CN114735670A - 高性能磷酸铁锂的制备方法及其应用 - Google Patents

高性能磷酸铁锂的制备方法及其应用 Download PDF

Info

Publication number
CN114735670A
CN114735670A CN202210380031.9A CN202210380031A CN114735670A CN 114735670 A CN114735670 A CN 114735670A CN 202210380031 A CN202210380031 A CN 202210380031A CN 114735670 A CN114735670 A CN 114735670A
Authority
CN
China
Prior art keywords
iron phosphate
lithium
solvent
dispersing
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210380031.9A
Other languages
English (en)
Other versions
CN114735670B (zh
Inventor
张世庆
李长东
杜锐
阮丁山
孙金鸣
秦存鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yichang Bangpu Times New Energy Co ltd
Hunan Brunp Recycling Technology Co Ltd
Guangdong Brunp Recycling Technology Co Ltd
Yichang Brunp Recycling Technology Co Ltd
Original Assignee
Yichang Bangpu Times New Energy Co ltd
Hunan Brunp Recycling Technology Co Ltd
Guangdong Brunp Recycling Technology Co Ltd
Yichang Brunp Recycling Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yichang Bangpu Times New Energy Co ltd, Hunan Brunp Recycling Technology Co Ltd, Guangdong Brunp Recycling Technology Co Ltd, Yichang Brunp Recycling Technology Co Ltd filed Critical Yichang Bangpu Times New Energy Co ltd
Priority to CN202210380031.9A priority Critical patent/CN114735670B/zh
Publication of CN114735670A publication Critical patent/CN114735670A/zh
Priority to PCT/CN2023/077222 priority patent/WO2023197747A1/zh
Priority to DE112023000110.3T priority patent/DE112023000110T5/de
Priority to GB2318499.7A priority patent/GB2622158A/en
Application granted granted Critical
Publication of CN114735670B publication Critical patent/CN114735670B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种高性能磷酸铁锂的制备方法及其应用,该方法将锂盐分散于溶剂A中,再加入有机酸调节pH得到混合液,将多孔磷酸铁分散于溶剂B中,再加入有机碳源得到混合浆料A,将混合浆料A加入到混合液中,所得浆料进行研磨处理,向研磨料中加入分散剂进行搅拌分散,得到混合浆料B,将混合浆料B置于100‑1000Pa压力下进行陈化干燥,所得干料在惰性气氛下烧结,即得磷酸铁锂。本发明将锂盐和有机碳源稳定嵌合于多孔磷酸铁结构之中,反应更为有效充分,降低成品杂相的产生,所制备出的产品具有更为均一、圆润的颗粒形貌,更优异的电化学性能和长循环性能。

Description

高性能磷酸铁锂的制备方法及其应用
技术领域
本发明属于锂离子电池材料制备技术领域,具体涉及一种高性能磷酸铁锂的制备方法及其应用。
背景技术
随着石油资源日渐枯竭、人们对居住环境的标准越来越高,新能源产业应运而生,电动汽车的广泛普及已成为了现实,高能量密度、大容量、低成本的电池材料需求也愈演愈烈。磷酸铁锂相对于三元材料,兼具高安全性和低成本的优势,自新能源汽车政策补贴退坡后,动力电池的降本压力增大,使得价格相对低廉的磷酸铁锂市场竞争力增强,市场需求旺盛,甚至供不应求。目前市场上的产品普遍存在产品一致性不足、容量低循环性能差等劣势。鉴于此,亟需开发一种性能稳定、循环性能更优异的的磷酸铁锂产品。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种高性能磷酸铁锂的制备方法及其应用,该方法的实现有利于推动磷酸铁锂产业化和锂离子电池行业的发展。
根据本发明的一个方面,提出了一种磷酸铁锂的制备方法,包括以下步骤:
S1:将锂盐分散于预先调配的溶剂A中,再加入有机酸调节pH为6.5-8.5,得到混合液;将多孔磷酸铁分散于预先调配的溶剂B中,再加入有机碳源,得到混合浆料A;所述溶剂A、所述溶剂B独立为水或挥发性溶剂与水的分散液;
S2:将所述混合浆料A加入到所述混合液中,所得浆料进行研磨处理,得到研磨料,向所述研磨料中加入分散剂进行搅拌分散,得到混合浆料B;
S3:将所述混合浆料B置于100-1000Pa压力下进行陈化干燥,得到干料,所述干料在惰性气氛下烧结,即得所述磷酸铁锂。需要说明的是,100-1000Pa压力为表压。
其中,有机酸可避免杂质引入,调节pH为6.5-8.5可保证多孔磷酸铁的结构不会受到影响。在一定压力下陈化干燥可以控制蒸气压,使得干燥物料呈均质状态。
在本发明的一些实施方式中,步骤S1中,所述挥发性溶剂为乙醇、正庚烷或醋酸正戊酯中的一种或几种。挥发性溶剂利于带走杂质,保证结构状态下的完整性和反应有效性。
在本发明的一些优选的实施方式中,步骤S1中,当所述溶剂A、所述溶剂B选自挥发性溶剂与水的分散液时,所述挥发性溶剂与水的质量比为(0.1-0.5):1。
在本发明的一些实施方式中,步骤S1中,所述锂盐与所述溶剂A的质量比为(0.1-0.4):1。
在本发明的一些实施方式中,步骤S1中,所述锂盐为氧化锂、碳酸锂、醋酸锂、氢氧化锂、单水氢氧化锂或硝酸锂中的一种或几种。
在本发明的一些实施方式中,步骤S1中,所述多孔磷酸铁与所述溶剂B的质量比为(0.3-0.6):1。
在本发明的一些实施方式中,步骤S1中,所述多孔磷酸铁中的Fe与锂盐中的Li的摩尔比为(0.95-1.0):1。
在本发明的一些实施方式中,步骤S1中,所述有机碳源与所述多孔磷酸铁的质量比为(0.05-0.3):1。
在本发明的一些实施方式中,步骤S1中,所述有机酸为甲酸、乙酸、乙二酸、柠檬酸、亚磺酸、磺酸或芳香酸中的一种或几种。
在本发明的一些实施方式中,步骤S1中,所述多孔磷酸铁的颗粒粒径D50为1-20μm,孔隙率为25-55%,孔径尺寸在50nm以下。
在本发明的一些实施方式中,步骤S1中,所述有机碳源为淀粉、蔗糖、纤维素、无水葡萄糖、一水葡萄糖、聚乙烯醇、聚乙二醇、聚丙烯酸、聚乙烯吡咯烷酮或甲壳素中的一种或几种。
在本发明的一些实施方式中,步骤S2中,所述分散剂为吐温、异丙醇、丙三醇、酚醛树脂、乙酸乙酯或环氧树脂中的一种或几种。
在本发明的一些实施方式中,步骤S2中,所述分散剂的加入量为所述多孔磷酸铁质量的0.01-0.05倍。
在本发明的一些实施方式中,步骤S2中,所述搅拌分散的时间为0.2-1h。
在本发明的一些实施方式中,步骤S2中,所述研磨料的粒度D50为0.1-2.0μm。
在本发明的一些实施方式中,步骤S3中,所述陈化干燥的温度为60-120℃,时间为5-48h。
在本发明的一些实施方式中,步骤S3中,所述烧结的过程如下:在惰性气氛下,以1-10℃/min升温至600-800℃,保温4-18h。
在本发明的一些实施方式中,步骤S3中,所述烧结后还包括对烧结后物料进行气流粉碎的工序,气流粉碎后磷酸铁锂的粒径D50为0.4-3.0μm。
如权利要求1-9任一项所述的制备方法在制备锂离子电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
本发明通过预先调配具有一定挥发性和化学温和性的溶剂,并对过程混合液的酸性和稳定性等特性进行控制,保证了多孔磷酸铁结构在体系中更为稳定;另外,在温控陈化釜中控制一定压力进行缓慢干燥,使得干燥物料呈均质状态;综合结果是锂盐和有机碳源稳定嵌合于多孔磷酸铁结构之中,使得反应更为有效充分,降低成品杂相的产生,从而使得所制备出的产品具有更为均一、圆润的颗粒形貌,更优异的电化学性能和长循环性能。本发明的磷酸铁产品0.1C放电比容量可达159mAh/g,首效稳定在97%以上;1C循环1500圈容量保持在94%以上,属于高性能长循环磷酸铁锂材料,对于推动磷酸铁锂动力电池、新能源产业快速发展具有重要指导意义。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例3的磷酸铁锂的XRD图;
图2为本发明实施例3的磷酸铁锂的SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种高性能磷酸铁锂,具体过程为:
(1)用水和乙醇预先调配出具有一定挥发性和化学温和性的溶剂A,其中乙醇质量是水的0.35倍,将碳酸锂分散于溶剂A中,控制锂盐质量是溶剂A质量的0.2倍,搅拌分散均匀,再加入乙酸调节pH为7.5,得到混合液;将多孔磷酸铁(粒径D50为8.5μm,孔隙率为36%,孔径尺寸约32nm)分散于预先调配的溶剂B中(溶剂B的组成与溶剂A一致),控制多孔磷酸铁质量是溶剂B的0.5倍,并控制多孔磷酸铁中的Fe与锂盐中的Li的摩尔比为0.96:1,再加入蔗糖和聚乙二醇于溶剂B中,控制蔗糖和聚乙二醇总加入量为多孔磷酸铁质量的0.14倍,其中蔗糖质量是聚乙二醇的1.3倍,搅拌分散均匀,得到混合浆料A;
(2)在不断搅拌下,将混合液缓慢加入到混合浆料A中,分散均匀后,进行砂磨机研磨处理,出料粒度D50为0.335μm,加入吐温和异丙醇搅拌分散0.5h,吐温和异丙醇总加入量为多孔磷酸铁质量的0.025倍,其中吐温质量是异丙醇的2.0倍,得到混合浆料B;
(3)将混合浆料B置于温控陈化釜中缓慢陈化干燥,控制压力为200Pa左右,控制温度为80℃,时间为36h,得到干料,将干料进行烧结粉碎:在纯氮气条件下,以3℃/min升温至700℃,保温维持10h,然后冷却出料,对烧结后的物料进行气流粉碎,控制出料粒径D50在1.5μm左右,得到高性能磷酸铁锂材料。
实施例2
本实施例制备了一种高性能磷酸铁锂,具体过程为:
(1)用水和正庚烷预先调配出具有一定挥发性和化学温和性的溶剂A,其中正庚烷质量是水的0.24倍,将单水氢氧化锂分散于溶剂A中,控制锂盐质量是溶剂A质量的0.3倍,搅拌分散均匀,再加入乙二酸调节pH为7.8,得到混合液;将多孔磷酸铁(粒径D50为10.2μm,孔隙率为31%,孔径尺寸约24nm)分散于预先调配的溶剂B中(溶剂B的组成与溶剂A一致),控制多孔磷酸铁质量是溶剂B的0.4倍,并控制多孔磷酸铁中的Fe与锂盐中的Li的摩尔比为0.97:1,再加入无水葡萄糖和聚乙烯醇于溶剂B中,控制无水葡萄糖和聚乙烯醇总加入量为多孔磷酸铁质量的0.21倍,其中无水葡萄糖质量是聚乙烯醇的1.5倍,搅拌分散均匀,得到混合浆料A;
(2)在不断搅拌下,将混合液缓慢加入到混合浆料A中,分散均匀后,进行砂磨机研磨处理,出料粒度D50为0.450μm,加入丙三醇和乙酸乙酯搅拌分散1h,丙三醇和乙酸乙酯总加入量为多孔磷酸铁质量的0.03倍,其中丙三醇质量是乙酸乙酯的3.0倍,得到混合浆料B;
(3)将混合浆料B置于温控陈化釜中缓慢陈化干燥,控制压力为350Pa左右,控制温度为90℃,时间为32h,得到干料,将干料进行烧结粉碎:在纯氮气条件下,以5℃/min升温至730℃,保温维持9h,然后冷却出料,对烧结后的物料进行气流粉碎,控制出料粒径D50在1.7μm左右,得到高性能磷酸铁锂材料。
实施例3
本实施例制备了一种高性能磷酸铁锂,具体过程为:
(1)用水、乙醇和正庚烷预先调配出具有一定挥发性和化学温和性的溶剂A,其中乙醇质量是水的0.12倍,正庚烷质量是水的0.15倍,将氢氧化锂分散于溶剂A中,控制锂盐质量比是溶剂的0.35倍,搅拌分散均匀,再加入柠檬酸和乙酸调节pH为7.3,得到混合液;将多孔磷酸铁(粒径D50为4.6μm,孔隙率为36%,孔径尺寸约38nm)分散于预先调配的溶剂B中(溶剂B的组成与溶剂A一致),控制多孔磷酸铁质量是溶剂B的0.3倍,并控制多孔磷酸铁中的Fe与锂盐中的Li的摩尔比为0.97:1,再加入无水葡萄糖和聚丙烯酸于溶剂B中,控制无水葡萄糖和聚丙烯酸总加入量为多孔磷酸铁质量的0.12倍,其中无水葡萄糖质量是聚丙烯酸的1.6倍,搅拌分散均匀,得到混合浆料A;
(2)在不断搅拌下,将混合液缓慢加入到混合浆料A中,分散均匀后,进行砂磨机研磨处理,出料粒度D50为0.350μm,加入吐温和乙酸乙酯搅拌分散0.5h,吐温和乙酸乙酯总加入量为多孔磷酸铁质量的0.06倍,其中吐温质量是乙酸乙酯的2.7倍,得到混合浆料B;
(3)将混合浆料B置于温控陈化釜中缓慢陈化干燥,控制压力为450Pa左右,控制温度为100℃,时间为24h,得到干料,将干料进行烧结粉碎:在纯氮气条件下,以2℃/min升温至745℃,保温维持9h,然后冷却出料,对烧结后的物料进行气流粉碎,控制出料粒径D50在1.2μm左右,得到高性能磷酸铁锂材料。
图1为本实施例的磷酸铁锂的XRD图,图中显示物料出峰与磷酸铁锂标准卡片一致,且无杂质峰,说明该材料为磷酸铁锂,无杂相,且结晶性良好。
图2为本发明实施例3的磷酸铁锂的SEM图,图中显示所得材料颗粒均一、圆润,碳包覆效果优良,对于材料性能的稳定发挥具有重要作用。
实施例4
本实施例制备了一种高性能磷酸铁锂,具体过程为:
(1)用水、乙醇和醋酸正戊酯预先调配出具有一定挥发性和化学温和性的溶剂A,其中乙醇质量是水的0.10倍,醋酸正戊酯质量是水的0.18倍,将硝酸锂分散于溶剂A中,控制锂盐质量是溶剂A质量的0.4倍,搅拌分散均匀,再加入乙酸调节pH为6.8,得到混合液;将多孔磷酸铁(粒径D50为14.6μm,孔隙率为26%,孔径尺寸约23nm)分散于预先调配的溶剂B中(溶剂B的组成与溶剂A一致),控制多孔磷酸铁质量是溶剂B的0.4倍,并控制多孔磷酸铁中的Fe与锂盐中的Li的摩尔比为0.98:1,再加入无水葡萄糖和甲壳素于溶剂B中,控制无水葡萄糖和甲壳素总加入量为多孔磷酸铁质量的0.16倍,其中无水葡萄糖质量是甲壳素的2.2倍,搅拌分散均匀,得到混合浆料A;
(2)在不断搅拌下,将混合液缓慢加入到混合浆料A中,分散均匀后,进行砂磨机研磨处理,出料粒度D50为0.568μm,加入吐温和丙三醇搅拌分散0.09h,吐温和丙三醇总加入量为多孔磷酸铁质量的0.09倍,其中吐温质量是丙三醇的0.8倍,得到混合浆料B;
(3)将混合浆料B置于温控陈化釜中缓慢陈化干燥,控制压力为400Pa左右,控制温度为95℃,时间为30h,得到干料,将干料进行烧结粉碎:在纯氮气条件下,以4℃/min升温至720℃,保温维持10h,然后冷却出料,对烧结后的物料进行气流粉碎,控制出料粒径D50在1.9μm左右,得到高性能磷酸铁锂材料。
实施例5
本实施例制备了一种高性能磷酸铁锂,具体过程为:
(1)用水和醋酸正戊酯预先调配出具有一定挥发性和化学温和性的溶剂A,其中醋酸正戊酯质量是水的0.25倍,将碳酸锂分散于溶剂A中,控制锂盐质量是溶剂A质量的0.2倍,搅拌分散均匀,再加入乙二酸调节pH为8.0,得到混合液;将多孔磷酸铁(粒径D50为15.8μm,孔隙率为41%,孔径尺寸约19nm)分散于预先调配的溶剂B中(溶剂B的组成与溶剂A一致),控制多孔磷酸铁质量是溶剂B的0.4倍,并控制多孔磷酸铁中的Fe与锂盐中的Li的摩尔比为0.99:1,再加入淀粉和聚乙二醇于溶剂B中,控制淀粉和聚乙二醇总加入量为多孔磷酸铁质量的0.17倍,其中淀粉质量是聚乙二醇的1.1倍,搅拌分散均匀,得到混合浆料A;
(2)在不断搅拌下,将混合液缓慢加入到混合浆料A中,分散均匀后,进行砂磨机研磨处理,出料粒度D50为0.605μm,加入异丙醇和酚醛树脂搅拌分散1.0h,异丙醇和酚醛树脂总加入量为多孔磷酸铁质量的0.07倍,其中异丙醇质量是酚醛树脂的2.8倍,得到混合浆料B;
(3)将混合浆料B置于温控陈化釜中缓慢陈化干燥,控制压力为700Pa左右,控制温度为110℃,时间为24h,得到干料,将干料进行烧结粉碎:在纯氮气条件下,以5℃/min升温至785℃,保温维持12h,然后冷却出料,对烧结后的物料进行气流粉碎,控制出料粒径D50在1.6μm左右,得到高性能磷酸铁锂材料。
对比例
本对比例制备了一种磷酸铁锂,具体过程为:
(1)将氢氧化锂分散于水中,控制锂盐质量比是溶剂的0.4倍,搅拌分散均匀,得到混合液,将多孔磷酸铁(粒径D50为18.8μm,孔隙率为26%,孔径尺寸约49nm)分散于水中,控制多孔磷酸铁质量是溶剂的0.3倍,并控制多孔磷酸铁中的Fe与锂盐中的Li的摩尔比为0.97:1,再加入无水葡萄糖和聚丙烯酸于溶剂中,控制无水葡萄糖和聚丙烯酸加入量为多孔磷酸铁质量的0.12倍,其中无水葡萄糖质量是聚丙烯酸的3.5倍,搅拌分散均匀,得到混合浆料A;
(2)在不断搅拌下,将混合液快速加入到混合浆料A中,分散均匀后,进行砂磨机研磨处理,出料粒度D50为0.495μm,得到研磨料;
(3)将研磨料置于温控陈化釜中缓慢干燥,对压力不做控制(表压约小于10Pa),控制温度为140℃,时间为24h,得到干料,将干料进行烧结粉碎:在纯氮气条件下,以2℃/min升温至745℃,保温维持9h,然后冷却出料,对烧结后的物料进行气流粉碎,控制出料粒径D50在1.2μm左右,得到磷酸铁锂材料。
试验例
电性能测试按照以下方法执行:按质量比为92:4:4称取实施例1-5、对比例和市售同类型的磷酸铁锂样品、导电剂、PVDF,加入NMP调成浆状后搅拌4h,115℃涂布在铝箔表面、辊压、制片、装配。以石墨为负极,1mol/L LiPF6(EC:DEC=1:1)为电解液,以聚丙烯微孔膜作为隔膜,组装成软包电池,应用电池测试系统,45℃化成后,在室温条件下,进行相应的充放电性能测试,测试电压区间为2.0~3.65V。
表1磷酸铁锂的电化学性能
Figure BDA0003592424840000081
表1结果对比显示,本发明所制备得到的磷酸铁锂材料在电池应用中具有更优异的充放电性能和长循环性能。这是由于实施例通过有机酸调节pH、加入分散剂以及控制干燥蒸气压综合提升体系的分散性和稳定性,保证锂盐和有机碳源充分且稳定嵌合于多孔磷酸铁结构之中,使得反应更为有效充分,降低成品杂相的产生,最终提升了比容量和循环性能。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

1.一种磷酸铁锂的制备方法,其特征在于,包括以下步骤:
S1:将锂盐分散于预先调配的溶剂A中,再加入有机酸调节pH为6.5-8.5,得到混合液;将多孔磷酸铁分散于预先调配的溶剂B中,再加入有机碳源,得到混合浆料A;所述溶剂A、所述溶剂B独立为水或挥发性溶剂与水的分散液;
S2:将所述混合浆料A加入到所述混合液中,所得浆料进行研磨处理,得到研磨料,向所述研磨料中加入分散剂进行搅拌分散,得到混合浆料B;
S3:将所述混合浆料B置于100-1000Pa压力下进行陈化干燥,得到干料,所述干料在惰性气氛下烧结,即得所述磷酸铁锂。
2.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述挥发性溶剂为乙醇、正庚烷或醋酸正戊酯中的一种或几种。
3.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述锂盐为氧化锂、碳酸锂、醋酸锂、氢氧化锂、单水氢氧化锂或硝酸锂中的一种或几种。
4.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述有机酸为甲酸、乙酸、乙二酸、柠檬酸、亚磺酸、磺酸或芳香酸中的一种或几种。
5.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述多孔磷酸铁的颗粒粒径D50为1-20μm,孔隙率为25-55%,孔径尺寸在50nm以下。
6.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述有机碳源为淀粉、蔗糖、纤维素、无水葡萄糖、一水葡萄糖、聚乙烯醇、聚乙二醇、聚丙烯酸、聚乙烯吡咯烷酮或甲壳素中的一种或几种。
7.根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述分散剂为吐温、异丙醇、丙三醇、酚醛树脂、乙酸乙酯或环氧树脂中的一种或几种。
8.根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述研磨料的粒度D50为0.1-2.0μm。
9.根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述陈化干燥的温度为60-120℃,时间为5-48h。
10.如权利要求1-9任一项所述的制备方法在制备锂离子电池中的应用。
CN202210380031.9A 2022-04-12 2022-04-12 高性能磷酸铁锂的制备方法及其应用 Active CN114735670B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202210380031.9A CN114735670B (zh) 2022-04-12 2022-04-12 高性能磷酸铁锂的制备方法及其应用
PCT/CN2023/077222 WO2023197747A1 (zh) 2022-04-12 2023-02-20 高性能磷酸铁锂的制备方法及其应用
DE112023000110.3T DE112023000110T5 (de) 2022-04-12 2023-02-20 Verfahren zur Herstellung und Verwendung von Hochleistungs-Lithiumeisenphosphat
GB2318499.7A GB2622158A (en) 2022-04-12 2023-02-20 Preparation method for and use of high-performance lithium iron phosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210380031.9A CN114735670B (zh) 2022-04-12 2022-04-12 高性能磷酸铁锂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN114735670A true CN114735670A (zh) 2022-07-12
CN114735670B CN114735670B (zh) 2023-11-03

Family

ID=82281086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210380031.9A Active CN114735670B (zh) 2022-04-12 2022-04-12 高性能磷酸铁锂的制备方法及其应用

Country Status (4)

Country Link
CN (1) CN114735670B (zh)
DE (1) DE112023000110T5 (zh)
GB (1) GB2622158A (zh)
WO (1) WO2023197747A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197747A1 (zh) * 2022-04-12 2023-10-19 宜昌邦普时代新能源有限公司 高性能磷酸铁锂的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927991A (zh) * 2010-08-26 2010-12-29 中国科学院青岛生物能源与过程研究所 一种球形磷酸盐化合物
CN102881903A (zh) * 2012-10-23 2013-01-16 兰州理工大学 一种多孔磷酸铁锂粉体的制备方法
CN104103831A (zh) * 2014-07-22 2014-10-15 合肥国轩高科动力能源股份公司 一种利用转炉污泥制备多元掺杂磷酸铁锂的方法
WO2015196853A1 (zh) * 2014-06-26 2015-12-30 江苏华东锂电技术研究院有限公司 磷酸铁锂的制备方法
CN107359318A (zh) * 2017-05-27 2017-11-17 宁波诺丁汉大学 合成类球形多孔结构磷酸铁前驱体及磷酸铁锂正极材料的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201323322A (zh) * 2011-12-13 2013-06-16 Hirose Tech Co Ltd 多孔性磷酸鋰金屬鹽及其製備方法
CN103224226A (zh) * 2013-04-15 2013-07-31 宜兴奕润新能源科技有限公司 适用于高倍率动力电池的纳米磷酸铁锂材料及其制备方法
CN108910851B (zh) * 2018-09-21 2021-12-31 深圳市德方纳米科技股份有限公司 一种由锂磷铝石制备含锂化合物的方法
CN113896182B (zh) * 2021-09-10 2023-05-23 上海量孚新能源科技有限公司 一种绿色磷酸铁锂前驱体及其制备方法、应用
CN114735670B (zh) * 2022-04-12 2023-11-03 宜昌邦普时代新能源有限公司 高性能磷酸铁锂的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927991A (zh) * 2010-08-26 2010-12-29 中国科学院青岛生物能源与过程研究所 一种球形磷酸盐化合物
CN102881903A (zh) * 2012-10-23 2013-01-16 兰州理工大学 一种多孔磷酸铁锂粉体的制备方法
WO2015196853A1 (zh) * 2014-06-26 2015-12-30 江苏华东锂电技术研究院有限公司 磷酸铁锂的制备方法
CN104103831A (zh) * 2014-07-22 2014-10-15 合肥国轩高科动力能源股份公司 一种利用转炉污泥制备多元掺杂磷酸铁锂的方法
CN107359318A (zh) * 2017-05-27 2017-11-17 宁波诺丁汉大学 合成类球形多孔结构磷酸铁前驱体及磷酸铁锂正极材料的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197747A1 (zh) * 2022-04-12 2023-10-19 宜昌邦普时代新能源有限公司 高性能磷酸铁锂的制备方法及其应用
GB2622158A (en) * 2022-04-12 2024-03-06 Yichang Brunp Contemporary Amperex Co Ltd Preparation method for and use of high-performance lithium iron phosphate

Also Published As

Publication number Publication date
WO2023197747A1 (zh) 2023-10-19
DE112023000110T5 (de) 2024-06-06
GB2622158A (en) 2024-03-06
GB202318499D0 (en) 2024-01-17
CN114735670B (zh) 2023-11-03
GB2622158A8 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
CN107403913B (zh) 一种表面修饰的镍钴铝酸锂正极材料及其制备方法
CN111029578B (zh) 一种改性硬炭负极材料及其制备方法
EP3351508A1 (en) Method for modifying lithium iron phosphate, positive electrode, and lithium ion battery
CN110444743B (zh) 一种硅碳复合材料及其制备方法和应用
CN109904387B (zh) 一种高性能锂电池正极片制备方法
CN114079086A (zh) 正极补锂添加剂、正极极片、其制备方法及锂离子电池
CN114122402A (zh) 锂离子电池正极补锂添加剂、正极片、其制备方法和用途
CN116730317A (zh) 一种磷酸铁锂的制备方法
CN113690420B (zh) 一种氮硫掺杂硅碳复合材料及其制备方法和应用
WO2023197747A1 (zh) 高性能磷酸铁锂的制备方法及其应用
CN108565427B (zh) 一种碳/钛酸锂复合材料的制备方法
CN113991100A (zh) 一种复相锆酸锂改性高镍三元正极材料及其制备方法
CN115159527B (zh) 一种硬碳包覆硅纳米颗粒复合微球负极材料及其制备方法与应用
CN116666589A (zh) 具有核壳结构的纳米硅碳复合物负极材料及其制备方法和应用
CN117059737A (zh) 一种正极片、电池及其制备方法
CN114792791B (zh) 负极材料、其制备方法及应用
CN108183216B (zh) 一种碳包覆富锂锰基正极材料及其制备方法和锂离子电池
CN116002679A (zh) 一种负极材料、制备方法及其应用
CN113683072B (zh) 一种球形磷酸铁锂正极材料的制备方法及应用
CN114613959A (zh) 一种阴阳离子共修饰富锂锰基复合材料、制备方法和应用
CN114551850A (zh) 一种具有多孔结构的硅碳负极复合材料及其制备方法和应用
CN113937254A (zh) 电池正极补锂添加剂、正极片、其制备方法及锂离子电池
CN115367723B (zh) 一种LiFe2F6包覆磷酸铁锂正极材料的制备方法
CN116495715B (zh) 一种磷酸铁锂正极材料及其制备方法和应用
CN114300663B (zh) 钾离子二次电池负极材料及其制备方法、负极片和钾离子二次电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant