WO2018198967A1 - 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム - Google Patents

正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム Download PDF

Info

Publication number
WO2018198967A1
WO2018198967A1 PCT/JP2018/016294 JP2018016294W WO2018198967A1 WO 2018198967 A1 WO2018198967 A1 WO 2018198967A1 JP 2018016294 W JP2018016294 W JP 2018016294W WO 2018198967 A1 WO2018198967 A1 WO 2018198967A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
battery
electrode active
negative electrode
Prior art date
Application number
PCT/JP2018/016294
Other languages
English (en)
French (fr)
Inventor
村上 洋介
宮崎 武志
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880026920.7A priority Critical patent/CN110546795A/zh
Priority to JP2019514464A priority patent/JPWO2018198967A1/ja
Publication of WO2018198967A1 publication Critical patent/WO2018198967A1/ja
Priority to US16/665,263 priority patent/US20200058939A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This technology relates to a positive electrode active material, a positive electrode, a battery, a battery pack, an electronic device, an electric vehicle, a power storage device, and a power system.
  • a LiCoO 2 -based active material including a composition in which a part of Co is substituted with another metal element
  • the LiCoO 2 -based active material by controlling the average crystal grain size within a predetermined range, the generation of cracks (cracks) in the positive electrode active material particles accompanying charge / discharge of the battery is reduced, thereby improving the cycle characteristics.
  • has been proposed see, for example, Patent Document 1).
  • An object of the present technology is to provide a positive electrode active material, a positive electrode, a battery, a battery pack including the battery, an electronic device, an electric vehicle, a power storage device, and a power system that can obtain good cycle characteristics.
  • the battery of the present technology includes a positive electrode, a negative electrode, and an electrolyte.
  • the positive electrode includes powder of positive electrode active material particles, and the average number of grain boundaries per positive electrode active material particle Is less than 0.58.
  • the positive electrode active material of the present technology includes a powder of positive electrode active material particles, and the average number of grain boundaries per positive electrode active material particle is less than 0.58.
  • the positive electrode of the present technology includes a powder of positive electrode active material particles, and the average number of grain boundaries per positive electrode active material particle is less than 0.58.
  • the battery pack, electronic device, electric vehicle, power storage device, and power system of the present technology include the above-described battery.
  • FIG. 1A, FIG. 1B, FIG. 1C, and FIG. 1D are schematic views showing the observation conditions of the SIM image, respectively.
  • FIG. 2A is a schematic diagram for explaining a method of determining a crystal grain boundary.
  • FIG. 2B is a diagram illustrating a first example of a boundary histogram.
  • FIG. 2C is a diagram illustrating a second example of the boundary histogram.
  • FIG. 3 is a cross-sectional view showing an example of the configuration of the nonaqueous electrolyte secondary battery according to the second embodiment of the present technology. 4 is an enlarged cross-sectional view of a part of the wound electrode body shown in FIG. FIG.
  • FIG. 5 is an exploded perspective view showing an example of the configuration of the nonaqueous electrolyte secondary battery according to the second embodiment of the present technology.
  • 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a block diagram illustrating an example of a configuration of an electronic device as an application example.
  • FIG. 8 is a schematic diagram illustrating an example of a configuration of a power storage system in a vehicle as an application example.
  • FIG. 9 is a schematic diagram illustrating an example of a configuration of a power storage system in a house as an application example.
  • FIG. 10 is a graph showing the relationship between the average number of grain boundaries per positive electrode active material particle and the cycle characteristics.
  • 11A is an average grain boundaries per one LiCoO 2 particles are SIM image of a cross-section of the LiCoO 2 particles is 0.23.
  • 11B is the average grain boundaries per one LiCoO 2 particles are SIM image of a cross-section of the LiCoO 2 particles is 2.25.
  • FIG. 12 is a TEM image of a cross section of the NCA-based positive electrode active material particles.
  • Embodiments and application examples of the present technology will be described in the following order. 1 1st Embodiment (example of positive electrode active material) 2 Second Embodiment (Example of Cylindrical Battery) 3 Third Embodiment (Example of Laminated Film Type Battery) 4 Application Example 1 (Example of battery pack and electronic equipment) 5 Application 2 (Example of power storage system in a vehicle) 6 Application 3 (Example of power storage system in a house)
  • the positive electrode active material according to the first embodiment of the present technology is a so-called positive electrode active material for a non-aqueous electrolyte secondary battery, and includes a powder of positive electrode active material particles.
  • the positive electrode active material particles can occlude and release lithium, which is an electrode reactant, and include a lithium transition metal composite oxide having a layered rock salt type structure.
  • the positive electrode active material according to the first embodiment is a non-aqueous electrolyte secondary battery having a high charge voltage (for example, a non-aqueous electrolyte secondary battery having a positive electrode potential exceeding 4.20 V (vsLi / Li + ) in a fully charged state). It is suitable for application to.
  • the lithium transition metal composite oxide includes at least one of lithium cobaltate and a part of cobalt of lithium cobaltate substituted with another metal element.
  • the content of other metal elements in the lithium transition metal composite oxide is lower than the content of cobalt, for example.
  • Other metal elements are nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe) , Copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr), and tungsten (W).
  • the lithium transition metal composite oxide preferably has an average composition represented by the following formula (1).
  • Li r Co (1-s) Ms O (2-t) Fu (1) M is at least one selected from the group consisting of nickel, manganese, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten.
  • the average number of grain boundaries per positive electrode active material particle is less than 0.58, preferably 0.5 or less, more preferably 0.45 or less, still more preferably 0.31 or less, and particularly preferably 0.23 or less. It is. When the average number of grain boundaries is less than 0.58, cracking of the positive electrode active material particles due to charge / discharge can be suppressed, and good cycle characteristics can be obtained.
  • each crystallite expands and contracts in different directions with the crystal grain boundary as a boundary. For this reason, cracks are likely to occur at the grain boundary positions during charge and discharge. Therefore, in order to obtain good cycle characteristics, it is preferable to define the average number of grain boundaries per positive electrode active material particle as described above.
  • lithium transition metal composite oxides having a layered rock salt type structure it is easy to cause grain boundary breakage due to changes in the layered rock salt structure during high-potential charge / discharge. preferable.
  • the average number of grain boundaries per positive electrode active material particle is calculated as follows. First, after the positive electrode active material is hardened with a resin and the cross section of the positive electrode active material particles is cut out, the cross section is polished by ion milling. Next, a SIM image of a cross section of the positive electrode active material particles is taken using a focused ion beam (FIB) (HELIOS NANOLAB 400S; acceleration voltage 5 kV) manufactured by FEI.
  • FIB focused ion beam
  • SIM images with the same field of view (about 40 ⁇ m ⁇ 80 ⁇ m) are taken in four directions as shown in FIGS. 1A to 1D.
  • letters “A” and “B” are attached to both ends of the sample 51 in order to clarify the direction of the sample 51.
  • the number of particles and the number of grain boundaries in the photographed SIM image are measured, and the average number of grain boundaries per positive electrode active material particle (number of grain boundaries in the SIM image / number of particles in the SIM image) is calculated.
  • positive electrode active material particles having a major axis length of 500 nm or less are not counted as particles.
  • the long axis length means the maximum distance (so-called maximum ferret diameter) among the distances between two parallel lines drawn from all angles so as to contact the particle outline.
  • the number of grain boundaries is measured using the SIM image because the SIM image has a stronger crystal orientation contrast than the SEM image or the like.
  • the region 2 when there is no region in which the luminance decreases and becomes constant (that is, when the histogram is changed to a substantially V shape), the region 2 is rapidly inclined toward the center of the boundary.
  • the inflection points of each of the two curves After obtaining the inflection points of each of the two curves, the distance in the horizontal axis direction between these inflection points is obtained.
  • the inflection point is obtained by a curve (so-called Gaussian fitting) approximated by a normal distribution. Then, it is determined whether this distance is 50 nm or more.
  • the boundary 61 is determined as “a gap between particles”.
  • the boundary 61 is determined as a “crystal grain boundary”.
  • the boundary 61 among the boundaries 61 to 63 in FIG. 2A (SIM image) is determined as “gap between particles” and the boundaries 62 and 63 are determined as “crystal grain boundaries”, Will have two grains and two grain boundaries. Therefore, the average number of grain boundaries per positive electrode active material particle (number of crystal grain boundaries in the SIM image / number of particles in the SIM image) is “1”.
  • the average particle diameter of the positive electrode active material particles is preferably 2 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • the average particle diameter is less than 2 ⁇ m, the positive electrode active material is easily peeled off from the positive electrode current collector in the pressing step when producing the positive electrode, and the surface area of the positive electrode active material is increased, so that the conductive agent or the binder This is because the added amount of the agent must be increased, and the energy density per unit mass becomes small.
  • the average particle diameter exceeds 50 ⁇ m, the possibility that the positive electrode active material penetrates the separator and causes a short circuit is increased.
  • the average particle size of the positive electrode active material particles may be an average particle size measured by a so-called particle size distribution meter. It is also possible to obtain the average particle diameter from the particles in the SIM image in the above “calculation method of the number of average grain boundaries per positive electrode active material particle”. In that case, 10 particles are randomly selected from the photographed SIM image, the area of the particle cross section is measured by image processing, and the particle diameter (diameter) of each particle is assumed assuming that the particle cross section is circular. Ask. Subsequently, the average particle diameter of ten measured particles is simply averaged (arithmetic average) to obtain the average particle diameter, which is defined as the average particle diameter of the positive electrode active material particles.
  • the resulting mixture is fired to obtain LiCoO 2.
  • a system active material (including a composition in which a part of Co is substituted with another metal element) is obtained.
  • the firing temperature is preferably 850 ° C. or less, and more preferably 800 ° C. or less. This is because Co 3 O 4 may undergo phase transition to CoO at a temperature of about 900 ° C. as described above.
  • the positive electrode active material according to the first embodiment includes a powder of positive electrode active material particles, and the average number of grain boundaries per positive electrode active material particle is less than 0.58. Can be prevented from cracking. Therefore, a battery having good cycle characteristics can be realized.
  • a configuration example of a nonaqueous electrolyte secondary battery (hereinafter simply referred to as “battery”) according to the second embodiment of the present technology will be described with reference to FIG. 3.
  • This battery is, for example, a so-called lithium ion secondary battery in which the capacity of the negative electrode is represented by a capacity component due to insertion and extraction of lithium (Li) as an electrode reactant.
  • This battery is called a so-called cylindrical type, in which a pair of strip-like positive electrode 21 and strip-like negative electrode 22 are laminated and wound inside a substantially hollow cylindrical battery can 11 via a separator 23.
  • a mold electrode body 20 is provided.
  • the battery can 11 is made of iron (Fe) plated with nickel (Ni), and has one end closed and the other end open. Inside the battery can 11, an electrolytic solution as a liquid electrolyte is injected and impregnated in the positive electrode 21, the negative electrode 22, and the separator 23. In addition, a pair of insulating plates 12 and 13 are respectively disposed perpendicular to the winding peripheral surface so as to sandwich the wound electrode body 20.
  • a battery lid 14 At the open end of the battery can 11, a battery lid 14, a safety valve mechanism 15 provided inside the battery lid 14, and a thermal resistance element (Positive16Temperature ⁇ Coefficient; PTC element) 16 are provided via a sealing gasket 17. It is attached by caulking. Thereby, the inside of the battery can 11 is sealed.
  • the battery lid 14 is made of, for example, the same material as the battery can 11.
  • the safety valve mechanism 15 is electrically connected to the battery lid 14, and when the internal pressure of the battery exceeds a certain level due to an internal short circuit or external heating, the disk plate 15A is reversed and wound with the battery lid 14.
  • the electrical connection with the rotary electrode body 20 is cut off.
  • the sealing gasket 17 is made of, for example, an insulating material, and the surface is coated with asphalt.
  • a center pin 24 is inserted in the center of the wound electrode body 20.
  • a positive electrode lead 25 made of aluminum (Al) or the like is connected to the positive electrode 21 of the wound electrode body 20, and a negative electrode lead 26 made of nickel or the like is connected to the negative electrode 22.
  • the positive electrode lead 25 is electrically connected to the battery lid 14 by being welded to the safety valve mechanism 15, and the negative electrode lead 26 is welded to and electrically connected to the battery can 11.
  • the positive electrode 21 has, for example, a structure in which a positive electrode active material layer 21B is provided on both surfaces of a positive electrode current collector 21A. Although not shown, the positive electrode active material layer 21B may be provided only on one surface of the positive electrode current collector 21A.
  • the positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.
  • the positive electrode active material layer 21B contains a positive electrode active material.
  • the positive electrode active material layer 21B may further include at least one of a conductive agent and a binder as necessary.
  • the positive electrode active material is a positive electrode active material according to the first embodiment.
  • binder examples include resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC), and resins thereof. At least one selected from copolymers mainly composed of materials is used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PAN polyacrylonitrile
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the conductive agent examples include carbon materials such as graphite, carbon fiber, carbon black, ketjen black, and carbon nanotube. One of these may be used alone, or two or more may be mixed. May be used. In addition to the carbon material, a metal material or a conductive polymer material may be used as long as it is a conductive material.
  • the negative electrode 22 has, for example, a structure in which a negative electrode active material layer 22B is provided on both surfaces of a negative electrode current collector 22A. Although not shown, the negative electrode active material layer 22B may be provided only on one surface of the negative electrode current collector 22A.
  • the negative electrode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.
  • the negative electrode active material layer 22B contains one or more negative electrode active materials capable of inserting and extracting lithium.
  • the negative electrode active material layer 22B may further include at least one of a binder and a conductive agent as necessary.
  • the electrochemical equivalent of the negative electrode 22 or the negative electrode active material is larger than the electrochemical equivalent of the positive electrode 21, and theoretically, lithium metal does not precipitate on the negative electrode 22 during charging. Preferably it is.
  • Negative electrode active material examples of the negative electrode active material include carbon materials such as non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, carbon fibers, and activated carbon. Is mentioned. Among these, examples of coke include pitch coke, needle coke, and petroleum coke.
  • An organic polymer compound fired body refers to a carbonized material obtained by firing a polymer material such as phenol resin or furan resin at an appropriate temperature, and part of it is non-graphitizable carbon or graphitizable carbon.
  • These carbon materials are preferable because the change in crystal structure that occurs during charge and discharge is very small, a high charge and discharge capacity can be obtained, and good cycle characteristics can be obtained.
  • graphite is preferable because it has a high electrochemical equivalent and can provide a high energy density.
  • non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained.
  • those having a low charge / discharge potential, specifically, those having a charge / discharge potential close to that of lithium metal are preferable because a high energy density of the battery can be easily realized.
  • a material containing at least one of a metal element and a metalloid element as a constituent element for example, an alloy, a compound, or a mixture
  • a high energy density can be obtained by using such a material.
  • the use with a carbon material is more preferable because a high energy density can be obtained and excellent cycle characteristics can be obtained.
  • the alloy includes an alloy including one or more metal elements and one or more metalloid elements in addition to an alloy composed of two or more metal elements.
  • the nonmetallic element may be included.
  • Examples of such a negative electrode active material include a metal element or a metalloid element capable of forming an alloy with lithium.
  • a metal element or a metalloid element capable of forming an alloy with lithium.
  • magnesium, boron, aluminum, titanium, gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin, lead (Pb), bismuth (Bi), cadmium (Cd), Silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd), or platinum (Pt) can be used. These may be crystalline or amorphous.
  • the negative electrode active material preferably contains a group 4B metal element or metalloid element in the short-period periodic table as a constituent element, and more preferably contains at least one of silicon and tin as a constituent element. This is because silicon and tin have a large ability to occlude and release lithium, and a high energy density can be obtained.
  • Examples of such a negative electrode active material include a simple substance, an alloy or a compound of silicon, a simple substance, an alloy or a compound of tin, or a material having one or more phases thereof at least in part.
  • Examples of the silicon alloy include, as the second constituent element other than silicon, tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony (Sb), and chromium.
  • the thing containing at least 1 sort (s) of a group is mentioned.
  • As an alloy of tin for example, as a second constituent element other than tin, among the group consisting of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium The thing containing at least 1 sort (s) of these is mentioned.
  • tin compound or the silicon compound examples include those containing oxygen or carbon, and may contain the second constituent element described above in addition to tin or silicon.
  • the Sn-based negative electrode active material cobalt, tin, and carbon are included as constituent elements, the carbon content is 9.9 mass% or more and 29.7 mass% or less, and tin and cobalt A SnCoC-containing material in which the proportion of cobalt with respect to the total is 30% by mass to 70% by mass is preferable. This is because a high energy density can be obtained in such a composition range, and excellent cycle characteristics can be obtained.
  • This SnCoC-containing material may further contain other constituent elements as necessary.
  • other constituent elements for example, silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus (P), gallium, or bismuth are preferable, and two or more kinds may be included. This is because the capacity or cycle characteristics can be further improved.
  • This SnCoC-containing material has a phase containing tin, cobalt, and carbon, and this phase preferably has a low crystallinity or an amorphous structure.
  • this SnCoC-containing material it is preferable that at least a part of carbon that is a constituent element is bonded to a metal element or a metalloid element that is another constituent element.
  • the decrease in cycle characteristics is thought to be due to the aggregation or crystallization of tin or the like, but this is because such aggregation or crystallization can be suppressed by combining carbon with other elements. .
  • XPS X-ray photoelectron spectroscopy
  • the peak of the carbon 1s orbital (C1s) appears at 284.5 eV in an energy calibrated apparatus so that the peak of the gold atom 4f orbital (Au4f) is obtained at 84.0 eV if it is graphite. .
  • Au4f gold atom 4f orbital
  • it will appear at 284.8 eV.
  • the charge density of the carbon element increases, for example, when carbon is bonded to a metal element or a metalloid element, the C1s peak appears in a region lower than 284.5 eV.
  • the peak of the synthetic wave of C1s obtained for the SnCoC-containing material appears in a region lower than 284.5 eV
  • at least a part of the carbon contained in the SnCoC-containing material is a metal element or a half of other constituent elements. Combined with metal elements.
  • the C1s peak is used to correct the energy axis of the spectrum.
  • the C1s peak of the surface-contaminated carbon is set to 284.8 eV, which is used as an energy standard.
  • the waveform of the C1s peak is obtained as a shape including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. Therefore, by analyzing using, for example, commercially available software, the surface contamination The carbon peak and the carbon peak in the SnCoC-containing material are separated. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
  • Examples of other negative electrode active materials include metal oxides or polymer compounds that can occlude and release lithium.
  • Examples of the metal oxide include lithium titanium oxide containing titanium and lithium, such as lithium titanate (Li 4 Ti 5 O 12 ), iron oxide, ruthenium oxide, or molybdenum oxide.
  • Examples of the polymer compound include polyacetylene, polyaniline, and polypyrrole.
  • binder examples include at least one selected from resin materials such as polyvinylidene fluoride, polytetrafluoroethylene, polyacrylonitrile, styrene butadiene rubber and carboxymethyl cellulose, and copolymers mainly composed of these resin materials. Is used.
  • the same carbon material as that of the positive electrode active material layer 21B can be used.
  • the separator 23 separates the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes.
  • the separator 23 is made of, for example, a porous film made of a resin such as polytetrafluoroethylene, polypropylene, or polyethylene, and may have a structure in which two or more kinds of these porous films are laminated.
  • a porous film made of polyolefin is preferable because it is excellent in the effect of preventing short circuit and can improve the safety of the battery due to the shutdown effect.
  • polyethylene is preferable as a material constituting the separator 23 because it can obtain a shutdown effect within a range of 100 ° C.
  • the porous film may have a structure of three or more layers in which a polypropylene layer, a polyethylene layer, and a polypropylene layer are sequentially laminated.
  • the separator 23 may have a configuration including a base material and a surface layer provided on one or both surfaces of the base material.
  • the surface layer includes inorganic particles having electrical insulating properties and a resin material that binds the inorganic particles to the surface of the base material and binds the inorganic particles to each other.
  • This resin material may have, for example, a three-dimensional network structure in which the fibers are fibrillated and the fibrils are continuously connected to each other.
  • the inorganic particles can be maintained in a dispersed state without being connected to each other by being supported on the resin material having the three-dimensional network structure.
  • the resin material may be bound to the surface of the base material or the inorganic particles without being fibrillated. In this case, higher binding properties can be obtained.
  • the base material is a porous layer having porosity. More specifically, the base material is a porous film composed of an insulating film having a large ion permeability and a predetermined mechanical strength, and the electrolytic solution is held in the pores of the base material. It is preferable that the base material has a predetermined mechanical strength as a main part of the separator, while having a high resistance to an electrolytic solution, a low reactivity, and a property of being difficult to expand.
  • a polyolefin resin such as polypropylene or polyethylene, an acrylic resin, a styrene resin, a polyester resin, or a nylon resin.
  • polyethylenes such as low density polyethylene, high density polyethylene, linear polyethylene, or their low molecular weight wax, or polyolefin resins such as polypropylene are suitable because they have an appropriate melting temperature and are easily available.
  • a material including a porous film made of a polyolefin resin is excellent in separability between the positive electrode 21 and the negative electrode 22 and can further reduce a decrease in internal short circuit.
  • a non-woven fabric may be used as the base material.
  • fibers constituting the nonwoven fabric aramid fibers, glass fibers, polyolefin fibers, polyethylene terephthalate (PET) fibers, nylon fibers, or the like can be used. Moreover, it is good also as a nonwoven fabric by mixing these 2 or more types of fibers.
  • the inorganic particles contain at least one of metal oxide, metal nitride, metal carbide, metal sulfide and the like.
  • the metal oxide include aluminum oxide (alumina, Al 2 O 3 ), boehmite (hydrated aluminum oxide), magnesium oxide (magnesia, MgO), titanium oxide (titania, TiO 2 ), zirconium oxide (zirconia, ZrO 2). ), Silicon oxide (silica, SiO 2 ), yttrium oxide (yttria, Y 2 O 3 ) or the like can be suitably used.
  • silicon nitride Si 3 N 4
  • aluminum nitride AlN
  • boron nitride BN
  • titanium nitride TiN
  • metal carbide silicon carbide (SiC) or boron carbide (B4C)
  • metal sulfide barium sulfate (BaSO 4 ) or the like can be preferably used.
  • zeolite M 2 / n O ⁇ Al 2 O 3 ⁇ xSiO 2 ⁇ yH 2 O, M represents a metal element, x ⁇ 2, y ⁇ 0 ) porous aluminosilicates such as layered silicates, titanates Minerals such as barium (BaTiO 3 ) or strontium titanate (SrTiO 3 ) may be used.
  • alumina titania (particularly those having a rutile structure), silica or magnesia, and more preferably alumina.
  • the inorganic particles have oxidation resistance and heat resistance, and the surface layer on the side facing the positive electrode containing the inorganic particles has strong resistance to an oxidizing environment in the vicinity of the positive electrode during charging.
  • the shape of the inorganic particles is not particularly limited, and any of a spherical shape, a plate shape, a fiber shape, a cubic shape, a random shape, and the like can be used.
  • Resin materials constituting the surface layer include fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, fluorine-containing rubbers such as vinylidene fluoride-tetrafluoroethylene copolymer and ethylene-tetrafluoroethylene copolymer, styrene -Butadiene copolymer or hydride thereof, acrylonitrile-butadiene copolymer or hydride thereof, acrylonitrile-butadiene-styrene copolymer or hydride thereof, methacrylic acid ester-acrylic acid ester copolymer, styrene-acrylic acid ester Copolymer, acrylonitrile-acrylic ester copolymer, rubber such as ethylene propylene rubber, polyvinyl alcohol, polyvinyl acetate, ethyl cellulose, methyl cellulose, hydroxyethyl cellulose, carbo Cellulose derivatives such as
  • resin materials may be used alone or in combination of two or more.
  • fluorine resins such as polyvinylidene fluoride are preferable from the viewpoint of oxidation resistance and flexibility, and aramid or polyamideimide is preferably included from the viewpoint of heat resistance.
  • the particle size of the inorganic particles is preferably in the range of 1 nm to 10 ⁇ m. If it is smaller than 1 nm, it is difficult to obtain, and even if it can be obtained, it is not worth the cost. On the other hand, if it is larger than 10 ⁇ m, the distance between the electrodes becomes large, and a sufficient amount of active material cannot be obtained in a limited space, resulting in a low battery capacity.
  • a slurry composed of a matrix resin, a solvent and an inorganic substance is applied on a base material (porous membrane), and is passed through a poor solvent of the matrix resin and a solvate bath of the above solvent.
  • a method of separating and then drying can be used.
  • the inorganic particles described above may be contained in a porous film as a base material. Further, the surface layer may not be composed of inorganic particles and may be composed only of a resin material.
  • the separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte.
  • the electrolytic solution contains a solvent and an electrolyte salt dissolved in the solvent.
  • the electrolytic solution may contain a known additive in order to improve battery characteristics.
  • cyclic carbonates such as ethylene carbonate or propylene carbonate can be used, and it is preferable to use one of ethylene carbonate and propylene carbonate, particularly a mixture of both. This is because the cycle characteristics can be improved.
  • the solvent in addition to these cyclic carbonates, it is preferable to use a mixture of chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate or methylpropyl carbonate. This is because high ionic conductivity can be obtained.
  • the solvent preferably further contains 2,4-difluoroanisole or vinylene carbonate. This is because 2,4-difluoroanisole can improve discharge capacity, and vinylene carbonate can improve cycle characteristics. Therefore, it is preferable to use a mixture of these because the discharge capacity and cycle characteristics can be improved.
  • examples of the solvent include butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3- Dioxolane, methyl acetate, methyl propionate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropironitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N-dimethyl Examples include imidazolidinone, nitromethane, nitroethane, sulfolane, dimethyl sulfoxide, and trimethyl phosphate.
  • a compound obtained by substituting at least a part of hydrogen in these non-aqueous solvents with fluorine may be preferable because the reversibility of the electrode reaction may be improved depending on the type of electrode to be combined.
  • lithium salt As electrolyte salt, lithium salt is mentioned, for example, 1 type may be used independently, and 2 or more types may be mixed and used for it.
  • Lithium salts include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , LiAlCl 4 , LiSiF 6 , LiCl, difluoro [oxolato-O, O ′] lithium borate, lithium bisoxalate borate, or LiBr.
  • LiPF 6 is preferable because it can obtain high ion conductivity and can improve cycle characteristics.
  • the positive electrode potential (vsLi / Li + ) in the fully charged state is preferably more than 4.20V, more preferably 4.25V or more, even more preferably more than 4.40V, particularly preferably 4.45V or more, most preferably Is 4.50V or more.
  • the positive electrode potential (vsLi / Li + ) in the fully charged state may be 4.20 V or less.
  • the upper limit value of the positive electrode potential (vsLi / Li + ) in the fully charged state is not particularly limited, but is preferably 6.00 V or less, more preferably 5.00 V or less, even more preferably 4.80 V or less, Especially preferably, it is 4.70V or less.
  • a positive electrode active material according to the first embodiment, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and this positive electrode mixture is mixed with N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • a paste-like positive electrode mixture slurry is prepared by dispersing in a solvent such as Next, this positive electrode mixture slurry is applied to the positive electrode current collector 21 ⁇ / b> A, the solvent is dried, and the positive electrode active material layer 21 ⁇ / b> B is formed by compression molding with a roll press or the like, thereby forming the positive electrode 21.
  • a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and this negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to obtain a paste-like negative electrode mixture slurry Is made.
  • the negative electrode mixture slurry is applied to the negative electrode current collector 22A, the solvent is dried, and the negative electrode active material layer 22B is formed by compression molding using a roll press or the like, and the negative electrode 22 is manufactured.
  • the positive electrode lead 25 is attached to the positive electrode current collector 21A by welding or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22A by welding or the like.
  • the positive electrode 21 and the negative electrode 22 are wound through the separator 23.
  • the front end of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the front end of the negative electrode lead 26 is welded to the battery can 11, and the wound positive electrode 21 and negative electrode 22 are connected with the pair of insulating plates 12 and 13. It is housed inside the sandwiched battery can 11.
  • the electrolytic solution is injected into the battery can 11 and impregnated in the separator 23.
  • the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are fixed to the opening end of the battery can 11 by caulking through a sealing gasket 17. Thereby, the battery shown in FIG. 3 is obtained.
  • the positive electrode active material layer 21B includes the positive electrode active material according to the first embodiment, cracking of the positive electrode active material particles due to charge / discharge can be suppressed. Therefore, a battery having good cycle characteristics can be realized. In particular, when the positive electrode potential (vsLi / Li + ) in the fully charged state exceeds 4.40 V, the above effect is remarkably exhibited.
  • the battery according to the third embodiment of the present technology is a so-called laminate film type battery, and the wound electrode body 30 to which the positive electrode lead 31 and the negative electrode lead 32 are attached is formed into a film-like exterior. It is housed inside the member 40 and can be reduced in size, weight and thickness.
  • the positive electrode lead 31 and the negative electrode lead 32 are each led out from the inside of the exterior member 40 to the outside, for example, in the same direction.
  • the positive electrode lead 31 and the negative electrode lead 32 are made of, for example, a metal material such as aluminum, copper, nickel, or stainless steel, and each have a thin plate shape or a mesh shape.
  • the exterior member 40 is made of, for example, a rectangular aluminum laminated film in which a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order.
  • the exterior member 40 is disposed, for example, so that the polyethylene film side and the wound electrode body 30 face each other, and the outer edge portions are in close contact with each other by fusion or an adhesive.
  • An adhesive film 41 is inserted between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32 to prevent intrusion of outside air.
  • the adhesion film 41 is made of a material having adhesion to the positive electrode lead 31 and the negative electrode lead 32, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene.
  • the exterior member 40 may be configured by a laminated film having another structure, a polymer film such as polypropylene, or a metal film instead of the above-described aluminum laminated film.
  • a laminate film in which an aluminum film is used as a core and a polymer film is laminated on one or both sides thereof may be used.
  • FIG. 6 is a cross-sectional view taken along line VI-VI of the wound electrode body 30 shown in FIG.
  • the wound electrode body 30 is obtained by stacking and winding a positive electrode 33 and a negative electrode 34 via a separator 35 and an electrolyte layer 36, and the outermost periphery is protected by a protective tape 37.
  • the positive electrode 33 has a structure in which a positive electrode active material layer 33B is provided on one or both surfaces of a positive electrode current collector 33A.
  • the negative electrode 34 has a structure in which a negative electrode active material layer 34B is provided on one surface or both surfaces of a negative electrode current collector 34A, and the negative electrode active material layer 34B and the positive electrode active material layer 33B are arranged to face each other. Yes.
  • the configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A, the negative electrode active material layer 34B, and the separator 35 are respectively the positive electrode current collector 21A, the positive electrode active material layer 21B, and the negative electrode in the second embodiment. This is the same as the current collector 22A, the negative electrode active material layer 22B, and the separator 23.
  • the electrolyte layer 36 includes an electrolytic solution and a polymer compound serving as a holding body that holds the electrolytic solution, and has a so-called gel shape.
  • the gel electrolyte layer 36 is preferable because high ion conductivity can be obtained and battery leakage can be prevented.
  • the electrolytic solution is an electrolytic solution according to the second embodiment.
  • the polymer compound include polyacrylonitrile, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, and polysiloxane.
  • polyacrylonitrile, polyvinylidene fluoride, polyhexafluoropropylene or polyethylene oxide is preferable from the viewpoint of electrochemical stability.
  • the electrolyte layer 36 may contain inorganic particles. This is because the heat resistance can be further improved.
  • an inorganic particle the thing similar to the inorganic particle contained in the surface layer of the separator 23 of 2nd Embodiment can be used. Further, an electrolytic solution may be used instead of the electrolyte layer 36.
  • a precursor solution containing a solvent, an electrolyte salt, a polymer compound, and a mixed solvent is applied to each of the positive electrode 33 and the negative electrode 34, and the mixed solvent is volatilized to form the electrolyte layer 36.
  • the positive electrode lead 31 is attached to the end portion of the positive electrode current collector 33A by welding
  • the negative electrode lead 32 is attached to the end portion of the negative electrode current collector 34A by welding.
  • the positive electrode 33 and the negative electrode 34 on which the electrolyte layer 36 is formed are laminated via a separator 35 to form a laminated body, and then the laminated body is wound in the longitudinal direction, and a protective tape 37 is attached to the outermost peripheral portion.
  • the wound electrode body 30 is formed by bonding.
  • the wound electrode body 30 is sandwiched between the exterior members 40, and the outer edges of the exterior members 40 are sealed and sealed by thermal fusion or the like.
  • the adhesion film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the exterior member 40. Thereby, the battery shown in FIGS. 5 and 6 is obtained.
  • this battery may be manufactured as follows. First, the positive electrode 33 and the negative electrode 34 are produced as described above, and the positive electrode lead 31 and the negative electrode lead 32 are attached to the positive electrode 33 and the negative electrode 34. Next, the positive electrode 33 and the negative electrode 34 are laminated and wound via the separator 35, and a protective tape 37 is adhered to the outermost peripheral portion to form a wound body. Next, the wound body is sandwiched between the exterior members 40, and the outer peripheral edge except for one side is heat-sealed to form a bag shape, which is then stored inside the exterior member 40.
  • an electrolyte composition including a solvent, an electrolyte salt, a monomer that is a raw material of the polymer compound, a polymerization initiator, and other materials such as a polymerization inhibitor as necessary is prepared, and the exterior member Inject into 40.
  • the opening of the exterior member 40 is heat-sealed in a vacuum atmosphere and sealed.
  • the gelled electrolyte layer 36 is formed by applying heat to polymerize the monomer to obtain a polymer compound.
  • the battery shown in FIGS. 5 and 6 is obtained.
  • the electronic device 400 includes an electronic circuit 401 of the electronic device body and a battery pack 300.
  • the battery pack 300 is electrically connected to the electronic circuit 401 via the positive terminal 331a and the negative terminal 331b.
  • the electronic device 400 has a configuration in which the battery pack 300 is detachable by a user.
  • the configuration of the electronic device 400 is not limited to this, and the battery pack 300 is built in the electronic device 400 so that the user cannot remove the battery pack 300 from the electronic device 400. May be.
  • the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of a charger (not shown), respectively.
  • the positive terminal 331a and the negative terminal 331b of the battery pack 300 are connected to the positive terminal and the negative terminal of the electronic circuit 401, respectively.
  • the electronic device 400 for example, a notebook personal computer, a tablet computer, a mobile phone (for example, a smartphone), a portable information terminal (Personal Digital Assistant: PDA), a display device (LCD, EL display, electronic paper, etc.), imaging Devices (eg digital still cameras, digital video cameras, etc.), audio equipment (eg portable audio players), game machines, cordless phones, e-books, electronic dictionaries, radio, headphones, navigation systems, memory cards, pacemakers, hearing aids, Electric tools, electric shavers, refrigerators, air conditioners, TVs, stereos, water heaters, microwave ovens, dishwashers, washing machines, dryers, lighting equipment, toys, medical equipment, robots, road conditioners, traffic lights, etc. It is, but not such limited thereto.
  • the electronic circuit 401 includes, for example, a CPU, a peripheral logic unit, an interface unit, a storage unit, and the like, and controls the entire electronic device 400.
  • the battery pack 300 includes an assembled battery 301 and a charge / discharge circuit 302.
  • the assembled battery 301 is configured by connecting a plurality of secondary batteries 301a in series and / or in parallel.
  • the plurality of secondary batteries 301a are connected, for example, in n parallel m series (n and m are positive integers).
  • FIG. 7 shows an example in which six secondary batteries 301a are connected in two parallel three series (2P3S).
  • the secondary battery 301a the battery according to the second or third embodiment is used.
  • the battery pack 300 includes the assembled battery 301 including a plurality of secondary batteries 301 a
  • the battery pack 300 includes a single secondary battery 301 a instead of the assembled battery 301. It may be adopted.
  • the charging / discharging circuit 302 is a control unit that controls charging / discharging of the assembled battery 301. Specifically, during charging, the charging / discharging circuit 302 controls charging of the assembled battery 301. On the other hand, at the time of discharging (that is, when the electronic device 400 is used), the charging / discharging circuit 302 controls the discharging of the electronic device 400.
  • FIG. 8 schematically illustrates an example of a configuration of a hybrid vehicle that employs a series hybrid system to which the present disclosure is applied.
  • a series hybrid system is a car that runs on an electric power driving force conversion device using electric power generated by a generator driven by an engine or electric power once stored in a battery.
  • the hybrid vehicle 7200 includes an engine 7201, a generator 7202, a power driving force conversion device 7203, a driving wheel 7204a, a driving wheel 7204b, a wheel 7205a, a wheel 7205b, a battery 7208, a vehicle control device 7209, various sensors 7210, and a charging port 7211. Is installed.
  • the above-described power storage device of the present disclosure is applied to the battery 7208.
  • Hybrid vehicle 7200 travels using power driving force conversion device 7203 as a power source.
  • An example of the power driving force conversion device 7203 is a motor.
  • the electric power / driving force conversion device 7203 is operated by the electric power of the battery 7208, and the rotational force of the electric power / driving force conversion device 7203 is transmitted to the driving wheels 7204a and 7204b.
  • the power driving force conversion device 7203 can be applied to either an AC motor or a DC motor by using DC-AC (DC-AC) or reverse conversion (AC-DC conversion) where necessary.
  • Various sensors 7210 control the engine speed through the vehicle control device 7209, and control the opening (throttle opening) of a throttle valve (not shown).
  • Various sensors 7210 include a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the rotational force of the engine 7201 is transmitted to the generator 7202, and the electric power generated by the generator 7202 by the rotational force can be stored in the battery 7208.
  • the resistance force at the time of deceleration is applied as a rotational force to the power driving force conversion device 7203, and the regenerative power generated by the power driving force conversion device 7203 by this rotational force is applied to the battery 7208. Accumulated.
  • the battery 7208 is connected to an external power source of the hybrid vehicle, so that the battery 7208 can receive power from the external power source using the charging port 211 as an input port and store the received power.
  • an information processing apparatus that performs information processing related to vehicle control based on information related to the secondary battery may be provided.
  • an information processing apparatus for example, there is an information processing apparatus that displays a remaining battery level based on information on the remaining battery level.
  • a series hybrid vehicle that runs on a motor using electric power generated by a generator driven by an engine or electric power stored once in a battery has been described as an example.
  • the present disclosure is also effective for a parallel hybrid vehicle that uses both the engine and motor outputs as the drive source, and switches between the three modes of running with the engine alone, running with the motor alone, and engine and motor running as appropriate. Applicable.
  • the present disclosure can be effectively applied to a so-called electric vehicle that travels only by a drive motor without using an engine.
  • a storage system 9100 for a house 9001 power is stored from a centralized power system 9002 such as a thermal power generation 9002a, a nuclear power generation 9002b, and a hydropower generation 9002c through a power network 9009, an information network 9012, a smart meter 9007, a power hub 9008, and the like. Supplied to the device 9003. At the same time, power is supplied to the power storage device 9003 from an independent power source such as the home power generation device 9004. The electric power supplied to the power storage device 9003 is stored. Electric power used in the house 9001 is supplied using the power storage device 9003. The same power storage system can be used not only for the house 9001 but also for buildings.
  • the house 9001 is provided with a power generation device 9004, a power consumption device 9005, a power storage device 9003, a control device 9010 that controls each device, a smart meter 9007, and a sensor 9011 that acquires various types of information.
  • Each device is connected by a power network 9009 and an information network 9012.
  • a solar cell, a fuel cell, or the like is used, and the generated power is supplied to the power consumption device 9005 and / or the power storage device 9003.
  • the power consuming apparatus 9005 is a refrigerator 9005a, an air conditioner 9005b, a television receiver 9005c, a bath 9005d, or the like.
  • the electric power consumption device 9005 includes an electric vehicle 9006.
  • the electric vehicle 9006 is an electric vehicle 9006a, a hybrid car 9006b, and an electric motorcycle 9006c.
  • the battery unit of the present disclosure described above is applied to the power storage device 9003.
  • the power storage device 9003 is composed of a secondary battery or a capacitor.
  • a lithium ion battery is used.
  • the lithium ion battery may be a stationary type or used in the electric vehicle 9006.
  • the smart meter 9007 has a function of measuring the usage amount of commercial power and transmitting the measured usage amount to an electric power company.
  • the power network 9009 may be any one or a combination of DC power supply, AC power supply, and non-contact power supply.
  • the various sensors 9011 are, for example, human sensors, illuminance sensors, object detection sensors, power consumption sensors, vibration sensors, contact sensors, temperature sensors, infrared sensors, and the like. Information acquired by the various sensors 9011 is transmitted to the control device 9010. Based on the information from the sensor 9011, the weather condition, the condition of the person, and the like can be grasped, and the power consumption device 9005 can be automatically controlled to minimize the energy consumption. Furthermore, the control device 9010 can transmit information on the house 9001 to an external power company or the like via the Internet.
  • the power hub 9008 performs processing such as branching of power lines and DC / AC conversion.
  • a communication method of the information network 9012 connected to the control device 9010 a method using a communication interface such as UART (Universal Asynchronous Receiver-Transmitter), Bluetooth (registered trademark), ZigBee (registered trademark), or the like.
  • a sensor network based on a wireless communication standard such as Wi-Fi.
  • the Bluetooth (registered trademark) system is applied to multimedia communication and can perform one-to-many connection communication.
  • ZigBee (registered trademark) uses a physical layer of IEEE (Institute of Electrical and Electronics Electronics) (802.15.4). IEEE 802.15.4 is the name of a short-range wireless network standard called PAN (Personal Area Network) or W (Wireless) PAN.
  • the control device 9010 is connected to an external server 9013.
  • the server 9013 may be managed by any one of the house 9001, the electric power company, and the service provider.
  • Information transmitted / received by the server 9013 is, for example, information on power consumption information, life pattern information, power charges, weather information, natural disaster information, and power transactions. These pieces of information may be transmitted / received from a power consuming device (for example, a television receiver) in the home, or may be transmitted / received from a device outside the home (for example, a mobile phone). Such information may be displayed on a device having a display function, for example, a television receiver, a mobile phone, a PDA (Personal Digital Assistant) or the like.
  • a control device 9010 that controls each unit is configured by a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and is stored in the power storage device 9003 in this example.
  • the control device 9010 is connected to the power storage device 9003, the home power generation device 9004, the power consumption device 9005, various sensors 9011, the server 9013 and the information network 9012, for example, a function of adjusting the amount of commercial power used and the amount of power generation have. In addition, you may provide the function etc. which carry out an electric power transaction in an electric power market.
  • electric power can be stored not only in the centralized power system 9002 such as the thermal power 9002a, the nuclear power 9002b, and the hydropower 9002c but also in the power storage device 9003 in the power generation device 9004 (solar power generation, wind power generation). it can. Therefore, even if the generated power of the home power generation apparatus 9004 fluctuates, it is possible to perform control such that the amount of power to be sent to the outside is constant or discharge is performed as necessary.
  • the power obtained by solar power generation is stored in the power storage device 9003, and midnight power with a low charge is stored in the power storage device 9003 at night, and the power stored by the power storage device 9003 is discharged during a high daytime charge. You can also use it.
  • control device 9010 is stored in the power storage device 9003.
  • control device 9010 may be stored in the smart meter 9007, or may be configured independently.
  • the power storage system 9100 may be used for a plurality of homes in an apartment house, or may be used for a plurality of detached houses.
  • the average number of grain boundaries per positive electrode active material particle is a value obtained by the “calculation method of the average number of grain boundaries per positive electrode active material particle” in the first embodiment.
  • Examples 1-1 to 1-4, Comparative Examples 1-1 to 1-3 (Production process of positive electrode active material)
  • a positive electrode active material was prepared as follows. First, Co 3 O 4 was produced by roasting using cobalt hydroxide as a raw material. Next, Li 2 CO 3 powder as a lithium compound and Co 3 O 4 powder as a transition metal compound are mixed, dried and fired to produce lithium cobaltate (LiCoO 2 ). Sizing was performed to obtain a positive electrode active material.
  • Co 3 O 4 may undergo phase transition to CoO at a temperature of about 900 ° C., and the grain boundary may be induced by this phase transition. is there.
  • the production temperature is set to 800 ° C. or lower.
  • LiCoO 2 Li 2 CO 3 and Co 3 O 4 were mixed and then calcined in a low temperature range of 350 ° C. to 600 ° C., and the final heat treatment was performed at 850 ° C. or lower.
  • a positive electrode active material (lithium cobaltate) having a reduced number of crystal grain boundaries and a commercially available positive electrode active material (lithium cobaltate) were mixed to obtain a mixed powder.
  • the mixing ratio (weight ratio) between the positive electrode active material having a reduced number of crystal grain boundaries and a commercially available positive electrode active material the average number of grain boundaries per one positive electrode active material particle in the mixed powder In the range of 0.22 to 2.25.
  • NMP N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • a laminate film type battery was produced as follows. First, the positive electrode and the negative electrode lead were welded to the positive electrode and the negative electrode obtained as described above, respectively, and then the positive electrode and the negative electrode were alternately stacked via a separator made of a polyethylene microporous film to obtain an electrode body.
  • this electrode body was loaded between the exterior members, and three sides of the exterior member were heat-sealed, and one side was not heat-sealed so as to have an opening.
  • a moisture-proof aluminum laminate film in which a 25 ⁇ m-thick nylon film, a 40 ⁇ m-thick aluminum foil, and a 30 ⁇ m-thick polypropylene film were laminated in order from the outermost layer was used.
  • a non-aqueous electrolyte was injected from the opening of the exterior member, and the remaining one side of the exterior member was heat-sealed under reduced pressure to seal the electrode body.
  • the target laminate film type battery was obtained.
  • This laminate film type battery is designed so that the amount of the positive electrode active material and the amount of the negative electrode active material are adjusted, and the open circuit voltage (that is, the battery voltage) at the time of full charge is 4.25V.
  • Examples 2-1 to 2-4, Comparative Examples 2-1 to 2-3 Examples 1-1 to 1-4, except that the amount of the positive electrode active material and the amount of the negative electrode active material were adjusted so that the open circuit voltage (that is, the battery voltage) during full charge was 4.30V.
  • a laminated film type battery was obtained in the same manner as in Examples 1-1 to 1-3.
  • Examples 3-1 to 3-4, Comparative Examples 3-1 to 3-3 Examples 1-1 to 1-4, except that the amount of the positive electrode active material and the amount of the negative electrode active material were adjusted so that the open circuit voltage (that is, the battery voltage) at the time of full charge was 4.35V.
  • a laminated film type battery was obtained in the same manner as in Examples 1-1 to 1-3.
  • Examples 4-1 to 4-4, Comparative Examples 4-1 to 4-3 Examples 1-1 to 1-4, except that the amount of the positive electrode active material and the amount of the negative electrode active material were adjusted so that the open circuit voltage (that is, the battery voltage) at the time of full charge was 4.40V.
  • a laminated film type battery was obtained in the same manner as in Examples 1-1 to 1-3.
  • Examples 5-1 to 5-4, Comparative Examples 5-1 to 5-3 Examples 1-1 to 1-4, except that the amount of the positive electrode active material and the amount of the negative electrode active material were adjusted so that the open circuit voltage (that is, the battery voltage) at the time of full charge was 4.45V.
  • a laminated film type battery was obtained in the same manner as in Examples 1-1 to 1-3.
  • Examples 6-1 to 6-4, Comparative Examples 6-1 to 6-3 Comparative examples 1-1 to 1-4, except that the amount of the positive electrode active material and the amount of the negative electrode active material were adjusted so that the open circuit voltage (that is, the battery voltage) at the time of full charge was 4.50V.
  • a laminated film type battery was obtained in the same manner as in Examples 1-1 to 1-3.
  • the discharge capacity retention rate of the battery obtained as described above was determined as follows. First, 100 cycles of charge / discharge operation were performed at 25 ° C., and “initial discharge capacity” and “discharge capacity at the 100th cycle” were obtained. In addition, the following charging / discharging operation was made into 1 cycle.
  • the charging current was 20 mA per 1 g of the positive electrode active material
  • the charging voltage was 4.25 V (Examples 1-1 to 1-4, Comparative Examples 1-1 to 1-3), 4.30 V (Examples 2-1 to 2-4, Comparative Examples 2-1 to 2-3), 4.35 V (Examples 3-1 to 3-4, Comparative Examples 3-1 to 3-3), 4.40 V (Examples 4-1 to 4-4, Comparative Examples 4-1 to 4-3), 4.45 V (Examples 5-1 to 5-4, Comparative Examples 5-1 to 5-3), 4.50 V (Examples 6-1 to 6-4, the constant current constant voltage charging operation as in Comparative Examples 6-1 to 6-3), followed by a constant current discharging operation with a discharge current of 20 mA per 1 g of the positive electrode active material and a discharge voltage of 3 V.
  • FIG. 10 is a graph showing the relationship between the average number of grain boundaries per positive electrode active material particle and the cycle characteristics. The following can be understood from FIG. In a battery using a positive electrode active material having an average number of grain boundaries per positive electrode active material particle of 0.58 or more, cycle characteristics are deteriorated. Particularly in a battery having a high potential voltage exceeding 4.40 V, the cycle characteristics are remarkably deteriorated. On the other hand, in a battery using a positive electrode active material having an average number of grain boundaries per positive electrode active material particle of less than 0.58, good cycle characteristics can be obtained. In particular, in a battery using a positive electrode active material having an average number of grain boundaries per positive electrode active material particle of 0.45 or less, cycle characteristics are good.
  • FIG. 11A is a SIM image of a cross-section of the LiCoO 2 particles powder average grain boundaries per one LiCoO 2 particles is 0.23.
  • FIG. 11B is a SIM image of a cross section of LiCoO 2 particle powder having an average number of grain boundaries per LiCoO 2 particle of 2.25.
  • FIG. 12 is a TEM image of a cross section of the NCA-based positive electrode active material particles.
  • the NCA-based positive electrode active material may have a secondary particle form composed of primary particles of about several hundred nm to several ⁇ m.
  • the primary particle interface in the secondary particles corresponds to the crystal grain boundary of the LiCoO 2 positive electrode active material
  • the average number of grain boundaries is generally larger than that of the LiCoO 2 active material ( 11A, 11B, 12). Therefore, it is considered that the present technology is particularly effective when applied to a LiCoO 2 positive electrode active material among positive electrode active materials having a layered rock salt type structure.
  • the present technology can be applied to a secondary battery such as a square type or a coin type, and the present technology can be applied to a flexible battery mounted on a wearable terminal such as a smart watch, a head-mounted display, or iGlass (registered trademark). It is also possible to apply technology.
  • the present technology is applied to the wound type and stack type secondary batteries.
  • the structure of the battery is not limited to this, for example, The present technology can also be applied to a secondary battery having a structure in which a positive electrode and a negative electrode are folded.
  • the present technology is applied to a lithium ion secondary battery and a lithium ion polymer secondary battery have been described.
  • the types of batteries to which the present technology can be applied are limited thereto.
  • the present technology may be applied to an all solid state battery such as an all solid state lithium ion secondary battery.
  • An all-solid battery to which the present technology is applied includes, for example, a positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode having a negative electrode current collector and a negative electrode active material layer, a solid electrolyte layer, a positive electrode, a negative electrode, and An exterior member that houses the solid electrolyte.
  • the positive electrode active material layer includes the positive electrode active material according to the first embodiment and a solid electrolyte.
  • the negative electrode active material layer includes a negative electrode active material and a solid electrolyte.
  • the all-solid-state battery having the above configuration is manufactured as follows, for example. First, a positive electrode is produced by forming a positive electrode active material layer including a positive electrode active material and a solid electrolyte on a positive electrode current collector. Next, a negative electrode is produced by forming a negative electrode active material layer including a negative electrode active material and a solid electrolyte on the negative electrode current collector. Subsequently, the solid electrolyte is sandwiched and fired between the positive electrode and the negative electrode to form a laminate, and then the laminate is sandwiched between the exterior members, and the periphery of the exterior member is heat-sealed. Thereby, the target all-solid-state battery is obtained.
  • the configuration in which the electrode includes the current collector and the active material layer has been described as an example.
  • the configuration of the electrode is not limited thereto.
  • the electrode may be composed of only the active material layer.
  • the present technology can also employ the following configurations.
  • the positive electrode includes a powder of positive electrode active material particles, A battery having an average number of grain boundaries per positive electrode active material particle of less than 0.58.
  • the positive electrode active material particles include a lithium transition metal composite oxide having a layered rock salt structure.
  • the lithium transition metal composite oxide is at least one of lithium cobalt oxide and lithium cobalt oxide substituted with another metal element.
  • the battery according to (2), wherein the lithium transition metal composite oxide has an average composition represented by the following formula (1).
  • M is at least one selected from the group consisting of nickel, manganese, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten.
  • Represents one, r, s, t and u are 0.8 ⁇ r ⁇ 1.2, 0 ⁇ s ⁇ 0.5, ⁇ 0.1 ⁇ t ⁇ 0.2, 0 ⁇ u ⁇ 0.1 (Note that the composition of lithium varies depending on the state of charge and discharge, and the value of r represents the value in a fully discharged state.)
  • M in the formula (1) is at least one of aluminum, magnesium, and titanium.
  • (6) The battery according to any one of (1) to (5), wherein an average number of grain boundaries per one positive electrode active material particle is 0.5 or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

電池は、正極と、負極と、電解質とを備え、正極は、正極活物質粒子の粉末を含み、正極活物質粒子1個あたりの平均粒界数が、0.58未満である。

Description

正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
 本技術は、正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システムに関する。
 リチウムイオン二次電池の正極活物質として、LiCoO2系活物質(Coの一部を他の金属元素で置換した組成を含む)が用いられている。LiCoO2系活物質では、平均結晶粒径を所定範囲に制御することで、電池の充放電に伴う正極活物質粒子の割れ(クラック)の発生を減少させ、それによってサイクル特性を良好にする技術が提案されている(例えば特許文献1参照)。
特開2013-161703号公報
 しかしながら、平均結晶粒径を制御しても、正極活物質粒子内に複数の結晶子がある場合には、必ずしも正極活物質粒子のクラックの発生を抑制することができない。特に4.2Vを超える高電位で充放電を行った場合に、クラックの発生を抑制することが困難となる。このため、平均結晶粒径を制御しても、良好なサイクル特性を得ることができない虞がある。
 本技術の目的は、良好なサイクル特性を得ることができる正極活物質、正極、電池、その電池を備える電池パック、電子機器、電動車両、蓄電装置および電力システムを提供することにある。
 上述の課題を解決するために、本技術の電池は、正極と、負極と、電解質とを備え、正極は、正極活物質粒子の粉末を含み、正極活物質粒子1個あたりの平均粒界数が、0.58未満である。
 本技術の正極活物質は、正極活物質粒子の粉末を含み、正極活物質粒子1個あたりの平均粒界数が、0.58未満である。
 本技術の正極は、正極活物質粒子の粉末を含み、正極活物質粒子1個あたりの平均粒界数が、0.58未満である。
 本技術の電池パック、電子機器、電動車両、蓄電装置および電力システムは、上述の電池を備える。
 本技術によれば、良好なサイクル特性を得ることができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果またはそれらと異質な効果であってもよい。
図1A、図1B、図1C、図1Dはそれぞれ、SIM像の観察条件を示した模式図である。 図2Aは、結晶粒界の判定方法を説明するための概略図である。図2Bは、境界のヒストグラムの第1の例を示す図である。図2Cは、境界のヒストグラムの第2の例を示す図である。 図3は、本技術の第2の実施形態に係る非水電解質二次電池の構成の一例を示す断面図である。 図4は、図3に示した巻回型電極体の一部を拡大して表す断面図である。 図5は、本技術の第2の実施形態に係る非水電解質二次電池の構成の一例を示す分解斜視図である。 図6は、図5のVI-VI線に沿った断面図である。 図7は、応用例としての電子機器の構成の一例を示すブロック図である。 図8は、応用例としての車両における蓄電システムの構成の一例を示す概略図である。 図9は、応用例としての住宅における蓄電システムの構成の一例を示す概略図である。 図10は、正極活物質粒子1個あたりの平均粒界数とサイクル特性との関係を示すグラフである。 図11Aは、LiCoO2粒子1個当たりの平均粒界数が0.23であるLiCoO2粒子の断面のSIM像である。図11Bは、LiCoO2粒子1個当たりの平均粒界数が2.25であるLiCoO2粒子の断面のSIM像である。 図12は、NCA系正極活物質粒子の断面のTEM像である。
 本技術の実施形態および応用例について以下の順序で説明する。
1 第1の実施形態(正極活物質の例)
2 第2の実施形態(円筒型電池の例)
3 第3の実施形態(ラミネートフィルム型電池の例)
4 応用例1(電池パックおよび電子機器の例)
5 応用例2(車両における蓄電システムの例)
6 応用例3(住宅における蓄電システムの例)
<1 第1の実施形態>
[正極活物質の構成]
 本技術の第1の実施形態に係る正極活物質は、いわゆる非水電解質二次電池用正極活物質であり、正極活物質粒子の粉末を含んでいる。正極活物質粒子は、電極反応物質であるリチウムを吸蔵および放出することが可能であり、層状岩塩型の構造を有するリチウム遷移金属複合酸化物を含む。第1の実施形態に係る正極活物質は、高充電電圧の非水電解質二次電(例えば満充電状態における正極の電位が4.20V(vsLi/Li+)を超える非水電解質二次電)に適用して好適なものである。
 リチウム遷移金属複合酸化物は、コバルト酸リチウム、およびコバルト酸リチウムのコバルトの一部を他の金属元素で置換したもののうちの少なくとも1種を含む。この場合、リチウム遷移金属複合酸化物中における他の金属元素の含有量は、例えば、コバルトの含有量よりも少ない。他の金属元素は、ニッケル(Ni)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)からなる群のうちの少なくとも1種である。
 リチウム遷移金属複合酸化物は、以下の式(1)で表される平均組成を有することが好ましい。
 LirCo(1-s)s(2-t)u ・・・(1)
(但し、式(1)中、Mは、ニッケル、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種、好ましくはアルミニウム、マグネシウムおよびチタンのうちの少なくとも1種を表す。r、s、tおよびuは、0.8≦r≦1.2、0≦s<0.5、-0.1≦t≦0.2、0≦u≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、rの値は完全放電状態における値を表している。)
(正極活物質粒子1個あたりの平均粒界数)
 正極活物質粒子1個あたりの平均粒界数が、0.58未満、好ましくは0.5以下、より好ましくは0.45以下、更により好ましくは0.31以下、特に好ましくは0.23以下である。平均粒界数が0.58未満であると、充放電による正極活物質粒子の割れを抑制し、良好なサイクル特性を得ることができる。
 正極活物質粒子に結晶粒界があると、充放電時には、結晶粒界を境にして各結晶子は異なる方向に伸縮することになる。このため、充放電時には結晶粒界の位置にクラックが発生しやすい。したがって、良好なサイクル特性を得るためには、上記のように正極活物質粒子1個あたりの平均粒界数を規定することが好ましい。層状岩塩型の構造を有するリチウム遷移金属複合酸化物では、高電位の充放電において層状岩塩構造の変化に伴う粒界破壊が生じやすいため、上記のように平均粒界数を規定することが特に好ましい。
(正極活物質粒子1個あたりの平均粒界数の算出方法)
 正極活物質粒子1個あたりの平均粒界数は次のようにして算出される。まず、正極活物質を樹脂で固め、正極活物質粒子の断面を切り出したのち、その断面をイオンミリングにより研磨する。次に、FEI社製の集束イオンビーム(FIB)(HELIOS NANOLAB 400S;加速電圧5kV)を用い、正極活物質粒子の断面のSIM像を撮影する。具体的には、粒界以外の加工ムラ(いわゆるFIB(Focused Ion Beam)加工のカーテニング効果)および粒子の側壁のコントラストを判別しやすくするため、Gaイオンの入射方向と試料51および二次電子検出器52との方位関係を変えて、図1A~1Dに示すように4方位について、同一視野(約40μm×80μm)のSIM像を撮影する。なお、図1A~1D中では、試料51の方向を明確にするために、試料51の両端に文字“A”、“B”を付している。続いて、撮影したSIM像内の粒子数および粒界数を計測し、正極活物質粒子1個あたりの平均粒界数(SIM像内の粒界数/SIM像内の粒子数)を算出する。算出において、粒子の長軸長が500nm以下の正極活物質粒子は、粒子としてカウントしないものとする。ここで、長軸長とは、粒子の輪郭に接するように、あらゆる角度から引いた2本の平行線間の距離のうち最大のもの(いわゆる最大フェレ径)を意味する。本実施形態において、SIM像を用いて粒界数を計測するのは、SIM像はSEM像などに比べて結晶方位コントラストが強く表れるためである。
(結晶境界の判定方法)
 SIM像では、結晶粒界を境界としてコントラスト(結晶方位コントラスト)が変化する。一方、粒子間の間隙は暗く写る。このため、上記の“正極活物質粒子1個あたりの平均粒界数の算出方法”において、撮影したSIM像中においてコントラストの変化する境界が“結晶粒界(結晶方位が異なる場合の境界)”および“粒子間の間隙(正極活物質粒子間の間隙)”のいずれであるかを以下のようにして判定する。ここでは、図2Aに示した境界61が“結晶粒界”および“粒子間の間隙”のいずれであるかを判定する例について説明する。また、図2Aが、撮影された1枚のSIM像を示すものとする。
 まず、撮影したSIM像から、図2Aに示すように、着目する境界61の延在方向に対してほぼ垂直な方向(具体的には図2A中に記した線分61Aの延在方向)におけるヒストグラム(輝度の分布を示すヒストグラム)を取得する。次に、取得したヒストグラムのうち境界61に対応する部分において、輝度が低下し一定となる領域が存在する否かを確認する。図2Bに示すように、輝度が低下し一定となる領域が存在する場合には、境界61を“粒子間の間隙”と判定する。一方、図2Cに示すように、輝度が低下し一定となる領域が存在しない場合(すなわちヒストグラムがほぼV字状に変化している場合)には、境界の中心に向けて急激に傾斜する2つの曲線それぞれの変曲点を求めたのち、これらの変曲点間の横軸方向の距離を求める。ほぼV字状であるものの、3以上の変曲点が存在する場合には、正規分布で近似した曲線(いわゆるガウシアンフィッティング)で変曲点を求める。そして、この距離が50nm以上離れているか否かを判断する。変曲点間の横軸方向の距離が50nm以上離れている場合には、境界61を“粒子間の間隙”と判定する。一方、変曲点間の横軸方向の距離が50nm未満である場合には、境界61を“結晶粒界”と判定する。
 例えば、図2A(SIM像)の境界61~63のうち境界61が“粒子間の間隙”と判定され、境界62、63が“結晶粒界”と判定された場合には、SIM像中には粒子が2つ存在し、結晶粒界が2つ存在することになる。したがって、正極活物質粒子1個あたりの平均粒界数(SIM像内の結晶粒界数/SIM像内の粒子数))は、“1”となる。
(平均粒子径)
 正極活物質粒子の平均粒子径は、好ましくは2μm以上50μm以下、より好ましくは5μm以上40μm以下である。平均粒子径が2μm未満であると、正極を作製する際にプレス工程において正極活物質が正極集電体から剥離しやすくなり、また、正極活物質の表面積が大きくなるので、導電剤あるいは結着剤などの添加量を増加させなければならず、単位質量当たりのエネルギー密度が小さくなってしまうからである。一方、平均粒子径が50μmを超えると、正極活物質がセパレータを貫通し、短絡を引き起こしてしまう可能性が高くなるからである。
(平均粒子径の算出方法)
 正極活物質粒子の平均粒子径は、いわゆる粒度分布計による粒子サイズの平均でもよい。上記の“正極活物質粒子1個あたりの平均粒界数の算出方法”におけるSIM像内の粒子から平均粒子径を求める事も可能である。その場合には、撮影したSIM像から無作為に10個の粒子を選び出し、粒子断面の面積を画像処理により測定し、粒子の断面が円形状と仮定して各粒子の粒径(直径)を求める。続いて、測定した10個の粒子の粒径を単純に平均(算術平均)して平均粒径を求め、これを正極活物質粒子の平均粒子径とする。
[正極活物質の製造方法]
 以下、上記の構成を有する正極活物質の製造方法の一例について説明する。まず、水酸化コバルトを原料とし、焙焼により酸化コバルト(Co34)を生成する。この際、酸化コバルトの結晶粒界発生を抑制することが好ましい。酸化コバルト(Co34)の粒界数が、最終的に得られる正極活物質の粒界数に影響を与えるからである。また、焙焼により酸化コバルト(Co34)を生成する場合に、生成温度を850℃以下とすることが好ましく、800℃以下とすることがより好ましい。Co34は900℃程度の温度でCoOに相転移することがあり、この相転移により結晶粒界を誘発する虞があるからである。
 次に、酸化コバルト(Co34)と、炭酸リチウム(Li2CO3)と、必要に応じて添加元素を含む化合物とを混合したのち、得られた混合物を焼成することにより、LiCoO2系活物質(Coの一部を他の金属元素で置換した組成を含む)を得る。この際、焼成温度を850℃以下とすることが好ましく、800℃以下とすることがより好ましい。上述のように、Co34は900℃程度の温度でCoOに相転移することがあるからである。その後、粉砕は行わず、分粒することが好ましい。LiCoO2系活物質を粉砕すると、欠陥が発生し、粉砕後の熱処理による欠陥の回復過程で結晶粒界が形成される虞があるからである。以上により、目的とする正極活物質が得られる。
[効果]
 第1の実施形態に係る正極活物質は、正極活物質粒子の粉末を含み、正極活物質粒子1個あたりの平均粒界数が、0.58未満であるので、充放電による正極活物質粒子の割れを抑制することができる。したがって、良好なサイクル特性を有する電池を実現することができる。
<2 第2の実施形態>
 第2の実施形態では、上述の第1の実施形態に係る正極活物質を含む正極を備える非水電解質二次電池について説明する。
[電池の構成]
 以下、図3を参照しながら、本技術の第2の実施形態に係る非水電解質二次電池(以下単に「電池」という。)の一構成例について説明する。この電池は、例えば、負極の容量が、電極反応物質であるリチウム(Li)の吸蔵および放出による容量成分により表されるいわゆるリチウムイオン二次電池である。この電池はいわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、一対の帯状の正極21と帯状の負極22とがセパレータ23を介して積層し巻回された巻回型電極体20を有している。電池缶11は、ニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、液状の電解質としての電解液が注入され、正極21、負極22およびセパレータ23に含浸されている。また、巻回型電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12、13がそれぞれ配置されている。
 電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)16とが、封口ガスケット17を介してかしめられることにより取り付けられている。これにより、電池缶11の内部は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。安全弁機構15は、電池蓋14と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合に、ディスク板15Aが反転して電池蓋14と巻回型電極体20との電気的接続を切断するようになっている。封口ガスケット17は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。
 巻回型電極体20の中心には、例えばセンターピン24が挿入されている。巻回型電極体20の正極21にはアルミニウム(Al)などよりなる正極リード25が接続されており、負極22にはニッケルなどよりなる負極リード26が接続されている。正極リード25は安全弁機構15に溶接されることにより電池蓋14と電気的に接続されており、負極リード26は電池缶11に溶接され電気的に接続されている。
 以下、図4を参照しながら、電池を構成する正極21、負極22、セパレータ23、および電解液について順次説明する。
(正極)
 正極21は、例えば、正極集電体21Aの両面に正極活物質層21Bが設けられた構造を有している。なお、図示はしないが、正極集電体21Aの片面のみに正極活物質層21Bを設けるようにしてもよい。正極集電体21Aは、例えば、アルミニウム箔、ニッケル箔またはステンレス箔などの金属箔により構成されている。正極活物質層21Bは、正極活物質を含んでいる。正極活物質層21Bは、必要に応じて導電剤および結着剤のうちの少なくとも1種をさらに含んでいてもよい。
(正極活物質)
 正極活物質は、第1の実施形態に係る正極活物質である。
(結着剤)
 結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、スチレンブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)などの樹脂材料、ならびにこれらの樹脂材料を主体とする共重合体などから選択される少なくとも1種が用いられる。
(導電剤)
 導電剤としては、例えば、黒鉛、炭素繊維、カーボンブラック、ケッチェンブラックまたはカーボンナノチューブなどの炭素材料が挙げられ、これらのうちの1種を単独で用いてもよいし、2種以上を混合して用いてもよい。また、炭素材料の他にも、導電性を有する材料であれば金属材料または導電性高分子材料などを用いるようにしてもよい。
(負極)
 負極22は、例えば、負極集電体22Aの両面に負極活物質層22Bが設けられた構造を有している。なお、図示はしないが、負極集電体22Aの片面のみに負極活物質層22Bを設けるようにしてもよい。負極集電体22Aは、例えば、銅箔、ニッケル箔またはステンレス箔などの金属箔により構成されている。
 負極活物質層22Bは、リチウムを吸蔵および放出することが可能な1種または2種以上の負極活物質を含んでいる。負極活物質層22Bは、必要に応じて結着剤および導電剤のうちの少なくとも1種をさらに含んでいてもよい。
 なお、この電池では、負極22または負極活物質の電気化学当量が、正極21の電気化学当量よりも大きくなっており、理論上、充電の途中において負極22にリチウム金属が析出しないようになっていることが好ましい。
(負極活物質)
 負極活物質としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維あるいは活性炭などの炭素材料が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスあるいは石油コークスなどがある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。これら炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができ好ましい。また、難黒鉛化性炭素は、優れたサイクル特性が得られるので好ましい。更にまた、充放電電位が低いもの、具体的には充放電電位がリチウム金属に近いものが、電池の高エネルギー密度化を容易に実現することができるので好ましい。
 また、高容量化が可能な他の負極活物質としては、金属元素および半金属元素のうちの少なくとも1種を構成元素(例えば、合金、化合物または混合物)として含む材料も挙げられる。このような材料を用いれば、高いエネルギー密度を得ることができるからである。特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。なお、本技術において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうちの2種以上が共存するものがある。
 このような負極活物質としては、例えば、リチウムと合金を形成することが可能な金属元素または半金属元素が挙げられる。具体的には、マグネシウム、ホウ素、アルミニウム、チタン、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム(Y)、パラジウム(Pd)あるいは白金(Pt)が挙げられる。これらは結晶質のものでもアモルファスのものでもよい。
 負極活物質としては、短周期型周期表における4B族の金属元素あるいは半金属元素を構成元素として含むものが好ましく、より好ましいのはケイ素およびスズの少なくとも一方を構成元素として含むものである。ケイ素およびスズは、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。このような負極活物質としては、例えば、ケイ素の単体、合金または化合物や、スズの単体、合金または化合物や、それらの1種または2種以上の相を少なくとも一部に有する材料が挙げられる。
 ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン(Sb)およびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。スズの合金としては、例えば、スズ以外の第2の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。
 スズの化合物あるいはケイ素の化合物としては、例えば、酸素あるいは炭素を含むものが挙げられ、スズまたはケイ素に加えて、上述した第2の構成元素を含んでいてもよい。
 中でも、Sn系の負極活物質としては、コバルトと、スズと、炭素とを構成元素として含み、炭素の含有量が9.9質量%以上29.7質量%以下であり、かつスズとコバルトとの合計に対するコバルトの割合が30質量%以上70質量%以下であるSnCoC含有材料が好ましい。このような組成範囲において高いエネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるからである。
 このSnCoC含有材料は、必要に応じて更に他の構成元素を含んでいてもよい。他の構成元素としては、例えば、ケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン(P)、ガリウムまたはビスマスが好ましく、2種以上を含んでいてもよい。容量またはサイクル特性を更に向上させることができるからである。
 なお、このSnCoC含有材料は、スズと、コバルトと、炭素とを含む相を有しており、この相は結晶性の低いまたは非晶質な構造を有していることが好ましい。また、このSnCoC含有材料では、構成元素である炭素の少なくとも一部が、他の構成元素である金属元素または半金属元素と結合していることが好ましい。サイクル特性の低下はスズなどが凝集あるいは結晶化することによるものであると考えられるが、炭素が他の元素と結合することにより、そのような凝集あるいは結晶化を抑制することができるからである。
 元素の結合状態を調べる測定方法としては、例えばX線光電子分光法(XPS)が挙げられる。XPSでは、炭素の1s軌道(C1s)のピークは、グラファイトであれば、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正された装置において、284.5eVに現れる。また、表面汚染炭素であれば、284.8eVに現れる。これに対して、炭素元素の電荷密度が高くなる場合、例えば炭素が金属元素または半金属元素と結合している場合には、C1sのピークは、284.5eVよりも低い領域に現れる。すなわち、SnCoC含有材料について得られるC1sの合成波のピークが284.5eVよりも低い領域に現れる場合には、SnCoC含有材料に含まれる炭素の少なくとも一部が他の構成元素である金属元素または半金属元素と結合している。
 なお、XPS測定では、スペクトルのエネルギー軸の補正に、例えばC1sのピークを用いる。通常、表面には表面汚染炭素が存在しているので、表面汚染炭素のC1sのピークを284.8eVとし、これをエネルギー基準とする。XPS測定では、C1sのピークの波形は、表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形として得られるので、例えば市販のソフトウエアを用いて解析することにより、表面汚染炭素のピークと、SnCoC含有材料中の炭素のピークとを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
 その他の負極活物質としては、例えば、リチウムを吸蔵および放出することが可能な金属酸化物または高分子化合物なども挙げられる。金属酸化物としては、例えば、チタン酸リチウム(Li4Ti512)などのチタンとリチウムとを含むリチウムチタン酸化物、酸化鉄、酸化ルテニウムまたは酸化モリブデンなどが挙げられる。高分子化合物としては、例えば、ポリアセチレン、ポリアニリンまたはポリピロールなどが挙げられる。
(結着剤)
 結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリロニトリル、スチレンブタジエンゴムおよびカルボキシメチルセルロースなどの樹脂材料、ならびにこれら樹脂材料を主体とする共重合体などから選択される少なくとも1種が用いられる。
(導電剤)
 導電剤としては、正極活物質層21Bと同様の炭素材料などを用いることができる。
(セパレータ)
 セパレータ23は、正極21と負極22とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータ23は、例えば、ポリテトラフルオロエチレン、ポリプロピレンあるいはポリエチレンなどの樹脂製の多孔質膜によって構成されており、これらの2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリオレフィン製の多孔質膜は短絡防止効果に優れ、かつシャットダウン効果による電池の安全性向上を図ることができるので好ましい。特にポリエチレンは、100℃以上160℃以下の範囲内においてシャットダウン効果を得ることができ、かつ電気化学的安定性にも優れているので、セパレータ23を構成する材料として好ましい。他にも、化学的安定性を備えた樹脂を、ポリエチレンあるいはポリプロピレンと共重合またはブレンド化した材料を用いることができる。あるいは、多孔質膜は、ポリプロピレン層と、ポリエチレン層と、ポリプロピレン層とを順次に積層した3層以上の構造を有していてもよい。
 セパレータ23は、基材と、基材の片面または両面に設けられた表面層を備える構成を有していてもよい。表面層は、電気的な絶縁性を有する無機粒子と、無機粒子を基材の表面に結着するとともに、無機粒子同士を結着する樹脂材料とを含んでいる。この樹脂材料は、例えば、フィブリル化し、フィブリルが相互連続的に繋がった三次元的なネットワーク構造を有していてもよい。無機粒子は、この三次元的なネットワーク構造を有する樹脂材料に担持されることにより、互いに連結することなく分散状態を保つことができる。また、樹脂材料はフィブリル化せずに基材の表面や無機粒子同士を結着してもよい。この場合、より高い結着性を得ることができる。上述のように基材の片面または両面に表面層を設けることで、耐酸化性、耐熱性および機械強度を基材に付与することができる。
 基材は、多孔性を有する多孔質層である。基材は、より具体的には、イオン透過度が大きく、所定の機械的強度を有する絶縁性の膜から構成される多孔質膜であり、基材の空孔に電解液が保持される。基材は、セパレータの主要部として所定の機械的強度を有する一方で、電解液に対する耐性が高く、反応性が低く、膨張しにくいという特性を要することが好ましい。
 基材を構成する樹脂材料は、例えばポリプロピレン若しくはポリエチレンなどのポリオレフィン樹脂、アクリル樹脂、スチレン樹脂、ポリエステル樹脂またはナイロン樹脂などを用いることが好ましい。特に、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレンなどのポリエチレン、若しくはそれらの低分子量ワックス分、またはポリプロピレンなどのポリオレフィン樹脂は溶融温度が適当であり、入手が容易なので好適に用いられる。また、これら2種以上の多孔質膜を積層した構造、もしくは、2種以上の樹脂材料を溶融混練して形成した多孔質膜としてもよい。ポリオレフィン樹脂からなる多孔質膜を含むものは、正極21と負極22との分離性に優れ、内部短絡の低下をいっそう低減することができる。
 基材としては、不織布を用いてもよい。不織布を構成する繊維としては、アラミド繊維、ガラス繊維、ポリオレフィン繊維、ポリエチレンテレフタレート(PET)繊維、またはナイロン繊維などを用いることができる。また、これら2種以上の繊維を混合して不織布としてもよい。
 無機粒子は、金属酸化物、金属窒化物、金属炭化物および金属硫化物などの少なくとも1種を含んでいる。金属酸化物としては、酸化アルミニウム(アルミナ、Al23)、ベーマイト(水和アルミニウム酸化物)、酸化マグネシウム(マグネシア、MgO)、酸化チタン(チタニア、TiO2)、酸化ジルコニウム(ジルコニア、ZrO2)、酸化ケイ素(シリカ、SiO2)または酸化イットリウム(イットリア、Y23)などを好適に用いることができる。金属窒化物としては、窒化ケイ素(Si34)、窒化アルミニウム(AlN)、窒化硼素(BN)または窒化チタン(TiN)などを好適に用いることができる。金属炭化物としては、炭化ケイ素(SiC)または炭化ホウ素(B4C)などを好適に用いることができる。金属硫化物としては、硫酸バリウム(BaSO4)などを好適に用いることができる。また、ゼオライト(M2/nO・Al23・xSiO2・yH2O、Mは金属元素、x≧2、y≧0)などの多孔質アルミノケイ酸塩、層状ケイ酸塩、チタン酸バリウム(BaTiO3)またはチタン酸ストロンチウム(SrTiO3)などの鉱物を用いてもよい。中でも、アルミナ、チタニア(特にルチル型構造を有するもの)、シリカまたはマグネシアを用いることが好ましく、アルミナを用いることがより好ましい。無機粒子は耐酸化性および耐熱性を備えており、無機粒子を含有する正極対向側面の表面層は、充電時の正極近傍における酸化環境に対しても強い耐性を有する。無機粒子の形状は特に限定されるものではなく、球状、板状、繊維状、キュービック状およびランダム形状などのいずれも用いることができる。
 表面層を構成する樹脂材料としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどの含フッ素樹脂、フッ化ビニリデン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体などの含フッ素ゴム、スチレン-ブタジエン共重合体またはその水素化物、アクリロニトリル-ブタジエン共重合体またはその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体またはその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニルなどのゴム類、エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロースなどのセルロース誘導体、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、全芳香族ポリアミド(アラミド)などのポリアミド、ポリアミドイミド、ポリアクリロニトリル、ポリビニルアルコール、ポリエーテル、アクリル酸樹脂またはポリエステルなどの融点およびガラス転移温度の少なくとも一方が180℃以上の高い耐熱性を有する樹脂などが挙げられる。これら樹脂材料は、単独で用いてもよいし、2種以上を混合して用いてもよい。中でも、耐酸化性および柔軟性の観点からは、ポリフッ化ビニリデンなどのフッ素系樹脂が好ましく、耐熱性の観点からは、アラミドまたはポリアミドイミドを含むことが好ましい。
 無機粒子の粒径は、1nm~10μmの範囲内であることが好ましい。1nmより小さいと、入手が困難であり、また入手できたとしてもコスト的に見合わない。一方、10μmより大きいと電極間距離が大きくなり、限られたスペースで活物質充填量が十分得られず電池容量が低くなる。
 表面層の形成方法としては、例えば、マトリックス樹脂、溶媒および無機物からなるスラリーを基材(多孔質膜)上に塗布し、マトリックス樹脂の貧溶媒且つ上記溶媒の親溶媒浴中を通過させて相分離させ、その後、乾燥させる方法を用いることができる。
 なお、上述した無機粒子は、基材としての多孔質膜に含有されていてもよい。また、表面層が無機粒子を含まず、樹脂材料のみにより構成されていてもよい。
(電解液)
 セパレータ23には、液状の電解質である電解液が含浸されている。電解液は、溶媒と、この溶媒に溶解された電解質塩とを含んでいる。電解液が、電池特性を向上するために、公知の添加剤を含んでいてもよい。
 溶媒としては、炭酸エチレンあるいは炭酸プロピレンなどの環状の炭酸エステルを用いることができ、炭酸エチレンおよび炭酸プロピレンのうちの一方、特に両方を混合して用いることが好ましい。サイクル特性を向上させることができるからである。
 溶媒としては、また、これらの環状の炭酸エステルに加えて、炭酸ジエチル、炭酸ジメチル、炭酸エチルメチルあるいは炭酸メチルプロピルなどの鎖状の炭酸エステルを混合して用いることが好ましい。高いイオン伝導性を得ることができるからである。
 溶媒としては、さらにまた、2,4-ジフルオロアニソールあるいは炭酸ビニレンを含むこと好ましい。2,4-ジフルオロアニソールは放電容量を向上させることができ、また、炭酸ビニレンはサイクル特性を向上させることができるからである。よって、これらを混合して用いれば、放電容量およびサイクル特性を向上させることができるので好ましい。
 これらの他にも、溶媒としては、炭酸ブチレン、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピロニトリル、N,N-ジメチルフォルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドあるいはリン酸トリメチルなどが挙げられる。
 なお、これらの非水溶媒の少なくとも一部の水素をフッ素で置換した化合物は、組み合わせる電極の種類によっては、電極反応の可逆性を向上させることができる場合があるので、好ましい場合もある。
 電解質塩としては、例えばリチウム塩が挙げられ、1種を単独で用いてもよく、2種以上を混合して用いてもよい。リチウム塩としては、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C654、LiCH3SO3、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、LiAlCl4、LiSiF6、LiCl、ジフルオロ[オキソラト-O,O']ホウ酸リチウム、リチウムビスオキサレートボレート、あるいはLiBrなどが挙げられる。中でも、LiPF6は高いイオン伝導性を得ることができるとともに、サイクル特性を向上させることができるので好ましい。
[正極電位]
 満充電状態における正極電位(vsLi/Li+)は、好ましくは4.20Vを超え、より好ましくは4.25V以上、更により好ましくは4.40Vを超え、特に好ましくは4.45V以上、最も好ましくは4.50V以上である。但し、満充電状態における正極電位(vsLi/Li+)が、4.20V以下であってもよい。満充電状態における正極電位(vsLi/Li+)の上限値は、特に限定されるものではないが、好ましくは6.00V以下、より好ましくは5.00V以下、更により好ましくは4.80V以下、特に好ましくは4.70V以下である。
[電池の動作]
 上述の構成を有する電池では、充電を行うと、例えば、正極活物質層21Bからリチウムイオンが放出され、電解液を介して負極活物質層22Bに吸蔵される。また、放電を行うと、例えば、負極活物質層22Bからリチウムイオンが放出され、電解液を介して正極活物質層21Bに吸蔵される。
[電池の製造方法]
 次に、本技術の第2の実施形態に係る電池の製造方法の一例について説明する。
 まず、例えば、第1の実施形態に係る正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN-メチル-2-ピロリドン(NMP)などの溶剤に分散させてペースト状の正極合剤スラリーを作製する。次に、この正極合剤スラリーを正極集電体21Aに塗布し溶剤を乾燥させ、ロールプレス機などにより圧縮成型することにより正極活物質層21Bを形成し、正極21を形成する。
 また、例えば、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN-メチル-2-ピロリドンなどの溶剤に分散させてペースト状の負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体22Aに塗布し溶剤を乾燥させ、ロールプレス機などにより圧縮成型することにより負極活物質層22Bを形成し、負極22を作製する。
 次に、正極集電体21Aに正極リード25を溶接などにより取り付けるとともに、負極集電体22Aに負極リード26を溶接などにより取り付ける。次に、正極21と負極22とをセパレータ23を介して巻回する。次に、正極リード25の先端部を安全弁機構15に溶接するとともに、負極リード26の先端部を電池缶11に溶接して、巻回した正極21および負極22を一対の絶縁板12、13で挟み電池缶11の内部に収納する。次に、正極21および負極22を電池缶11の内部に収納したのち、電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。次に、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16を封口ガスケット17を介してかしめることにより固定する。これにより、図3に示した電池が得られる。
[効果]
 第2の実施形態に係る電池では、正極活物質層21Bが第1の実施形態に係る正極活物質を含んでいるので、充放電による正極活物質粒子の割れを抑制することができる。したがって、良好なサイクル特性を有する電池を実現することができる。特に、満充電状態における正極電位(vsLi/Li+)が4.40Vを超える場合に、上記の効果が顕著に発現する。
<3 第3の実施形態>
[電池の構成]
 図5に示すように、本技術の第3の実施形態に係る電池は、いわゆるラミネートフィルム型電池であり、正極リード31および負極リード32が取り付けられた巻回型電極体30をフィルム状の外装部材40の内部に収容したものであり、小型化、軽量化および薄型化が可能となっている。
 正極リード31および負極リード32は、それぞれ、外装部材40の内部から外部に向かい例えば同一方向に導出されている。正極リード31および負極リード32は、例えば、アルミニウム、銅、ニッケルあるいはステンレスなどの金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。
 外装部材40は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムをこの順に貼り合わせた矩形状のアルミラミネートフィルムにより構成されている。外装部材40は、例えば、ポリエチレンフィルム側と巻回型電極体30とが対向するように配設されており、各外縁部が融着あるいは接着剤により互いに密着されている。外装部材40と正極リード31および負極リード32との間には、外気の侵入を防止するための密着フィルム41が挿入されている。密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレンなどのポリオレフィン樹脂により構成されている。
 なお、外装部材40は、上述したアルミラミネートフィルムに代えて、他の構造を有するラミネートフィルム、ポリプロピレンなどの高分子フィルムまたは金属フィルムにより構成するようにしてもよい。あるいは、アルミニウム製フィルムを心材として、その片面または両面に高分子フィルムを積層したラミネートフィルムを用いても良い。
 図6は、図5に示した巻回型電極体30のVI-VI線に沿った断面図である。巻回型電極体30は、正極33と負極34とをセパレータ35および電解質層36を介して積層し、巻回したものであり、最外周部は保護テープ37により保護されている。
 正極33は、正極集電体33Aの片面あるいは両面に正極活物質層33Bが設けられた構造を有している。負極34は、負極集電体34Aの片面あるいは両面に負極活物質層34Bが設けられた構造を有しており、負極活物質層34Bと正極活物質層33Bとが対向するように配置されている。正極集電体33A、正極活物質層33B、負極集電体34A、負極活物質層34Bおよびセパレータ35の構成は、それぞれ第2の実施形態における正極集電体21A、正極活物質層21B、負極集電体22A、負極活物質層22Bおよびセパレータ23と同様である。
 電解質層36は、電解液と、この電解液を保持する保持体となる高分子化合物とを含み、いわゆるゲル状となっている。ゲル状の電解質層36は高いイオン伝導率を得ることができると共に、電池の漏液を防止することができるので好ましい。電解液は、第2の実施形態に係る電解液である。高分子化合物としては、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレンまたはポリカーボネートが挙げられる。特に電気化学的な安定性の点からはポリアクリロニトリル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンあるいはポリエチレンオキサイドが好ましい。
 なお、電解質層36が無機粒子を含んでいてもよい。より耐熱性を向上できるからである。無機粒子としては、第2の実施形態のセパレータ23の表面層に含まれる無機粒子と同様のものを用いることができる。また、電解質層36に代えて電解液を用いるようにしてもよい。
[電池の製造方法]
 次に、本技術の第3の実施形態に係る電池の製造方法の一例について説明する。
 まず、正極33および負極34のそれぞれに、溶媒と、電解質塩と、高分子化合物と、混合溶剤とを含む前駆溶液を塗布し、混合溶剤を揮発させて電解質層36を形成する。次に、正極集電体33Aの端部に正極リード31を溶接により取り付けると共に、負極集電体34Aの端部に負極リード32を溶接により取り付ける。次に、電解質層36が形成された正極33と負極34とをセパレータ35を介して積層し積層体としたのち、この積層体をその長手方向に巻回して、最外周部に保護テープ37を接着して巻回型電極体30を形成する。最後に、例えば、外装部材40の間に巻回型電極体30を挟み込み、外装部材40の外縁部同士を熱融着などにより密着させて封入する。その際、正極リード31および負極リード32と外装部材40との間には密着フィルム41を挿入する。これにより、図5および図6に示した電池が得られる。
 また、この電池は、次のようにして作製してもよい。まず、上述のようにして正極33および負極34を作製し、正極33および負極34に正極リード31および負極リード32を取り付ける。次に、正極33と負極34とをセパレータ35を介して積層して巻回し、最外周部に保護テープ37を接着して、巻回体を形成する。次に、この巻回体を外装部材40に挟み、一辺を除く外周縁部を熱融着して袋状とし、外装部材40の内部に収納する。次に、溶媒と、電解質塩と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを含む電解質用組成物を用意し、外装部材40の内部に注入する。
 次に、電解質用組成物を外装部材40内に注入したのち、外装部材40の開口部を真空雰囲気下で熱融着して密封する。次に、熱を加えてモノマーを重合させて高分子化合物とすることによりゲル状の電解質層36を形成する。以上により、図5および図6に示した電池が得られる。
<4 応用例1>
「応用例としての電池パックおよび電子機器」
 応用例1では、第2または第3の実施形態に係る電池を備える電池パックおよび電子機器について説明する。
[電池パックおよび電子機器の構成]
 以下、図7を参照して、応用例としての電池パック300および電子機器400の一構成例について説明する。電子機器400は、電子機器本体の電子回路401と、電池パック300とを備える。電池パック300は、正極端子331aおよび負極端子331bを介して電子回路401に対して電気的に接続されている。電子機器400は、例えば、ユーザにより電池パック300を着脱自在な構成を有している。なお、電子機器400の構成はこれに限定されるものではなく、ユーザにより電池パック300を電子機器400から取り外しできないように、電池パック300が電子機器400内に内蔵されている構成を有していてもよい。
 電池パック300の充電時には、電池パック300の正極端子331a、負極端子331bがそれぞれ、充電器(図示せず)の正極端子、負極端子に接続される。一方、電池パック300の放電時(電子機器400の使用時)には、電池パック300の正極端子331a、負極端子331bがそれぞれ、電子回路401の正極端子、負極端子に接続される。
 電子機器400としては、例えば、ノート型パーソナルコンピュータ、タブレット型コンピュータ、携帯電話(例えばスマートフォン等)、携帯情報端末(Personal Digital Assistants:PDA)、表示装置(LCD、ELディスプレイ、電子ペーパ等)、撮像装置(例えばデジタルスチルカメラ、デジタルビデオカメラ等)、オーディオ機器(例えばポータブルオーディオプレイヤー)、ゲーム機器、コードレスフォン子機、電子書籍、電子辞書、ラジオ、ヘッドホン、ナビゲーションシステム、メモリーカード、ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコン、テレビ、ステレオ、温水器、電子レンジ、食器洗い器、洗濯機、乾燥器、照明機器、玩具、医療機器、ロボット、ロードコンディショナー、信号機等が挙げられるが、これに限定されるものでなない。
(電子回路)
 電子回路401は、例えば、CPU、周辺ロジック部、インターフェース部および記憶部等を備え、電子機器400の全体を制御する。
(電池パック)
 電池パック300は、組電池301と、充放電回路302とを備える。組電池301は、複数の二次電池301aを直列および/または並列に接続して構成されている。複数の二次電池301aは、例えばn並列m直列(n、mは正の整数)に接続される。なお、図7では、6つの二次電池301aが2並列3直列(2P3S)に接続された例が示されている。二次電池301aとしては、第2または第3の実施形態に係る電池が用いられる。
 ここでは、電池パック300が、複数の二次電池301aにより構成される組電池301を備える場合について説明するが、電池パック300が、組電池301に代えて1つの二次電池301aを備える構成を採用してもよい。
 充放電回路302は、組電池301の充放電を制御する制御部である。具体的には、充電時には、充放電回路302は、組電池301に対する充電を制御する。一方、放電時(すなわち電子機器400の使用時)には、充放電回路302は、電子機器400に対する放電を制御する。
<5 応用例2>
「応用例としての車両における蓄電システム」
 本開示を車両用の蓄電システムに適用した例について、図8を参照して説明する。図8に、本開示が適用されるシリーズハイブリッドシステムを採用するハイブリッド車両の構成の一例を概略的に示す。シリーズハイブリッドシステムはエンジンで動かす発電機で発電された電力、あるいはそれをバッテリーに一旦貯めておいた電力を用いて、電力駆動力変換装置で走行する車である。
 このハイブリッド車両7200には、エンジン7201、発電機7202、電力駆動力変換装置7203、駆動輪7204a、駆動輪7204b、車輪7205a、車輪7205b、バッテリー7208、車両制御装置7209、各種センサー7210、充電口7211が搭載されている。バッテリー7208に対して、上述した本開示の蓄電装置が適用される。
 ハイブリッド車両7200は、電力駆動力変換装置7203を動力源として走行する。電力駆動力変換装置7203の一例は、モーターである。バッテリー7208の電力によって電力駆動力変換装置7203が作動し、この電力駆動力変換装置7203の回転力が駆動輪7204a、7204bに伝達される。なお、必要な個所に直流-交流(DC-AC)あるいは逆変換(AC-DC変換)を用いることによって、電力駆動力変換装置7203が交流モーターでも直流モーターでも適用可能である。各種センサー7210は、車両制御装置7209を介してエンジン回転数を制御したり、図示しないスロットルバルブの開度(スロットル開度)を制御したりする。各種センサー7210には、速度センサー、加速度センサー、エンジン回転数センサーなどが含まれる。
 エンジン7201の回転力は発電機7202に伝えられ、その回転力によって発電機7202により生成された電力をバッテリー7208に蓄積することが可能である。
 図示しない制動機構によりハイブリッド車両が減速すると、その減速時の抵抗力が電力駆動力変換装置7203に回転力として加わり、この回転力によって電力駆動力変換装置7203により生成された回生電力がバッテリー7208に蓄積される。
 バッテリー7208は、ハイブリッド車両の外部の電源に接続されることで、その外部電源から充電口211を入力口として電力供給を受け、受けた電力を蓄積することも可能である。
 図示しないが、二次電池に関する情報に基いて車両制御に関する情報処理を行なう情報処理装置を備えていても良い。このような情報処理装置としては、例えば、電池の残量に関する情報に基づき、電池残量表示を行う情報処理装置などがある。
 なお、以上は、エンジンで動かす発電機で発電された電力、或いはそれをバッテリーに一旦貯めておいた電力を用いて、モーターで走行するシリーズハイブリッド車を例として説明した。しかしながら、エンジンとモーターの出力がいずれも駆動源とし、エンジンのみで走行、モーターのみで走行、エンジンとモーター走行という3つの方式を適宜切り替えて使用するパラレルハイブリッド車に対しても本開示は有効に適用可能である。さらに、エンジンを用いず駆動モーターのみによる駆動で走行する所謂、電動車両に対しても本開示は有効に適用可能である。
 以上、本開示に係る技術が適用され得るハイブリッド車両7200の一例について説明した。本開示に係る技術は、以上説明した構成のうち、バッテリー7208に好適に適用され得る。
<6 応用例3>
「応用例としての住宅における蓄電システム」
 本開示を住宅用の蓄電システムに適用した例について、図9を参照して説明する。例えば住宅9001用の蓄電システム9100においては、火力発電9002a、原子力発電9002b、水力発電9002c等の集中型電力系統9002から電力網9009、情報網9012、スマートメータ9007、パワーハブ9008等を介し、電力が蓄電装置9003に供給される。これと共に、家庭内発電装置9004等の独立電源から電力が蓄電装置9003に供給される。蓄電装置9003に供給された電力が蓄電される。蓄電装置9003を使用して、住宅9001で使用する電力が給電される。住宅9001に限らずビルに関しても同様の蓄電システムを使用できる。
 住宅9001には、発電装置9004、電力消費装置9005、蓄電装置9003、各装置を制御する制御装置9010、スマートメータ9007、各種情報を取得するセンサー9011が設けられている。各装置は、電力網9009および情報網9012によって接続されている。発電装置9004として、太陽電池、燃料電池等が利用され、発電した電力が電力消費装置9005および/または蓄電装置9003に供給される。電力消費装置9005は、冷蔵庫9005a、空調装置9005b、テレビジョン受信機9005c、風呂9005d等である。さらに、電力消費装置9005には、電動車両9006が含まれる。電動車両9006は、電気自動車9006a、ハイブリッドカー9006b、電気バイク9006cである。
 蓄電装置9003に対して、上述した本開示のバッテリユニットが適用される。蓄電装置9003は、二次電池又はキャパシタから構成されている。例えば、リチウムイオン電池によって構成されている。リチウムイオン電池は、定置型であっても、電動車両9006で使用されるものでも良い。スマートメータ9007は、商用電力の使用量を測定し、測定された使用量を、電力会社に送信する機能を備えている。電力網9009は、直流給電、交流給電、非接触給電の何れか一つまたは複数を組み合わせても良い。
 各種のセンサー9011は、例えば人感センサー、照度センサー、物体検知センサー、消費電力センサー、振動センサー、接触センサー、温度センサー、赤外線センサー等である。各種センサー9011により取得された情報は、制御装置9010に送信される。センサー9011からの情報によって、気象の状態、人の状態等が把握されて電力消費装置9005を自動的に制御してエネルギー消費を最小とすることができる。さらに、制御装置9010は、住宅9001に関する情報をインターネットを介して外部の電力会社等に送信することができる。
 パワーハブ9008によって、電力線の分岐、直流交流変換等の処理がなされる。制御装置9010と接続される情報網9012の通信方式としては、UART(Universal Asynchronous Receiver-Transmitter:非同期シリアル通信用送受信回路)等の通信インターフェースを使う方法、Bluetooth(登録商標)、ZigBee(登録商標)、Wi-Fi等の無線通信規格によるセンサーネットワークを利用する方法がある。Bluetooth(登録商標)方式は、マルチメディア通信に適用され、一対多接続の通信を行うことができる。ZigBee(登録商標)は、IEEE(Institute of Electrical and Electronics Engineers) 802.15.4の物理層を使用するものである。IEEE802.15.4は、PAN(Personal Area Network) またはW(Wireless)PANと呼ばれる短距離無線ネットワーク規格の名称である。
 制御装置9010は、外部のサーバ9013と接続されている。このサーバ9013は、住宅9001、電力会社、サービスプロバイダーの何れかによって管理されていても良い。サーバ9013が送受信する情報は、たとえば、消費電力情報、生活パターン情報、電力料金、天気情報、天災情報、電力取引に関する情報である。これらの情報は、家庭内の電力消費装置(たとえばテレビジョン受信機)から送受信しても良いが、家庭外の装置(たとえば、携帯電話機等)から送受信しても良い。これらの情報は、表示機能を持つ機器、たとえば、テレビジョン受信機、携帯電話機、PDA(Personal Digital Assistants)等に、表示されても良い。
 各部を制御する制御装置9010は、CPU(Central Processing Unit )、RAM(Random Access Memory)、ROM(Read Only Memory)等で構成され、この例では、蓄電装置9003に格納されている。制御装置9010は、蓄電装置9003、家庭内発電装置9004、電力消費装置9005、各種センサー9011、サーバ9013と情報網9012により接続され、例えば、商用電力の使用量と、発電量とを調整する機能を有している。なお、その他にも、電力市場で電力取引を行う機能等を備えていても良い。
 以上のように、電力が火力9002a、原子力9002b、水力9002c等の集中型電力系統9002のみならず、家庭内発電装置9004(太陽光発電、風力発電)の発電電力を蓄電装置9003に蓄えることができる。したがって、家庭内発電装置9004の発電電力が変動しても、外部に送出する電力量を一定にしたり、または、必要なだけ放電するといった制御を行うことができる。例えば、太陽光発電で得られた電力を蓄電装置9003に蓄えると共に、夜間は料金が安い深夜電力を蓄電装置9003に蓄え、昼間の料金が高い時間帯に蓄電装置9003によって蓄電した電力を放電して利用するといった使い方もできる。
 なお、この例では、制御装置9010が蓄電装置9003内に格納される例を説明したが、スマートメータ9007内に格納されても良いし、単独で構成されていても良い。さらに、蓄電システム9100は、集合住宅における複数の家庭を対象として用いられてもよいし、複数の戸建て住宅を対象として用いられてもよい。
 以上、本開示に係る技術が適用され得る蓄電システム9100の一例について説明した。本開示に係る技術は、以上説明した構成のうち、蓄電装置9003が有する二次電池に好適に適用され得る。
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。
 本実施例において、正極活物質粒子1個あたりの平均粒界数は、第1の実施形態の“正極活物質粒子1個あたりの平均粒界数の算出方法”により求められた値である。
[実施例1-1~1-4、比較例1-1~1-3]
(正極活物質の作製工程)
 正極活物質を次のようにして作製した。まず、水酸化コバルトを原料とし、焙焼によりCo34を生成した。次に、リチウム化合物としてのLi2CO3の粉末と、遷移金属化合物としてのCo34の粉末とを混合し、乾燥、焼成することによりコバルト酸リチウム(LiCoO2)を作製し、これを分粒して正極活物質を得た。
 なお、上記の正極活物質の作製工程において、以下の方法(1)~(3)を実施することにより、結晶粒界の個数が低減された正極活物質とした。
(1)不純物起因の結晶核を抑制する方法
 原料中に含まれる非金属系イオンを100ppm以下、金属系イオンを40ppmとすることで、不純物起因の結晶核を抑制した。ここでは、LiCoO2に添加元素を添加しない場合について説明するが、LiCoO2に添加元素を添加してもよもよく、この場合には、添加元素は、不純物から除外するものとする。
(2)Co34原料の相転移による結晶粒界発生を抑制する方法
 Co34は900℃程度の温度でCoOに相転移し、この相転移により結晶粒界が誘発される場合がある。そこで、水酸化コバルトを原料とし、焙焼によりCo34を生成する場合に、生成温度を800℃以下とした。
 同様の理由により、LiCoO2の生成において、Li2CO3とCo34を混合後、低温350℃~600℃の範囲内で仮焼し、最終的な熱処理を850℃以下で行った。
(3)粉砕・熱処理による結晶粒界の発生を抑制する方法
 LiCoO2を粉砕することにより欠陥が発生し、粉砕後の熱処理による欠陥の回復過程で結晶粒界が形成される場合がある。このような回復過程での結晶粒界発生を抑制するため、粉砕は行わず、分粒したLiCoO2を正極活物質として用いた。
 ここでは、上記の方法(1)~(3)を組み合わせる場合について説明するが、上記の方法(1)~(3)のうちの1つを単独で用いてもよいし、2つを組み合わせて用いてもよい。但し、正極活物質粒子内の結晶粒界の個数をより低減するためには、上記の方法(1)~(3)の3つ全てを組み合わせることが好ましい。
 次に、結晶粒界の個数が低減された正極活物質(コバルト酸リチウム)と市販の正極活物質(コバルト酸リチウム)とを混合し、混合粉を得た。この際、結晶粒界の個数が低減された正極活物質と市販の正極活物質との混合比(重量比)を調整することにより、混合粉における正極活物質粒子1個あたりの平均粒界数を0.22以上2.25以下の範囲内で変化させた。
(正極の作製工程)
 上述のように得られた混合粉(正極活物質)を用いて、正極を次のようにして作製した。まず、正極活物質(表面被覆型LiCoO2粒子の粉末)と導電剤(カーボンブラック)と結着剤(ポリフッ化ビニリデン)とを、正極活物質:導電材:結着剤=90:5:5の重量比となるように混合し正極合剤を得た。次に、この正極合剤に適量のN-メチル-2-ピロリドン(NMP)を加え混練して正極合剤スラリーとしたのち、この正極合剤スラリーを正極集電体(Al箔)上に塗布・乾燥することにより、正極活物質層を形成した。最後に、プレス機を用いて正極活物質層を圧縮成型することにより、正極を得た。
(負極の作製工程)
 負極を次のようにして作製した。まず、負極活物質(黒鉛材料)と結着剤(ポリフッ化ビニリデン)とを、負極活物質:結着剤=95:5の重量比となるように混合し、負極合剤を得た。次に、この負極合剤に適量のN-メチル-2-ピロリドン(NMP)を加え混練して負極合剤スラリーとしたのち、この負極合剤スラリーを負極集電体(Cu箔)上に塗布・乾燥することにより、負極活物質層を形成した。最後に、プレス機を用いて負極活物質層を圧縮成型することにより、負極を得た。
(非水電解液の調製工程)
 非水電解液を次のようにして調製した。まず、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを、質量比でEC:DMC=1:1となるようにして混合して混合溶媒を調製した。次に、この混合溶媒に、電解質塩として六フッ化リン酸リチウム(LiPF6)を1mol/kgの濃度で溶解させて非水電解液を調製した。
(電池の作製工程)
 ラミネートフィルム型電池を次のようにして作製した。まず、上述のようにして得られた正極、負極にそれぞれ正極、負極リードを溶接したのち、正極および負極を、ポリエチレンマイクロポーラスフィルムからなるセパレータを介して交互に積層し、電極体を得た。
 次に、この電極体を外装部材の間に装填し、外装部材の3辺を熱融着し、一辺は熱融着せずに開口を有するようにした。外装部材としては、最外層から順に25μm厚のナイロンフィルムと、40μm厚のアルミニウム箔と、30μm厚のポリプロピレンフィルムとが積層された防湿性のアルミラミネートフィルムを用いた。その後、非水電解液を外装部材の開口から注入し、外装部材の残りの1辺を減圧下において熱融着し、電極体を密封した。これにより、目的とするラミネートフィルム型電池が得られた。なお、このラミネートフィルム型電池は、正極活物質量と負極活物質量とを調整し、完全充電時における開回路電圧(すなわち電池電圧)が4.25Vになるように設計されたものである。
[実施例2-1~2-4、比較例2-1~2-3]
 正極活物質量と負極活物質量とを調整し、完全充電時における開回路電圧(すなわち電池電圧)が4.30Vになるように設計したこと以外は実施例1-1~1-4、比較例1-1~1-3と同様にしてラミネートフィルム型電池を得た。
[実施例3-1~3-4、比較例3-1~3-3]
 正極活物質量と負極活物質量とを調整し、完全充電時における開回路電圧(すなわち電池電圧)が4.35Vになるように設計したこと以外は実施例1-1~1-4、比較例1-1~1-3と同様にしてラミネートフィルム型電池を得た。
[実施例4-1~4-4、比較例4-1~4-3]
 正極活物質量と負極活物質量とを調整し、完全充電時における開回路電圧(すなわち電池電圧)が4.40Vになるように設計したこと以外は実施例1-1~1-4、比較例1-1~1-3と同様にしてラミネートフィルム型電池を得た。
[実施例5-1~5-4、比較例5-1~5-3]
 正極活物質量と負極活物質量とを調整し、完全充電時における開回路電圧(すなわち電池電圧)が4.45Vになるように設計したこと以外は実施例1-1~1-4、比較例1-1~1-3と同様にしてラミネートフィルム型電池を得た。
[実施例6-1~6-4、比較例6-1~6-3]
 正極活物質量と負極活物質量とを調整し、完全充電時における開回路電圧(すなわち電池電圧)が4.50Vになるように設計したこと以外は実施例1-1~1-4、比較例1-1~1-3と同様にしてラミネートフィルム型電池を得た。
(サイクル特性)
 上述のようにして得られた電池の放電容量維持率を次のようにして求めた。まず、25℃で充放電操作を100サイクル行い、“初回放電容量”および“100サイクル目の放電容量”を求めた。なお、以下の充放電操作を1サイクルとした。すなわち、充電電流を正極活物質1g当たり20mA、充電電圧を4.25V(実施例1-1~1-4、比較例1-1~1-3)、4.30V(実施例2-1~2-4、比較例2-1~2-3)、4.35V(実施例3-1~3-4、比較例3-1~3-3)、4.40V(実施例4-1~4-4、比較例4-1~4-3)、4.45V(実施例5-1~5-4、比較例5-1~5-3)、4.50V(実施例6-1~6-4、比較例6-1~6-3)とした定電流定電圧充電操作に続けて、放電電流を正極活物質1g当たり20mA、放電電圧を3Vとした定電流放電操作を行う処理を1サイクルとした。次に、“初回放電容量”および“100サイクル目の放電容量”を用いて、放電容量維持率(%)(=((100サイクル目の放電容量)/(初回放電容量))×100)を求めた。
 図10は、正極活物質粒子1個あたりの平均粒界数とサイクル特性との関係を示すグラフである。図10から以下のことがわかる。正極活物質粒子1個あたりの平均粒界数が0.58以上である正極活物質を用いた電池では、サイクル特性が低下する。特に4.40Vを超える高電位電圧の電池においてサイクル特性の低下が著しい。一方、正極活物質粒子1個あたりの平均粒界数が0.58未満である正極活物質を用いた電池では、良好なサイクル特性が得られる。特に正極活物質粒子1個あたりの平均粒界数が0.45以下である正極活物質を用いた電池では、サイクル特性が良好になる。
 図11Aは、LiCoO2粒子1個当たりの平均粒界数が0.23であるLiCoO2粒子粉の断面のSIM像である。図11Bは、LiCoO2粒子1個当たりの平均粒界数が2.25であるLiCoO2粒子粉の断面のSIM像である。図12は、NCA系正極活物質粒子の断面のTEM像である。
 NCA系正極活物質は、図12に示すように、数百nm~数μm程度の一次粒子からなる二次粒子状の形態を有していることがある。このような形態の場合には、二次粒子中の一次粒子界面がLiCoO2系正極活物質の結晶粒界に相当するため、一般にその平均粒界数はLiCoO2系活物質よりも多くなる(図11A、11B、12参照)。したがって、本技術は、層状岩塩型の構造を有する正極活物質のうちでもLiCoO2系正極活物質に適用することが、特に有効であると考えられる。
 以上、本技術の実施形態およびその変形例、ならびに実施例について具体的に説明したが、本技術は、上述の実施形態およびその変形例、ならびに実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態およびその変形例、ならびに実施例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。また、化合物等の化学式は代表的なものであって、同じ化合物の一般名称であれば、記載された価数等に限定されない。
 また、上述の実施形態およびその変形例、ならびに実施例の構成、方法、工程、形状、材料および数値等は、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、上述の実施形態および実施例では、円筒型およびラミネートフィルム型の二次電池に本技術を適用した例について説明したが、電池の形状は特に限定されるものではない。例えば、角型やコイン型などの二次電池に本技術を適用することも可能であるし、スマートウオッチ、ヘッドマウントディスプレイ、iGlass(登録商標)などのウェアラブル端末に搭載されるフレキシブル電池などに本技術を適用することも可能である。
 また、上述の実施形態および実施例では、巻回型およびスタック型の二次電池に対して本技術を適用した例について説明したが、電池の構造はこれに限定されるものではなく、例えば、正極および負極を折り畳んだ構造を有する二次電池などに対しても本技術は適用可能である。
 また、上述の実施形態および実施例では、本技術をリチウムイオン二次電池およびリチウムイオンポリマー二次電池に適用した例について説明したが、本技術を適用可能な電池の種類はこれに限定されるものではい。例えば、全固体リチウムイオン二次電池などの全固体電池に本技術を適用してもよい。
 本技術が適用された全固体電池は、例えば、正極集電体および正極活物質層を有する正極と、負極集電体および負極活物質層を有する負極と、固体電解質層と、正極、負極および固体電解質を収容する外装部材とを備える。正極活物質層は、第1の実施形態に係る正極活物質と固体電解質とを含んでいる。負極活物質層は、負極活物質と固体電解質とを含んでいる。上記構成を有する全固体電池では、正極が第1の実施形態に係る正極活物質が含んでいるため、良好なサイクル特性を得ることができる。
 上記構成を有する全固体電池は、例えば次のようにして作製される。まず、正極集電体上に正極活物質と固体電解質とを含む正極活物質層を形成することにより、正極を作製する。次に、負極集電体上に負極活物質と固体電解質とを含む負極活物質層を形成することにより、負極を作製する。続いて、固体電解質を正極と負極とで挟み焼成し積層体を形成したのち、この積層体を外装部材の間に挟み込み、外装部材の周縁部を熱融着する。これにより、目的とする全固体電池が得られる。
 また、上述の実施形態および実施例では、電極が集電体と活物質層とを備える構成を例として説明したが、電極の構成はこれに限定されるもではない。例えば、電極が活物質層のみからなる構成としてもよい。
 また、本技術は以下の構成を採用することもできる。
(1)
 正極と、負極と、電解質とを備え、
 前記正極は、正極活物質粒子の粉末を含み、
 前記正極活物質粒子1個あたりの平均粒界数が、0.58未満である電池。
(2)
 前記正極活物質粒子は、層状岩塩型の構造を有するリチウム遷移金属複合酸化物を含む(1)に記載の電池。
(3)
 前記リチウム遷移金属複合酸化物は、コバルト酸リチウム、およびコバルト酸リチウムのコバルトを他の金属元素で置換したもののうちの少なくとも1種である(2)に記載の電池。
(4)
 前記リチウム遷移金属複合酸化物は、以下の式(1)で表される平均組成を有する(2)に記載の電池。
 LirCo(1-s)s(2-t)u ・・・(1)
(但し、式(1)中、Mは、ニッケル、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。r、s、tおよびuは、0.8≦r≦1.2、0≦s<0.5、-0.1≦t≦0.2、0≦u≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、rの値は完全放電状態における値を表している。)
(5)
 前記式(1)中のMは、アルミニウム、マグネシウムおよびチタンのうちの少なくとも1種である(4)に記載の電池。
(6)
 前記正極活物質粒子1個あたりの平均粒界数が、0.5以下である(1)から(5)のいずれかに記載の電池。
(7)
 満充電状態における前記正極の電位が、4.20V(vsLi/Li+)を超える(1)から(6)のいずれかに記載の電池。
(8)
 満充電状態における前記正極の電位が、4.40V(vsLi/Li+)を超える(1)から(7)のいずれかに記載の電池。
(9)
 正極活物質粒子の粉末を含み、
 前記正極活物質粒子1個あたりの平均粒界数が、0.58未満である正極活物質。
(10)
 正極活物質粒子の粉末を含み、
 前記正極活物質粒子1個あたりの平均粒界数が、0.58未満である正極。
(11)
 (1)から(8)のいずれかに記載の電池と、
 前記電池を制御する制御部と
 を備える電池パック。
(12)
 (1)から(8)のいずれかに記載の電池を備え、
 前記電池から電力の供給を受ける電子機器。
(13)
 (1)から(8)のいずれかに記載の電池と、
 前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
 前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
 を備える電動車両。
(14)
 (1)から(8)のいずれかに記載の電池を備え、
 前記電池に接続される電子機器に電力を供給する蓄電装置。
(15)
 (1)から(8)のいずれかに記載の電池を備え、
 前記電池から電力の供給を受ける電力システム。
 11  電池缶
 12、13  絶縁板
 14  電池蓋
 15  安全弁機構
 15A  ディスク板
 16  熱感抵抗素子
 17  ガスケット
 20  巻回型電極体
 21  正極
 21A  正極集電体
 21B  正極活物質層
 22  負極
 22A  負極集電体
 22B  負極活物質層
 23  セパレータ
 24  センターピン
 25  正極リード
 26  負極リード

Claims (15)

  1.  正極と、負極と、電解質とを備え、
     前記正極は、正極活物質粒子の粉末を含み、
     前記正極活物質粒子1個あたりの平均粒界数が、0.58未満である電池。
  2.  前記正極活物質粒子は、層状岩塩型の構造を有するリチウム遷移金属複合酸化物を含む請求項1に記載の電池。
  3.  前記リチウム遷移金属複合酸化物は、コバルト酸リチウム、およびコバルト酸リチウムのコバルトを他の金属元素で置換したもののうちの少なくとも1種である請求項2に記載の電池。
  4.  前記リチウム遷移金属複合酸化物は、以下の式(1)で表される平均組成を有する請求項2に記載の電池。
     LirCo(1-s)s(2-t)u ・・・(1)
    (但し、式(1)中、Mは、ニッケル、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンからなる群のうちの少なくとも1種を表す。r、s、tおよびuは、0.8≦r≦1.2、0≦s<0.5、-0.1≦t≦0.2、0≦u≦0.1の範囲内の値である。なお、リチウムの組成は充放電の状態によって異なり、rの値は完全放電状態における値を表している。)
  5.  前記式(1)中のMは、アルミニウム、マグネシウムおよびチタンのうちの少なくとも1種である請求項4に記載の電池。
  6.  前記正極活物質粒子1個あたりの平均粒界数が、0.5以下である請求項1に記載の電池。
  7.  満充電状態における前記正極の電位が、4.20V(vsLi/Li+)を超える請求項1に記載の電池。
  8.  満充電状態における前記正極の電位が、4.40V(vsLi/Li+)を超える請求項1に記載の電池。
  9.  正極活物質粒子の粉末を含み、
     前記正極活物質粒子1個あたりの平均粒界数が、0.58未満である正極活物質。
  10.  正極活物質粒子の粉末を含み、
     前記正極活物質粒子1個あたりの平均粒界数が、0.58未満である正極。
  11.  請求項1に記載の電池と、
     前記電池を制御する制御部と
     を備える電池パック。
  12.  請求項1に記載の電池を備え、
     前記電池から電力の供給を受ける電子機器。
  13.  請求項1に記載の電池と、
     前記電池から電力の供給を受けて車両の駆動力に変換する変換装置と、
     前記電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置と
     を備える電動車両。
  14.  請求項1に記載の電池を備え、
     前記電池に接続される電子機器に電力を供給する蓄電装置。
  15.  請求項1に記載の電池を備え、
     前記電池から電力の供給を受ける電力システム。
PCT/JP2018/016294 2017-04-27 2018-04-20 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム WO2018198967A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880026920.7A CN110546795A (zh) 2017-04-27 2018-04-20 正极活性物质、正极、电池、电池包、电子设备、电动车辆、蓄电装置及电力系统
JP2019514464A JPWO2018198967A1 (ja) 2017-04-27 2018-04-20 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US16/665,263 US20200058939A1 (en) 2017-04-27 2019-10-28 Positive electrode active substance, positive electrode, battery, battery pack, electronic device, electric vehicle, electric power storage device, and electric power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-088391 2017-04-27
JP2017088391 2017-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/665,263 Continuation US20200058939A1 (en) 2017-04-27 2019-10-28 Positive electrode active substance, positive electrode, battery, battery pack, electronic device, electric vehicle, electric power storage device, and electric power system

Publications (1)

Publication Number Publication Date
WO2018198967A1 true WO2018198967A1 (ja) 2018-11-01

Family

ID=63920412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016294 WO2018198967A1 (ja) 2017-04-27 2018-04-20 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Country Status (4)

Country Link
US (1) US20200058939A1 (ja)
JP (1) JPWO2018198967A1 (ja)
CN (1) CN110546795A (ja)
WO (1) WO2018198967A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276591A1 (ja) * 2021-06-30 2023-01-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922692A (ja) * 1995-07-04 1997-01-21 Matsushita Electric Ind Co Ltd 非水電解液電池活物質用コバルト水酸化物と四酸化三コバルトおよびその製造法
JP2005203342A (ja) * 2003-12-15 2005-07-28 Nec Corp 二次電池
JP2010049903A (ja) * 2008-08-21 2010-03-04 Toyo Ink Mfg Co Ltd 電池用組成物
JP2014220254A (ja) * 2014-07-23 2014-11-20 日本碍子株式会社 リチウム複合酸化物焼結体板
WO2015107832A1 (ja) * 2014-01-16 2015-07-23 株式会社カネカ 非水電解質二次電池およびその組電池
WO2016017071A1 (ja) * 2014-07-31 2016-02-04 ソニー株式会社 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079949A2 (ko) * 2009-01-06 2010-07-15 주식회사 엘지화학 리튬 이차전지용 양극 활물질
KR101836436B1 (ko) * 2012-06-04 2018-03-08 주식회사 엘지화학 수명특성이 향상된 이차전지용 양극 활물질 및 제조방법
JP5630669B2 (ja) * 2012-06-29 2014-11-26 トヨタ自動車株式会社 リチウム二次電池
WO2016002158A1 (ja) * 2014-06-30 2016-01-07 三洋電機株式会社 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
JP2016033902A (ja) * 2014-07-31 2016-03-10 ソニー株式会社 正極活物質、正極および電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922692A (ja) * 1995-07-04 1997-01-21 Matsushita Electric Ind Co Ltd 非水電解液電池活物質用コバルト水酸化物と四酸化三コバルトおよびその製造法
JP2005203342A (ja) * 2003-12-15 2005-07-28 Nec Corp 二次電池
JP2010049903A (ja) * 2008-08-21 2010-03-04 Toyo Ink Mfg Co Ltd 電池用組成物
WO2015107832A1 (ja) * 2014-01-16 2015-07-23 株式会社カネカ 非水電解質二次電池およびその組電池
JP2014220254A (ja) * 2014-07-23 2014-11-20 日本碍子株式会社 リチウム複合酸化物焼結体板
WO2016017071A1 (ja) * 2014-07-31 2016-02-04 ソニー株式会社 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276591A1 (ja) * 2021-06-30 2023-01-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池

Also Published As

Publication number Publication date
JPWO2018198967A1 (ja) 2020-02-27
CN110546795A (zh) 2019-12-06
US20200058939A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US20190198935A1 (en) Battery, battery pack, electronic device, electrically driven vehicle, electric storage device, and electric power system
WO2018142690A1 (ja) 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US11961999B2 (en) Positive electrode, battery and method for manufacturing battery, battery pack, electronic device, electric vehicle, electric storage device, and electric power system
US11742490B2 (en) Positive electrode, battery, battery pack, electronic device, electric motor vehicle, power storage device, and power system
JP6776530B2 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2018012528A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6973407B2 (ja) 負極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JPWO2019039363A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
KR102160332B1 (ko) 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
WO2018135061A1 (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2018079190A1 (ja) 正極材料、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2016152213A (ja) 負極活物質粒子およびその製造方法、負極、電池、ならびに導電性粒子
WO2019039436A1 (ja) 電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2018198967A1 (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US20200153035A1 (en) Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
WO2018225450A1 (ja) 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP7251554B2 (ja) 電池、電池パック、電子機器、電動車両および電力システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790600

Country of ref document: EP

Kind code of ref document: A1