WO2015194472A1 - 水素排出膜 - Google Patents

水素排出膜 Download PDF

Info

Publication number
WO2015194472A1
WO2015194472A1 PCT/JP2015/067005 JP2015067005W WO2015194472A1 WO 2015194472 A1 WO2015194472 A1 WO 2015194472A1 JP 2015067005 W JP2015067005 W JP 2015067005W WO 2015194472 A1 WO2015194472 A1 WO 2015194472A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
hydrogen discharge
film
mol
membrane
Prior art date
Application number
PCT/JP2015/067005
Other languages
English (en)
French (fr)
Inventor
福岡 孝博
佳子 吉良
恭子 石井
健太 秦
湯川 宏
智憲 南部
Original Assignee
日東電工株式会社
国立大学法人 名古屋大学
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, 国立大学法人 名古屋大学, 独立行政法人国立高等専門学校機構 filed Critical 日東電工株式会社
Priority to KR1020177000822A priority Critical patent/KR20170016000A/ko
Priority to CN201580032639.0A priority patent/CN106714946A/zh
Priority to JP2016529305A priority patent/JPWO2015194472A1/ja
Priority to US15/318,852 priority patent/US20170133647A1/en
Priority to EP15809580.2A priority patent/EP3156119A4/en
Publication of WO2015194472A1 publication Critical patent/WO2015194472A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/641Polyamide-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a hydrogen discharge membrane provided in electrochemical elements such as batteries, capacitors, capacitors, and sensors. More specifically, the present invention relates to a hydrogen discharge membrane having a function of discharging generated hydrogen to the outside under an environment of use of about 150 ° C. or lower in an electrochemical element in which hydrogen gas is generated and the internal pressure is increased during use.
  • Aluminum electrolytic capacitors have been used for applications such as inverters for wind power generation and solar power generation, large power sources such as storage batteries.
  • Aluminum electrolytic capacitors may generate hydrogen gas inside due to reverse voltage, overvoltage, and overcurrent, and if a large amount of hydrogen gas is generated, the outer case may burst due to an increase in internal pressure.
  • a general aluminum electrolytic capacitor is provided with a safety valve equipped with a special film.
  • the safety valve has a function to prevent the capacitor itself from bursting by self-destructing and reducing the internal pressure when the internal pressure of the capacitor suddenly increases. is there.
  • the following has been proposed as a special membrane that is a component of such a safety valve.
  • Patent Document 1 proposes a pressure adjusting film including a foil strip made of an alloy of paradium silver (Pd—Ag) containing 20 wt% (19.8 mol%) Ag in paradium.
  • lithium-ion batteries are widely used as batteries for mobile phones, notebook computers, and automobiles.
  • lithium-ion batteries have become increasingly interested in safety in addition to increasing capacity and improving cycle characteristics.
  • a lithium ion battery generates gas in the cell, and there is a concern about expansion and rupture of the battery pack accompanying an increase in internal pressure.
  • Patent Document 2 discloses an amorphous alloy (for example, 36Zr-64Ni alloy) made of an alloy of zirconium (Zr) and nickel (Ni) as a hydrogen selective permeable alloy film that selectively permeates hydrogen gas generated in a battery.
  • amorphous alloy for example, 36Zr-64Ni alloy
  • Zr zirconium
  • Ni nickel
  • Such an alloy film is usually used by being attached to a holding member or the like using an adhesive or an adhesive, but a large amount of hydrogen gas is generated in the electrochemical element, resulting in an increase in hydrogen discharge.
  • the alloy film is peeled off from the holding member, the holding member is broken, or the electrochemical element is broken in the worst case due to long-term use of the electrochemical element.
  • the present invention has been made in view of the above problems, and a large amount of hydrogen gas is generated in the electrochemical element, resulting in a large amount of hydrogen discharge, or even when the electrochemical element is used for a long time.
  • An object is to provide a hydrogen discharge film and a hydrogen discharge laminated film that do not occur. Moreover, it aims at providing the electrochemical element provided with the safety valve for electrochemical elements provided with the said hydrogen discharge
  • the hydrogen storage amount is 0.4 (H / M) or less when measured at 50 ° C. under a hydrogen partial pressure of 0.01 MPa.
  • the hydrogen moves so as to sew gaps between atoms constituting the hydrogen discharge membrane. That is, hydrogen is temporarily stored in the hydrogen discharge film. Further, the moving hydrogen is replaced with atoms in the hydrogen discharge film and stays in the hydrogen discharge film. That is, since hydrogen accumulates in the hydrogen discharge film, the volume of the hydrogen discharge film changes, and it is considered that the above problem occurs due to the volume change.
  • the present inventor has examined based on the above knowledge, and in the case of a hydrogen discharge film containing an alloy containing Pd as an essential metal, the hydrogen occlusion amount when measured under the conditions of 50 ° C. and hydrogen partial pressure of 0.01 MPa is 0. .4 (H / M) or less, the volume change of the hydrogen discharge film due to hydrogen accumulation can be effectively suppressed, so that a large amount of hydrogen gas is generated in the electrochemical element, resulting in an increase in hydrogen discharge. It has also been found that even when the electrochemical element is used for a long period of time, the hydrogen discharge film does not peel off from the holding member or the holding member is broken.
  • the hydrogen discharge membrane preferably has a hydrogen occlusion amount of 0.35 (H / M) or less, more preferably 0.2 (H / M) when measured at 50 ° C. and a hydrogen partial pressure of 0.01 MPa. M) or less, more preferably 0.1 (H / M) or less.
  • the hydrogen storage amount (H / M) is expressed by the molar ratio of hydrogen (H) and metal (M) in the hydrogen discharge film.
  • the measurement conditions of 50 ° C. and hydrogen partial pressure of 0.01 MPa were adopted as conditions under which the hydrogen discharge film is most physically affected in the general use environment of the electrochemical device.
  • the alloy preferably contains 20 to 65 mol% of a Group 11 element.
  • the Group 11 element is preferably at least one selected from the group consisting of gold, silver, and copper.
  • the hydrogen discharge film containing Pd-Group 11 element alloy dissociates hydrogen molecules into hydrogen atoms on the film surface, so that the hydrogen atoms are dissolved in the film, and the dissolved hydrogen atoms are diffused from the high pressure side to the low pressure side. In addition, it has a function of converting hydrogen atoms into hydrogen molecules again and discharging them on the low pressure side film surface.
  • the content of the Group 11 element is less than 20 mol%, the strength of the alloy tends to be insufficient or the function tends to be difficult to develop, and when it exceeds 65 mol%, the hydrogen permeation rate decreases. There is a tendency.
  • the hydrogen discharge membrane has a hydrogen permeability coefficient at 50 ° C. of 1.0 ⁇ 10 ⁇ 13 to 2.0 ⁇ 10 ⁇ 9 (mol ⁇ m ⁇ 1 ⁇ sec ⁇ 1 ⁇ Pa ⁇ 1/2 ), and the membrane It is preferable that the thickness t and the film area s satisfy the following formula 1. ⁇ Formula 1> t / s ⁇ 32.9 m ⁇ 1
  • the hydrogen discharge membrane provided in the electrochemical device has a hydrogen permeation amount of 10 ml / day or more (4.03 ⁇ 10 ⁇ 4 mol / day or more) at a square root of pressure of 76.81 Pa 1/2 (0.059 bar): according to SATP. (The volume of 1 mol ideal gas at a temperature of 25 ° C.
  • the hydrogen discharge membrane in which the content of the Group 11 element in the Pd—Group 11 element alloy of the present invention is 20 to 65 mol% has a hydrogen permeability coefficient at 50 ° C. of 1.0 ⁇ 10 ⁇ 13 to 2.0 ⁇ . 10 ⁇ 9 (mol ⁇ m ⁇ 1 ⁇ sec ⁇ 1 ⁇ Pa ⁇ 1/2 ).
  • the hydrogen permeation coefficient is obtained by the following equation 2.
  • Hydrogen permeability coefficient (number of moles of hydrogen ⁇ film thickness t) / (membrane area s ⁇ time ⁇ square root of pressure)
  • the hydrogen permeation rate is 10 ml / day (4.03 ⁇ 10 ⁇ 4 mol / day) and the hydrogen permeation coefficient is 2.0 ⁇ 10 ⁇ 9 (mol ⁇ m ⁇ 1 ⁇ sec ⁇ 1 ⁇ Pa ⁇ 1/2 )
  • the condition for the hydrogen permeation amount to be 10 ml / day or more (4.03 ⁇ 10 ⁇ 4 mol / day or more) is film thickness t / film area s ⁇ 32.9 m ⁇ 1 .
  • the hydrogen discharge laminated film of the present invention has a support on one side or both sides of the hydrogen discharge film.
  • the support is provided to prevent the hydrogen discharge membrane from falling into the electrochemical element when it falls off the safety valve.
  • the hydrogen discharge membrane needs to have a function as a safety valve that self-destructs when the internal pressure of the electrochemical element becomes a predetermined value or more.
  • the mechanical strength of the hydrogen discharge film is low, so that the internal pressure of the electrochemical element may be destroyed before reaching a predetermined value, and the function as a safety valve cannot be performed. Therefore, when the hydrogen discharge film is a thin film, it is preferable to stack a support on one side or both sides of the hydrogen discharge film in order to improve mechanical strength.
  • the support is preferably a porous body having an average pore diameter of 100 ⁇ m or less.
  • the average pore diameter exceeds 100 ⁇ m, the surface smoothness of the porous body is lowered, so that it is difficult to form a hydrogen discharge film having a uniform thickness on the porous body when a hydrogen discharge film is produced by sputtering or the like. Or pinholes or cracks are likely to occur in the hydrogen discharge film.
  • the support is preferably formed of at least one polymer selected from the group consisting of polytetrafluoroethylene, polysulfone, polyimide, polyamideimide, and aramid from the viewpoint of being chemically and thermally stable.
  • the present invention also relates to a safety valve for an electrochemical device provided with the hydrogen discharge film or the hydrogen discharge laminated film, and an electrochemical device having the safety valve.
  • the electrochemical element include an aluminum electrolytic capacitor and a lithium ion battery.
  • the hydrogen discharge film and the hydrogen discharge laminated film of the present invention generate a large amount of hydrogen gas in the electrochemical element, increase the amount of hydrogen discharge, or cause a problem even when the electrochemical element is used for a long time.
  • the hydrogen discharge film and the hydrogen discharge laminated film of the present invention can not only quickly discharge only hydrogen gas generated inside the electrochemical element, but also prevent impurities from entering the electrochemical element from the outside. Can be prevented.
  • the safety valve equipped with the hydrogen discharge membrane and the hydrogen discharge laminated film of the present invention self-destructs and reduces the internal pressure when the internal pressure of the electrochemical device suddenly increases, thereby preventing the electrochemical device itself from bursting. can do. By these effects, the performance of the electrochemical element can be maintained for a long time, and the lifetime of the electrochemical element can be extended.
  • An alloy containing Pd as an essential metal is used as a raw material for the hydrogen discharge film of the present invention.
  • the other metal forming the alloy is not particularly limited, but it is preferable to use a Group 11 element from the viewpoint of easily adjusting the hydrogen storage amount of the hydrogen discharge film to 0.4 (H / M) or less. Is at least one selected from the group consisting of gold, silver, and copper, more preferably silver or copper.
  • the alloy preferably contains 20 to 65 mol% of a Group 11 element, more preferably 30 to 65 mol%, and still more preferably 30 to 60 mol%.
  • a hydrogen discharge film using a Pd—Ag alloy having an Ag content of 20 mol% or more, a Pd—Cu alloy having a Cu content of 30 mol% or more, and a Pd—Au alloy having an Au content of 20 mol% or more By forming the film, the hydrogen discharge film becomes difficult to become brittle even in a low temperature range of about 50 to 60 ° C. or less.
  • the said alloy may contain the metal of IB group and / or IIIA in the range which does not impair the effect of this invention.
  • the alloy containing Pd as an essential metal preferably has a crystal grain size of 0.028 ⁇ m or more, more preferably 0.04 ⁇ m or more, still more preferably 0.1 ⁇ m or more, and particularly preferably 0.4 ⁇ m or more. .
  • a crystal grain size of 0.028 ⁇ m or more, more preferably 0.04 ⁇ m or more, still more preferably 0.1 ⁇ m or more, and particularly preferably 0.4 ⁇ m or more.
  • the upper limit value of the crystal grain size is not particularly limited, but when the internal pressure of the electrochemical device suddenly increases.
  • the size of the crystal grains is preferably 1000 ⁇ m or less, and more preferably 600 ⁇ m or less.
  • the size of the crystal grains can be adjusted to a desired size by adjusting the temperature when producing the hydrogen discharge film. Specifically, the temperature at which the hydrogen discharge film of crystal grains is produced is from 50 ° C. to the temperature at which the alloy melts.
  • the hydrogen discharge film of the present invention can be produced by, for example, a rolling method, a sputtering method, a vacuum evaporation method, an ion plating method, a plating method, etc. It is preferable to use a rolling method, and when manufacturing a thin hydrogen discharge film, it is preferable to use a sputtering method.
  • the rolling method may be hot rolling or any method of cold rolling.
  • the rolling method is a method in which a pair or a plurality of pairs of rolls (rollers) are rotated and a Pd—Ag alloy as a raw material is passed between the rolls while applying pressure to form a film.
  • the film thickness of the hydrogen discharge film obtained by the rolling method is preferably 5 to 50 ⁇ m, more preferably 10 to 30 ⁇ m.
  • the film thickness is less than 5 ⁇ m, pinholes or cracks are likely to occur during production, or deformation occurs when hydrogen is occluded.
  • the film thickness exceeds 50 ⁇ m, it takes time to allow hydrogen to permeate, so that the hydrogen discharge performance is lowered or the cost is inferior.
  • the sputtering method is not particularly limited, and can be performed using a sputtering apparatus such as a parallel plate type, a single wafer type, a passing type, DC sputtering, and RF sputtering.
  • a sputtering apparatus such as a parallel plate type, a single wafer type, a passing type, DC sputtering, and RF sputtering.
  • the inside of the sputtering apparatus is evacuated, the Ar gas pressure is adjusted to a predetermined value, and a predetermined sputtering current is supplied to the Pd—Ag alloy target.
  • a Pd—Ag alloy film is formed on the substrate.
  • the Pd—Ag alloy film is peeled from the substrate to obtain a hydrogen discharge film.
  • a target a single target or a plurality of targets can be used depending on a hydrogen discharge film to be manufactured.
  • Examples of the substrate include glass plates, ceramic plates, silicon wafers, metal plates such as aluminum and stainless steel.
  • the film thickness of the hydrogen discharge film obtained by sputtering is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m.
  • the film thickness is less than 0.01 ⁇ m, not only pinholes may be formed, but it is difficult to obtain the required mechanical strength. Moreover, it is easy to break when peeling from the substrate, and handling after peeling becomes difficult.
  • the film thickness exceeds 5 ⁇ m, it takes time to produce a hydrogen discharge film, which is not preferable because of inferior cost.
  • the membrane area of the hydrogen discharge membrane can be appropriately adjusted in consideration of the amount of hydrogen permeation and the thickness, but is about 0.01 to 100 mm 2 when used as a constituent member of a safety valve.
  • the film area is an area of a hydrogen discharge film where hydrogen is actually discharged, and does not include a portion where a ring-shaped adhesive described later is applied.
  • FIG. 1 and 2 are schematic cross-sectional views showing the structure of the hydrogen discharge laminated film 1 of the present invention.
  • a support 4 may be laminated on one or both sides of the hydrogen discharge membrane 2 using a ring-shaped adhesive 3, and FIG. 2 (a) or (b ), The support 4 may be laminated on one side or both sides of the hydrogen discharge film 2 using the jig 5.
  • the support 4 is not particularly limited as long as it is hydrogen permeable and can support the hydrogen discharge membrane 2, and may be a non-porous material or a porous material.
  • the support 4 may be a woven fabric or a non-woven fabric.
  • the material for forming the support 4 include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyaryl ether sulfones such as polysulfone and polyethersulfone, polytetrafluoroethylene, and polyvinylidene fluoride.
  • Fluorine resin, epoxy resin, polyamide, polyimide, polyamideimide, aramid and the like can be mentioned. Among these, at least one selected from the group consisting of chemically and thermally stable polytetrafluoroethylene, polysulfone, polyimide, polyamideimide, and aramid is preferably used.
  • the thickness of the support 4 is not particularly limited, but is usually about 5 to 1000 ⁇ m, preferably 10 to 300 ⁇ m.
  • the hydrogen discharge film 2 When the hydrogen discharge film 2 is manufactured by the sputtering method, if the support 4 is used as a substrate, the hydrogen discharge film 2 can be directly formed on the support 4, and the hydrogen discharge film 2 can be formed without using the adhesive 3 or the jig 5. Since the discharge
  • the support 4 is preferably a porous body having an average pore diameter of 100 ⁇ m or less, more preferably a porous body having an average pore diameter of 5 ⁇ m or less, and particularly an ultrafiltration membrane (UF membrane). preferable.
  • UF membrane ultrafiltration membrane
  • the shape of the hydrogen discharge film and the hydrogen discharge laminated film of the present invention may be a substantially circular shape or a polygon such as a triangle, a quadrangle, or a pentagon. It can be made into arbitrary shapes according to the use mentioned later.
  • the hydrogen discharge film and the hydrogen discharge laminated film of the present invention are particularly useful as a constituent member of a safety valve of an aluminum electrolytic capacitor or a lithium ion battery. Further, the hydrogen discharge film and the hydrogen discharge laminated film of the present invention can be provided in the electrochemical element as a hydrogen discharge valve separately from the safety valve.
  • Example 1 [Production of hydrogen discharge film by rolling method (Ag content: 20 mol%)] Pd and Ag raw materials were respectively weighed so that the Ag content in the ingot was 20 mol%, put into an arc melting furnace equipped with a water-cooled copper crucible, and arc melted in an Ar gas atmosphere at atmospheric pressure.
  • the obtained button ingot was cold-rolled to a thickness of 5 mm using a two-high rolling mill having a roll diameter of 100 mm to obtain a plate material. Then, the rolled plate material was put in the glass tube, and both ends of the glass tube were sealed. The inside of the glass tube was depressurized to 5 ⁇ 10 ⁇ 4 Pa at room temperature, then heated to 700 ° C.
  • the plate material is cold-rolled to a thickness of 100 ⁇ m using a two-high rolling mill with a roll diameter of 100 mm, and further, the plate material is cold-rolled to a thickness of 25 ⁇ m using a two-high rolling mill with a roll diameter of 20 mm did. Then, the rolled plate material was put in the glass tube, and both ends of the glass tube were sealed. The inside of the glass tube was depressurized to 5 ⁇ 10 ⁇ 4 Pa at room temperature, then heated to 700 ° C. and allowed to stand for 1 hour, and then cooled to room temperature. By this heat treatment, strain inside the Pd—Ag alloy generated by rolling was removed, and a Pd—Ag hydrogen discharge film having a thickness t: 25 ⁇ m and an Ag content of 20 mol% was produced.
  • Example 2 [Production of hydrogen discharge film by rolling method (Ag content 40 mol%)] A Pd—Ag hydrogen discharge membrane having a thickness t of 25 ⁇ m and an Ag content of 40 mol% was obtained in the same manner as in Example 1 except that Pd and Ag raw materials were used so that the Ag content in the ingot was 40 mol%. Produced.
  • Example 3 [Production of hydrogen discharge film by rolling method (Ag content 60 mol%)] A Pd—Ag hydrogen discharge membrane having a thickness t of 25 ⁇ m and an Ag content of 60 mol% was obtained in the same manner as in Example 1 except that Pd and Ag raw materials were used so that the Ag content in the ingot was 60 mol%. Produced.
  • Example 4 [Production of hydrogen discharge film by rolling method (Cu content 53 mol%)] A Pd—Cu hydrogen discharge film having a thickness t of 25 ⁇ m and a Cu content of 53 mol% was obtained in the same manner as in Example 1 except that Pd and Cu raw materials were used so that the Cu content in the ingot was 53 mol%. Produced.
  • Example 5 [Production of hydrogen discharge film by rolling method (Au content: 20 mol%)] A Pd—Au hydrogen discharge film having a thickness t of 25 ⁇ m and an Au content of 20 mol% was obtained in the same manner as in Example 1 except that Pd and Au raw materials were used so that the Au content in the ingot was 20 mol%. Produced.
  • Example 6 [Production of hydrogen discharge film by rolling method (Au content: 30 mol%)] A Pd—Au hydrogen discharge film having a thickness t of 25 ⁇ m and an Au content of 30 mol% was obtained in the same manner as in Example 1 except that Pd and Au raw materials were used so that the Au content in the ingot was 30 mol%. Produced.
  • Example 7 [Production of hydrogen discharge film by rolling method (Au content 40 mol%)] A Pd—Au hydrogen discharge film having a thickness t of 25 ⁇ m and an Au content of 40 mol% was obtained in the same manner as in Example 1 except that Pd and Au raw materials were used so that the Au content in the ingot was 40 mol%. Produced.
  • Example 8 [Production of hydrogen-discharge laminated film by sputtering method (Au content: 30 mol%)]
  • a polysulfone porous sheet manufactured by Nitto Denko Corporation, pore size: 0.001 to 0.02 ⁇ m
  • an RF magnetron sputtering apparatus manufactured by Sanyu Electronics Co., Ltd.
  • a Pd—Au alloy target having an Au content of 30 mol%.
  • the inside of the sputtering apparatus is evacuated to 1 ⁇ 10 ⁇ 5 Pa or less, and a sputtering current of 4.8 A is applied to the Pd—Au alloy target at 300 ° C. and an Ar gas pressure of 1.0 Pa.
  • a Pd—Au alloy film (Au content 30 mol%) having a thickness t: 400 nm was formed thereon to produce a hydrogen discharge laminated film.
  • Example 9 [Fabrication of hydrogen discharge laminated film by sputtering method (Au content 40 mol%)] Except for using a Pd—Au alloy target having an Au content of 40 mol%, a Pd—Au alloy film (Au content: 40 mol%) having a thickness of t: 400 nm was formed in the same manner as in Example 8 to discharge hydrogen. A laminated film was produced.
  • Comparative Example 1 [Production of hydrogen discharge film by rolling method (Ag content: 19.8 mol%)] Pd—Ag having a thickness t of 25 ⁇ m and an Ag content of 19.8 mol% was used in the same manner as in Example 1 except that Pd and Ag raw materials were used so that the Ag content in the ingot was 19.8 mol%. A hydrogen discharge membrane was prepared.
  • the PCT measurement device JIS H 7201 is a device that measures characteristics (pressure P, hydrogen storage amount C) when a substance absorbs and releases hydrogen at a certain temperature T. About each test piece of the produced hydrogen discharge membrane, hydrogen storage amount C (H / M) when measured under the conditions of 50 ° C. and hydrogen partial pressure of 0.01 MPa using a PCT measuring device manufactured by Suzuki Shokan Co., Ltd. is obtained. It was.
  • the bright part in a binarized image was made into the crystal grain, and the crystal grain which overlaps with the outer edge of a rectangular analysis range (3 mm x 2 mm) was excluded from the analysis object. Further, in the binarized image, when there was a gap inside the crystal grains that were gathered, the process of filling the gap was not performed. Moreover, the process which isolate
  • the equivalent circle diameter determined by the above operation was defined as the crystal grain size (crystal grain size).
  • the produced hydrogen discharge membrane was attached to a hydrogen tank with a double-sided adhesive tape (Nitto Denko Corporation, No. 5615) and fixed. Thereafter, the hydrogen partial pressure in the hydrogen tank was adjusted to 0.01 MPa, and the mixture was left in an environment of 50 ° C. for 12 hours. Thereafter, the state of the hydrogen discharge film was visually confirmed and evaluated according to the following criteria. ⁇ : No change at all ⁇ : The hydrogen discharge film was peeled off from the double-sided adhesive tape.
  • the hydrogen discharge film and the hydrogen discharge laminated film of the present invention are suitably used as components of safety valves provided in electrochemical elements such as batteries, capacitors, capacitors, and sensors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 本発明は、電気化学素子内で水素ガスが大量に発生して水素排出量が多くなったり、あるいは電気化学素子を長期間使用した場合でも不具合が生じない水素排出膜及び水素排出積層膜を提供する。本発明の水素排出膜は、Pdを必須金属とする合金を含み、50℃、水素分圧0.01MPaの条件で測定した時の水素吸蔵量が0.4(H/M)以下である。

Description

水素排出膜
 本発明は、電池、コンデンサ、キャパシタ、及びセンサなどの電気化学素子等に設けられる水素排出膜に関する。詳しくは、使用中に水素ガスが発生し内部圧力が上昇する電気化学素子等において、150℃程度以下の使用環境下において、発生した水素を外部に排出する機能を有する水素排出膜に関する。
 近年、風力発電及び太陽光発電などのインバータ、蓄電池などの大型電源などの用途にアルミ電解コンデンサが使用されている。アルミ電解コンデンサは、逆電圧、過電圧、及び過電流によって内部に水素ガスが発生する場合があり、水素ガスが大量に発生すると内部圧力の上昇によって外装ケースが破裂する恐れがある。
 そのため、一般のアルミ電解コンデンサには、特殊膜を備えた安全弁が設けられている。安全弁は、コンデンサ内部の水素ガスを外部に排出する機能に加え、コンデンサの内部圧力が急激に上昇した場合には自壊して内部圧力を低下させ、コンデンサ自体の破裂を防止する機能を有するものである。このような安全弁の構成部材である特殊膜としては、例えば、以下のものが提案されている。
 特許文献1では、パラジュームに20wt%(19.8mol%)Agを含有させたパラジューム銀(Pd-Ag)の合金で構成された箔帯を備えた圧力調整膜が提案されている。
 一方、携帯電話、ノートパソコン、及び自動車等のバッテリーとして、リチウムイオン電池が幅広く使用されている。また近年、リチウムイオン電池は高容量化やサイクル特性向上に加えて、安全性への関心が高まっている。特に、リチウムイオン電池はセル内でガスが発生することが知られており、内圧上昇に伴う電池パックの膨張や破裂が懸念されている。
 特許文献2には、電池内で発生した水素ガスを選択的に透過する水素選択透過性合金膜として、ジルコニウム(Zr)とニッケル(Ni)の合金からなるアモルファス合金(例えば、36Zr-64Ni合金)膜を用いることが開示されている。
 このような合金膜は、通常、粘着剤または接着剤などを用いて保持部材などに貼り付けて使用されているが、電気化学素子内で水素ガスが大量に発生して水素排出量が多くなったり、あるいは電気化学素子の長期間の使用により、合金膜が保持部材から剥がれたり、保持部材が破壊したり、最悪の場合には電気化学素子が破壊するという問題があった。
特許第4280014号明細書 特開2003-297325号公報
 本発明は、上記問題点に鑑みてなされたものであり、電気化学素子内で水素ガスが大量に発生して水素排出量が多くなったり、あるいは電気化学素子を長期間使用した場合でも不具合が生じない水素排出膜及び水素排出積層膜を提供することを目的とする。また、当該水素排出膜又は水素排出積層膜を備えた電気化学素子用安全弁、当該安全弁を備えた電気化学素子を提供することを目的とする。
 本発明は、Pdを必須金属とする合金を含む水素排出膜において、50℃、水素分圧0.01MPaの条件で測定した時の水素吸蔵量が0.4(H/M)以下であることを特徴とする水素排出膜、に関する。
 水素排出膜に水素を透過させると、水素は水素排出膜を構成する原子間の隙間を縫うように移動する。つまり、水素は一旦水素排出膜中に吸蔵される。また、この移動中の水素は水素排出膜中の原子と置き換わり、水素排出膜中に滞留する。すなわち、水素が水素排出膜中に蓄積されるため水素排出膜の体積が変化し、その体積変化に起因して前記不具合が生じると考えられる。
 本発明者は、前記知見に基づいて検討したところ、Pdを必須金属とする合金を含む水素排出膜の場合、50℃、水素分圧0.01MPaの条件で測定した時の水素吸蔵量が0.4(H/M)以下であれば、水素蓄積による水素排出膜の体積変化を効果的に抑制できるため、仮に電気化学素子内で水素ガスが大量に発生して水素排出量が多くなったり、あるいは電気化学素子を長期間使用した場合でも、水素排出膜が保持部材から剥がれたり、保持部材が破壊するなどの不具合が生じないことを見出した。
 前記水素排出膜は、50℃、水素分圧0.01MPaの条件で測定した時の水素吸蔵量が0.35(H/M)以下であることが好ましく、より好ましくは0.2(H/M)以下であり、さらに好ましくは0.1(H/M)以下である。
 ここで、水素吸蔵量(H/M)は、水素排出膜中の水素(H)と金属(M)のモル比で表される。また、50℃、水素分圧0.01MPaの測定条件は、電気化学素子の一般的な使用環境のうち、水素排出膜が最も物理的影響を受ける条件として採用した。
 前記合金は、第11族元素を20~65mol%含むことが好ましい。また、前記第11族元素は、金、銀、及び銅からなる群より選択される少なくとも1種であることが好ましい。
 Pd-第11族元素合金を含む水素排出膜は、膜表面で水素分子を水素原子に解離して水素原子を膜内に固溶し、固溶した水素原子を高圧側から低圧側に拡散させ、低圧側の膜表面で再び水素原子を水素分子に変換して排出する機能を有する。第11族元素の含有量が20mol%未満の場合には、合金の強度が不十分になったり、前記機能が発現し難くなる傾向にあり、65mol%を超える場合には水素透過速度が低下する傾向にある。
 前記水素排出膜は、50℃における水素透過係数が1.0×10-13~2.0×10-9(mol・m-1・sec-1・Pa-1/2)であり、かつ膜厚tと膜面積sが下記式1を満たすことが好ましい。 
 〈式1〉
   t/s<32.9m-1
 電気化学素子に設けられる水素排出膜は、圧力の平方根が76.81Pa1/2(0.059bar)における水素透過量が10ml/day以上(4.03×10-4mol/day以上:SATPに従い計算(温度25℃、気圧1barにおける1molの理想気体の体積は24.8L))であることが求められる。本発明のPd-第11族元素合金中の第11族元素の含有量が20~65mol%である水素排出膜は、50℃における水素透過係数が1.0×10-13~2.0×10-9(mol・m-1・sec-1・Pa-1/2)である。ここで、水素透過係数は下記式2により求められる。
 〈式2〉水素透過係数=(水素モル数×膜厚t)/(膜面積s×時間×圧力の平方根)
 水素透過量が10ml/day(4.03×10-4mol/day)かつ水素透過係数が2.0×10-9(mol・m-1・sec-1・Pa-1/2)の場合、式2に各数値を代入すると以下のとおりである。
 2.0×10-9=(4.03×10-4×膜厚t)/(膜面積s×86400×76.81)
 2.0×10-9=6.08×10-11×膜厚t/膜面積s
 膜厚t/膜面積s=32.9m-1
 したがって、50℃における水素透過係数が1.0×10-13~2.0×10-9(mol・m-1・sec-1・Pa-1/2)の水素透過膜を用いる場合において、水素透過量が10ml/day以上(4.03×10-4mol/day以上)となる条件は、膜厚t/膜面積s<32.9m-1である。
 本発明の水素排出積層膜は、前記水素排出膜の片面又は両面に支持体を有するものである。支持体は、水素排出膜が安全弁から脱落した場合に、電気化学素子内に落下することを防止するために設けられる。また、水素排出膜は、電気化学素子の内部圧力が所定値以上になった時に自壊する安全弁としての機能を有する必要がある。水素排出膜が薄膜である場合には、水素排出膜の機械的強度が低いため、電気化学素子の内部圧力が所定値になる前に自壊するおそれがあり、安全弁としての機能を果たせない。そのため、水素排出膜が薄膜である場合には、機械的強度を向上させるために水素排出膜の片面又は両面に支持体を積層することが好ましい。
 支持体は、平均孔径100μm以下の多孔質体であることが好ましい。平均孔径が100μmを超えると、多孔質体の表面平滑性が低下するため、スパッタリング法等で水素排出膜を製造する場合に、多孔質体上に膜厚の均一な水素排出膜を形成し難くなったり、水素排出膜にピンホール又はクラックが生じやすくなる。
 支持体は、化学的及び熱的に安定である観点からポリテトラフルオロエチレン、ポリスルホン、ポリイミド、ポリアミドイミド、及びアラミドからなる群より選択される少なくとも1種のポリマーにより形成されていることが好ましい。
 また、本発明は、前記水素排出膜又は水素排出積層膜を備えた電気化学素子用安全弁、及び当該安全弁を有する電気化学素子、に関する。電気化学素子としては、例えば、アルミ電解コンデンサ及びリチウムイオン電池などが挙げられる。
 本発明の水素排出膜及び水素排出積層膜は、電気化学素子内で水素ガスが大量に発生して水素排出量が多くなったり、あるいは電気化学素子を長期間使用した場合でも不具合が生じにくいという特徴がある。また、本発明の水素排出膜及び水素排出積層膜は、電気化学素子内部で発生した水素ガスのみを速やかに外部に排出することができるだけでなく、外部から電気化学素子内部への不純物の侵入を防止することができる。また、本発明の水素排出膜及び水素排出積層膜を備えた安全弁は、電気化学素子の内部圧力が急激に上昇した場合には自壊して内部圧力を低下させ、電気化学素子自体の破裂を防止することができる。これら効果により、電気化学素子の性能を長期間維持することができ、電気化学素子の長寿命化を図ることができる。
本発明の水素排出積層膜の構造を示す概略断面図である。 本発明の水素排出積層膜の他の構造を示す概略断面図である。
 以下、本発明の実施の形態について説明する。
 本発明の水素排出膜の原料としては、Pdを必須金属とする合金を用いる。合金を形成する他の金属は特に制限されないが、水素排出膜の水素吸蔵量を0.4(H/M)以下に調整し易いという観点から、第11族元素を用いることが好ましく、より好ましくは金、銀、及び銅からなる群より選択される少なくとも1種であり、さらに好ましくは銀又は銅である。前記合金は、第11族元素を20~65mol%含むことが好ましく、より好ましくは30~65mol%であり、さらに好ましくは30~60mol%である。また、Ag含有量が20mol%以上であるPd-Ag合金、又はCu含有量が30mol%以上であるPd-Cu合金、Au含有量が20mol%以上であるPd-Au合金を用いて水素排出膜を形成することにより、50~60℃程度以下の低温域であっても水素排出膜が脆化し難くなる。また、前記合金は、本発明の効果を損なわない範囲でIB族及び/又はIIIA族の金属を含んでいてもよい。
 Pdを必須金属とする合金は、結晶粒の大きさが0.028μm以上であることが好ましく、より好ましくは0.04μm以上、さらに好ましくは0.1μm以上、特に好ましくは0.4μm以上である。水素が水素排出膜中に蓄積されると水素排出膜の体積が変化し、その体積変化に起因して応力が発生する。結晶粒が大きいほど、結晶粒同士の界面が相対的に少なくなり、結晶粒同士の界面への応力集中が抑制される。結晶粒の大きさが大きくなればなるほど亀裂などの不具合が発生し難くなるため、結晶粒の大きさの上限値は特に制限されないが、電気化学素子の内部圧力が急激に上昇した場合には自壊して内部圧力を低下させる必要がある観点から、結晶粒の大きさは1000μm以下であることが好ましく、より好ましくは600μm以下である。結晶粒の大きさは、水素排出膜を作製する際に温度調節することにより目的の大きさに調整することができる。具体的には、前記結晶粒の水素排出膜を作製する際の温度は、50℃~合金が融解する温度である。
 本発明の水素排出膜は、例えば、圧延法、スパッタリング法、真空蒸着法、イオンプレーティング法、及びメッキ法などにより製造することができるが、膜厚の厚い水素排出膜を製造する場合には、圧延法を用いることが好ましく、膜厚の薄い水素排出膜を製造する場合には、スパッタリング法を用いることが好ましい。
 圧延法は、熱間圧延であってもよく、冷間圧延のいずれの方法でもよい。圧延法は、一対又は複数対のロール(ローラー)を回転させ、ロール間に原料であるPd-Ag合金を、圧力をかけながら通過させることにより膜状に加工する方法である。
 圧延法により得られる水素排出膜の膜厚は、5~50μmであることが好ましく、より好ましくは10~30μmである。膜厚が5μm未満の場合には、製造時にピンホール又はクラックが生じやすくなったり、水素を吸蔵すると変形しやすくなる。一方、膜厚が50μmを超えると、水素を透過させるのに時間を要するため水素排出性能が低下したり、コスト面で劣るため好ましくない。
 スパッタリング法は特に限定されず、平行平板型、枚葉型、通過型、DCスパッタ、及びRFスパッタなどのスパッタリング装置を用いて行うことができる。例えば、Pd-Ag合金ターゲットを設置したスパッタリング装置に基板を取り付けた後、スパッタリング装置内を真空排気し、Arガス圧を所定値に調整し、Pd-Ag合金ターゲットに所定のスパッタ電流を投入して、基板上にPd-Ag合金膜を形成する。その後、基板からPd-Ag合金膜を剥離して水素排出膜を得る。なお、ターゲットとしては、製造する水素排出膜に応じて、単一又は複数のターゲットを用いることができる。
 基板としては、例えば、ガラス板、セラミックス板、シリコンウエハー、アルミニウム及びステンレスなどの金属板が挙げられる。
 スパッタリング法により得られる水素排出膜の膜厚は、0.01~5μmであることが好ましく、より好ましくは0.05~2μmである。膜厚が0.01μm未満の場合には、ピンホールが形成される可能性があるだけでなく、要求される機械的強度を得難い。また、基板から剥離する際に破損しやすく、剥離後の取り扱いも困難になる。一方、膜厚が5μmを超えると、水素排出膜を製造するのに時間を要し、コスト面で劣るため好ましくない。
 水素排出膜の膜面積は、水素透過量と膜厚を考慮して適宜調整することができるが、安全弁の構成部材として用いる場合には、0.01~100mm程度である。なお本発明において膜面積は、水素排出膜において実際に水素を排出する部分の面積であって、後述するリング状の接着剤を塗布した部分は含まない。
 水素排出膜の片面又は両面に支持体を設けて水素排出積層膜としてもよい。特に、スパッタリング法により得られる水素排出膜は、膜厚が薄いため、機械的強度を向上させるために水素排出膜の片面又は両面に支持体を積層することが好ましい。
 図1及び2は、本発明の水素排出積層膜1の構造を示す概略断面図である。図1(a)又は(b)に示すように、水素排出膜2の片面又は両面にリング状の接着剤3を用いて支持体4を積層してもよく、図2(a)又は(b)に示すように、治具5を用いて水素排出膜2の片面又は両面に支持体4を積層してもよい。
 支持体4は、水素透過性であり、水素排出膜2を支持しうるものであれば特に限定されず、無孔質体であってもよく、多孔質体であってもよい。また、支持体4は、織布、不織布であってもよい。支持体4の形成材料としては、例えば、ポリエチレン及びポリプロピレンなどのポリオレフィン、ポリエチレンテレフタレート及びポリエチレンナフタレートなどのポリエステル、ポリスルホン及びポリエーテルスルホンなどのポリアリールエーテルスルホン、ポリテトラフルオロエチレン及びポリフッ化ビニリデンなどのフッ素樹脂、エポキシ樹脂、ポリアミド、ポリイミド、ポリアミドイミド、アラミドなどが挙げられる。これらのうち、化学的及び熱的に安定であるポリテトラフルオロエチレン、ポリスルホン、ポリイミド、ポリアミドイミド、及びアラミドからなる群より選択される少なくとも1種が好ましく用いられる。
 支持体4の厚さは特に限定されないが、通常5~1000μm程度、好ましくは10~300μmである。
 水素排出膜2をスパッタリング法で製造する場合、基板として支持体4を用いると、支持体4上に水素排出膜2を直接形成することができ、接着剤3又は治具5を用いることなく水素排出積層膜1を製造できるため、水素排出積層膜1の物性及び製造効率の観点から好ましい。その場合、支持体4としては、平均孔径100μm以下の多孔質体を用いることが好ましく、より好ましくは平均孔径5μm以下の多孔質体であり、特に限外ろ過膜(UF膜)を用いることが好ましい。
 本発明の水素排出膜及び水素排出積層膜の形状は、略円形状であってもよく、三角形、四角形、五角形等の多角形であってもよい。後述する用途に応じた任意の形状にすることができる。
 本発明の水素排出膜及び水素排出積層膜は、特にアルミ電解コンデンサ又はリチウムイオン電池の安全弁の構成部材として有用である。また、本発明の水素排出膜及び水素排出積層膜は、安全弁とは別に水素排出弁として電気化学素子に設けることも可能である。
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。
 実施例1
 〔圧延法による水素排出膜(Ag含有量20mol%)の作製〕
 インゴット中のAg含有量が20mol%となるようにPd及びAg原料をそれぞれ秤量し、水冷銅坩堝を備えたアーク溶解炉に投入し、大気圧のArガス雰囲気中でアーク溶解した。得られたボタンインゴットをロール径100mmの2段圧延機を用いて厚さ5mmになるまで冷間圧延して板材を得た。その後、ガラス管の中に圧延した板材を入れ、ガラス管の両端を封止した。ガラス管内部を室温で5×10-4Paまで減圧し、その後700℃まで昇温して24時間放置し、その後室温まで冷却した。この熱処理により、合金中のPd及びAgの偏析を解消した。次に、ロール径100mmの2段圧延機を用いて板材を厚さ100μmになるまで冷間圧延し、さらにロール径20mmの2段圧延機を用いて板材を厚さ25μmになるまで冷間圧延した。その後、ガラス管の中に圧延した板材を入れ、ガラス管の両端を封止した。ガラス管内部を室温で5×10-4Paまで減圧し、その後700℃まで昇温して1時間放置し、その後室温まで冷却した。この熱処理により、圧延によって生じたPd-Ag合金内部のひずみを除去し、厚さt:25μm、Ag含有量20mol%のPd-Ag水素排出膜を作製した。
 実施例2
 〔圧延法による水素排出膜(Ag含有量40mol%)の作製〕
 インゴット中のAg含有量が40mol%となるようにPd及びAg原料をそれぞれ使用した以外は実施例1と同様の方法で厚さt:25μm、Ag含有量40mol%のPd-Ag水素排出膜を作製した。
 実施例3
 〔圧延法による水素排出膜(Ag含有量60mol%)の作製〕
 インゴット中のAg含有量が60mol%となるようにPd及びAg原料をそれぞれ使用した以外は実施例1と同様の方法で厚さt:25μm、Ag含有量60mol%のPd-Ag水素排出膜を作製した。
 実施例4
 〔圧延法による水素排出膜(Cu含有量53mol%)の作製〕
 インゴット中のCu含有量が53mol%となるようにPd及びCu原料をそれぞれ使用した以外は実施例1と同様の方法で厚さt:25μm、Cu含有量53mol%のPd-Cu水素排出膜を作製した。
 実施例5
 〔圧延法による水素排出膜(Au含有量20mol%)の作製〕
 インゴット中のAu含有量が20mol%となるようにPd及びAu原料をそれぞれ使用した以外は実施例1と同様の方法で厚さt:25μm、Au含有量20mol%のPd-Au水素排出膜を作製した。
 実施例6
 〔圧延法による水素排出膜(Au含有量30mol%)の作製〕
 インゴット中のAu含有量が30mol%となるようにPd及びAu原料をそれぞれ使用した以外は実施例1と同様の方法で厚さt:25μm、Au含有量30mol%のPd-Au水素排出膜を作製した。
 実施例7
 〔圧延法による水素排出膜(Au含有量40mol%)の作製〕
 インゴット中のAu含有量が40mol%となるようにPd及びAu原料をそれぞれ使用した以外は実施例1と同様の方法で厚さt:25μm、Au含有量40mol%のPd-Au水素排出膜を作製した。
 実施例8
 〔スパッタリング法による水素排出積層膜(Au含有量30mol%)の作製〕
 Au含有量が30mol%であるPd-Au合金ターゲットを装着したRFマグネトロンスパッタリング装置(サンユー電子社製)に、支持体であるポリスルホン多孔質シート(日東電工社製、孔径0.001~0.02μm)を取り付けた。その後、スパッタリング装置内を1×10-5Pa以下に真空排気し、300℃、Arガス圧1.0Paにおいて、Pd-Au合金ターゲットに4.8Aのスパッタ電流を投入して、ポリスルホン多孔質シート上に厚さt:400nmのPd-Au合金膜(Au含有量30mol%)を形成して水素排出積層膜を作製した。
 実施例9
 〔スパッタリング法による水素排出積層膜(Au含有量40mol%)の作製〕
 Au含有量が40mol%であるPd-Au合金ターゲットを用いた以外は実施例8と同様の方法で厚さt:400nmのPd-Au合金膜(Au含有量40mol%)を形成して水素排出積層膜を作製した。
 比較例1
 〔圧延法による水素排出膜(Ag含有量19.8mol%)の作製〕
 インゴット中のAg含有量が19.8mol%となるようにPd及びAg原料をそれぞれ使用した以外は実施例1と同様の方法で厚さt:25μm、Ag含有量19.8mol%のPd-Ag水素排出膜を作製した。
 〔測定及び評価方法〕
 (水素吸蔵量の測定)
 PCT測定装置(JIS H 7201)は、ある温度Tにおいて、物質が水素を吸蔵、放出するときの特性(圧力P、水素吸蔵量C)を測定する装置である。作製した水素排出膜の各試験片について、鈴木商館社製のPCT測定装置を用いて、50℃、水素分圧0.01MPaの条件で測定した時の水素吸蔵量C(H/M)を求めた。
 (結晶粒の大きさの測定)
 作製した水素排出膜の表面を光学顕微鏡(株式会社ニコン製、ECLIPSE ME600)を用いて倍率50倍で撮影した。そして、画像解析ソフトウェア(アメリカ国立衛生研究所[NIH]オープンソース、「Image J」)を用いて撮影画像の2値化を行った。2値化においては、結晶粒が明部で表示されるようにした。その後、明るさ及びコントラストを補正することにより結晶粒を際立たせ、閾値設定によって結晶粒のみを選択して2値化画像を得た。次に、得られた2値化画像を画像解析ソフトウェア(旭化成エンジニア社製、「A像くん」)を用いて解析した。なお、2値化画像における明部を結晶粒とし、矩形状の解析範囲(3mm×2mm)の外縁辺と重なる結晶粒は解析対象から除外した。また、2値化画像において、寄り集まっている結晶粒の内側に空隙がある場合に、空隙を埋める処理は行わなかった。また、2値化画像において、互いに接触している結晶粒を分離させる処理は行わなかった。上記操作で求めた円相当径を結晶粒径(結晶粒の大きさ)とした。
 (水素透過係数の測定)
 作製した水素排出膜をスウェージロック社製のVCRコネクターに取り付け、片側にSUSチューブを取り付け、密封された空間(63.5ml)を作製した。チューブ内を真空ポンプで減圧後、水素ガスの圧力が0.15MPaになるように調整し、50℃の環境下での圧力変化をモニターした。圧力変化により水素排出膜を透過した水素モル数がわかるため、これを下記式2に代入して水素透過係数を算出した。なお測定に用いた水素排出膜の有効膜面積sは3.85×10-5である。 
 〈式2〉水素透過係数=(水素モル数×膜厚t)/(膜面積s×時間×圧力の平方根)
 (水素排出膜の不具合の評価)
 作製した水素排出膜を両面粘着テープ(日東電工株式会社製、No.5615)で水素タンクに貼り付けて固定した。その後、水素タンクの水素分圧が0.01MPaになるように調整し、50℃の環境下で12時間放置した。その後、水素排出膜の状態を目視にて確認し、下記基準で評価した。
○:全く変化なし
×:水素排出膜が両面粘着テープから剥離していた。
Figure JPOXMLDOC01-appb-T000001
 本発明の水素排出膜及び水素排出積層膜は、電池、コンデンサ、キャパシタ、及びセンサなどの電気化学素子に設けられる安全弁の構成部材として好適に用いられる。
1:水素排出積層膜
2:水素排出膜
3:接着剤
4:支持体
5:治具

Claims (10)

  1.  Pdを必須金属とする合金を含む水素排出膜において、50℃、水素分圧0.01MPaの条件で測定した時の水素吸蔵量が0.4(H/M)以下であることを特徴とする水素排出膜。
  2.  前記合金は、第11族元素を20~65mol%含む請求項1記載の水素排出膜。
  3.  前記第11族元素は、金、銀、及び銅からなる群より選択される少なくとも1種である請求項2記載の水素排出膜。
  4.  50℃における水素透過係数が1.0×10-13~2.0×10-9(mol・m-1・sec-1・Pa-1/2)であり、かつ膜厚tと膜面積sが下記式1を満たす請求項2又は3記載の水素排出膜。 
     〈式1〉
       t/s<32.9m-1
  5.  請求項1~4のいずれかに記載の水素排出膜の片面又は両面に支持体を有する水素排出積層膜。
  6.  前記支持体は、平均孔径100μm以下の多孔質体である請求項5記載の水素排出積層膜。
  7.  前記支持体の原料が、ポリテトラフルオロエチレン、ポリスルホン、ポリイミド、ポリアミドイミド、及びアラミドからなる群より選択される少なくとも1種である請求項5又は6記載の水素排出積層膜。
  8.  請求項1~4のいずれかに記載の水素排出膜、又は請求項5~7のいずれかに記載の水素排出積層膜を備えた電気化学素子用安全弁。
  9.  請求項8記載の安全弁を備えた電気化学素子。
  10.  前記電気化学素子が、アルミ電解コンデンサ又はリチウムイオン電池である請求項9記載の電気化学素子。
     
     
PCT/JP2015/067005 2014-06-16 2015-06-12 水素排出膜 WO2015194472A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177000822A KR20170016000A (ko) 2014-06-16 2015-06-12 수소 배출막
CN201580032639.0A CN106714946A (zh) 2014-06-16 2015-06-12 氢气排出膜
JP2016529305A JPWO2015194472A1 (ja) 2014-06-16 2015-06-12 水素排出膜
US15/318,852 US20170133647A1 (en) 2014-06-16 2015-06-12 Hydrogen-relaeasing film
EP15809580.2A EP3156119A4 (en) 2014-06-16 2015-06-12 Hydrogen release film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-123493 2014-06-16
JP2014123493 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015194472A1 true WO2015194472A1 (ja) 2015-12-23

Family

ID=54935459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067005 WO2015194472A1 (ja) 2014-06-16 2015-06-12 水素排出膜

Country Status (7)

Country Link
US (1) US20170133647A1 (ja)
EP (1) EP3156119A4 (ja)
JP (1) JPWO2015194472A1 (ja)
KR (1) KR20170016000A (ja)
CN (1) CN106714946A (ja)
TW (1) TW201603356A (ja)
WO (1) WO2015194472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203156A (ja) * 2018-05-22 2019-11-28 日本高純度化学株式会社 パラジウム銅合金剥離箔形成用電解パラジウム銅合金めっき液

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170800A4 (en) 2020-12-08 2024-04-17 Lg Energy Solution Ltd SECONDARY BATTERY AND BATTERY MODULE INCLUDING SAME

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350845A (en) * 1965-11-18 1967-11-07 Union Carbide Corp Metal alloy for hydrogen separation and purification
JP2000233119A (ja) * 1999-02-12 2000-08-29 Toyota Motor Corp 水素精製膜
JP2000247605A (ja) * 1999-02-26 2000-09-12 Tokyo Gas Co Ltd 水素透過用Pd合金膜及びその作製方法
JP2001029760A (ja) * 1998-08-28 2001-02-06 Toray Ind Inc 透過膜、電解コンデンサ、透過膜の処理方法、及び分離方法
JP2003297325A (ja) * 2002-03-29 2003-10-17 Sanyo Electric Co Ltd 密閉型電池
JP2004174373A (ja) * 2002-11-27 2004-06-24 Sumitomo Metal Mining Co Ltd 水素透過合金膜、水素透過用部材及びその製造方法
JP2005502158A (ja) * 2000-11-21 2005-01-20 ザ ジレット カンパニー バッテリ・ベント
US20050241477A1 (en) * 2002-03-05 2005-11-03 Mundschau Michael V Hydrogen transport membranes
JP2006043677A (ja) * 2004-08-06 2006-02-16 Juichi Kashimoto 水素分離装置
JP2008012495A (ja) * 2006-07-10 2008-01-24 Sumitomo Metal Mining Co Ltd 水素透過合金膜
US20120012004A1 (en) * 2010-07-16 2012-01-19 Way J Douglas Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same
JP2014017051A (ja) * 2012-07-05 2014-01-30 Toyota Industries Corp 蓄電装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255339U (ja) * 1985-09-26 1987-04-06
JP3038028B2 (ja) 1991-03-06 2000-05-08 日本写真印刷株式会社 透明タッチパネル
JP4280014B2 (ja) * 2002-01-22 2009-06-17 株式会社オプトニクス精密 圧力調整膜を具備した電気化学素子
WO2006043696A1 (ja) * 2004-10-20 2006-04-27 Dai Nippon Printing Co., Ltd. 水素精製フィルタおよびその製造方法
US20080210088A1 (en) * 2006-10-23 2008-09-04 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
FR2927729B1 (fr) * 2008-02-14 2013-06-14 Batscap Sa Dispositif anti-surpression pour un supercondensateur
US9216390B2 (en) * 2010-07-15 2015-12-22 Ohio State Innovation Foundation Systems, compositions, and methods for fluid purification
US20150325380A1 (en) * 2012-12-17 2015-11-12 Nitto Denko Corporation Hydrogen-releasing film
JP6089814B2 (ja) * 2013-03-12 2017-03-08 東京瓦斯株式会社 水素分離方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350845A (en) * 1965-11-18 1967-11-07 Union Carbide Corp Metal alloy for hydrogen separation and purification
JP2001029760A (ja) * 1998-08-28 2001-02-06 Toray Ind Inc 透過膜、電解コンデンサ、透過膜の処理方法、及び分離方法
JP2000233119A (ja) * 1999-02-12 2000-08-29 Toyota Motor Corp 水素精製膜
JP2000247605A (ja) * 1999-02-26 2000-09-12 Tokyo Gas Co Ltd 水素透過用Pd合金膜及びその作製方法
JP2005502158A (ja) * 2000-11-21 2005-01-20 ザ ジレット カンパニー バッテリ・ベント
US20050241477A1 (en) * 2002-03-05 2005-11-03 Mundschau Michael V Hydrogen transport membranes
JP2003297325A (ja) * 2002-03-29 2003-10-17 Sanyo Electric Co Ltd 密閉型電池
JP2004174373A (ja) * 2002-11-27 2004-06-24 Sumitomo Metal Mining Co Ltd 水素透過合金膜、水素透過用部材及びその製造方法
JP2006043677A (ja) * 2004-08-06 2006-02-16 Juichi Kashimoto 水素分離装置
JP2008012495A (ja) * 2006-07-10 2008-01-24 Sumitomo Metal Mining Co Ltd 水素透過合金膜
US20120012004A1 (en) * 2010-07-16 2012-01-19 Way J Douglas Multilayer sulfur-resistant composite metal membranes and methods of making and repairing the same
JP2014017051A (ja) * 2012-07-05 2014-01-30 Toyota Industries Corp 蓄電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156119A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203156A (ja) * 2018-05-22 2019-11-28 日本高純度化学株式会社 パラジウム銅合金剥離箔形成用電解パラジウム銅合金めっき液
JP7133199B2 (ja) 2018-05-22 2022-09-08 日本高純度化学株式会社 パラジウム銅合金剥離箔形成用電解パラジウム銅合金めっき液

Also Published As

Publication number Publication date
JPWO2015194472A1 (ja) 2017-05-25
US20170133647A1 (en) 2017-05-11
EP3156119A1 (en) 2017-04-19
CN106714946A (zh) 2017-05-24
EP3156119A4 (en) 2018-02-07
KR20170016000A (ko) 2017-02-10
TW201603356A (zh) 2016-01-16

Similar Documents

Publication Publication Date Title
WO2014098038A1 (ja) 水素排出膜
WO2015019906A1 (ja) 水素排出膜
JP7181324B2 (ja) 水素排出膜
WO2015194472A1 (ja) 水素排出膜
JP6688245B2 (ja) 水素排出方法
WO2015194471A1 (ja) 水素排出膜
JP2016002513A (ja) 水素排出膜
TW201812811A (zh) 電解電容器
JP6180487B2 (ja) 電気化学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529305

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15318852

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177000822

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015809580

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015809580

Country of ref document: EP