WO2017179552A1 - タイヤの転がり抵抗の評価装置及び評価方法 - Google Patents

タイヤの転がり抵抗の評価装置及び評価方法 Download PDF

Info

Publication number
WO2017179552A1
WO2017179552A1 PCT/JP2017/014720 JP2017014720W WO2017179552A1 WO 2017179552 A1 WO2017179552 A1 WO 2017179552A1 JP 2017014720 W JP2017014720 W JP 2017014720W WO 2017179552 A1 WO2017179552 A1 WO 2017179552A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
temperature
phase difference
derived
evaluated
Prior art date
Application number
PCT/JP2017/014720
Other languages
English (en)
French (fr)
Inventor
徹 岡田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020187028766A priority Critical patent/KR102058084B1/ko
Priority to EP17782365.5A priority patent/EP3444586A4/en
Priority to CN201780023024.0A priority patent/CN109073512B/zh
Priority to US16/091,843 priority patent/US20190086292A1/en
Publication of WO2017179552A1 publication Critical patent/WO2017179552A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/022Tyres the tyre co-operating with rotatable rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0486Signalling devices actuated by tyre pressure mounted on the wheel or tyre comprising additional sensors in the wheel or tyre mounted monitoring device, e.g. movement sensors, microphones or earth magnetic field sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres

Definitions

  • the present invention relates to an evaluation apparatus and an evaluation method for tire rolling resistance.
  • Rolling resistance is one of the important evaluation items regarding the performance of tires used in vehicles (trucks, passenger cars, etc.). Rolling resistance is a tangential force generated between the tire and the road surface when the tire travels on the road surface.
  • the measurement method is JIS D 4234 (passenger car, truck and bus tires—rolling resistance test method, 2009). ).
  • Patent Document 1 proposes predicting the rolling resistance using a characteristic value correlated with the rolling resistance instead of measuring the rolling resistance by the measurement method defined in JIS D 4234.
  • Patent Document 1 in view of the fact that the rolling resistance is caused by energy loss due to deformation of the tire during traveling and has a high correlation with the damping characteristic of the tire rubber, tan ⁇ ( ⁇ : It has been proposed to predict the rolling resistance by using, as a characteristic value, a phase difference between a change in the load applied to the tire and a change in the position of the drum caused by vibrating the drum.
  • tan ⁇ ⁇ : It has been proposed to predict the rolling resistance by using, as a characteristic value, a phase difference between a change in the load applied to the tire and a change in the position of the drum caused by vibrating the drum.
  • a phase difference is derived in advance using a reference tire and the difference between the phase difference of the reference tire and the phase difference of the tire to be evaluated is equal to or greater than an allowable range, Assess that the rolling resistance is abnormal.
  • JIS D 4234 stipulates that measurement is performed in the range of the atmospheric temperature of 20 ° C. or higher and 30 ° C. or lower, and the correction is made to a value based on the atmospheric temperature of 25 ° C. by the following correction formula.
  • the above correction formula defined in JIS D 4234 is premised on the ambient temperature range of 20 ° C. or higher and 30 ° C. or lower, and is applied when the ambient temperature is lower than 20 ° C. or higher than 30 ° C. Can not.
  • the temperature correction coefficient K t is because it varies depending on the type of tire, at a temperature difference is large between 25 ° C., correction error increases.
  • An object of the present invention is to provide a tire rolling resistance evaluation device and an evaluation method capable of appropriately and easily evaluating the rolling resistance of a tire at an arbitrary temperature.
  • An evaluation apparatus for rolling resistance of a tire includes a pressure member having a surface simulating a road surface on which a tire travels, a proximity direction that is a direction in which the pressure member is close to the tire, and a distance from the tire.
  • a moving mechanism for alternately moving in a separation direction that is a direction to perform, a load sensor for detecting a load applied to the tire when the surface of the pressure member is in contact with the tire, and the proximity direction And a position sensor for detecting the position of the pressure member in the direction along the separation direction, and the movement mechanism is controlled so that a load applied to the tire fluctuates, from the load sensor and the position sensor
  • the phase difference deriving unit for deriving a phase difference between the load variation and the pressure member position variation based on the signal, and the phase difference deriving unit for the reference tire is derived.
  • the derivation unit derives the phase difference for the reference tire, in the process in which the temperature of the reference tire that is set to an initial temperature higher or lower than the ambient temperature by heating or cooling approaches the ambient temperature from the initial temperature, The phase difference at a plurality of temperatures within a range from an initial temperature to an ambient temperature is derived, and the rolling resistance evaluation unit calculates the phase difference at the plurality of temperatures derived by the phase difference deriving unit for the reference tire.
  • the phase difference deriving unit derived the phase difference corresponding to the temperature of the tire to be evaluated and the tire to be evaluated Comparing the phase difference Prefecture, and evaluating the rolling resistance of the tire to be the evaluation target.
  • the tire rolling resistance evaluation method includes a pressure member having a surface simulating a road surface on which a tire travels, a pressure direction of the pressure member, a proximity direction that is a direction close to the tire, and a distance from the tire.
  • the moving mechanism is controlled so that the load fluctuates, and the fluctuation of the load and the pressure member are controlled based on signals from the load sensor and the position sensor.
  • a phase difference deriving step for deriving a phase difference from the fluctuation of the position, and the phase difference derived in the phase difference deriving step for the reference tire and the phase difference derived in the phase difference deriving step for the tire to be evaluated
  • a rolling resistance evaluation step for evaluating the rolling resistance of the tire to be evaluated.
  • the initial temperature is set higher or lower than the ambient temperature by heating or cooling.
  • the phase differences at a plurality of temperatures within the range from the initial temperature to the ambient temperature are derived, and in the rolling resistance evaluation step, Of the phase differences at the plurality of temperatures derived in the phase difference deriving step for the tire, the tire to be evaluated A phase difference corresponding to the time, compared with the phase difference derived by said phase difference deriving step for the tire to be the evaluation target, and evaluating the rolling resistance of the tire to be the evaluation target.
  • the initial temperature is set higher or lower than the ambient temperature by heating or cooling.
  • phase differences at a plurality of temperatures within the range from the initial temperature to the ambient temperature are derived.
  • the phase difference corresponding to the temperature of the evaluation target tire among the phase differences derived from the plurality of temperatures derived for the reference tire is compared with the phase difference derived for the evaluation target tire, and the evaluation target tire Evaluate rolling resistance.
  • the phase difference deriving unit changes the initial temperature when deriving the phase difference for the reference tire, and a plurality of temperatures of the reference tire approach the ambient temperature from the initial temperature.
  • the phase differences at the plurality of temperatures may be derived.
  • it is possible to grasp the influence of the initial temperature on the phase difference by deriving the phase difference in a plurality of processes by changing the initial temperature, and to obtain the phase difference of the reference tire having a small variation excluding the influence of the initial temperature. It can be derived.
  • the phase difference deriving unit derives the phase difference at each of the plurality of temperatures when deriving the phase difference at the plurality of temperatures for the reference tire.
  • the moving mechanism After controlling the moving mechanism so that the load applied to the reference tire fluctuates in a state where the pressure member is in contact with the tire and deriving the phase difference at a first temperature that is one of the plurality of temperatures, Prior to deriving the phase difference at a second temperature different from the first temperature, which is one of the plurality of temperatures, the moving mechanism may be controlled so that the pressure member is separated from the reference tire. .
  • the surface temperature of the portion of the tire where the pressure member comes into contact is maintained when the tire and the pressure member are in contact with each other. ) Tend to be different from the temperature.
  • the measured temperature when the temperature of the surface of the tire is measured, the measured temperature may be different from the temperature inside the tire.
  • the temperature of the tire rises. Therefore, the temperature of the reference tire is changed from the initial temperature to the ambient temperature by setting the initial temperature to be higher than the ambient temperature.
  • the above configuration by separating the pressure member from the reference tire before and after the phase difference derivation at each temperature, it is possible to suppress the measurement temperature of the reference tire from being affected by the temperature of the pressure member, In addition, the above problem can be suppressed by preventing an increase in the temperature of the reference tire.
  • the evaluation apparatus determines an approximate expression indicating a relationship between the phase difference and the tire temperature based on the phase differences at the plurality of temperatures derived by the phase difference deriving unit for the reference tire.
  • the rolling resistance evaluation unit further includes a phase difference obtained by applying the temperature of the tire to be evaluated to the approximation formula determined by the approximation formula determination unit, and the tire to be evaluated.
  • the phase difference derived by the phase difference deriving unit may be compared to evaluate the rolling resistance of the tire to be evaluated. In this case, it is easy to evaluate the rolling resistance by comparing the phase difference obtained by applying the temperature of the tire to be evaluated to the approximate expression determined in advance and the phase difference derived for the tire to be evaluated. Can be done.
  • the approximate expression determining unit uses the following expression (1) as the approximate expression, and based on the phase differences at the plurality of temperatures derived by the phase difference deriving unit for the reference tire.
  • the approximate expression may be determined by calculating a parameter in the expression (1).
  • ⁇ ⁇ exp ( ⁇ ⁇ T) + ⁇ (1) ( ⁇ : phase difference (°), ⁇ , ⁇ , ⁇ : parameter, T: temperature of the tire (° C.))
  • phase difference (°), ⁇ , ⁇ , ⁇ : parameter, T: temperature of the tire (° C.)
  • the phase difference ⁇ is expressed by an exponential function of the tire temperature T as in the above formula (1)
  • the phase difference by the approximate expression are small.
  • the calculation time can be shortened and the memory capacity can be reduced.
  • the evaluation device may use at least the temperature of the tread of the tire as the temperature of the tire.
  • the tread is thicker and has greater deformation resistance than the sidewall, and contributes greatly to the energy loss of the tire. According to the above configuration, by using at least the tread temperature as the tire temperature, there is a high possibility that the temperature characteristic of the phase difference (phase difference characteristic according to the tire temperature) can be derived with high accuracy.
  • the evaluation apparatus may use the temperature of the tread of the tire and the temperature of the sidewall of the tire as the temperature of the tire.
  • the tire temperature can be set more flexibly by using both the tread temperature and the sidewall temperature.
  • the evaluation apparatus may use a temperature T represented by the following formula (2) as the temperature of the tire.
  • T a ⁇ T S + (1 ⁇ a) ⁇ T T (2)
  • T S sidewall temperature (° C.) of the tire
  • T T temperature of the tire tread (° C.)
  • the phase difference deriving unit controls the moving mechanism so that a load applied to the tire varies in a state where the rotation of the tire is maintained, and from the load sensor and the position sensor, The phase difference may be derived based on the signal. In this case, an average phase difference in the circumferential direction of the tire can be derived.
  • the evaluation apparatus may be a tire uniformity testing machine that performs a tire uniformity test for inspecting the uniformity in the circumferential direction of the tire.
  • a tire uniformity testing machine in which all tires are tested, it is difficult to control not only the temperature of the tire but also the atmospheric temperature to 20 ° C. or higher and 30 ° C. or lower.
  • Tire temperatures can be as high as 50 ° C.
  • the rolling resistance at an arbitrary temperature of the tire can be appropriately and easily evaluated, and therefore, it is also effective in a tire uniformity testing machine.
  • the phase difference deriving unit may derive the phase difference after performing the tire uniformity test on the tire to be evaluated.
  • the tire uniformity test is performed, the rubber characteristics of the tire are stabilized. Therefore, the test can be performed on any tire under the same conditions, and the evaluation accuracy of the tire can be increased.
  • the initial temperature is set higher or lower than the ambient temperature by heating or cooling.
  • phase differences at a plurality of temperatures within the range from the initial temperature to the ambient temperature are derived.
  • the phase difference corresponding to the temperature of the evaluation target tire among the phase differences derived from the plurality of temperatures derived for the reference tire is compared with the phase difference derived for the evaluation target tire, and the evaluation target tire Evaluate rolling resistance.
  • FIG. 1 is a side view showing an evaluation device for rolling resistance of a tire according to an embodiment of the present invention. It is a block diagram which shows the electrical constitution of the evaluation apparatus of the rolling resistance of the tire which concerns on one Embodiment of this invention. It is a flowchart which shows the phase difference derivation
  • 2 is a graph showing a relationship between a tire temperature T and a phase difference ⁇ for two types of tires, and an approximate expression in which the phase difference ⁇ is expressed by a logarithmic function of the tire temperature T by solid lines.
  • 4 is a graph showing a relationship between a tire temperature T and a phase difference ⁇ for two types of tires, and an approximate expression in which the phase difference ⁇ is expressed by an exponential function of the tire temperature T by a solid line.
  • a tire rolling resistance evaluation device (hereinafter simply referred to as “evaluation device”) 1 according to an embodiment of the present invention is a tire uniformity test (JIS D 4233) for inspecting the uniformity in the circumferential direction of a tire.
  • a tire uniformity tester TUM: Tire Uniformity Machine
  • Tire rotating motor 2M see FIG. 3; not shown in FIGS. 1 and 2), drum 3 and drum movement for moving drum 3 in the direction of the arrow in FIGS.
  • a motor 3M (see FIG. 3; not shown in FIGS.
  • a load sensor 5 for detecting a load applied to the tire 2, and an arrow direction in FIGS.
  • the position sensor 6 for detecting the position of the drum 3, the temperature sensors 7 a and 7 b for detecting the temperature of the tire 2, and the temperature of the room in which the test apparatus 1 is disposed (hereinafter referred to as “atmosphere temperature”). )
  • a controller 1c for controlling each part of the evaluation device 1.
  • the tire shaft 2x is supported to be rotatable about an axis along the vertical direction with respect to the base 1b.
  • the tire shaft 2x and the tire 2 supported by the tire shaft 2x rotate about an axis along the vertical direction with respect to the base 1b by driving the tire rotation motor 2M under the control of the controller 1c. .
  • the drum 3 has a short and wide cylindrical shape whose length in the vertical direction is shorter than the length in the radial direction, and a drum shaft 3x extending in the vertical direction passes through the center of the drum 3.
  • the upper end and the lower end of the drum shaft 3x are rotatably supported by the frame 3f. That is, the drum 3 is supported so as to be rotatable about an axis along the vertical direction with respect to the frame 3f.
  • the frame 3f is supported so as to be movable in the direction of the arrows in FIGS. 1 and 2 with respect to the protrusion 1b1 provided on the upper surface of the base 1b.
  • the drum 3 supported by the frame 3f and the frame 3f moves in the horizontal direction with respect to the base 1b when the drum moving motor 3M is driven under the control of the controller 1c (specifically, the proximity direction). (Moving alternately in the direction approaching the tire 2: leftward in FIGS. 1 and 2) and the separation direction (direction separating from the tire 2: rightward in FIGS. 1 and 2).
  • the drum 3 has an outer peripheral surface 3a that simulates a road surface on which the tire 2 travels.
  • the load sensor 5 detects a load applied to the tire 2 in a state where the outer peripheral surface 3a is in contact with the tread 2a of the tire 2, and transmits a signal indicating the load to the controller 1c.
  • the load sensor 5 is provided between the upper end of the drum shaft 3x and the frame 3f, and detects a load generated on the drum shaft 3x.
  • the position sensor 6 is provided in the protrusion 1b1, detects the position of the drum 3 in the direction of the arrow in FIGS. 1 and 2, and transmits a signal indicating the position to the controller 1c.
  • the temperature sensor 7a is a non-contact type radiation thermometer disposed at a position facing the tread 2a of the tire 2 (specifically, a portion of the tread 2a that does not contact the drum 3) while being separated from the tread 2a.
  • the temperature of 2a is detected, and a signal indicating the temperature is transmitted to the controller 1c.
  • the temperature measurement by the temperature sensor 7a is preferably performed before the tread 2a of the tire 2 and the drum 3 come into contact with each other. Thereby, the influence that the heat of the drum 3 enters and exits the surface of the tread 2a of the tire 2 can be eliminated as much as possible, and the temperature of the tire 2 can be accurately detected.
  • the temperature sensor 7b is a non-contact type radiation thermometer disposed at a position facing the sidewall 2b of the tire 2 while being separated from the tire 2 and detects the temperature of the sidewall 2b and outputs a signal indicating the temperature. It transmits to the controller 1c.
  • the temperature sensor 8 is a thermometer arranged at an arbitrary position in the room where the test apparatus 1 is arranged, detects the ambient temperature, and transmits a signal indicating the temperature to the controller 1c.
  • the controller 1c is composed of, for example, a personal computer and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, which are arithmetic processing units.
  • the ROM stores fixed data such as a program executed by the CPU.
  • the RAM temporarily stores data necessary for the CPU to execute the program.
  • an initial temperature higher or lower than the ambient temperature is determined (S1). For example, the controller 1c selects one initial temperature higher or lower than the ambient temperature based on the signal from the temperature sensor 8 from the plurality of initial temperatures stored in the ROM, and the selected one initial temperature. Is stored in the RAM.
  • the reference tire is heated or cooled to set the temperature of the reference tire to the initial temperature determined in S1 (S2).
  • the reference tire is heated in a heating furnace or cooled in a refrigerator, and the temperature of the reference tire based on signals from the temperature sensors 7a and 7b (temperature based on at least one of the temperature of the tread 2a and the temperature of the sidewall 2b. For example, these The heating or cooling is stopped when the average value) reaches the initial temperature determined in S1.
  • the controller 1c receives signals from the temperature sensors 7a and 7b, and stores the temperature of the tread 2a of the reference tire and the temperature of the sidewall 2b based on the signals in the RAM.
  • S4 it is determined whether or not the measurement of S4 is the first time (S5).
  • S5 the first measurement
  • the process moves to S7, and when it is not the first measurement (that is, in the case of the second and subsequent measurements) (S5: NO), the current measured temperature and the previous measured temperature It is determined whether or not the absolute value of the difference exceeds a predetermined value x (S6).
  • the controller 1c sets the temperature based on the temperature of the tread 2a of the reference tire and the temperature of the sidewall 2b (for example, an average value thereof) stored in the RAM in the latest S4, The absolute value of these differences is calculated using the temperature based on the temperature of the tread 2a of the reference tire and the temperature of the sidewall 2b (for example, the average value thereof) stored in the RAM in S4 as the previous measured temperature. It is determined whether or not the value exceeds a predetermined value x stored in the ROM.
  • the drum 3 is vibrated to derive the phase difference ⁇ (S7).
  • the controller 1c controls the drum moving motor 3M so that the load applied to the reference tire changes in a state where the drum 3 is in contact with the reference tire, and the reference is based on signals from the load sensor 5 and the position sensor 6.
  • a phase difference ⁇ between the variation in the load applied to the tire and the variation in the position of the drum 3 is derived.
  • the reference tire is rotated at a predetermined rotational speed by driving the tire rotation motor 2M.
  • the drum 3 is moved as follows while maintaining the rotation of the reference tire.
  • the drum 3 is moved (advanced) in the proximity direction to bring the drum 3 into contact with the tread 2a of the reference tire and pressurize it, and the drum 3 is stopped when the average value of the load applied to the reference tire reaches a predetermined value.
  • the load applied to the reference tire is reduced by moving (retracting) the drum 3 in the separation direction, and the drum 3 is stopped and moved (advanced) again in the proximity direction before the drum 3 is separated from the reference tire.
  • the drum 3 is stopped and moved (retracted) in the separation direction again to reduce the load applied to the reference tire. Such forward and backward movement of the drum 3 is repeated.
  • the drum 3 is moved alternately while maintaining the state where the reference tire is rotated and the state where the drum 3 is in contact with the reference tire.
  • the controller 1c receives signals from the load sensor 5 and the position sensor 6, and the phase difference between the change in the load applied to the reference tire and the change in the position of the drum 3 is detected. ⁇ is derived.
  • the forward and backward frequencies of the drum 3 are, for example, 2 to 6 Hz. However, since it depends on the type of the tire 2, rolling resistance, etc., it is preferable to set a frequency that matches the tire in advance through experiments. . Further, from the viewpoint of facilitating the movement control of the drum 3, the position at which the drum 3 is stopped in S7 (the position on the most downstream side in the proximity direction (that is, the position where the average value of the load applied to the tire 2 becomes a predetermined value) It is preferable to store the most upstream position in the proximity direction (that is, the position immediately before separating from the tire 2) in the ROM of the controller 1c.
  • the drum 3 is separated from the reference tire, the reference tire is evacuated, and the reference tire is removed from the tire shaft 2x (S8).
  • the controller 1c controls the drum moving motor 3M to move the drum 3 in the separation direction, thereby separating the drum 3 from the reference tire.
  • the operator removes the reference tire from the tire shaft 2x, and removes air from the reference tire.
  • the controller 1c determines whether or not to change the initial temperature (S10). Specifically, if there is an initial temperature not determined in S1 among the plurality of initial temperatures stored in the ROM, the controller 1c determines to change the initial temperature (S10: YES), and The temperature is changed to the initial temperature, and the process returns to S2. On the other hand, if there is no initial temperature that is not determined in S1 among the plurality of initial temperatures stored in the ROM, the controller 1c determines that the initial temperature is not changed (S10: NO), and the process proceeds to S11. .
  • the parameter a at the tire temperature T of the following formula (2) is determined.
  • Expression (2) is stored in the ROM of the controller 1c, and the value of the parameter a calculated in S11 is stored in the RAM of the controller 1c.
  • T a ⁇ T S + (1 ⁇ a) ⁇ T T (2) (T S : temperature of the sidewall 2 b (° C.), T T : temperature of the tread 2 a (° C.), a: parameter)
  • the tire temperature T is the temperature of the sidewall 2b.
  • the tire temperature T is the temperature of the tread 2a.
  • the parameter a is determined for each tire type.
  • a plurality of graphs (a plurality of graphs showing the relationship between the tire temperature T and the phase difference ⁇ ) in which the parameter a is changed are displayed on the display of the test apparatus 1, and the data of the plurality of graphs is displayed.
  • the parameter a corresponding to the graph with the smallest variation is selected.
  • the variation in data is smaller in the graph of FIG. 8 than in the graph of FIG.
  • the temperature of the tread 2a tends to be several degrees higher than the temperature of the sidewall 2b, and the data in the graph of FIG. 8 is shifted to the right as compared with the data of the graph in FIG.
  • the initial temperature is changed to 70 ° C., 60 ° C., 50 ° C., and 40 ° C., and after the reference tire is heated in the heating furnace, the temperature of the reference tire is changed from the initial temperature to the ambient temperature.
  • This is a result of deriving phase differences ⁇ at a plurality of temperatures in the range from the initial temperature to the ambient temperature in the process of approaching.
  • the steps S3 to S8 are performed in 30 seconds, the air pressure of the reference tire is set to 200 kPa, the frequency of forward and backward movement of the drum 3 is set to 5.5 Hz, and the load applied to the reference tire in 2 seconds and the position of the drum 3 are It is the result of collecting and analyzing data.
  • parameters ⁇ , ⁇ , and ⁇ in the approximate expression showing the relationship between the phase difference ⁇ and the tire temperature T are calculated based on the phase differences ⁇ at a plurality of temperatures by the least square method or the like.
  • the approximate expression (formula (1)) is calculated and determined (S12).
  • Expression (1) is stored in the ROM of the controller 1c, and the values of the parameters ⁇ , ⁇ , ⁇ calculated in S12 are stored in the RAM of the controller 1c.
  • FIG. 10 and 11 show the relationship between the tire temperature T and the phase difference ⁇ for the two types of tires A and B.
  • FIG. FIG. 10 shows an approximate expression in which the phase difference ⁇ is expressed by a logarithmic function of the tire temperature T as a solid line
  • FIG. 11 shows an approximate expression in which the phase difference ⁇ is expressed by an exponential function of the tire temperature T as a solid line. It is shown in In FIG. 10, in the high temperature region of 40 ° C. or higher, the error between the derived phase difference and the phase difference based on the approximate expression is large. On the other hand, in FIG. 11, the error between the derived phase difference and the phase difference based on the approximate expression is small from the low temperature region to the high temperature region of 40 ° C. or higher.
  • target tire a tire to be evaluated (hereinafter referred to as “target tire”) is mounted on the tire shaft 2x (S51).
  • the controller 1c receives signals from the temperature sensors 7a and 7b, and stores the temperatures of the tread 2a and the sidewalls 2b of the target tire based on the signals in the RAM.
  • a tire uniformity test is performed (S53). Specifically, the target tire is rotated at a predetermined rotational speed by driving the tire rotation motor 2M, and the drum 3 is moved in the proximity direction by driving the drum moving motor 3M, so that the drum 3 is placed on the tread 2a of the target tire.
  • the driving of the drum moving motor 3M is stopped and the drum 3 is stopped. Then, the load sensor 5 detects a load applied to the target tire while the target tire makes one rotation in each of the forward direction and the reverse direction.
  • the drum 3 is vibrated to derive the phase difference ⁇ (S54).
  • the controller 1c controls the drum moving motor 3M so that the load applied to the target tire changes in a state where the drum 3 is in contact with the target tire, and the load sensor 5 and the position sensor 6
  • the phase difference ⁇ between the variation in the load applied to the target tire and the variation in the position of the drum 3 is derived based on the above signal.
  • the temperature T of the target tire (of the target tire) is added to the approximate expression (the above formula (1)) determined in S12 of the phase difference deriving step (see FIG. 4) for the reference tire corresponding to the type of the target tire.
  • the phase difference ⁇ b of the reference tire is calculated (S55).
  • the phase difference ⁇ b is a plurality of temperatures (a plurality of temperatures within the range from the initial temperature to the ambient temperature) derived in S6 in the phase difference deriving step (see FIG. 4) for the reference tire corresponding to the type of the target tire. Corresponds to the phase difference corresponding to the temperature of the target tire.
  • the absolute value of the difference between the phase difference ⁇ b calculated in S55 and the phase difference ⁇ of the target tire derived in S54 is an allowable value (for example, 0.1 °) or less (S56). .
  • an allowable value for example, 0.1 °
  • S56 the relationship between the phase difference ⁇ of the target tire derived in S54 and the temperature T of the target tire is within the range between the two dashed curves shown in FIG. (S56: YES), and if it is not within the range, it is determined that the absolute value is not less than the allowable value (S56: NO).
  • the rolling resistance of the target tire is unacceptable (S58).
  • the rolling resistance of the target tire is measured by a rolling resistance tester or the like, and a final pass / fail determination is performed. The target tire finally determined to be rejected is discarded as necessary.
  • the ambient temperature is determined by heating or cooling.
  • the temperature of the reference tire which is set to a higher or lower initial temperature, approaches the ambient temperature from the initial temperature, from the initial temperature to the ambient temperature (in this embodiment, the absolute difference between the current measured temperature and the previous measured temperature is
  • the phase differences ⁇ at a plurality of temperatures within the range of the value are derived (see S2 to S7 to S9 in FIG. 4: YES to S7 etc.).
  • the phase difference ⁇ b corresponding to the temperature of the tire to be evaluated among the phase differences ⁇ derived at the plurality of temperatures derived for the reference tire is compared with the phase difference ⁇ derived for the tire to be evaluated, and The rolling resistance of the tire is evaluated (see S54 to S56 in FIG. 5).
  • the rolling resistance of the tire is evaluated (see S54 to S56 in FIG. 5).
  • the rolling resistance can be easily evaluated as compared with the case where a process for changing the atmospheric temperature is required. That is, according to this embodiment, it is possible to appropriately and easily evaluate the rolling resistance at an arbitrary temperature of the tire.
  • the controller 1c When deriving the phase difference ⁇ for the reference tire, the controller 1c changes the initial temperature, and derives the phase difference ⁇ at a plurality of temperatures in each of a plurality of processes in which the temperature of the reference tire approaches the ambient temperature from the initial temperature. (See S10 in FIG. 4). In this case, by deriving the phase difference ⁇ in a plurality of processes by changing the initial temperature, it is possible to grasp the influence of the initial temperature on the phase difference ⁇ , and the level of the reference tire having a small variation excluding the influence of the initial temperature. The phase difference ⁇ can be derived.
  • the controller 1c derives the phase difference ⁇ at a plurality of temperatures for the reference tire
  • the phase difference ⁇ is derived at each of the plurality of temperatures
  • the drum moving motor 3M is controlled so as to fluctuate, and after the phase difference ⁇ is derived at the first temperature, which is one of the plurality of temperatures, at a second temperature different from the first temperature, which is one of the plurality of temperatures.
  • the drum moving motor 3M is controlled so that the drum 3 is separated from the reference tire (see S8 in FIG. 4).
  • the surface temperature of the portion of the tire 2 where the drum 3 is in contact is maintained.
  • the temperature inside (rubber part) there is a tendency for a difference from the temperature inside (rubber part).
  • the measured temperature may be different from the temperature inside the tire 2.
  • the temperature of the reference tire is changed from the initial temperature by setting the initial temperature to be higher than the ambient temperature.
  • the controller 1c determines an approximate expression indicating the relationship between the phase difference ⁇ and the tire temperature T based on the phase differences ⁇ at a plurality of temperatures derived for the reference tire (see S12 in FIG. 4). Further, the controller 1c compares the phase difference ⁇ b obtained by applying the temperature T of the tire to be evaluated with the determined approximate expression and the phase difference ⁇ derived for the tire to be evaluated, and the tire to be evaluated The rolling resistance is evaluated (see S56 to S58 in FIG. 5). In this case, by comparing the phase difference ⁇ b obtained by applying the temperature T of the tire to be evaluated to the approximate expression determined in advance with the phase difference ⁇ derived for the tire to be evaluated, the rolling resistance Evaluation can be performed easily.
  • the controller 1c uses the above equation (1) as an approximation equation, and calculates the parameters ⁇ , ⁇ , ⁇ in the equation (1) based on the phase differences ⁇ at a plurality of temperatures derived for the reference tire. Is determined (see S12 of FIG. 4). As described above, in the approximate expression in which the phase difference ⁇ is expressed by a logarithmic function of the tire temperature T, an error between the derived phase difference ⁇ and the phase difference based on the approximate expression is large in a high temperature region of 40 ° C. or more (FIG. 10). reference).
  • the phase difference ⁇ is expressed by an exponential function of the tire temperature T as in the above formula (1)
  • the error between ⁇ and the phase difference by the approximate expression is small (see FIG. 11).
  • the calculation time can be shortened and the memory capacity can be reduced.
  • the temperature of the tread 2a of the tire is used as the tire temperature T (see the above formula (2)).
  • the tread 2a is thicker and has greater deformation resistance than the sidewall 2b, and contributes greatly to the energy loss of the tire. According to the above configuration, there is a possibility that the temperature characteristic of the phase difference ⁇ (the characteristic of the phase difference ⁇ according to the tire temperature T) can be derived with high accuracy by using at least the temperature of the tread 2a as the tire temperature T. high.
  • the temperature of the tire tread 2a and the temperature of the tire sidewall 2b are used as the tire temperature T (see the above formula (2)).
  • the tire temperature T can be set more flexibly by using both the temperature of the tread 2a and the temperature of the sidewall 2b.
  • the temperature T represented by the above formula (2) is used as the tire temperature T.
  • the tire temperature T can be set more generally.
  • the controller 1c controls the drum moving motor 3M so that the load applied to the tire 2 fluctuates while maintaining the rotation of the tire 2, and derives the phase difference ⁇ based on signals from the load sensor 5 and the position sensor 6. .
  • an average phase difference in the circumferential direction of the tire 2 can be derived.
  • the evaluation device 1 is a tire uniformity testing machine that performs a tire uniformity test for inspecting the uniformity of the tire 2 in the circumferential direction.
  • a tire uniformity testing machine in which all tires are tested, it is difficult to control not only the temperature of the tire but also the atmospheric temperature to 20 ° C. or higher and 30 ° C. or lower.
  • Tire temperatures can be as high as 50 ° C.
  • the rolling resistance at an arbitrary temperature of the tire can be appropriately and easily evaluated, so that it is also effective in a tire uniformity testing machine.
  • the controller 1c derives the phase difference ⁇ after performing a tire uniformity test on the tire to be evaluated (see S53 and S54 in FIG. 5). In this case, after the tire uniformity test is performed, the rubber characteristics of the tire are stabilized. Therefore, the test can be performed on any tire under the same conditions, and the evaluation accuracy of the tire can be increased.
  • -It is not limited to deriving a phase difference after performing a tire uniformity test on a tire to be evaluated, and a phase difference may be derived before performing a tire uniformity test on a tire to be evaluated.
  • the evaluation apparatus which concerns on this invention is not limited to a tire uniformity testing machine, Other tire testing apparatuses (balancer etc.) may be sufficient.
  • the present invention can be implemented by separately providing a pressure member in the device.
  • -It is not limited to evaluating all the manufactured tires, You may evaluate some manufactured tires (that is, you may perform a sampling test).
  • the phase difference is derived in a plurality of processes by changing the initial temperature, and the tread temperature and the sidewall temperature having the smaller data variation. May be used.
  • the parameter a in Expression (2) is determined by selecting the graph corresponding to the graph with the smallest data variation among the plurality of graphs in which the parameter a is changed in the above embodiment, but is not limited thereto.
  • the equation (2) may be substituted into the equation (1) and determined simultaneously with the parameters ⁇ , ⁇ , and ⁇ of the equation (1) by the least square method.
  • a temperature T represented by an expression other than the expression (2) for example, an average value of the tread temperature and the sidewall temperature
  • the rolling resistance may be evaluated based on scattered data regarding phase differences at a plurality of temperatures for the reference tire without determining an approximate expression. -With the rotation of the tire stopped, the load applied to the tire may be varied by the movement of the pressure member to derive the phase difference.
  • the pressure member When deriving the phase difference for the reference tire, after deriving the phase difference at each of a plurality of temperatures, the pressure member is separated from the reference tire, and then the reference tire is removed from the tire axle or the air of the reference tire You do not have to remove the. Further, after the phase difference is derived at the first temperature, the pressure member may not be separated from the reference tire before the phase difference is derived at the second temperature. ⁇ It is not necessary to change the initial temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

タイヤの任意の温度における転がり抵抗を適切かつ容易に評価する。基準タイヤについて位相差(タイヤに加わる荷重と、ドラムの位置の変動との位相差)を導出するとき、加熱又は冷却によって雰囲気温度よりも高い又は低い初期温度とされた基準タイヤの温度が初期温度から雰囲気温度に近づく過程において、初期温度から雰囲気温度までの範囲内にある複数の温度における位相差δを導出する(S2~S7~S9:YES~S7等)。そして、基準タイヤについて導出した複数の温度における位相差δのうち評価対象となるタイヤの温度に対応する位相差と、評価対象となるタイヤについて導出した位相差とを比較し、評価対象となるタイヤの転がり抵抗を評価する。

Description

タイヤの転がり抵抗の評価装置及び評価方法
 本発明は、タイヤの転がり抵抗の評価装置及び評価方法に関する。
 車両(トラック、乗用自動車等)に用いられるタイヤの性能に関する重要な評価項目の1つとして、転がり抵抗がある。転がり抵抗は、タイヤが路面を走行したときにタイヤと路面との間に発生する接線方向の力であり、計測方法がJIS D 4234(乗用車,トラック及びバス用タイヤ-転がり抵抗試験方法、2009年)で規定されている。
 JIS D 4234で規定されている計測方法では、計測に先だってタイヤの温度を安定させるために30分以上の慣らし運転を行う必要があり、計測に時間がかかってしまう。そこで特許文献1では、JIS D 4234で規定されている計測方法によって転がり抵抗を計測する代わりに、転がり抵抗と相関がある特性値を用いて転がり抵抗を予測することが提案されている。
 具体的には、特許文献1では、転がり抵抗が、走行中におけるタイヤの変形によるエネルギ損失によって生じ、タイヤのゴムの減衰特性と相関が高いことに鑑みて、当該減衰特性を表すtanδ(δ:ドラムを加振させることによる、タイヤに加わる荷重の変動と、ドラムの位置の変動との位相差)を特性値として用いて転がり抵抗を予測することが提案されている。特許文献1では、予め基準タイヤを用いて位相差を導出しておき、基準タイヤの位相差と評価対象となるタイヤの位相差との差が許容範囲以上の場合に、評価対象となるタイヤの転がり抵抗に異常があると評価する。
日本国特開2015-232545号公報
 転がり抵抗は、タイヤの温度によって大きく変化する。この点、JIS D 4234では、雰囲気温度20℃以上30℃以下の範囲で測定を行い、下記補正式により雰囲気温度25℃を基準とした値に補正することが規定されている。
 Ft25 =F・[1+K・(tamb-25)]
(Ft25:転がり抵抗(N)、tamb:雰囲気温度(℃)、K:温度補正係数)
 特許文献1(段落0045)では、事前に測定環境の温度(雰囲気温度)が位相差の計測結果に及ぼす影響を把握しておき、tanδを補正する補正式(温度補正関数)を作成しておくこと(例えば、転がり抵抗試験装置の測定環境の温度(雰囲気温度)を変えて、広い温度範囲で基準タイヤのtanδを事前に計測しておくこと)が提案されている。
 しかしながら、JIS D 4234で規定されている上記補正式は、雰囲気温度20℃以上30℃以下の範囲であることが前提とされており、雰囲気温度が20℃未満又は30℃を超える場合には適用できない。また、温度補正係数Kはタイヤの種類によって異なるため、25℃との差が大きい温度においては、補正誤差が増大する。
 特許文献1(段落0045)のように雰囲気温度を変えて基準タイヤのtanδの計測を行う場合は、計測の度に雰囲気温度(室内の温度)を変える必要がある。雰囲気温度を変える工程は容易ではなく、また、一連の計測作業に時間がかかってしまう。
 本発明の目的は、タイヤの任意の温度における転がり抵抗を適切かつ容易に評価することができる、タイヤの転がり抵抗の評価装置及び評価方法を提供することである。
 本発明に係るタイヤの転がり抵抗の評価装置は、タイヤが走行する路面を模擬した表面を有する加圧部材と、前記加圧部材を、前記タイヤに近接する方向である近接方向及び前記タイヤから離隔する方向である離隔方向に、交互に移動させるための移動機構と、前記加圧部材の前記表面が前記タイヤに接触した状態において前記タイヤに加わる荷重を検知するための荷重センサと、前記近接方向及び前記離隔方向に沿った方向における前記加圧部材の位置を検知するための位置センサと、前記タイヤに加わる荷重が変動するように前記移動機構を制御し、前記荷重センサ及び前記位置センサからの信号に基づき前記荷重の変動と前記加圧部材の位置の変動との位相差を導出する位相差導出部と、基準タイヤについて前記位相差導出部が導出した前記位相差と評価対象となるタイヤについて前記位相差導出部が導出した前記位相差とを比較し、前記評価対象となるタイヤの転がり抵抗を評価する転がり抵抗評価部とを備え、前記位相差導出部は、前記基準タイヤについて前記位相差を導出するとき、加熱又は冷却によって雰囲気温度よりも高い又は低い初期温度とされた前記基準タイヤの温度が前記初期温度から雰囲気温度に近づく過程において、前記初期温度から雰囲気温度までの範囲内にある複数の温度における前記位相差を導出し、前記転がり抵抗評価部は、前記基準タイヤについて前記位相差導出部が導出した前記複数の温度における前記位相差のうち前記評価対象となるタイヤの温度に対応する位相差と、前記評価対象となるタイヤについて前記位相差導出部が導出した位相差とを比較し、前記評価対象となるタイヤの転がり抵抗を評価することを特徴とする。
 本発明に係るタイヤの転がり抵抗の評価方法は、タイヤが走行する路面を模擬した表面を有する加圧部材と、前記加圧部材を、前記タイヤに近接する方向である近接方向及び前記タイヤから離隔する方向である離隔方向に、交互に移動させるための移動機構と、前記加圧部材の前記表面が前記タイヤに接触した状態において前記タイヤに加わる荷重を検知するための荷重センサと、前記近接方向及び前記離隔方向に沿った方向における前記加圧部材の位置を検知するための位置センサとを有するタイヤの転がり抵抗の評価装置を用いて、タイヤの転がり抵抗を評価する方法において、前記タイヤに加わる荷重が変動するように前記移動機構を制御し、前記荷重センサ及び前記位置センサからの信号に基づき前記荷重の変動と前記加圧部材の位置の変動との位相差を導出する位相差導出工程と、基準タイヤについて前記位相差導出工程で導出した前記位相差と評価対象となるタイヤについて前記位相差導出工程で導出した前記位相差とを比較し、前記評価対象となるタイヤの転がり抵抗を評価する転がり抵抗評価工程とを備え、前記基準タイヤについての前記位相差導出工程では、加熱又は冷却によって雰囲気温度よりも高い又は低い初期温度とされた前記基準タイヤの温度が前記初期温度から雰囲気温度に近づく過程において、前記初期温度から雰囲気温度までの範囲内にある複数の温度における前記位相差を導出し、前記転がり抵抗評価工程では、前記基準タイヤについての前記位相差導出工程で導出した前記複数の温度における前記位相差のうち前記評価対象となるタイヤの温度に対応する位相差と、前記評価対象となるタイヤについての前記位相差導出工程で導出した位相差とを比較し、前記評価対象となるタイヤの転がり抵抗を評価することを特徴とする。
 本発明によれば、基準タイヤについて位相差(タイヤに加わる荷重と、加圧部材の位置の変動との位相差)を導出するとき、加熱又は冷却によって雰囲気温度よりも高い又は低い初期温度とされた基準タイヤの温度が初期温度から雰囲気温度に近づく過程において、初期温度から雰囲気温度までの範囲内にある複数の温度における位相差を導出する。そして、基準タイヤについて導出した複数の温度における位相差のうち評価対象となるタイヤの温度に対応する位相差と、評価対象となるタイヤについて導出した位相差とを比較し、評価対象となるタイヤの転がり抵抗を評価する。これにより、25℃との差が大きい温度においても、転がり抵抗を適切に評価することができる。また、雰囲気温度を変える工程が必要な場合に比べ、転がり抵抗を容易に評価することができる。即ち、本発明によれば、タイヤの任意の温度における転がり抵抗を適切かつ容易に評価することができる。
 本発明に係る評価装置において、前記位相差導出部は、前記基準タイヤについて前記位相差を導出するとき、前記初期温度を変えて、前記基準タイヤの温度が前記初期温度から雰囲気温度に近づく複数の前記過程の各々において、前記複数の温度における前記位相差を導出してよい。この場合、初期温度を変えて複数の過程で位相差を導出することにより、位相差に対する初期温度の影響を把握することができ、初期温度の影響を排除したバラツキの小さい基準タイヤの位相差を導出することが可能となる。
 本発明に係る評価装置において、前記位相差導出部は、前記基準タイヤについて前記複数の温度における前記位相差を導出する場合に、前記複数の温度の各々において前記位相差を導出するとき、前記基準タイヤに前記加圧部材が接触した状態で前記基準タイヤに加わる荷重が変動するように前記移動機構を制御し、前記複数の温度の1つである第1温度において前記位相差を導出した後、前記複数の温度の1つである前記第1温度とは異なる第2温度において前記位相差を導出する前に、前記基準タイヤから前記加圧部材が離隔するように前記移動機構を制御してよい。タイヤにおいて加圧部材が接触する部分の表面温度は、タイヤと加圧部材とが接触した状態が維持されると、当該表面に加圧部材の熱が出入りすることで、タイヤの内部(ゴム部分)の温度と差が生じる傾向にある。この場合に、タイヤの当該表面の温度を計測すると、計測温度がタイヤの内部の温度と異なり得る。また、タイヤと加圧部材とが接触した状態でタイヤを回転させ続けると、タイヤの温度が上昇していくため、初期温度を雰囲気温度よりも高い温度として基準タイヤの温度が初期温度から雰囲気温度に向けて下がっていく過程で位相差を導出する場合に、基準タイヤの温度が下がり難いという問題が生じ得る。上記構成によれば、各温度での位相差導出の前後で基準タイヤから加圧部材を離隔させることにより、基準タイヤの計測温度が加圧部材の温度の影響を受けるのを抑制することでき、また、基準タイヤの温度の上昇を防止して上記問題を抑制することができる。
 本発明に係る評価装置は、前記基準タイヤについて前記位相差導出部が導出した前記複数の温度における前記位相差に基づいて、前記位相差と前記タイヤの温度との関係を示す近似式を決定する近似式決定部をさらに備え、前記転がり抵抗評価部は、前記近似式決定部が決定した近似式に前記評価対象となるタイヤの温度を当てはめて得られる位相差と、前記評価対象となるタイヤについて前記位相差導出部が導出した位相差とを比較し、前記評価対象となるタイヤの転がり抵抗を評価してよい。この場合、予め決定された近似式に評価対象となるタイヤの温度を当てはめて得られる位相差と、評価対象となるタイヤについて導出された位相差とを比較することで、転がり抵抗の評価を容易に行うことができる。
 本発明に係る評価装置において、前記近似式決定部は、前記近似式として下記式(1)を用い、前記基準タイヤについて前記位相差導出部が導出した前記複数の温度における前記位相差に基づいて、前記式(1)におけるパラメータを算出することで、前記近似式を決定してよい。
 δ=α・exp(-γ・T)+β (1)
(δ:位相差(°)、α,β,γ:パラメータ、T:前記タイヤの温度(℃))
 後述のとおり、位相差δをタイヤの温度Tの対数関数で表した近似式では、40℃以上の高温領域において、導出された位相差と近似式による位相差との誤差が大きい。これに対し、上記式(1)のように位相差δをタイヤの温度Tの指数関数で表した近似式によれば、低温領域から40℃以上の高温領域に亘って、導出された位相差と近似式による位相差との誤差が小さい。また、上記式(1)によれば、α,β,γというわずか3つパラメータを算出して記憶すればよいため、算出にかかる時間を短くかつメモリの容量を小さくすることができる。
 本発明に係る評価装置は、前記タイヤの温度として、前記タイヤのトレッドの温度を少なくとも用いてよい。トレッドは、サイドウォールよりも、厚みが大きくかつ変形抵抗が大きく、タイヤのエネルギ損失への寄与が大きい。上記構成によれば、タイヤの温度としてトレッドの温度を少なくとも用いることで、位相差の温度特性(タイヤの温度に応じた位相差の特性)を高精度に導出できる可能性が高い。
 本発明に係る評価装置は、前記タイヤの温度として、前記タイヤのトレッドの温度と、前記タイヤのサイドウォールの温度とを用いてよい。この場合、トレッドの温度とサイドウォールの温度との両方を用いることにより、タイヤの温度をより柔軟に設定することができる。
 本発明に係る評価装置は、前記タイヤの温度として、下記式(2)で表される温度Tを用いてよい。
 T=a・T+(1-a)・T (2)
(T:前記タイヤのサイドウォールの温度(℃)、T:前記タイヤのトレッドの温度(℃)、a:パラメータ)
 この場合、タイヤの温度をより汎用的に設定することができる。
 本発明に係る評価装置において、前記位相差導出部は、前記タイヤの回転を維持した状態で、前記タイヤに加わる荷重が変動するように前記移動機構を制御し、前記荷重センサ及び前記位置センサからの信号に基づき前記位相差を導出してよい。この場合、タイヤの周方向の平均的な位相差を導出することができる。
 本発明に係る評価装置は、前記タイヤの周方向の均一性を検査するためのタイヤユニフォミティ試験を行うタイヤユニフォミティ試験機であってよい。タイヤの全数試験が行われるタイヤユニフォミティ試験機において、タイヤの温度だけでなく雰囲気温度を20℃以上30℃以下に管理するのは困難であり、一般に温度管理はなされておらず、加硫直後のタイヤの温度は50℃にも及ぶ場合がある。しかしながら、本発明によれば、タイヤの任意の温度における転がり抵抗を適切かつ容易に評価することができるため、タイヤユニフォミティ試験機においても有効である。
 本発明に係る評価装置において、前記位相差導出部は、前記評価対象となるタイヤについて、前記タイヤユニフォミティ試験を行った後に、前記位相差を導出してよい。この場合、タイヤユニフォミティ試験を行った後は、タイヤのゴムの特性が安定するため、どのタイヤに対しても同じ条件で試験を行うことが可能となり、タイヤの評価精度を高めることができる。
 本発明によれば、基準タイヤについて位相差(タイヤに加わる荷重と、加圧部材の位置の変動との位相差)を導出するとき、加熱又は冷却によって雰囲気温度よりも高い又は低い初期温度とされた基準タイヤの温度が初期温度から雰囲気温度に近づく過程において、初期温度から雰囲気温度までの範囲内にある複数の温度における位相差を導出する。そして、基準タイヤについて導出した複数の温度における位相差のうち評価対象となるタイヤの温度に対応する位相差と、評価対象となるタイヤについて導出した位相差とを比較し、評価対象となるタイヤの転がり抵抗を評価する。これにより、25℃との差が大きい温度においても、転がり抵抗を適切に評価することができる。また、雰囲気温度を変える工程が必要な場合に比べ、転がり抵抗を容易に評価することができる。即ち、本発明によれば、タイヤの任意の温度における転がり抵抗を適切かつ容易に評価することができる。
本発明の一実施形態に係るタイヤの転がり抵抗の評価装置を示す平面図である。 本発明の一実施形態に係るタイヤの転がり抵抗の評価装置を示す側面図である。 本発明の一実施形態に係るタイヤの転がり抵抗の評価装置の電気的構成を示すブロック図である。 本発明の一実施形態に係る基準タイヤについての位相差導出工程を示すフロー図である。 本発明の一実施形態に係る転がり抵抗評価工程を示すフロー図である。 タイヤに加わる荷重の変動とドラムの位置の変動との位相差を模式的に示すグラフである。 タイヤのサイドウォールの温度と位相差との関係を示すグラフである。 タイヤのトレッドの温度と位相差との関係を示すグラフである。 タイヤのトレッドの温度とサイドウォールの温度とに基づいて得られる温度Tと、位相差との関係を示すグラフである。 2種類のタイヤについてのタイヤの温度Tと位相差δとの関係、及び、位相差δをタイヤの温度Tの対数関数で表した近似式を実線で示すグラフである。 2種類のタイヤについてのタイヤの温度Tと位相差δとの関係、及び、位相差δをタイヤの温度Tの指数関数で表した近似式を実線で示すグラフである。
 本発明の一実施形態に係るタイヤの転がり抵抗の評価装置(以下、単に「評価装置」と称す。)1は、タイヤの周方向の均一性を検査するためのタイヤユニフォミティ試験(JIS D 4233)を行うタイヤユニフォミティ試験機(TUM:Tire Uniformity Machine)であって、図1~図3に示すように、基台1bと、タイヤ軸2xと、タイヤ軸2x及びタイヤ軸2xに支持されたタイヤ2を回転させるためのタイヤ回転モータ2M(図3参照。図1及び図2には図示せず。)と、ドラム3と、ドラム3を図1及び図2の矢印方向に移動させるためのドラム移動モータ3M(図3参照。図1及び図2には図示せず。)と、タイヤ2に加わる荷重を検知するための荷重センサ5と、図1及び図2の矢印方向におけるドラム3の位置を検知するための位置センサ6と、タイヤ2の温度を検知するための温度センサ7a,7bと、試験装置1が配置された室内の温度(以下、「雰囲気温度」という。)を検知するための温度センサ8と、評価装置1の各部を制御するコントローラ1cとを有する。
 タイヤ軸2xは、基台1bに対して鉛直方向に沿った軸線を中心として回転可能に支持されている。タイヤ軸2x及びタイヤ軸2xに支持されたタイヤ2は、コントローラ1cによる制御の下、タイヤ回転モータ2Mが駆動されることにより、基台1bに対して鉛直方向に沿った軸線を中心として回転する。
 ドラム3は、鉛直方向の長さが径方向の長さよりも短い短尺広径の円筒状であり、その中心に鉛直方向に沿ったドラム軸3xが貫通している。ドラム軸3xの上端及び下端は、フレーム3fに回転可能に支持されている。即ち、ドラム3は、フレーム3fに対して鉛直方向に沿った軸線を中心として回転可能に支持されている。フレーム3fは、基台1bの上面に設けられた突出部1b1に対して、図1及び図2の矢印方向に移動可能に支持されている。フレーム3f及びフレーム3fに支持されたドラム3は、コントローラ1cによる制御の下、ドラム移動モータ3Mが駆動されることにより、基台1bに対して水平方向に移動する(具体的には、近接方向(タイヤ2に近接する方向:図1及び図2において左方向)及び離隔方向(タイヤ2から離隔する方向:図1及び図2において右方向)に交互に移動する)。ドラム3は、タイヤ2が走行する路面を模擬した外周面3aを有する。
 荷重センサ5は、外周面3aがタイヤ2のトレッド2aに接触した状態においてタイヤ2に加わる荷重を検知し、当該荷重を示す信号をコントローラ1cに送信する。荷重センサ5は、ドラム軸3xの上端とフレーム3fとの間に設けられており、ドラム軸3xに生じる荷重を検知する。
 位置センサ6は、突出部1b1に設けられており、図1及び図2の矢印方向におけるドラム3の位置を検知し、当該位置を示す信号をコントローラ1cに送信する。
 温度センサ7aは、タイヤ2のトレッド2a(詳細には、トレッド2aにおいてドラム3と接触しない部分)に対して離隔しつつ対向する位置に配置された非接触式の放射温度計であって、トレッド2aの温度を検知し、当該温度を示す信号をコントローラ1cに送信する。なお、温度センサ7aによる温度計測は、タイヤ2のトレッド2aとドラム3とが接触する前に行われることが望ましい。これにより、タイヤ2のトレッド2aの表面にドラム3の熱が出入りする影響を極力排除し、タイヤ2の温度を正確に検知することができる。
 温度センサ7bは、タイヤ2のサイドウォール2bに対して離隔しつつ対向する位置に配置された非接触式の放射温度計であって、サイドウォール2bの温度を検知し、当該温度を示す信号をコントローラ1cに送信する。
 温度センサ8は、試験装置1が配置された室内の任意の位置に配置された温度計であって、雰囲気温度を検知し、当該温度を示す信号をコントローラ1cに送信する。
 コントローラ1cは、例えばパーソナルコンピュータで構成され、演算処理装置であるCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を含む。ROMは、CPUが実行するプログラム等の固定データを記憶している。RAMは、CPUがプログラムを実行するために必要なデータを一時的に記憶する。
 次いで、図4を参照し、基準タイヤ(転がり抵抗が基準値内にあるタイヤ)についての位相差導出工程について説明する。
 なお、タイヤの種類によって位相差と転がり抵抗との関係が異なるため、タイヤの種類毎に基準タイヤを用いて以下の工程を行う必要がある。
 先ず、雰囲気温度よりも高い又は低い初期温度を決定する(S1)。例えば、コントローラ1cが、ROMに記憶されている複数の初期温度の中から、温度センサ8からの信号に基づく雰囲気温度よりも高い又は低い1つの初期温度を選択し、当該選択した1つの初期温度をRAMに記憶させる。
 S1の後、基準タイヤを加熱又は冷却することによって、基準タイヤの温度をS1で決定した初期温度とする(S2)。例えば、基準タイヤを加熱炉で加熱又は冷蔵庫で冷却し、温度センサ7a,7bからの信号に基づく基準タイヤの温度(トレッド2aの温度及びサイドウォール2bの温度の少なくとも一方に基づく温度。例えば、これらの平均値)がS1で決定された初期温度になったときに加熱又は冷却を停止する。
 S2の後、基準タイヤをタイヤ軸2xに装着する(S3)。
 S3の後、基準タイヤのトレッド2aの温度及びサイドウォール2bの温度を計測する(S4)。具体的には、コントローラ1cが、温度センサ7a,7bから信号を受信し、当該信号に基づく基準タイヤのトレッド2aの温度及びサイドウォール2bの温度をRAMに記憶させる。
 S4の後、S4の計測が初回であるか否かを判断する(S5)。初回の計測の場合(S5:YES)、処理をS7に移し、初回の計測でない場合(即ち、2回目以降の計測の場合)(S5:NO)、今回の計測温度と前回の計測温度との差の絶対値が所定値xを超えているか否かを判断する(S6)。具体的には、コントローラ1cが、直近のS4でRAMに記憶された基準タイヤのトレッド2aの温度及びサイドウォール2bの温度に基づく温度(例えば、これらの平均値)を今回の計測温度、前回のS4でRAMに記憶された基準タイヤのトレッド2aの温度及びサイドウォール2bの温度に基づく温度(例えば、これらの平均値)を前回の計測温度として、これらの差の絶対値を算出し、当該絶対値がROMに記憶されている所定値xを超えているか否かを判断する。
 今回の計測温度と前回の計測温度との差の絶対値が所定値xを超えている場合(S6:YES)、ドラム3を加振し、位相差δを導出する(S7)。具体的には、コントローラ1cが、基準タイヤにドラム3が接触した状態で基準タイヤに加わる荷重が変動するようにドラム移動モータ3Mを制御し、荷重センサ5及び位置センサ6からの信号に基づき基準タイヤに加わる荷重の変動とドラム3の位置の変動との位相差δを導出する。
 より詳細には、タイヤ回転モータ2Mの駆動により、基準タイヤを所定の回転数で回転させる。そして、基準タイヤの回転を維持しつつ、ドラム3を以下のように移動させる。先ず、ドラム3を近接方向に移動(前進)させることで基準タイヤのトレッド2aにドラム3を接触させて加圧し、基準タイヤに加わる荷重の平均値が所定値になったときにドラム3を停止させる。さらに、ドラム3を離隔方向に移動(後退)させることで基準タイヤに加わる荷重を低減させ、ドラム3が基準タイヤから離隔する前にドラム3を停止させて再び近接方向に移動(前進)させる。そして、基準タイヤに加わる荷重の平均値が所定値になったときにドラム3を停止させて再び離隔方向に移動(後退)させ、基準タイヤに加わる荷重を低減させる。このようなドラム3の前進及び後退を繰り返し行う。
 このように、基準タイヤが回転した状態及びドラム3が基準タイヤに接触した状態を維持しつつ、ドラム3を交互に移動させる。この間(例えば1~2秒程度の短時間)に、コントローラ1cは、荷重センサ5及び位置センサ6からの信号を受信し、基準タイヤに加わる荷重の変動とドラム3の位置の変動との位相差δを導出する。
 タイヤ2に加わる荷重とドラム3の位置とをグラフ上にプロットすると、図6に示すような変化曲線が得られる。タイヤ2に加わる荷重の変化曲線は、タイヤ2のゴムの減衰特性により、ドラム3の位置の変化曲線よりも位相差δだけ早く記録される。
 なお、ドラム3の前進及び後退の周波数は、例えば2~6Hzであるが、タイヤ2の種類や転がり抵抗等に依存するため、当該タイヤに合致した周波数を実験により予め設定しておくことが好ましい。また、ドラム3の移動制御を容易にする観点から、S7においてドラム3を停止させる位置(近接方向の最も下流側の位置(即ち、タイヤ2に加わる荷重の平均値が所定値になる位置)及び近接方向の最も上流側の位置(即ち、タイヤ2から離隔する直前の位置))を、コントローラ1cのROMに記憶させておくことが好ましい。
 S7の後、基準タイヤからドラム3を離隔させ、基準タイヤの空気を抜き、基準タイヤをタイヤ軸2xから取り外す(S8)。具体的には、コントローラ1cが、ドラム移動モータ3Mを制御してドラム3を離隔方向に移動させることで、基準タイヤからドラム3を離隔させる。その後、作業者が、基準タイヤをタイヤ軸2xから取り外し、基準タイヤの空気を抜く。
 S8の後、所定時間(例えば10秒)が経過したか否かを判断する(S9)。所定時間が経過していない場合(S9:NO)、当該処理を繰り返す。所定時間が経過した場合(S9:YES)、処理をS3に戻し、空気圧を所定値とした基準タイヤをタイヤ軸2xに装着する。
 今回の計測温度と前回の計測温度との差の絶対値が所定値x以下の場合(S6:NO)、初期温度を変更するか否かを判断する(S10)。具体的には、コントローラ1cが、ROMに記憶されている複数の初期温度のうち、S1で決定されていない初期温度があれば、初期温度を変更する(S10:YES)と判断して、当該初期温度に変更し、処理をS2に戻す。一方、コントローラ1cは、ROMに記憶されている複数の初期温度のうち、S1で決定されていない初期温度がなければ、初期温度を変更しない(S10:NO)と判断し、処理をS11に進める。
 S11では、下記式(2)のタイヤの温度Tにおけるパラメータaを決定する。式(2)はコントローラ1cのROMに記憶されており、S11で算出されたパラメータaの値はコントローラ1cのRAMに記憶される。
 T=a・T+(1-a)・T (2)
(T:サイドウォール2bの温度(℃)、T:トレッド2aの温度(℃)、a:パラメータ)
 上記式(2)において、a=1の場合、タイヤの温度Tはサイドウォール2bの温度となる。a=0の場合、タイヤの温度Tはトレッド2aの温度となる。パラメータaは、タイヤの種類毎に決定される。
 具体的には、パラメータaを変化させた複数のグラフ(タイヤの温度Tと位相差δとの関係を示す複数のグラフ)を試験装置1のディスプレイに表示し、当該複数のグラフのうちデータのバラツキの最も小さいグラフに対応するパラメータaを選択する。
 例えば、a=1の場合のグラフ(即ち、タイヤのサイドウォール2bの温度と位相差δとの関係を示すグラフ:図7参照)と、a=0の場合のグラフ(即ち、タイヤのトレッド2aの温度と位相差δとの関係を示すグラフ:図8参照)とでは、図8のグラフの方が図7のグラフよりもデータのバラツキが小さい。また、トレッド2aの温度はサイドウォール2bの温度よりも数℃高くなる傾向があり、図8のグラフのデータは図7のグラフのデータに比べて右側にシフトしている。
 a=0.3の場合のグラフ(図9参照)は、図8のグラフよりもさらにデータのバラツキが小さい。この場合、S11では、a=0.3と決定する。
 なお、図7~図9のグラフは、初期温度を70℃、60℃、50℃、40℃と変化させ、加熱炉で基準タイヤを加熱した後、基準タイヤの温度が各初期温度から雰囲気温度に近づく過程において、初期温度から雰囲気温度までの範囲内にある複数の温度における位相差δを導出した結果である。また、S3~S8の工程を30秒で行い、基準タイヤの空気圧を200kPaとし、ドラム3の前進及び後退の周波数を5.5Hzとし、2秒間における基準タイヤに加わる荷重とドラム3の位置とのデータを採取して分析した結果である。
 S11の後、複数の温度における位相差δに基づいて、位相差δとタイヤの温度Tとの関係を示す近似式(下記式(1))におけるパラメータα,β,γを最小二乗法等により算出し、近似式(式(1))を決定する(S12)。式(1)はコントローラ1cのROMに記憶されており、S12で算出されたパラメータα,β,γの値はコントローラ1cのRAMに記憶される。パラメータα,β,γは、タイヤの種類毎に決定される。
 δ=α・exp(-γ・T)+β (1)
(δ:位相差(°)、α,β,γ:パラメータ、T:タイヤの温度(℃))
 図10及び図11に、A,B2種類のタイヤについてのタイヤの温度Tと位相差δとの関係が示されている。図10には位相差δをタイヤの温度Tの対数関数で表した近似式が実線で示されており、図11には位相差δをタイヤの温度Tの指数関数で表した近似式が実線で示されている。図10では、40℃以上の高温領域において、導出された位相差と近似式による位相差との誤差が大きい。一方、図11では、低温領域から40℃以上の高温領域に亘って、導出された位相差と近似式による位相差との誤差が小さい。
 S12の後、当該ルーチンを終了する。
 次いで、図5を参照し、転がり抵抗評価工程について説明する。
 先ず、評価対象となるタイヤ(以下、「対象タイヤ」という。)をタイヤ軸2xに装着する(S51)。
 S51の後、対象タイヤのトレッド2aの温度及びサイドウォール2bの温度を計測する(S52)。具体的には、コントローラ1cが、温度センサ7a,7bから信号を受信し、当該信号に基づく対象タイヤのトレッド2aの温度及びサイドウォール2bの温度をRAMに記憶させる。
 S52の後、タイヤユニフォミティ試験を行う(S53)。具体的には、タイヤ回転モータ2Mの駆動により対象タイヤを所定の回転数で回転させると共に、ドラム移動モータ3Mの駆動によりドラム3を近接方向に移動させることで、対象タイヤのトレッド2aにドラム3を接触させて加圧し、荷重センサ5によって検知された対象タイヤに加わる荷重の平均値が所定値になったときに、ドラム移動モータ3Mの駆動を停止してドラム3を停止させる。そして、対象タイヤが正方向及び逆方向のそれぞれにおいて1回転する間に対象タイヤに加わる荷重を荷重センサ5で検知する。これにより、対象タイヤが1回転する間に対象タイヤに加わる荷重がどのように変動するかを測定することができ、当該測定結果に基づいてタイヤユニフォミティを評価することができる。このようなタイヤユニフォミティ試験は、タイヤ1本につき30秒程度の短時間で行うことができるので、製造ラインで製造される全てのタイヤに対して迅速に試験を行うことが可能である。
 S53の後、ドラム3を加振し、位相差δを導出する(S54)。具体的には、S7と同様に、コントローラ1cが、対象タイヤにドラム3が接触した状態で対象タイヤに加わる荷重が変動するようにドラム移動モータ3Mを制御し、荷重センサ5及び位置センサ6からの信号に基づき対象タイヤに加わる荷重の変動とドラム3の位置の変動との位相差δを導出する。
 S54の後、対象タイヤの種類に対応する基準タイヤについての位相差導出工程(図4参照)のS12で決定された近似式(上記式(1))に、対象タイヤの温度T(対象タイヤの種類に対応する基準タイヤについての位相差導出工程(図4参照)のS11で決定されたパラメータaを用いた上記式(2)と、S52の計測結果とから得られる温度T)を当てはめて、基準タイヤの位相差δbを算出する(S55)。位相差δbは、対象タイヤの種類に対応する基準タイヤについての位相差導出工程(図4参照)のS6で導出された複数の温度(初期温度から雰囲気温度までの範囲内にある複数の温度)における位相差δのうち、対象タイヤの温度に対応する位相差に該当する。
 S55の後、S55で算出した位相差δbとS54で導出した対象タイヤの位相差δとの差の絶対値が許容値(例えば0.1°)以下であるか否かを判断する(S56)。例えば、S54で導出した対象タイヤの位相差δと、対象タイヤの温度Tとの関係が、図11に示す2本の破線の曲線で挟まれた範囲内にあれば、絶対値が許容値以下である(S56:YES)と判断され、当該範囲内になければ、絶対値が許容値以下でない(S56:NO)と判断される。
 絶対値が許容値以下である場合(S56:YES)、対象タイヤの転がり抵抗が合格であると判定する(S57)。S57で合格と判定された対象タイヤは、製品規格を満たすタイヤとして扱われる。
 絶対値が許容値以下でない場合(S56:NO)、対象タイヤの転がり抵抗が不合格であると判定する(S58)。この場合、必要に応じて、転がり抵抗試験機等で対象タイヤの転がり抵抗を計測し、最終的な合否判定を行う。最終的に不合格と判定された対象タイヤは、必要に応じて廃棄される。
 S57又はS58の後、当該ルーチンを終了する。
 以上に述べたように、本実施形態によれば、基準タイヤについて位相差(タイヤ2に加わる荷重と、ドラム3の位置の変動との位相差)を導出するとき、加熱又は冷却によって雰囲気温度よりも高い又は低い初期温度とされた基準タイヤの温度が初期温度から雰囲気温度に近づく過程において、初期温度から雰囲気温度まで(本実施形態では、今回の計測温度と前回の計測温度との差の絶対値が所定値x以下となるまで)の範囲内にある複数の温度における位相差δを導出する(図4のS2~S7~S9:YES~S7等参照)。そして、基準タイヤについて導出した複数の温度における位相差δのうち評価対象となるタイヤの温度に対応する位相差δbと、評価対象となるタイヤについて導出した位相差δとを比較し、評価対象となるタイヤの転がり抵抗を評価する(図5のS54~S56参照)。これにより、25℃との差が大きい温度においても、転がり抵抗を適切に評価することができる。また、雰囲気温度を変える工程が必要な場合に比べ、転がり抵抗を容易に評価することができる。即ち、本実施形態によれば、タイヤの任意の温度における転がり抵抗を適切かつ容易に評価することができる。
 コントローラ1cは、基準タイヤについて位相差δを導出するとき、初期温度を変えて、基準タイヤの温度が初期温度から雰囲気温度に近づく複数の過程の各々において、複数の温度における位相差δを導出する(図4のS10参照)。この場合、初期温度を変えて複数の過程で位相差δを導出することにより、位相差δに対する初期温度の影響を把握することができ、初期温度の影響を排除したバラツキの小さい基準タイヤの位相差δを導出することが可能となる。
 コントローラ1cは、基準タイヤについて複数の温度における位相差δを導出する場合に、複数の温度の各々において位相差δを導出するとき、基準タイヤにドラム3が接触した状態で基準タイヤに加わる荷重が変動するようにドラム移動モータ3Mを制御し、複数の温度の1つである第1温度において位相差δを導出した後、複数の温度の1つである第1温度とは異なる第2温度において位相差δを導出する前に、基準タイヤからドラム3が離隔するようにドラム移動モータ3Mを制御する(図4のS8参照)。タイヤ2においてドラム3が接触する部分(トレッド2a)の表面温度は、タイヤ2とドラム3とが接触した状態が維持されると、当該表面にドラム3の熱が出入りすることで、タイヤ2の内部(ゴム部分)の温度と差が生じる傾向にある。この場合に、タイヤ2の当該表面の温度を計測すると、計測温度がタイヤ2の内部の温度と異なり得る。また、タイヤ2とドラム3とが接触した状態でタイヤ2を回転させ続けると、タイヤ2の温度が上昇していくため、初期温度を雰囲気温度よりも高い温度として基準タイヤの温度が初期温度から雰囲気温度に向けて下がっていく過程で位相差δを導出する場合に、基準タイヤの温度が下がり難いという問題が生じ得る。上記構成によれば、各温度での位相差導出の前後で基準タイヤからドラム3を離隔させることにより、基準タイヤの計測温度がドラム3の温度の影響を受けるのを抑制することでき、また、基準タイヤの温度の上昇を防止して上記問題を抑制することができる。
 コントローラ1cは、基準タイヤについて導出した複数の温度における位相差δに基づいて、位相差δとタイヤの温度Tとの関係を示す近似式を決定する(図4のS12参照)。また、コントローラ1cは、決定した近似式に評価対象となるタイヤの温度Tを当てはめて得られる位相差δbと、評価対象となるタイヤについて導出した位相差δとを比較し、評価対象となるタイヤの転がり抵抗を評価する(図5のS56~S58参照)。この場合、予め決定された近似式に評価対象となるタイヤの温度Tを当てはめて得られる位相差δbと、評価対象となるタイヤについて導出された位相差δとを比較することで、転がり抵抗の評価を容易に行うことができる。
 コントローラ1cは、近似式として上記式(1)を用い、基準タイヤについて導出した複数の温度における位相差δに基づいて、式(1)におけるパラメータα,β,γを算出することで、近似式を決定する(図4のS12参照)。上述のとおり、位相差δをタイヤの温度Tの対数関数で表した近似式では、40℃以上の高温領域において、導出された位相差δと近似式による位相差との誤差が大きい(図10参照)。これに対し、上記式(1)のように位相差δをタイヤの温度Tの指数関数で表した近似式によれば、低温領域から40℃以上の高温領域に亘って、導出された位相差δと近似式による位相差との誤差が小さい(図11参照)。また、上記式(1)によれば、α,β,γというわずか3つパラメータを算出して記憶すればよいため、算出にかかる時間を短くかつメモリの容量を小さくすることができる。
 本実施形態では、タイヤの温度Tとして、タイヤのトレッド2aの温度を少なくとも用いる(上記式(2)参照)。トレッド2aは、サイドウォール2bよりも、厚みが大きくかつ変形抵抗が大きく、タイヤのエネルギ損失への寄与が大きい。上記構成によれば、タイヤの温度Tとしてトレッド2aの温度を少なくとも用いることで、位相差δの温度特性(タイヤの温度Tに応じた位相差δの特性)を高精度に導出できる可能性が高い。
 本実施形態では、タイヤの温度Tとして、タイヤのトレッド2aの温度と、タイヤのサイドウォール2bの温度とを用いる(上記式(2)参照)。この場合、トレッド2aの温度とサイドウォール2bの温度との両方を用いることにより、タイヤの温度Tをより柔軟に設定することができる。
 本実施形態では、タイヤの温度Tとして、上記式(2)で表される温度Tを用いる。この場合、タイヤの温度Tをより汎用的に設定することができる。
 コントローラ1cは、タイヤ2の回転を維持した状態で、タイヤ2に加わる荷重が変動するようにドラム移動モータ3Mを制御し、荷重センサ5及び位置センサ6からの信号に基づき位相差δを導出する。この場合、タイヤ2の周方向の平均的な位相差を導出することができる。
 本実施形態に係る評価装置1は、タイヤ2の周方向の均一性を検査するためのタイヤユニフォミティ試験を行うタイヤユニフォミティ試験機である。タイヤの全数試験が行われるタイヤユニフォミティ試験機において、タイヤの温度だけでなく雰囲気温度を20℃以上30℃以下に管理するのは困難であり、一般に温度管理はなされておらず、加硫直後のタイヤの温度は50℃にも及ぶ場合がある。しかしながら、本実施形態によれば、タイヤの任意の温度における転がり抵抗を適切かつ容易に評価することができるため、タイヤユニフォミティ試験機においても有効である。
 コントローラ1cは、評価対象となるタイヤについて、タイヤユニフォミティ試験を行った後に、位相差δを導出する(図5のS53,S54参照)。この場合、タイヤユニフォミティ試験を行った後は、タイヤのゴムの特性が安定するため、どのタイヤに対しても同じ条件で試験を行うことが可能となり、タイヤの評価精度を高めることができる。
 以上、本発明の好適な実施の形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な設計変更が可能なものである。
 ・評価対象となるタイヤについてタイヤユニフォミティ試験を行った後に位相差を導出することに限定されず、評価対象となるタイヤについてタイヤユニフォミティ試験を行う前に位相差を導出してもよい。
 ・本発明に係る評価装置は、タイヤユニフォミティ試験機に限定されず、他のタイヤ試験装置(バランサ等)であってもよい。加圧部材を有さない装置(バランサ等)の場合は、装置に加圧部材を別途設けることで、本発明を実施することができる。
 ・製造されたタイヤの全てについて評価を行うことに限定されず、製造されたタイヤの一部について評価を行ってもよい(即ち、抜き取り試験を行ってもよい)。
 ・タイヤの種類に応じて、タイヤの温度としてタイヤのトレッドの温度及びタイヤのサイドウォールの温度のいずれを用いるかを切り替えてもよい。例えば、基準タイヤについて、トレッドの温度及びサイドウォールの温度の両方において、初期温度を変えて複数の過程で位相差を導出し、トレッドの温度及びサイドウォールの温度のうちデータのバラツキが小さい方を用いてよい。
 ・温度センサは、上述の実施形態では2つ設けているが、1つ以上であればよく、例えばタイヤのトレッドの温度を検知するための温度センサだけを設けてもよい。
 ・式(2)におけるパラメータaは、上述の実施形態ではパラメータaを変化させた複数のグラフのうちデータのバラツキの最も小さいグラフに対応するものを選択することにより決定されるが、これに限定されず、例えば、式(1)に式(2)を代入して最小二乗法により式(1)のパラメータα、β、γと同時に決定されてもよい。
 ・タイヤの温度として、式(2)以外の式(例えば、トレッドの温度とサイドウォールの温度との平均値)で表される温度Tを用いてもよい。
 ・近似式として、式(1)以外の式を用いてもよい。
 ・近似式を決定せず、基準タイヤについての複数の温度における位相差に関する点在するデータに基づいて、転がり抵抗を評価してもよい。
 ・タイヤの回転を停止させた状態で、加圧部材の移動によりタイヤに加わる荷重を変動させ、位相差を導出してもよい。
 ・基準タイヤについて位相差を導出する場合に、複数の温度の各々において、位相差を導出してから基準タイヤから加圧部材を離隔させた後、基準タイヤをタイヤ軸から取り外したり基準タイヤの空気を抜いたりしなくてもよい。また、第1温度において位相差を導出した後、第2温度において位相差を導出する前に、基準タイヤから加圧部材を離隔させなくてもよい。
 ・初期温度を変えなくてもよい。
 本出願は、2016年4月15日出願の日本国特許出願(特願2016-082199)に基づくものであり、その内容はここに参照として取り込まれる。
 1 評価装置
 1c コントローラ(位相差導出部、転がり抵抗評価部、近似式決定部)
 2 タイヤ
 2a トレッド
 2b サイドウォール
 3 ドラム(加圧部材)
 3a 外周面(表面)
 3M ドラム移動モータ(移動機構)
 5 荷重センサ
 6 位置センサ
 7a,7b 温度センサ

Claims (14)

  1.  タイヤが走行する路面を模擬した表面を有する加圧部材と、
     前記加圧部材を、前記タイヤに近接する方向である近接方向及び前記タイヤから離隔する方向である離隔方向に、交互に移動させるための移動機構と、
     前記加圧部材の前記表面が前記タイヤに接触した状態において前記タイヤに加わる荷重を検知するための荷重センサと、
     前記近接方向及び前記離隔方向に沿った方向における前記加圧部材の位置を検知するための位置センサと、
     前記タイヤに加わる荷重が変動するように前記移動機構を制御し、前記荷重センサ及び前記位置センサからの信号に基づき前記荷重の変動と前記加圧部材の位置の変動との位相差を導出する位相差導出部と、
     基準タイヤについて前記位相差導出部が導出した前記位相差と評価対象となるタイヤについて前記位相差導出部が導出した前記位相差とを比較し、前記評価対象となるタイヤの転がり抵抗を評価する転がり抵抗評価部とを備え、
     前記位相差導出部は、前記基準タイヤについて前記位相差を導出するとき、加熱又は冷却によって雰囲気温度よりも高い又は低い初期温度とされた前記基準タイヤの温度が前記初期温度から雰囲気温度に近づく過程において、前記初期温度から雰囲気温度までの範囲内にある複数の温度における前記位相差を導出し、
     前記転がり抵抗評価部は、前記基準タイヤについて前記位相差導出部が導出した前記複数の温度における前記位相差のうち前記評価対象となるタイヤの温度に対応する位相差と、前記評価対象となるタイヤについて前記位相差導出部が導出した位相差とを比較し、前記評価対象となるタイヤの転がり抵抗を評価することを特徴とする、タイヤの転がり抵抗の評価装置。
  2.  前記位相差導出部は、前記基準タイヤについて前記位相差を導出するとき、前記初期温度を変えて、前記基準タイヤの温度が前記初期温度から雰囲気温度に近づく複数の前記過程の各々において、前記複数の温度における前記位相差を導出することを特徴とする、請求項1に記載の評価装置。
  3.  前記位相差導出部は、前記基準タイヤについて前記複数の温度における前記位相差を導出する場合に、
     前記複数の温度の各々において前記位相差を導出するとき、前記基準タイヤに前記加圧部材が接触した状態で前記基準タイヤに加わる荷重が変動するように前記移動機構を制御し、
     前記複数の温度の1つである第1温度において前記位相差を導出した後、前記複数の温度の1つである前記第1温度とは異なる第2温度において前記位相差を導出する前に、前記基準タイヤから前記加圧部材が離隔するように前記移動機構を制御することを特徴とする、請求項1に記載の評価装置。
  4.  前記位相差導出部は、前記基準タイヤについて前記複数の温度における前記位相差を導出する場合に、
     前記複数の温度の各々において前記位相差を導出するとき、前記基準タイヤに前記加圧部材が接触した状態で前記基準タイヤに加わる荷重が変動するように前記移動機構を制御し、
     前記複数の温度の1つである第1温度において前記位相差を導出した後、前記複数の温度の1つである前記第1温度とは異なる第2温度において前記位相差を導出する前に、前記基準タイヤから前記加圧部材が離隔するように前記移動機構を制御することを特徴とする、請求項2に記載の評価装置。
  5.  前記基準タイヤについて前記位相差導出部が導出した前記複数の温度における前記位相差に基づいて、前記位相差と前記タイヤの温度との関係を示す近似式を決定する近似式決定部をさらに備え、
     前記転がり抵抗評価部は、前記近似式決定部が決定した近似式に前記評価対象となるタイヤの温度を当てはめて得られる位相差と、前記評価対象となるタイヤについて前記位相差導出部が導出した位相差とを比較し、前記評価対象となるタイヤの転がり抵抗を評価することを特徴とする、請求項1~4のいずれか1項に記載の評価装置。
  6.  前記近似式決定部は、前記近似式として下記式(1)を用い、前記基準タイヤについて前記位相差導出部が導出した前記複数の温度における前記位相差に基づいて、前記式(1)におけるパラメータを算出することで、前記近似式を決定することを特徴とする、請求項5に記載の評価装置。
     δ=α・exp(-γ・T)+β (1)
    (δ:位相差(°)、α,β,γ:パラメータ、T:前記タイヤの温度(℃))
  7.  前記タイヤの温度として、前記タイヤのトレッドの温度を少なくとも用いることを特徴とする、請求項6に記載の評価装置。
  8.  前記タイヤの温度として、前記タイヤのトレッドの温度と、前記タイヤのサイドウォールの温度とを用いることを特徴とする、請求項7に記載の評価装置。
  9.  前記タイヤの温度として、下記式(2)で表される温度Tを用いることを特徴とする、請求項8に記載の評価装置。
     T=a・T+(1-a)・T(2)
    (T:前記タイヤのサイドウォールの温度(℃)、T:前記タイヤのトレッドの温度(℃)、a:パラメータ)
  10.  前記位相差導出部は、前記タイヤの回転を維持した状態で、前記タイヤに加わる荷重が変動するように前記移動機構を制御し、前記荷重センサ及び前記位置センサからの信号に基づき前記位相差を導出することを特徴とする、請求項1に記載の評価装置。
  11.  前記タイヤの周方向の均一性を検査するためのタイヤユニフォミティ試験を行うタイヤユニフォミティ試験機であることを特徴とする、請求項1に記載の評価装置。
  12.  前記位相差導出部は、前記評価対象となるタイヤについて、前記タイヤユニフォミティ試験を行った後に、前記位相差を導出することを特徴とする、請求項11に記載の評価装置。
  13.  前記タイヤの温度として、前記タイヤのトレッドの温度を少なくとも用いることを特徴とする、請求項1に記載の評価装置。
  14.  タイヤが走行する路面を模擬した表面を有する加圧部材と、前記加圧部材を、前記タイヤに近接する方向である近接方向及び前記タイヤから離隔する方向である離隔方向に、交互に移動させるための移動機構と、前記加圧部材の前記表面が前記タイヤに接触した状態において前記タイヤに加わる荷重を検知するための荷重センサと、前記近接方向及び前記離隔方向に沿った方向における前記加圧部材の位置を検知するための位置センサとを有するタイヤの転がり抵抗の評価装置を用いて、タイヤの転がり抵抗を評価する方法において、
     前記タイヤに加わる荷重が変動するように前記移動機構を制御し、前記荷重センサ及び前記位置センサからの信号に基づき前記荷重の変動と前記加圧部材の位置の変動との位相差を導出する位相差導出工程と、
     基準タイヤについて前記位相差導出工程で導出した前記位相差と評価対象となるタイヤについて前記位相差導出工程で導出した前記位相差とを比較し、前記評価対象となるタイヤの転がり抵抗を評価する転がり抵抗評価工程とを備え、
     前記基準タイヤについての前記位相差導出工程では、加熱又は冷却によって雰囲気温度よりも高い又は低い初期温度とされた前記基準タイヤの温度が前記初期温度から雰囲気温度に近づく過程において、前記初期温度から雰囲気温度までの範囲内にある複数の温度における前記位相差を導出し、
     前記転がり抵抗評価工程では、前記基準タイヤについての前記位相差導出工程で導出した前記複数の温度における前記位相差のうち前記評価対象となるタイヤの温度に対応する位相差と、前記評価対象となるタイヤについての前記位相差導出工程で導出した位相差とを比較し、前記評価対象となるタイヤの転がり抵抗を評価することを特徴とする、タイヤの転がり抵抗の評価方法。
PCT/JP2017/014720 2016-04-15 2017-04-10 タイヤの転がり抵抗の評価装置及び評価方法 WO2017179552A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187028766A KR102058084B1 (ko) 2016-04-15 2017-04-10 타이어의 구름 저항의 평가 장치 및 평가 방법
EP17782365.5A EP3444586A4 (en) 2016-04-15 2017-04-10 DEVICE AND METHOD FOR ASSESSING THE ROLL RESISTANCE OF A TIRE
CN201780023024.0A CN109073512B (zh) 2016-04-15 2017-04-10 轮胎的滚动阻力的评价装置及评价方法
US16/091,843 US20190086292A1 (en) 2016-04-15 2017-04-10 Device and method for evaluating rolling resistance of tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016082199A JP6673739B2 (ja) 2016-04-15 2016-04-15 タイヤの転がり抵抗の評価装置及び評価方法
JP2016-082199 2016-04-15

Publications (1)

Publication Number Publication Date
WO2017179552A1 true WO2017179552A1 (ja) 2017-10-19

Family

ID=60041585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014720 WO2017179552A1 (ja) 2016-04-15 2017-04-10 タイヤの転がり抵抗の評価装置及び評価方法

Country Status (7)

Country Link
US (1) US20190086292A1 (ja)
EP (1) EP3444586A4 (ja)
JP (1) JP6673739B2 (ja)
KR (1) KR102058084B1 (ja)
CN (1) CN109073512B (ja)
TW (1) TWI625513B (ja)
WO (1) WO2017179552A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160810B (zh) * 2019-06-14 2020-11-24 青岛科技大学 室内多种工况下轮胎滚阻测试方法
KR102401493B1 (ko) * 2020-11-19 2022-05-24 넥센타이어 주식회사 타이어 예상마일리지 추정방법 및 이를 이용한 타이어 예상마일리지의 추정이 가능한 내마모 시험장치
CN112985849B (zh) * 2021-04-01 2024-05-14 中信戴卡股份有限公司 一种用于汽车底盘模拟路试的疲劳试验设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218746A (ja) * 2006-02-16 2007-08-30 Bridgestone Corp 摩擦摩耗試験装置
JP2009222656A (ja) * 2008-03-18 2009-10-01 Yokohama Rubber Co Ltd:The ベルト体の走行発熱予測方法および走行抵抗力予測方法並びに回転体の走行発熱予測方法および転動抵抗予測方法
WO2015174323A1 (ja) * 2014-05-12 2015-11-19 株式会社神戸製鋼所 タイヤの転がり抵抗予測方法およびタイヤの転がり抵抗予測装置
JP2016075503A (ja) * 2014-10-03 2016-05-12 住友ゴム工業株式会社 タイヤの転がり抵抗の評価用方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539471B2 (ja) * 1998-02-19 2004-07-07 トヨタ自動車株式会社 タイヤの振動特性測定方法
KR200370818Y1 (ko) * 2004-09-30 2004-12-17 금호타이어 주식회사 타이어 가열 가진장치
JP4940675B2 (ja) 2006-01-31 2012-05-30 横浜ゴム株式会社 タイヤの摩擦係数の温度依存性予測方法
US7591167B2 (en) 2006-11-20 2009-09-22 Potts Gerald R Methods and systems for measurement of tire rolling resistance
JP5011328B2 (ja) * 2009-03-03 2012-08-29 株式会社神戸製鋼所 タイヤの転がり抵抗測定装置
JP5493439B2 (ja) 2009-04-10 2014-05-14 横浜ゴム株式会社 タイヤの転がり抵抗評価方法、それを用いたタイヤ評価システム及びタイヤの転がり抵抗評価プログラム
JP5914216B2 (ja) * 2012-06-30 2016-05-11 株式会社ブリヂストン タイヤトレッド用ゴム組成物
CN108663147B (zh) * 2012-10-12 2023-05-12 国际计测器株式会社 转矩赋予单元、驱动装置和轮胎测试装置
EP2793013B1 (en) * 2013-04-19 2016-02-10 Snap-on Equipment Srl a unico socio Automotive shop service apparatus having means for determining the rolling resistance coefficient of a tyre

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218746A (ja) * 2006-02-16 2007-08-30 Bridgestone Corp 摩擦摩耗試験装置
JP2009222656A (ja) * 2008-03-18 2009-10-01 Yokohama Rubber Co Ltd:The ベルト体の走行発熱予測方法および走行抵抗力予測方法並びに回転体の走行発熱予測方法および転動抵抗予測方法
WO2015174323A1 (ja) * 2014-05-12 2015-11-19 株式会社神戸製鋼所 タイヤの転がり抵抗予測方法およびタイヤの転がり抵抗予測装置
JP2016075503A (ja) * 2014-10-03 2016-05-12 住友ゴム工業株式会社 タイヤの転がり抵抗の評価用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUNSUKE NAKAMORI ET AL.: "Concrete-sei Hyojun Yuka no Sumen ni Okeru Yuka Shogekion Level ni Ataeru Hendo Yoin ni Tsuite", REPORT OF THE 2010 SPRING MEETING, March 2010 (2010-03-01), pages 1183 - 1186, XP009516382 *

Also Published As

Publication number Publication date
EP3444586A4 (en) 2019-11-27
EP3444586A1 (en) 2019-02-20
JP6673739B2 (ja) 2020-03-25
TW201805607A (zh) 2018-02-16
KR102058084B1 (ko) 2020-02-07
KR20180122391A (ko) 2018-11-12
US20190086292A1 (en) 2019-03-21
TWI625513B (zh) 2018-06-01
CN109073512A (zh) 2018-12-21
CN109073512B (zh) 2020-12-25
JP2017191077A (ja) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6412437B2 (ja) タイヤの転がり抵抗予測手法およびタイヤの転がり抵抗予測装置
WO2017179552A1 (ja) タイヤの転がり抵抗の評価装置及び評価方法
JP4357074B2 (ja) タイヤの摩耗予測方法及びタイヤの摩耗予測装置
JP2752666B2 (ja) 車両の車輪に関するパラメータを監視する方法
US7624629B2 (en) Tire characteristic judging method and tire characteristic judging device
EP1767422B1 (en) Method and apparatus for evaluating a cornering stability of a wheel
JP5860485B2 (ja) タイヤの転がり抵抗試験方法、及び試験装置
JP6366137B2 (ja) タイヤの転がり抵抗の評価用方法
JP5114997B2 (ja) タイヤ試験装置およびタイヤ試験方法
US20190257718A1 (en) Device for evaluating tire rolling resistance
JP2007248294A (ja) タイヤ性能測定装置およびタイヤ性能測定方法
EP3205999B1 (en) Use of a method for estimating load model in a tyre uniformity tester
JP6558857B2 (ja) 転がり抵抗測定方法および装置
JP2019211316A (ja) タイヤの転がり抵抗の試験方法
Büttner et al. An effective method to identify thermodynamic tire characteristics through driving maneuvers
JP2017150897A (ja) コーナリング性能評価方法
JP7151292B2 (ja) タイヤの性能の評価方法
JP3987422B2 (ja) タイヤの部材厚測定方法及びその装置
JP2022189314A (ja) 転がり抵抗の推定方法
JP2020016457A (ja) タイヤ性能値推定方法
CN110997355A (zh) 用于诊断车辆轮胎的充气状况的方法
JP2018205245A (ja) タイヤ性能を試験する試験方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187028766

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017782365

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017782365

Country of ref document: EP

Effective date: 20181115

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782365

Country of ref document: EP

Kind code of ref document: A1