例1、2のいずれの巻回電極体20においても正極21に巻き切れが発生する確率が低いΦ(直径)3.5mmの巻芯を用いた。
(低温サイクル試験前後の落下試験によるショート発生確率)
(低温サイクル試験前)
落下試験により外部から電池に衝撃が加える過酷試験を行い、ショートが発生した電池の個数を求めた。次に、以下の式からショート発生確率を求めた。
(ショート発生確率)[%]=((ショートが発生した電池の個数)/(落下試験を行った電池の個数))×100
(低温サイクル試験前)
落下試験により外部から電池に衝撃が加える過酷試験を行い、ショートが発生した電池の個数を求めた。次に、以下の式からショート発生確率を求めた。
(ショート発生確率)[%]=((ショートが発生した電池の個数)/(落下試験を行った電池の個数))×100
(低温サイクル試験後)
まず、負極22でのLi析出により巻回電極体20が膨張し、内圧が上昇する低温(0℃)にてサイクル試験を行い、正極21の端部の段差でセパレータ23にダメージを与えた。その後、低温サイクル試験前の落下試験と同様にしてショート発生確率を求めた。
まず、負極22でのLi析出により巻回電極体20が膨張し、内圧が上昇する低温(0℃)にてサイクル試験を行い、正極21の端部の段差でセパレータ23にダメージを与えた。その後、低温サイクル試験前の落下試験と同様にしてショート発生確率を求めた。
以下に、サイクル試験および落下試験の詳細を示す。
<サイクル試験>
環境温度:0℃
充電:CC/CV、4.25V/1C、100mAcut
放電:2C、2Vcut(放電後セル温度が0℃になったら充電再開)
初期の放電容量に対する維持率[%]が30%以下になったら放電レートを1Cに下げ、同じく30%以下になったら0.5Cに下げて30%以下まで試験した。
<サイクル試験>
環境温度:0℃
充電:CC/CV、4.25V/1C、100mAcut
放電:2C、2Vcut(放電後セル温度が0℃になったら充電再開)
初期の放電容量に対する維持率[%]が30%以下になったら放電レートを1Cに下げ、同じく30%以下になったら0.5Cに下げて30%以下まで試験した。
<落下試験>
落下試験としては、「リチウム二次電池安全性評価基準ガイドライン」(SBA G1101)に規定されたものに一部改変を加えたものを採用した。具体的には、SBA G1101に規定された落下試験は、1.9mからコンクリートに10回落下させる試験であるが、本評価の落下試験ではこの落下回数nを20回にして限界試験を行い、n=10でのショート発生確率を調査した。
落下試験としては、「リチウム二次電池安全性評価基準ガイドライン」(SBA G1101)に規定されたものに一部改変を加えたものを採用した。具体的には、SBA G1101に規定された落下試験は、1.9mからコンクリートに10回落下させる試験であるが、本評価の落下試験ではこの落下回数nを20回にして限界試験を行い、n=10でのショート発生確率を調査した。
上記評価から以下のことがわかる。
正極集電体21Aの内側面に設けられた第1正極活物質層21Bが、正極21の内周側端部に対向する部分に低面積密度部21Dを有することで、正極21の巻始め端部から1周外側の位置において正極21の柔軟性を確保できるため、巻回時に正極21に切れが発生することを抑制できる(実施例1~4)。一方、第1正極活物質層21Bが正極21の内周側端部に対向する部分に低面積密度部21Dを有していない場合には、正極21の巻始め端部から1周外側の位置において正極21の柔軟性を確保できないため、巻回時に正極21に切れが発生してしまう(比較例1)。また、第1正極活物質層21Bが内周側端部(先端)から1周未満の範囲に渡って連続的に低面積密度部21Dを有する場合にも、正極21の巻始め端部から1周外側の位置において正極21の柔軟性を確保できないため、巻回時に正極21に切れが発生してしまう(比較例2)。
正極集電体21Aの内側面に設けられた第1正極活物質層21Bが、正極21の内周側端部に対向する部分に低面積密度部21Dを有することで、正極21の巻始め端部から1周外側の位置において正極21の柔軟性を確保できるため、巻回時に正極21に切れが発生することを抑制できる(実施例1~4)。一方、第1正極活物質層21Bが正極21の内周側端部に対向する部分に低面積密度部21Dを有していない場合には、正極21の巻始め端部から1周外側の位置において正極21の柔軟性を確保できないため、巻回時に正極21に切れが発生してしまう(比較例1)。また、第1正極活物質層21Bが内周側端部(先端)から1周未満の範囲に渡って連続的に低面積密度部21Dを有する場合にも、正極21の巻始め端部から1周外側の位置において正極21の柔軟性を確保できないため、巻回時に正極21に切れが発生してしまう(比較例2)。
第1正極活物質層21Bが内周側端部(先端)から1周を超える範囲に渡って連続的に低面積密度部21Dを有することで、落下試験によるショート発生確率を抑制することができる(実施例2)。これは、低面積密度部21Dにより正極21の内周側端部における段差が低減され、正極21の内周側端部によりセパレータ23に与えられるダメージが抑制されたからである。
第1正極活物質層21Bが内周側端部および外周側端部の両方に低面積密度部21Dを有することで、落下試験によるショート発生確率をさらに抑制することができる(実施例3)。これは、低面積密度部21Dにより正極21の内周側および外周側の両端部における段差が低減され、正極21の内周側端部および外周側端部によりセパレータ23に与えられるダメージが抑制されたからである。
第1正極活物質層21Bが内周側端部および外周側端部の両方に低面積密度部21Dを有し、かつ、第2正極活物質層21Cが内周側端部および外周側端部の両方に低面積密度部21Eを有することで、落下試験によるショート発生確率を最も抑制することができる(実施例4)。これは、低面積密度部21D、21Eにより正極21の内周側および外周側の両端部における段差が著しく低減され、正極21の内周側端部および外周側端部によりセパレータ23に与えられるダメージが著しく抑制されたからである。
以上、本技術の実施形態およびその変形例、ならびに実施例について具体的に説明したが、本技術は、上述の実施形態およびその変形例、ならびに実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
例えば、上述の実施形態およびその変形例、ならびに実施例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
また、上述の実施形態およびその変形例、ならびに実施例の構成、方法、工程、形状、材料および数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
また、本技術は以下の構成を採用することもできる。
(1)
巻回された正極および負極を備え、
前記正極は、正極集電体と、前記正極集電体の内側面に設けられた第1正極活物質層と、前記正極集電体の外側面に設けられた第2正極活物質層とを備え、
前記正極集電体の内周側端部および外周側端部は、前記第1正極活物質層および前記第2正極活物質層により覆われており、
前記第1正極活物質層は、前記正極の内周側端部に対向する部分に低面積密度部を有する電池。
(2)
前記低面積密度部は、前記第1正極活物質層の平均面積密度に比べて低い面積密度を有する(1)に記載の電池。
(3)
前記低面積密度部の面積密度DAと前記第1正極活物質層の平均面積密度DBとの面積密度比DA/DBが、DA/DB≦0.98の関係を満たす(1)または(2)に記載の電池。
(4)
前記低面積密度部は、前記正極の内周側の端部から1周を超える範囲に設けられている(1)から(3)のいずれかに記載の電池。
(5)
前記第1正極活物質層は、前記正極の外周側端部に低面積密度部をさらに有する(1)から(4)のいずれかに記載の電池。
(6)
前記第2正極活物質層は、前記正極の内周側端部および外周側端部のうちの少なくとも一方に低面積密度部をさらに有する(1)から(5)のいずれかに記載の電池。
(7)
前記正極および前記負極と共に巻回されたセパレータをさらに備え、
前記セパレータの内周側端部は、前記正極の内周側端部よりも長く巻回されている(4)または(6)に記載の電池。
(8)
前記正極および前記負極と共に巻回されたセパレータをさらに備え、
前記セパレータの外周側端部は、前記正極の外周側端部よりも長く巻回されている(5)または(6)に記載の電池。
(9)
前記正極の内周側端部に対向する部分に設けられた前記低面積密度部は、前記正極の内周側端部に対向する部分に局所的に設けられている(1)から(8)のいずれかに記載の電池。
(10)
前記正極および前記負極を収容する円筒状の電池缶をさらに備える(1)から(8)のいずれかに記載の電池。
(11)
巻回された電極を備え、
前記電極は、集電体と、前記集電体の内側面に設けられた第1活物質層と、前記集電体の外側面に設けられた第2活物質層とを備え、
前記集電体の内周側端部および外周側端部は、前記第1活物質層および前記第2活物質層により覆われており、
前記第1活物質層は、前記電極の内周側端部に対向する部分に低面積密度部を有する電池。
(12)
(1)から(11)のいずれかに記載の電池と、
前記電池を制御する制御部と、
を備える電池パック。
(13)
(1)から(11)のいずれかに記載の電池を備え、
前記電池から電力の供給を受ける電子機器。
(14)
(1)から(11)のいずれかに記載の電池と、
前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
を備える電動車両。
(15)
(1)から(11)のいずれかに記載の電池を備え、
前記電池に接続される電子機器に電力を供給する蓄電装置。
(16)
(1)から(11)のいずれかに記載の電池を備え、
前記電池から電力の供給を受ける電力システム。
(1)
巻回された正極および負極を備え、
前記正極は、正極集電体と、前記正極集電体の内側面に設けられた第1正極活物質層と、前記正極集電体の外側面に設けられた第2正極活物質層とを備え、
前記正極集電体の内周側端部および外周側端部は、前記第1正極活物質層および前記第2正極活物質層により覆われており、
前記第1正極活物質層は、前記正極の内周側端部に対向する部分に低面積密度部を有する電池。
(2)
前記低面積密度部は、前記第1正極活物質層の平均面積密度に比べて低い面積密度を有する(1)に記載の電池。
(3)
前記低面積密度部の面積密度DAと前記第1正極活物質層の平均面積密度DBとの面積密度比DA/DBが、DA/DB≦0.98の関係を満たす(1)または(2)に記載の電池。
(4)
前記低面積密度部は、前記正極の内周側の端部から1周を超える範囲に設けられている(1)から(3)のいずれかに記載の電池。
(5)
前記第1正極活物質層は、前記正極の外周側端部に低面積密度部をさらに有する(1)から(4)のいずれかに記載の電池。
(6)
前記第2正極活物質層は、前記正極の内周側端部および外周側端部のうちの少なくとも一方に低面積密度部をさらに有する(1)から(5)のいずれかに記載の電池。
(7)
前記正極および前記負極と共に巻回されたセパレータをさらに備え、
前記セパレータの内周側端部は、前記正極の内周側端部よりも長く巻回されている(4)または(6)に記載の電池。
(8)
前記正極および前記負極と共に巻回されたセパレータをさらに備え、
前記セパレータの外周側端部は、前記正極の外周側端部よりも長く巻回されている(5)または(6)に記載の電池。
(9)
前記正極の内周側端部に対向する部分に設けられた前記低面積密度部は、前記正極の内周側端部に対向する部分に局所的に設けられている(1)から(8)のいずれかに記載の電池。
(10)
前記正極および前記負極を収容する円筒状の電池缶をさらに備える(1)から(8)のいずれかに記載の電池。
(11)
巻回された電極を備え、
前記電極は、集電体と、前記集電体の内側面に設けられた第1活物質層と、前記集電体の外側面に設けられた第2活物質層とを備え、
前記集電体の内周側端部および外周側端部は、前記第1活物質層および前記第2活物質層により覆われており、
前記第1活物質層は、前記電極の内周側端部に対向する部分に低面積密度部を有する電池。
(12)
(1)から(11)のいずれかに記載の電池と、
前記電池を制御する制御部と、
を備える電池パック。
(13)
(1)から(11)のいずれかに記載の電池を備え、
前記電池から電力の供給を受ける電子機器。
(14)
(1)から(11)のいずれかに記載の電池と、
前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
を備える電動車両。
(15)
(1)から(11)のいずれかに記載の電池を備え、
前記電池に接続される電子機器に電力を供給する蓄電装置。
(16)
(1)から(11)のいずれかに記載の電池を備え、
前記電池から電力の供給を受ける電力システム。
11 電池缶
12、13 絶縁板
14 電池蓋
15 安全弁機構
15A ディスク板
16 熱感抵抗素子
17 ガスケット
20 巻回電極体
20A 貫通孔
21 正極
21A 正極集電体
21B 第1正極活物質層
21C 第1正極活物質層
21D 低面積密度部
22 負極
22A 負極集電体
22B 第1負極活物質層
22C 第2負極活物質層
22D 低面積密度部
23 セパレータ
24 センターピン
25 正極リード
26 負極リード
12、13 絶縁板
14 電池蓋
15 安全弁機構
15A ディスク板
16 熱感抵抗素子
17 ガスケット
20 巻回電極体
20A 貫通孔
21 正極
21A 正極集電体
21B 第1正極活物質層
21C 第1正極活物質層
21D 低面積密度部
22 負極
22A 負極集電体
22B 第1負極活物質層
22C 第2負極活物質層
22D 低面積密度部
23 セパレータ
24 センターピン
25 正極リード
26 負極リード
Claims (16)
- 巻回された正極および負極を備え、
前記正極は、正極集電体と、前記正極集電体の内側面に設けられた第1正極活物質層と、前記正極集電体の外側面に設けられた第2正極活物質層とを備え、
前記正極集電体の内周側端部および外周側端部は、前記第1正極活物質層および前記第2正極活物質層により覆われており、
前記第1正極活物質層は、前記正極の内周側端部に対向する部分に低面積密度部を有する電池。 - 前記低面積密度部は、前記第1正極活物質層の平均面積密度に比べて低い面積密度を有する請求項1に記載の電池。
- 前記低面積密度部の面積密度DAと前記第1正極活物質層の平均面積密度DBとの面積密度比DA/DBが、DA/DB≦0.98の関係を満たす請求項1に記載の電池。
- 前記低面積密度部は、前記正極の内周側の端部から1周を超える範囲に設けられている請求項1に記載の電池。
- 前記第1正極活物質層は、前記正極の外周側端部に低面積密度部をさらに有する請求項1に記載の電池。
- 前記第2正極活物質層は、前記正極の内周側端部および外周側端部のうちの少なくとも一方に低面積密度部をさらに有する請求項1に記載の電池。
- 前記正極および前記負極と共に巻回されたセパレータをさらに備え、
前記セパレータの内周側端部は、前記正極の内周側端部よりも長く巻回されている請求項4に記載の電池。 - 前記正極および前記負極と共に巻回されたセパレータをさらに備え、
前記セパレータの外周側端部は、前記正極の外周側端部よりも長く巻回されている請求項5に記載の電池。 - 前記低面積密度部は、前記正極の内周側端部に対向する部分に局所的に設けられている請求項1に記載の電池。
- 前記正極および前記負極を収容する円筒状の電池缶をさらに備える請求項1に記載の電池。
- 巻回された電極を備え、
前記電極は、集電体と、前記集電体の内側面に設けられた第1活物質層と、前記集電体の外側面に設けられた第2活物質層とを備え、
前記集電体の内周側端部および外周側端部は、前記第1活物質層および前記第2活物質層により覆われており、
前記第1活物質層は、前記電極の内周側端部に対向する部分に低面積密度部を有する電池。 - 請求項1に記載の電池と、
前記電池を制御する制御部と、
を備える電池パック。 - 請求項1に記載の電池を備え、
前記電池から電力の供給を受ける電子機器。 - 請求項1に記載の電池と、
前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
を備える電動車両。 - 請求項1に記載の電池を備え、
前記電池に接続される電子機器に電力を供給する蓄電装置。 - 請求項1に記載の電池を備え、
前記電池から電力の供給を受ける電力システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780037439.3A CN109314283B (zh) | 2016-07-12 | 2017-07-12 | 电池、电池组、电子设备、电动车辆、蓄电装置及电力系统 |
US16/213,591 US11038193B2 (en) | 2016-07-12 | 2018-12-07 | Battery, battery pack, electronic device, electric vehicle, power storage device, and power system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-137960 | 2016-07-12 | ||
JP2016137960A JP6819107B2 (ja) | 2016-07-12 | 2016-07-12 | 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/213,591 Continuation US11038193B2 (en) | 2016-07-12 | 2018-12-07 | Battery, battery pack, electronic device, electric vehicle, power storage device, and power system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018012528A1 true WO2018012528A1 (ja) | 2018-01-18 |
Family
ID=60953076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025390 WO2018012528A1 (ja) | 2016-07-12 | 2017-07-12 | 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US11038193B2 (ja) |
JP (1) | JP6819107B2 (ja) |
CN (1) | CN109314283B (ja) |
WO (1) | WO2018012528A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024181039A1 (ja) * | 2023-02-27 | 2024-09-06 | パナソニックエナジー株式会社 | 円筒形電池 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3806200A4 (en) * | 2018-05-30 | 2021-08-04 | Panasonic Intellectual Property Management Co., Ltd. | SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE |
JP7386432B2 (ja) * | 2018-05-30 | 2023-11-27 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池 |
CN109473687A (zh) * | 2018-12-24 | 2019-03-15 | 陈泽华 | 一种具有创新拆卸维修分类电池自动生产设备 |
JP7298691B2 (ja) * | 2019-07-30 | 2023-06-27 | 株式会社村田製作所 | 二次電池、電池パック、電子機器、電動工具、電動式航空機及び電動車両 |
CN115548468B (zh) * | 2022-11-29 | 2023-04-21 | 瑞浦兰钧能源股份有限公司 | 电池电芯、电池及用电装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000021453A (ja) * | 1998-07-02 | 2000-01-21 | Nikkiso Co Ltd | 非水電解質二次電池 |
JP2009181833A (ja) * | 2008-01-31 | 2009-08-13 | Panasonic Corp | 非水系二次電池およびその製造方法 |
JP2013016260A (ja) * | 2011-06-30 | 2013-01-24 | Fdk Twicell Co Ltd | 負極板、該負極板を備えた円筒形電池 |
JP2013051028A (ja) * | 2009-12-28 | 2013-03-14 | Panasonic Corp | 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池 |
JP2013171669A (ja) * | 2012-02-20 | 2013-09-02 | Toyota Industries Corp | 蓄電装置及び車両 |
WO2016116971A1 (ja) * | 2015-01-20 | 2016-07-28 | パナソニック株式会社 | 非水電解質二次電池用正極板及び非水電解質二次電池 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5598650B2 (ja) * | 2009-12-10 | 2014-10-01 | ソニー株式会社 | 非水電解質二次電池 |
JP5656069B2 (ja) * | 2010-12-13 | 2015-01-21 | ソニー株式会社 | 二次電池、電池パック、電子機器、電動工具、電動車両および電力貯蔵システム |
JP6495570B2 (ja) * | 2012-03-23 | 2019-04-03 | 株式会社半導体エネルギー研究所 | 蓄電装置 |
JP6070067B2 (ja) * | 2012-10-30 | 2017-02-01 | ソニー株式会社 | 電池、電極、電池パック、電子機器、電動車両、蓄電装置および電力システム |
JP6155605B2 (ja) * | 2012-11-16 | 2017-07-05 | ソニー株式会社 | リチウムイオン二次電池、電池パック、電子機器、電動車両、蓄電装置および電力システム |
CN103296315B (zh) * | 2013-04-19 | 2015-07-01 | 深圳市格瑞普电池有限公司 | 卷绕锂离子电池 |
JP6070421B2 (ja) * | 2013-05-31 | 2017-02-01 | ソニー株式会社 | 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム |
-
2016
- 2016-07-12 JP JP2016137960A patent/JP6819107B2/ja active Active
-
2017
- 2017-07-12 CN CN201780037439.3A patent/CN109314283B/zh active Active
- 2017-07-12 WO PCT/JP2017/025390 patent/WO2018012528A1/ja active Application Filing
-
2018
- 2018-12-07 US US16/213,591 patent/US11038193B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000021453A (ja) * | 1998-07-02 | 2000-01-21 | Nikkiso Co Ltd | 非水電解質二次電池 |
JP2009181833A (ja) * | 2008-01-31 | 2009-08-13 | Panasonic Corp | 非水系二次電池およびその製造方法 |
JP2013051028A (ja) * | 2009-12-28 | 2013-03-14 | Panasonic Corp | 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池 |
JP2013016260A (ja) * | 2011-06-30 | 2013-01-24 | Fdk Twicell Co Ltd | 負極板、該負極板を備えた円筒形電池 |
JP2013171669A (ja) * | 2012-02-20 | 2013-09-02 | Toyota Industries Corp | 蓄電装置及び車両 |
WO2016116971A1 (ja) * | 2015-01-20 | 2016-07-28 | パナソニック株式会社 | 非水電解質二次電池用正極板及び非水電解質二次電池 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024181039A1 (ja) * | 2023-02-27 | 2024-09-06 | パナソニックエナジー株式会社 | 円筒形電池 |
Also Published As
Publication number | Publication date |
---|---|
US11038193B2 (en) | 2021-06-15 |
US20190123310A1 (en) | 2019-04-25 |
JP6819107B2 (ja) | 2021-01-27 |
CN109314283A (zh) | 2019-02-05 |
CN109314283B (zh) | 2021-07-30 |
JP2018010764A (ja) | 2018-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10985409B2 (en) | Battery, battery pack, electronic device, electrically driven vehicle, electric storage device, and electric power system | |
WO2016017077A1 (ja) | 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
WO2016017079A1 (ja) | 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
WO2015079624A1 (ja) | 電極および電池 | |
US11038193B2 (en) | Battery, battery pack, electronic device, electric vehicle, power storage device, and power system | |
US11631901B2 (en) | Battery, battery pack, electronic device, electric vehicle, electric storage device, and electric power system | |
JP2014102889A (ja) | 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
JP6823925B2 (ja) | 電池、電池パックおよび電子機器 | |
JP6569735B2 (ja) | 電池、電池缶、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
JP6729575B2 (ja) | 電池、電池缶、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
JP2016146357A (ja) | 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム | |
WO2017077689A1 (ja) | 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
JP2016033903A (ja) | 正極活物質、正極および電池 | |
JP2013222503A (ja) | 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
JPWO2019039363A1 (ja) | 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
KR102160332B1 (ko) | 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템 | |
JP2015156307A (ja) | 電池ならびに電池パック、電子機器、蓄電装置、電力システムおよび電動車両 | |
JP2016152213A (ja) | 負極活物質粒子およびその製造方法、負極、電池、ならびに導電性粒子 | |
WO2018198967A1 (ja) | 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム | |
JP7251554B2 (ja) | 電池、電池パック、電子機器、電動車両および電力システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17827655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17827655 Country of ref document: EP Kind code of ref document: A1 |