WO2015174323A1 - タイヤの転がり抵抗予測方法およびタイヤの転がり抵抗予測装置 - Google Patents

タイヤの転がり抵抗予測方法およびタイヤの転がり抵抗予測装置 Download PDF

Info

Publication number
WO2015174323A1
WO2015174323A1 PCT/JP2015/063224 JP2015063224W WO2015174323A1 WO 2015174323 A1 WO2015174323 A1 WO 2015174323A1 JP 2015063224 W JP2015063224 W JP 2015063224W WO 2015174323 A1 WO2015174323 A1 WO 2015174323A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
load
drum
rolling resistance
load drum
Prior art date
Application number
PCT/JP2015/063224
Other languages
English (en)
French (fr)
Inventor
岡田 徹
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020167032487A priority Critical patent/KR101912027B1/ko
Priority to CN201580024572.6A priority patent/CN106461509B/zh
Priority to US15/309,999 priority patent/US10598569B2/en
Priority to EP15793407.6A priority patent/EP3144660B1/en
Publication of WO2015174323A1 publication Critical patent/WO2015174323A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/022Tyres the tyre co-operating with rotatable rolls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/021Tyre supporting devices, e.g. chucks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the present invention relates to a tire rolling resistance prediction method and a tire rolling resistance prediction apparatus that can select a tire having an abnormal rolling resistance from among tested tires when testing a plurality of product tires. is there.
  • the rolling resistance of a tire is a tangential force generated between the tire and the ground when the tire rolls on the ground.
  • the rolling resistance of a tire is measured as a tangential force generated between a test tire and a mating surface (for example, the surface of a load drum) on which the tire rotates in contact. That is, when a predetermined radial force (load load Fz) is applied between the tire and the mating surface, a rolling resistance Fx corresponding to the tire load load Fz is generated, and the load load Fz and the rolling resistance Fx are generated. Is measured.
  • Rolling resistance measurement methods are defined by the Japanese Industrial Standard JIS D 4234 (passenger car, truck and bus tires—rolling resistance test method, 2009) as a method using a drum-type tire running tester.
  • JIS D 4234 stipulates the “force method” to measure or convert the rolling resistance Fx with the tire spindle to obtain the reaction force, and the “torque method” to measure the torque input value at that time by applying rotation to the tire with the load drum.
  • Four measurement methods are defined: a “coiling method” that determines the deceleration of the load drum and tire assembly, and a “power method” that rotates the tire with the load drum and determines its power input.
  • Patent Document 1 As such a rolling resistance tester, for example, the one shown in Patent Document 1 is known.
  • a tire In the rolling resistance measuring device of Patent Document 1, a tire is pressed and contacted with an outer peripheral surface of a load drum (traveling drum) formed in a cylindrical shape.
  • the tire is supported by a spindle via a bearing, and the force and torque (moment) applied in the x, y, and z axis directions are measured by a multiple force detector of the spindle.
  • the apparatus of Patent Document 1 after correcting for interference between these component forces, the relationship between the load load Fz in the axial direction of the tire and the rolling resistance Fx is measured.
  • Patent Document 2 predicts rolling resistance of a tire based on measurement results of viscoelastic characteristics of various rubber members constituting the tire and numerical analysis based on a tire FEM (Finite Element Method) model. A method is presented. The rolling resistance of the tire is calculated from the total energy loss calculated from the product-sum operation of the deformation strain amount of each rubber member and the damping characteristic of each rubber member during tire rotation.
  • FEM Finite Element Method
  • the measurement method of JIS D 4234 stipulates that a running-in operation of 30 minutes or more is performed in order to stabilize the tire temperature prior to measurement.
  • a running-in operation of 30 minutes or more is performed in order to stabilize the tire temperature prior to measurement.
  • a tire uniformity test Japanese Industrial Standard JIS D4233
  • a tire uniformity test device which is a dedicated machine for tire uniformity testing, measures and evaluates one tire in about 30 seconds, and 100% inspection is possible even for mass-produced manufactured tires. It is possible. Therefore, it is conceivable to measure all the rolling resistances with a number of TUM test apparatuses installed in the factory.
  • the load drum is pressed against the tire of the spindle shaft assembled with the rim with a predetermined load, and the distance between the spindle shaft and the load drum is fixed, and then the tire is rotated at about 60 rpm to generate the tire. Fluctuating force (force variation) is measured.
  • the TUM test apparatus measures a load fluctuation RFV (Radial Force Variation) along the tire load direction and a load fluctuation LFV (Lateral Force Variation) along the tire width direction. Yes.
  • a load measuring device (load cell) used for measuring the load fluctuation RFV and the load fluctuation LFV is attached to the load drum side so that the load drum can freely rotate.
  • the load fluctuation RFV and the load fluctuation LFV are measured by a load measuring device provided on the load drum side by driving a spindle shaft provided with a tire.
  • the load in the direction of the rolling resistance Fx of the tire and the driving torque of the tire or drum are included in a general TUM test apparatus. Since the sensor for measuring is not provided, the rolling resistance Fx cannot be measured. Further, in the TUM test apparatus, the rotational resistance of the tire shaft itself and the drum shaft itself is larger than that of a dedicated machine for measuring rolling resistance. Such a large rotational resistance becomes a large error factor when trying to measure the rolling resistance Fx of the tire with a TUM test apparatus. Therefore, it is necessary to modify the structure to reduce this rotational resistance as much as possible. This will greatly increase the cost of the machine.
  • the rolling resistance can be reduced without adding the sensor described above. It is also possible to measure. However, due to the influence of the rotational resistance of the rotating shaft of the tire and load drum and the fact that the test must be performed at a low-speed rotation of 60 rpm, it is difficult to measure the rolling resistance with a high degree of accuracy and to perform 100% inspection. .
  • Patent Document 2 does not provide a solution to such a problem.
  • the present invention has been made in view of the above-mentioned problems, and provides a tire rolling resistance prediction method and a tire rolling resistance prediction apparatus capable of selecting tires having abnormal rolling resistance in a short time. With the goal.
  • the tire rolling resistance prediction method of the present invention employs the following technical means. That is, the tire rolling resistance prediction method of the present invention includes a load measurement sensor that measures a load applied to the tire when a load drum simulating a traveling road surface is pressed against the tread surface of the tire, and a load direction.
  • a tire having a rolling resistance abnormality is selected using a rolling resistance prediction device provided with a displacement sensor that measures the position of the load drum, the load drum is moved closer to and away from the tire.
  • the load applied to the tire is varied, the phase difference between the load drum position variation and the load load variation is calculated, based on the calculated phase difference, A tire having an abnormality in the rolling resistance is selected.
  • a tire having the phase difference exceeding a predetermined threshold is determined to be a tire having an abnormality in the rolling resistance.
  • a tire having tan ⁇ exceeding a predetermined threshold is determined to be a tire having an abnormality in the rolling resistance.
  • a phase difference between a change in the position of the load drum and a load load after the inertial force of the load drum is removed is calculated, and the inertial force of the load drum is converted into the proximity / separation of the load drum. It is good to calculate from the product of the acceleration along the direction and the mass of the load drum.
  • a tire uniformity testing machine that evaluates uniformity in the circumferential direction of the tire is used.
  • the load drum when the load drum is alternately moved in the approaching / separating direction, air is contained in the tire.
  • the load drum and the tire are rotated.
  • the excitation period along the approaching / separating direction of the load drum is Td
  • the rotation period of the tire is Tt.
  • the measurement time for measuring the load load is N ⁇ Tt (N is an integer of 2 or more), and Td is not an integer, and N ⁇ Tt / Td is an integer value. It is good to set so that it becomes.
  • the tire having a known rolling resistance is set as a reference tire, and the position of the load drum and the load load with respect to the reference tire are respectively obtained for a plurality of temperature conditions, and the plurality of temperature conditions obtained are determined.
  • a temperature correction function for the phase difference may be created using the position of the load drum and the load load, and tires with abnormal rolling resistance may be selected using the created temperature correction function.
  • the tire rolling resistance prediction apparatus of the present invention has tire selecting means that can realize the above-described rolling resistance prediction method.
  • the tire rolling resistance prediction device includes a load measuring sensor that measures a load applied to the tire when a load drum simulating a traveling road surface is pressure-bonded to the tread surface of the tire, and the load along the load direction.
  • a displacement sensor for measuring the position of the drum
  • drum moving means for changing the load applied to the tire by alternately moving the load drum in the approaching and separating directions with respect to the tire, and the position of the load drum
  • Tire selection means for calculating a phase difference between the fluctuation of the load and the fluctuation of the load, and selecting a tire having an abnormal rolling resistance based on the calculated phase difference.
  • tires with abnormal rolling resistance can be selected in a short time.
  • FIG. 1 and 2 schematically show a rolling resistance prediction apparatus 1 in which the tire selection method of the present embodiment is implemented.
  • the rolling resistance prediction device 1 measures the tire uniformity of a product tire, that is, a tire uniformity test that evaluates the uniformity in the circumferential direction of the tire as a product inspection by measuring RFV or the like, which is a fluctuation in force along the radial direction of the tire. Machine.
  • the rolling resistance predicting apparatus 1 of the present invention can be used for tire testing machines other than the tire uniformity testing machine as long as it includes a load measuring sensor 2 and a displacement sensor 3 described later.
  • the axis (rotating shaft 7) is in the vertical direction (the depth direction in FIG. 1).
  • a cylindrical load drum 4 disposed so as to face the direction), and a tire shaft 5 attached so that the axis is directed in the vertical direction.
  • the axis of the load drum 4 and the axis of the tire shaft 5 are parallel to each other.
  • the outer peripheral surface of the load drum 4 simulating a traveling road surface is pressure-bonded to a tread surface of a tire attached to the tire shaft 5.
  • the rolling resistance prediction apparatus 1 includes a load measurement sensor 2 that measures a load applied to the tire, and a displacement sensor 3 that measures the position of the load drum 4 along the load direction.
  • the load drum 4 is a cylindrical member whose axis is directed in the vertical direction, and the outer peripheral surface of the load drum 4 is a simulated road surface 6 for tire testing. Specifically, the load drum 4 is formed in a short and wide cylindrical shape whose vertical dimension is shorter than the radial dimension.
  • a rotation shaft 7 is provided that supports the load drum 4 so as to be rotatable about an axis that faces in the vertical direction. Further, the upper end and the lower end of the rotating shaft 7 are supported by the frame member 8.
  • the frame member 8 is provided so as to protrude in the horizontal direction (left and right direction in FIGS. 1 and 2), and is configured to support the above-described rotating shaft 7 so as to be bridged vertically.
  • the frame member 8 (support frame) has a structure that supports the rotating shaft 7 via the load measurement sensor 2. Therefore, when the load drum 4 is pressure-bonded to the tread surface of the tire, the load is transmitted to the load measurement sensor 2 of the rotating shaft 7, and the load load applied to the tire is measured by the load measurement sensor 2.
  • Drum moving means capable of moving the load drum 4 in the horizontal direction with respect to the foundation is provided below the frame member 8 described above.
  • the drum moving means moves the load drum 4 along the horizontal direction so that the load drum 4 can be moved closer to and away from the tire shaft 5 fixed to the foundation.
  • the drum moving means is provided with a displacement sensor for measuring the position (pressing position) of the load drum 4 with respect to the tire.
  • the load drum 4 is brought close to the tire of the tire shaft 5 that rotates at a predetermined rotational speed.
  • the load drum 4 is stopped, and the load in the pressing direction applied to the tire is measured using the load measuring sensor 2 over one rotation of the tire.
  • the measurement of the load is performed in each of a state where the tire is rotated forward and a state where the tire is reversed. In this way, it is possible to measure how the force applied to the tire fluctuates during one rotation of the tire, and it is possible to evaluate the tire uniformity.
  • tire rolling resistance which is one of the measurement items for measuring the properties and performance of the tire, can be measured even with the configuration of the tire uniformity machine described above, more information on the tire can be obtained.
  • tire uniformity machines cannot normally measure “rolling resistance of tires”, and even rolling resistance testers that measure rolling resistance of tires are required for measurement according to the procedures of JIS standards (Japanese Industrial Standards). The time will become longer, and it will become strict to deal with all inspections.
  • the rolling resistance predicting apparatus 1 of the present embodiment uses other characteristic values that have a correlation with the “tire rolling resistance”, and even in the tire uniformity machine, the “tire rolling resistance” is abnormal. There are tires that can be sorted out.
  • the rolling resistance predicting apparatus 1 of the present embodiment uses a parameter “tan ⁇ representing the damping characteristic of the tire rubber”. For example, as a factor of tire rolling resistance, resistance due to energy loss (hysteresis loss) due to repeated distortion of tire rubber deformed by a load due to rotation is greatly affected. This hysteresis loss can be evaluated by tan ⁇ .
  • the tan ⁇ “ ⁇ ” corresponds to a phase difference between strain and stress generated when a periodic external force is applied to the tire rubber. As the value of tan ⁇ increases, the energy loss due to the deflection of the tire increases, and as a result, the rolling resistance also increases.
  • this “tan ⁇ (phase difference)” is measured by alternately moving (vibrating) the load drum 4 described above in the front-rear direction. That is, when the load drum 4 is alternately moved in the front-rear direction, a change in the load applied to the tire is observed slightly ahead of the change in the position of the load drum 4. Therefore, if the change in the position of the load drum 4 is compared with the change in the load, and the phase shift (phase difference) between the two is calculated, the tan of the phase shift corresponds to the above-described “tan ⁇ ”.
  • tires having an abnormality in “rolling resistance” are selected based on whether or not the value of tan ⁇ calculated in this way exceeds a predetermined threshold value. Such a tire sorting method is actually performed using the tire sorting means 9 provided in the rolling resistance prediction apparatus 1.
  • the tire selection means 9 provided in the rolling resistance prediction apparatus 1 of the present embodiment and the tire selection method performed by the tire selection means 9 will be described.
  • the tire sorting means 9 is configured by a computer such as a personal computer provided in the rolling resistance prediction device 1 separately from the load drum 4 and the tire shaft 5.
  • the tire sorting means 9 is inputted with the load load measured by the load measurement sensor 2 and the position of the load drum 4 measured by the displacement sensor 3 as signals.
  • the tire sorting means 9 sorts tires by processing the input load load and load drum 4 position signal in the following procedure.
  • the load drum 4 is first moved in the front-rear direction (the direction toward and away from the tire by an arrow in FIG. 2). It is necessary to move alternately in the direction. Specifically, the movement of the load drum 4 along the front-rear direction starts from the state in which the load drum 4 is pressed against the tire so that the load load measured by the load measurement sensor 2 becomes a predetermined load load. 4 is retracted in the counter-pressing direction to reduce the load load, and the load drum 4 is rolled in the pressing direction before the load drum 4 leaves the tire.
  • the load drum 4 is moved forward until the load load measured by the load measuring sensor 2 reaches a predetermined load load, the load drum 4 is moved again, and the load drum 4 is moved backward in the counter-pressing direction. Such forward and backward movement of the load drum 4 is repeated, and the load drum 4 is alternately moved in the front-rear direction.
  • the forward position and the backward position of the load drum 4 are stored in advance in the tire selecting means 9 in the same manner as the pressing position at a predetermined load obtained in the tire uniformity test described above. For example, if the position of the load drum 4 when the load drum 4 is moved forward most and the position of the load drum 4 when the load drum 4 is moved back most are stored in advance, the distance between these two positions is stored. Thus, it is possible to control to move the load drum 4.
  • the timing for switching between forward and backward movement of the load drum 4 is set to a frequency of 2 to 5 Hz in this embodiment.
  • the frequency for switching between forward and reverse changes depending on the type of tire, rolling resistance coefficient, etc.
  • the driving conditions that match the test tire are obtained in advance through preliminary experiments. It is preferable to keep it.
  • the aforementioned forward and backward movement of the load drum 4 is repeated over a period of about 1 to 2 seconds.
  • the load load measured by the load measurement sensor 2 and the position of the load drum 4 measured by the displacement sensor 3 are performed. Are output to the tire sorting means 9.
  • the movement of the load drum 4 along the front-rear direction may be performed before the tire uniformity test in the forward direction and the reverse direction is performed on the test tire, but preferably after the tire uniformity test. Preferably it is implemented. After the tire uniformity test in the forward direction and the reverse direction, the tire rubber characteristics are stable, so it is possible to perform the test under the same conditions for all tires and improve the tire sorting accuracy. This is because it becomes possible.
  • the load drum 4 is alternately moved in the front-rear direction, and the load applied to the tire is varied in magnitude. Then, the variation of the position of the load drum 4 is measured by the displacement sensor 3 described above, and the variation of the load load is measured by the load measurement sensor 2.
  • the variation with time of the position of the load drum 4 measured in this way is plotted as “drum displacement” and the variation in load load is plotted as “load load” on the same graph, as shown in FIG. A change curve is obtained.
  • the change curve of the “load load” is recorded by being advanced by the phase difference ⁇ by the damping characteristic of the tire rubber with respect to the change curve of the “drum displacement” in the pressing direction applied to the tire. Therefore, the tire selecting means 9 described above calculates the phase difference ⁇ along the horizontal direction between the change curve of “drum displacement” and the change curve of “load load”. Based on the phase difference ⁇ calculated in this way, “tan ⁇ ” is calculated, and tires with abnormal rolling resistance are selected based on whether the calculated “tan ⁇ ” exceeds a predetermined threshold. Specifically, first, the phase difference ⁇ is measured with respect to a reference tire having no abnormality in properties or characteristics. Next, the phase difference ⁇ of the test tire is measured.
  • the tire selecting means 9 determines that the tested tire is a tire having an abnormal rolling resistance, and excludes the corresponding tire as necessary.
  • the tested tire is It is determined that the tire has normal rolling resistance and is treated as a tire that satisfies the product standards.
  • a predetermined threshold value in other words, the calculated tan ⁇ is a value within a predetermined range as compared with the tan ⁇ of the reference tire
  • tires with abnormal rolling resistance can be selected with high accuracy in a short time, and the rolling resistance of all manufactured tires can be inspected in the same manner as the tire uniformity.
  • the tire sorting method of the present invention can also be carried out by the above-described method.
  • the operations shown in the following (1) to (4) are combined. It is desirable to do.
  • phase difference ⁇ is calculated from the load load measured by the load measuring sensor 2 after the inertial force of the load drum 4 is removed and the variation in the position of the load drum 4.
  • the inertial force generated in the load drum 4 is also included in the load load measurement value measured by the load measuring sensor 2.
  • the inertial force is measured by the load measuring sensor 2 as a value added to the reaction force of the tire itself.
  • This inertial force is proportional to the acceleration of the load drum 4 and acts in the opposite direction with the same phase as the fluctuation of the position of the load drum 4. For this reason, the inertial force acts to reduce the phase difference ⁇ calculated from the measured value, and the accuracy of the phase difference ⁇ necessary for tire selection is lowered.
  • the inertial force of the load drum 4 is obtained from the product of the acceleration along the longitudinal direction of the load drum 4 and the mass of the load drum 4.
  • the acceleration along the front-rear direction of the load drum 4 can be obtained by second-order differentiation of the position of the load drum 4 measured by the displacement sensor 3 with respect to time.
  • the calculated load force of the load drum 4 is subtracted from the load load measured by the load measuring sensor 2 to eliminate the influence of the inertial force (accurate load load) Is calculated.
  • pressure control means that keeps the air pressure in the tire constant is generally employed.
  • This pressure control means quickly supplies air into the tire or keeps the air pressure inside the tire constant when the air pressure or volume inside the tire suddenly changes due to being pressed against the road surface. The air can be exhausted from.
  • the tire deforms due to the displacement of the load drum 4 in order to keep the air pressure in the tire constant. Air enters and leaves the tire by the amount.
  • Such air flow in and out by the pressure control means affects the reaction force of the tire and causes an energy loss to change the phase of the measurement load. That is, the adjustment of the air pressure by the pressure control means acts in the direction of reducing the measurement accuracy of tan ⁇ .
  • the pressure control unit when the load drum 4 is alternately moved in the front-rear direction, the pressure control unit does not perform pressure control so that the air is contained in the tire. I have to. Specifically, when the load drum 4 is moved along the front-rear direction, a switching valve capable of shutting off the air flow in the air pipe between the pressure control valve constituting the pressure control means and the tire. Is provided in advance.
  • the switching valve is switched to the side that restricts the flow of air, and when the measurement of the phase difference ⁇ is completed, the switching valve is allowed to flow of air. You can switch to the side. As a result, it is possible to prevent the pressure control means from adversely affecting the load load measurement accuracy of the load measurement sensor 2.
  • the air does not enter and exit, so the influence of attenuation due to the compression / expansion of the air is reduced, and only the energy loss (tan ⁇ ) due to tire deformation is almost pure. Can be calculated.
  • the determination is made by relative comparison with the reference tire. Therefore, as long as measurement is performed on the test tire under the same conditions as the reference tire, the compression / expansion of air does not affect the evaluation result of the tire.
  • the load drum 4 when the load drum 4 is pressed against a non-rotating tire, the load drum 4 comes into contact with only one portion of the tire, and only a part of the tire tread is deformed a plurality of times. If the deformation is continuously generated in only one portion of the tire rubber in this way, a flat spot (a partial change in the tire shape) is generated in the tire rubber, and an accurate damping characteristic of the tire rubber cannot be obtained.
  • the load drum 4 is moved forward and backward while the tire and the load drum 4 are rotated. This prevents only one portion of the tire tread from being continuously deformed so that the damping characteristic of the tire rubber can be accurately evaluated. In this way, not only accurate damping characteristics of the tire rubber can be obtained, but also the average tan ⁇ can be calculated over the entire circumferential direction of the tire.
  • a correction equation that grasps the influence of the temperature of the measurement environment on the measurement result of the phase difference and corrects the value of tan ⁇ in advance.
  • the temperature of the measurement environment of the rolling resistance prediction apparatus 1 is changed, and the value of tan ⁇ of the reference tire is measured in advance over a wide temperature range. This pre-measurement of tan ⁇ is preferably performed even under conditions that change the season, date and time.
  • the rolling resistance measurement correction formula defined in JIS D 4234 as shown in formula (1).
  • the value of the rolling resistance is corrected using the following formula based on the case where the temperature of the measurement environment is the standard measurement temperature of 25 degrees. Since the correction formula of JIS is related to the rolling resistance, it is assumed that the rolling resistance and tan ⁇ have a proportional relationship, and the formula is established even if the rolling resistance F in the formula is replaced with tan ⁇ . It is preferable to perform correction using a correction formula in which the rolling resistance F is replaced with tan ⁇ .
  • the position of the load drum 4 is moved along the sine wave so that the generation of acceleration when the moving direction is reversed can be reduced. I was moved.
  • the position of the load drum 4 may be moved along the triangular wave so that the load drum 4 always repeats forward and backward at a constant speed.
  • the measurement is performed while maintaining the internal pressure of the tire at about 200 kPa.
  • the measurement is performed with the tire internal pressure lower than that during the tire uniformity test, for example, with the tire internal pressure lowered from 200 kPa to 100 kPa. Is preferred.
  • the measurement is performed by reducing the tire internal pressure as described above for the following reason.
  • Tire damping due to rolling resistance is represented by the viscoelastic properties (viscoelastic coefficient) of rubber, and is generally represented by equation (2) using a spring constant k representing elastic properties and tan ⁇ representing viscous properties.
  • the tire cannot support the load only by the rigidity of the rubber, but generates a tension in the rubber by the internal air pressure and supports the load by the apparent rigidity (geometric rigidity).
  • the viscoelastic characteristics of the tire are composed of the geometric rigidity of the air in the tire and the rigidity of the rubber constituting the tire, as in the model shown in FIG. 4, and these are connected in parallel. Can be considered.
  • the geometric rigidity generated by the air pressure can be shown using the spring constant ka.
  • the viscoelastic characteristics of the rubber constituting the tire can be shown using the spring constant kg and the loss coefficient tan ⁇ g of the tire rubber.
  • Equation (3) The geometrical rigidity of air has no damping due to the apparent rigidity. Further, the geometric rigidity of the air is proportional to the rubber tension generated by the air pressure inside the tire. Considering this, the viscoelastic characteristics (viscoelastic coefficient) of the entire tire can be expressed as in Equation (3).
  • Equation (3) the loss factor (tan ⁇ t) of the entire tire can be expressed as Equation (4).
  • the air pressure inside the tire is reduced, in other words, the tire internal pressure 200 kPa, which is generally used when measuring tire uniformity, is reduced to about 100 kPa, and the load drum 4 is moved back and forth while rotating the tire to reduce the tire damping characteristics (tire The loss factor tan ⁇ g of the tire rubber can be accurately measured.
  • the pressing cycle of the load drum 4 (excitation cycle of the load drum 4), the rotation cycle of the tire
  • the relationship is defined as a predetermined relationship. For example, assuming that the excitation frequency when the load drum 4 is pushed back and forth is an integer multiple of the tire rotation frequency, the tire unevenness formed by the back and forth movement of the load drum 4 as shown in FIG.
  • the tire is fixed at a specific position in the circumferential direction of the tire.
  • the rubber characteristics of the tire are not necessarily uniform in the circumferential direction (reason for performing tire uniformity measurement), for example, when the damping characteristic is measured twice for the same tire, the load drum 4 is pressed against the tire at a specific position.
  • the inventor confirmed by experiment that the phase is different between the first and second times, and that the attenuation characteristics (displacement and load phase difference) of the first and second tires may be different from each other. is doing.
  • the deformation state of the unevenness of the tire is fixed at a specific position, the deformation locus does not change no matter how many times the tire is rotated. Therefore, the accuracy is not improved even if the measurement time is extended.
  • the measurement time for measuring the load is N ⁇ Tt (N is an integer of 2 or more).
  • the vibration period Td along the front-rear direction of the load drum 4 is set so that Tt / Td is not an integer and N ⁇ Tt / Td is an integer. If this condition is satisfied, the average attenuation in the tire circumferential direction related to the rolling resistance can be measured.
  • integer value in “N ⁇ Tt / Td is an integer value” includes a mathematical meaning of “integer” and also includes a decimal number that is very close to an integer. For example, even if it is a decimal number such as “2.04” or “1.98”, when the second decimal place is rounded off, a value that is 0 after the decimal point is also included in the above “integer value”.
  • the pressing position by the load drum 4 is different in the circumferential direction of the tire between the first and second laps, and unevenness of the tire surface due to the pressing of the load drum 4 is formed at the same position in the circumferential direction. Therefore, the measurement accuracy of the attenuation characteristic can be improved.
  • the tire returns to the original state after N turns.
  • N 2
  • the tire returns to the original pressing position after two revolutions, and the same position on the outer periphery of the tire is pressed by the load drum 4.
  • N 3
  • the tire returns to the original pressing position after three laps, and the same position on the outer periphery of the tire is pressed by the load drum 4.
  • embodiment disclosed this time is an illustration and restrictive at no points.
  • matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. Instead, values that can be easily assumed by those skilled in the art are employed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Tires In General (AREA)
  • Testing Of Balance (AREA)

Abstract

 負荷ドラムをタイヤに対して近接離反方向に交互に移動させることにより、タイヤに作用する負荷荷重を変動させる。負荷ドラムの位置の変動と負荷荷重の変動との位相差を算出する。算出された位相差を元にして、転がり抵抗に異常があるタイヤを選別する。

Description

タイヤの転がり抵抗予測方法およびタイヤの転がり抵抗予測装置
 本発明は、複数の製品タイヤを試験する際に、試験されるタイヤの中から転がり抵抗に異常のあるタイヤを選び出すことができる、タイヤの転がり抵抗予測方法およびタイヤの転がり抵抗予測装置に関するものである。
 従来より、トラック、乗用自動車および他の車両用タイヤの性質および性能を測定するに当り、重要な測定項目の一つとして、タイヤの転がり抵抗がある。タイヤの転がり抵抗は、タイヤを地面上で転動させた際にタイヤと地面との間で発生する接線方向の力である。タイヤ試験機においては、試験用のタイヤと該タイヤが対接回転する相手表面(例えば、負荷ドラムの表面)との間で発生する接線方向の力として、タイヤの転がり抵抗が計測される。つまり、タイヤと相手表面との間に所定の大きさの半径方向の力(負荷荷重Fz)を与えると、タイヤの負荷荷重Fzに対応した転がり抵抗Fxが発生し、負荷荷重Fzと転がり抵抗Fxとの関係が測定される。
 こうした「転がり抵抗の計測方法」は、ドラム式のタイヤ走行試験機による方法として、日本工業規格 JIS D 4234(乗用車,トラック及びバス用タイヤ-転がり抵抗試験方法、2009年)で規定されている。JIS D 4234の規定には、タイヤスピンドルで転がり抵抗Fxを測定又は換算して反力を求める「フォース法」、負荷ドラムでタイヤに回転を与え、その時のトルク入力値を計測する「トルク法」、負荷ドラム及びタイヤのアッセンブリの減速度を求める「惰行法」、負荷ドラムでタイヤに回転を与え、そのパワー入力を求める「パワー法」の4つの計測方法が規定されている。ただ、これらの方法のいずれでタイヤの転がり抵抗を測定する場合にも、タイヤには大きな負荷荷重Fzを加える必要がある。したがって、負荷荷重Fzに比べて小さな転がり抵抗Fxを測定するためには、適切な精確さをもつ専用の試験機が必要となる。例えば、乗用車の場合を例にとれば、負荷荷重Fzが約500kgfの場合、転がり抵抗Fxの大きさは約10kgf弱となり、このような小さな転がり抵抗Fxを測定可能な専用の試験装置がすでに商品化されている。
 このような転がり抵抗の試験機には、例えば特許文献1に示すようなものが知られている。特許文献1の転がり抵抗測定装置では、円筒状に形成された負荷ドラム(走行ドラム)の外周面にタイヤを押圧接触させる。タイヤは軸受を介してスピンドルに支承され、該スピンドルの多分力検出器により、x、y、z軸方向に加わる力とトルク(モーメント)とを計測する。特許文献1の装置では、これらの分力同士の干渉に対する補正を行なった上で、タイヤの軸方向の負荷荷重Fzと、転がり抵抗Fxとの関係を計測する。
 また、特許文献2には、タイヤを構成する各種ゴム部材の粘弾性特性の計測結果と、タイヤのFEM(Finite Element Method)モデルを元にした数値解析と、により、タイヤの転がり抵抗を予測する方法が提示されている。タイヤの転がり抵抗は、タイヤ回転時における、各種ゴム部材の変形歪量とそれぞれのゴム部材の減衰特性との積和演算から算出される全エネルギ損失から算出される。
日本国特開2003-4598号公報 日本国特開2011-226991公報
 ところで、特許文献1の技術を用いて、上述したJIS D 4234に規定されるタイヤの転がり抵抗の計測方法を行うと、以下のような問題が生じる。例えば、JIS D 4234の計測方法では、計測に先だってタイヤの温度を安定させる為に30分以上の慣らし運転を行うことが規定されている。しかし、大量に生産される製造タイヤのすべてに、このような長時間に亘る慣らし運転を実施することは困難である。そのため、実際の製造現場では全数検査ではなく一部のタイヤを抜き出して所要の転がり抵抗の性能を満足しているかどうかをチェックしている。
 しかしながら、このような抜き取り試験では、転がり抵抗に異常のあるタイヤが見逃されて市場に流出する可能性があるために、タイヤの均一性を検査するタイヤユニフォミティ試験(日本工業規格 JIS D4233)などと同様に、転がり抵抗試験に関しても全数検査を行うことが望ましい。例えば、タイヤユニフォミティ試験の専用マシンであるTUM(Tire Uniformity Machine)試験装置では、1本のタイヤを30秒程度で計測・評価しており、大量に生産される製造タイヤに対しても全数検査が可能となっている。そのため、工場に多数設置されているTUM試験装置で、転がり抵抗を全数計測することが考えられる。
 TUM試験装置では、リム組みしたスピンドル軸のタイヤに、負荷ドラムを所定の荷重で押し付け、スピンドル軸と負荷ドラムの軸間距離を固定したうえで、タイヤを60rpm程度で回転させ、タイヤに発生する変動力(フォースバリエーション、Force Variation)を測定する。具体的には、TUM試験装置は、タイヤ荷重の負荷方向に沿った荷重変動RFV(Radial Force Variation)と、タイヤの幅方向に沿った荷重変動LFV(Lateral Force Variation)と、の計測を行っている。荷重変動RFVや荷重変動LFVの計測に使用される荷重計測装置(ロードセル)は、負荷ドラムが自由に回転できるように該負荷ドラム側に取り付けられる。そして、タイヤが設けられたスピンドル軸を駆動させ、負荷ドラム側に設けられた荷重計測装置によって荷重変動RFVや荷重変動LFVが計測されることが多い。
 ところが、このようなTUM試験装置を用いて前述したJIS D 4234の4つの計測方法を行う場合、一般的なTUM試験装置にはタイヤの転がり抵抗Fxの方向の荷重や、タイヤやドラムの駆動トルクを計測する為のセンサが設けられていないため、転がり抵抗Fxの計測を行うことができない。また、TUM試験装置では、転がり抵抗計測用の専用機に比べて、タイヤ軸自体やドラム軸自体の回転抵抗が大きい。このような大きな回転抵抗は、TUM試験装置にてタイヤの転がり抵抗Fxを計測しようとした場合に大きな誤差要因となる為に、この回転抵抗を極力下げた構造に改造する必要があり、タイヤ試験機の大幅なコストアップとなってしまう。
 なお、タイヤや負荷ドラムを回転させるモータパワーを計測する「パワー法」や、回転するタイヤおよび負荷ドラムの減速時間を計測する「惰行法」であれば、上述したセンサの追加無しに転がり抵抗を計測することも可能である。しかしながら、タイヤや負荷ドラムの回転軸の回転抵抗の影響や、60rpmの低速回転で試験しなくてはならないことなどから、精度の良い転がり抵抗計測や全数検査への対応は難しいのが現状である。
 当然ながら、特許文献2は、このような問題に対して解決策を与えるものではない。
 本発明は、上述の問題に鑑みてなされたものであり、短時間で転がり抵抗に異常のあるタイヤを選別することができる、タイヤの転がり抵抗予測方法およびタイヤの転がり抵抗予測装置を提供することを目的とする。
 上記課題を解決するため、本発明のタイヤの転がり抵抗予測方法は以下の技術的手段を講じている。即ち、本発明のタイヤの転がり抵抗予測方法は、走行路面を模擬した負荷ドラムをタイヤのトレッド面に圧着させた際に、前記タイヤへ加わる負荷荷重を計測する荷重計測センサと、荷重方向に沿った前記負荷ドラムの位置を計測する変位センサと、を備えた転がり抵抗予測装置を用いて、転がり抵抗に異常のあるタイヤを選別するに際しては、前記負荷ドラムを前記タイヤに対して近接離反方向に交互に移動させることにより、前記タイヤに作用する負荷荷重を変動させ、前記負荷ドラムの位置の変動と前記負荷荷重の変動との位相差を算出し、算出された前記位相差を元にして、前記転がり抵抗に異常があるタイヤを選別する。
 好ましくは、前記位相差が所定の閾値を超えたタイヤを、前記転がり抵抗に異常があるタイヤであると判定するとよい。
 好ましくは、前記位相差をδとすると、tanδが所定の閾値を超えたタイヤを、前記転がり抵抗に異常があるタイヤであると判定するとよい。
 好ましくは、前記負荷ドラムの位置の変動と、前記負荷ドラムの慣性力が除去された後の負荷荷重と、の位相差を算出し、前記負荷ドラムの慣性力を、前記負荷ドラムの前記近接離反方向に沿った加速度と、前記負荷ドラムの質量と、の積から算出するとよい。
 好ましくは、前記転がり抵抗予測装置として、前記タイヤの周方向の均一性を評価するタイヤユニフォミティ試験機が用いられているとよい。
 好ましくは、前記負荷ドラムを前記近接離反方向に交互に移動させる際に、前記タイヤの内部に空気を封じ込めるとよい。
 好ましくは、前記タイヤに作用する負荷荷重を変動させるに際しては、前記負荷ドラム及び前記タイヤを回転させた状態で行うとよい。
 好ましくは、前記タイヤに作用する負荷荷重を変動させつつ前記タイヤへ加わる負荷荷重を計測するに際しては、前記負荷ドラムの前記近接離反方向に沿った加振周期をTd、前記タイヤの回転周期をTtとした場合、前記負荷荷重を計測する計測時間をN×Tt(Nは2以上の整数)とすると共に、前記Tdを、Tt/Tdが整数とならず且つN×Tt/Tdが整数値となるように設定しているとよい。
 好ましくは、前記転がり抵抗が既知のタイヤを基準タイヤとし、前記基準タイヤに対する前記負荷ドラムの位置と負荷荷重とを、複数の温度条件に対してそれぞれ求めておき、求められた複数の温度条件における前記負荷ドラムの位置と前記負荷荷重とを利用して前記位相差に対する温度補正関数を作成し、作成した前記温度補正関数を利用して前記転がり抵抗に異常のあるタイヤを選別するとよい。
 また、本発明のタイヤの転がり抵抗予測装置は、上述した転がり抵抗予測方法を実現可能なタイヤ選別手段を有する。
 また、タイヤの転がり抵抗予測装置は、走行路面を模擬した負荷ドラムをタイヤのトレッド面に圧着させた際に、前記タイヤへ加わる負荷荷重を計測する荷重計測センサと、荷重方向に沿った前記負荷ドラムの位置を計測する変位センサと、前記負荷ドラムを前記タイヤに対して近接離反方向に交互に移動させることにより、前記タイヤに作用する負荷荷重を変動させるドラム移動手段と、前記負荷ドラムの位置の変動と前記負荷荷重の変動との位相差を算出し、算出された前記位相差を元にして、転がり抵抗に異常があるタイヤを選別する、タイヤ選別手段と、を備える。
 本発明によれば、短時間で転がり抵抗に異常のあるタイヤを選別することができる。
タイヤの転がり抵抗予測装置の平面図である。 タイヤの転がり抵抗予測装置の正面図である。 負荷ドラムの変位と荷重振幅との位相差を模式的に示したグラフである。 タイヤの粘弾性特性をモデルとして示した図である。 タイヤの回転数を1Hz、負荷ドラムの加振周波数を5Hzとした場合のタイヤの変形軌跡を示す図である。 タイヤの回転数を1Hz、負荷ドラムの加振周波数を5.5Hzとした場合のタイヤの変形軌跡を示す図である。 タイヤの回転数を1Hz、負荷ドラムの加振周波数を5.333Hzとした場合のタイヤの変形軌跡を示す図である。
 以下、本発明のタイヤの転がり抵抗予測方法、及びこの転がり抵抗予測方法が実施される転がり抵抗予測装置1の実施形態を、図面に基づき詳しく説明する。図1、図2は、本実施形態のタイヤの選別方法が実施される転がり抵抗予測装置1を模式的に示したものである。転がり抵抗予測装置1は、製品タイヤのタイヤユニフォミティ、つまりタイヤのラジアル方向に沿った力の変動であるRFVなどを計測することで、タイヤの周方向の均一性を製品検査として評価するタイヤユニフォミティ試験機である。しかし、本発明の転がり抵抗予測装置1は、後述する荷重計測センサ2や変位センサ3を備えたものであれば、タイヤユニフォミティ試験機以外のタイヤ用の試験機にも用いることができる。
 図1及び図2に示すように、本実施形態の転がり抵抗予測装置1(ユニフォミティ試験機)は、軸心(回転軸7)が上下方向(図1中の紙面奥行方向。図2中の上下方向。)を向くように配備された円筒状の負荷ドラム4と、軸心が上下方向を向くように取り付けられたタイヤ軸5と、を有している。負荷ドラム4の軸心と、タイヤ軸5の軸心と、は互いに平行である。この転がり抵抗予測装置1では、走行路面を模擬した負荷ドラム4の外周面を、タイヤ軸5に取り付けられたタイヤのトレッド面に圧着させる。また、転がり抵抗予測装置1は、タイヤへ加わる負荷荷重を計測する荷重計測センサ2と、荷重方向に沿った負荷ドラム4の位置を計測する変位センサ3と、を備えている。
 負荷ドラム4は上下方向に軸心を向けた円筒状の部材であり、この負荷ドラム4の外周面はタイヤ試験用の模擬路面6とされている。具体的には、負荷ドラム4は、上下方向の寸法が径方向の寸法より短くなる短尺広径の円筒状に形成されている。負荷ドラム4の中心には、上下方向を向く軸回りに負荷ドラム4を回転自在に支持する回転軸7が配備されている。また、回転軸7の上端と下端とは、フレーム部材8で支持される。フレーム部材8は、水平方向(図1及び図2中、左右方向)に張り出るように設けられており、上述した回転軸7を垂直に架け渡すように支持する構成となっている。
 回転軸7とフレーム部材8との間には、負荷ドラム4をタイヤ軸5に取り付けられたタイヤのトレッド面に押し付けた際に、回転軸7に発生する荷重を計測可能な荷重計測センサ2が設けられている。具体的には、フレーム部材8(支持フレーム)は、荷重計測センサ2を介して回転軸7を支持する構造となっている。したがって、負荷ドラム4をタイヤのトレッド面に圧着させた際には、回転軸7の荷重計測センサ2にも荷重が伝わり、この荷重計測センサ2によってタイヤへ加わる負荷荷重が計測される。
 上述したフレーム部材8の下側には、基礎に対して負荷ドラム4を水平方向に移動可能なドラム移動手段(図示略)が配備されている。このドラム移動手段は、負荷ドラム4を水平方向に沿って移動させることにより、基礎に固定されたタイヤ軸5に対して、負荷ドラム4を近接離反可能とする。また、このドラム移動手段には、タイヤに対する負荷ドラム4の位置(押付位置)を計測する変位センサが設けられている。
 上述した構成を備える転がり抵抗予測装置1でタイヤユニフォミティの試験を行う際には、所定の回転数で回転するタイヤ軸5のタイヤに負荷ドラム4を近接させる。そして、荷重計測センサ2による平均荷重が所定荷重となった際に、負荷ドラム4を停止し、タイヤへ加わる押付方向の荷重をタイヤ1回転に亘って荷重計測センサ2を用いて計測する。この荷重の計測は、タイヤを正転させた状態と逆転させた状態とのそれぞれで行われる。このようにすれば、タイヤが1回転する間に、タイヤへ加わる力がどのように変動するかが計測でき、タイヤユニフォミティを評価することが可能となる。
 ところで、上述したタイヤユニフォミティの計測は、1本のタイヤ当たりに30秒程度の時間で行うことができるので、製造ラインで製造されるすべてのタイヤに対して全数検査で対応することが可能となる。ここでタイヤの性質や性能を測定する測定項目の一つである「タイヤの転がり抵抗」を、上述したタイヤユニフォミティマシンの構成でも計測できれば、タイヤについてより多くの情報を得ることができる。ただ、タイヤユニフォミティマシンでは通常「タイヤの転がり抵抗」は計測できないし、タイヤの転がり抵抗を測定する転がり抵抗試験機であっても、JIS規格(日本工業規格)の手順に従えば計測に必要な時間が長くなってしまい、全数検査に対応することが厳しくなる。
 そこで、本実施形態の転がり抵抗予測装置1では、「タイヤの転がり抵抗」と相関があるような他の特性値を用いて転がり抵抗を予測し、タイヤユニフォミティマシンでも「タイヤの転がり抵抗」に異常があるタイヤを選別できるようにしている。このタイヤの転がり抵抗と相関があるような他の特性値として、本実施形態の転がり抵抗予測装置1では、「タイヤゴムの減衰特性を表すtanδ」というパラメータを用いている。例えば、タイヤの転がり抵抗の要因としては、荷重で変形したタイヤゴムが回転により繰り返し歪むことによるエネルギーロス(ヒステリシスロス)による抵抗が大きく影響する。このヒステリシスロスは、tanδで評価できる。このtanδの「δ」は、タイヤゴムに周期的な外力を作用したときに発生する歪と応力との位相差に相当する。tanδの値が大きいほど、タイヤのたわみによるエネルギーロスが大きく、その結果として転がり抵抗も大きくなる。
 具体的には、この「tanδのδ(位相差)」は、上述した負荷ドラム4を前後方向に交互に移動(加振)させることにより計測される。つまり、負荷ドラム4を前後方向に交互に移動させると、この負荷ドラム4の位置の変動より少し進んでタイヤに作用する負荷荷重の変動が観察される。そのため、この負荷ドラム4の位置の変動と負荷荷重の変動とを比較し、両者の位相のズレ(位相差)を算出すれば、この位相のズレのtanが上述した「tanδ」に相当する。本実施形態の転がり抵抗予測装置1では、このようにして算出されたtanδの値が、予め定められた閾値を超えるかどうかで、「転がり抵抗」に異常があるタイヤを選別している。このようなタイヤの選別方法は、実際には転がり抵抗予測装置1に設けられたタイヤ選別手段9を用いて行われる。
 次に、本実施形態の転がり抵抗予測装置1に設けられるタイヤ選別手段9及びこのタイヤ選別手段9で行われるタイヤ選別方法について説明する。図1及び図2に示すように、タイヤ選別手段9は、負荷ドラム4やタイヤ軸5とは別に転がり抵抗予測装置1に設けられたパソコンなどのコンピュータで構成されている。タイヤ選別手段9には、荷重計測センサ2で計測された負荷荷重と、変位センサ3で計測された負荷ドラム4の位置と、が信号として入力されている。タイヤ選別手段9では、入力された負荷荷重や負荷ドラム4の位置の信号を、以下に示すような手順で処理することでタイヤを選別している。
 次に、タイヤ選別手段9で行われる信号処理の手順、言い換えれば本発明のタイヤ選別方法について説明する。上述したタイヤ選別手段9で「転がり抵抗」に異常があるタイヤを選別する際には、まず負荷ドラム4をドラム移動手段によって前後方向(タイヤに対して近接離反方向。図2中の矢印で示す方向。)に交互に移動させる必要がある。この負荷ドラム4の前後方向に沿った移動は、具体的には、荷重計測センサ2で計測される負荷荷重が所定の負荷荷重となるように負荷ドラム4をタイヤに押し付けた状態から、負荷ドラム4を反押付方向に後退させて負荷荷重を減らし、負荷ドラム4がタイヤから離れる前に負荷ドラム4を押付方向に転進させる。そして、荷重計測センサ2で計測される負荷荷重が所定の負荷荷重となるまで負荷ドラム4を前進させたら、再び負荷ドラム4を転進させて、負荷ドラム4を反押付方向に後退させる。このような負荷ドラム4の前進と後退とを繰り返し行い、負荷ドラム4を前後方向に交互に移動させる。
 この負荷ドラム4の前進位置と後退位置は、上述したタイヤユニフォミティの試験の際に求まる所定荷重における押し付け位置と同様に、タイヤ選別手段9に予め記憶しておくのが好ましい。例えば、負荷ドラム4を最も前進させた場合の負荷ドラム4の位置と、負荷ドラム4を最も後退させた場合の負荷ドラム4の位置と、を予め記憶しておけば、これら2つの位置の間で負荷ドラム4を移動させる制御を行うことが可能となる。
 さらに、負荷ドラム4の前進と後退とを切り替えるタイミングは、本実施形態では、2~5Hzの周波数とされている。しかし、前進と後退とを切り替える周波数は、タイヤの種別や転がり抵抗係数などにより変化するため、試験用のタイヤに合致した(試験用のタイヤと相関の高い)運転条件を予め予備実験により求めておくことが好ましい。上述した負荷ドラム4の前進と後退との繰り返しは1秒~2秒程度の時間に亘って行われ、荷重計測センサ2で計測された負荷荷重と変位センサ3で計測された負荷ドラム4の位置とがタイヤ選別手段9に出力される。
 なお、上述した負荷ドラム4の前後方向に沿った移動は、試験用のタイヤに対して正転方向及び逆転方向のタイヤユニフォミティ試験を行う前に実施しても良いが、好ましくはタイヤユニフォミティ試験後に実施されるのが好ましい。正転方向及び逆転方向のタイヤユニフォミティ試験を行った後は、タイヤゴムの特性が安定しているため、どのタイヤに対しても同じ条件で試験を行うことが可能となり、タイヤの選別精度を高めることが可能となるからである。
 具体的には、負荷ドラム4を前後方向に交互に移動させ、タイヤに作用する負荷荷重を大小に変動させる。そして、負荷ドラム4の位置の変動を上述した変位センサ3で計測すると共に、負荷荷重の変動を荷重計測センサ2で計測する。このようにして計測された負荷ドラム4の位置の経時的な変動を「ドラム変位」としてプロットすると共に、負荷荷重の変動を「負荷荷重」として同グラフ上にプロットすると、図3に示すような変化曲線が得られる。
 図3に示すように、タイヤに加えられた押付方向の「ドラム変位」の変化曲線に対して、「負荷荷重」の変化曲線は、タイヤゴムの減衰特性により位相差δだけ進んで記録される。そこで、上述したタイヤ選別手段9では、「ドラム変位」の変化曲線と、「負荷荷重」の変化曲線との水平方向に沿った位相差δを算出する。このようにして算出された位相差δを元にして「tanδ」を算出し、算出された「tanδ」が予め定めた閾値を超えるかどうかで転がり抵抗に異常があるタイヤを選別する。具体的には、最初に性状や特性に異常がない基準タイヤに対して位相差δを計測する。次に、試験用のタイヤの位相差δを計測する。基準タイヤの位相差δの値に比して、許容範囲以上の差がある場合、言い換えれば位相差δが所定の閾値を超える場合には、タイヤの転がり抵抗が規格値より大きくなっていると判断できる。そのため、タイヤ選別手段9では、位相差δが所定の閾値を超える場合には、試験されたタイヤが転がり抵抗に異常のあるタイヤであると判別し、必要に応じて該当するタイヤを排除する。
 また、算出された「tanδ」が予め定めた閾値以下(言い換えれば、算出されたtanδが、基準タイヤのtanδに比して所定の範囲内の値)である場合には、試験されたタイヤが転がり抵抗の正常なタイヤであると判別し、製品規格を満足するタイヤとして扱う。上述した転がり抵抗予測装置1及びタイヤの選別方法を用いれば、タイヤの転がり抵抗に相関が高い「tanδ」を求めることができ、求められた「tanδ」に基づいてタイヤの転がり抵抗の異常を簡単に判別することが可能となる。その結果、転がり抵抗に異常があるタイヤを、短時間で精度良く選別することが可能となり、多数製造される製品タイヤに対して転がり抵抗をタイヤユニフォミティ同様に全数検査することが可能となる。また、タイヤユニフォミティ試験機で、転がり抵抗の異常を判別することが可能となり、不良なタイヤを確実に排除することが可能となる。
 ところで、本発明のタイヤの選別方法は上述した方法でも実施することができるが、「tanδ」をより精度良く求めるためには、次の(1)~(4)に示すような操作を合わせて行うことが望ましい。
 (1)「荷重計測センサ2で計測される負荷荷重であって負荷ドラム4の慣性力が除去された後の負荷荷重と、負荷ドラム4の位置の変動と、から上述した位相差δを算出する。」
 質量があり慣性モーメントが大きな負荷ドラム4を移動させる場合、負荷ドラム4には大きな慣性力が発生する。上述したように負荷ドラム4の回転軸7に荷重計測センサ2が設けられている場合は、負荷ドラム4に発生した慣性力が荷重計測センサ2で計測される負荷荷重の計測値にも含まれてしまう。例えば、慣性力はタイヤ自体の反力と足し合わせた値として荷重計測センサ2で計測される。この慣性力は、負荷ドラム4の加速度に比例し、負荷ドラム4の位置の変動とは同位相で逆向きに作用する。そのため、慣性力は計測値から算出される位相差δを減らす方向に作用し、タイヤの選別に必要な位相差δの精度に低下させてしまう。
 そこで、本実施形態のタイヤの選別方法では、負荷ドラム4の前後方向に沿った加速度と、負荷ドラム4の質量と、の積から、負荷ドラム4の慣性力を求めている。この負荷ドラム4の前後方向に沿った加速度は、変位センサ3で計測される負荷ドラム4の位置を時間で二階微分を行うことで得ることができる。負荷ドラム4の慣性力が計算されたら、計算された負荷ドラム4の慣性力を、荷重計測センサ2で計測される負荷荷重から差し引き、慣性力の影響を排除した負荷荷重(正確な負荷荷重)を算出する。
 算出された負荷荷重の変動と、負荷ドラム4の位置の変動と、を用いれば、上述した位相差δをより正確に算出し、ひいてはtanδをより正確に算出することが可能となる。
なお、上述した基準タイヤを用いた計測の場合は、基準タイヤとの相対比較により判定が行われる。その為、試験用のタイヤに対しても基準タイヤと同一の条件で計測が行われる限り、慣性力がタイヤの評価結果に影響を及ぼすことはない。
 (2)「計測タイヤの内部に空気を封じ込めた状態で、負荷ドラム4を前後方向に交互に移動させて、上述した位相差δを算出する」
 すなわち、タイヤ内に空気を入れた状態で試験を行うタイヤユニフォミティ試験においては、タイヤ内の空気圧を一定に保つような圧力制御手段が採用されるのが一般的である。この圧力制御手段は、路面などに押し付けられてタイヤ内の空気圧や容積が急激に変化した際に、タイヤ内の空気圧を一定に保つように、タイヤ内に迅速に空気を供給したり、タイヤ内から空気を排気したりできるようになっている。
 そのため、負荷ドラム4の前後方向に沿って移動させて、荷重計測センサ2で計測される負荷荷重を変動させると、タイヤ内の空気圧を一定に保つために負荷ドラム4の変位に伴うタイヤの変形量の分だけ、空気がタイヤ内に出入りする。このような圧力制御手段による空気の出入りはタイヤの反力に影響し、かつエネルギーロスを引き起こして計測荷重の位相を変化させる。つまり、圧力制御手段による空気圧の調整はtanδの計測精度を低下させる方向に作用する。
 そこで、本実施形態のタイヤの選別方法では、負荷ドラム4を前後方向に交互に移動させる際には、上述した圧力制御手段による圧力制御を行わない封じ込め状態とし、タイヤの内部に空気を封じ込めるようにしている。具体的には、負荷ドラム4の前後方向に沿って移動させる際には、上述した圧力制御手段を構成する圧力制御弁とタイヤとの間の空気配管に、空気の流通を遮断可能な切換弁を予め設けておく。
 このようにすれば、負荷ドラム4を前後方向に交互に移動させる際には、切替弁を空気の流通を規制する側に切り替え、位相差δの計測が終了したら切替弁を空気の流通を許容する側に切り替えることができる。その結果、荷重計測センサ2での負荷荷重の計測精度に、圧力制御手段から悪影響が及ぶことを抑制することが可能となる。また、タイヤ内に空気を封じ込めて計測を行えば、空気の出入りが無くなるために、空気の圧縮・膨張に伴う減衰の影響が小さくなり、ほぼ純粋にタイヤの変形によるエネルギーロス(tanδ)のみを算出することができる。
 なお、上述した基準タイヤを用いた計測の場合は、基準タイヤとの相対比較により判定が行われる。その為、試験用のタイヤに対しても基準タイヤと同一の条件で計測が行われる限り、空気の圧縮・膨張がタイヤの評価結果に影響を及ぼすことはない。
 (3)「負荷ドラム4を前進及び後退させる際(tanδの計測の際)には、タイヤ及び負荷ドラム4を回転させた状態で行う。」
 すなわち、回転していないタイヤに負荷ドラム4を押し付ける場合、タイヤの一箇所のみに負荷ドラム4が接触し、タイヤトレッドの一部だけが複数回に亘って変形することになる。このようにタイヤゴムの一箇所だけに変形が連続して発生すると、タイヤゴムにフラットスポット(部分的なタイヤ形状の変化)が発生し、タイヤゴムの正確な減衰特性が得られなくなる。
 そのため、本実施形態の転がり抵抗予測装置1では、タイヤ及び負荷ドラム4を回転させた状態で、負荷ドラム4を前進及び後退させる。これにより、タイヤトレッドの一箇所だけが連続して変形することを防止して、タイヤゴムの減衰特性を正確に評価できるようにしている。このようにすれば、タイヤゴムの正確な減衰特性が得られるのみならず、タイヤの周方向全体に亘る平均的なtanδの算出も可能となる。
 (4)「転がり抵抗が既知のタイヤを基準タイヤとし、複数の温度条件に対して、基準タイヤのtanδをそれぞれ求め、求められたtanδを基に位相差δ(tanδ)に対する温度補正関数を作成し、作成した温度補正関数を利用して転がり抵抗に異常のあるタイヤを選別する。」
 タイヤユニフォミティの試験では測定環境の温度はあまり管理されておらず、季節および時間によって、計測時の温度は大きく変化する。基準温度との相対温度差から転がり抵抗係数を補正する式がJIS D 4234で規定されているが、あらかじめタイヤ種類毎に複数の温度条件での計測を行っておき、その結果との相対比較により、tanδを補正する必要がある。
 具体的には、予め、性質や性能が規格内にある基準タイヤで、測定環境の温度が位相差の計測結果に及ぼす影響を把握しておき、tanδの値を補正する補正式(温度補正関数)を作成しておく。例えば、転がり抵抗予測装置1の測定環境の温度を変えて、広い温度範囲で基準タイヤのtanδの値を事前に計測しておく。このtanδの事前計測は、季節、日時などを変えた条件においても行われるのが好ましい。
 また、温度の影響のデータを採取することが困難な場合は、式(1)に示すようなJIS D 4234に規定される「転がり抵抗計測の補正式」を用いるのが好ましい。このJISの補正式では、測定環境の温度が標準計測温度である25度の場合を基準として、以下の式を用いて転がり抵抗の値を補正する。なお、JISの補正式は転がり抵抗に関するものであるため、転がり抵抗とtanδは比例の関係のあると仮定し、式中の転がり抵抗Fをtanδに置き換えても式が成立すると考えて、式中の転がり抵抗Fをtanδに置き換えた補正式を用いて補正を行うと良い。
Figure JPOXMLDOC01-appb-M000001
 なお、上述した図3の例では、負荷ドラム4を前後方向に沿って移動させる際は、移動方向が反転する時の加速度の発生を減らせるように、負荷ドラム4の位置を正弦波に沿って移動させていた。しかしながら、負荷ドラム4が常に一定の速度で前進及び後退を繰り返すように、負荷ドラム4の位置を三角波に沿って移動させても良い。
 また、上述した「tanδ」の算出は、フーリエ変換を用いた周波数分析によっても実施することが可能である。例えば、荷重/変位の伝達関数の計算を行い、加振周波数における位相の値からδを算出することが可能である。
 ところで、タイヤユニフォミティ試験機でタイヤユニフォミティを計測する際には、タイヤの内圧を200kPa程度に保持して計測が行われる。しかし、上述したタイヤゴムの減衰特性(tanδ)の計測精度を向上させる為には、タイヤ内圧をタイヤユニフォミティ試験時よりも下げて、例えばタイヤの内圧を200kPaから100kPaまで下げた状態で計測を行うのが好ましい。このようにタイヤの内圧を下げて計測を行うのは、次のような理由からである。
 転がり抵抗に起因するタイヤの減衰はゴムの粘弾性特性(粘弾性係数)で表され、弾性特性を表すバネ定数kと粘性特性を表すtanδを用いて一般に式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、内部に空気が入っているタイヤの粘弾性特性を考える。まず、タイヤが、ゴムの剛性だけでは荷重をささえられず、内部の空気圧によりゴムに張力を発生させて、みかけ上の剛性(幾何剛性)により荷重を支えるものとする。この場合、タイヤの粘弾性特性は、図4に図示するモデルのように、タイヤ内の空気の幾何剛性と、タイヤを構成するゴムの剛性と、で構成されており、これらを並列結合したものと考えることができる。空気圧により発生する幾何剛性は、バネ定数kaを用いて示すことができる。タイヤを構成するゴムの粘弾性特性は、バネ定数kgとタイヤゴムの損失係数tanδgとを用いて示すことができる。
 空気の幾何剛性は、みかけ上の剛性のために減衰は存在しない。さらに、この空気の幾何剛性は、タイヤ内部の空気圧により生じるゴムの張力に比例したものとなる。このように考えて、タイヤ全体の粘弾性特性(粘弾性係数)は式(3)のように表すことができる。
Figure JPOXMLDOC01-appb-M000003
 式(3)によれば、タイヤ全体の損失係数(tanδt)は、式(4)のように示すことができる。
Figure JPOXMLDOC01-appb-M000004
 つまり、上述した式(4)から明らかなように、タイヤ内部の空気圧が小さくなれば、空気圧により発生する幾何剛性のバネ定数kaも小さくなり、計測により求められるタイヤの損失係数tanδtが大きくなる。言い換えれば、δtは計測対象の荷重と変位の位相差に相当するものであるので、タイヤ内部の空気圧が小さくなれば、δtの値(絶対値)も大きくなる。
 それゆえ、タイヤ内部の空気圧が小さくする、言い換えれば、タイヤユニフォミティ計測時に一般に用いられるタイヤ内圧200kPaを100kPa程度まで減圧しつつ、タイヤを回転させながら負荷ドラム4を前後させてタイヤの減衰特性(タイヤの損失係数tanδt)の計測を行えば、タイヤゴムの損失係数tanδgを精度良く計測することが可能となるのである。
 ところで、上述した負荷ドラム4を荷重が作用している範囲でタイヤに前後方向に沿って押し付ける際には、負荷ドラム4の押し付け周期(負荷ドラム4の加振周期)と、タイヤの回転周期と、の関係を、所定の関係に規定しておくのが好ましい。例えば、負荷ドラム4を前後に押し付け運動させる場合の加振周波数を、タイヤ回転周波数の整数倍とすると、図5Aに示すように負荷ドラム4の前後運動によって形成されるタイヤの凹凸の変形状態が、タイヤの周方向における特定位置に固定される。
 タイヤのゴム特性は周方向で必ずしも均一でないために(タイヤユニフォミティ計測を行う理由)、例えば同じタイヤに対して減衰特性を2回計測した際に、タイヤに対する負荷ドラム4の特定位置における押し付け時の位相が1回目と2回目とで異なり、1回目と2回目のタイヤの減衰特性(変位と荷重の位相差)が同じタイヤでも異なる結果となる場合があることを、本発明者は実験により確認している。このようにタイヤの凹凸の変形状態が特定位置に固定されると、タイヤを何回転させてもこの変形軌跡は変わらないために、計測時間を長く取っても精度は改善されない。
 ところが、負荷ドラム4の前後方向に沿った加振周期をTd、タイヤの回転周期をTtとした場合、負荷荷重を計測する計測時間をN×Tt(Nは2以上の整数)とする。さらに、負荷ドラム4の前後方向に沿った加振周期Tdを、Tt/Tdが整数とならず且つN×Tt/Tdが整数値となるように設定する。このような関係が成立する条件とすれば、転がり抵抗に関係するタイヤ周方向での平均的な減衰を計測することができる。
 なお、「N×Tt/Tdが整数値」における「整数値」とは、数学的な意味の「整数」を含むと共に、整数に極めて近いような小数も含んでいる。例えば、「2.04」や「1.98」といった小数であっても、小数点2位を四捨五入した場合に、小数点以下が0となる値も上述した「整数値」に含まれるものとする。上述したような計測条件:「負荷ドラム4の前後方向に沿った加振周期Tdを、Tt/Tdが整数とならない」条件を満足する場合には、図5Bや図5Cに示すように、タイヤ回転の度に負荷ドラム4による押しつけ位置の位相が変化する。つまり、負荷ドラム4による押しつけ位置が、1周目と2周目とではタイヤの周方向で異なるようになり、周方向の同じ位置に、負荷ドラム4の押しつけに伴うタイヤ表面の凹凸が形成されることがなくなるので、減衰特性の計測精度を高めることが可能となる。
 また、「Tt/TdのN倍が整数値となる」条件を満足する場合には、タイヤはN周回転すると、元の状態に戻る。例えば、図5Bの場合であればNは2であるので、タイヤは2周すると元の押付位置に戻り、負荷ドラム4によりタイヤ外周上の同じ位置が押しつけられるようになる。また、図5Cの場合であればNは3であるので、タイヤは3周すると元の押付位置に戻り、負荷ドラム4によりタイヤ外周上の同じ位置が押しつけられるようになる。
 このようにすればタイヤの全周を細かく均等に分割した位置に負荷ドラム4を押しつけることが可能となり、負荷ドラム4の押しつけ位置がタイヤの外周にムラなく均等に配備されることになるので、タイヤの減衰特性の計測精度が大きく向上する。
 なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
 また、本出願は、2014年5月12日出願の日本特許出願2014-098691、及び2015年2月16日出願の日本特許出願2015-027672に基づくものであり、その内容はここに参照として取り込まれる。
1 転がり抵抗予測装置
2 荷重計測センサ
3 変位センサ
4 負荷ドラム
5 タイヤ軸
6 模擬路面
7 回転軸
8 フレーム部材
9 タイヤ選別手段

Claims (11)

  1.  走行路面を模擬した負荷ドラムをタイヤのトレッド面に圧着させた際に、前記タイヤへ加わる負荷荷重を計測する荷重計測センサと、荷重方向に沿った前記負荷ドラムの位置を計測する変位センサと、を備えた転がり抵抗予測装置を用いて、転がり抵抗に異常のあるタイヤを選別するに際しては、
     前記負荷ドラムを前記タイヤに対して近接離反方向に交互に移動させることにより、前記タイヤに作用する負荷荷重を変動させ、
     前記負荷ドラムの位置の変動と前記負荷荷重の変動との位相差を算出し、
     算出された前記位相差を元にして、前記転がり抵抗に異常があるタイヤを選別する、タイヤの転がり抵抗予測方法。
  2.  前記位相差が所定の閾値を超えたタイヤを、前記転がり抵抗に異常があるタイヤであると判定する、請求項1に記載の方法。
  3.  前記位相差をδとすると、tanδが所定の閾値を超えたタイヤを、前記転がり抵抗に異常があるタイヤであると判定する、請求項1に記載の方法。
  4.  前記負荷ドラムの位置の変動と、前記負荷ドラムの慣性力が除去された後の負荷荷重と、の位相差を算出し、
     前記負荷ドラムの慣性力を、前記負荷ドラムの前記近接離反方向に沿った加速度と、前記負荷ドラムの質量と、の積から算出する、請求項1に記載の方法。
  5.  前記転がり抵抗予測装置として、前記タイヤの周方向の均一性を評価するタイヤユニフォミティ試験機が用いられている、請求項1~4の何れか1項に記載の方法。
  6.  前記負荷ドラムを前記近接離反方向に交互に移動させる際に、前記タイヤの内部に空気を封じ込める、請求項1に記載の方法。
  7.  前記タイヤに作用する負荷荷重を変動させるに際しては、前記負荷ドラム及び前記タイヤを回転させた状態で行う、請求項1に記載の方法。
  8.  前記タイヤに作用する負荷荷重を変動させつつ前記タイヤへ加わる負荷荷重を計測するに際しては、
     前記負荷ドラムの前記近接離反方向に沿った加振周期をTd、前記タイヤの回転周期をTtとした場合、前記負荷荷重を計測する計測時間をN×Tt(Nは2以上の整数)とすると共に、前記Tdを、Tt/Tdが整数とならず且つN×Tt/Tdが整数値となるように設定している、請求項7に記載の方法。
  9.  前記転がり抵抗が既知のタイヤを基準タイヤとし、
     前記基準タイヤに対する前記負荷ドラムの位置と負荷荷重とを、複数の温度条件に対してそれぞれ求めておき、
     求められた複数の温度条件における前記負荷ドラムの位置と前記負荷荷重とを利用して前記位相差に対する温度補正関数を作成し、
     作成した前記温度補正関数を利用して前記転がり抵抗に異常のあるタイヤを選別する、請求項1に記載の方法。
  10.  請求項1に記載の方法を実現可能なタイヤ選別手段を有する、タイヤの転がり抵抗予測装置。
  11.  走行路面を模擬した負荷ドラムをタイヤのトレッド面に圧着させた際に、前記タイヤへ加わる負荷荷重を計測する荷重計測センサと、
     荷重方向に沿った前記負荷ドラムの位置を計測する変位センサと、
     前記負荷ドラムを前記タイヤに対して近接離反方向に交互に移動させることにより、前記タイヤに作用する負荷荷重を変動させるドラム移動手段と、
     前記負荷ドラムの位置の変動と前記負荷荷重の変動との位相差を算出し、算出された前記位相差を元にして、転がり抵抗に異常があるタイヤを選別する、タイヤ選別手段と、
    を備える、タイヤの転がり抵抗予測装置。
PCT/JP2015/063224 2014-05-12 2015-05-07 タイヤの転がり抵抗予測方法およびタイヤの転がり抵抗予測装置 WO2015174323A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167032487A KR101912027B1 (ko) 2014-05-12 2015-05-07 타이어의 구름 저항 예측 방법 및 타이어의 구름 저항 예측 장치
CN201580024572.6A CN106461509B (zh) 2014-05-12 2015-05-07 轮胎的滚动阻力预测方法及轮胎的滚动阻力预测装置
US15/309,999 US10598569B2 (en) 2014-05-12 2015-05-07 Method for predicting rolling resistance of tire and device for predicting rolling resistance of tire
EP15793407.6A EP3144660B1 (en) 2014-05-12 2015-05-07 Method for predicting rolling resistance of tire and device for predicting rolling resistance of tire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-098691 2014-05-12
JP2014098691 2014-05-12
JP2015-027672 2015-02-16
JP2015027672A JP6412437B2 (ja) 2014-05-12 2015-02-16 タイヤの転がり抵抗予測手法およびタイヤの転がり抵抗予測装置

Publications (1)

Publication Number Publication Date
WO2015174323A1 true WO2015174323A1 (ja) 2015-11-19

Family

ID=54479864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063224 WO2015174323A1 (ja) 2014-05-12 2015-05-07 タイヤの転がり抵抗予測方法およびタイヤの転がり抵抗予測装置

Country Status (7)

Country Link
US (1) US10598569B2 (ja)
EP (1) EP3144660B1 (ja)
JP (1) JP6412437B2 (ja)
KR (1) KR101912027B1 (ja)
CN (1) CN106461509B (ja)
TW (1) TWI557402B (ja)
WO (1) WO2015174323A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191077A (ja) * 2016-04-15 2017-10-19 株式会社神戸製鋼所 タイヤの転がり抵抗の評価装置及び評価方法
DE102016213186A1 (de) * 2016-07-19 2018-01-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Überprüfung des Rollwiderstandes von Fahrzeugreifen
WO2018154649A1 (ja) * 2017-02-22 2018-08-30 三菱重工機械システム株式会社 回転体荷重測定装置
CN112051045A (zh) * 2020-09-03 2020-12-08 北京航空航天大学 一种颗粒滚动阻力模型参数的动力试验测定方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6282198B2 (ja) * 2014-08-27 2018-02-21 株式会社神戸製鋼所 タイヤユニフォミティ試験機及びタイヤユニフォミティ測定方法
JP5885804B1 (ja) * 2014-10-09 2016-03-16 株式会社神戸製鋼所 タイヤユニフォミティ試験機における荷重推定モデルの作成方法
JP6558857B2 (ja) * 2016-04-06 2019-08-14 株式会社ブリヂストン 転がり抵抗測定方法および装置
ITUA20163534A1 (it) * 2016-05-18 2017-11-18 Pirelli Metodo e linea di controllo di pneumatici per ruote di veicoli
JP6602734B2 (ja) * 2016-09-20 2019-11-06 株式会社神戸製鋼所 タイヤの転がり抵抗評価装置
JP6647994B2 (ja) * 2016-09-20 2020-02-14 株式会社神戸製鋼所 タイヤの転がり抵抗評価装置
US11175200B2 (en) 2017-02-22 2021-11-16 Mitsubishi Heavy Industries Machinery Systems, Ltd. Rotating body load measuring device
US10337961B2 (en) * 2017-04-27 2019-07-02 Gm Global Technology Operations Llc. Method of analyzing radial force variation in a tire/wheel assembly
JP6777619B2 (ja) * 2017-11-07 2020-10-28 株式会社神戸製鋼所 タイヤの接線方向荷重計測装置およびタイヤの転がり抵抗評価装置
DE102018204893A1 (de) 2018-03-29 2019-10-02 Deere & Company Verfahren zur dynamischen Ermittlung einer Reifenlängskraft
CN108692847B (zh) * 2018-05-18 2023-12-01 吉林大学 轮胎滚动阻力测试装置及其测量方法
JP2020183901A (ja) * 2019-05-08 2020-11-12 株式会社神戸製鋼所 タイヤユニフォミティデータの補正方法、およびタイヤユニフォミティマシン
KR102285584B1 (ko) * 2019-12-26 2021-08-04 넥센타이어 주식회사 타이어 회전저항계수 예측 방법
JP7472500B2 (ja) * 2020-01-20 2024-04-23 住友ゴム工業株式会社 転がり抵抗の推定方法
CN112052588B (zh) * 2020-09-03 2022-08-02 北京航空航天大学 一种颗粒滚动阻力模型参数的动力试验测定装置
CN112985849B (zh) * 2021-04-01 2024-05-14 中信戴卡股份有限公司 一种用于汽车底盘模拟路试的疲劳试验设备
CN113639927A (zh) * 2021-06-15 2021-11-12 中策橡胶集团有限公司 一种汽车轮胎平点试验方法、数据处理方法和设备
CN117715771A (zh) * 2021-08-27 2024-03-15 普利司通美国轮胎运营有限责任公司 用于实时估计轮胎滚动阻力的系统和方法
CN114048675B (zh) * 2021-11-01 2024-06-18 西安航天时代精密机电有限公司 一种磁滞电机零组件耦合方法
NO347920B1 (en) 2023-03-09 2024-05-13 Ff Rollerskis As Roller Ski Wheel Test Apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237332A (ja) * 1998-02-23 1999-08-31 Yokohama Rubber Co Ltd:The 粘弾性材料を含む回転体の発熱エネルギ関連の特性の調査、分析の方法および装置
JP2003004598A (ja) * 2001-04-20 2003-01-08 Nissho Denki Kk タイヤのころがり抵抗測定方法および装置
JP2005306113A (ja) * 2004-04-19 2005-11-04 Yokohama Rubber Co Ltd:The 回転体の耐久性予測方法及び回転体の耐久性予測用コンピュータプログラム、並びに回転体の耐久性予測装置
JP2009222656A (ja) * 2008-03-18 2009-10-01 Yokohama Rubber Co Ltd:The ベルト体の走行発熱予測方法および走行抵抗力予測方法並びに回転体の走行発熱予測方法および転動抵抗予測方法
WO2012086547A1 (ja) * 2010-12-24 2012-06-28 株式会社神戸製鋼所 転がり抵抗試験機に備えられた多分力検出器の校正方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6490500A (en) * 1999-07-16 2001-02-05 Gerald R. Potts Methods and systems for dynamic force measurement
JP4339048B2 (ja) * 2003-08-25 2009-10-07 国際計測器株式会社 タイヤのユニフォーミティ計測方法及び装置、並びにタイヤ修正方法及び装置
KR100909150B1 (ko) * 2004-05-14 2009-07-23 가부시키가이샤 고베 세이코쇼 타이어 시험기
CN101144757A (zh) * 2006-09-11 2008-03-19 青岛高校软控股份有限公司 轮胎均匀性测量方法
JP4369983B1 (ja) * 2008-07-25 2009-11-25 株式会社神戸製鋼所 マスタータイヤ及びそのマスタータイヤを用いたタイヤユニフォミティ試験機の検査方法
JP5011328B2 (ja) * 2009-03-03 2012-08-29 株式会社神戸製鋼所 タイヤの転がり抵抗測定装置
JP5533020B2 (ja) * 2010-02-25 2014-06-25 横浜ゴム株式会社 タイヤの転がり抵抗を予測する方法および解析する方法と、タイヤの転がり抵抗を予測する予測装置および解析する装置
JP2011226991A (ja) 2010-04-22 2011-11-10 Bridgestone Corp 転がり抵抗予測方法及び転がり抵抗予測装置
CN101975666A (zh) * 2010-09-07 2011-02-16 江苏大学 轮胎动态性能试验台
JP5191521B2 (ja) * 2010-10-05 2013-05-08 株式会社神戸製鋼所 タイヤ試験機に用いられる多分力計測スピンドルユニットの校正方法
WO2013051310A1 (ja) * 2011-10-06 2013-04-11 株式会社神戸製鋼所 タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法
JP5871778B2 (ja) * 2012-11-12 2016-03-01 株式会社神戸製鋼所 タイヤのユニフォミティ波形の補正方法
CN203502152U (zh) * 2013-08-28 2014-03-26 青岛高校测控技术有限公司 轮胎滚动阻力测试装置
CN103471862A (zh) * 2013-09-20 2013-12-25 华东交通大学 单滚筒在整车状态下测量轮胎滚动阻力的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237332A (ja) * 1998-02-23 1999-08-31 Yokohama Rubber Co Ltd:The 粘弾性材料を含む回転体の発熱エネルギ関連の特性の調査、分析の方法および装置
JP2003004598A (ja) * 2001-04-20 2003-01-08 Nissho Denki Kk タイヤのころがり抵抗測定方法および装置
JP2005306113A (ja) * 2004-04-19 2005-11-04 Yokohama Rubber Co Ltd:The 回転体の耐久性予測方法及び回転体の耐久性予測用コンピュータプログラム、並びに回転体の耐久性予測装置
JP2009222656A (ja) * 2008-03-18 2009-10-01 Yokohama Rubber Co Ltd:The ベルト体の走行発熱予測方法および走行抵抗力予測方法並びに回転体の走行発熱予測方法および転動抵抗予測方法
WO2012086547A1 (ja) * 2010-12-24 2012-06-28 株式会社神戸製鋼所 転がり抵抗試験機に備えられた多分力検出器の校正方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191077A (ja) * 2016-04-15 2017-10-19 株式会社神戸製鋼所 タイヤの転がり抵抗の評価装置及び評価方法
WO2017179552A1 (ja) * 2016-04-15 2017-10-19 株式会社神戸製鋼所 タイヤの転がり抵抗の評価装置及び評価方法
CN109073512A (zh) * 2016-04-15 2018-12-21 株式会社神户制钢所 轮胎的滚动阻力的评价装置及评价方法
EP3444586A4 (en) * 2016-04-15 2019-11-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) DEVICE AND METHOD FOR ASSESSING THE ROLL RESISTANCE OF A TIRE
CN109073512B (zh) * 2016-04-15 2020-12-25 株式会社神户制钢所 轮胎的滚动阻力的评价装置及评价方法
DE102016213186A1 (de) * 2016-07-19 2018-01-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Überprüfung des Rollwiderstandes von Fahrzeugreifen
WO2018154649A1 (ja) * 2017-02-22 2018-08-30 三菱重工機械システム株式会社 回転体荷重測定装置
JPWO2018154649A1 (ja) * 2017-02-22 2019-12-12 三菱重工機械システム株式会社 回転体荷重測定装置
US11243136B2 (en) 2017-02-22 2022-02-08 Mitsubishi Heavy Industries Machinery Systems, Ltd. Rotating body load measuring device
CN112051045A (zh) * 2020-09-03 2020-12-08 北京航空航天大学 一种颗粒滚动阻力模型参数的动力试验测定方法
CN112051045B (zh) * 2020-09-03 2021-06-18 北京航空航天大学 一种颗粒滚动阻力模型参数的动力试验测定方法

Also Published As

Publication number Publication date
JP2015232545A (ja) 2015-12-24
EP3144660A1 (en) 2017-03-22
CN106461509B (zh) 2019-05-14
KR101912027B1 (ko) 2018-10-25
JP6412437B2 (ja) 2018-10-24
CN106461509A (zh) 2017-02-22
US10598569B2 (en) 2020-03-24
EP3144660A4 (en) 2018-01-17
US20170153163A1 (en) 2017-06-01
EP3144660B1 (en) 2019-07-10
TW201612498A (en) 2016-04-01
TWI557402B (zh) 2016-11-11
KR20160147875A (ko) 2016-12-23

Similar Documents

Publication Publication Date Title
WO2015174323A1 (ja) タイヤの転がり抵抗予測方法およびタイヤの転がり抵抗予測装置
JP4025560B2 (ja) バランスおよび低速ユニフォーミティデータを用いたタイヤのユニフォーミティの予測
JP4369983B1 (ja) マスタータイヤ及びそのマスタータイヤを用いたタイヤユニフォミティ試験機の検査方法
JP4163236B2 (ja) タイヤのコーナリング特性の評価方法および装置
CN102788706A (zh) 评估轮胎性能的方法和系统
US20120316800A1 (en) System for predicting vehicle vibration or acoustic response
EP3517925B1 (en) Device for evaluating tire rolling resistance
JP6992077B2 (ja) タイヤ試験機、タイヤを試験する方法、及びコンピュータプログラム
EP3163279B1 (en) Vibration measurement device for high-speed rotating machine, and vibration measurement method
JP5534587B2 (ja) ゴム試験機
WO2018056081A1 (ja) タイヤの転がり抵抗評価装置
EP3205999B1 (en) Use of a method for estimating load model in a tyre uniformity tester
AU738296B2 (en) Shock absorber tester I
JP4844207B2 (ja) タイヤのコーナリング動特性評価方法および装置
Mani Tire Flatspotting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793407

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15309999

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015793407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015793407

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167032487

Country of ref document: KR

Kind code of ref document: A