WO2015186223A1 - バースト信号受信回路 - Google Patents

バースト信号受信回路 Download PDF

Info

Publication number
WO2015186223A1
WO2015186223A1 PCT/JP2014/064985 JP2014064985W WO2015186223A1 WO 2015186223 A1 WO2015186223 A1 WO 2015186223A1 JP 2014064985 W JP2014064985 W JP 2014064985W WO 2015186223 A1 WO2015186223 A1 WO 2015186223A1
Authority
WO
WIPO (PCT)
Prior art keywords
average value
value detection
differential
burst signal
detection circuit
Prior art date
Application number
PCT/JP2014/064985
Other languages
English (en)
French (fr)
Inventor
聡 吉間
雅樹 野田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480078176.7A priority Critical patent/CN106233644B/zh
Priority to US15/124,520 priority patent/US9628194B2/en
Priority to JP2016513564A priority patent/JP5951160B2/ja
Priority to PCT/JP2014/064985 priority patent/WO2015186223A1/ja
Publication of WO2015186223A1 publication Critical patent/WO2015186223A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/4508Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/4508Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
    • H03F3/45085Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45484Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with bipolar transistors as the active amplifying circuit
    • H03F3/45596Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with bipolar transistors as the active amplifying circuit by offset reduction
    • H03F3/45609Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with bipolar transistors as the active amplifying circuit by offset reduction by using a feedforward circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0807Details of the phase-locked loop concerning mainly a recovery circuit for the reference signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6933Offset control of the differential preamplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/695Arrangements for optimizing the decision element in the receiver, e.g. by using automatic threshold control

Definitions

  • the present invention relates to a burst signal receiving circuit.
  • a one-to-many optical communication system to which time division multiplexing is applied, in an upstream signal from one or a plurality of slave station devices to a master station device, packets from each slave station device are burst signals that are spaced apart from each other. It becomes.
  • a photo detector Photo Detector: PD
  • Transimpedance amplifier Transimpedance
  • the signal detection circuit in the conventional burst signal receiving circuit uses DC coupling to connect to the TIA in order to avoid the occurrence of a bit error at the head of the burst received signal due to the AC transient response (for example, Patent Document 1 below)
  • DC coupling to connect to the TIA in order to avoid the occurrence of a bit error at the head of the burst received signal due to the AC transient response
  • processing such as filling a non-signal section with an idle signal is performed so that an AC transient response does not occur (for example, Non-Patent Document 1 below).
  • the single-phase output of the TIA output circuit is branched into two, one is directly input to the LIA, the other is input to the average value detection circuit, and a differential signal is generated from the average value detection circuit. Average voltage is obtained.
  • the output voltage of the average value detection circuit reaches almost the average value of the differential signal, since the differential signal cannot be reproduced in the LIA corresponding to the burst mode located in the subsequent stage, data loss occurs at the head of the burst signal. Will occur.
  • Patent Document 1 in order to solve this problem, a high-speed time constant average value detection circuit that operates at a high speed but has a weak continuous sign strength, and a low-speed time constant that operates at a low speed but has a strong continuous sign resistance.
  • the circuit configuration is such that the data loss amount at the head of the burst signal is minimized.
  • Non-Patent Document 1 in order to avoid DC voltage drift in a non-signal section, a signal having a high speed and a low frequency cut-off frequency (for example, PRBS (Pseudo Random Binary Sequence) 7) in the non-signal section. Signal) is extrapolated.
  • PRBS Physical Random Binary Sequence
  • the DC voltage after AC coupling is always the same as when a burst signal is received, so even if AC coupling is performed with a capacitor having a large capacity (for example, 0.1 uF), DC voltage drift does not occur, and the burst signal It is supposed that the preamble length at the head can be shortened.
  • between input / output circuits when the connection between the TIA and the LIA or between the LIA and the CDR circuit (hereinafter referred to as “between input / output circuits”) is DC coupled, the voltage level must be matched between the input / output circuits. Circuits that handle digital signals after the CDR circuit tend to decrease the power supply voltage in conjunction with recent advances in CMOS miniaturization technology, while the power supply voltage of the receiver circuit up to the LIA has a high speed, high gain, and low noise. Since it is required, it has stopped lowering, and there is a mismatch in the power supply voltage between circuits. Therefore, in recent trends, a situation where DC coupling is physically difficult has occurred.
  • the single-phase output of the TIA output circuit is branched into two, one is directly input to the LIA, and the other is input to the average value detection circuit, from which the differential signal generation is generated. It is characterized by obtaining an average voltage.
  • the assumed signal speed is about 1.25 Gbps, and for high-speed signals of 10 Gbps or more, the impedance between the input and output circuits. Since the resistance to matching and noise is reduced, there is a problem that it is difficult to use for high-speed signals.
  • Non-Patent Document 1 processing for filling a no-signal section with an idle signal is performed in order to perform AC coupling between the LIA and the CDR circuit, but in order to perform this processing, before AC coupling, idle processing is performed. It is necessary to perform processing for combining the signal and the main signal.
  • the burst signal receiving circuit up to the LIA is mounted in the transceiver housing, but after the CDR circuit, the LSI is integrated with the media access control (MAC) processing unit.
  • MAC media access control
  • the interface with the transceiver is also standardized. Therefore, there arises a problem that the transceiver has to receive an uncommon idle signal from the outside and match it with the main signal.
  • the present invention has been made in view of the above, and eliminates data loss at the head of a burst signal or makes it extremely small even when input-output circuits cannot be DC-coupled and AC coupling is required.
  • An object of the present invention is to provide a burst signal receiving circuit capable of performing the above.
  • the present invention provides a burst signal receiving circuit that receives a differential signal of a burst signal input via a preamplifier, and the differential signal is received by a capacitor.
  • a differential amplifier that inputs the differential input signal to the differential amplifier, an average value detection circuit that detects an average value of the differential input signal to the differential amplifier, and a DC of the differential input signal based on an output signal of the average value detection circuit
  • a differential offset cancellation circuit that operates to cancel the voltage level difference, and the average value detection speed of the average value detection circuit is configured to be switched depending on whether or not a burst signal is received, and the burst signal It is characterized in that it is switched to the high speed side at the head portion of the, and is switched to the low speed side other than the head portion.
  • FIG. 1 is a diagram illustrating a configuration example of a burst signal receiver including a burst signal receiving circuit according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the burst signal receiving circuit according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of the average value detection circuit according to the first embodiment.
  • FIG. 4 is a diagram showing an outline of a main waveform for explaining the operation of the burst signal receiving circuit according to the first embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of the average value detection circuit according to the second embodiment.
  • FIG. 6 is a diagram illustrating a configuration example of an average value detection circuit according to the third embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a burst signal receiver including a burst signal receiving circuit according to the first embodiment.
  • the burst signal receiving circuit 3 converts the current signal flowing through the PD 1 into a voltage signal by the preamplifier 2 (TIA is illustrated in FIG. 1), and is included in the voltage signal.
  • TIA is illustrated in FIG. 1
  • This is a circuit that detects the transmitted signal component and transmits it as an output signal to the subsequent circuit.
  • FIG. 2 is a diagram illustrating a configuration example of the burst signal receiving circuit according to the first embodiment.
  • the burst signal receiving circuit 3 inputs a differential input signal from the differential signal input terminals 15a and 15b via capacitors 11a and 11b that perform AC coupling.
  • Amplifier 4 positive phase input average value detection circuit 8a and negative phase input average value detection circuit 8b, positive phase input average value detection circuit 8a and negative phase input for detecting the average value of differential input signals
  • a differential offset cancel circuit 5 for canceling the DC voltage level difference of the differential input signal based on each output signal of the average value detection circuit 8b.
  • the differential amplifier 4 includes input termination resistors 21 and 22, first-stage differential pair transistors 31 and 32, first-stage differential pair load resistors 41 and 42, and a first-stage differential pair current source 45.
  • the differential offset cancel circuit 5 includes an offset cancel differential pair 61 and 62 and an offset cancel differential pair current source 55.
  • first stage is attached to the head of the differential amplifier 4 for convenience.
  • the term “for offset cancellation” is attached to the head.
  • the first-stage differential pair load resistors 41 and 42 are shown only in the differential amplifier 4 in FIG. 2, but can also be provided in the differential offset cancel circuit 5. However, as shown in FIG.
  • the collector terminals of the first-stage differential pair transistor 31 and the offset canceling differential pair 61 and the collector terminals of the first-stage differential pair transistor 32 and the offset canceling differential pair 62 are connected to each other so that a differential signal output terminal 16a and 16b, and the outputs of the differential signal output terminals 16a and 16b are output signals of the burst signal receiving circuit 3.
  • the normal phase input average value detection circuit 8a and the negative phase input average value detection circuit 8b have the same circuit configuration, and FIG. 3 shows only the circuit configuration. Henceforth, a common circuit part is named the average value detection circuit 8 generically.
  • the average value detection circuit 8 includes average value detection circuit resistors 81 and 82, an average value detection circuit capacitor 83, an average value detection speed switching MOS switch 84, and an average value detection circuit operational amplifier 85.
  • the In FIG. 3, the average value detection circuit 8 is configured as a primary LPF using an operational amplifier. However, the average value detection circuit 8 may be configured as an LPF having a second order or higher order, and does not use an operational amplifier. You may comprise as.
  • the differential amplifier 4 has a linear amplifier configuration in which an output signal can be obtained even when the DC levels of the differential input signals do not match. Therefore, a configuration in which a resistor is inserted between the emitters of the first-stage differential pair transistors 31 and 32 may be employed. Further, although an NPN transistor is shown in FIG. 2, it may be an NMOS transistor. In this embodiment, since high-speed signals such as 10 Gbps are exchanged, the output terminal is terminated with the same resistance as the input termination resistors 21 and 22 as in the CML (Current Mode Logic) level before AC coupling. It is assumed that the buffer is connected.
  • CML Current Mode Logic
  • FIG. 4 is a diagram showing a main part waveform in the burst signal receiving circuit according to the first embodiment, and shows a waveform when a signal is inputted after a long no-signal section.
  • the circuit configuration is such that the time constant is switched using the average value detection circuit 8 and the differential offset cancel circuit 5. Specifically, it is as follows.
  • a LOS (Loss of Signal) signal is input to the average value detection circuit 8 from the outside through the reset input terminal 18.
  • the LOS signal is input to an average value detection speed switching MOS switch 84 provided in the average value detection circuit 8, and the time constant is switched by turning on the MOS switch 84. That is, the MOS switch 84 that operates according to the LOS signal indicating whether or not the burst signal is received operates as the switching circuit 9 for switching the average value detection speed of the average value detection circuit 8.
  • the resistance value is reduced by short-circuiting the MOS switch 84. That is, in the no-signal section, the time constant of the average value detection circuit 8 is set to a high speed and is rapidly converged from several bits to several tens of bits at the head of the burst signal (see FIG. 3).
  • the resistance value is increased by opening the MOS switch 84. That is, after the burst signal can be identified, the time constant of the average value detection circuit 8 is lowered to reduce the speed. At that time, the speed is set to a speed that can follow the AC response time constant determined by the AC coupling and the input / output termination resistance (for example, 10 times the speed). With such a setting, it is possible to have sufficient resistance even for signals that require continuous resistance of the same sign, such as a CID (Consequential Identification Digit) signal, while following the AC transient response.
  • a CID Consequential Identification Digit
  • the LOS signal can respond within about 100 ns or less within the LIA, so that the signal can be used on the CDR circuit side.
  • the presence / absence of a signal can be identified by reading the current value of PD and the amplitude value inside TIA. Can be used.
  • the output voltage of the average value detection circuit 8 generated by switching the time constant is input to the differential pair of the differential offset cancel circuit 5, that is, the bases of the offset cancel differential pairs 61 and 62, respectively.
  • the offset level of the differential output voltage of the differential amplifier 4 can be adjusted. For example, when the positive phase of the DC voltage level of the differential input signal (for example, the voltage on the differential signal input terminal 15a side) is high, the current value on the positive phase output side of the differential amplifier 4 (first-stage differential versus load resistance 41). The amount of drop voltage at the first-stage differential pair load resistor 41 is increased by increasing the value of the current flowing in the differential signal output terminals 16a and 16b.
  • the average value detection circuit detects the average value of the differential input signal to the differential amplifier input through the capacitor
  • the dynamic offset cancel circuit operates to cancel the DC voltage level difference of the differential input signal based on the output signal of the average value detection circuit, and determines the average value detection speed of the average value detection circuit depending on whether or not the burst signal is received, Since the first part of the burst signal is switched to the high speed side and the other part is switched to the low speed side, the preamble at the head of the burst signal can be used even when DC coupling is not possible between the input and output circuits and AC coupling is required. It is possible to reproduce the signal on the receiving side in time and eliminate the data loss at the beginning of the burst signal or make it extremely small That.
  • the burst signal receiving circuit according to the first embodiment it is possible to create a new circuit in the previous circuit in the case of AC coupling (for example, in the case of AC coupling between the LIA and the CDR circuit). Since a high-speed burst reception can be realized by adding a new circuit only to the subsequent circuit side that requires AC coupling, there is an effect that even if the previous circuit is already completed, the previous circuit is not affected. .
  • Embodiment 2 FIG.
  • the average value detection circuit resistor 81 is arranged in parallel with the MOS switch 84 for switching the average value detection speed, and the time constant is changed by changing the resistance value.
  • the time constant is changed (switched) by changing the capacitance value of the capacitor instead of changing the resistance value.
  • the configuration of the burst signal receiving circuit is the same as or equivalent to that of the first embodiment, except for the configuration of the positive phase input average value detection circuit 8a and the negative phase input average value detection circuit 8b.
  • the same reference numerals are given to the parts, and duplicate descriptions are omitted.
  • FIG. 5 is a diagram illustrating a configuration example of the average value detection circuit according to the second embodiment.
  • the average value detection circuit 8 according to the second embodiment includes an average value detection circuit resistor 82, average value detection circuit capacitors 83 and 86, an average value detection speed switching MOS switch 87, and an average value detection circuit operational amplifier 85. Is done.
  • This average value detection circuit 8 is applied as a positive phase input average value detection circuit 8a and a negative phase input average value detection circuit 8b shown in FIG.
  • the average value detection circuit 8 is in the form of a primary LPF using an operational amplifier, but may be an LPF having a second order or higher order, and does not use an operational amplifier. Form may be sufficient.
  • the operation in the second embodiment is almost the same as that in the first embodiment, but there are also differences. Specifically, in the second embodiment, the combined capacity is increased by short-circuiting the MOS switch 87 in the non-signal period, while the capacity is decreased by opening the MOS switch 87 in the signal reception period. The point is to change the time constant. With this configuration, it is possible to further reduce the amount of bit loss at the beginning of the packet, and to maintain the same code consecutive strength in the data area of the burst signal.
  • Embodiment 3 In the first and second embodiments described above, a resistor or capacitor is connected in parallel with the MOS switch 84 for switching the average value detection speed as shown in FIG. 3 or FIG.
  • the time constant was changed by changing it.
  • the third embodiment an embodiment in which the time constant is changed (switched) by changing both the resistance value and the capacitance value will be described.
  • the configuration of the burst signal receiving circuit is the same as or equivalent to that of the first embodiment (or the second embodiment) except for the configurations of the positive phase input average value detection circuit 8a and the negative phase input average value detection circuit 8b. Yes, the same or equivalent components are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 6 is a diagram illustrating a configuration example of an average value detection circuit according to the third embodiment.
  • the average value detection circuit 8 according to the third embodiment includes average value detection circuit resistors 81 and 82, average value detection circuit capacitors 83 and 86, average value detection speed switching MOS switches 84 and 87, and an average value detection circuit operational amplifier 85. It is configured with.
  • This average value detection circuit 8 is applied as a positive phase input average value detection circuit 8a and a negative phase input average value detection circuit 8b shown in FIG.
  • the average value detection circuit 8 is in the form of a primary LPF using an operational amplifier, but it may be an LPF having a second order or higher order, and does not use an operational amplifier. Form may be sufficient.
  • the operation in the third embodiment is almost the same as that in the first or second embodiment, but there are also differences. More specifically, in the third embodiment, in the no-signal section, the resistance value is reduced by short-circuiting the MOS switch 84, and the combined capacitance is increased by short-circuiting the MOS switch 87. On the other hand, after the burst signal can be identified, the MOS switch 84 is opened to increase the resistance value, and the MOS switch 87 is opened to reduce the capacitance and change the time constant. With this configuration, the difference between the high-speed time constant and the low-speed time constant can be made larger than in the first and second embodiments, and a more optimal time constant can be set.
  • Embodiments 1 to 3 above are examples of the configuration of the present invention, and can be combined with other known techniques, and can be combined within the scope of the present invention. Needless to say, the configuration may be modified by omitting the unit.
  • the present invention provides a burst signal receiving circuit capable of eliminating or extremely reducing data loss at the head of a burst signal even when the input / output circuits cannot be DC coupled and AC coupling is required. Useful as.
  • 1 PD photo detector
  • 2 preamplifier 3 burst signal receiving circuit
  • 4 differential amplifier 5 differential offset cancel circuit
  • 8 average value detection circuit 8a positive phase input average value detection circuit
  • 8b for reverse phase input Average value detection circuit 9 switching circuit, 11a, 11b capacitor, 15a, 15b differential signal input end, 16a, 16b differential signal output end, 18 reset input end, 21, 22 input termination resistance, 31, 32 first stage differential Transistor, 41, 42 First stage differential pair load resistance, 45 First stage differential pair current source, 55 Offset cancellation differential pair current source, 61, 62 Offset cancellation differential pair, 81, 82 Average value detection circuit resistance, 83,86 Average value detection circuit capacitor, 84,87 MOS switch, 85 Average value detection circuit ope Flop.

Abstract

 前置増幅器を介して入力されるバースト信号の差動信号を受信するバースト信号受信回路であって、差動信号をコンデンサ11a,11bを介して入力する差動増幅器4、差動増幅器4への差動入力信号の平均値を検出する平均値検出回路8(8a,8b)および、平均値検出回路8(8a,8b)の出力信号に基づいて差動入力信号のDC電圧レベル差をキャンセルするように動作する差動オフセットキャンセル回路5が設けられる。平均値検出回路8(8a,8b)の平均値検出速度は、バースト信号受信の有無によって切り替えられるように構成され、バースト信号の先頭部分では高速側に切り替えられ、先頭部分以外ではより低速側に切り替えられる。

Description

バースト信号受信回路
 本発明は、バースト信号受信回路に関する。
 時分割多重方式を適用した1対多の光通信システムでは、1または複数の子局装置から親局装置への上り方向の信号において、各子局装置からのパケットは、間隔が空いたバースト信号となる。このようなバースト信号を受信する親局装置の構成としては、光信号を電気信号へと変換するフォトディテクタ(Photo Detector:PD)、PD出力の電流信号を電圧信号へと変換するトランスインピーダンスアンプ(Transimpedance Amplifier:TIA)、TIA出力をデジタル的に処理可能な振幅まで増幅するリミッティングアンプ(LImiting Amplifier:LIA)、LIA出力をシステムクロックに同期した信号へと変換するクロックデータリカバリ(Clock and Data Recovery:CDR)回路から構成されるのが一般的である。
 ここで、従来のバースト信号受信回路における信号検出回路は、AC過渡応答によるバースト受信信号の先頭でのビット誤り発生をさけるため、TIAとの接続をDC結合にするか(例えば、下記特許文献1)、AC結合にした場合でもAC過渡応答が発生しないように無信号区間をアイドル信号で埋めるなどの処理を行っていた(例えば、下記非特許文献1)。
 特許文献1では、TIA出力回路の単相出力を2分岐し、一方をそのままLIAへと入力し、もう一方を平均値検出回路へと入力し、この平均値検出回路から差動信号生成用の平均値電圧を得ている。ここで、平均値検出回路の出力電圧が差動信号のほぼ平均値に達する前は、その後段に位置するバーストモード対応のLIAにおいて、当該差動信号を再生できないため、バースト信号先頭でデータ欠損が生ずることとなる。
 そこで、特許文献1では、この課題を解決するために高速で動作するが同符号連続耐力の弱い高速時定数の平均値検出回路と、低速で動作するものの同符号連続耐力の強い低速時定数の平均値検出回路とを外部リセット信号によって切り替えることでバースト信号先頭におけるデータ欠損量を最小とする回路構成としている。
 また、非特許文献1では、無信号区間でのDC電圧ドリフトを回避するために、無信号区間に受信信号と同速度でかつ低周波遮断周波数の高い信号(例えばPRBS(Pseudo Random Binary Sequence)7信号)を外挿している。これにより、AC結合後のDC電圧は、常にバースト信号受信時と同じになるため、容量の大きなコンデンサ(例えば0.1uF)でAC結合を行ったとしてもDC電圧ドリフトは発生せず、バースト信号先頭でのプリアンブル長を短くすることが可能となるとされている。
特開2008-312216号公報
T. Myouraku, S. Takahashi, and A. Tajima, "AC-coupled Reset-less 10 Gbps Burst-mode 3R Receiver Using an Internal Scrambling Scheme," in Proc. OFC/NFOEC 2011, NTuD3, Los Angeles, USA, March 2011.
 まず、TIAとLIAとの間もしくはLIAとCDR回路との間(以下「入出力回路間」という)の接続をDC結合にした場合、電圧レベルを入出力回路間で合わせる必要があるが、特にCDR回路以降のデジタル信号を取り扱う回路は、近年のCMOS微細化技術の進展も相まって電源電圧が低下する傾向にある一方で、LIAまでの受信回路の電源電圧は、高速かつ高利得かつ低雑音が求められるために下げ止まっており、回路間の電源電圧にミスマッチが生じている。よって、近年のトレンドでは、DC結合が物理的に困難な状況が発生している。
 特許文献1では、上述の通り、TIA出力回路の単相出力を2分岐し、一方をそのままLIAへと入力し、もう一方を平均値検出回路へと入力し、そこから差動信号生成用の平均値電圧を得ることを特徴としている。
 しかしながら、特許文献1は、その明細書の記載からも明らかなように、想定している信号速度が1.25Gbps程度であり、10Gbps以上の高速な信号に対しては、入出力回路間のインピーダンス整合や雑音に対する耐力が低下するため、高速信号には用いることが困難であるという問題が発生する。
 また、非特許文献1では、LIAとCDR回路との間をAC結合するために無信号区間をアイドル信号で埋める処理を行っているが、この処理を行うためには、AC結合前において、アイドル信号と主信号を合わせる処理を行う必要がある。しかしながら、バースト信号受信回路では、LIAまでをトランシーバの筐体内に実装するのに対し、CDR回路以後は、メディア・アクセス・コントロール(Media Access Control:MAC)処理部と合わせて一体化したLSIとすることが一般的であり、トランシーバとのインタフェースも規格化されるのが一般的である。よって、トランシーバは外部から一般的でないアイドル信号を受信して主信号と合わせなければならないという問題が発生する。
 本発明は、上記に鑑みてなされたものであって、入出力回路間をDC結合できずAC結合が必要な場合においても、バースト信号先頭でのデータ欠損をなくすか、もしくは、極めて小さくすることができるバースト信号受信回路を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、前置増幅器を介して入力されるバースト信号の差動信号を受信するバースト信号受信回路であって、前記差動信号をコンデンサを介して入力する差動増幅器と、前記差動増幅器への差動入力信号の平均値を検出する平均値検出回路と、前記平均値検出回路の出力信号に基づいて前記差動入力信号のDC電圧レベル差をキャンセルするように動作する差動オフセットキャンセル回路と、を備え、前記平均値検出回路の平均値検出速度は、バースト信号受信の有無によって切り替えられるように構成されており、前記バースト信号の先頭部分では高速側に切り替えられ、当該先頭部分以外ではより低速側に切り替えられることを特徴とする。
 この発明によれば、入出力回路間をDC結合できずAC結合が必要な場合においても、バースト信号先頭でのデータ欠損をなくすか、もしくは、極めて小さくすることができる、という効果を奏する。
図1は、実施の形態1に係るバースト信号受信回路を含むバースト信号受信器の一構成例を示す図である。 図2は、実施の形態1に係るバースト信号受信回路の一構成例を示す図である。 図3は、実施の形態1に係る平均値検出回路の一構成例を示す図である。 図4は、実施の形態1に係るバースト信号受信回路の動作を説明するための要部波形の概略を示す図である。 図5は、実施の形態2に係る平均値検出回路の一構成例を示す図である。 図6は、実施の形態3に係る平均値検出回路の一構成例を示す図である。
 以下に添付図面を参照し、本発明の実施の形態に係るバースト信号受信回路について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係るバースト信号受信回路を含むバースト信号受信器の一構成例を示す図である。実施の形態1に係るバースト信号受信回路3は、図1に示すように、PD1に流れる電流信号を前置増幅器2(図1ではTIAを例示)が電圧信号に変換し、その電圧信号に含まれる信号成分を検出して後段の回路に出力信号として伝達する回路である。
 図2は、実施の形態1に係るバースト信号受信回路の一構成例を示す図である。実施の形態1に係るバースト信号受信回路3は、図2に示すように、差動信号入力端15a,15bからの差動入力信号をAC結合を行うコンデンサ11a,11bを介して入力する差動増幅器4と、差動入力信号の平均値を検出するための正相入力用平均値検出回路8aおよび逆相入力用平均値検出回路8b、正相入力用平均値検出回路8aおよび逆相入力用平均値検出回路8bの各出力信号に基づいて差動入力信号のDC電圧レベル差をキャンセルするための差動オフセットキャンセル回路5とを備えて構成される。
 差動増幅器4は、入力終端抵抗21および22、初段差動対トランジスタ31および32、初段差動対負荷抵抗41および42ならびに、初段差動対電流源45を備えて構成される。差動オフセットキャンセル回路5は、オフセットキャンセル用差動対61および62ならびに、オフセットキャンセル用差動対電流源55を備えて構成される。これら差動増幅器4および差動オフセットキャンセル回路5において、それぞれの差動対トランジスタおよび差動対電流源を識別するため、便宜上、差動増幅器4においては「初段」という用語を頭部に付し、差動オフセットキャンセル回路5においては「オフセットキャンセル用」という用語を頭部に付している。なお、初段差動対負荷抵抗41および42について、図2では、差動増幅器4のみに示されているが、差動オフセットキャンセル回路5にも設けることは可能である。ただし、図2のように、差動増幅器4と差動オフセットキャンセル回路5とで兼用するように構成すれば、部品点数を削減できるので効果的である。初段差動対トランジスタ31とオフセットキャンセル用差動対61の各コレクタ端および、初段差動対トランジスタ32とオフセットキャンセル用差動対62の各コレクタ端は、それぞれが接続されて差動信号出力端16a,16bとして構成され、差動信号出力端16a,16bの出力がバースト信号受信回路3の出力信号となる。
 図2において、正相入力用平均値検出回路8aおよび逆相入力用平均値検出回路8bは、同一の回路構成としており、図3には、その回路構成のみを示している。これ以後、共通の回路部を平均値検出回路8と総称する。
 図3において、平均値検出回路8は、平均値検出回路抵抗81および82、平均値検出回路コンデンサ83、平均値検出速度切り替え用のMOSスイッチ84ならびに、平均値検出回路オペアンプ85を備えて構成される。なお、図3では、平均値検出回路8をオペアンプを用いた1次のLPFの形態として構成しているが、2次以上の次数を持つLPFで構成してもよく、またオペアンプを用いない形態として構成してもよい。
 図2に戻り、差動増幅器4では、差動入力信号のDCレベルが一致しない場合においても出力信号が得られるような線形増幅器の構成となっている。そのため、初段差動対トランジスタ31および32のエミッタ間に抵抗を挿入する構成であってもよい。さらに、図2では、NPNトランジスタとしているが、NMOSトランジスタであってもよい。なお、本実施の形態では、10Gbpsのような高速信号をやり取りするため、AC結合前にはCML(Current Mode Logic)レベルのように入力終端抵抗21および22と同じ抵抗で出力端が終端されたバッファが接続されていることを前提としている。
 図4は、実施の形態1に係るバースト信号受信回路における要部波形を示す図であり、無信号区間が長く続いた後に信号が入力された場合の波形を示している。
 図4に示すように、信号入力の直前において、AC結合前では、差動信号間にDC電圧ドリフトが発生し、正相出力側の電圧が通常のDC電圧レベルと比較して振幅電圧分だけ低く、一方、逆相出力側の電圧が電源電圧となっている。
 ここで、出力側の電源電圧をVcc1、信号振幅電圧をVsignalとした場合、AC結合の影響により、正相出力電圧は(Vcc1-2×Vsignal)、逆相出力電圧はVcc1となる。一方、AC結合を超えたバースト信号受信回路の入力側では、AC結合されているために、正相逆相両入力ともに電源電圧となる。すなわち、入力側の電源電圧をVcc2とした場合、正相逆相両入力ともにVcc2となる。
 この状態から図4に示すように、例えば2.5Gbpsの高速信号が入力された場合、AC結合前では、正相側で(Vcc1-2×Vsignal)からVsignalだけ振幅が発生し、逆相側でVcc1から-Vsignalだけ振幅が発生し始める。この結果、1ビット目は正相逆相両信号が交わることが無いが、その後、入出力の抵抗およびAC結合容量で決まる時定数に基づいて正相逆相各信号のDCレベルがドリフトするため、最終的には(Vcc1-Vsignal/2)の電圧レベルを中心に信号が出力されることとなる。図4では、入出力共に50Ωの終端抵抗を用いており、0.1μFの容量を持つコンデンサでAC結合を行ったため、収束するのに30μs以上必要となっている。
 一方、AC結合を超えた後では、正相側でVcc2からVsignalだけ振幅が発生し、逆相側でVcc2から-Vsignalだけ振幅が発生し始める。この結果、1ビット目は正相逆相両信号が交わることが無くなり、その後のCDR入力段における差動対増幅器で信号が再生できないためビット欠損となる。しかしながら、AC結合後にも正相逆相両信号のDC電圧レベルが一致すればCDR入力段における差動対増幅器以後で信号を再生させることが可能となるため、正相入力用平均値検出回路8aおよび逆相入力用平均値検出回路8bにて正相逆相間のDC電圧レベルがずれた場合にキャンセル可能な構成としている。
 ここで、本発明では、ビット欠損数をより小さくするため、平均値検出回路8および差動オフセットキャンセル回路5を用いて時定数を切り替える回路構成としている。具体的には以下の通りである。
 図3に示すように、平均値検出回路8には、外部からリセット入力端18を通して、LOS(Loss of Signal)信号が入力される。LOS信号は、平均値検出回路8に設けられた平均値検出速度切り替え用のMOSスイッチ84に入力され、このMOSスイッチ84が導通することで、時定数が切り替えられる。すなわち、バースト信号受信の有無を表すLOS信号に従って動作するMOSスイッチ84は、平均値検出回路8の平均値検出速度を切り替えるための切り替え回路9として動作する。
 ここで、無信号区間においては、MOSスイッチ84を短絡することで抵抗値を小さくする。すなわち、無信号区間では、平均値検出回路8の時定数を高速としておき、バースト信号の先頭で数bitから数10bitで急速に収束させる(図3参照)。
 一方、LOS信号によりバースト信号を識別できた後は、MOSスイッチ84を開放することで抵抗値を大きくする。すなわち、バースト信号を識別できた後は、平均値検出回路8の時定数を下げて低速とする。その際、AC結合と入出力終端抵抗より決定されるAC応答時定数に追従可能な速度(例えばその10倍の速度)に設定する。このような設定にすれば、AC過渡応答に追従しつつ、CID(Consecutive Identical Digit)信号のような同符号連続耐力が求められる信号に対しても十分耐力を持つことが可能となる。
 なお、LOS信号は、例えばLIAとCDR回路との間をAC結合する場合、LIA内部において高々数100ns程度以下で応答が可能であるため、CDR回路側でその信号を用いることができる。また、TIAとLIAとの間をAC結合する場合、PDの電流値や、TIA内部の振幅値を読み取ることで信号の有無を識別することができるため、そのように生成したLOS信号をLIAにおいて用いることができる。
 このように、時定数を切り替えることで生成した平均値検出回路8の出力電圧を、差動オフセットキャンセル回路5の差動対、すなわちオフセットキャンセル用差動対61および62のそれぞれのベースに入力することで、差動増幅器4の差動出力電圧のオフセットレベルを調整することができる。例えば、差動入力信号のDC電圧レベルの正相(例えば差動信号入力端15a側の電圧)が高い場合は、差動増幅器4の正相出力側の電流値(初段差動対負荷抵抗41に流れる電流値)を増加させることで初段差動対負荷抵抗41でのドロップ電圧量を増加させ、差動信号出力端16a,16b間におけるオフセットを解消することが可能となる。
 以上説明したように、実施の形態1に係るバースト信号受信回路によれば、平均値検出回路は、コンデンサを介して入力される差動増幅器への差動入力信号の平均値を検出し、差動オフセットキャンセル回路は、平均値検出回路の出力信号に基づいて差動入力信号のDC電圧レベル差をキャンセルするように動作し、バースト信号受信の有無によって平均値検出回路の平均値検出速度を、バースト信号の先頭部分では高速側に切り替え、先頭部分以外ではより低速側に切り替えるように構成したので、入出力回路間をDC結合できずAC結合が必要な場合においても、バースト信号先頭でのプリアンブル時間内に信号を受信側で再生することができ、バースト信号先頭でのデータ欠損を消滅させ、もしくは、極めて小さくすることが可能となる。
 また、実施の形態1に係るバースト信号受信回路を用いれば、AC結合する場合の前段回路(例えばLIAとCDR回路間をAC結合する場合にはLIA側)に新規回路を作成しなくても、AC結合を要求する後段回路側にのみ新規回路を付け加えることで高速なバースト受信を実現できるため、すでに前段回路が完成している場合でも、当該前段回路に影響を与えることがないという効果がある。
実施の形態2.
 上述した実施の形態1では、図3に示したように平均値検出速度切り替え用のMOSスイッチ84と並列に、平均値検出回路抵抗81を配置し、抵抗値を変更することで時定数を変更していた。一方、実施の形態2では、抵抗値の変更ではなく、コンデンサの容量値を変更することで時定数の変更(切り替え)を行う実施の形態について説明する。なお、バースト信号受信回路の構成は、正相入力用平均値検出回路8aおよび逆相入力用平均値検出回路8bの構成を除き、実施の形態1と同一または同等であり、同一または同等の構成部には同一の符号を付して重複する説明は省略する。
 図5は、実施の形態2に係る平均値検出回路の一構成例を示す図である。実施の形態2に係る平均値検出回路8は、平均値検出回路抵抗82、平均値検出回路コンデンサ83,86、平均値検出速度切り替え用のMOSスイッチ87、平均値検出回路オペアンプ85を備えて構成される。この平均値検出回路8は、図2に示す正相入力用平均値検出回路8aおよび逆相入力用平均値検出回路8bとして適用される。
 なお、図5の構成では、平均値検出回路8は、オペアンプを用いた1次のLPFの形態となっているが、2次以上の次数を持つLPFであってもよく、またオペアンプを用いない形態であってもよい。
 実施の形態2における動作は、殆どが実施の形態1と同一であるが、異なる点もある。具体的に説明すると、実施の形態2では、無信号区間においてはMOSスイッチ87を短絡することで合成容量を大きくし、一方、信号受信区間においてはMOSスイッチ87を開放することで容量を小さくして時定数を変更する点である。この構成により、パケット先頭におけるビット欠損量をより小さくすることができるとともに、バースト信号のデータ領域における同符号連続耐力を維持することが可能となる。
実施の形態3.
 上述した実施の形態1,2では、図3または図5に示したように平均値検出速度切り替え用のMOSスイッチ84と並列に、抵抗またはコンデンサを接続し、抵抗値または容量値の何れかを変更することで時定数を変更していた。一方、実施の形態3では、抵抗値および容量値の双方を変更することで時定数の変更(切り替え)を行う実施の形態について説明する。なお、バースト信号受信回路の構成は、正相入力用平均値検出回路8aおよび逆相入力用平均値検出回路8bの構成を除き、実施の形態1(もしくは実施の形態2)と同一または同等であり、同一または同等の構成部には同一の符号を付して重複する説明は省略する。
 図6は、実施の形態3に係る平均値検出回路の一構成例を示す図である。実施の形態3に係る平均値検出回路8は、平均値検出回路抵抗81,82、平均値検出回路コンデンサ83,86、平均値検出速度切り替え用のMOSスイッチ84,87、平均値検出回路オペアンプ85を備えて構成される。この平均値検出回路8は、図2に示す正相入力用平均値検出回路8aおよび逆相入力用平均値検出回路8bとして適用される。
 なお、図6の構成では、平均値検出回路8は、オペアンプを用いた1次のLPFの形態となっているが、2次以上の次数を持つLPFであってもよく、またオペアンプを用いない形態であってもよい。
 実施の形態3における動作は、殆どが実施の形態1もしくは2と同一であるが、異なる点もある。具体的に説明すると、実施の形態3では、無信号区間においては、MOSスイッチ84を短絡することで抵抗値を小さくし、且つ、MOSスイッチ87を短絡することで合成容量を大きくする。一方、バースト信号を識別できた後は、MOSスイッチ84を開放することで抵抗値を大きくし、且つ、MOSスイッチ87を開放することで容量を小さくして時定数を変更する点である。この構成により、実施の形態1,2と比べて、高速時定数と低速時定数との差分を大きくとることができ、より最適な時定数を設定することが可能となる。
 なお、以上の実施の形態1~3に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。
 以上のように、本発明は、入出力回路間をDC結合できずAC結合が必要な場合においても、バースト信号先頭でのデータ欠損をなくすか、もしくは、極めて小さくすることができるバースト信号受信回路として有用である。
 1 PD(フォトディテクタ)、2 前置増幅器、3 バースト信号受信回路、4 差動増幅器、5 差動オフセットキャンセル回路、8 平均値検出回路、8a 正相入力用平均値検出回路、8b 逆相入力用平均値検出回路、9 切り替え回路、11a,11b コンデンサ、15a,15b 差動信号入力端、16a,16b 差動信号出力端、18 リセット入力端、21,22 入力終端抵抗、31,32 初段差動対トランジスタ、41,42 初段差動対負荷抵抗、45 初段差動対電流源、55 オフセットキャンセル用差動対電流源、61,62 オフセットキャンセル用差動対、81,82 平均値検出回路抵抗、83,86 平均値検出回路コンデンサ、84,87 MOSスイッチ、85 平均値検出回路オペアンプ。

Claims (6)

  1.  前置増幅器を介して入力されるバースト信号の差動信号を受信するバースト信号受信回路であって、
     前記差動信号をコンデンサを介して入力する差動増幅器と、
     前記差動増幅器への差動入力信号の平均値を検出する平均値検出回路と、
     前記平均値検出回路の出力信号に基づいて前記差動入力信号のDC電圧レベル差をキャンセルするように動作する差動オフセットキャンセル回路と、
     を備え、
     前記平均値検出回路の平均値検出速度は、バースト信号受信の有無によって切り替えられるように構成されており、
     前記バースト信号の先頭部分では高速側に切り替えられ、当該先頭部分以外ではより低速側に切り替えられる
     ことを特徴とするバースト信号受信回路。
  2.  前記差動オフセットキャンセル回路は、初段差動差動器と負荷抵抗を同一とする差動増幅器であることを特徴とする請求項1に記載のバースト信号受信回路。
  3.  前記平均値検出回路は、抵抗、コンデンサおよびオペアンプを用いたLPFであることを特徴とする請求項1または2に記載のバースト信号受信回路。
  4.  前記平均値検出回路の平均値検出速度は、抵抗値の切り替えによって変更されることを特徴とする請求項1から3の何れか1項に記載のバースト信号受信回路。
  5.  前記平均値検出回路の平均値検出速度は、容量値の切り替えによって変更されることを特徴とする請求項1から3の何れか1項に記載のバースト信号受信回路。
  6.  前記平均値検出回路の平均値検出速度は、抵抗値および容量値の双方の切り替えによって変更されることを特徴とする請求項1から3の何れか1項に記載のバースト信号受信回路。
PCT/JP2014/064985 2014-06-05 2014-06-05 バースト信号受信回路 WO2015186223A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480078176.7A CN106233644B (zh) 2014-06-05 2014-06-05 突发信号接收电路
US15/124,520 US9628194B2 (en) 2014-06-05 2014-06-05 Burst-signal reception circuit
JP2016513564A JP5951160B2 (ja) 2014-06-05 2014-06-05 バースト信号受信回路
PCT/JP2014/064985 WO2015186223A1 (ja) 2014-06-05 2014-06-05 バースト信号受信回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064985 WO2015186223A1 (ja) 2014-06-05 2014-06-05 バースト信号受信回路

Publications (1)

Publication Number Publication Date
WO2015186223A1 true WO2015186223A1 (ja) 2015-12-10

Family

ID=54766319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064985 WO2015186223A1 (ja) 2014-06-05 2014-06-05 バースト信号受信回路

Country Status (4)

Country Link
US (1) US9628194B2 (ja)
JP (1) JP5951160B2 (ja)
CN (1) CN106233644B (ja)
WO (1) WO2015186223A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198249A1 (ja) * 2017-04-26 2018-11-01 三菱電機株式会社 振幅制限増幅器、光受信器、光終端装置、および光通信システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725985B2 (en) * 2018-05-03 2023-08-15 Verity Instruments, Inc. Signal conversion system for optical sensors
JP7125820B1 (ja) 2022-07-01 2022-08-25 株式会社シェルタージャパン シェルター扉の断熱構造

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036470A (ja) * 1999-07-15 2001-02-09 Sharp Corp バースト伝送対応光受信器
JP2009278426A (ja) * 2008-05-15 2009-11-26 Nippon Telegr & Teleph Corp <Ntt> 振幅制限増幅回路
JP2010278753A (ja) * 2009-05-28 2010-12-09 Mitsubishi Electric Corp 差動増幅器および光受信器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625347B2 (ja) * 1993-04-20 1997-07-02 日本電気株式会社 ディジタル受信器の自動オフセット制御回路
JP3209909B2 (ja) * 1996-01-30 2001-09-17 富士通株式会社 バースト光信号受信機
US6826372B1 (en) * 2000-08-30 2004-11-30 Sycamore Networks, Inc. Methods and apparatus for dynamic threshold setting for an optically amplified receiver
JP2005184658A (ja) 2003-12-22 2005-07-07 Mitsubishi Electric Corp 光受信回路
JP4729454B2 (ja) * 2006-08-04 2011-07-20 富士通株式会社 光受信回路及びその識別レベル制御方法
KR101009806B1 (ko) * 2006-12-21 2011-01-19 미쓰비시덴키 가부시키가이샤 광 수신기
US7920798B2 (en) 2007-06-18 2011-04-05 Micrel, Inc. PON burst mode receiver with fast decision threshold setting
JP5138990B2 (ja) * 2007-06-28 2013-02-06 ラピスセミコンダクタ株式会社 前置増幅器および光受信装置
JP5283443B2 (ja) 2007-10-10 2013-09-04 株式会社エヌ・ティ・ティ・ドコモ 複合通信システム、禁止信号送信装置、無線基地局及び方法
US20100272448A1 (en) * 2007-11-19 2010-10-28 Fujikura Ltd. Optical burst signal receiving device
JP5176505B2 (ja) * 2007-12-03 2013-04-03 富士通オプティカルコンポーネンツ株式会社 光受信装置,光局側装置および光ネットワークシステム
CN102257749B (zh) * 2009-01-19 2014-04-30 株式会社日立制作所 跨阻抗放大器及pon系统
JP5496514B2 (ja) 2009-01-19 2014-05-21 株式会社Nttドコモ 無線通信システム
JP2010178256A (ja) * 2009-02-02 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> 光受信器の増幅器
JP5396637B2 (ja) 2009-05-29 2014-01-22 独立行政法人情報通信研究機構 地上/衛星共用携帯電話システム
JP4856771B2 (ja) * 2010-02-15 2012-01-18 日本電信電話株式会社 光信号断検出回路および光受信器
JP5494285B2 (ja) * 2010-06-24 2014-05-14 住友電気工業株式会社 電子回路
JP2012085229A (ja) * 2010-10-14 2012-04-26 Nec Corp Ponシステムとその局側装置及び光受信器並びに光受信方法
CN103229435B (zh) * 2011-04-05 2015-05-06 三菱电机株式会社 光接收器
WO2012144038A1 (ja) * 2011-04-20 2012-10-26 富士通オプティカルコンポーネンツ株式会社 検出装置、光受信装置、検出方法および光受信方法
JP5906818B2 (ja) * 2012-03-02 2016-04-20 住友電気工業株式会社 差動増幅回路および光受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036470A (ja) * 1999-07-15 2001-02-09 Sharp Corp バースト伝送対応光受信器
JP2009278426A (ja) * 2008-05-15 2009-11-26 Nippon Telegr & Teleph Corp <Ntt> 振幅制限増幅回路
JP2010278753A (ja) * 2009-05-28 2010-12-09 Mitsubishi Electric Corp 差動増幅器および光受信器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198249A1 (ja) * 2017-04-26 2018-11-01 三菱電機株式会社 振幅制限増幅器、光受信器、光終端装置、および光通信システム

Also Published As

Publication number Publication date
JP5951160B2 (ja) 2016-07-13
US20170019184A1 (en) 2017-01-19
US9628194B2 (en) 2017-04-18
JPWO2015186223A1 (ja) 2017-04-20
CN106233644A (zh) 2016-12-14
CN106233644B (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
WO2021232861A1 (zh) 差分信号放大电路、数字隔离器和接收器
JP5238085B2 (ja) 差動ドライバー回路の高速コモンモードフィードバック制御装置
US8502584B1 (en) Capacitive isolation receiver circuitry
US8451032B2 (en) Capacitive isolator with schmitt trigger
US20080260049A1 (en) Serializer and deserializer
US10700785B2 (en) Optical transceiver
JPH0823354A (ja) 信号入出力装置
KR20160005431A (ko) 버퍼 증폭기 및 버퍼 증폭기를 포함하는 트랜스 임피던스 증폭기
WO2015060066A1 (ja) トランスインピーダンスアンプ回路
US20130002347A1 (en) Coupling system for data receivers
JP5951160B2 (ja) バースト信号受信回路
JP2008029004A (ja) チャンネルの相互シンボル干渉を減らし、信号利得損失を補償する受信端
JP2007036329A (ja) 増幅回路およびトランスインピーダンスアンプ
JP2016063345A (ja) 受信回路
JP2011244093A (ja) 光受信回路
JP2009038556A (ja) リミッタアンプ回路
TWI517710B (zh) 可同時處理差模信號及共模信號的接收電路
US20170034607A1 (en) Burst-mode receiver
JP3577541B2 (ja) 受信回路
US7212071B2 (en) Techniques to lower drive impedance and provide reduced DC offset
JP2024061131A (ja) 光受信器、光通信システムおよび車載光通信ネットワークシステム
JP3881293B2 (ja) 瞬時応答増幅回路
JP2012156660A (ja) 受信回路並びにそれを備えた半導体装置及び情報処理システム
JP2004120468A (ja) インプットイコライザ
JP2005136649A (ja) 瞬時応答振幅制限増幅回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513564

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15124520

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894157

Country of ref document: EP

Kind code of ref document: A1