WO2015194470A1 - 水素排出膜 - Google Patents

水素排出膜 Download PDF

Info

Publication number
WO2015194470A1
WO2015194470A1 PCT/JP2015/067000 JP2015067000W WO2015194470A1 WO 2015194470 A1 WO2015194470 A1 WO 2015194470A1 JP 2015067000 W JP2015067000 W JP 2015067000W WO 2015194470 A1 WO2015194470 A1 WO 2015194470A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen discharge
hydrogen
film
alloy
mol
Prior art date
Application number
PCT/JP2015/067000
Other languages
English (en)
French (fr)
Inventor
福岡 孝博
恭子 石井
俊輔 正木
健太 秦
湯川 宏
智憲 南部
Original Assignee
日東電工株式会社
国立大学法人 名古屋大学
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, 国立大学法人 名古屋大学, 独立行政法人国立高等専門学校機構 filed Critical 日東電工株式会社
Priority to EP15809679.2A priority Critical patent/EP3156120A4/en
Priority to US15/318,856 priority patent/US10439185B2/en
Priority to CN201580032750.XA priority patent/CN106714947B/zh
Priority to KR1020177000825A priority patent/KR20170018029A/ko
Priority to JP2016529303A priority patent/JP6106343B2/ja
Publication of WO2015194470A1 publication Critical patent/WO2015194470A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0213Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a hydrogen discharge membrane provided in electrochemical elements such as batteries, capacitors, capacitors, and sensors. More specifically, the present invention relates to a hydrogen discharge membrane having a function of discharging generated hydrogen to the outside under an environment of use of about 150 ° C. or lower in an electrochemical element in which hydrogen gas is generated and the internal pressure is increased during use.
  • Aluminum electrolytic capacitors have been used for applications such as inverters for wind power generation and solar power generation, large power sources such as storage batteries.
  • Aluminum electrolytic capacitors may generate hydrogen gas inside due to reverse voltage, overvoltage, and overcurrent, and if a large amount of hydrogen gas is generated, the outer case may burst due to an increase in internal pressure.
  • a general aluminum electrolytic capacitor is provided with a safety valve equipped with a special film.
  • the safety valve has a function to prevent the capacitor itself from bursting by self-destructing and reducing the internal pressure when the internal pressure of the capacitor suddenly increases. is there.
  • the following has been proposed as a special membrane that is a component of such a safety valve.
  • Patent Document 1 proposes a pressure adjusting film including a foil strip made of an alloy of paradium silver (Pd—Ag) containing 20 wt% (19.8 mol%) Ag in paradium.
  • the foil strip of Patent Document 1 has a problem that it tends to become brittle in an environment of about 50 to 60 ° C. or less, and the function as a pressure adjusting film cannot be maintained for a long time.
  • the pressure adjustment film is deteriorated by the gas released from a part of the organic material used as the exterior case part and accessory of the electrochemical element, and the hydrogen discharge function is reduced. A new problem was also identified.
  • lithium-ion batteries are widely used as batteries for mobile phones, notebook computers, and automobiles.
  • lithium-ion batteries have become increasingly interested in safety in addition to increasing capacity and improving cycle characteristics.
  • a lithium ion battery generates gas in the cell, and there is a concern about expansion and rupture of the battery pack accompanying an increase in internal pressure.
  • Patent Document 2 discloses an amorphous alloy (for example, 36Zr-64Ni alloy) made of an alloy of zirconium (Zr) and nickel (Ni) as a hydrogen selective permeable alloy film that selectively permeates hydrogen gas generated in a battery.
  • amorphous alloy for example, 36Zr-64Ni alloy
  • Zr zirconium
  • Ni nickel
  • the amorphous alloy forms a hydride (ZrH 2 ) and becomes brittle when exposed to hydrogen in a low temperature range (for example, 50 ° C.), so that the function as a pressure adjusting film cannot be maintained for a long time. There was a problem.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a hydrogen discharge film, a composite hydrogen discharge film, and a hydrogen discharge laminated film that are not easily embrittled at the use environment temperature of the electrochemical element. Another object of the present invention is to provide a hydrogen discharge film, a composite hydrogen discharge film, and a hydrogen discharge laminated film that are not easily deteriorated by a gas released from an organic material in addition to the above characteristics. Moreover, it aims at providing the electrochemical element provided with the safety valve for electrochemical elements provided with the said hydrogen discharge film
  • the present invention relates to a hydrogen discharge film including an alloy, wherein the alloy is a Pd—Au alloy, and the Au content in the Pd—Au alloy is 15 mol% or more.
  • a hydrogen permeable membrane containing a Pd—Ag alloy dissociates hydrogen molecules into hydrogen atoms on the membrane surface, so that the hydrogen atoms are dissolved in the membrane, and the dissolved hydrogen atoms are diffused from the high pressure side to the low pressure side.
  • the film surface has a function of converting hydrogen atoms into hydrogen molecules and discharging them again. Further, it is known that the Pd—Ag alloy has a hydrogen separation function in a temperature range of 400 to 600 ° C.
  • the reason why the Pd-20 wt% Ag alloy of Patent Document 1 is likely to become brittle in an environment of about 50 to 60 ° C. or less is considered as follows.
  • the ⁇ lattice phase hardly changes even when hydrogen atoms are dissolved in the high temperature range, but in the low temperature range of about 50 to 60 ° C. or less, the ⁇ lattice phase It is considered that a part of the phase changes to the ⁇ lattice phase, and when dehydrogenated, the ⁇ lattice phase has the characteristic of changing again to the ⁇ lattice phase.
  • the lattice constant of the ⁇ lattice phase is larger than the lattice constant of the ⁇ lattice phase, distortion occurs in a region where the ⁇ lattice phase and the ⁇ lattice phase coexist ( ⁇ + ⁇ lattice phase). Therefore, it is considered that when hydrogen solution-dehydrogenation is repeated, fracture due to strain occurs in the ⁇ + ⁇ lattice phase, and the Pd-20 wt% Ag alloy becomes brittle.
  • the present inventors have formed a hydrogen discharge film using a Pd—Au alloy having an Au content of 15 mol% or more instead of a Pd—Ag alloy, thereby achieving a low temperature range of about 50 to 60 ° C. or less.
  • a Pd—Au alloy having an Au content of 15 mol% or more is unlikely to change from an ⁇ lattice phase to a ⁇ lattice phase even when hydrogen atoms are dissolved in a low temperature range of about 50 to 60 ° C., that is, an ⁇ + ⁇ lattice phase. Is considered difficult to form.
  • the Pd—Au alloy of the present invention does not easily embrittle even if hydrogen solution-dehydrogenation is repeated.
  • the present inventors have found that a hydrogen discharge film containing a Pd—Au alloy having an Au content of 15 mol% or more is caused by a gas released from an organic material used as an exterior case part or accessory of an electrochemical element. We found that it is hard to deteriorate.
  • the hydrogen discharge film preferably has an Au content in the Pd—Au alloy of 15 to 55 mol%, and the film thickness t (m) and the film area s (m 2 ) satisfy the following formula 1.
  • the hydrogen discharge membrane provided in the electrochemical device has a hydrogen permeation amount of 10 ml / day or more (4.03 ⁇ 10 ⁇ 4 mol / day or more) at a square root of pressure of 76.81 Pa 1/2 (0.059 bar): according to SATP. (The volume of 1 mol ideal gas at a temperature of 25 ° C. and a pressure of 1 bar is 24.8 L)).
  • the hydrogen discharge membrane having an Au content of 15 to 55 mol% in the Pd—Au alloy of the present invention has a hydrogen permeability coefficient at 50 ° C. of 3.6 ⁇ 10 ⁇ 12 to 2.5 ⁇ 10 ⁇ 9 (mol ⁇ m ⁇ 1 ⁇ sec ⁇ 1 ⁇ Pa ⁇ 1/2 ).
  • the hydrogen permeation coefficient is obtained by the following equation 2.
  • Hydrogen permeability coefficient (number of moles of hydrogen ⁇ film thickness t) / (membrane area s ⁇ time ⁇ square root of pressure)
  • the hydrogen permeation rate is 10 ml / day (4.03 ⁇ 10 ⁇ 4 mol / day) and the hydrogen permeation coefficient is 2.5 ⁇ 10 ⁇ 9 (mol ⁇ m ⁇ 1 ⁇ sec ⁇ 1 ⁇ Pa ⁇ 1/2 )
  • the condition for the hydrogen permeation amount to be 10 ml / day or more (4.03 ⁇ 10 ⁇ 4 mol / day or more) is film thickness t / film area s ⁇ 41.1 m ⁇ 1 .
  • the Pd—Au alloy may further contain a group IB and / or group IIIA metal.
  • the total content of Au and the metal in the Pd—Au alloy is preferably 55 mol% or less.
  • the composite hydrogen discharge membrane of the present invention has the hydrogen discharge membrane on one side or both sides of the metal layer.
  • the hydrogen discharge laminated film of the present invention has a support on one side or both sides of the hydrogen discharge film or the composite hydrogen discharge film.
  • the support is provided in order to prevent the hydrogen discharge membrane or the like from falling into the electrochemical element when it falls off the safety valve.
  • the hydrogen discharge membrane or the like needs to have a function as a safety valve that self-destructs when the internal pressure of the electrochemical element becomes a predetermined value or more. If the hydrogen discharge membrane etc. is a thin film, the mechanical strength of the hydrogen discharge membrane etc. is low, so there is a risk of self-destruction before the internal pressure of the electrochemical element reaches a predetermined value, and it cannot function as a safety valve . Therefore, when the hydrogen discharge membrane or the like is a thin film, it is preferable to laminate a support on one side or both sides of the hydrogen discharge membrane or the like in order to improve mechanical strength.
  • the support is preferably a porous body having an average pore diameter of 100 ⁇ m or less. If the average pore diameter exceeds 100 ⁇ m, the surface smoothness of the porous body will decrease, so when a hydrogen discharge film or the like is produced by sputtering or the like, a hydrogen discharge film or the like having a uniform film thickness is formed on the porous body. It becomes difficult to generate a pinhole or a crack in the hydrogen discharge film or the like.
  • the support is preferably formed of at least one polymer selected from the group consisting of polytetrafluoroethylene, polysulfone, polyimide, polyamideimide, and aramid from the viewpoint of being chemically and thermally stable.
  • the present invention also relates to a safety valve for an electrochemical element provided with the hydrogen discharge film, the composite hydrogen discharge film, or the hydrogen discharge laminated film, and an electrochemical element having the safety valve.
  • the electrochemical element include an aluminum electrolytic capacitor and a lithium ion battery.
  • the present invention also relates to a hydrogen discharge method using the hydrogen discharge film, the composite hydrogen discharge film, the hydrogen discharge laminated film, or the electrochemical element safety valve.
  • the hydrogen discharge method of the present invention it is preferable to discharge hydrogen in an environment of 150 ° C. or lower using the hydrogen discharge film or the like.
  • the hydrogen discharge film, the composite hydrogen discharge film, and the hydrogen discharge laminated film of the present invention are characterized in that they are not easily embrittled at the environment temperature in which the electrochemical element is used and are not easily deteriorated by the gas released from the organic material.
  • the hydrogen discharge film, composite hydrogen discharge film, and hydrogen discharge laminated film of the present invention can not only quickly discharge only hydrogen gas generated inside the electrochemical element to the outside, but also the inside of the electrochemical element from the outside. Impurity can be prevented from entering the substrate.
  • the safety valve provided with the hydrogen discharge membrane, composite hydrogen discharge membrane, or hydrogen discharge laminated film of the present invention self-destructs when the internal pressure of the electrochemical element suddenly increases, lowers the internal pressure, and electrochemical The element itself can be prevented from bursting. By these effects, the performance of the electrochemical element can be maintained for a long time, and the lifetime of the electrochemical element can be extended.
  • FIG. 2 is a photograph after an evaluation test of a hydrogen discharge film produced in Example 1.
  • FIG. 6 is a photograph after an evaluation test of a hydrogen discharge film produced in Example 3.
  • 6 is a photograph after an evaluation test of a hydrogen discharge film produced in Example 5.
  • FIG. 7 is the photograph after the evaluation test of the hydrogen discharge laminated film produced in Example 7.
  • FIG. 6 is a photograph after an evaluation test of a hydrogen discharge laminated film produced in Comparative Example 3.
  • the Au content is preferably 25 mol% or more, and more preferably 30 mol% or more. Further, when the content of Au is 15 mol% or more, it is possible to suppress the deterioration of the hydrogen discharge film due to the gas released from the organic material. On the other hand, since the hydrogen permeation rate tends to decrease when the Au content becomes too large, the Au content is preferably 55 mol% or less, more preferably 50 mol% or less, and even more preferably 45 mol. % Or less, and particularly preferably 40 mol% or less.
  • the Pd—Au alloy may contain a group IB and / or group IIIA metal within a range not impairing the effect of the present invention, and may contain, for example, Ag and / or Cu. That is, an alloy containing three components of Pd—Au—Ag or an alloy containing three components of Pd—Au—Cu may be used. Further, an alloy containing four components of Pd—Au—Ag—Cu may be used.
  • the total content of Au and other metals in the Pd—Au alloy is preferably 55 mol% or less, more preferably It is 50 mol% or less, More preferably, it is 45 mol% or less, Most preferably, it is 40 mol% or less.
  • the hydrogen discharge film of the present invention can be produced by, for example, a rolling method, a sputtering method, a vacuum evaporation method, an ion plating method, a plating method, etc. It is preferable to use a rolling method, and when manufacturing a thin hydrogen discharge film, it is preferable to use a sputtering method.
  • the rolling method may be hot rolling or any method of cold rolling.
  • the rolling method is a method in which a pair or a plurality of pairs of rolls (rollers) are rotated, and a Pd—Au alloy as a raw material is passed between the rolls while applying pressure to form a film.
  • the film thickness of the hydrogen discharge film obtained by the rolling method is preferably 5 to 50 ⁇ m, more preferably 10 to 30 ⁇ m.
  • the film thickness is less than 5 ⁇ m, pinholes or cracks are likely to occur during production, or deformation occurs when hydrogen is occluded.
  • the film thickness exceeds 50 ⁇ m, it takes time to allow hydrogen to permeate, so that the hydrogen discharge performance is lowered or the cost is inferior.
  • the sputtering method is not particularly limited, and can be performed using a sputtering apparatus such as a parallel plate type, a single wafer type, a passing type, DC sputtering, and RF sputtering.
  • a sputtering apparatus such as a parallel plate type, a single wafer type, a passing type, DC sputtering, and RF sputtering.
  • the inside of the sputtering apparatus is evacuated, the Ar gas pressure is adjusted to a predetermined value, and a predetermined sputtering current is supplied to the Pd—Au alloy target.
  • a Pd—Au alloy film is formed on the substrate.
  • the Pd—Au alloy film is peeled from the substrate to obtain a hydrogen discharge film.
  • a target a single target or a plurality of targets can be used depending on a hydrogen discharge film to be manufactured.
  • Examples of the substrate include glass plates, ceramic plates, silicon wafers, metal plates such as aluminum and stainless steel.
  • the film thickness of the hydrogen discharge film obtained by sputtering is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m.
  • the film thickness is less than 0.01 ⁇ m, not only pinholes may be formed, but it is difficult to obtain the required mechanical strength. Moreover, it is easy to break when peeling from the substrate, and handling after peeling becomes difficult.
  • the film thickness exceeds 5 ⁇ m, it takes time to produce a hydrogen discharge film, which is not preferable because of inferior cost.
  • the membrane area of the hydrogen discharge membrane can be appropriately adjusted in consideration of the amount of hydrogen permeation and the thickness, but is about 0.01 to 100 mm 2 when used as a constituent member of a safety valve.
  • the film area is an area of a hydrogen discharge film where hydrogen is actually discharged, and does not include a portion where a ring-shaped adhesive described later is applied.
  • the metal forming the metal layer is not particularly limited as long as it is a single substance or a metal having a hydrogen permeation function by alloying, for example, Pd, Nb, V, Ta, Ni, Fe, Al, Cu, Ru, Examples thereof include Re, Rh, Au, Pt, Ag, Cr, Co, Sn, Zr, Y, Ce, Ti, Ir, Mo, and an alloy containing two or more of these metals.
  • the metal layer is preferably an alloy layer containing a Pd alloy.
  • the other metal forming the Pd alloy is not particularly limited, but a group 11 element is preferably used, and more preferably at least one selected from the group consisting of Ag and Cu.
  • the Pd alloy preferably contains a Group 11 element in an amount of 20 to 65 mol%, more preferably 30 to 65 mol%, and still more preferably 30 to 60 mol%.
  • an alloy layer containing a Pd—Ag alloy having an Ag content of 20 mol% or more or a Pd—Cu alloy having a Cu content of 30 mol% or more has a hydrogen content even in a low temperature range of about 50 to 60 ° C. or less. Is preferable because it is difficult to embrittle.
  • the Pd alloy may contain a group IB and / or group IIIA metal as long as the effects of the present invention are not impaired.
  • the metal layer can be produced by the same method as the hydrogen exhaust film. Moreover, it is preferable that the film thickness of the said metal layer is comparable as the film thickness of the said hydrogen exhaust film.
  • the method for providing the hydrogen discharge film on one or both surfaces of the metal layer is not particularly limited, and examples thereof include a sputtering method, a vacuum deposition method, an ion plating method, and a plating method. Moreover, you may use a ring-shaped adhesive agent.
  • a support may be provided on one or both sides of the hydrogen discharge film or the composite hydrogen discharge film to form a hydrogen discharge laminated film.
  • the hydrogen discharge film obtained by sputtering is thin, it is preferable to laminate a support on one or both sides of the hydrogen discharge film in order to improve the mechanical strength.
  • FIG. 1 and 2 are schematic cross-sectional views showing the structure of the hydrogen discharge laminated film 1 of the present invention.
  • a support 4 may be laminated on one or both sides of the hydrogen discharge membrane 2 using a ring-shaped adhesive 3, and FIG. 2 (a) or (b ), The support 4 may be laminated on one side or both sides of the hydrogen discharge film 2 using the jig 5.
  • the support 4 is not particularly limited as long as it is hydrogen permeable and can support the hydrogen discharge membrane 2, and may be a non-porous material or a porous material. When a porous body is used as the support 4, a sponge structure or a finger void structure is preferable.
  • the support 4 may be a woven fabric or a non-woven fabric. Examples of the material for forming the support 4 include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyaryl ether sulfones such as polysulfone and polyethersulfone, polytetrafluoroethylene, and polyvinylidene fluoride.
  • Fluorine resin, epoxy resin, polyamide, polyimide, polyamideimide, aramid and the like can be mentioned.
  • at least one selected from the group consisting of chemically and thermally stable polytetrafluoroethylene, polysulfone, polyimide, polyamideimide, and aramid is preferably used.
  • the thickness of the support 4 is not particularly limited, but is usually about 5 to 1000 ⁇ m, preferably 10 to 300 ⁇ m.
  • the hydrogen discharge film 2 When the hydrogen discharge film 2 is manufactured by the sputtering method, if the support 4 is used as a substrate, the hydrogen discharge film 2 can be directly formed on the support 4, and the hydrogen discharge film 2 can be formed without using the adhesive 3 or the jig 5. Since the discharge
  • the support 4 is preferably a porous body having an average pore diameter of 100 ⁇ m or less, more preferably a porous body having an average pore diameter of 5 ⁇ m or less, and particularly an ultrafiltration membrane (UF membrane). preferable.
  • UF membrane ultrafiltration membrane
  • the shape of the hydrogen discharge film, composite hydrogen discharge film, and hydrogen discharge laminated film of the present invention may be substantially circular, or may be a polygon such as a triangle, a quadrangle, or a pentagon. It can be made into arbitrary shapes according to the use mentioned later.
  • the hydrogen discharge film, composite hydrogen discharge film, and hydrogen discharge laminated film of the present invention are particularly useful as components for safety valves of aluminum electrolytic capacitors or lithium ion batteries.
  • the hydrogen discharge film, the composite hydrogen discharge film, and the hydrogen discharge laminated film of the present invention can be provided in the electrochemical element as a hydrogen discharge valve separately from the safety valve.
  • the method for discharging the hydrogen generated inside the electrochemical device using the hydrogen discharge film, composite hydrogen discharge film or hydrogen discharge laminated film of the present invention is not particularly limited, but for example, one of the exterior parts of an aluminum electrolytic capacitor or a lithium ion battery.
  • the part can be provided with the hydrogen discharge film, composite hydrogen discharge film or hydrogen discharge laminated film of the present invention, and this can be used as a diaphragm inside and outside the exterior.
  • the interior and exterior of the exterior are separated by a hydrogen exhaust film or the like, and the hydrogen exhaust film or the like does not transmit gas other than hydrogen.
  • Hydrogen generated inside the exterior is discharged to the outside through a hydrogen discharge film or the like due to an increase in pressure, and the interior of the exterior does not rise above a predetermined pressure.
  • the hydrogen discharge membrane of the present invention does not become brittle at a low temperature, there is an advantage that it can be used at a temperature of 150 ° C. or lower, for example, 110 ° C. or lower. That is, the hydrogen discharge membrane of the present invention is particularly preferably used in a hydrogen discharge method in an aluminum electrolytic capacitor or a lithium ion battery that is not used at a high temperature (for example, 400 to 500 ° C.) depending on its application.
  • a high temperature for example, 400 to 500 ° C.
  • Example 1 [Production of hydrogen discharge film by rolling method (Au content: 15 mol%)] Pd and Au raw materials were weighed so that the Au content in the ingot was 15 mol%, and charged into an arc melting furnace equipped with a water-cooled copper crucible, and arc melted in an Ar gas atmosphere at atmospheric pressure.
  • the obtained button ingot was cold-rolled to a thickness of 5 mm using a two-high rolling mill having a roll diameter of 100 mm to obtain a plate material. Then, the rolled plate material was put in the glass tube, and both ends of the glass tube were sealed. The inside of the glass tube was depressurized to 5 ⁇ 10 ⁇ 4 Pa at room temperature, then heated to 700 ° C.
  • the plate material is cold-rolled to a thickness of 100 ⁇ m using a two-high rolling mill with a roll diameter of 100 mm, and further, the plate material is cold-rolled to a thickness of 25 ⁇ m using a two-high rolling mill with a roll diameter of 20 mm did. Then, the rolled plate material was put in the glass tube, and both ends of the glass tube were sealed. The inside of the glass tube was depressurized to 5 ⁇ 10 ⁇ 4 Pa at room temperature, then heated to 500 ° C. and allowed to stand for 1 hour, and then cooled to room temperature.
  • Example 2 [Production of hydrogen discharge film by rolling method (Au content: 20 mol%)] A Pd—Au hydrogen discharge film having a thickness of 25 ⁇ m and an Au content of 20 mol% was prepared in the same manner as in Example 1 except that Pd and Au materials were used so that the Au content in the ingot was 20 mol%. . When the hydrogen embrittlement of the hydrogen discharge film was evaluated by the following method, no change in appearance such as strain was observed.
  • Example 3 [Production of hydrogen discharge film by rolling method (Au content: 30 mol%)] A Pd—Au hydrogen discharge film having a thickness of 25 ⁇ m and an Au content of 30 mol% was prepared in the same manner as in Example 1 except that Pd and Au raw materials were used so that the Au content in the ingot was 30 mol%. . When the hydrogen embrittlement of the hydrogen discharge film was evaluated by the following method, no change in appearance such as strain was observed (see FIG. 4).
  • Example 4 [Production of hydrogen discharge film by rolling method (Au content 40 mol%)] A Pd—Au hydrogen discharge film having a thickness of 25 ⁇ m and an Au content of 40 mol% was prepared in the same manner as in Example 1 except that Pd and Au raw materials were used so that the Au content in the ingot was 40 mol%. . When the hydrogen embrittlement of the hydrogen discharge film was evaluated by the following method, no change in appearance such as strain was observed.
  • Example 5 [Production of hydrogen discharge film by rolling method (Au content 50 mol%)] A Pd—Au hydrogen discharge film having a thickness of 25 ⁇ m and an Au content of 50 mol% was prepared in the same manner as in Example 1 except that Pd and Au raw materials were used so that the Au content in the ingot was 50 mol%. . When the hydrogen embrittlement of the hydrogen discharge film was evaluated by the following method, no change in appearance such as strain was observed (see FIG. 5).
  • Example 6 [Production of hydrogen discharge film by rolling method (Au content 15 mol%, Ag content 15 mol%)] The thickness was 25 ⁇ m, the Au content was 15 mol%, and the Ag content was 15 mol, except that Pd, Au, and Ag raw materials were used so that the Au and Ag contents in the ingot were 15 mol% each. % Pd—Au—Ag hydrogen discharge membrane was prepared. When the hydrogen embrittlement of the hydrogen discharge film was evaluated by the following method, no change in appearance such as strain was observed (see FIG. 6).
  • Comparative Example 1 [Production of hydrogen discharge film by rolling method (Au content: 10 mol%)] A Pd—Au hydrogen discharge film having a thickness of 25 ⁇ m and an Au content of 10 mol% was prepared in the same manner as in Example 1 except that Pd and Au raw materials were used so that the Au content in the ingot was 10 mol%. .
  • the hydrogen embrittlement of the hydrogen discharge film was evaluated by the following method, the hydrogen discharge film was distorted and became unusable for practical use (see FIG. 7).
  • Comparative Example 2 [Production of hydrogen discharge film by rolling method (Ag content: 19.8 mol%)] Pd and Ag raw materials were weighed so that the Ag content in the ingot would be 19.8 mol%, put into an arc melting furnace equipped with a water-cooled copper crucible, and arc melted in an atmospheric pressure Ar gas atmosphere.
  • the obtained button ingot was cold-rolled to a thickness of 5 mm using a two-high rolling mill having a roll diameter of 100 mm to obtain a plate material. Then, the rolled plate material was put in the glass tube, and both ends of the glass tube were sealed. The inside of the glass tube was depressurized to 5 ⁇ 10 ⁇ 4 Pa at room temperature, then heated to 700 ° C.
  • the plate material is cold-rolled to a thickness of 100 ⁇ m using a two-high rolling mill with a roll diameter of 100 mm, and further, the plate material is cold-rolled to a thickness of 25 ⁇ m using a two-high rolling mill with a roll diameter of 20 mm did. Then, the rolled plate material was put in the glass tube, and both ends of the glass tube were sealed. The inside of the glass tube was depressurized to 5 ⁇ 10 ⁇ 4 Pa at room temperature, then heated to 700 ° C. and allowed to stand for 1 hour, and then cooled to room temperature.
  • Example 7 [Fabrication of hydrogen discharge laminated film by sputtering method (Au content 15 mol%)]
  • a polysulfone porous sheet (manufactured by Nitto Denko Corporation, pore size: 0.001 to 0.02 ⁇ m) is mounted on an RF magnetron sputtering apparatus (manufactured by Sanyu Electronics Co., Ltd.) equipped with a Pd—Au alloy target having an Au content of 15 mol%. ) was attached.
  • the inside of the sputtering apparatus is evacuated to 1 ⁇ 10 ⁇ 5 Pa or less, and a sputtering current of 4.8 A is applied to the Pd—Au alloy target at an Ar gas pressure of 1.0 Pa to form a thick film on the polysulfone porous sheet.
  • a 400-nm thick Pd—Au alloy film (Au content: 15 mol%) was formed to produce a hydrogen discharge laminated film.
  • Example 8 [Fabrication of hydrogen discharge laminated film by sputtering method (Au content 20 mol%)] A 400-nm-thick Pd—Au alloy film (Au content 20 mol%) was formed by the same method as in Example 7 except that a Pd—Au alloy target having an Au content of 20 mol% was used, and a hydrogen discharge laminated film Was made. When the hydrogen embrittlement of the hydrogen discharge laminated film was evaluated by the following method, no cracks were generated on the surface.
  • Example 9 [Production of hydrogen-discharge laminated film by sputtering method (Au content: 30 mol%)] A 400-nm-thick Pd—Au alloy film (Au content 30 mol%) was formed by the same method as in Example 7 except that a Pd—Au alloy target having an Au content of 30 mol% was used, and a hydrogen-discharge laminated film Was made. When the hydrogen embrittlement of the hydrogen discharge laminated film was evaluated by the following method, no cracks were generated on the surface (see FIG. 9).
  • Example 10 [Fabrication of hydrogen discharge laminated film by sputtering method (Au content 40 mol%)] A 400-nm-thick Pd—Au alloy film (Au content 40 mol%) was formed in the same manner as in Example 7 except that a Pd—Au alloy target having an Au content of 40 mol% was used, and a hydrogen-discharge laminated film was made. When the hydrogen embrittlement of the hydrogen discharge laminated film was evaluated by the following method, no cracks were generated on the surface.
  • Example 11 [Fabrication of hydrogen discharge laminated film by sputtering method (Au content 50 mol%)] A 400-nm-thick Pd—Au alloy film (Au content 50 mol%) was formed in the same manner as in Example 7 except that a Pd—Au alloy target having an Au content of 50 mol% was used, and a hydrogen-discharge laminated film Was made. When the hydrogen embrittlement of the hydrogen discharge laminated film was evaluated by the following method, no cracks were generated on the surface (see FIG. 10).
  • Example 12 [Fabrication of hydrogen discharge laminated film by sputtering method (Au content 15 mol%, Ag content 15 mol%)] A Pd—Au—Ag alloy film having a thickness of 400 nm (Au and Ag contents: each), except that a Pd—Au—Ag alloy target having an Au and Ag content of 15 mol% each was used. 15 mol%) to form a hydrogen discharge laminated film.
  • a Pd—Au—Ag alloy target having an Au and Ag content of 15 mol% each was used. 15 mol%) to form a hydrogen discharge laminated film.
  • Comparative Example 4 [Fabrication of hydrogen discharge laminated film by sputtering method (Ag content: 19.8 mol%)] A 400 nm thick Pd—Ag alloy film (Ag content 19.8 mol%) was formed in the same manner as in Example 7 except that a Pd—Ag alloy target having an Ag content of 19.8 mol% was used. A hydrogen discharge laminated film was prepared. When the hydrogen embrittlement of the hydrogen discharge laminated film was evaluated by the following method, cracks were generated on the surface. It is thought that hydrogen embrittlement occurred.
  • the effective film area s of the hydrogen discharge film used for the measurement is 3.85 ⁇ 10 ⁇ 5 m 2
  • the effective film area s of the hydrogen discharge stacked film is 7.07 ⁇ 10 ⁇ 6 m 2 .
  • Hydrogen permeability coefficient (number of moles of hydrogen ⁇ film thickness t) / (membrane area s ⁇ time ⁇ square root of pressure)
  • the produced hydrogen discharge film or hydrogen discharge laminated film was attached to a VCR connector manufactured by Swagelok, and a SUS tube was attached to one side to produce a sealed space (63.5 ml). After depressurizing the inside of the tube with a vacuum pump, the pressure of hydrogen gas was adjusted to 0.15 MPa, and the pressure change in an environment of 105 ° C. was monitored. Since the number of hydrogen moles (volume) permeated through the hydrogen discharge membrane or the hydrogen discharge laminated film can be determined by the pressure change, the hydrogen permeation amount was converted to the permeation amount per day.
  • the effective film area s of the hydrogen discharge film used for the measurement is 3.85 ⁇ 10 ⁇ 5 m 2
  • the effective film area s of the hydrogen discharge stacked film is 7.07 ⁇ 10 ⁇ 6 m 2 .
  • hydrogen permeability was evaluated according to the following criteria. ⁇ : 100 mL / day or more ⁇ : 10 mL / day or more and less than 100 mL / day ⁇ : less than 10 mL / day
  • the produced hydrogen discharge membrane was put in a glass tube, and both ends of the glass tube were sealed.
  • the inside of the glass tube was depressurized to 5 ⁇ 10 ⁇ 3 Pa at 50 ° C., and then heated to 400 ° C. Thereafter, hydrogen gas was introduced into the glass tube and left for 1 hour in an atmosphere of 105 kPa. Thereafter, the inside of the glass tube was cooled to room temperature, and the inside of the glass tube was evacuated to 5 ⁇ 10 ⁇ 3 Pa (30 minutes). Thereafter, hydrogen gas was again introduced into the glass tube and left for 1 hour in an atmosphere of 105 kPa. After the above operation was repeated three times, the hydrogen discharge film was taken out from the glass tube, and the appearance of the hydrogen discharge film was visually observed.
  • the hydrogen discharge film, composite hydrogen discharge film, and hydrogen discharge laminated film of the present invention are suitably used as components for safety valves provided in electrochemical elements such as batteries, capacitors, capacitors, and sensors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明は、電気化学素子の使用環境温度で脆化しにくい水素排出膜、複合水素排出膜及び水素排出積層膜を提供することを目的とする。本発明の水素排出膜は、Pd-Au合金を含み、Pd-Au合金中のAuの含有量が15mol%以上であることを特徴とする。

Description

水素排出膜
 本発明は、電池、コンデンサ、キャパシタ、及びセンサなどの電気化学素子等に設けられる水素排出膜に関する。詳しくは、使用中に水素ガスが発生し内部圧力が上昇する電気化学素子等において、150℃程度以下の使用環境下において、発生した水素を外部に排出する機能を有する水素排出膜に関する。
 近年、風力発電及び太陽光発電などのインバータ、蓄電池などの大型電源などの用途にアルミ電解コンデンサが使用されている。アルミ電解コンデンサは、逆電圧、過電圧、及び過電流によって内部に水素ガスが発生する場合があり、水素ガスが大量に発生すると内部圧力の上昇によって外装ケースが破裂する恐れがある。
 そのため、一般のアルミ電解コンデンサには、特殊膜を備えた安全弁が設けられている。安全弁は、コンデンサ内部の水素ガスを外部に排出する機能に加え、コンデンサの内部圧力が急激に上昇した場合には自壊して内部圧力を低下させ、コンデンサ自体の破裂を防止する機能を有するものである。このような安全弁の構成部材である特殊膜としては、例えば、以下のものが提案されている。
 特許文献1では、パラジュームに20wt%(19.8mol%)Agを含有させたパラジューム銀(Pd-Ag)の合金で構成された箔帯を備えた圧力調整膜が提案されている。
 しかし、特許文献1の箔帯は、50~60℃程度以下の環境下で脆化しやすく、圧力調整膜としての機能を長期間維持することができないという問題があった。また、本発明者らが検討した結果、電気化学素子の外装ケースの部品及び付属品として用いられる有機材料の一部から放出されるガスによって圧力調整膜が劣化し、水素排出機能が低下するという問題も新たに確認された。
 一方、携帯電話、ノートパソコン、及び自動車等のバッテリーとして、リチウムイオン電池が幅広く使用されている。また近年、リチウムイオン電池は高容量化やサイクル特性向上に加えて、安全性への関心が高まっている。特に、リチウムイオン電池はセル内でガスが発生することが知られており、内圧上昇に伴う電池パックの膨張や破裂が懸念されている。
 特許文献2には、電池内で発生した水素ガスを選択的に透過する水素選択透過性合金膜として、ジルコニウム(Zr)とニッケル(Ni)の合金からなるアモルファス合金(例えば、36Zr-64Ni合金)膜を用いることが開示されている。
 しかし、前記アモルファス合金は、低温域(例えば、50℃)で水素に触れると水素化物(ZrH)を形成して脆化するため、圧力調整膜としての機能を長時間維持することができないという問題があった。
特許第4280014号明細書 特開2003-297325号公報
 本発明は、上記問題点に鑑みてなされたものであり、電気化学素子の使用環境温度で脆化しにくい水素排出膜、複合水素排出膜及び水素排出積層膜を提供することを目的とする。また、前記特性に加えて、有機材料から放出されるガスによって劣化しにくい水素排出膜、複合水素排出膜及び水素排出積層膜を提供することを目的とする。また、当該水素排出膜、複合水素排出膜又は水素排出積層膜を備えた電気化学素子用安全弁、当該安全弁を備えた電気化学素子を提供することを目的とする。さらに、水素排出膜、複合水素排出膜、水素排出積層膜、又は電気化学素子用安全弁を用いた水素排出方法を提供することを目的とする。
 本発明は、合金を含む水素排出膜において、前記合金がPd-Au合金であり、Pd-Au合金中のAuの含有量が15mol%以上であることを特徴とする水素排出膜、に関する。
 Pd-Ag合金を含む水素透過膜は、膜表面で水素分子を水素原子に解離して水素原子を膜内に固溶し、固溶した水素原子を高圧側から低圧側に拡散させ、低圧側の膜表面で再び水素原子を水素分子に変換して排出する機能を有する。また、Pd-Ag合金は400~600℃の温度域で水素分離機能を有することが知られている。
 特許文献1のPd-20wt%Ag合金が、50~60℃程度以下の環境下で脆化しやすくなる理由としては以下のように考えられる。Pd-20wt%Ag合金は、高温域においては水素原子を固溶してもα格子相は変化し難いが、50~60℃程度以下の低温域においては、水素原子を固溶するとα格子相の一部がβ格子相に相変化し、脱水素するとβ格子相は再びα格子相に相変化する特性を有すると考えられる。そして、β格子相の格子定数はα格子相の格子定数に比べて大きいため、α格子相とβ格子相とが混在する領域(α+β格子相)で歪みが生じる。そのため、水素固溶化-脱水素化が繰り返されると、α+β格子相で歪み起因による破壊が起こり、Pd-20wt%Ag合金が脆化すると考えられる。
 本発明者らは、Pd-Ag合金の代わりに、Au含有量が15mol%以上であるPd-Au合金を用いて水素排出膜を形成することにより、50~60℃程度以下の低温域であっても水素排出膜が脆化し難くなることを見出した。Au含有量が15mol%以上であるPd-Au合金は、50~60℃程度以下の低温域で水素原子を固溶してもα格子相がβ格子相に相変化し難い、つまりα+β格子相が形成され難いと考えられる。そのため、本発明のPd-Au合金は、水素固溶化-脱水素化が繰り返されても脆化が起こり難いと考えられる。また、本発明者らは、Au含有量が15mol%以上であるPd-Au合金を含む水素排出膜は、電気化学素子の外装ケースの部品及び付属品として用いられる有機材料から放出されるガスによって劣化しにくいことを見出した。
 前記水素排出膜は、Pd-Au合金中のAuの含有量が15~55mol%であり、膜厚t(m)と膜面積s(m)が下記式1を満たすことが好ましい。 
 〈式1〉t/s<41.1m-1
 電気化学素子に設けられる水素排出膜は、圧力の平方根が76.81Pa1/2(0.059bar)における水素透過量が10ml/day以上(4.03×10-4mol/day以上:SATPに従い計算(温度25℃、気圧1barにおける1molの理想気体の体積は24.8L))であることが求められる。本発明のPd-Au合金中のAuの含有量が15~55mol%である水素排出膜は、50℃における水素透過係数が3.6×10-12~2.5×10-9(mol・m-1・sec-1・Pa-1/2)である。ここで、水素透過係数は下記式2により求められる。
 〈式2〉水素透過係数=(水素モル数×膜厚t)/(膜面積s×時間×圧力の平方根)
 水素透過量が10ml/day(4.03×10-4mol/day)かつ水素透過係数が2.5×10-9(mol・m-1・sec-1・Pa-1/2)の場合、式2に各数値を代入すると以下のとおりである。
 2.5×10-9=(4.03×10-4×膜厚t)/(膜面積s×86400×76.81)
 2.5×10-9=6.08×10-11×膜厚t/膜面積s
 膜厚t/膜面積s=41.1m-1
 したがって、50℃における水素透過係数が3.6×10-12~2.5×10-9(mol・m-1・sec-1・Pa-1/2)の水素透過膜を用いる場合において、水素透過量が10ml/day以上(4.03×10-4mol/day以上)となる条件は、膜厚t/膜面積s<41.1m-1である。
 Pd-Au合金は、さらにIB族及び/又はIIIA族の金属を含んでいてもよい。その場合、Pd-Au合金中のAuと前記金属との合計含有量は55mol%以下であることが好ましい。
 本発明の複合水素排出膜は、金属層の片面又は両面に前記水素排出膜を有するものである。金属層の片面又は両面に前記水素排出膜を設けることにより、金属層が有機材料から放出されるガスによって劣化することを抑制することができる。
 本発明の水素排出積層膜は、前記水素排出膜又は前記複合水素排出膜の片面又は両面に支持体を有するものである。支持体は、水素排出膜等が安全弁から脱落した場合に、電気化学素子内に落下することを防止するために設けられる。また、水素排出膜等は、電気化学素子の内部圧力が所定値以上になった時に自壊する安全弁としての機能を有する必要がある。水素排出膜等が薄膜である場合には、水素排出膜等の機械的強度が低いため、電気化学素子の内部圧力が所定値になる前に自壊するおそれがあり、安全弁としての機能を果たせない。そのため、水素排出膜等が薄膜である場合には、機械的強度を向上させるために水素排出膜等の片面又は両面に支持体を積層することが好ましい。
 支持体は、平均孔径100μm以下の多孔質体であることが好ましい。平均孔径が100μmを超えると、多孔質体の表面平滑性が低下するため、スパッタリング法等で水素排出膜等を製造する場合に、多孔質体上に膜厚の均一な水素排出膜等を形成し難くなったり、水素排出膜等にピンホール又はクラックが生じやすくなる。
 支持体は、化学的及び熱的に安定である観点からポリテトラフルオロエチレン、ポリスルホン、ポリイミド、ポリアミドイミド、及びアラミドからなる群より選択される少なくとも1種のポリマーにより形成されていることが好ましい。
 また、本発明は、前記水素排出膜、前記複合水素排出膜、又は前記水素排出積層膜を備えた電気化学素子用安全弁、及び当該安全弁を有する電気化学素子、に関する。電気化学素子としては、例えば、アルミ電解コンデンサ及びリチウムイオン電池などが挙げられる。
 また、本発明は、前記水素排出膜、前記複合水素排出膜、前記水素排出積層膜、又は前記電気化学素子用安全弁を用いた水素排出方法、に関する。
 本発明の水素排出方法においては、前記水素排出膜等を用いて150℃以下の環境下で水素を排出させることが好ましい。
 本発明の水素排出膜、複合水素排出膜、及び水素排出積層膜は、電気化学素子の使用環境温度で脆化しにくく、しかも有機材料から放出されるガスによって劣化しにくいという特徴がある。また、本発明の水素排出膜、複合水素排出膜、及び水素排出積層膜は、電気化学素子内部で発生した水素ガスのみを速やかに外部に排出することができるだけでなく、外部から電気化学素子内部への不純物の侵入を防止することができる。また、本発明の水素排出膜、複合水素排出膜、又は水素排出積層膜を備えた安全弁は、電気化学素子の内部圧力が急激に上昇した場合には自壊して内部圧力を低下させ、電気化学素子自体の破裂を防止することができる。これら効果により、電気化学素子の性能を長期間維持することができ、電気化学素子の長寿命化を図ることができる。
本発明の水素排出積層膜の構造を示す概略断面図である。 本発明の水素排出積層膜の構造を示す概略断面図である。 実施例1で作製した水素排出膜の評価試験後の写真である。 実施例3で作製した水素排出膜の評価試験後の写真である。 実施例5で作製した水素排出膜の評価試験後の写真である。 実施例6で作製した水素排出膜の評価試験後の写真である。 比較例1で作製した水素排出膜の評価試験後の写真である。 実施例7で作製した水素排出積層膜の評価試験後の写真である。 実施例9で作製した水素排出積層膜の評価試験後の写真である。 実施例11で作製した水素排出積層膜の評価試験後の写真である。 実施例12で作製した水素排出積層膜の評価試験後の写真である。 比較例3で作製した水素排出積層膜の評価試験後の写真である。
 以下、本発明の実施の形態について説明する。
 本発明の水素排出膜の原料としては、Auの含有量が15mol%以上のPd-Au合金を用いる。Auの含有量が多いほど低温域で水素脆化し難くなるため、Auの含有量は25mol%以上であることが好ましく、より好ましくは30mol%以上である。また、Auの含有量が15mol%以上であれば、有機材料から放出されるガスによる水素排出膜の劣化を抑制することができる。一方、Auの含有量が多くなりすぎると水素透過速度が低下する傾向にあるため、Auの含有量は、55mol%以下であることが好ましく、より好ましくは50mol%以下であり、さらに好ましくは45mol%以下であり、特に好ましくは40mol%以下である。
 また、Pd-Au合金は、本発明の効果を損なわない範囲でIB族及び/又はIIIA族の金属を含んでいてもよく、例えば、Ag及び/又はCuを含んでいてもよい。すなわち、Pd-Au-Agの3成分を含む合金であってもよく、Pd-Au-Cuの3成分を含む合金であってもよい。さらに、Pd-Au-Ag-Cuの4成分を含む合金であってもよい。このように、PdとAuと他の金属を含む多成分系合金の場合、Pd-Au合金中のAuと他の金属との合計含有量は、55mol%以下であることが好ましく、より好ましくは50mol%以下であり、さらに好ましくは45mol%以下であり、特に好ましくは40mol%以下である。
 本発明の水素排出膜は、例えば、圧延法、スパッタリング法、真空蒸着法、イオンプレーティング法、及びメッキ法などにより製造することができるが、膜厚の厚い水素排出膜を製造する場合には、圧延法を用いることが好ましく、膜厚の薄い水素排出膜を製造する場合には、スパッタリング法を用いることが好ましい。
 圧延法は、熱間圧延であってもよく、冷間圧延のいずれの方法でもよい。圧延法は、一対又は複数対のロール(ローラー)を回転させ、ロール間に原料であるPd-Au合金を、圧力をかけながら通過させることにより膜状に加工する方法である。
 圧延法により得られる水素排出膜の膜厚は、5~50μmであることが好ましく、より好ましくは10~30μmである。膜厚が5μm未満の場合には、製造時にピンホール又はクラックが生じやすくなったり、水素を吸蔵すると変形しやすくなる。一方、膜厚が50μmを超えると、水素を透過させるのに時間を要するため水素排出性能が低下したり、コスト面で劣るため好ましくない。
 スパッタリング法は特に限定されず、平行平板型、枚葉型、通過型、DCスパッタ、及びRFスパッタなどのスパッタリング装置を用いて行うことができる。例えば、Pd-Au合金ターゲットを設置したスパッタリング装置に基板を取り付けた後、スパッタリング装置内を真空排気し、Arガス圧を所定値に調整し、Pd-Au合金ターゲットに所定のスパッタ電流を投入して、基板上にPd-Au合金膜を形成する。その後、基板からPd-Au合金膜を剥離して水素排出膜を得る。なお、ターゲットとしては、製造する水素排出膜に応じて、単一又は複数のターゲットを用いることができる。
 基板としては、例えば、ガラス板、セラミックス板、シリコンウエハー、アルミニウム及びステンレスなどの金属板が挙げられる。
 スパッタリング法により得られる水素排出膜の膜厚は、0.01~5μmであることが好ましく、より好ましくは0.05~2μmである。膜厚が0.01μm未満の場合には、ピンホールが形成される可能性があるだけでなく、要求される機械的強度を得難い。また、基板から剥離する際に破損しやすく、剥離後の取り扱いも困難になる。一方、膜厚が5μmを超えると、水素排出膜を製造するのに時間を要し、コスト面で劣るため好ましくない。
 水素排出膜の膜面積は、水素透過量と膜厚を考慮して適宜調整することができるが、安全弁の構成部材として用いる場合には、0.01~100mm程度である。なお本発明において膜面積は、水素排出膜において実際に水素を排出する部分の面積であって、後述するリング状の接着剤を塗布した部分は含まない。
 金属層の片面又は両面に前記水素排出膜を設けて複合水素排出膜としてもよい。
 金属層を形成する金属は、単体、又は合金化することで水素透過機能を有する金属であれば特に制限されず、例えば、Pd、Nb、V、Ta、Ni、Fe、Al、Cu、Ru、Re、Rh、Au、Pt、Ag、Cr、Co、Sn、Zr、Y、Ce、Ti、Ir、Mo及びこれらの金属を2種以上含む合金などが挙げられる。
 前記金属層は、Pd合金を含む合金層であることが好ましい。Pd合金を形成する他の金属は特に制限されないが、第11族元素を用いることが好ましく、より好ましくはAg及びCuからなる群より選択される少なくとも1種である。Pd合金は、第11族元素を20~65mol%含むことが好ましく、より好ましくは30~65mol%であり、さらに好ましくは30~60mol%である。また、Ag含有量が20mol%以上であるPd-Ag合金、又はCu含有量が30mol%以上であるPd-Cu合金を含む合金層は、50~60℃程度以下の低温域であっても水素によって脆化しにくいので好ましい。また、Pd合金は、本発明の効果を損なわない範囲でIB族及び/又はIIIA族の金属を含んでいてもよい。
 前記金属層は、前記水素排出膜と同様の方法で作製することができる。また、前記金属層の膜厚は、前記水素排出膜の膜厚と同程度であることが好ましい。
 前記金属層の片面又は両面に前記水素排出膜を設ける方法は特に制限されないが、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、及びメッキ法などが挙げられる。また、リング状の接着剤を用いてもよい。
 水素排出膜又は複合水素排出膜の片面又は両面に支持体を設けて水素排出積層膜としてもよい。特に、スパッタリング法により得られる水素排出膜等は、膜厚が薄いため、機械的強度を向上させるために水素排出膜等の片面又は両面に支持体を積層することが好ましい。
 図1及び2は、本発明の水素排出積層膜1の構造を示す概略断面図である。図1(a)又は(b)に示すように、水素排出膜2の片面又は両面にリング状の接着剤3を用いて支持体4を積層してもよく、図2(a)又は(b)に示すように、治具5を用いて水素排出膜2の片面又は両面に支持体4を積層してもよい。
 支持体4は、水素透過性であり、水素排出膜2を支持しうるものであれば特に限定されず、無孔質体であってもよく、多孔質体であってもよい。支持体4として多孔質体を用いる場合、スポンジ構造又はフィンガーボイド構造が好適である。また、支持体4は、織布、不織布であってもよい。支持体4の形成材料としては、例えば、ポリエチレン及びポリプロピレンなどのポリオレフィン、ポリエチレンテレフタレート及びポリエチレンナフタレートなどのポリエステル、ポリスルホン及びポリエーテルスルホンなどのポリアリールエーテルスルホン、ポリテトラフルオロエチレン及びポリフッ化ビニリデンなどのフッ素樹脂、エポキシ樹脂、ポリアミド、ポリイミド、ポリアミドイミド、アラミドなどが挙げられる。これらのうち、化学的及び熱的に安定であるポリテトラフルオロエチレン、ポリスルホン、ポリイミド、ポリアミドイミド、及びアラミドからなる群より選択される少なくとも1種が好ましく用いられる。
 支持体4の厚さは特に限定されないが、通常5~1000μm程度、好ましくは10~300μmである。
 水素排出膜2をスパッタリング法で製造する場合、基板として支持体4を用いると、支持体4上に水素排出膜2を直接形成することができ、接着剤3又は治具5を用いることなく水素排出積層膜1を製造できるため、水素排出積層膜1の物性及び製造効率の観点から好ましい。その場合、支持体4としては、平均孔径100μm以下の多孔質体を用いることが好ましく、より好ましくは平均孔径5μm以下の多孔質体であり、特に限外ろ過膜(UF膜)を用いることが好ましい。
 本発明の水素排出膜、複合水素排出膜及び水素排出積層膜の形状は、略円形状であってもよく、三角形、四角形、五角形等の多角形であってもよい。後述する用途に応じた任意の形状にすることができる。
 本発明の水素排出膜、複合水素排出膜及び水素排出積層膜は、特にアルミ電解コンデンサ又はリチウムイオン電池の安全弁の構成部材として有用である。また、本発明の水素排出膜、複合水素排出膜及び水素排出積層膜は、安全弁とは別に水素排出弁として電気化学素子に設けることも可能である。
 本発明の水素排出膜、複合水素排出膜又は水素排出積層膜を用いて電気化学素子内部で発生した水素を排出する方法は特に限定されないが、例えばアルミ電解コンデンサ又はリチウムイオン電池の外装部分の一部に本発明の水素排出膜、複合水素排出膜又は水素排出積層膜を設け、これを外装内部と外部の隔膜として用いることができる。この場合、外装内部と外部は水素排出膜等によって隔離され、水素排出膜等は水素以外の気体を透過しない。外装内部で発生した水素は圧力の上昇により水素排出膜等を介して外部に排出され、外装内部は所定圧力以上に上昇することはない。
 本発明の水素排出膜等は低温で脆化しないため、例えば150℃以下の温度、さらには110℃以下の温度で使用できるという利点がある。すなわち、その用途により、高温(例えば400~500℃)で使用されないアルミ電解コンデンサ又はリチウムイオン電池における水素排出方法において、本発明の水素排出膜等は特に好適に用いられる。
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。
 実施例1
 〔圧延法による水素排出膜(Au含有量15mol%)の作製〕
 インゴット中のAu含有量が15mol%となるようにPd及びAu原料をそれぞれ秤量し、水冷銅坩堝を備えたアーク溶解炉に投入し、大気圧のArガス雰囲気中でアーク溶解した。得られたボタンインゴットをロール径100mmの2段圧延機を用いて厚さ5mmになるまで冷間圧延して板材を得た。その後、ガラス管の中に圧延した板材を入れ、ガラス管の両端を封止した。ガラス管内部を室温で5×10-4Paまで減圧し、その後700℃まで昇温して24時間放置し、その後室温まで冷却した。この熱処理により、合金中のPd及びAuの偏析を解消した。次に、ロール径100mmの2段圧延機を用いて板材を厚さ100μmになるまで冷間圧延し、さらにロール径20mmの2段圧延機を用いて板材を厚さ25μmになるまで冷間圧延した。その後、ガラス管の中に圧延した板材を入れ、ガラス管の両端を封止した。ガラス管内部を室温で5×10-4Paまで減圧し、その後500℃まで昇温して1時間放置し、その後室温まで冷却した。この熱処理により、圧延によって生じたPd-Au合金内部のひずみを除去し、厚さ25μm、Au含有量15mol%のPd-Au水素排出膜を作製した。下記方法で水素排出膜の水素脆性を評価したところ、実用上問題ない程度の外観上の僅かな歪みが見られただけであった(図3参照)。
 実施例2
 〔圧延法による水素排出膜(Au含有量20mol%)の作製〕
 インゴット中のAu含有量が20mol%となるようにPd及びAu原料をそれぞれ使用した以外は実施例1と同様の方法で厚さ25μm、Au含有量20mol%のPd-Au水素排出膜を作製した。下記方法で水素排出膜の水素脆性を評価したところ、歪などの外観変化は見られなかった。
 実施例3
 〔圧延法による水素排出膜(Au含有量30mol%)の作製〕
 インゴット中のAu含有量が30mol%となるようにPd及びAu原料をそれぞれ使用した以外は実施例1と同様の方法で厚さ25μm、Au含有量30mol%のPd-Au水素排出膜を作製した。下記方法で水素排出膜の水素脆性を評価したところ、歪などの外観変化は見られなかった(図4参照)。
 実施例4
 〔圧延法による水素排出膜(Au含有量40mol%)の作製〕
 インゴット中のAu含有量が40mol%となるようにPd及びAu原料をそれぞれ使用した以外は実施例1と同様の方法で厚さ25μm、Au含有量40mol%のPd-Au水素排出膜を作製した。下記方法で水素排出膜の水素脆性を評価したところ、歪などの外観変化は見られなかった。
 実施例5
 〔圧延法による水素排出膜(Au含有量50mol%)の作製〕
 インゴット中のAu含有量が50mol%となるようにPd及びAu原料をそれぞれ使用した以外は実施例1と同様の方法で厚さ25μm、Au含有量50mol%のPd-Au水素排出膜を作製した。下記方法で水素排出膜の水素脆性を評価したところ、歪などの外観変化は見られなかった(図5参照)。
 実施例6
 〔圧延法による水素排出膜(Au含有量15mol%、Ag含有量15mol%)の作製〕
 インゴット中のAu及びAg含有量が各15mol%となるようにPd、Au及びAg原料をそれぞれ使用した以外は実施例1と同様の方法で厚さ25μm、Au含有量15mol%及びAg含有量15mol%のPd-Au-Ag水素排出膜を作製した。下記方法で水素排出膜の水素脆性を評価したところ、歪などの外観変化は見られなかった(図6参照)。
 比較例1
 〔圧延法による水素排出膜(Au含有量10mol%)の作製〕
 インゴット中のAu含有量が10mol%となるようにPd及びAu原料をそれぞれ使用した以外は実施例1と同様の方法で厚さ25μm、Au含有量10mol%のPd-Au水素排出膜を作製した。下記方法で水素排出膜の水素脆性を評価したところ、水素排出膜に歪が発生し実用上使用できない状態になった(図7参照)。
 比較例2
 〔圧延法による水素排出膜(Ag含有量19.8mol%)の作製〕
 インゴット中のAg含有量が19.8mol%となるようにPd及びAg原料をそれぞれ秤量し、水冷銅坩堝を備えたアーク溶解炉に投入し、大気圧のArガス雰囲気中でアーク溶解した。得られたボタンインゴットをロール径100mmの2段圧延機を用いて厚さ5mmになるまで冷間圧延して板材を得た。その後、ガラス管の中に圧延した板材を入れ、ガラス管の両端を封止した。ガラス管内部を室温で5×10-4Paまで減圧し、その後700℃まで昇温して24時間放置し、その後室温まで冷却した。この熱処理により、合金中のPd及びAgの偏析を解消した。次に、ロール径100mmの2段圧延機を用いて板材を厚さ100μmになるまで冷間圧延し、さらにロール径20mmの2段圧延機を用いて板材を厚さ25μmになるまで冷間圧延した。その後、ガラス管の中に圧延した板材を入れ、ガラス管の両端を封止した。ガラス管内部を室温で5×10-4Paまで減圧し、その後700℃まで昇温して1時間放置し、その後室温まで冷却した。この熱処理により、圧延によって生じたPd-Ag合金内部のひずみを除去し、厚さ25μm、Ag含有量19.8mol%のPd-Ag水素排出膜を作製した。下記方法で水素排出膜の水素脆性を評価したところ、水素排出膜に歪が発生し実用上使用できない状態になった。
 実施例7
 〔スパッタリング法による水素排出積層膜(Au含有量15mol%)の作製〕
 Au含有量が15mol%であるPd-Au合金ターゲットを装着したRFマグネトロンスパッタリング装置(サンユー電子社製)に、支持体であるポリスルホン多孔質シート(日東電工社製、孔径0.001~0.02μm)を取り付けた。その後、スパッタリング装置内を1×10-5Pa以下に真空排気し、Arガス圧1.0Paにおいて、Pd-Au合金ターゲットに4.8Aのスパッタ電流を投入して、ポリスルホン多孔質シート上に厚さ400nmのPd-Au合金膜(Au含有量15mol%)を形成して水素排出積層膜を作製した。下記方法で水素排出積層膜の水素脆性を評価したところ、表面にクラックは生じていなかった(図8参照)。
 実施例8
 〔スパッタリング法による水素排出積層膜(Au含有量20mol%)の作製〕
 Au含有量が20mol%であるPd-Au合金ターゲットを用いた以外は実施例7と同様の方法で厚さ400nmのPd-Au合金膜(Au含有量20mol%)を形成して水素排出積層膜を作製した。下記方法で水素排出積層膜の水素脆性を評価したところ、表面にクラックは生じていなかった。
 実施例9
 〔スパッタリング法による水素排出積層膜(Au含有量30mol%)の作製〕
 Au含有量が30mol%であるPd-Au合金ターゲットを用いた以外は実施例7と同様の方法で厚さ400nmのPd-Au合金膜(Au含有量30mol%)を形成して水素排出積層膜を作製した。下記方法で水素排出積層膜の水素脆性を評価したところ、表面にクラックは生じていなかった(図9参照)。
 実施例10
 〔スパッタリング法による水素排出積層膜(Au含有量40mol%)の作製〕
 Au含有量が40mol%であるPd-Au合金ターゲットを用いた以外は実施例7と同様の方法で厚さ400nmのPd-Au合金膜(Au含有量40mol%)を形成して水素排出積層膜を作製した。下記方法で水素排出積層膜の水素脆性を評価したところ、表面にクラックは生じていなかった。
 実施例11
 〔スパッタリング法による水素排出積層膜(Au含有量50mol%)の作製〕
 Au含有量が50mol%であるPd-Au合金ターゲットを用いた以外は実施例7と同様の方法で厚さ400nmのPd-Au合金膜(Au含有量50mol%)を形成して水素排出積層膜を作製した。下記方法で水素排出積層膜の水素脆性を評価したところ、表面にクラックは生じていなかった(図10参照)。
 実施例12
 〔スパッタリング法による水素排出積層膜(Au含有量15mol%、Ag含有量15mol%)の作製〕
 Au及びAg含有量が各15mol%であるPd-Au-Ag合金ターゲットを用いた以外は実施例7と同様の方法で厚さ400nmのPd-Au-Ag合金膜(Au及びAg含有量:各15mol%)を形成して水素排出積層膜を作製した。下記方法で水素排出積層膜の水素脆性を評価したところ、表面にクラックは生じていなかった(図11参照)。
 比較例3
 〔スパッタリング法による水素排出積層膜(Au含有量10mol%)の作製〕
 Au含有量が10mol%であるPd-Au合金ターゲットを用いた以外は実施例7と同様の方法で厚さ400nmのPd-Au合金膜(Au含有量10mol%)を形成して水素排出積層膜を作製した。下記方法で水素排出積層膜の水素脆性を評価したところ、表面にクラックが生じていた。水素脆化が起こったと考えられる(図12参照)。
 比較例4
 〔スパッタリング法による水素排出積層膜(Ag含有量19.8mol%)の作製〕
 Ag含有量が19.8mol%であるPd-Ag合金ターゲットを用いた以外は実施例7と同様の方法で厚さ400nmのPd-Ag合金膜(Ag含有量19.8mol%)を形成して水素排出積層膜を作製した。下記方法で水素排出積層膜の水素脆性を評価したところ、表面にクラックが生じていた。水素脆化が起こったと考えられる。
 〔評価方法〕
 (水素透過係数の測定)
 作製した水素排出膜又は水素排出積層膜をスウェージロック社製のVCRコネクターに取り付け、片側にSUSチューブを取り付け、密封された空間(63.5ml)を作製した。チューブ内を真空ポンプで減圧後、水素ガスの圧力が0.15MPaになるように調整し、50℃の環境下での圧力変化をモニターした。圧力変化により水素排出膜又は水素排出積層膜を透過した水素モル数がわかるため、これを下記式2に代入して水素透過係数を算出した。なお、測定に用いた水素排出膜の有効膜面積sは3.85×10-5であり、水素排出積層膜の有効膜面積sは7.07×10-6である。 
 〈式2〉水素透過係数=(水素モル数×膜厚t)/(膜面積s×時間×圧力の平方根)
 (水素透過性の評価)
 作製した水素排出膜又は水素排出積層膜をスウェージロック社製のVCRコネクターに取り付け、片側にSUSチューブを取り付け、密封された空間(63.5ml)を作製した。チューブ内を真空ポンプで減圧後、水素ガスの圧力が0.15MPaになるように調整し、105℃の環境下での圧力変化をモニターした。圧力変化により水素排出膜又は水素排出積層膜を透過した水素モル数(体積)がわかるため、これを1日当たりの透過量に換算したものを水素透過量とした。なお、測定に用いた水素排出膜の有効膜面積sは3.85×10-5であり、水素排出積層膜の有効膜面積sは7.07×10-6である。 
 (例)2時間で圧力が0.15MPaから0.05MPaに変化した場合(変化量0.10MPa)、水素排出膜を透過した水素体積は63.5mLになる。よって1日当たりの水素透過量は63.5×24÷2=762mL/dayとなる。 
 また、下記基準で水素透過性を評価した。
〇:100mL/day以上
△:10mL/day以上100mL/day未満
×:10mL/day未満
 (圧延法で作製した水素排出膜の水素脆性の評価)
 ガラス管の中に作製した水素排出膜を入れ、ガラス管の両端を封止した。ガラス管内部を50℃で5×10-3Paまで減圧し、その後、400℃まで昇温した。その後、ガラス管内に水素ガスを導入し、105kPaの雰囲気下で1時間放置した。その後、ガラス管内を室温まで冷却し、ガラス管内を5×10-3Paまで真空排気(30分)した。その後、再びガラス管内に水素ガスを導入し、105kPaの雰囲気下で1時間放置した。上記操作を3回繰り返した後、水素排出膜をガラス管内から取り出し、水素排出膜の外観を目視にて観察した。
 (スパッタリング法で作製した水素排出積層膜の水素脆性の評価)
 ガラス管の中に作製した水素排出積層膜を入れ、ガラス管の両端を封止した。ガラス管内部を50℃で5×10-3Paまで減圧した後、ガラス管内に水素ガスを導入し、105kPaの雰囲気下で1時間放置した。その後、水素排出積層膜をガラス管内から取り出し、膜表面をSEMにて観察した。
 (耐腐食性Aの評価)
 密閉されたSUS缶の中にPVC切片(積水成型工業株式会社製、エスビロンシートA-370)1gと作製した水素排出膜又は水素排出積層膜(15mm×15mm)を入れて、125℃で12時間熱処理を行い、PVCから発生したガスを水素排出膜又は水素排出積層膜の表面に曝露させた。その後、水素排出膜又は水素排出積層膜の水素透過量を上記と同様の方法で測定し、下記基準で耐腐食性Aを評価した。
〇:腐食試験前後の水素透過量の保持率が50%以上
×:腐食試験前後の水素透過量の保持率が50%未満
 (耐腐食性Bの評価)
 300mLのセパラブルフラスコに和光純薬工業株式会社製のアジピン酸二アンモニウム2gとエチレングリコール18gを入れ、作製した水素排出膜又は水素排出積層膜(15mm×15mm)をセパラブルフラスコの蓋から吊り下げた。105℃で12時間熱処理を行い、2種の化合物から発生したガスを水素排出膜又は水素排出積層膜の表面に曝露させた。その後、水素排出膜又は水素排出積層膜の水素透過量を上記と同様の方法で測定し、下記基準で耐腐食性Bを評価した。
〇:腐食試験前後の水素透過量の保持率が50%以上
×:腐食試験前後の水素透過量の保持率が50%未満
Figure JPOXMLDOC01-appb-T000001
 本発明の水素排出膜、複合水素排出膜及び水素排出積層膜は、電池、コンデンサ、キャパシタ、及びセンサなどの電気化学素子に設けられる安全弁の構成部材として好適に用いられる。
1:水素排出積層膜
2:水素排出膜
3:接着剤
4:支持体
5:治具

Claims (12)

  1.  合金を含む水素排出膜において、前記合金がPd-Au合金であり、Pd-Au合金中のAuの含有量が15mol%以上であることを特徴とする水素排出膜。
  2.  Pd-Au合金中のAuの含有量が15~55mol%であり、膜厚tと膜面積sが下記式1を満たす請求項1記載の水素排出膜。 
     〈式1〉
       t/s<41.1m-1
  3.  Pd-Au合金は、さらにIB族及び/又はIIIA族の金属を含み、Pd-Au合金中のAuと前記金属との合計含有量が55mol%以下である請求項1又は2に記載の水素排出膜。
  4.  金属層の片面又は両面に請求項1~3のいずれかに記載の水素排出膜を有する複合水素排出膜。
  5.  請求項1~3のいずれかに記載の水素排出膜、又は請求項4記載の複合水素排出膜の片面又は両面に支持体を有する水素排出積層膜。
  6.  前記支持体は、平均孔径100μm以下の多孔質体である請求項5記載の水素排出積層膜。
  7.  前記支持体の原料が、ポリテトラフルオロエチレン、ポリスルホン、ポリイミド、ポリアミドイミド、及びアラミドからなる群より選択される少なくとも1種である請求項5又は6記載の水素排出積層膜。
  8.  請求項1~3のいずれかに記載の水素排出膜、請求項4記載の複合水素排出膜、又は請求項5~7のいずれかに記載の水素排出積層膜を備えた電気化学素子用安全弁。
  9.  請求項8記載の電気化学素子用安全弁を備えた電気化学素子。
  10.  前記電気化学素子が、アルミ電解コンデンサ又はリチウムイオン電池である請求項9記載の電気化学素子。
  11.  請求項1~3のいずれかに記載の水素排出膜、請求項4記載の複合水素排出膜、請求項5~7のいずれかに記載の水素排出積層膜、又は請求項8記載の電気化学素子用安全弁を用いた水素排出方法。
  12.  150℃以下の環境下で水素を排出させる請求項11記載の水素排出方法。
     
     
PCT/JP2015/067000 2014-06-16 2015-06-12 水素排出膜 WO2015194470A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15809679.2A EP3156120A4 (en) 2014-06-16 2015-06-12 Hydrogen release film
US15/318,856 US10439185B2 (en) 2014-06-16 2015-06-12 Hydrogen-releasing film
CN201580032750.XA CN106714947B (zh) 2014-06-16 2015-06-12 氢气排出膜
KR1020177000825A KR20170018029A (ko) 2014-06-16 2015-06-12 수소 배출막
JP2016529303A JP6106343B2 (ja) 2014-06-16 2015-06-12 水素排出膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-123485 2014-06-16
JP2014123485 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015194470A1 true WO2015194470A1 (ja) 2015-12-23

Family

ID=54935457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067000 WO2015194470A1 (ja) 2014-06-16 2015-06-12 水素排出膜

Country Status (7)

Country Link
US (1) US10439185B2 (ja)
EP (1) EP3156120A4 (ja)
JP (3) JP6106343B2 (ja)
KR (1) KR20170018029A (ja)
CN (1) CN106714947B (ja)
TW (1) TW201605102A (ja)
WO (1) WO2015194470A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210025405A (ko) 2019-08-27 2021-03-09 주식회사 엘지화학 이차 전지용 전지 케이스 및 가스 배출부 제조 방법
CN115615965B (zh) * 2022-11-17 2023-04-14 中国工程物理研究院材料研究所 一种氢气传感器及其制备方法、检测氢气浓度的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350845A (en) * 1965-11-18 1967-11-07 Union Carbide Corp Metal alloy for hydrogen separation and purification
JPH05330803A (ja) * 1991-12-19 1993-12-14 Inst Fr Petrole 管の合金と同じ組成の合金製の支持体を備える水素精製装置
JP2000233119A (ja) * 1999-02-12 2000-08-29 Toyota Motor Corp 水素精製膜
JP2000247605A (ja) * 1999-02-26 2000-09-12 Tokyo Gas Co Ltd 水素透過用Pd合金膜及びその作製方法
JP2001029760A (ja) * 1998-08-28 2001-02-06 Toray Ind Inc 透過膜、電解コンデンサ、透過膜の処理方法、及び分離方法
JP2003297325A (ja) * 2002-03-29 2003-10-17 Sanyo Electric Co Ltd 密閉型電池
JP2004174373A (ja) * 2002-11-27 2004-06-24 Sumitomo Metal Mining Co Ltd 水素透過合金膜、水素透過用部材及びその製造方法
JP2005502158A (ja) * 2000-11-21 2005-01-20 ザ ジレット カンパニー バッテリ・ベント
US20050241477A1 (en) * 2002-03-05 2005-11-03 Mundschau Michael V Hydrogen transport membranes
JP2006043677A (ja) * 2004-08-06 2006-02-16 Juichi Kashimoto 水素分離装置
JP2008012495A (ja) * 2006-07-10 2008-01-24 Sumitomo Metal Mining Co Ltd 水素透過合金膜
US20120012004A1 (en) * 2010-07-16 2012-01-19 Way J Douglas Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same
JP2014017051A (ja) * 2012-07-05 2014-01-30 Toyota Industries Corp 蓄電装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127124A (en) * 1979-03-22 1980-10-01 Mitsubishi Rayon Co Ltd Hydrogen permeable combined filter and hydrogen gas separator
JPS6255339U (ja) 1985-09-26 1987-04-06
FR2685218B1 (fr) 1991-12-19 1994-02-11 Institut Francais Petrole Epurateur d'hydrogene comprenant une embase en alliage de meme composition que celui des tubes.
JP3388840B2 (ja) 1993-10-29 2003-03-24 三菱化工機株式会社 水素分離膜およびその製造方法
EP1118378A1 (en) * 1998-08-28 2001-07-25 Toray Industries, Inc. Transmittable film, electrolytic capacitor, method for preparing zeolite film, mfi type zeolite film, and method for separation
US6645651B2 (en) * 2001-06-01 2003-11-11 Robert G. Hockaday Fuel generator with diffusion ampoules for fuel cells
JP2003217549A (ja) 2002-01-18 2003-07-31 At Battery:Kk 密閉型電池とその製造方法
JP4280014B2 (ja) * 2002-01-22 2009-06-17 株式会社オプトニクス精密 圧力調整膜を具備した電気化学素子
JP4178143B2 (ja) 2004-07-21 2008-11-12 岩谷産業株式会社 水素分離膜及びその製造方法
JP4572385B2 (ja) * 2005-03-25 2010-11-04 独立行政法人産業技術総合研究所 水素精製分離方法
JP4908821B2 (ja) 2005-10-28 2012-04-04 トヨタ自動車株式会社 支持体付水素分離膜、それを備える燃料電池および水素分離装置ならびにそれらの製造方法
JP5261908B2 (ja) * 2006-09-20 2013-08-14 大日本印刷株式会社 扁平型電気化学セル
US20080210088A1 (en) * 2006-10-23 2008-09-04 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
JP4883364B2 (ja) 2007-03-23 2012-02-22 株式会社豊田中央研究所 多孔質支持体/水素選択透過膜基板及び多孔体支持型燃料電池
FR2927729B1 (fr) 2008-02-14 2013-06-14 Batscap Sa Dispositif anti-surpression pour un supercondensateur
CA2792348A1 (en) * 2010-03-26 2011-09-29 Shell Internationale Research Maatschappij B.V. Method and device for forming a supported gas separation membrane
US9216390B2 (en) * 2010-07-15 2015-12-22 Ohio State Innovation Foundation Systems, compositions, and methods for fluid purification
WO2014196479A1 (ja) 2013-06-06 2014-12-11 株式会社 東芝 フォトンカウンティング装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350845A (en) * 1965-11-18 1967-11-07 Union Carbide Corp Metal alloy for hydrogen separation and purification
JPH05330803A (ja) * 1991-12-19 1993-12-14 Inst Fr Petrole 管の合金と同じ組成の合金製の支持体を備える水素精製装置
JP2001029760A (ja) * 1998-08-28 2001-02-06 Toray Ind Inc 透過膜、電解コンデンサ、透過膜の処理方法、及び分離方法
JP2000233119A (ja) * 1999-02-12 2000-08-29 Toyota Motor Corp 水素精製膜
JP2000247605A (ja) * 1999-02-26 2000-09-12 Tokyo Gas Co Ltd 水素透過用Pd合金膜及びその作製方法
JP2005502158A (ja) * 2000-11-21 2005-01-20 ザ ジレット カンパニー バッテリ・ベント
US20050241477A1 (en) * 2002-03-05 2005-11-03 Mundschau Michael V Hydrogen transport membranes
JP2003297325A (ja) * 2002-03-29 2003-10-17 Sanyo Electric Co Ltd 密閉型電池
JP2004174373A (ja) * 2002-11-27 2004-06-24 Sumitomo Metal Mining Co Ltd 水素透過合金膜、水素透過用部材及びその製造方法
JP2006043677A (ja) * 2004-08-06 2006-02-16 Juichi Kashimoto 水素分離装置
JP2008012495A (ja) * 2006-07-10 2008-01-24 Sumitomo Metal Mining Co Ltd 水素透過合金膜
US20120012004A1 (en) * 2010-07-16 2012-01-19 Way J Douglas Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same
JP2014017051A (ja) * 2012-07-05 2014-01-30 Toyota Industries Corp 蓄電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156120A4 *

Also Published As

Publication number Publication date
TW201605102A (zh) 2016-02-01
JPWO2015194470A1 (ja) 2017-04-20
JP6867829B2 (ja) 2021-05-12
EP3156120A1 (en) 2017-04-19
JP2017164738A (ja) 2017-09-21
KR20170018029A (ko) 2017-02-15
CN106714947A (zh) 2017-05-24
US10439185B2 (en) 2019-10-08
CN106714947B (zh) 2019-11-26
JP2017143068A (ja) 2017-08-17
US20170133648A1 (en) 2017-05-11
EP3156120A4 (en) 2018-02-14
JP6106343B2 (ja) 2017-03-29
JP6688245B2 (ja) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2014098038A1 (ja) 水素排出膜
WO2015019906A1 (ja) 水素排出膜
JP7181324B2 (ja) 水素排出膜
JP6688245B2 (ja) 水素排出方法
WO2015194472A1 (ja) 水素排出膜
WO2017208723A1 (ja) 電解コンデンサ
JP2017216433A (ja) 電解コンデンサ
WO2015194471A1 (ja) 水素排出膜
JP2016002513A (ja) 水素排出膜
WO2016143658A1 (ja) 水素排出膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529303

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15318856

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177000825

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015809679

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015809679

Country of ref document: EP