WO2015190273A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2015190273A1
WO2015190273A1 PCT/JP2015/064875 JP2015064875W WO2015190273A1 WO 2015190273 A1 WO2015190273 A1 WO 2015190273A1 JP 2015064875 W JP2015064875 W JP 2015064875W WO 2015190273 A1 WO2015190273 A1 WO 2015190273A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
inclination angle
lug groove
width
width direction
Prior art date
Application number
PCT/JP2015/064875
Other languages
English (en)
French (fr)
Inventor
辰作 片山
加地 与志男
崇之 藏田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54833377&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015190273(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP15807378.3A priority Critical patent/EP3156259B1/en
Priority to US15/317,465 priority patent/US20170120684A1/en
Priority to CN201580031272.0A priority patent/CN106457918B/zh
Publication of WO2015190273A1 publication Critical patent/WO2015190273A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/033Tread patterns characterised by special properties of the tread pattern by the void or net-to-gross ratios of the patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/0332Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0344Circumferential grooves provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane

Definitions

  • the present invention relates to a tire having a block pattern, and particularly relates to a tire excellent in performance on snow.
  • V-shaped lateral grooves (hereinafter referred to as inclined lug grooves) are provided, The grip performance is improved.
  • tilt refers to the slope with respect to the tire width direction
  • hydroplaning performance is degraded.
  • the hydroplaning performance is improved, but the grip performance on snow is lowered, and there is a problem that sufficient snow acceleration performance cannot be obtained.
  • the present invention has been made in view of the conventional problems, and it is an object of the present invention to provide a tire having a V-shaped lug groove and capable of improving both on-snow grip performance and hydroplaning performance. To do.
  • the present invention is a tire provided with an inclined lug groove formed on the tread surface of the tire and extending with respect to the tire circumferential direction and the tire width direction extending from the tire center portion to the end portion in the width direction of the tread,
  • the angle between the inclined lug groove and the tire width direction is the lug groove inclination angle ⁇ LG
  • the angle between the normal line of the contact shape contour line on the tire depression side and the tire width direction is the contour inclination angle ⁇ FP.
  • the region having a width of 20% of the ground contact width of the tire centered on the equator plane of the tire is adjacent to the center portion and the width direction outside of the center portion, and the width is 20% of the ground contact width of the tire.
  • the lug groove inclination angle ⁇ LG the absolute value of the difference between the contour tilt angle theta FP is, at each position in the tire width direction is in the range of 0 ° to 60 ° (0 ° ⁇
  • the absolute value of the difference between the portion and the 2nd portion is larger than the absolute value of the difference at the shoulder portion.
  • the “contact shape” and “contact width” are the tire measurement conditions specified by JATMA for the tire size of the tire (the tire is mounted on an applicable rim, and in the case of a tire for passenger cars, the internal pressure is 180 kPa, the room temperature (25 ° C. After being left for 24 hours at ⁇ 2 ° C, the pressure is adjusted to the original internal pressure again, and in the case of ground contact shape measurement, the static load radius measurement condition (the mass corresponding to 88% of the maximum load capacity of the tire) Measured under load)) means the grounding shape and grounding width measured.
  • the lug groove is formed such that the difference between the lug groove inclination angle ⁇ LG and the contour inclination angle ⁇ FP is 60 ° or less at each position in the tire width direction, and the shoulder portion. Since the difference between the lug groove inclination angle ⁇ LG and the contour inclination angle ⁇ FP is reduced, the hydroplaning performance can be improved while securing the on-snow grip performance.
  • the summary of the invention does not list all necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.
  • the present invention can also be achieved when the left and right patterns satisfy the above invention.
  • FIG. 1 is a diagram illustrating an example of a footprint that is a contour line of a ground contact shape of a tire 10 according to the present embodiment.
  • the direction from the lower side to the upper side in the figure is the traveling direction of the vehicle, the upper side in the figure is the stepping side, and the lower side is the kicking side.
  • the left-right direction of the figure is a tire width direction.
  • 11 is a tread
  • 12 is a rib groove
  • 13 is an inclined lug groove
  • 14 is a narrow groove
  • 15 is a center block
  • 16 is a 2nd block
  • 17 is a shoulder block
  • 18 is a sipe.
  • the rib groove 12 is a circumferential groove formed so as to continuously extend along the equator plane CL that is the center of the tread 11 surface in the tire width direction.
  • the number of rib grooves 12 is one, and when the ground contact width of the tire 10 is W, the groove width w c of the rib grooves 12 is set to be 20% or less of the tire ground contact width W.
  • the inclined lug groove 13 is formed so as to extend so as to intersect the tire circumferential direction and the tire width direction, with one end communicating with the rib groove 12 and the other end opening at the tire width direction end of the tread 11 tread surface.
  • the two inclined lug grooves 13 and 13 respectively provided on the left and right sides of the rib groove 12 constitute a substantially V-shaped lateral groove.
  • the right inclined lug groove 13 extends from the lower left to the upper right, the left inclined lug groove 13 extends from the lower right to the upper left, and both are ribs on the kicking side. It communicates with the groove 12 and opens to the end in the tire width direction on the stepping side.
  • the narrow groove 14 is a groove having a narrower groove width than the inclined lug groove 13 formed so as to intersect with the inclined lug groove 13, and the inclination of the narrow groove 14 located on the outer side in the tire width direction (inclination with respect to the tire width direction). This is larger than the inclination of the narrow groove 14 located on the inner side in the tire width direction.
  • a center block 15 is defined by the rib grooves 12, the inclined lug grooves 13, and the narrow grooves 14 located on the inner side in the tire width direction, and a 2nd block is defined by the inclined lug grooves 13 and the narrow grooves 14.
  • a shoulder block 17 is defined by the narrow groove 14 located on the outer side in the tire width direction.
  • sipes 18 are formed that extend in a direction substantially parallel to the tire width direction (an angle formed with the tire width direction is within ⁇ 10 °).
  • an area having a width of W ⁇ 0.1 from the equator plane CL of the tire toward the outer side in the left and right tire width direction (a width of W ⁇ 0.2 centered on the equator plane CL of the tire). Area) is adjacent to the center portion and the width direction outside of the center portion, the width is W ⁇ 0.2, the region is adjacent to the outside of the 2nd portion and 2nd portion in the width direction, and the width is W ⁇ 0.2.
  • the region is defined as a shoulder portion
  • the angle between the inclined lug groove 13 and the tire width direction is defined as the lug groove inclination angle ⁇ LG
  • the angle between the normal line of the footprint on the tire depression side and the tire width direction is defined as the contour inclination angle Let ⁇ FP .
  • the absolute value of the difference between the lug groove inclination angle ⁇ LG and the contour line inclination angle ⁇ FP (hereinafter referred to as the absolute value of the difference)
  • the inclined lug grooves 13 were formed so that ⁇ LG
  • the generation mechanism of the grip force on snow is shown in FIG.
  • the cause of the on-snow grip force is that the compression resistance F A as the running resistance acting on the front surface of the tire 10, the surface friction force F B acting on the surface of the block 15 (or blocks 16 and 17), and the groove (here, It is determined by the snow column shearing force F C acting on the inclined lug groove 13) and the scratching force F D (edge effect) by the sipe edge and block edge.
  • the inclined lug groove 13 ensures a shearing force in snow during braking and driving. Therefore, as described above, the on-snow grip performance can be ensured by reducing the lug groove inclination angle ⁇ LG .
  • the sipe 18 in the land portion blocks 15, 16, and 17
  • of the difference in the 2nd portion are The absolute value of the difference is larger than
  • the center block 15 determines the difference between the maximum value and the minimum value of the lug groove inclination angle ⁇ LG-C of the center portion, and the maximum value and the minimum value of the lug groove inclination angle ⁇ LG-S of the shoulder portion.
  • the difference between the maximum value and the minimum value of the lug groove inclination angle ⁇ LG-S of the shoulder portion is smaller than the difference between the maximum value and the minimum value of the lug groove inclination angle ⁇ LG-2 of the 2nd portion. Is also small.
  • the lug groove inclination angle ⁇ LG-C in the center portion is increased, the change in the lug groove inclination angle ⁇ LG is reduced, and the change in the lug groove inclination angle ⁇ LG-2 is increased in the 2nd portion, Since the lug groove inclination angle ⁇ LG-S can be reduced at the shoulder portion, drainage from the shoulder portion can be facilitated while securing the grip performance on snow at the center portion. Further, since the lug groove inclination angle ⁇ LG-S and the angle change of the shoulder portion are reduced, both the on-snow grip performance and the drainage performance can be improved.
  • the groove width w c of the rib groove 12 is preferably 20% or less of the tire ground contact width W, and more preferably 15% or less. If w c / W is set as described above, the ratio of the V-shaped lug groove can be secured in the pattern with the same negative rate, and both on-snow acceleration performance and drainage performance can be improved. it can. Further, the groove width of the rib groove 12 and the groove width on the rib groove 12 side of the inclined lug groove 13 are thereby made narrower than the groove width at the end of the inclined lug groove 13 in the tire width direction.
  • interval) between the sipes 18 and 18 provided in the surface of each block 15, 16, 17 shall be 3.0 mm or more and 10 mm or less, and shall be 3.0 mm or more and 8.0 mm or less. More preferably.
  • the sipe edge effect can be effectively exhibited while ensuring the block rigidity. That is, if the block width of the small block is less than 3.0 mm, the block width of the small block is too small to secure the block rigidity. Conversely, if the block width of the small block exceeds 10 mm, the number of small blocks (sipe) This is because a sufficient sipe edge effect cannot be obtained.
  • the present invention will be described in detail below based on examples.
  • the rim and internal pressure are based on an applicable rim and air pressure-load capacity correspondence table corresponding to the size of the radial ply tire defined in JATMA YEAR BOOK (2011, Japan Automobile Tire Association Standard).
  • the tire size of the prototype tire is 195 / 65R15.
  • all of the pattern shapes of Examples 1 to 10 have a V-shaped lug groove, one rib groove provided in the center portion, and a narrow groove. Sipes are formed in the blocks defined by the rib grooves and the narrow grooves.
  • the groove depth of the lug groove, rib groove, and narrow groove is 9 mm, and the sipe depth is 6 mm.
  • FIG. 1 The rim and internal pressure are based on an applicable rim and air pressure-load capacity correspondence table corresponding to the size of the radial ply tire defined in JATMA YEAR BOOK (2011, Japan Automobile Tire Association Standard).
  • the tire size of the prototype tire is 195 / 65
  • the pattern shape of the tire 50 of the conventional example only has three circumferential grooves 51 to 53 and lug grooves 54 formed at the shoulder portion and having an inclination angle of 0 °. Further, in the conventional tire 50, w 0 / W is 20% when the sum of the groove widths w 1 , w 2 , and w 3 of the three circumferential grooves 51 to 53 is w 0 .
  • the negative rates of the tires of Examples 1 to 10 and the conventional example are all 35%.
  • the above tire was assembled to a rim of 6J-15 at an internal pressure of 200 kPa and mounted on a passenger car, and a hydroplaning test and a snow acceleration performance test were performed on a wet pavement surface.
  • a hydroplaning test water having a depth of 7 mm is sprayed on the paved road surface, and then acceleration is performed from slowing down, and the evaluation is based on the “body speed” when the tire slip rate becomes 10%. The higher the “vehicle speed” when the tire starts to idle on the water, the better the hydroplaning performance.
  • the on-snow acceleration performance test is evaluated by the time (acceleration time) from when the accelerator is fully open to traveling 50 m. The test results are shown in the tables of FIGS.
  • the second embodiment is the same as the first embodiment except that the center portion ⁇ LG-C / 2nd portion ⁇ LG-2 / shoulder portion ⁇ LG-S is set to 75 ° / 60 ° / 30 °.
  • the third embodiment is the same as the first embodiment except that the center portion ⁇ LG-C / 2nd portion ⁇ LG-2 / shoulder portion ⁇ LG-S is set to 70 ° / 55 ° / 30 °.
  • the fourth embodiment is the same as the first embodiment except that the center portion ⁇ LG-C / 2nd portion ⁇ LG-2 / shoulder portion ⁇ LG-S is 50 ° / 40 ° / 30 °.
  • Comparative Example 1 is the same as Example 1 except that the center portion ⁇ LG-C / 2nd portion ⁇ LG-2 / shoulder portion ⁇ LG-S is 0 ° / 0 ° / 0 °.
  • Comparative Example 2 is the same as Example 1 except that the center portion ⁇ LG-C / 2nd portion ⁇ LG-2 / shoulder portion ⁇ LG-S is 20 ° / 20 ° / 20 °.
  • the center portion ⁇ LG-C / 2nd portion ⁇ LG-2 / shoulder portion ⁇ LG-S was set to 25 ° / 25 ° / 25 °, and the others were the same as in the first embodiment.
  • the fifth embodiment is the same as the first embodiment except that the distance between sipes is 3 mm.
  • the sixth embodiment is the same as the first embodiment except that the distance between sipes is 8 mm.
  • the seventh embodiment is the same as the first embodiment except that the distance between sipes is 10 mm.
  • Comparative Example 4 is the same as Example 1 except that the distance between sipes is 2 mm.
  • Comparative Example 5 is the same as Example 1 except that the distance between sipes is 12 mm.
  • Example 9 is the same as Example 1 except that w c / W is 10.7%.
  • Example 10 is obtained by the 14.3% of w c / W, the others are the same as in Example 1.
  • Comparative Example 6 is the same as Example 1 except that w c / W is 15.7%.
  • of the difference between the lug groove inclination angle and the contour inclination angle is 0 ° or more and 60 ° or less at each position in the tire width direction.
  • the hydroplaning performance is within the allowable range although it is lower than the conventional example, so that the tire of the present invention can improve the grip performance on snow while maintaining the hydroplaning performance. confirmed.
  • the inclination of the lug groove is small, and
  • the tires of Examples 1, 5, and 6 in which the sipe interval d is 3 mm or more and 8 mm or less have an acceleration performance on snow of 20% or more as compared with the conventional example. It can be seen that even in the tire of Example 7 in which the sipe distance d is 10 mm, the acceleration performance on snow is 10% or more higher than that of the conventional example. In addition, it was confirmed that the hydroplaning performance is within an allowable range although it is lower than the conventional example.
  • the acceleration performance on snow including the case without the rib groove is all compared to the conventional example. It can be seen that it is higher by 10% or more. In addition, it was confirmed that the hydroplaning performance is within an allowable range although it is lower than the conventional example.
  • the groove width w c of the rib groove exceeds 15% of the tire ground contact width W, the groove width of the center groove is increased, so that the grip performance on snow is improved.
  • the example ratio was less than 10.
  • the inclined lug groove 13 in which the lug groove inclination angle ⁇ LG decreases as it goes from the center portion to the shoulder portion has been described, but 0 ° ⁇
  • the angle ⁇ LG is constant, that is, the inclined lug groove 13 may be linear.
  • the difference between the maximum value and the minimum value of the lug groove inclination angle ⁇ LG-C of the center portion is the difference between the maximum value and the minimum value of the lug groove inclination angle ⁇ LG-S of the shoulder portion.
  • the difference between the maximum value and the minimum value of the lug groove inclination angle ⁇ LG-S of the shoulder portion is made smaller than the difference between the maximum value and the minimum value of the lug groove inclination angle ⁇ LG-2 of the 2nd portion.
  • the ratio of the average value of the shoulder lug groove inclination angle to the average value of the lug groove inclination angle of the center part, and the ratio of the average value of the lug groove inclination angle of the shoulder part to the average value of the lug groove inclination angle of the 2nd part The ratio of the average value of the lug groove inclination angle of the shoulder portion to the average value of the lug groove inclination angle of the 2nd portion is smaller than the average value of the lug groove inclination angle of the 2nd portion with respect to the average value of the lug groove inclination angle of the center portion. Even if it is smaller than the ratio of the values, the inclination is large at the center.
  • the number of rib grooves 12 is one and w c /W ⁇ 0.2.
  • the rib grooves 12 may be omitted.
  • the narrow groove 14 is not an essential matter of the present invention and may be omitted.
  • the sipe 18 is not limited to a straight sipe, and may be a polygonal line or a sipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 V字状のラグ溝を有するタイヤにおいて、雪上グリップ性能とハイドロプレーニング性能とをともに向上させるために、トレッド11表面に形成された傾斜ラグ溝13のタイヤ幅方向との成す角度であるラグ溝傾斜角度θLGとタイヤ10の踏み込み側の接地形状の輪郭線の法線がタイヤ幅方向との成す角度である輪郭線傾斜角度θFPとの差の絶対値を、タイヤ幅方向の各位置において、0°以上60°以下とするとともに、タイヤの赤道面を中心とした、幅がタイヤ接地幅Wの20%の領域をセンター部、センター部の幅方向外側にそれぞれ隣接する、タイヤ接地幅Wの20%の領域を中間部、中間部の幅方向外側にそれぞれ隣接する、タイヤ接地幅Wの20%の領域をショルダー部としたとき、センター部と中間部における差の絶対値が、ショルダー部における差の絶対値よりも大きくなるように、傾斜ラグ溝13を形成した。

Description

タイヤ
 本発明は、ブロックパターンを有するタイヤに関するもので、特に、雪上性能に優れたタイヤに関する。
 従来、冬用タイヤにおいては、タイヤ幅方向のブロックエッジ成分とタイヤ周方向のブロックエッジ成分とをともに得るため、V字状の横溝(以下、傾斜ラグ溝という)を設けて、前後左右の雪上グリップ性能を向上させるようにしている。
特開2001-191740号公報
 しかしながら、雪上加速性能を確保しようとして、ラグ溝の傾斜(以下、「傾斜」は、タイヤ幅方向に対する傾斜をいう)を小さくすると、タイヤ幅方向への排水効率が低下するため、ウェット路でのハイドロプレーニング性能が低下してしまう。逆に、ラグ溝の傾斜を大きくすると、ハイドロプレーニング性能は向上するが、雪上グリップ性能が低下してしまい、十分な雪上加速性能が得られないといった問題点があった。
 本発明は、従来の問題点に鑑みてなされたもので、V字状のラグ溝を有するタイヤにおいて、雪上グリップ性能とハイドロプレーニング性能とをともに向上させることのできるタイヤを提供することを目的とする。
 本発明は、タイヤのトレッド表面に形成された、タイヤセンター部からトレッドの幅方向端部まで延長するタイヤ周方向及びタイヤ幅方向に対して傾斜する傾斜ラグ溝を備えたタイヤであって、前記傾斜ラグ溝のタイヤ幅方向との成す角度をラグ溝傾斜角度θLGとし、前記タイヤの踏み込み側の接地形状の輪郭線の法線とタイヤ幅方向との成す角度を輪郭線傾斜角度θFPとし、前記タイヤの赤道面を中心とした、幅が前記タイヤの接地幅の20%の領域をセンター部、前記センター部の幅方向外側にそれぞれ隣接する、幅が前記タイヤの接地幅の20%の領域を中間部(以下、2nd部という)、前記2nd部の幅方向外側にそれぞれ隣接する、幅が前記タイヤの接地幅の20%の領域をショルダー部としたとき、前記ラグ溝傾斜角度θLGと前記輪郭線傾斜角度θFPとの差の絶対値が、タイヤ幅方向の各位置において、0°以上60°以下の範囲にあり(0°≦|θFP-θLG|≦60°)、前記センター部と前記2nd部における前記差の絶対値が、前記ショルダー部における前記差の絶対値よりも大きいことを特徴とする。
 なお、「接地形状」及び「接地幅」は、当該タイヤのタイヤサイズにおけるJATMAで規定されるタイヤの測定条件(タイヤを適用リムに装着し、乗用車用タイヤの場合は内圧180kPa、室温(25℃±2℃)で24時間放置した後、再び元の内圧に調整して測定する。接地形状計測の場合は、静的負荷半径計測条件(そのタイヤの最大負荷能力の88%に相当する質量を負荷して測定))で計測された接地形状及び接地幅をいう。
 このように、ラグ溝を、ラグ溝傾斜角度θLGの大きさが、タイヤ幅方向の各位置において、輪郭線傾斜角度θFPとの差が60°以下になるように形成するとともに、ショルダー部のラグ溝傾斜角度θLGと輪郭線傾斜角度θFPとの差を小さくしたので、雪上グリップ性能を確保しつつ、ハイドロプレーニング性能を向上させることができる。
 なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。タイヤ赤道方向中心ラインに対し、左右非対称のトレッドパターンを有するタイヤにおいて、左右各々のパターンが前記発明を満たす場合もまた、発明となり得る。
本実施の形態に係るタイヤのトレッドパターンを示す図である。 雪上グリップ力の発生メカニズムを説明するための図である。 従来のタイヤのトレッドパターンを示す図である。 試験タイヤの仕様とハイドロプレーニングテスト、及び、雪上加速性能テストの結果を示す図である。
 図1は本実施の形態に係るタイヤ10の接地形状の輪郭線であるフットプリントの一例を示す図である。同図の下側から上側に向かう方向が車両の進行方向で、同図の上側が踏み込み側、下側が蹴り出し側になる。また、同図の左右方向がタイヤ幅方向である。
 同図において、11はトレッド、12はリブ溝、13は傾斜ラグ溝、14は細溝、15はセンターブロック、16は2nd部ブロック、17はショルダーブロック、18はサイプである。
 リブ溝12は、トレッド11表面のタイヤ幅方向中心である赤道面CLに沿って連続して延長するように形成された周方向溝である。本例では、リブ溝12を1本とするとともに、タイヤ10の接地幅をWとしたときに、リブ溝12の溝幅wcをタイヤ接地幅Wの20%以下になるように設定している。
 傾斜ラグ溝13は、一端がリブ溝12に連通し、他端がトレッド11の踏面のタイヤ幅方向端部に開口する、タイヤ周方向とタイヤ幅方向とに交差するように延長するように形成された溝で、リブ溝12の左右にそれぞれ設けられる2本の傾斜ラグ溝13,13により、略V字状の横溝を構成している。右側の傾斜ラグ溝13は、左下方から右上方に向かって延長し、左側の傾斜ラグ溝13は、右下方から左上方に向かって延長しており、かつ、いずれも、蹴り出し側でリブ溝12に連通し、踏み込み側でタイヤ幅方向端部に開口している。
 細溝14は、傾斜ラグ溝13に交差するように形成された、傾斜ラグ溝13よりも溝幅が狭い溝で、タイヤ幅方向外側に位置する細溝14の傾き(タイヤ幅方向に対する傾き)の方が、タイヤ幅方向内側に位置する細溝14の傾きよりも大きい。
 リブ溝12と傾斜ラグ溝13とタイヤ幅方向内側に位置する細溝14とによりセンターブロック15が区画され、傾斜ラグ溝13と細溝14とにより2nd部ブロックが区画され、傾斜ラグ溝13とタイヤ幅方向外側に位置する細溝14とによりショルダーブロック17が区画される。
 各ブロック15,16,17の表面には、それぞれ、タイヤ幅方向に略平行(タイヤ幅方向との成す角が±10°以内)な方向に延長するサイプ18が形成されている。
 図1に示すように、タイヤの赤道面CLから左右のタイヤ幅方向外側に向かって、幅がW×0.1の領域(タイヤの赤道面CLを中心とした、幅がW×0.2の領域)をセンター部、センター部の幅方向外側にそれぞれ隣接する、幅がW×0.2の領域を2nd部、2nd部の幅方向外側にそれぞれ隣接する、幅がW×0.2の領域をショルダー部とし、傾斜ラグ溝13のタイヤ幅方向との成す角度をラグ溝傾斜角度θLGとし、タイヤの踏み込み側のフットプリントの法線がタイヤ幅方向との成す角度を輪郭線傾斜角度θFPとする。
 本例では、センター部、2nd部、及び、ショルダー部の各領域において、ラグ溝傾斜角度θLGと輪郭線傾斜角度θFPとの差の絶対値(以下、差の絶対値という)|θFP-θLG|を、0°以上60°以下の範囲となるように、傾斜ラグ溝13を形成した。
 これは、本発明のような、V字状の傾斜ラグ溝13,13を有するタイヤ10において、ハイドロプレーニング性能を確保するための条件である。すなわち、タイヤ幅方向の各位置において、ラグ溝傾斜角度θLGと輪郭線傾斜角度θFPとが一致している(|θFP-θLG|=0°)場合には、接地面端部における排水の方向とパターンの排水の方向が一致するため、タイヤ全体での排水効率は最も良く、優れたハイドロプレーニング性能が得られる。
 しかし、本例のタイヤ10のように、冬用タイヤとして用いられるタイヤでは、雪上グリップ性能も必要であり、雪上グリップ性能を確保するためには、ラグ溝傾斜角度θLGを小さくする必要がある。そこで、|θFP-θLG|を0°以上60°以下、好ましくは、0°以上50°以下、更に好ましくは、0°以上40°以下とすれば、ハイドロプレーニング性能を低下させることなく、雪上グリップ性能を確保することができる。
 雪上グリップ力の発生メカニズムを図2に示す。
 雪上グリップ力の発生要因は、タイヤ10の前面に作用する走行抵抗としての圧縮抵抗FAと、ブロック15(または、ブロック16,17)表面に作用する表面摩擦力FB、溝部(ここでは、傾斜ラグ溝13)に作用する雪柱剪断力FC、及び、サイプエッジ及びブロックエッジによる引掻き力FD(エッジ効果)により決まる。V字状の傾斜ラグ溝13,13を有するタイヤ10においては、傾斜ラグ溝13により、制動・駆動時の雪中剪断力を確保する。
 したがって、上記のように、ラグ溝傾斜角度θLGを小さくすることで、雪上グリップ性能を確保することができる。また、陸部(ブロック15,16,17)にサイプ18を設けることで、ブロック剛性を低下させることなく、細かいエッジを増やして、制動・駆動時のエッジ効果を確保することができる。
 また、本例では、センター部における差の絶対値|θFP-C-θLG-C|と、2nd部における差の絶対値|θFP-2-θLG-2|とを、ショルダー部における差の絶対値|θFP-S-θLG-S|よりも大きくしている。したがって、タイヤセンター部及び2nd部において雪上グリップ性能を確保しつつ、ショルダー部からの排水を容易にできる。また、ショルダー部では、ラグ溝傾斜角度θLG-Sが小さいので、ショルダー部でも雪上グリップ性能を確保できる。
 すなわち、|θFP-S-θLG-S|<|θFP-C-θLG-C|,|θFP-2-θLG-2|とすることで、ハイドロプレーニング性能を維持しつつ、高い雪上グリップ性能を得ることができる。
 センター部における差の絶対値|θFP-C-θLG-C|、及び、2nd部における差の絶対値|θFP-2-θLG-2|としては、20°以上50°以下とすることが好ましく、25°以上40°以下とすれば更に好ましい。
 また、ショルダー部における差の絶対値|θFP-S-θLG-S|としては、0°以上30°以下とすることが好ましく、0°以上20°以下とすれば更に好ましい。
 また、本例では、センターブロック15は、センター部のラグ溝傾斜角度θLG-Cの最大値と最小値との差を、ショルダー部のラグ溝傾斜角度θLG-Sの最大値と最小値との差よりも小さくし、ショルダー部のラグ溝傾斜角度θLG-Sの最大値と最小値との差を2nd部のラグ溝傾斜角度θLG-2の最大値と最小値との差よりも小さくしている。これにより、センター部でのラグ溝傾斜角度θLG-Cを大きくするとともに、ラグ溝傾斜角度θLGの変化を小さくし、2nd部においてラグ溝傾斜角度θLG-2の変化を大きくして、ショルダー部にて、ラグ溝傾斜角度θLG-Sを小さくできるので、センター部において雪上グリップ性能を確保しつつ、ショルダー部からの排水を容易にできる。また、ショルダー部のラグ溝傾斜角度θLG-S及び角度変化を小さくしたので、雪上グリップ性能と排水性能とをともに向上させることができる。
 また、リブ溝12の溝幅wcは、タイヤ接地幅Wの20%以下とすることが好ましく、15%以下にすることが更に好ましい。wc/Wを上記のように設定すれば、同一ネガティブ率のパターンの中で、V字状のラグ溝の比率を確保することができ、雪上加速性能と排水性能とをともに向上させることができる。
 また、これにより、リブ溝12の溝幅と傾斜ラグ溝13のリブ溝12側の溝幅とを、傾斜ラグ溝13のタイヤ幅方向端部の溝幅よりも狭くすることで、ラグ溝傾斜角度θLGの大きなタイヤセンター部のネガティブ率を低くして、センター部でのブロック剛性を確保するとともに、ラグ溝傾斜角度θLGの小さなショルダー部でのネガティブ率を高くして排水性を確保するようにしたので、雪上加速性能と排水性能とを更に向上させることができる。
 また、各ブロック15,16,17の表面に設けられたサイプ18,18間の間隔(サイプ間隔)は、3.0mm以上10mm以下とすることが好ましく、3.0mm以上8.0mm以下とすることが更に好ましい。このように、タイヤ周方向に隣接する2つのサイプ18,18で区画された小ブロックのブロック幅を規制すれば、ブロック剛性を確保しつつ、サイプエッジ効果を有効に発揮させることができる。
 すなわち、小ブロックのブロック幅を3.0mm未満とすると、小ブロックのブロック幅が小さすぎてブロック剛性を確保できず、逆に、小ブロックのブロック幅が10mmを超えると、小ブロック数(サイプの本数)が少なくなって、十分なサイプエッジ効果が得られないからである。
[実施例]
 本発明を実施例に基づき以下詳細に説明する。
 リム及び内圧は、JATMA  YEAR  BOOK(2011、日本自動車タイヤ協会規格)にて定めるラジアルプライタイヤのサイズに対応する適用リム及び空気圧-負荷能力対応表に基づく。
 試作したタイヤのタイヤサイズは195/65R15である。実施例1~10のパターン形状は、全て、図1に示すように、V字状のラグ溝と、センター部に設けられた1本のリブ溝と、細溝とを有し、ラグ溝とリブ溝と細溝とにより区画されたブロックには、サイプが形成されている。ラグ溝、リブ溝、及び、細溝の溝深さは9mmで、サイプ深さは全て6mmである。 
 図3に示すように、従来例のタイヤ50のパターン形状は、3本の周方向溝51~53と、ショルダー部に形成された傾斜角度が0°のラグ溝54とを有するのみである。
 また、従来例のタイヤ50では、3本の周方向溝51~53の溝幅w1,w2,w3の総和をw0としたとき、w0/Wは20%である。
 実施例1~10及び従来例のタイヤのネガティブ率は、いずれも、35%である。
 なお、比較のため、|θFP-θLG|が60°を超えたパターンのタイヤ(比較例1~3)と、サイプ間の距離が3mm未満もしくは10mmを超えたパターンのタイヤ(比較例4,5)と、リブ溝の溝幅がタイヤの接地幅の15%を超えたパターンのタイヤ(比較例6)とを作製し、同様の試験を行った。なお、比較例のネガティブ率も35%とした。
 実施例1~10及び比較例1~6のパターン形状については後述する。
 試験は上記のタイヤを6J-15のリムに内圧200kPaで組み付け、乗用車に装着して、舗装路ウェット路面上でのハイドロプレーニングテスト、雪上加速性能テストを行った。
 ハイドロプレーニングテストは、舗装路面上に水深7mmの水を散布し、この上で徐行から加速を行い、タイヤスリップ率が10%になったときの「車体速度」で評価を行っている。タイヤが水の上で空転し始める時の「車体速度」が高い方がハイドロプレーニング性能に優れている。
 また、雪上加速性能テストは、静止状態からアクセルを全開し、50m走行するまでの時間(加速タイム)で評価を行っている。
 テスト結果を図4(a),(b)の表に示す。テストの結果は従来例を100とした指数で表現し、各性能ともに指数大が良である。
 なお、本タイヤは冬用タイヤであるので、ハイドロプレーニング性能については、従来例比で10%低下までを許容範囲とし、雪上加速性能については、従来例比で10%以上の向上が必須であるとして、優劣の判定を行った。
 実施例1~10及び比較例1~6のパターン形状について説明する。
 実施例1
・輪郭線傾斜角度θFP
       センター部θFP-C/2nd部θFP-2/ショルダー部θFP-S=90°/70°/30°
・ラグ溝傾斜角度θLG
       センター部θLG-C/2nd部θLG-2/ショルダー部θLG-S=30°/30°/30°
・サイプ間隔d=4.5mm
・リブ溝
    1本、wC=6mm、wC/W=4.3%
 実施例2は、センター部θLG-C/2nd部θLG-2/ショルダー部θLG-Sを75°/60°/30°としたもので、他は実施例1と同じである。
 実施例3は、センター部θLG-C/2nd部θLG-2/ショルダー部θLG-Sを70°/55°/30°としたもので、他は実施例1と同じである。
 実施例4は、センター部θLG-C/2nd部θLG-2/ショルダー部θLG-Sを50°/40°/30°としたもので、他は実施例1と同じである。
 比較例1は、センター部θLG-C/2nd部θLG-2/ショルダー部θLG-Sを0°/0°/0°としたもので、他は実施例1と同じである。
 比較例2は、センター部θLG-C/2nd部θLG-2/ショルダー部θLG-Sを20°/20°/20°としたもので、他は実施例1と同じである。
 比較例3は、センター部θLG-C/2nd部θLG-2/ショルダー部θLG-Sを25°/25°/25°としたもので、他は実施例1と同じである。
 実施例5は、サイプ間の距離を3mmとしたもので、他は実施例1と同じである。
 実施例6は、サイプ間の距離を8mmとしたもので、他は実施例1と同じである。
 実施例7は、サイプ間の距離を10mmとしたもので、他は実施例1と同じである。
 比較例4は、サイプ間の距離を2mmとしたもので、他は実施例1と同じである。
 比較例5は、サイプ間の距離を12mmとしたもので、他は実施例1と同じである。
 実施例8は、リブ溝をなくした(wc/W=0%)としたもので、他は実施例1と同じである。
 実施例9は、wc/Wを10.7%としたもので、他は実施例1と同じである。
 実施例10は、wc/Wを14.3%としたもので、他は実施例1と同じである。
 比較例6は、wc/Wを15.7%としたもので、他は実施例1と同じである。
 図4(a)の表に示すように、ラグ溝傾斜角度と輪郭線傾斜角度との差の絶対値|θFP-θLG|が、タイヤ幅方向の各位置において、0°以上60°以下の範囲にあり、かつ、センター部における差の絶対値|θFP-C-θLG-C|と2nd部における差の絶対値|θFP-2-θLG-2|がショルダー部における差の絶対値|θFP-S-θLG-S|よりも大きい実施例1~4のタイヤは、いずれも、雪上加速性能が従来例比で10%以上高くなっていることがわかる。なお、ハイドロプレーニング性能については、いずれも、従来例よりも低下しているものの許容範囲にあるので、本発明のタイヤは、ハイドロプレーニング性能を維持しつつ、雪上グリップ性能を向上させることができることが確認された。
 これに対して、比較例1~3のタイヤは、ラグ溝の傾斜が小さいことから、|θFP-C-θLG-C|及び|θFP-2-θLG-2|が60°を超えてしまい、その結果、雪上加速性能は向上するものの、ハイドロプレーニング性能が許容範囲を超えて低下してしまった。
 また、実施例1~4を比較すると、|θFP-C-θLG-C|と|θFP-2-θLG-2|とが15°を超えれば、|θFP-S-θLG-S|が0°であっても、ハイドロプレーニング性能を維持しつつ加速性能は向上することが確認された。
 また、|θFP-C-θLG-C|と|θFP-2-θLG-2|とが20°~40°の範囲が、ハイドロプレーニング性能と加速性能とのバランスがよいことがわかる。
 また、図4(b)の表に示すように、サイプ間隔dが3mm以上、8mm以下である実施例1,5,6のタイヤは、いずれも、雪上加速性能が従来例比で20%以上高くなっており、サイプ間隔dが10mmである実施例7のタイヤでも、雪上加速性能が従来例比で10%以上高くなっていることがわかる。なお、ハイドロプレーニング性能については、いずれも、従来例よりも低下しているものの許容範囲にあることが確認された。
 これに対して、サイプ間隔dが2mmである比較例4のタイヤ、及び、サイプ間隔dが12mmである比較例5のタイヤでは、雪上加速性能が許容範囲を超えて低下してしまった。
 このように、サイプ間隔dを3mm未満とするとブロック剛性が足りず、逆に、サイプ間隔dが10mmを超えるとサイプエッジ効果が低減するため、雪上グリップ性能を十分に向上させることが困難であることが確認された。
 また、リブ溝の溝幅wcがタイヤ接地幅Wの20%以下である実施例1,8~10のタイヤは、リブ溝のない場合も含めて、いずれも、雪上加速性能が従来例比で10%以上高くなっていることがわかる。なお、ハイドロプレーニング性能については、いずれも、従来例よりも低下しているものの許容範囲にあることが確認された。
 これに対して、リブ溝の溝幅wcがタイヤ接地幅Wの15%を超えた比較例6のタイヤでは、センター溝の溝幅が増加したため、雪上グリップ性能は向上しているものの、従来例比で10には満たなかった。
 以上、本発明を実施の形態及び実施例を用いて説明したが、本発明の技術的範囲は前記実施の形態及び実施例に記載の範囲には限定されない。前記実施の形態に、多様な変更または改良を加えることが可能であることが当業者にも明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。
 例えば、前記実施の形態では、センター部からショルダー部にいくに従って、ラグ溝傾斜角度θLGが小さくなる傾斜ラグ溝13について説明したが、0°≦|θFP-θLG|≦60°であり、かつ、|θFP-S-θLG-S|<|θFP-C-θLG-C|,|θFP-2-θLG-2|なる条件を持たしていれば、ラグ溝傾斜角度θLGが一定、すなわち、傾斜ラグ溝13は直線状であってもよい。
 また、前記実施の形態では、センター部のラグ溝傾斜角度θLG-Cの最大値と最小値との差を、ショルダー部のラグ溝傾斜角度θLG-Sの最大値と最小値との差よりも小さくし、ショルダー部のラグ溝傾斜角度θLG-Sの最大値と最小値との差を2nd部のラグ溝傾斜角度θLG-2の最大値と最小値との差よりも小さくしたが、センター部のラグ溝傾斜角度の平均値に対するショルダー部のラグ溝傾斜角度の平均値の比を、2nd部のラグ溝傾斜角度の平均値に対するショルダー部のラグ溝傾斜角度の平均値の比よりも小さくし、2nd部のラグ溝傾斜角度の平均値に対するショルダー部のラグ溝傾斜角度の平均値の比を、センター部のラグ溝傾斜角度の平均値に対する2nd部のラグ溝傾斜角度の平均値の比よりも小さくしても、センター部では傾斜を大きくし、2nd部からショルダー部に向かうにしたがって傾斜を小さくできるので、高い雪上グリップ性能を確保しつつ、排水性能を確実に向上させることができる。
 また、前記実施の形態では、リブ溝12を1本とするとともに、wc/W≦0.2としたが、リブ溝12を省略しても良い。また、細溝14についても、本発明の必須事項ではないので、省略しても良い。
 また、サイプ18は、直線状のサイプに限るものではなく、折れ線状や波状のサイプであってもよい。
 10 タイヤ、11 トレッド、12 リブ溝、13 傾斜ラグ溝、
14 細溝、15 センターブロック、16 2nd部ブロック、
17 ショルダーブロック、18 サイプ、CL 赤道面。
 

Claims (7)

  1.  タイヤのトレッド表面に形成された、タイヤセンター部からトレッドの幅方向端部まで延長するタイヤ周方向及びタイヤ幅方向に対して傾斜する傾斜ラグ溝を備えたタイヤにおいて、
    前記傾斜ラグ溝のタイヤ幅方向との成す角度をラグ溝傾斜角度とし、
    前記タイヤの踏み込み側の接地形状の輪郭線の法線とタイヤ幅方向との成す角度を輪郭線傾斜角度とし、
    前記タイヤの赤道面を中心とした、幅が前記タイヤの接地幅の20%の領域をセンター部、前記センター部の幅方向外側にそれぞれ隣接する、幅が前記タイヤの接地幅の20%の領域を中間部、前記中間部の幅方向外側にそれぞれ隣接する、幅が前記タイヤの接地幅の20%の領域をショルダー部としたとき、
    前記ラグ溝傾斜角度と前記輪郭線傾斜角度との差の絶対値が、タイヤ幅方向の各位置において、0°以上60°以下の範囲にあり、
    前記センター部と前記中間部における前記差の絶対値が、前記ショルダー部における前記差の絶対値よりも大きいことを特徴とするタイヤ。
  2.  前記センター部と前記中間部における前記差の絶対値が20°以上50°以下であり、
    前記ショルダー部における前記差の絶対値が0°以上30°以下であることを特徴とする請求項1に記載のタイヤ。
  3.  前記センター部のラグ溝傾斜角度の最大値と最小値との差が前記ショルダー部のラグ溝傾斜角度の最大値と最小値との差よりも小さく、前記ショルダー部のラグ溝傾斜角度の最大値と最小値との差が前記中間部のラグ溝傾斜角度の最大値と最小値との差よりも小さいことを特徴とする請求項1に記載のタイヤ。
  4.  前記センター部のラグ溝傾斜角度の平均値に対する前記ショルダー部のラグ溝傾斜角度の平均値の比が、前記中間部のラグ溝傾斜角度の平均値に対する前記ショルダー部のラグ溝傾斜角度の平均値の比よりも小さく、前記中間部のラグ溝傾斜角度の平均値に対する前記ショルダー部のラグ溝傾斜角度の平均値の比が、前記センター部のラグ溝傾斜角度の平均値に対する前記中間部のラグ溝傾斜角度の平均値の比よりも小さいことを特徴とする請求項1に記載のタイヤ。
  5.  前記タイヤの幅方向中心に、タイヤ周方向に連続して延長するように形成されたリブ溝を更に備え、
    前記傾斜ラグ溝は、一端が前記リブ溝に連通し、他端が前記トレッドの踏面のタイヤ幅方向端部に開口していることを特徴とする請求項1に記載のタイヤ。
  6.  前記リブ溝の溝幅が前記タイヤの接地幅の20%以下であり、
    前記リブ溝の溝幅と前記傾斜ラグ溝の前記リブ溝側の溝幅とが、前記傾斜ラグ溝のタイヤ幅方向端部の溝幅よりも狭いことを特徴とする請求項5に記載のタイヤ。
  7.  前記傾斜ラグ溝により区画される陸部のタイヤ踏面側に形成されて、タイヤ幅方向に延長する複数のサイプを有し、
    前記複数のサイプは、隣り合うサイプの間隔が3.0mm以上、10mm以下であるように前記陸部に配置されていることを特徴とする請求項1~請求項6に記載のタイヤ。
     
PCT/JP2015/064875 2014-06-12 2015-05-25 タイヤ WO2015190273A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15807378.3A EP3156259B1 (en) 2014-06-12 2015-05-25 Tire
US15/317,465 US20170120684A1 (en) 2014-06-12 2015-05-25 Tire
CN201580031272.0A CN106457918B (zh) 2014-06-12 2015-05-25 轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014121025A JP6278843B2 (ja) 2014-06-12 2014-06-12 タイヤ
JP2014-121025 2014-06-12

Publications (1)

Publication Number Publication Date
WO2015190273A1 true WO2015190273A1 (ja) 2015-12-17

Family

ID=54833377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064875 WO2015190273A1 (ja) 2014-06-12 2015-05-25 タイヤ

Country Status (6)

Country Link
US (1) US20170120684A1 (ja)
EP (1) EP3156259B1 (ja)
JP (1) JP6278843B2 (ja)
CN (1) CN106457918B (ja)
TR (1) TR201901004T4 (ja)
WO (1) WO2015190273A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107757260A (zh) * 2016-08-23 2018-03-06 住友橡胶工业株式会社 轮胎

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017203225A1 (de) * 2017-02-28 2018-08-30 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
JP6365720B1 (ja) * 2017-03-30 2018-08-01 横浜ゴム株式会社 空気入りタイヤ
CN108725101B (zh) 2017-04-18 2021-12-03 住友橡胶工业株式会社 轮胎
JP6880971B2 (ja) * 2017-04-18 2021-06-02 住友ゴム工業株式会社 タイヤ
WO2019030664A1 (en) * 2017-08-07 2019-02-14 Pirelli Tyre S.P.A. TIRE FOR VEHICLE WHEELS
US20210114417A1 (en) * 2018-01-28 2021-04-22 Compagnie Generale Des Etablissements Michelin Pneumatic Tire
JP7074561B2 (ja) * 2018-05-17 2022-05-24 Toyo Tire株式会社 空気入りタイヤ
FR3099085B1 (fr) * 2019-07-26 2021-06-25 Michelin & Cie Pneumatique comportant une bande de roulement
JP7388904B2 (ja) * 2019-12-12 2023-11-29 Toyo Tire株式会社 空気入りタイヤ
JP7362541B2 (ja) 2020-04-09 2023-10-17 株式会社東芝 供給装置
US20230191846A1 (en) * 2021-12-17 2023-06-22 The Goodyear Tire & Rubber Company Winter tire tread pattern
CN114734759A (zh) * 2022-04-25 2022-07-12 建大橡胶(中国)有限公司 一种高安全性电动车轮胎胎面花纹结构
WO2024134419A1 (en) * 2022-12-22 2024-06-27 Pirelli Tyre S.P.A. Winter car tyre

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196706U (ja) * 1986-06-05 1987-12-14
JP2010208419A (ja) * 2009-03-09 2010-09-24 Bridgestone Corp 空気入りタイヤ
JP2011084173A (ja) * 2009-10-15 2011-04-28 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2014008901A (ja) * 2012-06-29 2014-01-20 Bridgestone Corp 空気入りタイヤ
JP2014073694A (ja) * 2012-10-02 2014-04-24 Bridgestone Corp 空気入りタイヤ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202901A (ja) * 1985-03-05 1986-09-08 Bridgestone Corp 乗用車用ラジアルタイヤ
JPH01204804A (ja) * 1988-02-09 1989-08-17 Bridgestone Corp 方向性トレッドを備えた四輪自動車用空気入りタイヤ
JP2824672B2 (ja) * 1989-08-25 1998-11-11 横浜ゴム株式会社 空気入りタイヤ
JP2800943B2 (ja) * 1989-10-02 1998-09-21 住友ゴム工業 株式会社 空気入りタイヤ
US5198047A (en) * 1990-11-14 1993-03-30 The Goodyear Tire & Rubber Company Winter type tire tread
KR100307903B1 (ko) * 1996-03-18 2002-04-24 가이자끼 요이찌로 공기타이어,공기타이어의제조방법,고무조성물,및가황고무조성물
DE19708613A1 (de) * 1997-03-03 1998-09-10 Sp Reifenwerke Gmbh Fahrzeugreifen
DE19851594A1 (de) * 1998-11-09 2000-05-18 Dunlop Gmbh Profilgestaltungsprinzip
JP5012357B2 (ja) * 2007-09-20 2012-08-29 横浜ゴム株式会社 空気入りタイヤ
JP4653832B2 (ja) * 2008-10-30 2011-03-16 住友ゴム工業株式会社 空気入りタイヤ
JP2011251614A (ja) * 2010-06-01 2011-12-15 Bridgestone Corp 空気入りタイヤ
JP5316591B2 (ja) * 2011-06-08 2013-10-16 横浜ゴム株式会社 空気入りタイヤ
DE102011055915A1 (de) * 2011-12-01 2013-06-06 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
JP5944734B2 (ja) * 2012-04-27 2016-07-05 株式会社ブリヂストン タイヤ
JP6438768B2 (ja) * 2012-11-30 2018-12-19 株式会社ブリヂストン 空気入りタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196706U (ja) * 1986-06-05 1987-12-14
JP2010208419A (ja) * 2009-03-09 2010-09-24 Bridgestone Corp 空気入りタイヤ
JP2011084173A (ja) * 2009-10-15 2011-04-28 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2014008901A (ja) * 2012-06-29 2014-01-20 Bridgestone Corp 空気入りタイヤ
JP2014073694A (ja) * 2012-10-02 2014-04-24 Bridgestone Corp 空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156259A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107757260A (zh) * 2016-08-23 2018-03-06 住友橡胶工业株式会社 轮胎
CN107757260B (zh) * 2016-08-23 2021-04-02 住友橡胶工业株式会社 轮胎

Also Published As

Publication number Publication date
JP6278843B2 (ja) 2018-02-14
EP3156259A4 (en) 2017-06-21
CN106457918B (zh) 2018-10-26
CN106457918A (zh) 2017-02-22
US20170120684A1 (en) 2017-05-04
TR201901004T4 (tr) 2019-02-21
JP2016000578A (ja) 2016-01-07
EP3156259B1 (en) 2018-10-31
EP3156259A1 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6278843B2 (ja) タイヤ
JP5102711B2 (ja) 空気入りタイヤ
JP5971280B2 (ja) 空気入りタイヤ
US8474496B2 (en) Pneumatic tire with tread having cutaway portions formed in center rib
JP4397956B1 (ja) 空気入りタイヤ
JP6438768B2 (ja) 空気入りタイヤ
WO2014084320A1 (ja) 空気入りタイヤ
EP2762333A1 (en) Pneumatic tire
JP4378414B1 (ja) 空気入りタイヤ
JP6558297B2 (ja) 空気入りタイヤ
KR20110020176A (ko) 공기 타이어
WO2012133334A1 (ja) 空気入りタイヤ
JP6139843B2 (ja) 空気入りタイヤ
US20130312887A1 (en) Pneumatic tire
US20170232799A1 (en) Pneumatic Tire
JP7123734B2 (ja) 空気入りタイヤ
JP5862837B2 (ja) オールシーズンタイヤ
JP4753342B2 (ja) 空気入りラジアルタイヤ
JP5104046B2 (ja) 空気入りタイヤ
JP2005349970A (ja) 空気入りタイヤ
JP5353975B2 (ja) 空気入りタイヤ
JP6001259B2 (ja) 空気入りタイヤ
JP2017036010A (ja) 空気入りタイヤ
JP7420541B2 (ja) 空気入りタイヤ
JP7178254B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807378

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015807378

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015807378

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15317465

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE