WO2015196853A1 - 磷酸铁锂的制备方法 - Google Patents

磷酸铁锂的制备方法 Download PDF

Info

Publication number
WO2015196853A1
WO2015196853A1 PCT/CN2015/077110 CN2015077110W WO2015196853A1 WO 2015196853 A1 WO2015196853 A1 WO 2015196853A1 CN 2015077110 W CN2015077110 W CN 2015077110W WO 2015196853 A1 WO2015196853 A1 WO 2015196853A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium iron
iron phosphate
suspension
organic solvent
acid
Prior art date
Application number
PCT/CN2015/077110
Other languages
English (en)
French (fr)
Inventor
何向明
徐程浩
王莉
李建军
尚玉明
高剑
罗晶
张建利
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Publication of WO2015196853A1 publication Critical patent/WO2015196853A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation method of a cathode material for a lithium ion battery, in particular to a method for preparing lithium iron phosphate.
  • Lithium-ion batteries have the advantages of high energy density, long cycle life, no memory effect and low environmental pollution.
  • lithium battery explosions and injuries in mobile phones and notebook computers have occurred frequently, and the safety of lithium-ion batteries has attracted widespread attention.
  • the invention adopts ferrous phosphate and lithium phosphate as precursors, directly synthesizes lithium iron phosphate material, has no by-products, has less reaction materials, simple process mechanism, and the powder characteristics such as product particle size and morphology are easy to control, and is suitable for industrial application.
  • FIG. 1 is a flow chart of a method for preparing lithium iron phosphate according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a tubular solvothermal reaction device used in a method for preparing lithium iron phosphate according to an embodiment of the present invention.
  • Example 3 is an XRD diffraction pattern of the carbon-coated lithium iron phosphate crystal obtained in Example 1.
  • Example 4 is a 1C rate discharge initial specific capacity curve of the carbon-coated lithium iron phosphate powder obtained in Example 1.
  • Example 5 is a 1C rate discharge specific capacity cycle curve of the carbon-coated lithium iron phosphate powder obtained in Example 1.
  • an embodiment of the present invention provides a method for preparing lithium iron phosphate, which comprises the following steps:
  • the lithium iron phosphate suspension is separated and washed by a high-speed tubular centrifuge to obtain a wet material
  • the ferrous phosphate may specifically be ferrous phosphate octahydrate (Fe 3 (PO 4 ) 2 • 8H 2 O).
  • the ultrasonic dispersion can be carried out for 30 minutes to 2 hours.
  • the lithium phosphate/organic solvent suspension is formed by dispersing lithium phosphate in an organic solvent.
  • the ferrous phosphate/organic solvent suspension is formed by dispersing ferrous phosphate in an organic solvent.
  • the organic solvent may be selected from one or more of ethanol, ethylene glycol, glycerol, diethylene glycol, triethylene glycol, tetraethylene glycol, butyl triol, n-butanol and isobutanol, preferably ethanol.
  • the acid may be selected from one or more of sulfuric acid, phosphoric acid, and nitric acid.
  • the adjusted mixed suspension may have a pH of 4.5 to 6.7.
  • the step of adding a carbon source may be further included in this step S1 to form a mixed suspension having a carbon source.
  • the carbon source may be selected from one or more of stearic acid, cyclodextrin, citric acid, aniline, cellulose acetate, polyvinylpyrrolidone (PVP), glucose, sucrose, and polyethylene glycol.
  • the concentration of the carbon source is from about 0.005 g/ml to 0.05 g/ml.
  • the solvothermal reactor is a high temperature autoclave
  • the solvothermal reaction temperature may be 180 ° C ⁇ 400 ° C
  • the pressure range is 0.2 MPa ⁇ 2.0 MPa
  • the reaction time may be 0.5 hour to 10 hours.
  • the solvothermal reaction vessel may be a sealed autoclave, and the internal pressure of the reaction vessel is raised at a high temperature by pressurizing the sealed autoclave or using the autogenous pressure of the steam inside the reactor to raise the internal pressure of the reactor. The reaction is carried out under high pressure. After the reaction is completed, the reaction vessel can be naturally cooled to room temperature. Through this step S2, lithium iron phosphate is synthesized in the solvothermal reaction apparatus.
  • the solvothermal reactor is a tubular solvothermal reactor 10, and the mixed suspension is continuously introduced into the tubular solvothermal reactor 10 at the temperature and The pressure is subjected to a solvothermal reaction.
  • the reactants are continuously operated in the reaction tube 12 of the tubular solvothermal reaction device 10, and the average residence time is from 0.5 hours to 10 hours, thereby ensuring sufficient solvothermal reaction.
  • the reaction tube 12 is connected to a cooling filter device, and the product is cooled, filtered, and continuously discharged.
  • the tubular solvothermal reaction device 10 has a venting device 14 through which a protective gas can be continuously introduced from the intake port 142 and discharged from the exhaust port 146 through the intake valve 144 and the back pressure valve. 148 controlling the flow rate of the intake and outlet gases, the pressure inside the reaction tube 12 can be controlled, and the high temperature and high pressure reaction can be realized while the reactants are continuously introduced and continuously discharged.
  • the reaction tube 12 is externally provided with a heating device 16 to heat the reaction tube 12.
  • the mixed suspension and the organic solvent may be preheated through the preheating device 18, and then introduced into the solvothermal reaction vessel, and the flow ratio of the organic solvent to the suspension is 5:1 ⁇ 10. : 1, so that the concentration of the reactants in the solvothermal reactor can be controlled.
  • the solid phase product can be washed three times with water and ethanol, respectively.
  • the drying temperature may be 80 ° C to 120 ° C, and the drying time may be 2 hours to 5 hours.
  • the high-temperature heat treatment temperature is 650 ° C to 750 ° C, and the high-temperature heat treatment time is 3 hours to 6 hours.
  • the high-temperature heat treatment can increase the crystallinity of the lithium iron phosphate, thereby improving the performance of the lithium ion battery.
  • the carbon source is cracked into a carbon element in a protective gas and coated on the surface of the lithium iron phosphate.
  • the protective gas may be one or more of an inert gas, nitrogen, and hydrogen, such as nitrogen containing 5% by volume of hydrogen.
  • FIG. 3 it can be judged from the XRD pattern that carbon-coated lithium iron phosphate is synthesized and has high purity and crystallinity.
  • the carbon-coated lithium iron phosphate cathode material is assembled into a lithium ion battery for charge and discharge performance test.
  • the electrochemical performance is stable and the 1C rate performance is excellent.
  • the discharge specific capacity at a 1C rate charge and discharge at room temperature reaches 140 mAh. /g, 1C has no significant attenuation after 100 cycles.
  • Li 3 PO 4 / glycerol suspension (concentration 0.03 mol / L) and Fe 3 (PO 4 ) 2 • 8H 2 O / glycerol suspension (concentration 0.03 mol / L)
  • stirring Under the action of ultrasound, uniformly mix the suspension of lithium phosphate and ferrous phosphate in glycerol, add phosphoric acid, adjust the pH of the solution to 5.0, suspend the suspension for 30 minutes, and seal the high temperature and high pressure continuous solvothermal reaction crystallization device.
  • the reactor is filled with an inert gas (nitrogen or argon), and the distilled water is preheated. According to the flow ratio of the distilled water to the suspension, the ratio is 10:1, and the feed is charged by the plunger metering pump.
  • the thermal residence time of the solvent at 300 ° C is After 1 hour, after the reaction was completed, it was naturally cooled to room temperature, and the slurry was separated by solid-liquid separation, washed three times with water and ethanol solution, and then dried in a vacuum drying oven at 120 ° C for 2 hours to remove free water to obtain lithium iron phosphate powder material. .
  • the lithium iron phosphate powder material was placed in a tube furnace, and heat-treated at 650 ° C for 1 hour under an inert gas atmosphere to obtain a black carbon-coated lithium iron phosphate cathode material after cooling.
  • the lithium iron phosphate positive electrode material prepared in the present example was assembled into a lithium ion battery, and the discharge specific capacity at the time of 1 C rate charge and discharge at room temperature reached 145 mAh/g or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种磷酸铁锂的制备方法,包括以下步骤:将磷酸锂/有机溶剂悬浊液与磷酸亚铁/有机溶剂悬浊液,按照摩尔比为Li3PO4:Fe3(PO4)2=1:1~1.05:1的比例混合,加入酸调节溶液pH值为酸性,通过超声分散得到均匀分散的混合悬浊液;将混合悬浊液在溶剂热反应釜中反应得到磷酸铁锂悬浊液;磷酸铁锂悬浊液固液分离并洗涤,得到湿物料;将该湿物料在真空干燥箱中干燥,得到干物料;将该干物料放置管式炉中,在保护性气体保护下高温热处理,冷却后得到磷酸铁锂正极材料。

Description

磷酸铁锂的制备方法 技术领域
本发明涉及一种锂离子电池正极材料的制备方法,尤其涉及一种磷酸铁锂的制备方法。
背景技术
锂离子电池具有能量密度高、循环寿命长、无记忆效应和环境污染小等优点。然而,近年来用于手机、笔记本电脑中的锂电池爆炸伤人事件屡屡发生,锂离子电池的安全问题已引起人们的广泛关注。
磷酸铁锂动力电池是一种安全性高的动力电池,随着电动汽车和风光电储能等相关产业的快速发展,储能与动力电池的市场需求高速增长,对磷酸铁锂正极材料的需求也随之快速增长。研究和开发磷酸铁锂正极材料低成本规模化生产工艺,对推动和加快我国磷酸铁锂材料产业化步伐,促进我国动力电池及新能源汽车等相关产业的快速发展有重要意义。
然而,目前常用的磷酸铁锂合成反应机理较为复杂,参与反应的原料种类较多,产物多存在副产物,合成后需进行提纯和分离步骤,不利于产业化应用。
发明内容
有鉴于此,确有必要提供一种适于产业化应用的磷酸铁锂的简易制备方法。
一种磷酸铁锂的制备方法,包括以下步骤:将磷酸锂/有机溶剂悬浊液与磷酸亚铁/有机溶剂悬浊液,按照摩尔比为Li3PO4:Fe3(PO4)2=1:1~1.05:1的比例混合,加入酸调节溶液pH值为酸性,通过超声分散得到均匀分散的混合悬浊液;将混合悬浊液在溶剂热反应釜中反应得到磷酸铁锂悬浊液;磷酸铁锂悬浊液固液分离并洗涤,得到湿物料;将该湿物料在真空干燥箱中干燥,得到干物料;将该干物料放置管式炉中,在保护性气体保护下高温热处理,冷却后得到磷酸铁锂正极材料。
本发明采用磷酸亚铁和磷酸锂为前驱体,直接合成磷酸铁锂材料,无副产物,反应物料少,过程机理简单,产品粒度、形貌等粉体特征容易控制,适于产业化应用。
附图说明
图1为本发明实施例磷酸铁锂制备方法的流程图。
图2为本发明实施例磷酸铁锂制备方法所用管式溶剂热反应装置的结构示意图。
图3为实施例1制备所得的碳包覆磷酸铁锂晶体XRD衍射图。
图4为实施例1制备所得的碳包覆磷酸铁锂粉体的1C倍率放电初始比容量曲线。
图5为实施例1制备所得的碳包覆磷酸铁锂粉体的1C倍率放电比容量循环曲线。
主要元件符号说明
管式溶剂热反应装置 10
反应管 12
通气设备 14
进气口 142
进气阀 144
排气口 146
背压阀 148
加热装置 16
预热装置 18
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例对本发明提供的磷酸铁锂的制备方法作进一步的详细说明。
请参阅图1,本发明实施方式提供一种磷酸铁锂的制备方法,包括以下步骤:
S1, 将磷酸锂/有机溶剂悬浊液与磷酸亚铁/有机溶剂悬浊液,按照摩尔比为Li3PO4:Fe3(PO4)2=1:1~1.05:1的比例混合,加入酸调节溶液pH值为酸性,通过超声分散得到均匀分散的混合悬浊液;
S2, 将混合悬浊液在溶剂热反应釜中反应得到磷酸铁锂悬浊液;
S3, 磷酸铁锂悬浊液经高速管式离心机固液分离并洗涤,得到湿物料;
S4, 将该湿物料在真空干燥箱中干燥,得到干物料;以及
S5, 将该干物料放置管式炉中,在保护性气体保护下高温热处理,冷却后得到磷酸铁锂。
在该步骤S1中,该磷酸亚铁具体可以为八水磷酸亚铁(Fe3(PO4)2•8H2O)。该超声分散的时间可以为30分钟~2小时。该磷酸锂/有机溶剂悬浊液是将磷酸锂分散在有机溶剂中形成。该磷酸亚铁/有机溶剂悬浊液是将磷酸亚铁分散在有机溶剂中形成。该有机溶剂可以选自乙醇、乙二醇、丙三醇、二甘醇、三甘醇、四甘醇、丁三醇、正丁醇及异丁醇中的一种或多种,优选为乙醇、乙二醇及丙三醇中的一种或多种。所述酸可以选自硫酸、磷酸及硝酸中的一种或多种。调节后的混合悬浊液的pH值可以为4.5~6.7。
在该步骤S1中可进一步包括加入碳源的步骤,形成具有碳源的混合悬浊液。所述碳源可以选自硬脂酸、环糊精、柠檬酸、苯胺、乙酸纤维素,聚乙烯吡咯烷酮(PVP)、葡萄糖、蔗糖及聚乙二醇中的一种或多种。该碳源的浓度约为0.005g/ml至0.05g/ml。
在该步骤S2中,该溶剂热反应釜为一高温高压釜,所述溶剂热反应温度可以为180℃~400℃,压力范围是0.2 MPa ~ 2.0MPa,反应时间可以为0.5小时~10小时。具体地,所述溶剂热反应釜可为一密封高压釜,通过对该密封高压釜加压或利用反应釜内部蒸汽的自生压力使反应釜内部压力上升,从而使反应釜内部的反应原料在高温高压条件下进行反应。在反应完毕后,所述反应釜可自然冷却至室温。通过该步骤S2,在该溶剂热反应装置中合成出磷酸铁锂。
请参阅图2,在优选的实施例中,该溶剂热反应釜为一管式溶剂热反应装置10,该混合悬浊液连续的通入该管式溶剂热反应装置10,在所述温度和压力进行溶剂热反应。反应物在该管式溶剂热反应装置10的反应管12中连续的运行,平均停留时间为0.5小时~10小时,从而保证溶剂热反应充分。该反应管12与冷却过滤装置连接,产物经冷却、过滤后连续地出料。该管式溶剂热反应装置10具有一通气设备14,保护性气体可以连续的从进气口142通入该反应管12内部,并从排气口146排出,通过进气阀144与背压阀148控制进气与出气的气体流量,可以控制该反应管12内部的压力,实现在反应物连续通入并连续排出的同时实现高温高压反应。该反应管12外部设置有加热装置16对该反应管12加热。
进一步地,该步骤S2中可将混合悬浊液与有机溶剂经过预热装置18预热后一并通入该溶剂热反应釜中,有机溶剂与悬浊液的流量比为5:1~10:1,从而可以对溶剂热反应釜中反应物的浓度进行控制。
在该步骤S3中,在经过高速管式离心机固液分离后,可以分别用水和乙醇洗涤固相产物3次。
在该步骤S4中,该干燥温度可以为80℃~120℃,干燥时间可以为2小时~5小时。
在该步骤S5中,所述的高温热处理温度为650℃~750℃,高温热处理时间为3小时~6小时。该高温热处理可使该磷酸铁锂的结晶度提高,从而使锂离子电池性能得到提高。并且在该高温处理的过程中,所述碳源在保护性气体中裂解成碳单质,包覆在磷酸铁锂表面。该保护性气体可以是惰性气体、氮气及氢气中的一种或多种,如含体积比5%氢气的氮气。
实施例1:
配置Li3PO4/乙二醇悬浊液(浓度为0.02mol/L)和Fe3(PO4)2•8H2O /乙二醇悬浊液(浓度为0.02 mol/L),在搅拌和超声的作用下,均匀混合磷酸锂和磷酸亚铁的乙二醇悬浊液,加入磷酸,调节溶液pH为6.5,加入一定量苯胺作为碳源,悬浊液进行超声作用30分钟。通入管式溶剂热反应装置,并通入惰性气体(氮气或氩气),预先加热蒸馏水,按照蒸馏水与悬浊液的流量比为5:1,由柱塞计量泵进料,在180℃下溶剂热反应停留时间为10小时,反应结束后,经冷却至室温连续出料。料浆经固液分离,用水和乙醇溶液分别洗涤三次后,在真空干燥箱中100℃下干燥4小时,除去游离水,得到磷酸铁锂粉末材料。将磷酸铁锂粉末材料放置管式炉中,在惰性气体保护下,700℃下高温热处理2小时,冷却后得到黑色的碳包覆磷酸铁锂正极材料。
请参阅图3,从XRD图谱中可以判断合成出碳包覆磷酸铁锂,且具有较高的纯度及结晶度。请参阅图4~5,将该碳包覆磷酸铁锂正极材料组装锂离子电池进行充放电性能测试,电化学性能稳定和1C倍率性能优良,室温下1C倍率充放电时的放电比容量达到140mAh/g,1C循环100次后容量没有明显衰减。
实施例2:
配置Li3PO4/丙三醇悬浊液(浓度为0.03mol/L)和Fe3(PO4)2•8H2O/丙三醇悬浊液(浓度为0.03 mol/L),在搅拌和超声的作用下下,均匀混合磷酸锂和磷酸亚铁的丙三醇悬浊液,加入磷酸,调节溶液pH为5.0,悬浊液进行超声作用30分钟,密闭高温高压连续溶剂热反应结晶装置,反应器中通入惰性气体(氮气或氩气),预先加热蒸馏水,按照蒸馏水与悬浊液的流量比为10:1,由柱塞计量泵进料,在300℃下溶剂热停留时间为1小时,反应结束后,自然冷却至室温,料浆经固液分离,用水和乙醇溶液分别洗涤三次后,在真空干燥箱中120℃下干燥2小时,除去游离水,得到磷酸铁锂粉末材料。将磷酸铁锂粉末材料放置管式炉中,在惰性气体保护下, 650℃下高温热处理1小时,冷却后得到黑色的碳包覆磷酸铁锂正极材料。将该本实施例所制备的磷酸铁锂正极材料组装锂离子电池,室温下1C倍率充放电时的放电比容量达到145mAh/g以上。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

  1. 一种磷酸铁锂的制备方法,包括以下步骤:
    S1, 将磷酸锂/有机溶剂悬浊液与磷酸亚铁/有机溶剂悬浊液,按照摩尔比为Li3PO4:Fe3(PO4)2=1:1~1.05:1的比例混合,加入酸调节溶液pH值为酸性,通过超声分散得到均匀分散的混合悬浊液;
    S2, 将混合悬浊液在溶剂热反应釜中反应得到磷酸铁锂悬浊液;
    S3, 磷酸铁锂悬浊液固液分离并洗涤,得到湿物料;
    S4, 将该湿物料在真空干燥箱中干燥,得到干物料;以及
    S5, 将该干物料放置管式炉中,在保护性气体保护下高温热处理,冷却后得到磷酸铁锂。
  2. 如权利要求1所述磷酸铁锂的制备方法,其特征在于,所述酸为硫酸、磷酸及硝酸中的一种或多种。
  3. 如权利要求1所述磷酸铁锂的制备方法,其特征在于,所述混合悬浊液pH值为4.5~6.7。
  4. 如权利要求1所述磷酸铁锂的制备方法,其特征在于,所述有机溶剂为乙醇、乙二醇及丙三醇中的一种或多种。
  5. 如权利要求1所述磷酸铁锂的制备方法,其特征在于,进一步包括在S1步骤的混合悬浊液中加入碳源的步骤。
  6. 如权利要求5所述磷酸铁锂的制备方法,其特征在于,所述碳源为硬脂酸、环糊精、柠檬酸、苯胺、乙酸纤维素、聚乙烯吡咯烷酮(PVP)、葡萄糖、蔗糖及聚乙二醇中的一种或多种。
  7. 如权利要求1所述磷酸铁锂的制备方法,其特征在于,所述的溶剂热反应温度为180℃~400℃,反应时间0.5小时~10小时。
  8. 如权利要求1所述磷酸铁锂的制备方法,其特征在于,该步骤S2包括将该混合悬浊液与预热后的有机溶剂一并通入该溶剂热反应釜中,有机溶剂与悬浊液的流量比为5:1~10:1。
  9. 如权利要求1所述磷酸铁锂的制备方法,其特征在于,所述步骤S4中的干燥温度为80℃~120℃,干燥时间为2小时~5小时。
  10. 如权利要求1所述磷酸铁锂的制备方法,其特征在于,所述的高温热处理温度为650℃~750℃,高温热处理时间为3小时~6小时。
PCT/CN2015/077110 2014-06-26 2015-04-21 磷酸铁锂的制备方法 WO2015196853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410294116.0A CN104091944B (zh) 2014-06-26 2014-06-26 磷酸铁锂的制备方法
CN201410294116.0 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015196853A1 true WO2015196853A1 (zh) 2015-12-30

Family

ID=51639640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077110 WO2015196853A1 (zh) 2014-06-26 2015-04-21 磷酸铁锂的制备方法

Country Status (2)

Country Link
CN (1) CN104091944B (zh)
WO (1) WO2015196853A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645314A (zh) * 2021-01-25 2021-04-13 唐山航天万源科技有限公司 一种石墨烯导电液及其制备方法和应用
CN113104828A (zh) * 2021-03-19 2021-07-13 三峡大学 多孔碳改性的焦磷酸磷酸铁钠/碳钠离子电池正极材料的制备方法
CN114628660A (zh) * 2022-04-22 2022-06-14 深圳沃伦特新能源科技有限公司 一种磷酸铁锰锂纳米颗粒的水热合成方法
CN114735670A (zh) * 2022-04-12 2022-07-12 宜昌邦普时代新能源有限公司 高性能磷酸铁锂的制备方法及其应用
CN115417396A (zh) * 2022-10-14 2022-12-02 清华大学深圳国际研究生院 磷酸铁锂正极材料的修复方法、正极材料及应用
CN116101991A (zh) * 2022-12-28 2023-05-12 合肥国轩循环科技有限公司 一种由磷酸锂制备磷酸铁的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091944B (zh) * 2014-06-26 2016-09-07 江苏华东锂电技术研究院有限公司 磷酸铁锂的制备方法
CN104282886B (zh) * 2014-10-14 2016-10-12 江苏华东锂电技术研究院有限公司 锂离子电池电极活性材料的碳包覆方法
CN106129408B (zh) * 2016-08-29 2018-09-11 张家港合志纳米科技有限公司 利用溶剂热法制备低比表面高电化学性能lfp的工艺及装置
CN107507975A (zh) * 2017-08-24 2017-12-22 扬州大学 一种碳包覆磷酸铁锂纳米空心球的制备方法
CN114506871A (zh) * 2020-11-16 2022-05-17 周思齐 一种单盐粉体液压生产复盐的方法
CN113555557B (zh) * 2021-07-06 2023-10-20 欣旺达电动汽车电池有限公司 磷酸铁锂正极材料、其制备方法及应用
CN114725557A (zh) * 2022-04-11 2022-07-08 天津市捷威动力工业有限公司 一种磷酸铁锂废料的回收复用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101007630A (zh) * 2007-01-16 2007-08-01 北大先行科技产业有限公司 一种可调控其颗粒形貌的磷酸铁锂制备方法
CN101070148A (zh) * 2007-05-22 2007-11-14 无锡市凯天星电光材料有限公司 一种锂离子电池正极材料磷酸铁锂的制备方法
CN102005565A (zh) * 2010-11-06 2011-04-06 合肥国轩高科动力能源有限公司 碳包覆磷酸铁锂纳米球的制备方法
CN102420324A (zh) * 2011-03-23 2012-04-18 上海中兴派能能源科技有限公司 纳米核壳结构的磷酸铁锂正极材料及其制备方法
CN103030128A (zh) * 2011-09-29 2013-04-10 北京当升材料科技股份有限公司 采用溶剂热法制备纳米级磷酸亚铁锂的工业生产方法
CN104091944A (zh) * 2014-06-26 2014-10-08 江苏华东锂电技术研究院有限公司 磷酸铁锂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376475C (zh) * 2005-10-14 2008-03-26 江苏大学 一种球形多孔高密度LiFePO4粉体及其制备方法
CN101339988B (zh) * 2008-06-25 2010-07-28 中国地质大学(武汉) 锂离子电池正极材料的制备方法
CN101777648B (zh) * 2010-01-26 2012-08-22 中国科学院宁波材料技术与工程研究所 单分散磷酸铁锂纳米材料的制备方法及其锂离子二次电池
CN102674291A (zh) * 2012-05-25 2012-09-19 广西诺方储能科技有限公司 超细纳米磷酸铁锂电极材料的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101007630A (zh) * 2007-01-16 2007-08-01 北大先行科技产业有限公司 一种可调控其颗粒形貌的磷酸铁锂制备方法
CN101070148A (zh) * 2007-05-22 2007-11-14 无锡市凯天星电光材料有限公司 一种锂离子电池正极材料磷酸铁锂的制备方法
CN102005565A (zh) * 2010-11-06 2011-04-06 合肥国轩高科动力能源有限公司 碳包覆磷酸铁锂纳米球的制备方法
CN102420324A (zh) * 2011-03-23 2012-04-18 上海中兴派能能源科技有限公司 纳米核壳结构的磷酸铁锂正极材料及其制备方法
CN103030128A (zh) * 2011-09-29 2013-04-10 北京当升材料科技股份有限公司 采用溶剂热法制备纳米级磷酸亚铁锂的工业生产方法
CN104091944A (zh) * 2014-06-26 2014-10-08 江苏华东锂电技术研究院有限公司 磷酸铁锂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRANGER, S. ET AL.: "LiFeP04 synthesis routes for enhanced electrochemical performance", ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 5, no. 10., 20 August 2002 (2002-08-20), pages A231, XP055246702, ISSN: 1099-0062 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645314A (zh) * 2021-01-25 2021-04-13 唐山航天万源科技有限公司 一种石墨烯导电液及其制备方法和应用
CN113104828A (zh) * 2021-03-19 2021-07-13 三峡大学 多孔碳改性的焦磷酸磷酸铁钠/碳钠离子电池正极材料的制备方法
CN113104828B (zh) * 2021-03-19 2022-11-08 三峡大学 多孔碳改性的焦磷酸磷酸铁钠/碳钠离子电池正极材料的制备方法
CN114735670A (zh) * 2022-04-12 2022-07-12 宜昌邦普时代新能源有限公司 高性能磷酸铁锂的制备方法及其应用
CN114735670B (zh) * 2022-04-12 2023-11-03 宜昌邦普时代新能源有限公司 高性能磷酸铁锂的制备方法及其应用
CN114628660A (zh) * 2022-04-22 2022-06-14 深圳沃伦特新能源科技有限公司 一种磷酸铁锰锂纳米颗粒的水热合成方法
CN115417396A (zh) * 2022-10-14 2022-12-02 清华大学深圳国际研究生院 磷酸铁锂正极材料的修复方法、正极材料及应用
CN116101991A (zh) * 2022-12-28 2023-05-12 合肥国轩循环科技有限公司 一种由磷酸锂制备磷酸铁的方法

Also Published As

Publication number Publication date
CN104091944A (zh) 2014-10-08
CN104091944B (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2015196853A1 (zh) 磷酸铁锂的制备方法
CN105633369B (zh) 一种碳包覆磷酸铁锂材料的制备方法
EP2876710A1 (en) Negative active material of lithium-ion secondary battery and preparation method therefor, negative plate of lithium-ion secondary battery, and lithium-ion secondary battery
CN105355879B (zh) 复合碳包覆金属氧化物及其制备方法
CN107732205B (zh) 一种制备硫-氮共掺杂碳包覆纳米花状钛酸锂复合负极材料的方法
CN109817957B (zh) 一种沥青包覆硅掺杂天然鳞片石墨负极材料的制备方法
WO2016058492A1 (zh) 锂离子电池电极活性材料的碳包覆方法
WO2023087800A1 (zh) 一种从废旧磷酸铁锂电池中回收制备正极材料的方法
KR101887171B1 (ko) 산화리튬의 제조방법 및 리튬니켈산화물의 제조방법
CN113594453B (zh) 一种钠离子电池负极材料及其制备方法
WO2015021830A1 (zh) 磷酸亚铁锂的制备方法
CN102311109A (zh) 连续反应制备LiFePO4/C复合正极材料的方法
CN110311118A (zh) 一种锂离子电池用歧化SiOx材料及其制备方法
CN108847478A (zh) 一种锂电池硅碳纳米复合负极材料及其制备方法
CN105826524A (zh) 一种石墨烯原位形核磷酸铁锂的合成方法
CN107482196B (zh) 一种锂离子电池用复合纳米材料及其制备方法
CN109301223A (zh) 锂硫电池正极复合材料及其制备方法
CN105870434B (zh) 一种硅粉掺杂的方法
CN110265635B (zh) 一种锂离子电池硅碳复合负极材料的制备方法
CN108807939B (zh) 一种偶氮多孔材料/碳纳米管复合电极材料的制备方法
CN110713187A (zh) 一种硅材料的制备方法及其在锂离子电池负极的应用
CN111816879B (zh) 一种锂离子电池负极粘结剂、浆料及其负极材料
CN108232136A (zh) 一种石墨烯复合镍钴锰酸锂材料的制备方法
CN111740089A (zh) 一种用于水系锌离子电池正极材料的制备方法
CN111628153A (zh) 一种新型锂离子电池负极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812148

Country of ref document: EP

Kind code of ref document: A1