WO2015170623A1 - ポリベンズイミダゾール炭素繊維及びその製造方法 - Google Patents

ポリベンズイミダゾール炭素繊維及びその製造方法 Download PDF

Info

Publication number
WO2015170623A1
WO2015170623A1 PCT/JP2015/062604 JP2015062604W WO2015170623A1 WO 2015170623 A1 WO2015170623 A1 WO 2015170623A1 JP 2015062604 W JP2015062604 W JP 2015062604W WO 2015170623 A1 WO2015170623 A1 WO 2015170623A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
carbon fiber
precursor fiber
pbi
primary
Prior art date
Application number
PCT/JP2015/062604
Other languages
English (en)
French (fr)
Inventor
寿平 入澤
浩章 羽鳥
曽根田 靖
昌也 児玉
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to EP15788589.8A priority Critical patent/EP3141637B1/en
Priority to US15/309,430 priority patent/US20170152612A1/en
Priority to KR1020167034289A priority patent/KR101871909B1/ko
Priority to JP2016517874A priority patent/JP6310549B2/ja
Publication of WO2015170623A1 publication Critical patent/WO2015170623A1/ja
Priority to US16/658,954 priority patent/US11473219B2/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/24Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/14Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles

Definitions

  • the present invention relates to a polybenzimidazole carbon fiber using a precursor fiber containing polybenzimidazole as a fiber raw material and a method for producing the same.
  • Carbon fiber is widely used from aircraft to building materials, and if it improves productivity and lowers prices, it can be used as an alternative to steel plates in automobile bodies.
  • carbon fiber is The mainstream is to produce polyacrylonitrile (PAN) fibers and pitch fibers as fiber raw materials (precursor fibers).
  • PAN polyacrylonitrile
  • pitch fibers as fiber raw materials (precursor fibers).
  • these precursor fibers require a pretreatment called an infusible treatment prior to carbonization, and this treatment constitutes a major barrier to cost and energy reduction required for production, and productivity improvement.
  • PAN fibers and pitch fibers melt in the process of carbonization treatment (high-temperature heat treatment at 1,000 ° C. or higher) and cannot maintain the fiber shape, so that they do not melt by air oxidation treatment called infusibilization treatment.
  • Carbon fiber is obtained by changing to fiber and carbonizing it.
  • infusibilization treatment in addition to the need to uniformly control the oxidation reaction, strict temperature condition management is required to suppress thermal runaway due to an exothermic reaction, and the treatment time is also long (approximately 30 minutes to 1 hour). Degree).
  • PBI polybenzimidazole
  • the PBI fiber can be carbonized while maintaining the fiber shape without performing the infusibilization treatment.
  • PBI fibers are spun and carbonized to obtain carbon fibers having an elastic modulus of 80 GPa and a strength of 670 MPa (see Patent Document 1).
  • a carbon fiber having a diameter of more than 100 ⁇ m can be produced by treating a basic PBI fiber with an acidic solvent to form a salt, its elastic modulus is 100 GPa, and its strength is 420 MPa.
  • Patent Document 2 the PBI carbon fiber obtained by carbonizing the PBI fiber has a problem of low elastic modulus and strength. Therefore, it is necessary to improve both the elastic modulus and strength for the practical application of the PBI carbon fiber.
  • an object of the present invention is to provide a PBI carbon fiber that can be efficiently produced without requiring an infusibilization treatment and that has an excellent elastic modulus and strength, and a method for producing the same.
  • Means for solving the problems are as follows. That is, ⁇ 1> It has a structure in which a precursor fiber containing polybenzimidazole having a structure represented by any one of the following general formulas (1) and (2) as a structural unit is heated to carbon fiber, and has tensile elasticity A polybenzimidazole carbon fiber having a rate of 100 GPa or more and a tensile strength of 0.8 GPa or more.
  • R 1 and R 3 in the general formulas (1) and (2) are each a trivalent or tetravalent aryl group represented by any one of the following structural formulas (1) to (10):
  • R 2 represents a divalent aryl group or an unsaturated heterocyclic group represented by any one of the structural formulas (1) to (10), and has 2 to 4 carbon atoms.
  • an alkenylene group, an oxygen atom, a sulfur atom or a sulfonyl group ⁇ 2>
  • the polybenzimidazole carbon fiber according to ⁇ 1> which is a continuous fiber having a fiber diameter of 8 ⁇ m or more.
  • ⁇ 3> Spinning a polymer containing polybenzimidazole having a structure represented by any of the following general formulas (1) and (2) in an acidic solution as a primary precursor fiber of the polymer
  • R 1 and R 3 in the general formulas (1) and (2) are each a trivalent or tetravalent aryl group represented by any one of the following structural formulas (1) to (10): Represents an unsaturated heterocyclic group, and R 2 represents a divalent aryl group or an unsaturated heterocyclic group represented by any one of the structural formulas (1) to (10), and has 2 to 4 carbon atoms. Or an alkenylene group, an oxygen atom, a sulfur atom or a sulfonyl group.
  • ⁇ 4> The method for producing a polybenzimidazole carbon fiber according to ⁇ 3>, wherein the acidic solution is polyphosphoric acid and the basic solution is an ethanol solution of triethylamine.
  • the secondary precursor fiber obtaining step neutralizes and removes polyphosphoric acid remaining in the primary precursor fiber by passing the primary precursor fiber through a bath of ethanol solution of triethylamine for 5 to 30 seconds.
  • the manufacturing method of the polybenzimidazole carbon fiber as described in said ⁇ 4> which is a process to make.
  • the primary precursor fiber acquisition step further coagulates a polymer reaction solution polymerized in the first acidic solution in a coagulation bath to obtain a primary coagulated product of the polymer.
  • a step of obtaining a coagulated product and a step of bringing the primary coagulated product into contact with a first basic solution to obtain a second coagulated product obtained by neutralizing and removing the first acid remaining in the primary coagulated product;
  • a secondary coagulated product obtaining step wherein the secondary coagulated product is dissolved in a second acidic solution to prepare a spinning stock solution, and the spinning stock solution is spun to obtain the primary precursor fiber of the polymer.
  • a secondary precursor fiber acquisition step wherein the primary precursor fiber is brought into contact with a second basic solution, and the second acidic solution remaining in the primary precursor fiber is neutralized and removed.
  • the method for producing a polybenzimidazole carbon fiber according to ⁇ 3> which is a step of obtaining a prepared secondary precursor fiber Law.
  • the first acidic solution is polyphosphoric acid
  • the first basic solution is an aqueous sodium hydrogen carbonate solution
  • the second acidic solution is methanesulfonic acid
  • the second basic solution is ethanol of triethylamine.
  • the method for producing a polybenzimidazole carbon fiber according to ⁇ 6> which is a solution.
  • the secondary precursor fiber acquisition step neutralizes methanesulfonic acid remaining in the primary precursor fiber by passing the primary precursor fiber through a bath of ethanol solution of triethylamine for 5 to 30 seconds.
  • the method for producing a polybenzimidazole carbon fiber according to ⁇ 7> which is a step of removing.
  • ⁇ 9> The method for producing a polybenzimidazole carbon fiber according to any one of ⁇ 3> to ⁇ 8>, wherein the heating temperature in the carbon fiber forming step is a temperature of 1,200 ° C. to 1,400 ° C.
  • the present invention it is possible to solve the above-mentioned problems in the prior art, and to provide a PBI carbon fiber that can be efficiently manufactured without an infusible treatment and that has excellent elastic modulus and strength, and a method for manufacturing the same. be able to.
  • FIG. 6 is a view showing a cross-sectional electron microscope image of a PBI carbon fiber according to Example 3.
  • FIG. 10 is a cross-sectional electron microscopic image of PBI carbon fibers according to Example 10.
  • FIG. It is a figure which shows the cross-sectional electron microscope image of the PBI carbon fiber which concerns on the comparative example 1.
  • FIG. It is a figure which shows the cross-sectional electron microscope image of the PBI carbon fiber which concerns on Example 15.
  • FIG. It is a figure which shows the cross-sectional electron microscope image of the PBI carbon fiber which concerns on Example 16.
  • FIG. It is a figure which shows the measurement result of a density.
  • the polybenzimidazole (PBI) carbon fiber of the present invention heats a precursor fiber containing PBI having a structure represented by any one of the following general formulas (1) and (2) as a structural unit to form a carbon fiber.
  • the tensile elastic modulus is 100 GPa or more and the tensile strength is 0.8 GPa or more.
  • R 1 and R 3 in the general formulas (1) and (2) are each a trivalent or tetravalent aryl group represented by any one of the following structural formulas (1) to (10): Represents an unsaturated heterocyclic group, and R 2 represents a divalent aryl group or an unsaturated heterocyclic group represented by any one of the structural formulas (1) to (10), and has 2 to 4 carbon atoms. Or an alkenylene group, an oxygen atom, a sulfur atom or a sulfonyl group.
  • alkenylene group examples include a vinylene group.
  • Such precursor fibers containing PBI can be carbonized while maintaining the fiber shape without performing infusibilization treatment. Therefore, it is possible to produce carbon fibers more efficiently than producing carbon fibers using PAN fibers or pitch fibers that require infusibilization as precursor fibers.
  • the PBI precursor fiber can be carbonized with a high carbonization yield. Thereby, it is possible to suppress structural disturbance due to the pyrolysis gas generated and released during carbonization and generation of voids (voids) that reduce the mechanical strength of the carbon fibers (including foaming).
  • the carbonization treatment can be performed at a very high speed. In addition, this allows carbonization of thick fibers that have a large volume with respect to the outer surface and are difficult for gas to escape during carbonization.
  • the PBI carbon fiber has a tensile modulus of 100 GPa or more and a tensile strength of 0.8 GPa or more, and is excellent in both modulus and strength.
  • the reason why such elastic modulus and strength can be obtained is that neutralization and removal of the acidic solution in the PBI precursor fiber with a basic solution in the production method described later, the PBI carbon fiber This invention is based on the knowledge that carbon fiber can be formed while maintaining the fiber structure of the precursor fiber obtained by the neutralization removal.
  • the tensile elastic modulus and the tensile strength can be measured by a single fiber tensile test according to JIS 7606 method.
  • the PBI carbon fiber maintains a high elastic modulus and strength even when the thick fiber is carbonized and thickened.
  • Commercially available carbon fibers such as PAN-based carbon fibers generally have a fiber diameter of about 7 ⁇ m.
  • the PBI carbon fiber has a fiber diameter of 2 ⁇ m to less than 8 ⁇ m. Even when the fiber diameter is increased to 8 ⁇ m or more, and further to 16 ⁇ m or more, high elastic modulus and strength are maintained.
  • the upper limit of the fiber diameter is about 30 ⁇ m.
  • the PBI carbon fiber it can be set as a continuous fiber (filament).
  • the PBI carbon fiber according to the present invention described above can be manufactured by the method for manufacturing the PBI carbon fiber according to the present invention described below.
  • the method for producing the PBI carbon fiber includes a primary precursor fiber acquisition step, a secondary precursor fiber acquisition step, and a carbon fiber conversion step.
  • ⁇ Primary precursor fiber acquisition step> a polymer containing polybenzimidazole having a structure represented by any one of the following general formulas (1) and (2) in an acidic solution as a structural unit is spun to spin the polymer. This is a step of obtaining a primary precursor fiber of coalescence.
  • R 1 and R 3 in the general formulas (1) and (2) are each a trivalent or tetravalent aryl group represented by any one of the following structural formulas (1) to (10): Represents an unsaturated heterocyclic group, and R 2 represents a divalent aryl group or an unsaturated heterocyclic group represented by any one of the structural formulas (1) to (10), and has 2 to 4 carbon atoms. Or an alkenylene group, an oxygen atom, a sulfur atom or a sulfonyl group.
  • examples of the alkenylene group include a vinylene group.
  • PBI a commercially available thing may be used and what was synthesize
  • terephthalic acid such as Wako Pure Chemical Industries, Ltd.
  • 4,4′-biphenyl-1,1 ′, 2,2′-tetramine such as Aldrich are used as starting materials. It can be carried out by a condensation polymerization reaction in an acidic solution.
  • the polymer may be the PBI itself, or a polymer blend of a copolymer or other polymer composed of the structural unit of the PBI and another structural unit as long as the effects of the present invention are not hindered. It may be a body. Further, the precursor fiber may be a fiber obtained from the polymer itself, but is obtained from a polymer having an arbitrary substituent added to the end of the polymer as long as the effect of the present invention is not impaired. It may be a fibrous body. Examples of the substituent include an ester group, an amide group, an imide group, a hydroxyl group, and a nitro group.
  • the spinning method can be roughly divided into two methods. That is, a first method in which a reaction solution obtained by subjecting the polymer to a polycondensation reaction in the acidic solution is directly spun as a spinning stock solution, and the acidic solution constituting the reaction solution is used as the first acidic solution.
  • the polymer coagulated product is once obtained from the reaction solution, and then a solution obtained by dissolving the polymer coagulated product in a second acidic solution for spinning is used as a spinning solution to perform spinning.
  • the acidic solution used in the first method is not particularly limited as long as it has a function as a catalyst that dissolves the starting material and the polymer to be generated and promotes polymerization, and specifically, And methanesulfonic acid in which polyphosphoric acid, polyphosphoric acid ester, diphenylcresyl phosphate, diphosphorus pentoxide, and the like are dissolved.
  • the polyphosphoric acid is preferable from the viewpoint of controlling the polymerization reaction.
  • the primary precursor fiber acquisition step includes a primary coagulum acquisition step and a secondary coagulum acquisition step, and is obtained in the secondary coagulum acquisition step.
  • the secondary coagulated product is dissolved in a second acidic solution to prepare a spinning stock solution, and the spinning stock solution is spun to obtain the primary precursor fiber of the polymer.
  • the primary coagulated product obtaining step is a step of obtaining the primary coagulated product of the polymer by coagulating the reaction solution of the polymer polymerized in the first acidic solution in a coagulation bath.
  • the first acidic solution the same acidic solution as that used in the first method can be used.
  • the coagulation liquid of the coagulation bath is not particularly limited as long as the polymer can be coagulated, and examples thereof include water, alcohol, methanesulfonic acid, polyphosphoric acid, dilute sulfuric acid, and the like. The water is preferred.
  • the primary coagulated product is brought into contact with a first basic solution, and the first acidic solution remaining in the primary coagulated product is neutralized and removed. It is the process of acquiring.
  • the first basic solution is not particularly limited as long as it neutralizes the first acidic solution.
  • an aqueous solution of sodium bicarbonate, sodium hydroxide, potassium hydroxide, triethylamine in ethanol The sodium bicarbonate aqueous solution is preferable from the viewpoint of preventing a decrease in the degree of polymerization.
  • the coagulated product may be washed with water or alcohol before or after washing with the first basic solution.
  • the secondary stock after washing is dissolved in the second acidic solution to prepare the spinning dope.
  • the second acidic solution is not particularly limited as long as the secondary coagulated product is soluble, and includes methanesulfonic acid, polyphosphoric acid, concentrated sulfuric acid, and the like. From the viewpoint of imparting a suitable viscosity, the methanesulfonic acid is preferable.
  • the spinning method in the first method and the second method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a known wet spinning method and a dry / wet spinning method.
  • the spun yarn may be stretched directly in a coagulation bath, or the wound yarn may be washed and then stretched in the bath.
  • the heat treatment is not limited in atmosphere, but is preferably performed in air or in a nitrogen atmosphere.
  • the heat treatment temperature and time can be appropriately selected, but the heat treatment temperature is preferably 200 ° C. to 600 ° C.
  • the stretching ratio is preferably about 1.2 to 10 times. As described above, the primary precursor fiber can be obtained.
  • ⁇ Secondary precursor fiber acquisition step> the primary precursor fiber is brought into contact with a basic solution, and a secondary precursor fiber obtained by neutralizing and removing the acidic solution remaining in the primary precursor fiber is acquired. It is a process to do.
  • the basic solution in the secondary precursor fiber acquisition step is not particularly limited as long as it neutralizes the acidic solution.
  • an ethanol solution of triethylamine, an aqueous solution of sodium hydrogen carbonate, an aqueous solution of sodium hydroxide, potassium hydroxide and the like can be mentioned. From the viewpoint that it is easy to remove excess alkali remaining in the fiber after the neutralization reaction.
  • the ethanol solution of triethylamine is preferable.
  • limiting in particular as the method of the said contact Although you may sprinkle the said basic solution on the said primary precursor fiber, the said primary precursor fiber is put in the bathtub of the said basic solution. A passing method is preferred.
  • the primary precursor fiber acquisition step is performed by the first method
  • the acidic solution is the polyphosphoric acid and the basic solution is the ethanol solution of triethylamine
  • the primary A method in which the precursor fiber is passed through a bath of the ethanol solution of triethylamine for 5 to 30 seconds is preferable.
  • the acidic solution in the primary precursor fiber can be effectively neutralized and removed.
  • the precursor fiber may be washed with water or alcohol before or after washing with the basic solution.
  • the secondary precursor fiber acquisition step brings the primary precursor fiber into contact with a second basic solution, and the primary precursor This is carried out as a step of obtaining secondary precursor fibers from which the second acidic solution remaining in the body fibers has been neutralized and removed.
  • the second basic solution is not particularly limited as long as it neutralizes the second acidic solution.
  • an ethanol solution of triethylamine, an aqueous solution of sodium bicarbonate, an aqueous solution of sodium hydroxide, potassium hydroxide The ethanol solution of triethylamine is preferable from the viewpoint that it is easy to remove excess alkali remaining in the fiber after the neutralization reaction.
  • the contacting method is not particularly limited and may be carried out by spraying the second basic solution onto the primary precursor fiber.
  • the primary precursor fiber is used as the second basic solution.
  • the method of letting it pass in the bathtub of this is preferable.
  • the second acidic solution is the methanesulfonic acid and the second basic solution is the ethanol solution of triethylamine
  • the primary precursor fiber is placed in a bath of the ethanol solution of triethylamine. It is preferable to pass for 5 to 30 seconds.
  • the second acidic solution in the primary precursor fiber can be effectively neutralized and removed.
  • the precursor fiber may be washed with water or alcohol before or after washing with the second basic solution.
  • the carbon fiber forming step is a step of heating the secondary precursor fiber at a temperature of 1,000 ° C. to 1,600 ° C. in an inert gas to form carbon fiber.
  • the heating temperature in the carbonized fiberizing step is 1,200 ° C. to 1,400 ° C., the PBI carbon fiber having more excellent elastic modulus and strength can be produced.
  • the PBI fiber has a characteristic that the fiber shape is maintained even when high-speed carbonization is performed at a rapid temperature increase rate.
  • the temperature raising rate during the heating is not particularly limited, and can be from a low temperature of 5 ° C./min to a high temperature raising rate of 15 ° C./second to 1,000 ° C./second.
  • said inert gas For example, nitrogen, argon gas, etc. are mentioned.
  • a graphitization step of graphitizing the PBI carbon fiber by heating at a higher temperature may be included continuously with the graphitization step.
  • the heating temperature of the graphitization step is not particularly limited, but is preferably 2,000 ° C to 3,200 ° C. With such a heating temperature, the carbon fiber having a high carbonization yield, high density, and sufficient mechanical properties can be produced. In addition, it is preferable to implement the said graphitization process under the said inert gas similarly to the said carbon fiber formation process.
  • PBI precursor fiber 1 First, 1 mol of terephthalic acid (manufactured by Wako Pure Chemical Industries, Ltd., vendor code No. 208-08162) and 1 mol of 4,4′-biphenyl-1,1 ′, 2,2′-tetraamine (Aldrich) Manufactured and sold by vendor code No. D12384), and these are subjected to a polycondensation reaction in polyphosphoric acid (manufactured by Sigma Aldrich, vendor code No. 208213) as a first acidic solution, and PBI polymer A reaction solution containing poly 2,2 ′-(p-phenylene) -5,5′-bibenzimidazole was prepared.
  • the reaction solution was introduced into a water bath as a coagulation bath, and the PBI polymer was coagulated into a fiber to obtain a primary coagulum (primary coagulum acquisition step).
  • the primary coagulated product was stirred in dimethylacetamide (DMAc) to remove impurities, and then the primary coagulated product was stirred in a 5 wt% sodium bicarbonate aqueous solution as a first basic solution. Then, the first acidic solution contained in the primary coagulated product was neutralized and removed to obtain a secondary coagulated product of the PBI polymer.
  • the secondary coagulated product was washed with water and alcohol and then vacuum-dried at 240 ° C. for 1 day (secondary coagulated product obtaining step).
  • the polycondensation reaction of the PBI polymer is known to proceed almost quantitatively, but when the primary coagulum is dried as it is without performing the secondary coagulum acquisition step, The yield relative to the theoretical yield of the PBI polymer in the primary coagulated product, that is, the yield is 110% or more, and it is confirmed that the first acidic solution (polyphosphoric acid) remains in the PBI polymer. On the other hand, the yield in the case where the secondary coagulation step was performed was about 98%.
  • the secondary coagulated product was dissolved in methanesulfonic acid (manufactured by Wako Pure Chemical Industries, Ltd., vendor code No. 138-01576) as the second acidic solution, and the secondary coagulated product was 3.2 wt%.
  • a spinning stock solution containing 1% was prepared. While the spinning solution is introduced into a water bath as a coagulation bath by wet spinning, the spinning solution is inserted into a multi-hole nozzle member having 402 nozzle holes and discharged as 402 fiber bundles.
  • the primary precursor fiber of the PBI polymer was acquired by winding (primary precursor fiber acquisition step). The wet spinning was performed while applying tension so that the jet stretch ratio represented by the winding speed / discharge linear speed was 1.5. Further, the nozzle hole diameter of the multi-hole nozzle member was set so that the diameter of one primary precursor fiber constituting the fiber bundle was 20 ⁇ m.
  • the primary precursor fiber is passed through a bath of ethanol solution of triethylamine as a second basic solution for 30 seconds to neutralize and remove the second acidic solution contained in the primary precursor fiber.
  • the secondary precursor fiber of the said PBI polymer was acquired.
  • the secondary precursor fiber was washed with water and then dried (secondary precursor fiber acquisition step).
  • CHNS elemental analysis was performed to confirm whether the second acidic solution remained in the obtained secondary precursor fiber.
  • the CHNS elemental analysis is carried out by detecting a sulfur component (S component) in the methanesulfonic acid as the second acidic solution. As a result of analysis, no sulfur component (S component) was detected in the secondary precursor fiber, and it was confirmed that the methanesulfonic acid was completely neutralized and removed.
  • the PBI precursor fiber 1 as a secondary precursor fiber was prepared.
  • the method for preparing the PBI precursor fiber 1 is the same except that the setting of the nozzle hole diameter of the multi-hole nozzle member is changed and the fiber diameter is adjusted to 11 ⁇ m.
  • PBI precursor fiber 2 was prepared.
  • ⁇ PBI precursor fiber 3> In the preparation of the PBI precursor fiber 1, instead of the secondary precursor fiber acquisition step, the primary precursor fiber is allowed to pass through a water bath for 30 seconds, and then washed and dried. The next precursor fiber was obtained. In the same manner as the method for preparing the PBI precursor fiber 1, a PBI precursor fiber 3 having a single fiber diameter of 11 ⁇ m was prepared. When the CHNS analysis was performed on the PBI precursor fiber 3, about 8% of the sulfur component (S component) was detected in the secondary precursor fiber, and the methanesulfonic acid was completely neutralized and removed. Not confirmed.
  • S component sulfur component
  • ⁇ PBI precursor fiber 4 In the preparation of the PBI precursor fiber 1, a single hole nozzle member having a nozzle hole diameter of 250 ⁇ m is used instead of the multi-hole nozzle member, and a fiber is obtained by adjusting the diameter of one fiber to be 40 ⁇ m, Without passing through the secondary precursor fiber acquisition step, this was dried as it was to prepare PBI precursor fiber 4.
  • Example 1 Carbonization of precursor fiber
  • the PBI precursor fiber 1 as the secondary precursor fiber is heated in a nitrogen atmosphere from a room temperature to a predetermined temperature increase of 1,000 ° C. at a temperature increase rate of 10 ° C./min. Heating was continued at a warm temperature for 10 minutes to convert the PBI precursor fiber 1 into carbon fiber, and the PBI carbon fiber according to Example 1 was manufactured (carbon fiber forming step).
  • the diameter of one PBI carbon fiber according to Example 1 was 16 ⁇ m, and the diameter of each PBI carbon fiber according to Examples 2 to 7 described below was also the same.
  • Example 2 In the carbon fiber production process of Example 1, the same as the carbon fiber production process of Example 1 except that the predetermined temperature increase temperature was changed from 1,000 ° C. to 1,100 ° C. PBI carbon fiber was produced.
  • Example 3 In the carbon fiber production step of Example 1, according to Example 3 in the same manner as the carbon fiber production step of Example 1 except that the predetermined temperature increase temperature was changed from 1,000 ° C. to 1,200 ° C. PBI carbon fiber was produced.
  • Example 4 In the carbon fiberizing step of Example 1, the same as the carbon fiberizing step of Example 1 except that the predetermined temperature increase temperature was changed from 1,000 ° C. to 1,300 ° C. PBI carbon fiber was produced.
  • Example 5 In the carbon fiber production step of Example 1, according to Example 5 in the same manner as the carbon fiber production step of Example 1 except that the predetermined temperature increase temperature was changed from 1,000 ° C. to 1,400 ° C. PBI carbon fiber was produced.
  • Example 6 In the carbon fiber production step of Example 1, according to Example 6 in the same manner as the carbon fiber production step of Example 1 except that the predetermined temperature increase temperature was changed from 1,000 ° C. to 1,500 ° C. PBI carbon fiber was produced.
  • Example 7 In the carbon fiber production step of Example 1, according to Example 7, in the same manner as the carbon fiber production step of Example 1 except that the predetermined temperature increase temperature was changed from 1,000 ° C. to 1,600 ° C. PBI carbon fiber was produced.
  • Example 8 The PBI precursor fiber 2 as the secondary precursor fiber is heated at a heating rate of 10 ° C./min from room temperature to a predetermined heating temperature of 1,000 ° C. in a nitrogen atmosphere, and further, the predetermined rising temperature is increased. Heating was continued at a warm temperature for 10 minutes, and the PBI precursor fiber 2 was carbonized to produce a PBI carbon fiber according to Example 8 (carbon fiberization step).
  • the diameter of one PBI carbon fiber according to Example 8 was 9 ⁇ m, and the diameter of each PBI carbon fiber according to Examples 9 to 14 described below was also the same.
  • Example 9 In the carbon fiber production step of Example 8, according to Example 9 in the same manner as the carbon fiber production step of Example 8, except that the predetermined temperature increase temperature was changed from 1,000 ° C. to 1,100 ° C. PBI carbon fiber was produced.
  • Example 10 In the carbon fiberization step of Example 8, according to Example 10 in the same manner as the carbon fiberization step of Example 8, except that the predetermined temperature increase temperature was changed from 1,000 ° C. to 1,200 ° C. PBI carbon fiber was produced.
  • Example 11 In the carbon fiber production process of Example 8, according to Example 11 in the same manner as the carbon fiber production process of Example 8, except that the predetermined temperature increase temperature was changed from 1,000 ° C. to 1,300 ° C. PBI carbon fiber was produced.
  • Example 12 In the carbon fiber production step of Example 8, according to Example 12 in the same manner as the carbon fiber production step of Example 8, except that the predetermined temperature increase temperature was changed from 1,000 ° C. to 1,400 ° C. PBI carbon fiber was produced.
  • Example 13 In the carbon fiberization step of Example 8, according to Example 13 in the same manner as the carbon fiberization step of Example 8, except that the predetermined temperature increase temperature was changed from 1,000 ° C. to 1,500 ° C. PBI carbon fiber was produced.
  • Example 14 In the carbon fiber production step of Example 8, according to Example 14, except that the predetermined temperature increase temperature was changed from 1,000 ° C. to 1,600 ° C., as in the carbon fiber production step of Example 8. PBI carbon fiber was produced.
  • FIGS. 1A is a view showing a cross-sectional electron microscope image of the PBI carbon fiber according to Example 3
  • FIG. 1B is a view showing a cross-sectional electron microscope image of the PBI carbon fiber according to Example 10.
  • FIGS. 1C and 1D are cross-sectional electron microscope images of PBI carbon fibers according to Comparative Example 1.
  • FIG. 1A is a view showing a cross-sectional electron microscope image of the PBI carbon fiber according to Example 3
  • FIG. 1B is a view showing a cross-sectional electron microscope image of the PBI carbon fiber according to Example 10.
  • FIGS. 1C and 1D are cross-sectional electron microscope images of PBI carbon fibers according to Comparative Example 1.
  • FIG. 1A is a view showing a cross-sectional electron microscope image of the PBI carbon fiber according to Example 3
  • FIG. 1B is a view showing a cross-sectional electron microscope image of the PBI carbon fiber according to Example 10.
  • FIGS. 1C and 1D are cross-sectional
  • each PBI carbon fiber according to Examples 3 and 10 is a carbon fiber having a cross-sectional shape close to a perfect circle and less sticking between the fibers.
  • the PBI carbon fiber according to Comparative Example 1 has an elliptical cross-sectional shape and is severely stuck between the fibers.
  • FIGS. 2 (a) and 2 (b) are diagram showing the measurement result of the tensile modulus
  • FIG. 2B is a diagram showing the measurement result of the tensile strength.
  • the values in each figure relate to the average value of 10 tests expressed as a histogram, and error bars indicate the maximum value and the minimum value during the test.
  • each of the PBI carbon fibers according to Examples 1 to 14 has a high tensile modulus of 100 GPa or more, and further shows a high value of 150 GPa or more. It was confirmed. Moreover, it was confirmed that all the tensile elasticity moduli are 0.8 GPa or more. It can be considered that such a high value in each of the tensile modulus and tensile strength can be obtained even with a carbon fiber having a large diameter of 9 ⁇ m or 16 ⁇ m, which is an advantageous feature of the PBI carbon fiber according to the present invention.
  • each PBI carbon fiber according to Examples 3 to 5 and 10 to 12 having a carbonization temperature of 1,200 ° C. to 1,400 ° C. has a relatively high tensile elastic modulus and tensile strength.
  • the PBI carbon fiber which concerns on the comparative example 1 was agglutinated between fibers, and it was not able to take out a single fiber, it could not measure a tensile elasticity modulus and a tensile strength.
  • solvent molecules remaining as a salt are released in the heat treatment, a defect is generated in the carbon fiber, so that the fracture starting from the defect occurs, and as a result, the obtained tensile elastic modulus and tensile strength are low.
  • FIG. 3 is an explanatory diagram for explaining the reachable strength estimation condition.
  • the reachable strength is estimated by conducting the above-mentioned single fiber tensile test on the carbon fiber introduced with a focused ion beam as shown in FIG. 3 and considering the stress concentration at the tip of the notch. The defect-free strength. This reachable strength is calculated by the following formulas (1) and (2).
  • ⁇ 0 represents the reachable strength
  • ⁇ N represents a value obtained by dividing the tensile load by the fiber cross-sectional area
  • is a stress concentration rate
  • c is The notch depth, ⁇ , is the radius of curvature of the notch tip.
  • Example 15 For PBI precursor fiber 1 as the secondary precursor fiber, a Curie Point Parylolizer (manufactured by Nippon Analytical Industries, Ltd.) is used, and rapidly from room temperature to 1,040 ° C. in 0.2 seconds under a nitrogen atmosphere.
  • the PBI carbon fiber according to Example 15 was manufactured by performing a high-speed carbonization treatment in which the temperature was raised and held for 5 seconds.
  • Example 16 In the production of the PBI carbon fiber according to Example 15, the PBI carbon fiber according to Example 15 was used in the same manner as in the production method, except that the PBI precursor fiber 2 was used instead of the PBI precursor fiber 1. 16 PBI carbon fiber was produced.
  • FIGS. 4A is a diagram showing a cross-sectional electron microscope image of the PBI carbon fiber according to Example 15, and FIG. 4B is a diagram showing a cross-sectional electron microscope image of the PBI carbon fiber according to Example 16. is there.
  • the PBI carbon fibers according to Examples 15 and 16 are carbon fibers having a cross-sectional shape close to a perfect circle and less sticking between the fibers.
  • FIG. 6A is a schematic diagram showing the interplanar spacing c / 2 of the carbon network surface and the lamination thickness Lc of the carbon network surface in the graphite crystal.
  • symbol 1a, 1b, 1c in Fig.6 (a) shows a carbon network surface.
  • 6B is a schematic diagram showing an optical system for measuring a wide-angle X-ray diffraction profile, and shows a direction perpendicular to the fiber axis, that is, the equator direction.
  • Table 1 below shows the interplanar spacing c / 2 and the lamination thickness Lc of each PBI carbon fiber (carbonization temperature 1,500 ° C.) according to Examples 6 and 13.
  • each PBI carbon fiber according to Examples 6 and 13 was further heated at a graphitization temperature of 2,800 ° C., and the interplanar spacing c / 2 and the lamination thickness Lc of each PBI carbon fiber subjected to graphitization treatment were determined. The results are also shown in Table 1 below.
  • the surface spacing c / 2 and the lamination thickness Lc of each PBI carbon fiber according to Examples 6 and 13 shown in Table 1 above are substantially the same carbonization treatments (1
  • the pitch of the PAN-based carbon fibers subjected to carbonization treatment at 500 ° C.) is approximately the same as the surface spacing c / 2 and the lamination thickness Lc, but the pitch-based carbon fibers subjected to substantially the same carbonization treatment
  • the interplanar spacing c / 2 was wide and the lamination thickness Lc was thin. That is, the PBI carbon fiber according to the present invention can be distinguished from each other because the interplanar spacing c / 2 is wide and the lamination thickness Lc is thin as compared with the pitch-based carbon fiber.
  • the interplanar spacing c / 2 and the lamination thickness Lc of each carbon fiber obtained by graphitizing each PBI carbon fiber according to Examples 6 and 13 at 2,800 ° C. are as shown in FIG. 3, when compared with a PAN-based or pitch-based graphite fiber subjected to almost the same graphitization treatment, the layer thickness Lc is thin at the same surface spacing c / 2. Thus, it can be distinguished from PAN-based and pitch-based carbon fibers.
  • Reference 2 E. Fitzer, Carbon 27, 5, 621 (1989)
  • Reference 3 A. Takaku, et al., J. Mater. Sci., 25, 4873 (1990)
  • microvoids As parameters for evaluating the microvoids (voids) of the carbon fiber, the volume of microvoids contained in the carbon fiber and the average cross-sectional area of the microvoids were measured. Measurement of the microvoid volume and the average cross-sectional area of the microvoids contained in the carbon fiber is performed by measuring a small angle X-ray scattering profile with an X-ray diffractometer using CuK ⁇ rays monochromated by a Ni filter as an X-ray source. It was. That is, for the optical system in the equator direction shown in FIG.
  • These analysis methods and calculation methods are methods according to the method described in Reference Document 3.
  • the microvoid volume and the average cross-sectional area of the microvoid as comparison targets, T300 manufactured by Toray Industries, Inc. (Reference Example 1) and IMS60 manufactured by Toho Tenax Co., Ltd. Example 2).
  • the microvoid volume fraction of each PBI carbon fiber according to Examples 1 to 6, 8 to 13 is shown in FIG.
  • the microvoid volume of each PBI carbon fiber according to Examples 1 to 6, 8 to 13 is the value of Reference Examples 1 and 2 (Reference Example 1; 4.9%, Reference Example 2; 5 7%), the value is equal to or smaller than that, indicating that the generation of microvoids that cause destruction is small.
  • FIG. 9 shows the microvoid average cross-sectional areas of the PBI carbon fibers according to Examples 1 to 6 and 8 to 13. As shown in FIG. 9, in each PBI carbon fiber according to Examples 1 to 6, 8 to 13, there is no significant difference in the microvoid average cross section, but the value of the microvoid average cross section shown in FIG. was a very small value of about half of the values of Reference Examples 1 and 2 (Reference Example 1; 2.52 nm 2 , Reference Example 2; 2.11 nm 2 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本発明が解決しようとする課題は、不融化処理が不要で効率的に製造でき、かつ、弾性率及び強度に優れたPBI炭素繊維及びその製造方法の提供である。本発明のPBI炭素繊維は、下記一般式(1)及び(2)のいずれかで表される構造を構造単位とするPBIを含む前駆体繊維を加熱して炭素繊維化させた構造を有し、引張弾性率が100GPa以上であり、かつ、引張強度が0.8GPa以上である。ただし、前記一般式(1)及び(2)中のR及びRは、請求項1で特定される構造式(1)~(10)のいずれかの構造で表される3価又は4価のアリール基又は不飽和複素環式基を示し、Rは、前記構造式(1)~(10)のいずれかの構造で表される2価のアリール基又は不飽和複素環式基、炭素数2~4のアルケニレン基、酸素原子、硫黄原子及びスルホニル基のいずれかを示す。

Description

ポリベンズイミダゾール炭素繊維及びその製造方法
 本発明は、ポリベンズイミダゾールを含む前駆体繊維を繊維原料とするポリベンズイミダゾール炭素繊維及びその製造方法に関する。
 炭素繊維は、航空機から建材まで幅広く使われており、生産性が向上し、低価格化が進めば、自動車ボディなどでも鋼板に代わる材料となり得る。現在のところ、炭素繊維は、
ポリアクリロニトリル(PAN)繊維及びピッチ繊維を繊維原料(前駆体繊維)として製造されるのが主流となっている。
 しかしながら、これらの前駆体繊維は、炭素化に先立って不融化処理と呼ばれる前処理が必要であり、この処理が製造に要するコスト及びエネルギーの低減、並びに生産性向上に対する大きな障壁となっている。
 即ち、PAN繊維及びピッチ繊維は、炭素化処理(1,000℃以上の高温熱処理)の過程で溶融し、繊維形状を保てないことから、不融化処理と呼ばれる空気酸化処理によって溶融しない耐炎化繊維に変化させ、これを炭素化することで炭素繊維を得ている。この不融化処理では、酸化反応を均一に制御する必要があることに加え、発熱反応による熱暴走を抑えるための厳密な温度条件管理を必要とし、処理時間としても長時間(およそ30分から1時間程度)となる。
 そのため、本願発明者らは、前記不融化処理を必要としない前駆体繊維を種々検討し、ポリベンズイミダゾール(以下、「PBI」と称する)繊維を前駆体繊維とするPBI炭素繊維の研究報告を発表している(非特許文献1参照)。このPBI繊維は、前記不融化処理を行わなくとも、繊維形状を維持したまま炭素化することができる。
 また、古くは、PBI繊維を紡糸・炭素化し、弾性率80GPa、強度670MPaの炭素繊維が得られることが知られている(特許文献1参照)。更に、塩基性であるPBI繊維を酸性溶媒で処理して塩にすることで、直径100μmを超える炭素繊維が製造できることが知られており、その弾性率は100GPaとされ、強度は420MPaとされる(特許文献2参照)。
 しかしながら、前記PBI繊維を炭素化させた前記PBI炭素繊維は、弾性率及び強度が低いという問題がある。したがって、前記PBI炭素繊維の実用化に向けては、弾性率及び強度のいずれも向上させる必要がある。
 ところで、前駆体繊維としての前記PBI繊維の強度を向上させる方法として、PBI繊維を中和溶液に接触させて、ポリマー製造に用いたポリリン酸を繊維中から除去する方法が知られている(例えば、特許文献3参照)。
 しかしながら、こうしたPBI繊維を前駆体繊維とした炭素繊維は、知られておらず、また、実用的な弾性率及び強度を有する前記PBI炭素繊維としては、依然として何ら存在しない状況である。即ち、前駆体繊維としての弾性率及び強度は、この前駆体繊維を炭素化させた炭素繊維の弾性率及び強度と必ずしも一致せず、また、目的とする弾性率及び強度が得られるかは、不明であることから、実用的な弾性率及び強度を有する前記PBI炭素繊維を新たに開発する必要があった。
米国特許第3,528,774号明細書 米国特許第3,903,248号明細書 特表2008-507637号公報
第39回炭素材料学会年会要旨集3B02、3B03(2012年)
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、不融化処理が不要で効率的に製造でき、かつ、弾性率及び強度に優れたPBI炭素繊維及びその製造方法を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 下記一般式(1)及び(2)のいずれかで表される構造を構造単位とするポリベンズイミダゾールを含む前駆体繊維を加熱して炭素繊維化させた構造を有し、引張弾性率が100GPa以上であり、かつ、引張強度が0.8GPa以上であることを特徴とするポリベンズイミダゾール炭素繊維。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 ただし、前記一般式(1)及び(2)中のR及びRは、それぞれ下記構造式(1)~(10)のいずれかの構造で表される3価又は4価のアリール基又は不飽和複素環式基を示し、Rは、前記構造式(1)~(10)のいずれかの構造で表される2価のアリール基又は不飽和複素環式基、炭素数2~4のアルケニレン基、酸素原子、硫黄原子及びスルホニル基のいずれかを示す。
Figure JPOXMLDOC01-appb-C000009
 <2> 繊維直径が8μm以上の連続繊維である前記<1>に記載のポリベンズイミダゾール炭素繊維。
 <3> 酸性溶液中の下記一般式(1)及び(2)のいずれかで表される構造を構造単位とするポリベンズイミダゾールを含む重合体を紡糸して前記重合体の1次前駆体繊維を取得する1次前駆体繊維取得工程と、前記1次前駆体繊維を塩基性溶液と接触させ、前記1次前駆体繊維中に残存する前記酸性溶液が中和除去された2次前駆体繊維を取得する2次前駆体繊維取得工程と、前記2次前駆体繊維を不活性ガス下、1,000℃~1,600℃の温度で加熱して炭素繊維化する炭素繊維化工程と、を含むことを特徴とするポリベンズイミダゾール炭素繊維の製造方法。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 ただし、前記一般式(1)及び(2)中のR及びRは、それぞれ下記構造式(1)~(10)のいずれかの構造で表される3価又は4価のアリール基又は不飽和複素環式基を示し、Rは、前記構造式(1)~(10)のいずれかの構造で表される2価のアリール基又は不飽和複素環式基、炭素数2~4のアルケニレン基、酸素原子、硫黄原子及びスルホニル基のいずれかを示す。
Figure JPOXMLDOC01-appb-C000012
 <4> 酸性溶液がポリリン酸であり、塩基性溶液がトリエチルアミンのエタノール溶液である前記<3>に記載のポリベンズイミダゾール炭素繊維の製造方法。
 <5> 2次前駆体繊維取得工程が、1次前駆体繊維をトリエチルアミンのエタノール溶液の浴槽中に5秒間~30秒間通過させて前記1次前駆体繊維中に残存するポリリン酸を中和除去させる工程である前記<4>に記載のポリベンズイミダゾール炭素繊維の製造方法。
 <6> 1次前駆体繊維取得工程が、更に、第1の酸性溶液中で重合させた重合体の反応溶液を凝固浴中で凝固させ、前記重合体の1次凝固物を取得する1次凝固物取得工程と、前記1次凝固物を第1の塩基性溶液と接触させ、前記1次凝固物中に残存する前記第1の酸性が中和除去された2次凝固物を取得する2次凝固物取得工程とを含み、前記2次凝固物を第2の酸性溶液中に溶解させて紡糸原液を調製し、前記紡糸原液を紡糸して前記重合体の1次前駆体繊維を取得する工程であり、2次前駆体繊維取得工程が、前記1次前駆体繊維を第2の塩基性溶液と接触させ、前記1次前駆体繊維中に残存する前記第2の酸性溶液が中和除去された2次前駆体繊維を取得する工程である前記<3>に記載のポリベンズイミダゾール炭素繊維の製造方法。
 <7> 第1の酸性溶液がポリリン酸であり、第1の塩基性溶液が炭酸水素ナトリウム水溶液であり、第2の酸性溶液がメタンスルホン酸であり、第2の塩基性溶液がトリエチルアミンのエタノール溶液である前記<6>に記載のポリベンズイミダゾール炭素繊維の製造方法。
 <8> 2次前駆体繊維取得工程が、1次前駆体繊維をトリエチルアミンのエタノール溶液の浴槽中に5秒間~30秒間通過させて前記1次前駆体繊維中に残存するメタンスルホン酸を中和除去させる工程である前記<7>に記載のポリベンズイミダゾール炭素繊維の製造方法。
 <9> 炭素繊維化工程における加熱温度が1,200℃~1,400℃の温度である前記<3>から<8>のいずれかに記載のポリベンズイミダゾール炭素繊維の製造方法。
 本発明によれば、従来技術における前記諸問題を解決することができ、不融化処理が不要で効率的に製造でき、かつ、弾性率及び強度に優れたPBI炭素繊維及びその製造方法を提供することができる。
実施例3に係るPBI炭素繊維の断面電子顕微鏡像を示す図である。 実施例10に係るPBI炭素繊維の断面電子顕微鏡像を示す図である。 比較例1に係るPBI炭素繊維の断面電子顕微鏡像を示す図である。 比較例1に係るPBI炭素繊維の断面電子顕微鏡像を示す図である。 引張弾性率の測定結果を示す図である。 引張強度の測定結果を示す図である。 到達可能強度の推定条件を説明する説明図である。 実施例15に係るPBI炭素繊維の断面電子顕微鏡像を示す図である。 実施例16に係るPBI炭素繊維の断面電子顕微鏡像を示す図である。 密度の測定結果を示す図である。 黒鉛結晶における炭素網面の面間隔c/2及び炭素網面の積層厚Lを示す概略図である。 広角X線回折プロファイルを測定する際の光学系を示す概略図である。 炭素網面の面間隔c/2と積層厚Lcとの関係を表す図である。 ミクロボイド平均断面積の測定結果を示す図である。 ミクロボイド体積分率の測定結果を示す図である。
(PBI炭素繊維)
 本発明のポリベンズイミダゾール(PBI)炭素繊維は、下記一般式(1)及び(2)のいずれかで表される構造を構造単位とするPBIを含む前駆体繊維を加熱して炭素繊維化させた構造を有し、引張弾性率が100GPa以上であり、かつ、引張強度が0.8GPa以上である。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 ただし、前記一般式(1)及び(2)中のR及びRは、それぞれ下記構造式(1)~(10)のいずれかの構造で表される3価又は4価のアリール基又は不飽和複素環式基を示し、Rは、前記構造式(1)~(10)のいずれかの構造で表される2価のアリール基又は不飽和複素環式基、炭素数2~4のアルケニレン基、酸素原子、硫黄原子及びスルホニル基のいずれかを示す。
Figure JPOXMLDOC01-appb-C000015
 前記アルケニレン基としては、例えば、ビニレン基等が挙げられる。
 このようなPBIを含む前駆体繊維(PBI前駆体繊維)においては、不融化処理を行わなくとも、繊維形状を維持したまま炭素化することができる。したがって、前記不融化処理が必要なPAN系繊維やピッチ系繊維を前駆体繊維として炭素繊維を製造することよりも、効率的に炭素繊維を製造することができる。
 また、前記PBI前駆体繊維においては、高い炭素化収率で炭素化することができる。これにより、炭素化時に発生して放出される熱分解ガスによる構造の乱れや、炭素繊維の機械的強度を低下させるボイド(空孔)の発生(発泡を含む)を抑制することができる。更に、炭素化収率が高い、即ち、炭素化時に熱分解で放出されるガスやタール分が少ないことを一因として、急速に昇温して炭素化される場合であっても、瞬時の大量分解ガス発生を避けることができるため、極めて高速に炭素化処理を行うことができる。また、これによって、外表面に対して体積が大きく、炭素化時にガスが逃げにくい太い繊維を炭素化することができる。
 前記PBI炭素繊維は、引張弾性率が100GPa以上、引張強度が0.8GPa以上であり、弾性率及び強度のいずれにも優れる。
 このような弾性率及び強度が得られる理由としては、後述する製造方法において、前記PBI前駆体繊維中の酸性溶液を塩基性溶液により中和除去することが一因に挙げられ、前記PBI炭素繊維の発明は、前記中和除去により得られた前駆体繊維の繊維構造が維持されたまま炭素繊維化できることの知見に基づく。
 なお、前記引張弾性率及び前記引張強度は、JIS7606法に従った単繊維引張試験により測定することができる。
 前述の通り、前記PBI炭素繊維は、太い繊維を炭素化させて太径化させた場合であっても、高い弾性率及び強度が維持される。PAN系炭素繊維等の市販炭素繊維としては、繊維直径が7μm程度のものが一般的であるが、前記PBI炭素繊維としては、繊維直径が2μm~8μm未満の細径である場合はもちろんのこと、繊維直径を8μm以上、更には、16μm以上に太径化しても高い弾性率及び強度が維持される。なお、前記繊維直径の上限としては、30μm程度である。
 また、前記PBI炭素繊維としては、連続繊維(フィラメント)とすることができる。
 以上に述べた本発明に係る前記PBI炭素繊維は、以下に述べる本発明に係る前記PBI炭素繊維の製造方法により製造することができる。
(PBI炭素繊維の製造方法)
 前記PBI炭素繊維の製造方法は、1次前駆体繊維取得工程と、2次前駆体繊維取得工程と、炭素繊維化工程とを含む。
<1次前駆体繊維取得工程>
 前記1次前駆体繊維取得工程は、酸性溶液中の下記一般式(1)及び(2)のいずれかで表される構造を構造単位とするポリベンズイミダゾールを含む重合体を紡糸して前記重合体の1次前駆体繊維を取得する工程である。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 ただし、前記一般式(1)及び(2)中のR及びRは、それぞれ下記構造式(1)~(10)のいずれかの構造で表される3価又は4価のアリール基又は不飽和複素環式基を示し、Rは、前記構造式(1)~(10)のいずれかの構造で表される2価のアリール基又は不飽和複素環式基、炭素数2~4のアルケニレン基、酸素原子、硫黄原子及びスルホニル基のいずれかを示す。
Figure JPOXMLDOC01-appb-C000018
 また、前記アルケニレン基としては、例えば、ビニレン基等が挙げられる。
 前記PBIとしては、市販のものを用いてもよいし、合成したものを用いてもよい。
 合成する場合、前記PBIとしては、例えば、和光純薬社等のテレフタル酸と、アルドリッチ社等の4,4’-ビフェニル-1,1’,2,2’-テトラミンとを出発原料として、前記酸性溶液中で縮重合反応させることで行うことができる。
 前記重合体としては、前記PBIそのものであってもよいし、本発明の効果を妨げない限り、前記PBIの構造単位と他の構造単位で構成される共重合体や他のポリマーとのポリマーブレンド体であってもよい。
 また、前記前駆体繊維としては、前記重合体そのものから得られる繊維体であってもよいが、本発明の効果を損なわない限り、前記重合体末端に任意の置換基が付加されたものから得られる繊維体であってもよい。
 前記置換基としては、例えば、エステル基、アミド基、イミド基、水酸基、ニトロ基等が挙げられる。
 前記紡糸の方法としては、大きく分けて2通りの方法で実施することができる。即ち、前記酸性溶液中で前記重合体の縮重合反応を行った反応溶液を紡糸原液として直接紡糸する第1の方法と、前記反応溶液を構成する前記酸性溶液を第1の酸性溶液として、前記反応溶液から一旦前記重合体の凝固物を取得した後、これを紡糸用の第2の酸性溶液に溶解させた溶解液を紡糸原液として紡糸する第2の方法とで実施することができる。
 前記第1の方法に用いる前記酸性溶液としては、前記出発物質及び生成する前記重合体を溶解し、重合を促進する触媒としての作用を有する物であれば、特に制限はなく、具体的には、ポリリン酸、ポリリン酸エステル、リン酸ジフェニルクレシル等や五酸化二リン等を溶解したメタンスルホン酸等を挙げることができる。これらの中でも、前記重合反応の制御の観点から、前記ポリリン酸が好ましい。
 前記第2の方法で紡糸を行う場合、前記1次前駆体繊維取得工程は、1次凝固物取得工程と、2次凝固物取得工程とを含み、前記2次凝固物取得工程で得られた2次凝固物を第2の酸性溶液中に溶解させて紡糸原液を調製し、前記紡糸原液を紡糸して前記重合体の1次前駆体繊維を取得する工程とされる。
-1次凝固物取得工程-
 前記1次凝固物取得工程は、前記第1の酸性溶液中で重合させた前記重合体の前記反応溶液を凝固浴中で凝固させ、前記重合体の1次凝固物を取得する工程である。
 前記第1の酸性溶液としては、前記第1の方法に用いる前記酸性溶液と同様のものを用いることができる。
 前記凝固浴の凝固液としては、前記重合体を凝固させることができるものであれば、特に制限はなく、例えば、水、アルコール、メタンスルホン酸、ポリリン酸、希硫酸等が挙げられ、中でも、前記水が好ましい。
-2次凝固物取得工程-
 前記2次凝固物取得工程は、前記1次凝固物を第1の塩基性溶液と接触させ、前記1次凝固物中に残存する前記第1の酸性溶液が中和除去された2次凝固物を取得する工程である。
 前記第1の塩基性溶液としては、前記第1の酸性溶液を中和させるものであれば、特に制限はなく、例えば、炭酸水素ナトリウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム、トリエチルアミンのエタノール溶液等が挙げられるが、重合度の低下を防ぐの観点から、前記炭酸水素ナトリウム水溶液が好ましい。
 なお、前記第1の塩基性溶液による洗浄と前後して、前記凝固物を水やアルコールを用いて洗浄してもよい。
 前記第2の方法で紡糸を行う場合、前述の通り、洗浄後の前記2次凝固物を前記第2の酸性溶液中に溶解させて前記紡糸原液を調製する。
 前記第2の酸性溶液としては、前記2次凝固物が可溶であれば、特に制限はなく、メタンスルホン酸、ポリリン酸或いは濃硫酸等が挙げられるが、前記紡糸原液に対し、前記紡糸に適した粘性を付与する観点から、前記メタンスルホン酸が好ましい。
 前記第1の方法及び前記第2の方法における紡糸方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、公知の湿式紡糸法、乾湿式紡糸法等が挙げられる。
 なお、前記1次前駆体繊維及び後述の2次前駆体繊維に対して、必要に応じて延伸処理・熱処理を行なってもよい。前記延伸処理に関しては、紡出糸を直接凝固浴中で延伸してもよいし、巻取糸を洗浄した後、浴中で延伸してもよい。また、前記延伸処理と前記熱処理を同時に行なってもよい。前記熱処理に関しては、雰囲気に制限はないが、空気中あるいは窒素雰囲気下中で行なうのが好ましい。熱処理温度、時間としては、適宜選択することができるが、前記熱処理温度に関しては、200℃~600℃が好ましい。また、延伸倍率としては、1.2倍~10倍程度が好ましい。
 以上により、前記1次前駆体繊維を取得することができる。
<2次前駆体繊維取得工程>
 前記2次前駆体繊維取得工程は、前記1次前駆体繊維を塩基性溶液と接触させ、前記1次前駆体繊維中に残存する前記酸性溶液が中和除去された2次前駆体繊維を取得する工程である。
 前記1次前駆体繊維取得工程を前記第1の方法で実施する場合、前記2次前駆体繊維取得工程における前記塩基性溶液としては、前記酸性溶液を中和させるものであれば、特に制限はなく、例えば、トリエチルアミンのエタノール溶液、炭酸水素ナトリウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム等が挙げられるが、中和反応後に繊維中に残る過剰量のアルカリの除去が容易であるとの観点から、前記トリエチルアミンのエタノール溶液が好ましい。
 また、前記接触の方法としては、特に制限はなく、前記1次前駆体繊維に前記塩基性溶液を噴き掛けて行ってもよいが、前記1次前駆体繊維を前記塩基性溶液の浴槽中に通過させる方法が好ましい。
 特に、前記1次前駆体繊維取得工程を前記第1の方法で実施する際、前記酸性溶液が前記ポリリン酸であり、前記塩基性溶液が前記トリエチルアミンのエタノール溶液である場合には、前記1次前駆体繊維を前記トリエチルアミンのエタノール溶液の浴槽中に5秒間~30秒間通過させる方法が好ましい。
 このような方法によれば、前記1次前駆体繊維中の前記酸性溶液を効果的に中和除去させることができる。
 なお、前記塩基性溶液による洗浄と前後して、前記前駆体繊維を水やアルコールを用いて洗浄してもよい。
 前記1次前駆体繊維取得工程を前記第2の方法で実施する場合、前記2次前駆体繊維取得工程は、前記1次前駆体繊維を第2の塩基性溶液と接触させ、前記1次前駆体繊維中に残存する前記第2の酸性溶液が中和除去された2次前駆体繊維を取得する工程として実施される。
 前記第2の塩基性溶液としては、前記第2の酸性溶液を中和させるものであれば、特に制限はなく、例えば、トリエチルアミンのエタノール溶液、炭酸水素ナトリウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム等が挙げられるが、中和反応後に繊維中に残る過剰量のアルカリの除去が容易であるとの観点から、前記トリエチルアミンのエタノール溶液が好ましい。
 前記接触の方法としては、特に制限はなく、前記1次前駆体繊維に前記第2の塩基性溶液を噴き掛けて行ってもよいが、前記1次前駆体繊維を前記第2の塩基性溶液の浴槽中に通過させる方法が好ましい。
 特に、前記第2の酸性溶液が前記メタンスルホン酸であり、前記第2の塩基性溶液が前記トリエチルアミンのエタノール溶液である場合には、前記1次前駆体繊維を前記トリエチルアミンのエタノール溶液の浴槽中に5秒間~30秒間通過させる方法が好ましい。
 このような方法によれば、前記1次前駆体繊維中の前記第2の酸性溶液を効果的に中和除去させることができる。
 なお、前記第2の塩基性溶液による洗浄と前後して、前記前駆体繊維を水やアルコールを用いて洗浄してもよい。
<炭素繊維化工程>
 前記炭素繊維化工程は、前記2次前駆体繊維を不活性ガス下、1,000℃~1,600℃の温度で加熱して炭素繊維化する工程である。
 前記炭素化繊維化工程における加熱温度が1,200℃~1,400℃であると、より弾性率及び強度に優れた前記PBI炭素繊維を製造することができる。
 また、前記PBI繊維は、前述の通り、急速な昇温速度で高速炭素化処理を行っても繊維形状が維持される特徴を有する。
 したがって、前記加熱時における昇温速度としては、特に制限はなく、5℃/分といった低速から、15℃/秒~1,000℃/秒といった高速の昇温速度とすることができる。
 なお、前記不活性ガスとしては、特に制限はなく、例えば、窒素、アルゴンガス等が挙げられる。
 また、前記PBI炭素繊維の製造方法としては、前記炭素化により得られる前記PBI炭素繊維の機械的特性(弾性率、強度等)を制御するため、前記炭素繊維化工程後、或いは、前記炭素繊維化工程と連続して、より高温で加熱することにより、前記PBI炭素繊維を黒鉛化する黒鉛化工程を含んでもよい。
 前記黒鉛化工程(場合により、前記炭素化工程と連続した加熱工程)の加熱温度としては、特に制限はないが、2,000℃~3,200℃が好ましい。このような加熱温度とすると、高炭素化収率、高密度で、十分な機械的特性を有する前記炭素繊維を製造することができる。
 なお、前記黒鉛化工程は、前記炭素繊維化工程と同様に前記不活性ガス下で実施することが好ましい。
 なお、前記PBI炭素繊維の製造方法としては、公知の炭素繊維製造プロセスで実施される表面処理、サイジング付与を実施する工程を更に含むこととしてもよい。
(前駆体繊維の調製)
<PBI前駆体繊維1>
 先ず、1モルのテレフタル酸(和光純薬工業社製、販売元コードNo.208-08162)と、1モルの4,4’-ビフェニル-1,1’,2,2’-テトラアミン(アルドリッチ社製、販売元コードNo.D12384)とを重合体原料として、これらを第1の酸性溶液としてのポリリン酸(シグマアルドリッチ社製、販売元コードNo.208213)中で縮重合反応させ、PBI重合体としてのポリ2,2’-(p-フェニレン)-5,5’-ビベンゾイミダゾールを含む反応溶液を調製した。
 次に、前記反応溶液を凝固浴としての水浴中に導入して前記PBI重合体を繊維状に凝固させ、1次凝固物を取得した(1次凝固物取得工程)。
 前記1次凝固物をジメチルアセトアミド(DMAc)中で撹拌して不純物の洗浄を行った後、前記1次凝固物を第1の塩基性溶液としての5wt%濃度の炭酸水素ナトリウム水溶液中で撹拌して、前記1次凝固物に含まれる前記第1の酸性溶液を中和除去し、前記PBI重合体の2次凝固物を取得した。次いで、前記2次凝固物に対し、水及びアルコールを用いて洗浄を行った後、240℃で1日間真空乾燥した(2次凝固物取得工程)。
 なお、前記PBI重合体の縮重合反応は、ほぼ定量的に進むことが知られているが、前記2次凝固物取得工程を実施せず、前記1次凝固物をそのまま乾燥させた場合、前記1次凝固物における前記PBI重合体の理論収量に対する収量、即ち、収率は、110%以上であり、前記PBI重合体内に前記第1の酸性溶液(ポリリン酸)が残留していることが確認されるのに対して、前記2次凝固物工程を実施した場合の収率は、98%程度であった。
 次に、前記2次凝固物を第2の酸性溶液としてのメタンスルホン酸(和光純薬工業社製、販売元コードNo.138-01576)中に溶解させ、前記2次凝固物を3.2wt%含む紡糸原液を調製した。
 前記紡糸原液を湿式紡糸により凝固浴としての水浴中に導入しつつ、402個のノズル孔が形成されたマルチホールノズル部材に挿通させて402本の繊維束として吐出させ、これを巻取装置で巻取ることで、前記PBI重合体の1次前駆体繊維を取得した(1次前駆体繊維取得工程)。なお、前記湿式紡糸は、巻取速度/吐出線速度で表されるジェットストレッチ比が1.5となるように、張力を掛けながら実施した。また、前記繊維束を構成する前記1次前駆体繊維1本の直径がそれぞれ20μmとなるように前記マルチホールノズル部材のノズル孔径を設定した。
 次に、前記1次前駆体繊維を第2の塩基性溶液としてのトリエチルアミンのエタノール溶液の浴槽中に30秒間通過させ、前記1次前駆体繊維に含まれる前記第2の酸性溶液を中和除去し、前記PBI重合体の2次前駆体繊維を取得した。次いで、前記2次前駆体繊維に対し、水洗を行った後、乾燥させた(2次前駆体繊維取得工程)。
 得られた前記2次前駆体繊維内に前記第2の酸性溶液が残留していないか確認するため、CHNS元素分析を行なった。なお、前記CHNS元素分析は、前記第2の酸性溶液としての前記メタンスルホン酸中の硫黄成分(S成分)を検出することとして実施するものである。
 分析の結果、前記2次前駆体繊維中に硫黄成分(S成分)が検出されず、前記メタンスルホン酸が完全に中和除去されたことが確認された。
 以上により、2次前駆体繊維としてのPBI前駆体繊維1を調製した。
<PBI前駆体繊維2>
 前記PBI前駆体繊維1の調製において、前記マルチホールノズル部材のノズル孔径の設定を変更し、1本の繊維直径が11μmとなるように調整したこと以外は、前記PBI前駆体繊維1の調製方法と同様にして、PBI前駆体繊維2を調製した。
<PBI前駆体繊維3>
 前記PBI前駆体繊維1の調製において、前記2次前駆体繊維取得工程に代えて、前記1次前駆体繊維に対して水の浴槽中に30秒間通過させた後、水洗、乾燥させて前記2次前駆体繊維を取得した。
 前記PBI前駆体繊維1の調製方法と同様にして、1本の繊維直径が11μmのPBI前駆体繊維3を調製した。
 このPBI前駆体繊維3に対し、前記CHNS分析を行ったところ、前記2次前駆体繊維中に硫黄成分(S成分)が8%程度検出され、前記メタンスルホン酸が完全に中和除去されていないことが確認された。
<PBI前駆体繊維4>
 前記PBI前駆体繊維1の調製において、前記マルチホールノズル部材に代えてノズル孔径が250μmのシングルホールノズル部材を用い、1本の繊維直径が40μmとなるように調整して繊維を取得し、前記2次前駆体繊維取得工程を経ることなく、これをそのまま乾燥させてPBI前駆体繊維4を調製した。
(前駆体繊維の炭素化)
<実施例1>
 前記2次前駆体繊維としてのPBI前駆体繊維1に対し、窒素雰囲気下で、室温から1,000℃の所定昇温温度まで10℃/分の昇温速度で加熱し、更に、前記所定昇温温度で10分間加熱を継続し、PBI前駆体繊維1を炭素繊維化させ、実施例1に係るPBI炭素繊維を製造した(炭素繊維化工程)。なお、実施例1に係るPBI炭素繊維1本の直径は、16μmであり、以降に説明する実施例2~7に係る各PBI炭素繊維1本の直径も同様であった。
<実施例2>
 実施例1の炭素繊維化工程において、前記所定昇温温度を1,000℃から1,100℃に変更したこと以外は、実施例1の炭素繊維化工程と同様にして、実施例2に係るPBI炭素繊維を製造した。
<実施例3>
 実施例1の炭素繊維化工程において、前記所定昇温温度を1,000℃から1,200℃に変更したこと以外は、実施例1の炭素繊維化工程と同様にして、実施例3に係るPBI炭素繊維を製造した。
<実施例4>
 実施例1の炭素繊維化工程において、前記所定昇温温度を1,000℃から1,300℃に変更したこと以外は、実施例1の炭素繊維化工程と同様にして、実施例4に係るPBI炭素繊維を製造した。
<実施例5>
 実施例1の炭素繊維化工程において、前記所定昇温温度を1,000℃から1,400℃に変更したこと以外は、実施例1の炭素繊維化工程と同様にして、実施例5に係るPBI炭素繊維を製造した。
<実施例6>
 実施例1の炭素繊維化工程において、前記所定昇温温度を1,000℃から1,500℃に変更したこと以外は、実施例1の炭素繊維化工程と同様にして、実施例6に係るPBI炭素繊維を製造した。
<実施例7>
 実施例1の炭素繊維化工程において、前記所定昇温温度を1,000℃から1,600℃に変更したこと以外は、実施例1の炭素繊維化工程と同様にして、実施例7に係るPBI炭素繊維を製造した。
<実施例8>
 前記2次前駆体繊維としてのPBI前駆体繊維2に対し、窒素雰囲気下で、室温から1,000℃の所定昇温温度まで10℃/分の昇温速度で加熱し、更に、前記所定昇温温度で10分間加熱を継続し、PBI前駆体繊維2を炭素繊維化させ、実施例8に係るPBI炭素繊維を製造した(炭素繊維化工程)。なお、実施例8に係るPBI炭素繊維1本の直径は、9μmであり、以降に説明する実施例9~14に係る各PBI炭素繊維1本の直径も同様であった。
<実施例9>
 実施例8の炭素繊維化工程において、前記所定昇温温度を1,000℃から1,100℃に変更したこと以外は、実施例8の炭素繊維化工程と同様にして、実施例9に係るPBI炭素繊維を製造した。
<実施例10>
 実施例8の炭素繊維化工程において、前記所定昇温温度を1,000℃から1,200℃に変更したこと以外は、実施例8の炭素繊維化工程と同様にして、実施例10に係るPBI炭素繊維を製造した。
<実施例11>
 実施例8の炭素繊維化工程において、前記所定昇温温度を1,000℃から1,300℃に変更したこと以外は、実施例8の炭素繊維化工程と同様にして、実施例11に係るPBI炭素繊維を製造した。
<実施例12>
 実施例8の炭素繊維化工程において、前記所定昇温温度を1,000℃から1,400℃に変更したこと以外は、実施例8の炭素繊維化工程と同様にして、実施例12に係るPBI炭素繊維を製造した。
<実施例13>
 実施例8の炭素繊維化工程において、前記所定昇温温度を1,000℃から1,500℃に変更したこと以外は、実施例8の炭素繊維化工程と同様にして、実施例13に係るPBI炭素繊維を製造した。
<実施例14>
 実施例8の炭素繊維化工程において、前記所定昇温温度を1,000℃から1,600℃に変更したこと以外は、実施例8の炭素繊維化工程と同様にして、実施例14に係るPBI炭素繊維を製造した。
<比較例1>
 実施例1の炭素繊維化工程において、PBI前駆体繊維1に代えてPBI前駆体繊維3を炭素繊維化させたこと以外は、実施例1の炭素繊維化工程と同様にして、比較例1に係るPBI炭素繊維を製造した。
<比較例2>
 実施例6の炭素繊維化工程において、PBI前駆体繊維1に代えてPBI前駆体繊維4を炭素繊維化させたこと以外は、実施例6の炭素繊維化工程と同様にして、比較例2に係るPBI炭素繊維を製造した。
<電子顕微鏡による構造確認>
 実施例3,10に係る各PBI炭素繊維及び比較例1に係るPBI炭素繊維の断面電子顕微鏡像(SEM像)を図1(a)~(d)に示す。なお、図1(a)が実施例3に係るPBI炭素繊維の断面電子顕微鏡像を示す図であり、図1(b)が実施例10に係るPBI炭素繊維の断面電子顕微鏡像を示す図であり、図1(c),(d)が比較例1に係るPBI炭素繊維の断面電子顕微鏡像を示す図である。
 これら図1(a)~(d)に示すように、実施例3,10に係る各PBI炭素繊維は、断面形状が真円形に近く、繊維間での膠着が少ない炭素繊維であるのに対し、比較例1に係るPBI炭素繊維は、断面形状が楕円形であり、繊維間で激しく膠着していることが確認される。
<単繊維引張試験>
 実施例1~14に係る各PBI炭素繊維に対し、JIS7606法に従って単繊維引張試験を行い、各PBI炭素繊維1本の引張弾性率及び引張強度の測定を行った。
 測定結果を図2(a)、(b)に示す。なお、図2(a)が引張弾性率の測定結果を示す図であり、図2(b)が引張強度の測定結果を示す図である。また、各図中の値は、10回の試験の平均値をヒストグラムで表したものに係り、エラーバーは、試験中の最大値と最小値を示している。
 これら図2(a),(b)に示すように、実施例1~14に係る各PBI炭素繊維は、引張弾性率が全て100GPa以上の高い値を示し、更に、150GPa以上の高い値を示すことが確認された。また、引張弾性率は、全て0.8GPa以上の高い値を示すことが確認された。引張弾性率及び引張強度のそれぞれでこのような高い値が、9μm、16μmといった太径の炭素繊維でも得られることは、本発明に係るPBI炭素繊維の有利な特徴と考えられる。中でも、炭素化処理温度が1,200℃~1,400℃である実施例3~5,10~12に係る各PBI炭素繊維が比較的高い引張弾性率と引張強度を兼ね備えることが確認された。
 なお、比較例1に係るPBI炭素繊維は、繊維間での膠着が激しく、単繊維の取出しを行うことができなかったため、引張弾性率及び引張強度の測定を行うことができなかった。しかしながら、塩として残留した溶媒分子が熱処理において放出される際に炭素繊維中に欠陥を発生させるため、その欠陥を起点とする破断が起こり、その結果、得られる引張弾性率及び引張強度は、低いものと考えられる。
 また、比較例2に係るPBI炭素繊維に対し、前記単繊維引張試験を行ったところ、引張弾性率が85GPaであり、引張強度が720MPaであった。
<到達可能強度の推定>
 特に優れた引張弾性率と引張強度を備える実施例11に係るPBI炭素繊維(炭素化処理温度が1,300℃)について、更に、到達可能強度の推定を下記参考文献1に従って行った。図3に到達可能強度の推定条件を説明する説明図を示す。なお、到達可能強度とは、集束イオンビームによって表面ノッチを図3に示す通りに導入した炭素繊維に対し、前述の単繊維引張試験を行い、ノッチ先端部の応力集中を考慮することによって推定される無欠陥強度のことを示す。この到達可能強度は、下記数式(1),(2)によって計算される。
Figure JPOXMLDOC01-appb-M000019
 ただし、前記数式(1)及び(2)中、σは、到達可能強度を示し、σは、引張荷重を繊維断面積で除した値を示し、αは、応力集中率、cは、ノッチ深さ、ρは、ノッチ先端部分の曲率半径である。
 以上の到達可能強度を実施例11に係るPBI炭素繊維に対して算出したところ、到達可能強度の推定値は、5.2GPaであり、極めて高い値であることが確認された。このことは、前記1次前駆体繊維取得工程及び前記2次前駆体繊維取得工程の条件を最適化することによって繊維中の欠陥を減らすことが可能であることから、前記各実施例で得られた値以上の引張強度を期待することができる。
 参考文献1;M. Shioya, H. Inoue, Y. Sugimoto, Carbon, v65, 63-70 (2013)
(高速炭素化)
<実施例15>
 前記2次前駆体繊維としてのPBI前駆体繊維1に対し、キュリーポイントパリロライザ(日本分析工業社製)を用いて、窒素雰囲気下、0.2秒間に室温から1,040℃まで急速に昇温させ、5秒間保持する高速炭素化処理を行い、実施例15に係るPBI炭素繊維を製造した。
<実施例16>
 実施例15に係るPBI炭素繊維の製造において、PBI前駆体繊維1に代えてPBI前駆体繊維2を用いたこと以外は、実施例15に係るPBI炭素繊維を製造方法と同様にして、実施例16に係るPBI炭素繊維を製造した。
<電子顕微鏡による構造確認>
 実施例15,16に係る各PBI炭素繊維の断面電子顕微鏡像(SEM像)を図4(a),(b)に示す。なお、図4(a)が実施例15に係るPBI炭素繊維の断面電子顕微鏡像を示す図であり、図4(b)が実施例16に係るPBI炭素繊維の断面電子顕微鏡像を示す図である。
 これら図4(a),(b)に示すように、実施例15,16に係る各PBI炭素繊維は、断面形状が真円形に近く、繊維間での膠着が少ない炭素繊維である。
(PBI炭素繊維の特徴)
 本発明に係るPBI炭素繊維の他の炭素繊維と異なる特徴を明らかにするため、密度、結晶性及びミクロボイド(空孔)の各測定を行った。
<密度の測定>
 浮沈法により、実施例1~6,8~13に係る各PBI炭素繊維の密度を測定した。この密度の測定結果を図5に示す。
 この図5に示すように、実施例1~6,8~13に係る各PBI炭素繊維の密度は、高くとも約1.7g/cm程度であった。
 市販されるPAN系炭素繊維の密度が1.75g/cm~1.85g/cmの範囲内であることから、本発明に係るPBI炭素繊維は、他の炭素繊維よりも低密度であることがわかる。
<結晶性の測定>
 炭素繊維の黒鉛結晶性を指標とするパラメータとして、炭素網面の面間隔c/2及び炭素網面の積層厚Lを測定した。黒鉛結晶における炭素網面の面間隔c/2及び炭素網面の積層厚Lを示す概略図を図6(a)に示す。なお、図6(a)中の符号1a,1b,1cは、炭素網面を示す。
 炭素網面の面間隔c/2及び炭素網面の積層厚Lの測定は,Niフィルターで単色化されたCuKα線をX線源とするX線回折装置により、広角X線回折プロファイルを測定することにより行なった。即ち、図6(b)に示す赤道方向の光学系について、赤道方向プロファイルの2θ=26°付近に観察される(002)のピークから、炭素網面の面間隔c/2及び炭素網面の積層厚Lcを求めた。なお,図6(b)は,広角X線回折プロファイルを測定する際の光学系を示す概略図であり、検出器を繊維軸に対して垂直な方向すなわち赤道方向を示したものである。
 実施例6,13に係る各PBI炭素繊維(炭素化処理温度1,500℃)の面間隔c/2及び積層厚Lcを下記表1に示す。
 また、実施例6,13に係る各PBI炭素繊維を、更に、2,800℃の黒鉛化温度にて加熱し、黒鉛化処理をした各PBI炭素繊維の面間隔c/2及び積層厚Lcを併せて下記表1に示す。
Figure JPOXMLDOC01-appb-T000020
 上記表1に示した実施例6,13に係る各PBI炭素繊維の面間隔c/2及び積層厚Lcは、それぞれ下記参考文献2,3に記載されている、ほぼ同様の炭素化処理(1,500℃での炭素化処理)を施されたPAN系炭素繊維の面間隔c/2及び積層厚Lcと同程度であったが、ほぼ同様の炭素化処理を施されたピッチ系炭素繊維と比較すると、面間隔c/2が広く、積層厚Lcが薄い結果であった。即ち、本発明に係るPBI炭素繊維は、ピッチ系炭素繊維と比較して、面間隔c/2が広く、積層厚Lcが薄いことから、両者を区別することができる。
 更に、実施例6,13に係る各PBI炭素繊維を2,800℃で黒鉛化処理した各炭素繊維の面間隔c/2及び積層厚Lcは、図7に示すように、それぞれ下記参考文献2,3に記載されているのと、ほぼ同様の黒鉛化処理を施されたPAN系あるいはピッチ系黒鉛繊維と比較した場合に、同様の面間隔c/2において、積層厚Lcが薄いという特徴を有し、これによりPAN系、ピッチ系炭素繊維と区別することができる。
 参考文献2;E. Fitzer, Carbon 27, 5, 621 (1989)
 参考文献3;A. Takaku, et al., J. Mater. Sci., 25, 4873 (1990)
<ミクロボイドの測定>
 炭素繊維のミクロボイド(空孔)を評価するパラメータとして、炭素繊維に含まれるミクロボイド体積及びミクロボイドの平均断面積を測定した。
 炭素繊維に含まれるミクロボイド体積及びミクロボイドの平均断面積の測定には、Niフィルターで単色化されたCuKα線をX線源とするX線回折装置により、小角X線散乱プロファイルを測定することにより行なった。即ち、図6(b)に示す赤道方向の光学系について、2θ=0.5°~8°の範囲の赤道方向プロファイルに観察される散乱パターンから、ミクロボイド体積及びミクロボイドの平均断面積を求めた。なお、これらの解析法及び算出法は、前記参考文献3に記載の方法に準じた方法である。
 また、前記ミクロボイド体積及び前記ミクロボイドの平均断面積に関し、比較対象としては、PAN系炭素繊維として市販されているものとして代表的な東レ社製T300(参考例1)及び東邦テナックス社製IMS60(参考例2)とした。
 先ず、実施例1~6,8~13に係る各PBI炭素繊維のミクロボイド体積分率を図8に示す。この図8に示すように、実施例1~6,8~13に係る各PBI炭素繊維のミクロボイド体積は、参考例1及び2の値(参考例1;4.9%、参考例2;5.7%)に比べて同等かそれよりも小さい値を示し、破壊の原因となるミクロボイドの発生が少ないことを示している。
 次に、実施例1~6,8~13に係る各PBI炭素繊維のミクロボイド平均断面積を図9に示す。この図9に示すように、実施例1~6,8~13に係る各PBI炭素繊維では、ミクロボイド平均断面積について、大きな差異がみられないが、この図9に示すミクロボイド平均断面積の値は、参考例1及び2の値(参考例1;2.52nm、参考例2;2.11nm)に比べて半分程度と極めて小さい値であった。
  1a,1b,1c 炭素網面
    c/2    炭素網面の面間隔
     L    炭素網面の積層厚

Claims (9)

  1.  下記一般式(1)及び(2)のいずれかで表される構造を構造単位とするポリベンズイミダゾールを含む前駆体繊維を加熱して炭素繊維化させた構造を有し、引張弾性率が100GPa以上であり、かつ、引張強度が0.8GPa以上であることを特徴とするポリベンズイミダゾール炭素繊維。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     ただし、前記一般式(1)及び(2)中のR及びRは、それぞれ下記構造式(1)~(10)のいずれかの構造で表される3価又は4価のアリール基又は不飽和複素環式基を示し、Rは、前記構造式(1)~(10)のいずれかの構造で表される2価のアリール基又は不飽和複素環式基、炭素数2~4のアルケニレン基、酸素原子、硫黄原子及びスルホニル基のいずれかを示す。
    Figure JPOXMLDOC01-appb-C000003
  2.  繊維直径が8μm以上の連続繊維である請求項1に記載のポリベンズイミダゾール炭素繊維。
  3.  酸性溶液中の下記一般式(1)及び(2)のいずれかで表される構造を構造単位とするポリベンズイミダゾールを含む重合体を紡糸して前記重合体の1次前駆体繊維を取得する1次前駆体繊維取得工程と、
     前記1次前駆体繊維を塩基性溶液と接触させ、前記1次前駆体繊維中に残存する前記酸性溶液が中和除去された2次前駆体繊維を取得する2次前駆体繊維取得工程と、
     前記2次前駆体繊維を不活性ガス下、1,000℃~1,600℃の温度で加熱して炭素繊維化する炭素繊維化工程と、
     を含むことを特徴とするポリベンズイミダゾール炭素繊維の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
     ただし、前記一般式(1)及び(2)中のR及びRは、それぞれ下記構造式(1)~(10)のいずれかの構造で表される3価又は4価のアリール基又は不飽和複素環式基を示し、Rは、前記構造式(1)~(10)のいずれかの構造で表される2価のアリール基又は不飽和複素環式基、炭素数2~4のアルケニレン基、酸素原子、硫黄原子及びスルホニル基のいずれかを示す。
    Figure JPOXMLDOC01-appb-C000006
  4.  酸性溶液がポリリン酸であり、塩基性溶液がトリエチルアミンのエタノール溶液である請求項3に記載のポリベンズイミダゾール炭素繊維の製造方法。
  5.  2次前駆体繊維取得工程が、1次前駆体繊維をトリエチルアミンのエタノール溶液の浴槽中に5秒間~30秒間通過させて前記1次前駆体繊維中に残存するポリリン酸を中和除去させる工程である請求項4に記載のポリベンズイミダゾール炭素繊維の製造方法。
  6.  1次前駆体繊維取得工程が、更に、第1の酸性溶液中で重合させた重合体の反応溶液を凝固浴中で凝固させ、前記重合体の1次凝固物を取得する1次凝固物取得工程と、前記1次凝固物を第1の塩基性溶液と接触させ、前記1次凝固物中に残存する前記第1の酸性が中和除去された2次凝固物を取得する2次凝固物取得工程とを含み、前記2次凝固物を第2の酸性溶液中に溶解させて紡糸原液を調製し、前記紡糸原液を紡糸して前記重合体の1次前駆体繊維を取得する工程であり、
     2次前駆体繊維取得工程が、前記1次前駆体繊維を第2の塩基性溶液と接触させ、前記1次前駆体繊維中に残存する前記第2の酸性溶液が中和除去された2次前駆体繊維を取得する工程である請求項3に記載のポリベンズイミダゾール炭素繊維の製造方法。
  7.  第1の酸性溶液がポリリン酸であり、第1の塩基性溶液が炭酸水素ナトリウム水溶液であり、第2の酸性溶液がメタンスルホン酸であり、第2の塩基性溶液がトリエチルアミンのエタノール溶液である請求項6に記載のポリベンズイミダゾール炭素繊維の製造方法。
  8.  2次前駆体繊維取得工程が、1次前駆体繊維をトリエチルアミンのエタノール溶液の浴槽中に5秒間~30秒間通過させて前記1次前駆体繊維中に残存するメタンスルホン酸を中和除去させる工程である請求項7に記載のポリベンズイミダゾール炭素繊維の製造方法。
  9.  炭素繊維化工程における加熱温度が1,200℃~1,400℃の温度である請求項3から8のいずれかに記載のポリベンズイミダゾール炭素繊維の製造方法。
PCT/JP2015/062604 2014-05-08 2015-04-24 ポリベンズイミダゾール炭素繊維及びその製造方法 WO2015170623A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15788589.8A EP3141637B1 (en) 2014-05-08 2015-04-24 Polybenzimidazole carbon fiber and method for manufacturing same
US15/309,430 US20170152612A1 (en) 2014-05-08 2015-04-24 Polybenzimidazole carbon fiber and method for manufacturing same
KR1020167034289A KR101871909B1 (ko) 2014-05-08 2015-04-24 폴리벤즈이미다졸 탄소섬유 및 그 제조방법
JP2016517874A JP6310549B2 (ja) 2014-05-08 2015-04-24 ポリベンズイミダゾール炭素繊維及びその製造方法
US16/658,954 US11473219B2 (en) 2014-05-08 2019-10-21 Method for producing a polybenzimidazole carbon fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014096576 2014-05-08
JP2014-096576 2014-05-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/309,430 A-371-Of-International US20170152612A1 (en) 2014-05-08 2015-04-24 Polybenzimidazole carbon fiber and method for manufacturing same
US16/658,954 Division US11473219B2 (en) 2014-05-08 2019-10-21 Method for producing a polybenzimidazole carbon fiber

Publications (1)

Publication Number Publication Date
WO2015170623A1 true WO2015170623A1 (ja) 2015-11-12

Family

ID=54392476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062604 WO2015170623A1 (ja) 2014-05-08 2015-04-24 ポリベンズイミダゾール炭素繊維及びその製造方法

Country Status (5)

Country Link
US (2) US20170152612A1 (ja)
EP (1) EP3141637B1 (ja)
JP (2) JP6310549B2 (ja)
KR (1) KR101871909B1 (ja)
WO (1) WO2015170623A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016088663A1 (ja) * 2014-12-03 2017-09-14 国立研究開発法人産業技術総合研究所 炭素繊維前駆体繊維、炭素繊維及び炭素繊維の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3805820B1 (en) 2018-05-31 2024-04-17 Toppan Printing Co., Ltd. Coloring composition and method for producing color filter for use in solid-state imaging element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619453A (en) * 1969-11-03 1971-11-09 Celanese Corp Wet spinning process for the production of polybenzimidazole filaments

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528774A (en) 1967-03-14 1970-09-15 Us Air Force Formation of high modulus,high strength graphite yarns
US3635675A (en) * 1968-05-28 1972-01-18 Us Air Force Preparation of graphite yarns
US3634035A (en) * 1969-04-28 1972-01-11 Celanese Corp Continuous production of uniform graphite fibers
JPS4721906Y1 (ja) 1970-02-27 1972-07-18
US3903248A (en) 1974-04-15 1975-09-02 Celanese Corp Process for the production of large denier carbon fibers
US4533693A (en) * 1982-09-17 1985-08-06 Sri International Liquid crystalline polymer compositions, process, and products
US4505843A (en) * 1982-11-17 1985-03-19 Chevron Research Company Heterodiazole electroactive polymers
US5772942A (en) * 1995-09-05 1998-06-30 Toyo Boseki Kabushiki Kaisha Processes for producing polybenzazole fibers
JP3661802B2 (ja) * 1995-09-13 2005-06-22 東洋紡績株式会社 ポリベンザゾール繊維の製造方法
JP3651621B2 (ja) * 1995-09-05 2005-05-25 東洋紡績株式会社 ポリベンザゾール繊維の製造方法
JP3593200B2 (ja) * 1996-02-07 2004-11-24 クラリアント インターナショナル リミテッド 低金属含率ポリベンゾイミダゾール材料およびその製法
CA2490025A1 (en) * 2002-06-26 2004-01-08 Toyo Boseki Kabushiki Kaisha Polybenzazole fiber and use thereof
US20070104948A1 (en) * 2003-12-11 2007-05-10 Kohei Kiriyama Polybenzazole fiber and article comprising the same
US7189346B2 (en) 2004-07-22 2007-03-13 E. I. Du Pont De Nemours And Company Polybenzazole fibers and processes for their preparation
EP1947222A4 (en) * 2005-11-04 2010-02-24 Teijin Ltd POLYAZO FIBER AND MANUFACTURING METHOD THEREFOR
WO2008023719A1 (fr) * 2006-08-23 2008-02-28 Toyo Boseki Kabushiki Kaisha Fibre de polybenzazole et fibre de pyridobisimidazole
DE102007043946A1 (de) * 2007-09-14 2009-03-19 Bayerisches Zentrum für Angewandte Energieforschung e.V. Faserverbünde und deren Verwendung in Vakuumisolationssystemen
WO2012097266A1 (en) * 2011-01-13 2012-07-19 E. I. Du Pont De Nemours And Company Copolymer fibers and processes for making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619453A (en) * 1969-11-03 1971-11-09 Celanese Corp Wet spinning process for the production of polybenzimidazole filaments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3141637A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016088663A1 (ja) * 2014-12-03 2017-09-14 国立研究開発法人産業技術総合研究所 炭素繊維前駆体繊維、炭素繊維及び炭素繊維の製造方法
EP3228736A4 (en) * 2014-12-03 2018-06-27 National Institute of Advanced Industrial Science and Technology Carbon-fiber precursor fiber, carbon fiber, and method for producing carbon fiber

Also Published As

Publication number Publication date
JP2018104882A (ja) 2018-07-05
JP6310549B2 (ja) 2018-04-11
US11473219B2 (en) 2022-10-18
JP6449495B2 (ja) 2019-01-09
EP3141637A4 (en) 2017-12-27
EP3141637B1 (en) 2019-04-03
EP3141637A1 (en) 2017-03-15
JPWO2015170623A1 (ja) 2017-04-20
KR20170002579A (ko) 2017-01-06
US20200056305A1 (en) 2020-02-20
US20170152612A1 (en) 2017-06-01
KR101871909B1 (ko) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6449495B2 (ja) ポリベンズイミダゾール炭素繊維
JP2014074242A (ja) 炭素繊維束の製造方法
JP6590283B2 (ja) 炭素繊維前駆体繊維、炭素繊維及び炭素繊維の製造方法
JP6128610B2 (ja) 炭素繊維前駆体繊維、炭素繊維及び炭素繊維の製造方法
KR101407127B1 (ko) 고강도 고탄성의 탄소섬유 제조를 위한 전구체 섬유의 응고방법
JP7447788B2 (ja) 炭素繊維束およびその製造方法
JP2004156161A (ja) ポリアクリロニトリル系炭素繊維及びその製造方法
JP2016037689A (ja) 炭素繊維の製造方法
CN114457469A (zh) 聚丙烯腈初预氧化纤维制备方法及初预氧化纤维和应用
KR101909892B1 (ko) 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유의 제조방법 및 탄소섬유의 제조방법
KR101021881B1 (ko) 수직 방사를 이용한 탄소섬유 전구체의 제조 장치 및 방법
JP2009243024A (ja) 炭素繊維製造用プリカーサ及びその製造方法
JP2016166435A (ja) 炭素繊維前駆体アクリル繊維及び炭素繊維
JPS5920004B2 (ja) 炭素繊維の製造方法
JP7343538B2 (ja) 炭素繊維及びその製造方法
JP2014125701A (ja) 炭素繊維束の製造方法
JP6191182B2 (ja) 炭素繊維束及びその製造方法
JP5842343B2 (ja) 炭素繊維前駆体アクリル繊維束の製造方法
JP2012117161A (ja) 炭素繊維束の製造方法
KR20100074779A (ko) 초음파가 인가되는 수세 단계를 포함하는 탄소섬유 전구체의 제조방법
JP2024508516A (ja) ポリマー繊維を作製するためのプロセス及びそれから作られたポリマー繊維
JPH02259118A (ja) 高強度黒鉛繊維
Naskar et al. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby
KR20120111473A (ko) 탄소섬유용 전구체 섬유 및 이의 제조방법
JP2011219877A (ja) プリカーサーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517874

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15309430

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015788589

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015788589

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167034289

Country of ref document: KR

Kind code of ref document: A