WO2015159445A1 - 鋼矢板 - Google Patents

鋼矢板 Download PDF

Info

Publication number
WO2015159445A1
WO2015159445A1 PCT/JP2014/068070 JP2014068070W WO2015159445A1 WO 2015159445 A1 WO2015159445 A1 WO 2015159445A1 JP 2014068070 W JP2014068070 W JP 2014068070W WO 2015159445 A1 WO2015159445 A1 WO 2015159445A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
sheet pile
flange
flanges
evaluation index
Prior art date
Application number
PCT/JP2014/068070
Other languages
English (en)
French (fr)
Inventor
鈴木 崇
裕章 中山
篤史 加藤
典佳 原田
隆太 田中
和秀 戸田
慎也 林
浩 山下
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016513607A priority Critical patent/JP6108031B2/ja
Priority to CN201480063646.2A priority patent/CN105765130B/zh
Publication of WO2015159445A1 publication Critical patent/WO2015159445A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel

Definitions

  • the present invention relates to a steel sheet pile used as a retaining wall, revetment, etc. in the field of civil engineering and construction.
  • This application claims priority based on PCT / JP2014 / 061085 for which it applied on April 18, 2014, and uses the content here.
  • Patent Document 1 hat-shaped steel sheet piles (for example, see Patent Documents 1 and 2) and Z-shaped steel sheet piles (for example, see Patent Document 3) are generally known.
  • Patent Document 1 focuses on minimizing the penetration resistance of the hat-shaped steel sheet pile at the time of placing, and shows a hat-shaped steel sheet pile with improved workability.
  • a workability evaluation technique for the hat-shaped steel sheet pile a workability index R created based only on the knowledge of a soil tank test of a steel sheet pile scale model is shown.
  • the workability index R is an evaluation formula calculated by the flange width, web angle, and section height of the hat-shaped steel sheet pile, that is, the product of the tangent of the web angle and the ratio (flange width / section height). It is shown that there is a positive correlation between the workability index R and the penetration resistance. Using the workability index R, a hat-shaped steel sheet pile set to a web angle that minimizes penetration resistance with respect to a predetermined second moment of section is characterized.
  • Patent Document 2 uses the same evaluation formula as the workability index R as a workability evaluation technique for a hat-shaped steel sheet pile, and shows a hat-shaped steel sheet pile with improved economy and workability.
  • Patent Document 3 uses an evaluation formula similar to the workability index R as a workability evaluation technique for a Z-shaped steel sheet pile, and shows a Z-shaped steel sheet pile with improved economy and workability.
  • Patent Document 4 discloses a method for setting a cross-sectional shape of a Z-shaped steel sheet pile in which economic efficiency and workability are optimized using an evaluation formula similar to the workability index R. Thus, conventionally, workability is evaluated based on the workability index R as a workability evaluation technique for steel sheet piles.
  • the workability index R in the conventional hat-shaped steel sheet pile or Z-shaped steel sheet pile has the following problems. Since the conventional workability index R is created based only on the knowledge of the model test, the applicability to the workability evaluation of a full-scale steel sheet pile has not been verified. Then, the inventor verified the applicability of the workability evaluation to the full-scale steel sheet pile of the conventional workability index R. That is, a full-scale construction test was performed on the full-size steel sheet pile with a placement depth of 13 m, the workability of the full-size steel sheet pile was evaluated based on the workability index R, and compared with the dynamic resistance of each steel sheet pile.
  • the dynamic resistance is a measured value calculated based on the hydraulic pressure value of the construction machine, etc., and the steel sheet pile with a small dynamic resistance has a small hydraulic value necessary for penetration, that is, the placing resistance is suppressed. It is evaluated as a steel sheet pile with excellent workability.
  • Each steel sheet pile is composed of a first flange and a pair of webs extending from both ends of the first flange, and a pair of second sheets having a joint at the tip extending in parallel with the first flange on the opposite side of the first flange of the web. It is a hat-shaped steel sheet pile made of a flange, and the effective width is 900 mm or less and the effective width is 1270 mm or more when the length between the fitting centers of the pair of joints at the tip of the second flange is the effective width.
  • Steel sheet pile is composed of a first flange and a pair of webs extending from both ends of the first flange, and a pair of second sheets having a joint at the tip extending in parallel with the first flange on the opposite side of the first flange of the web. It is a hat-shaped steel sheet pile made of a flange, and the effective width is 900 mm or less and the effective width is 1270 mm or more when the length between the
  • the steel sheet pile (4) When paying attention to the steel sheet pile (4) having an effective width of 900 mm or less, the steel sheet pile (4) has a correlation coefficient between the ratio of the workability index R in FIG. 997, indicating that the correlation is extremely high. Further, when paying attention to the steel sheet piles (1), (2) and (3) which are steel sheet piles having an effective width of 1270 mm or more, the straight line in which the ratio of the workability index R and the ratio of the dynamic resistance Ru in FIG. The correlation coefficient was 0.349, indicating that the correlation was low.
  • the conventional workability index R can be used to evaluate the workability of a full-size steel sheet pile having an effective width of 900 mm or less, and is not applicable to the workability evaluation of a full-size steel sheet pile having an effective width of 1270 mm or more. It was revealed that there is an applicable range related to the effective width for evaluating the workability of large steel sheet piles. That is, it has been clarified that the conventional workability index R has a problem that there is no applicability of workability evaluation of a full-size steel sheet pile with an effective width of 1270 mm or more. Therefore, there has been a demand for a workability evaluation technique that can reliably apply the workability evaluation of an actual steel sheet pile having an effective width of 1270 mm or more.
  • the present invention has been made in view of the above-described problems, and creates an obstruction resistance formula indicating occlusion resistance that becomes a dominant resistance when placing a steel sheet pile, and uses this occlusion resistance formula to make existing steel It aims at providing the steel sheet pile of the suitable cross-sectional shape excellent in the performance of at least one among workability and economical efficiency compared with a sheet pile.
  • a steel sheet pile constituting a wall, which is substantially parallel to the neutral axis of the wall, symmetrically located across the neutral axis and parallel to each other.
  • a steel sheet pile having one flange and a second flange, a web connecting the first flange and the second flange, and having a unit between the midpoints of the adjacent first flanges or the second flanges in the wall body
  • two flanges provided at both ends of one unit in the steel sheet pile are used as the second flange, a joint for fitting the steel sheet piles is formed at the end of the second flange.
  • the section modulus Ze is fully the range of 1700 ⁇ Ze ⁇ 2300cm 3 / m
  • the relative density Dr is 80%
  • the N value is 20
  • the placement depth Z ⁇ is 15000 mm
  • the workability evaluation index C and the economic evaluation index E represented by the following formulas (18) and (19) satisfy any of the following formulas (20) to (23): .
  • the steel sheet pile constituting the wall body is substantially parallel to the neutral axis of the wall body, is symmetrically located across the neutral axis, and is parallel to each other.
  • the steel sheet pile having a flange and a web connecting the first flange and the second flange and having a unit between the midpoints of the adjacent first flanges or the second flanges in the wall body, the steel sheet pile
  • a joint for fitting steel sheet piles is formed at the end of the second flange.
  • the steel sheet pile constituting the wall body is substantially parallel to the neutral axis of the wall body, is symmetrically located across the neutral axis, and is parallel to each other.
  • the steel sheet pile having a flange and a web connecting the first flange and the second flange and having a unit between the midpoints of the adjacent first flanges or the second flanges in the wall body, the steel sheet pile
  • a joint for fitting steel sheet piles is formed at the end of the second flange.
  • E A 0 / Ze (19) 0.13 ⁇ C ⁇ 0.36 and ⁇ 0.0237 ⁇ C + 0.0538 ⁇ E ⁇ 0.0642 (29) 0.36 ⁇ C ⁇ 0.52 and ⁇ 0.0237 ⁇ C + 0.0538 ⁇ E ⁇ ⁇ 0.025 ⁇ C + 0.0732 (30) 0.52 ⁇ C ⁇ 0.75 and ⁇ 0.0237 ⁇ C + 0.0538 ⁇ E ⁇ 0.0602 (31)
  • F occlusion the following formulas (6), (3) ′, (4) ′, (14), (12), (13), (1) ′ and (2) ′ and (7) or (7 ) ′ Calculated based on occlusion resistance (kN / sheet), A: sectional area (cm 2 / sheet), A 0 : sectional area per 1 m width in the wall direction at the time of wall formation (cm 2 / m) Yes, Wf: width of the first flange (mm), H: cross-sectional
  • a steel sheet pile constituting the wall body, the first flange and the second flange that are substantially parallel to the neutral axis of the wall body, are symmetrically located across the neutral axis, and are parallel to each other, and
  • the steel sheet pile having a web connecting the first flange and the second flange and having one unit between the midpoints of the adjacent first flanges or the second flanges in the wall body, one unit in the steel sheet pile
  • the workability evaluation index which shows the ratio with respect to the cross-sectional area of the obstruction
  • the section coefficient Ze discretely classified on the lower limit line of the workability evaluation index and the economic evaluation index Three cross-sectional shape groups are grouped, and the three cross-sectional shape groups formulated as a performance range that defines the upper limit of the steel sheet pile, the lower limit region of the workability evaluation index and the economic evaluation index of the existing steel sheet pile
  • Three formula groups are set, that is, the workability evaluation index and the economic evaluation index of the steel sheet pile to be evaluated are formulated according to the expression group including the section modulus of the steel sheet pile to be evaluated.
  • the steel sheet pile to be evaluated is an expression group corresponding to the section modulus Ze of the steel sheet pile to be evaluated among the three expression groups, and the workability evaluation index and the economic evaluation index of the steel sheet pile to be evaluated. It can set so that at least one value may become smaller than the value of any existing steel sheet pile. Therefore, in this invention, compared with the conventional existing steel sheet pile, the cross-sectional steel sheet pile excellent in at least one performance among workability
  • a steel sheet pile having a small cross-sectional shape and a large steel sheet pile can be evaluated with a workability evaluation index and an economic evaluation index to determine a suitable cross-sectional shape.
  • the evaluation method of the present invention can be applied even to a steel sheet pile having an effective width of 1270 mm or more for which workability could not be evaluated by the conventional evaluation method.
  • the length between the fitting centers of the pair of joints at the tip of the second flange is the effective width, and the effective width can be 1270 mm or more.
  • the cross-sectional height H and the thickness of the first flange excluding the joint, the thickness of the web, or the minimum thickness t which is the minimum thickness among the thicknesses of the second flange It is preferable that the ratio H / t is set so as to satisfy a range of less than 39.
  • the ratio H / t to the minimum plate thickness t is set so as to satisfy the range of less than 45.
  • the first flange width of the steel sheet pile, the geometric constraint determined by the web angle, and the structural constraint defined by the width-thickness ratio according to the steel material yield strength for buckling prevention are set. Preferably it is.
  • the first flange width of the steel sheet pile and the geometric constraint determined by the web angle are satisfied.
  • the buckling performance required by the standard with the width-thickness ratio constraint set by the EURO CODE class 3 standard as the structural constraint is achieved.
  • a satisfying formula group can be set, and a steel sheet pile satisfying the geometric and structural constraints of the steel sheet pile can be provided.
  • the steel sheet pile is preferably manufactured hot.
  • the steel sheet pile includes a first flange and a pair of webs extending from both ends of the first flange, and a pair of joints having a joint at a tip extending in parallel with the first flange on the opposite side of the web from the first flange.
  • a hat-shaped hat-shaped steel sheet pile having a second flange may be used.
  • the steel sheet pile has a hat shape by fitting a joint into a Z-shaped steel sheet pile comprising a pair of parallel flanges having joints at opposite ends of the web and opposite ends of the web.
  • both flanges on the side where the joint is fitted are the first flanges, and both sides on the side where the joint is not fitted
  • the flange may be the second flange.
  • a steel sheet pile having a suitable cross-sectional shape excellent in at least one of workability and economic efficiency compared to any existing steel sheet pile by using an evaluation method in consideration of blocking resistance. Can be provided. Since it becomes the steel sheet pile in which the obstruction
  • the ratio of the cross-sectional shape factor (cross-sectional height / minimum sheet thickness), which has a high correlation with the amount of change in the total width that has a large effect on the construction speed, is limited, the total amount of deformation of the steel sheet pile during placement is produced
  • the steel sheet pile with a thin and large cross section with high rigidity is economical because it is possible to perform a good construction equivalent to the driving speed of a steel sheet pile in a healthy state that is suppressed within the tolerance and hardly changes in the entire width. However, it is possible to prevent a decrease in the construction yield.
  • a steel sheet pile can be provided.
  • the steel sheet pile according to the present embodiment is intended for a hat-shaped steel sheet pile 1 having a hat shape or a Z-shaped steel sheet pile 2 having a Z shape.
  • the hat-shaped steel sheet pile 1 and the Z-shaped steel sheet pile 2 are collectively referred to as “steel sheet pile 3”.
  • the steel sheet pile 3 is substantially parallel to the neutral axis of the wall body when the wall body is configured, and is provided with a first flange and a second flange that are positioned symmetrically with respect to the neutral axis and parallel to each other. A web connecting the first flange and the second flange is provided.
  • the steel sheet pile as one unit indicates a hat-shaped steel sheet pile 1 or a joint of two (one set) Z-shaped steel sheet piles.
  • the hat-shaped steel sheet pile 1 shown to Fig.1 (a) is demonstrated.
  • the hat-shaped steel sheet pile 1 includes a first flange 11 and a pair of webs 12 extending from both ends of the first flange 11, and extends parallel to the first flange 11 on the opposite side of the web 12 from the first flange 11. It is a hat-shaped steel sheet pile having a pair of second flanges 13 having a joint at the tip.
  • the Z-shaped steel sheet pile 2 is a Z-shaped steel sheet pile comprising a web 12 and a pair of parallel flanges 11 and 13 having joints at opposite ends of the web 12 extending in opposite directions.
  • the first flange 11 composed of both flanges on the side where the joint is fitted and the second side on the side where the joint is not fitted And a flange 13.
  • An obstruction resistance type F occlusion that indicates the occlusion resistance is newly created and acts on the outer peripheral surface excluding the tip of the tip resistance F acting on the cross-section of the sheet pile tip and the peripheral surface facing the obstruction area, for which the evaluation method is already known.
  • a placement resistance evaluation formula for determining the placement resistance F which is the sum of the placement resistance F and the outer circumference resistance F to be performed, is created.
  • the placement resistance evaluation formula is based on the actual construction test results described later. It has been verified that it is possible to evaluate the workability in the region of the effective width that was outside the application range of the conventional workability index R. In other words, the validity of the workability evaluation of the newly created blockage resistance formula has been confirmed.
  • the blocking resistance which is the dominant resistance of placing resistance, and block more than existing steel sheet piles.
  • the blocking resistance per one hat-shaped steel sheet pile or the set of two Z-shaped steel sheet piles determined by the blocking resistance formula ( In order to devise a hat-shaped steel sheet pile or a Z-shaped steel sheet pile that is set with a workability evaluation index (F closed / A) indicating the ratio of the F closed ) to the cross-sectional area (A), and further excellent in economy.
  • the economic evaluation index (A 0 / Ze) indicating the ratio of the cross-sectional area A 0 per 1 m width in the wall direction at the time of wall formation and the section modulus Ze is set, and the workability evaluation index and the economic evaluation index are Graphs expressed as horizontal and vertical axes, respectively There will be created.
  • FIG. 4 shows the ratio of the cross-sectional area of the occlusion resistance per one set of Z-shaped steel sheet piles per pair of the hat-shaped steel sheet piles in the existing steel sheet piles or in a hat shape by fitting a joint.
  • FIGS. 2 and 3 (a) when the steel sheet pile 3 is placed, in the region surrounded by the first flange 11 and the pair of webs 12 extending from both ends of the first flange 11 at the time of placing, There is a blockage region (blocking area A blockage ) where a high parabolic ground stress is generated along the first flange 11 side and convex toward the first flange 11 side in a top view. F blockage occurs.
  • the shape of the closed region of the steel sheet pile models having a plurality of different scale ratios in which the cross-sectional shape of the steel sheet pile model is similar has a substantially similar relationship. That is, when the scale ratio as a representative value is set to 1/5, for example, the shape of the closed region in the steel sheet pile model with a scale of 1/5 is related to the cross-sectional shape factor by the formulas (1) to (4).
  • the circumferential length U model of the steel sheet pile 3 facing the closed region necessary for calculating the closing resistance described later using these equations (1) to (4) and (U model- k ⁇ L model ) / Model A blockage can be calculated.
  • the shape of the closed region is also substantially similar, so the circumferential length U of the steel sheet pile 3 facing the closed region for the full-scale steel sheet pile, (U -k ⁇ L) / a 5-fold of the closure respectively model, evaluates to 1/5-fold is calculated clogging resistance Jitsudai sheet piles. For this reason, in the calculation of a full-scale steel sheet pile, when the equations (1) to (4) are deformed by, for example, multiplying by a coefficient of 5, the equations (1) ′ to (4) ′ are obtained. About the validity of the evaluation method of the obstruction resistance of the full-scale steel sheet pile calculated in this way, it is confirmed by the full-scale steel sheet pile construction test result mentioned later.
  • the friction coefficient of soil and a steel sheet pile model test body is set, the occlusion resistance evaluated by the occlusion resistance formula which will be described later based on the relational expression of equations (1) to (4) from the cross-sectional shape, and the separately evaluated tip end of the sheet pile acting sectional tip resistance F tip and the outer peripheral resistance F periphery acting on the outer peripheral surface excluding the peripheral surface facing the closed area, the sum of the pouring resistance evaluation formula and pouring resistance F scale 1/5 of The measured values of the steel sheet pile model were compared. As a result, as shown in FIG. 8, the value of the casting resistance F according to the casting resistance evaluation formula at each depth shows a good agreement with the measured casting resistance value. The validity of modeling can be confirmed.
  • the placement resistance evaluation formula shown in Formula (5) is composed of a pair of webs extending from both ends of the first flange and the first flange, and the tip of the web extends in parallel with the first flange on the opposite side of the first flange.
  • the effective width of the hat-shaped or the set of two Z-shaped steel sheet piles is 1270 mm or more
  • the frictional resistance generated at the interface between the steel sheet pile surface and the ground overlaps to generate a higher restraining pressure than the
  • Blocking resistance F blockage which is a dominant resistance when placing steel sheet piles along the blocking region, tip of resistance tip F (pure cross-section tip resistance force) acting on the tip section (cross-sectional area A) of steel sheet pile 3, the steel sheet pile It is represented by the sum of the outer periphery resistance F acting on the outer peripheral surface excluding the peripheral surface facing the closed region.
  • the blocking resistance F blockage of the above formula (5) is the first flange width Wf of the cross-sectional shape of the steel sheet pile 3, and the web angle which is a complementary angle of the angle formed by the web 12 and the second flange 13. It is calculated based on ⁇ and the section height H. That is, the blockage resistance F blockage is expressed by Equation (6).
  • a blockage area is A
  • U is the circumference of the steel sheet pile 3 facing the blockage region
  • L is the circumference of the parabola B in the blockage region
  • (U ⁇ k ⁇ L) / A blockage is as shown in FIG.
  • Equation (3) The web angle ⁇ of the cross-sectional shape, the cross-sectional height H, and the first flange width Wf are calculated by Equation (3).
  • ⁇ v is the vertical stress in the closed region, and is calculated by Equation (7).
  • is a unit volume weight of the soil (for example, 1.8 ⁇ 10 ⁇ 8 kN / mm 3 ).
  • ⁇ v in equation (7) is equal to or less than the product of the passive earth pressure coefficient and the effective earth cover pressure determined by the N value and relative density of the target ground.
  • 15 ° is generally used.
  • Tip resistance F tip becomes Equation (8).
  • is a bearing force coefficient
  • A is a cross-sectional area (mm 2 )
  • N is a tip N value of the target ground.
  • the outer periphery of the U is the peripheral length of the outer peripheral surface excluding the peripheral surface facing the closed region of the steel sheet pile, that is, the outer peripheral length of the closed region, and the intersection coordinates (X 0 , Y) of the closed area A and the steel sheet pile 3 shown in FIG. 0 ) is calculated by the simultaneous equations of the parabola B and the straight line T, the equations (10) and (11). Then, the intersection coordinates (X 0, Y 0) is the official solution, equation (12), can be represented by as a, c of the formula (13), the circumferential length of the steel sheet pile 3 facing the closed area U that is can be calculated by the equation (14).
  • X 0 is a value greater than zero.
  • the parabola B does not have a solution, such as when the web angle ⁇ , which is a complementary angle of the angle formed by the web 12 and the second flange 13, becomes extremely loose, it means that the closed region does not occur. In that case, what is necessary is just to evaluate that it becomes more than the performance of the existing cross section only about economy. That is, when the inventor evaluated the workability of the existing cross section, the existing cross section has a closed region and a blocking resistance is generated. Since it is clear that it is excellent, it is sufficient to evaluate that only the economic efficiency is equal to or better than the performance of the existing cross section.
  • FIG. 4 shows the blockage resistance F occlusion and cross-sectional area per Z-shaped steel sheet pile per pair of hat-shaped steel sheet piles in existing steel sheet piles or in a hat shape by fitting a joint.
  • a workability evaluation index indicating a ratio of a (F occlusion / a) economy shows a cross-sectional area a 0 and the ratio of the section modulus Ze per 1m wide wall direction during wall formation in existing sheet piles evaluation index ( A 0 / Ze) is a graph showing the relationship.
  • the unit of F occlusion / A is (kN / sheet) / (cm 2 / sheet), and the unit of A 0 / Ze is (cm 2 / m) / (cm 3 / m).
  • the horizontal axis is the workability evaluation index (F occlusion / A), and the smaller this value, the harder it is to occlude and it can be evaluated that the cross section is excellent in workability.
  • the vertical axis is the economic evaluation index (A 0 / Ze). The smaller this value, the cross-sectional area per 1 m in the wall direction when forming the wall, and the lighter the steel weight, the better the economic efficiency. It can be evaluated that there is.
  • the N value of the target ground as the ground condition is an example of a calculation condition, and the value is not limited to 20.
  • the N value is defined within a range of 0 to 50,
  • the blockage resistance F blockage is calculated based on the calculation conditions associated therewith.
  • sigma v of formula (7) is hit ⁇ degree Z v has been expressed as an exponential function of, not capable of increased indefinitely in response to striking ⁇ degree Z v, the upper limit defined by ground Have That is, when ⁇ v increases according to the placement depth Z v and rises to a stress level at which the ground at the steel sheet pile tip is in a passive fracture state, the ground at the steel sheet pile tip is in a broken state. v never increases. Therefore, ⁇ v in equation (7) is the product (v ⁇ ⁇ ) of the passive earth pressure coefficient ( ⁇ ), the effective soil cover pressure ( ⁇ v0 ) determined by the N value (N) of the target ground, and the relative density (Dr). v0 ) or less.
  • the workability evaluation index of the existing steel sheet pile is grouped into three cross-sectional shape groups according to the section modulus Ze discretely classified by the lower limit line of the workability evaluation index and the economic evaluation index.
  • three formula groups (first formula group G1, second formula group G2, second formula group corresponding to the three cross-sectional shape groups formulated as performance ranges defining the lower limit region of the economic evaluation index as the upper limit of the steel sheet pile 3.
  • a group of three formulas G3) is set.
  • the reason why three formula groups corresponding to the section modulus Ze are set is that the existing steel sheet pile having a section coefficient of 1700 cm 3 / m or more has a section modulus of 1700 ⁇ Ze ⁇ 2300 cm 3 / This is because it is divided into three groups of m, 2300 ⁇ Ze ⁇ 3400 cm 3 / m and 3400 cm 3 / m ⁇ Ze.
  • the section modulus of existing steel sheet piles is roughly divided into three groups is that the group of cross-sectional shapes of existing steel sheet piles, which have different cross-sectional sizes and required rolling capacities during manufacturing, are related to manufacturing efficiency.
  • the cross-sectional shape and the required shape-reducing ability at the time of manufacturing are gathered and manufactured in a cross-sectional shape group of three cross-section coefficient classes.
  • the formula group includes a first formula group G1 corresponding to the range of the formula (15), a second formula group G2 corresponding to the range of the formula (16), and a third formula corresponding to the range of the formula (17). It is divided into the formula group G3.
  • the economical performance and the performance of workability should just be compared with the performance range shown by 3rd type
  • Each formula group G1, G2, G3 is composed of formulas showing a plurality of limit lines as shown in FIG. 11 to FIG. 13, respectively. These limit lines correspond to the formula groups G1 to G3 in FIG. It is a line which envelops the lower limit of each of many plots. However, these lines do not include the plot. Of the limit lines of these formula groups G1, G2, and G3, the lower limit line holds a steel sheet pile having a hat-shaped cross section or a Z-shaped steel sheet pile that is made into a hat shape by fitting two joints into a hat shape.
  • the geometrical constraints determined from the first flange width Wf and the web angle ⁇ of the steel sheet pile 3 and the structural constraints defined by the width-thickness ratio according to the steel yield strength for preventing buckling are set. Yes.
  • the first flange width is Wf> 0 and the web angle is 0 ° ⁇ ⁇ 90 °.
  • the first expression group G1 includes seven limit lines G1a, G1b, G1c, G1d, G1e, G1f, and G1g.
  • the lower limit line is shown.
  • the lower limit line of the first expression group G1 is shown.
  • the second expression group G2 is composed of eight limit lines G2a, G2b, G2c, G2d, G2e, G2f, G2g, and G2h.
  • the lower limit line is shown.
  • the lower limit line of group 2 group G2 is shown.
  • the third expression group G3 is composed of six limit lines G3a, G3b, G3c, G3d, G3e, and G3f.
  • the lower limit line is shown.
  • the lower limit line of group 3 group G3 is shown.
  • FIG. 14 shows a ratio (H / t) of (section height H / minimum sheet thickness t) which is a section shape factor having a high correlation with the section deformation at the time of construction, and was obtained in an actual construction test. It is data. Since a full-scale steel sheet pile may be constructed by holding the first flange at the site, an eccentric external force may act on the steel sheet pile, and the steel sheet pile cross section may be deformed. When the steel sheet pile cross-section is deformed, the placement resistance may increase according to the change in the cross-sectional shape.
  • the constraint value of the ratio between the cross-sectional height H and the minimum plate thickness t is less than 39.
  • the data shown in FIG. 14 and the value of the constraint value 39 of H / t are for a standard ground on which a steel sheet pile having an N value of less than 50 on the target ground can be placed without an auxiliary method such as a water jet. Therefore, although the constraint value varies depending on the type and strength of the ground, using this index with the N value 50 of the target ground as the upper limit can cover normal steel sheet pile driving.
  • the steel sheet pile (6) has a longer placement time than the steel sheet pile (5) as the placement depth becomes 7 m or less, and is about twice as long as the steel sheet pile (5) by the 15 m placement. It can be confirmed that the workability is significantly reduced. Therefore, good workability can be secured by setting H / t to less than 39.
  • FIG. 16 shows the ratio of the placing resistance F and the ratio of the dynamic resistance Ru according to the placing resistance evaluation formula according to the present embodiment of each steel sheet pile when the steel sheet pile (steel sheet pile (1)) as the reference is 1.
  • FIG. Each steel sheet pile in FIG. 16 includes a steel sheet pile having an effective width of 900 mm or less and an effective width of 1270 mm or more.
  • the correlation coefficient between the ratio of the placement resistance F and the ratio of the dynamic resistance Ru according to the placement resistance evaluation formula is 0.912, and the placement resistance evaluation formula is the shape of all regions regardless of the effective width.
  • the workability that is, it is possible to evaluate the workability of a full-scale steel sheet pile having an effective width of 1270 mm or more that is outside the scope of application of the conventional workability index R. I can confirm.
  • the friction resistance generated at the interface between the steel sheet pile surface and the ground overlaps, so that the steel sheet pile is driven along the closed region where a higher restraint pressure is generated than the surrounding ground.
  • the blockage resistance formula that uses the blockage resistance F blockage, which is a typical resistance, as a calculation item is created, and the blockage resistance F blockage is evaluated based on this blockage resistance equation. It is possible to suitably evaluate the workability with respect to the shape of, and in particular, the length between the fitting centers of a pair of joints at the tip of the second flange that is outside the scope of application of the conventional workability index R Is the effective width The effective width is possible workability Evaluation of Full Scale sheet piles over 1270 mm.
  • a closing resistor F occlusion of Z-shaped steel sheet pile per set comprising a set of two you hat shape by the hat-shaped steel sheet pile fitted with one or per joint together a workability evaluation index that indicates the ratio of the cross-sectional area a, graph the relationship between the economic evaluation index indicating the cross-sectional area a 0 and the ratio of the section modulus Ze per 1m wide wall direction during wall formation in existing sheet piles
  • the workability evaluation index and the economic evaluation index of the steel sheet pile 3 to be evaluated are the workability evaluation index and economic evaluation formulated by the formula group G including the section modulus Ze of the steel sheet pile 3 to be evaluated.
  • the limit region of the index it can be evaluated in comparison with the workability evaluation index and the economic evaluation index of the existing steel sheet pile.
  • the steel sheet pile to be evaluated can be set so that at least one of the workability evaluation index and the economic evaluation index is smaller than the value of any existing steel sheet pile. Therefore, compared with the conventional existing steel sheet pile, the steel sheet pile of the cross-sectional shape excellent in at least one performance among workability and economical efficiency can be provided.
  • a steel sheet pile having a suitable cross-sectional shape is evaluated with a workability evaluation index and an economic evaluation index for a steel sheet pile having a small cross-sectional shape. Can be determined.
  • the effective width is the length between the fitting centers of a pair of joints at the tip of the second flange, which is outside the scope of the conventional workability index R, the effective width is 1270 mm or more. Even if it is a large steel sheet pile, this evaluation method can be applied.
  • the (section height / minimum thickness) ratio which is a sectional shape factor having a high correlation with the section deformation at the time of construction, is provided as a constraint value of the formula group, and (section height / minimum thickness) By setting it as the steel sheet pile which becomes the range of ratio ⁇ 39, the construction which suppressed the deformation amount of the full width of the steel sheet pile within the JIS production tolerance can be performed.
  • a hat shape in which the cross-sectional shape determined from the first flange width of the steel sheet pile and the web angle is a hat shape, with the width-thickness ratio constraint set in the EURO CODE class 3 standard as a structural constraint. It is possible to set a formula group that satisfies the geometric constraints for holding a pair of Z-shaped steel sheet piles by fitting two steel sheet piles or joints into a hat shape, satisfying the performance required by the standard A steel sheet pile having a cross-sectional shape can be provided.
  • a steel sheet pile having a suitable cross-sectional shape excellent in at least one of workability and economic efficiency as compared with existing steel sheet piles by using an evaluation method in consideration of blocking resistance. Can be provided.
  • the steel sheet pile shown in FIG. 17 has a section modulus Ze of 1700 ⁇ Ze ⁇ 2300 cm 3 / m (formula (15)) in the first formula group G1 (see FIG. 18). It is an example. In this 1st Example, it is a Z-shaped steel sheet pile which makes a pair by fitting two joints and each dimension is shown in FIG.
  • the lower limit of the workability evaluation index (F occlusion / A) in the existing steel sheet pile of the first formula group G1 is 1.4
  • the economic evaluation index (A 0 / Ze) The lower limit is 0.0766.
  • the steel sheet pile of the first example is included in the first formula group G1 because the section modulus Ze is 2134 cm 3 / m, and each limit line G1a to G1g of the first formula group G1 (See FIG. 11).
  • the workability evaluation index (F occlusion / A) of the steel sheet pile of the first example set to the cross-sectional shape of Table 1 is 0.94
  • the economic evaluation index (A 0 / Ze) was 0.0734.
  • the steel sheet pile of the first example is smaller than the lower limit (0.0766) of the economic evaluation index (A 0 / Ze) of the existing steel sheet pile in terms of economy, and is compared with the existing steel sheet pile of the first example.
  • the performance is improved by about 4%.
  • the economic evaluation index (A 0 / Ze) is the lower limit value of the workability evaluation index (F occlusion / A) of the existing steel sheet pile, which is the lower limit value (0.0766). .40, the performance of the first embodiment with respect to the existing steel sheet pile is improved by about 33%.
  • the workability evaluation index (F blockage / A) of the steel sheet pile of the first example is 0.94
  • the steel sheet pile of the first example and the workability evaluation index (F blockage / A) are the same (0. 94)
  • the performance of the first embodiment with respect to the existing steel sheet pile is improved by about 17%.
  • the second embodiment is an example of a steel sheet pile included in the second formula group G2 (see FIG. 20) in which the section modulus Ze shown in FIG. 19 is in the range of 2300 ⁇ Ze ⁇ 3400 cm 3 / m (equation (16)).
  • the section modulus Ze shown in FIG. 19 is in the range of 2300 ⁇ Ze ⁇ 3400 cm 3 / m (equation (16)).
  • it is a Z-shaped steel sheet pile which makes a pair by fitting a joint and making it into a hat shape, and each dimension is shown in FIG.
  • FIG. 20 the section modulus Ze shown in FIG. 19 is in the range of 2300 ⁇ Ze ⁇ 3400 cm 3 / m (equation (16)).
  • the lower limit value of the economical evaluation index (A 0 / Ze) of the existing steel sheet pile compared with this cross-sectional shape is 0.0713
  • the economic evaluation index (A 0 / Ze) is 1.04.
  • the steel sheet pile of the second embodiment is included in the second formula group G2 because the section modulus Ze is 3057 cm 3 / m, and each limit line G2a to G2h of the second formula group G2 is included. (See FIG. 12).
  • the workability evaluation index (F occlusion / A) of the steel sheet pile of the second example set to the cross-sectional shape of Table 2 is 0.68
  • the economic evaluation index (A 0 / Ze) Was 0.0643. That is, the steel sheet pile of the second embodiment is smaller than the lower limit (0.0713) of the economic evaluation index (A 0 / Ze) of the existing steel sheet pile in terms of economy, and is compared with the existing steel sheet pile of the second embodiment.
  • the performance is improved by about 10%.
  • 1 is the lower limit value of the workability evaluation index (F blockage / A) of the existing steel sheet piles where the economic evaluation index (A 0 / Ze) is the lower limit value (0.0713). .04, the performance of the second embodiment with respect to the existing steel sheet pile is improved by approximately 35%.
  • the workability evaluation index (F blockage / A) of the steel sheet pile of the second example is 0.68
  • the steel sheet pile of the second example and the workability evaluation index (F blockage / A) are the same (0. 68)
  • the performance of the second embodiment with respect to the existing steel sheet pile is improved by about 19%.
  • the third embodiment is an example of a steel sheet pile included in the third formula group G3 (see FIG. 22) in which the section modulus Ze shown in FIG. 21 is in the range of 3400 cm 3 / m ⁇ Ze shown in formula (17).
  • the third embodiment is a Z-shaped steel sheet pile which is a set of two pieces fitted with a joint to form a hat shape, and the dimensions are shown in FIG. In the third embodiment, H / t> 39.
  • FIG. 22 The third embodiment is an example of a steel sheet pile included in the third formula group G3 (see FIG. 22) in which the section modulus Ze shown in FIG. 21 is in the range of 3400 cm 3 / m ⁇ Ze shown in formula (17).
  • the third embodiment is a Z-shaped steel sheet pile which is a set of two pieces fitted with a joint to form a hat shape, and the dimensions are shown in FIG. In the third embodiment, H / t> 39.
  • FIG. 22 shows the third embodiment.
  • the lower limit value of the economic evaluation index (A 0 / Ze) of the existing steel sheet pile compared with this cross-sectional shape is 0.0602, and the economic evaluation index (A 0 / Ze)
  • the lower limit of the workability evaluation index (F occlusion / A) of the existing steel sheet pile at 0.0602 is 0.52.
  • the steel sheet pile of the third example is included in the third formula group G3 because the section modulus Ze is 4466 cm 3 / m, and each limit line G3a to G3f of the third formula group G3 is included. (See FIG. 13).
  • the workability evaluation index (F occlusion / A) of the steel sheet pile of the third example set to the cross-sectional shape of Table 3 is 0.49, and the economic evaluation index (A 0 / Ze) was 0.0507.
  • the steel sheet pile of the third embodiment is smaller than the lower limit (0.0602) of the economic evaluation index (A 0 / Ze) of the existing steel sheet pile in terms of economy, and is compared with the existing steel sheet pile of the third embodiment.
  • the performance is improved by about 16%.
  • 0 is the lower limit value of the workability evaluation index (F occlusion / A) of the existing steel sheet pile in which the economic evaluation index (A 0 / Ze) is the lower limit value (0.0602). .52, the performance of the third embodiment relative to the existing steel sheet pile is improved by about 5%.
  • the workability evaluation index (F blockage / A) of the steel sheet pile of the third example is 0.49
  • the steel sheet pile of the third example and the workability evaluation index (F blockage / A) are the same 0.49.
  • the performance of the third embodiment with respect to the existing steel sheet pile is improved by about 17%.
  • the fourth example is an example of a steel sheet pile included in the third formula group G3 (see FIG. 24) in which the section modulus Ze shown in FIG. 23 is in the range of 3400 cm 3 / m ⁇ Ze shown in formula (17).
  • this 4th Example it is a Z-shaped steel sheet pile which makes a pair by fitting two joints and each dimension is shown in FIG.
  • a constraint condition of H / t ⁇ 39 is provided.
  • the lower limit value of the economical evaluation index (A 0 / Ze) of the existing steel sheet pile compared with this cross-sectional shape is 0.0602, and the economic evaluation index (A 0 / Ze)
  • the lower limit of the workability evaluation index (F occlusion / A) of the existing steel sheet pile at 0.0602 is 0.52.
  • the steel sheet pile of the fourth embodiment has a section modulus Ze of 4916 cm 3 / m, and thus is included in the third formula group G3, and each limit line G3a to G3f of the third formula group G3. (See FIG. 13).
  • the workability evaluation index (F occlusion / A) of the steel sheet pile of the fourth example set to the cross-sectional dimensions of Table 4 is 0.43, and the economic evaluation index (A 0 / Ze) was 0.0562.
  • the steel sheet pile of the fourth example is smaller than the lower limit (0.0602) of the economic evaluation index (A 0 / Ze) of the existing steel sheet pile in terms of economy, and is compared with the existing steel sheet pile of the fourth example.
  • the performance is improved by about 7%.
  • the workability evaluation index (F blockage / A) of the steel sheet pile of the fourth example is 0.43
  • the steel sheet pile of the fourth example and the workability evaluation index (F blockage / A) are the same 0.43.
  • the performance of the third embodiment with respect to the existing steel sheet pile is improved by about 10%.
  • FIGS. 11 to 13 show respective formula groups (first formula group G1, second formula group G2, third formula group G3) determined under the above conditions. ), The limit areas of the workability evaluation index C and the economic evaluation index E are set by these formula groups, and this is used as the performance range of the steel sheet pile.
  • the scope of application of the present invention is not limited to this.
  • the N value which is the ground condition in the calculation of the blockage resistance F blockage is set to a different value, and the steel sheet pile is based on each formula group determined in the calculation conditions associated therewith.
  • a performance range may be defined.
  • FIGS. 26 to 28 illustrate a plurality of limit lines constituting each of the expression groups G1 to G3 shown in Table 5. Each expression is similar to FIGS. 11 to 13 described in the above embodiment. The performance range of the steel sheet pile shown by a group is shown.
  • FIGS. 29 to 31 illustrate a plurality of limit lines constituting each of the expression groups G1 to G3 shown in Table 6. Each expression is similar to FIGS. 11 to 13 described in the above embodiment. The performance range of the steel sheet pile shown by a group is shown.
  • the performance range of the steel sheet pile is specified from the plurality of limit lines constituting the formula group G even when the condition for calculating the closing resistance F closing is changed. It can be seen that a steel sheet pile having a cross-sectional shape excellent in at least one of the workability and the economical efficiency can be provided. That is, it can be seen that the technology of the present invention can be applied under all ground conditions.
  • FIG. 32 is a graph showing the ground conditions in the full-scale construction test, and represents the N value depth distribution.
  • FIGS. 33 to 35 are graphs showing the total width difference before and after the casting of a steel sheet pile having an effective width of 1270 mm or more. Each graph has a ratio (section height H / minimum sheet thickness t) of 39, 42, 45. The case is shown.
  • the N value is 35 at a depth of 8 m, and the N value is 35 or less in a shallower layer.
  • the total width difference is within the range of -5 mm to 10 mm which is the JIS production tolerance.
  • the (section height H / minimum sheet thickness t) ratio of the steel sheet pile can be set in the range of 45 or less.
  • the range setting of the (sheet height H / minimum sheet thickness t) ratio of the steel sheet pile may be suitably set according to the ground conditions. It is not limited to the range of (section height H / minimum plate thickness t) ratio ⁇ 39 set in the form.
  • the steel sheet pile according to the present invention may be manufactured hot.
  • the present invention can be applied to steel sheet piles used as retaining walls, revetments, etc. in the civil engineering and construction fields.

Abstract

 対象地盤の土の単位体積重量γを1.8×10-kN/mm、土と鋼矢板の摩擦係数μをtan15°、ランキンの受動土圧係数νをtan(45°+(√15×N+15)/2)、N値を20、打設深度Zνを15000mmとした場合に、以下の式(18)、(19)で示される施工性評価指標Cおよび経済性評価指標Eが、以下の式(24)~(28)のいずれかを満足することを特徴とする、鋼矢板。 C=F閉塞/A ・・・(18) E=A/Ze ・・・(19) 0.12≦C≦0.66かつ-0.0225×C+0.066≦E≦0.08 ・・・(24) 0.66<C≦0.85かつ-0.0225×C+0.066≦E≦-0.0306×C+0.0997 ・・・(25) 0.85<C≦0.89かつ0.0469≦E≦-0.0306×C+0.0997・・・(26) 0.89<C≦1.04かつ0.0469≦E≦0.0077×C+0.0793・・・(27) 1.04<C≦1.20かつ0.0469≦E≦0.0795 ・・・(28)

Description

鋼矢板
 本発明は、土木分野や建築分野において土留壁、護岸等として利用される鋼矢板に関する。
本願は、2014年4月18日に出願されたPCT/JP2014/061085に基づき、優先権を主張し、その内容をここに援用する。
 従来、鋼矢板に関しては、ハット形鋼矢板(例えば、特許文献1、2参照)やZ形鋼矢板(例えば、特許文献3参照)が一般的に知られている。
 特許文献1では、打設時のハット形鋼矢板の貫入抵抗を最小限に抑制させることに着目しており、施工性が改善されたハット形鋼矢板が示されている。前記ハット形鋼矢板に対する施工性評価技術としては、鋼矢板縮尺模型の土槽試験の知見にのみ基づいて作成された施工性指標Rが示されている。前記施工性指標Rは、ハット形鋼矢板の形状のフランジ幅、ウェブ角度、断面高さによって算定される評価式、すなわちウェブ角度の正接と(フランジ幅/断面高さ)比の積で表され、前記施工性指標Rと貫入抵抗との間には正の相関関係にあることが示されている。この前記施工性指標Rを利用して、所定の断面二次モーメントに対して貫入抵抗を最小化するウェブ角度に設定されたハット形鋼矢板であることを特徴としている。
 また、特許文献2には、ハット形鋼矢板に対する施工性評価技術として前記施工性指標Rと同様な評価式を用いており、経済性、施工性が改善されたハット形鋼矢板が示されている。
 また、特許文献3にはZ形鋼矢板に対する施工性評価技術として前記施工性指標Rと同様な評価式が用いられており、経済性、施工性が改善されたZ形鋼矢板が示されている。
 また、特許文献4には前記施工性指標Rと同様な評価式を用いて経済性、施工性が最適化されたZ形鋼矢板の断面形状設定方法が示されている。
 このように、従来では、鋼矢板に対する施工性評価技術として施工性指標Rに基づいて施工性を評価している。
特許第3488233号公報 特開2012-158910号公報 特許第4873097号公報 特開2012-193540号公報
 しかしながら、従来のハット形鋼矢板またはZ形鋼矢板における施工性指標Rには、以下のような問題があった。
 従来の施工性指標Rは、模型試験の知見にのみ基づき作成されているため、実大鋼矢板の施工性評価への適用性は検証されていなかった。そこで、発明者は従来の施工性指標Rの実大鋼矢板への施工性評価の適用性を検証した。すなわち、実大鋼矢板について打設深度を13mとした実大施工試験を実施し、実大鋼矢板の施工性を施工性指標Rに基づき評価し、各鋼矢板の動的抵抗と比較した。ここで動的抵抗とは、施工マシンの油圧値等に基づき算定される計測値であり、動的抵抗が小さい鋼矢板は、貫入に必要な油圧値が小さい、すなわち、打設抵抗が抑制された施工性が優れた鋼矢板と評価される。
 図25に示すように、基準とした鋼矢板(鋼矢板(1))を1とした場合の各鋼矢板の施工性指標Rの比率と動的抵抗の比率の関係を調べたところ、相関係数0.401の相関関係が得られている。これは、前述の特許文献1~3の模型試験で得られた結果と反し、相関が低い。
 さらに次に、従来の施工性指標Rの適用範囲の限界を詳細に調査した。各鋼矢板は、第一フランジと第一フランジの両端から延伸する一対のウェブからなり、ウェブの前記第一フランジの反対側に前記第一フランジと平行に伸びる先端に継手を有する一対の第二フランジからなるハット形状のハット形鋼矢板であり、前記第二フランジの先端に有する一対の継手の嵌合中心間の長さを有効幅とした場合における、前記有効幅900mm以下と有効幅1270mm以上の鋼矢板である。
 前記有効幅900mm以下である鋼矢板(4)に着目すると、鋼矢板(4)は、図25における施工性指標Rの比率と動的抵抗の比率が等しくなる直線との相関係数が0.997であり、相関が極めて高いことが明らかになった。
 また、有効幅1270mm以上の鋼矢板である鋼矢板(1)、(2)および(3)に着目すると、図25における施工性指標Rの比率と動的抵抗Ruの比率が等しくなる直線との相関係数が0.349であり、相関が低いことが明らかになった。
 つまり、従来の施工性指標Rは、有効幅900mm以下の実大鋼矢板の施工性評価が可能であり、有効幅1270mm以上の実大鋼矢板の施工性評価の適用性が無いことから、実大鋼矢板の施工性評価に関して有効幅に関する適用範囲があることが明らかになった。すなわち、従来の施工性指標Rには有効幅1270mm以上での実大鋼矢板の施工性評価の適用性が無いという課題があることが明らかになった。
 よって、有効幅1270mm以上の実大鋼矢板の施工性評価の適用性が確実に可能となる施工性評価技術が求められていた。
 そのため、有効幅にかかわらず、すべての領域の形状に対して、施工性を好適に評価することが可能であり、特に、従来の施工性指標Rの適用範囲外である有効幅1270mm以上の実大鋼矢板の施工性評価が可能となる施工性評価技術に関して改善の余地があった。
 本発明は、上述する問題点に鑑みてなされたもので、鋼矢板打設時に支配的な抵抗となる閉塞抵抗を示す閉塞抵抗式を作成し、この閉塞抵抗式を利用することで、既存鋼矢板に比べて施工性および経済性のうち少なくとも一方の性能に優れた好適な断面形状の鋼矢板を提供することを目的とする。
 上記目的を達成するため、本発明によれば、壁体を構成する鋼矢板であり、当該壁体の中立軸に略平行であり、前記中立軸を挟んで対称に位置し互いに平行である第一フランジおよび第二フランジと、これら第一フランジと第二フランジを繋ぐウェブを有し、前記壁体において隣接する第一フランジ同士あるいは第二フランジ同士の中点間を1つの単位とする鋼矢板において、当該鋼矢板における1つの単位の両端に設けられる2つのフランジを第二フランジとしたとき、当該第二フランジの端部には鋼矢板同士を嵌合させるための継手が形成され、2つの前記第二フランジの先端に形成された一対の継手の嵌合中心間の長さを有効幅とし、前記有効幅が1270mm以上、断面係数Zeが1700≦Ze≦2300cm/mの範囲を満足する鋼矢板であって、対象地盤の土の単位体積重量γを1.8×10-8kN/mm、土と鋼矢板の摩擦係数μをtan15°、ランキンの受動土圧係数νを
Figure JPOXMLDOC01-appb-M000007
、相対密度Drを80%、N値を20、打設深度Zνを15000mmとした場合に、
 以下の式(18)、(19)で示される施工性評価指標Cおよび経済性評価指標Eが、以下の式(20)~(23)のいずれかを満足することを特徴とする、鋼矢板。
C=F閉塞/A ・・・(18)
E=A/Ze ・・・(19)
0.11≦C≦1.00かつ-0.0208×C+0.0809≦E≦0.0884 ・・・(20)
1.00<C≦1.20かつ-0.0208×C+0.0809≦E≦-0.03×C+0.1186 ・・・(21)
1.20<C≦1.40かつ0.0560≦E≦-0.03×C+0.1186 ・・・(22)
1.40<C≦1.80かつ0.0560≦E≦0.0766 ・・・(23)
但し、F閉塞:以下の式(6)、(3)’、(4)’、(14)、(12)、(13)、(1)’および(2)’ならびに(7)または(7)’に基づき算定される閉塞抵抗(kN/枚)、A:断面積(cm/枚)、A:壁体形成時の壁方向の幅1m当たりの断面積(cm/m)であり、Wf:前記第一フランジの幅(mm)、H:前記中立軸に直交する方向の第一フランジと第二フランジ間の距離である断面高さ(mm)、θ:前記ウェブと前記第二フランジとがなす角度の補角であるウェブ角度(°)である。
Figure JPOXMLDOC01-appb-M000008
 また、本発明によれば、壁体を構成する鋼矢板であり、当該壁体の中立軸に略平行であり、前記中立軸を挟んで対称に位置し互いに平行である第一フランジおよび第二フランジと、これら第一フランジと第二フランジを繋ぐウェブを有し、前記壁体において隣接する第一フランジ同士あるいは第二フランジ同士の中点間を1つの単位とする鋼矢板において、当該鋼矢板における1つの単位の両端に設けられる2つのフランジを第二フランジとしたとき、当該第二フランジの端部には鋼矢板同士を嵌合させるための継手が形成され、2つの前記第二フランジの先端に形成された一対の継手の嵌合中心間の長さを有効幅とし、前記有効幅が1270mm以上、断面係数Zeが2300<Ze≦3400cm/mの範囲を満足する鋼矢板であって、対象地盤の土の単位体積重量γを1.8×10-8kN/mm、土と鋼矢板の摩擦係数μをtan15°、ランキンの受動土圧係数νを
Figure JPOXMLDOC01-appb-M000009
、相対密度Drを80%、N値を20、打設深度Zνを15000mmとした場合に、
 以下の式(18)、(19)で示される施工性評価指標Cおよび経済性評価指標Eが、以下の式(24)~(28)のいずれかを満足することを特徴とする、鋼矢板。
C=F閉塞/A ・・・(18)
E=A/Ze ・・・(19)
0.12≦C≦0.66かつ-0.0225×C+0.066≦E≦0.08 ・・・(24)
0.66<C≦0.85かつ-0.0225×C+0.066≦E≦-0.0306×C+0.0997 ・・・(25)
0.85<C≦0.89かつ0.0469≦E≦-0.0306×C+0.0997 ・・・(26)
0.89<C≦1.04かつ0.0469≦E≦0.0077×C+0.0793 ・・・(27)
1.04<C≦1.20かつ0.0469≦E≦0.0795 ・・・(28)
但し、F閉塞:以下の式(6)、(3)’、(4)’、(14)、(12)、(13)、(1)’および(2)’ならびに(7)または(7)’に基づき算定される閉塞抵抗(kN/枚)、A:断面積(cm/枚)、A:壁体形成時の壁方向の幅1m当たりの断面積(cm/m)であり、Wf:前記第一フランジの幅(mm)、H:前記中立軸に直交する方向の第一フランジと第二フランジ間の距離である断面高さ(mm)、θ:前記ウェブと前記第二フランジとがなす角度の補角であるウェブ角度(°)である。
Figure JPOXMLDOC01-appb-M000010
 また、本発明によれば、壁体を構成する鋼矢板であり、当該壁体の中立軸に略平行であり、前記中立軸を挟んで対称に位置し互いに平行である第一フランジおよび第二フランジと、これら第一フランジと第二フランジを繋ぐウェブを有し、前記壁体において隣接する第一フランジ同士あるいは第二フランジ同士の中点間を1つの単位とする鋼矢板において、当該鋼矢板における1つの単位の両端に設けられる2つのフランジを第二フランジとしたとき、当該第二フランジの端部には鋼矢板同士を嵌合させるための継手が形成され、2つの前記第二フランジの先端に形成された一対の継手の嵌合中心間の長さを有効幅とし、前記有効幅が1270mm以上、断面係数Zeが3400cm/m<Zeの範囲を満足する鋼矢板であって、対象地盤の土の単位体積重量γを1.8×10-8kN/mm、土と鋼矢板の摩擦係数μをtan15°、ランキンの受動土圧係数νを
Figure JPOXMLDOC01-appb-M000011
、相対密度Drを80%、N値を20、打設深度Zνを15000mmとした場合に、
 以下の式(18)、(19)で示される施工性評価指標Cおよび経済性評価指標Eが、以下の式(29)~(31)のいずれかを満足することを特徴とする、鋼矢板。
C=F閉塞/A ・・・(18)
E=A/Ze ・・・(19)
0.13≦C≦0.36かつ-0.0237×C+0.0538≦E≦0.0642 ・・・(29)
0.36<C≦0.52かつ-0.0237×C+0.0538≦E≦-0.025×C+0.0732 ・・・(30)
0.52<C≦0.75かつ-0.0237×C+0.0538≦E≦0.0602 ・・・(31)
但し、F閉塞:以下の式(6)、(3)’、(4)’、(14)、(12)、(13)、(1)’および(2)’ならびに(7)または(7)’に基づき算定される閉塞抵抗(kN/枚)、A:断面積(cm/枚)、A:壁体形成時の壁方向の幅1m当たりの断面積(cm/m)であり、Wf:前記第一フランジの幅(mm)、H:前記中立軸に直交する方向の第一フランジと第二フランジ間の距離である断面高さ(mm)、θ:前記ウェブと前記第二フランジとがなす角度の補角であるウェブ角度(°)である。
Figure JPOXMLDOC01-appb-M000012
 本発明では、壁体を構成する鋼矢板であり、当該壁体の中立軸に略平行であり、前記中立軸を挟んで対称に位置し互いに平行である第一フランジおよび第二フランジと、これら第一フランジと第二フランジを繋ぐウェブを有し、前記壁体において隣接する第一フランジ同士あるいは第二フランジ同士の中点間を1つの単位とする鋼矢板において、当該鋼矢板における1つの単位の両端に設けられる2つのフランジを第二フランジとしたとき、前記第二フランジの先端に有する一対の継手の嵌合中心間の長さを有効幅とし、前記有効幅が1270mm以上の前記鋼矢板において、打設時に前記第一フランジと前記第一フランジの両端から延伸する一対のウェブで囲まれた領域において、鋼矢板表面と地盤との界面に生じる摩擦抵抗が重なり合うことで周辺地盤よりも高い拘束圧が発生する閉塞領域に沿う鋼矢板打設時に支配的な抵抗となる閉塞抵抗を示す閉塞抵抗式が作成され、この閉塞抵抗式に基づいて有効幅にかかわらず、すべての領域の形状に対して閉塞抵抗を評価することが可能となり、施工性を好適に評価することができる。
 そして、既存鋼矢板における前記鋼矢板1枚当たりの前記閉塞抵抗式により求められる閉塞抵抗の断面積に対する比を示す施工性評価指数と、既存鋼矢板における壁体形成時の壁方向の幅1m当たりの断面積の断面係数に対する比を示す経済性評価指数と、の関係を表したグラフにより、前記施工性評価指数および経済性評価指数の下限ラインで離散的に分類される断面係数Zeに応じた3つの断面形状群がグループ化され、前記既存鋼矢板の前記施工性評価指標および経済性評価指標の下限領域を当該鋼矢板の上限を規定する性能範囲として定式化した前記3つの断面形状群に応じた3つの式群が設定され、つまり、評価対象の鋼矢板の施工性評価指数および経済性評価指数を、その評価対象の鋼矢板の断面係数が含まれる式群によって定式化された施工性評価指標および経済性評価指標の性能範囲と比較することで、既存鋼矢板の施工性評価指数および経済性評価指数と比較して評価することができる。
 評価対象の鋼矢板は、前記3つの式群のうち評価対象となる当該鋼矢板の断面係数Zeに対応する式群において、前記評価対象の鋼矢板の前記施工性評価指数および経済性評価指数のうち少なくとも一方の値がいずれの既存鋼矢板の値より小さくなるように設定することができる。
 したがって、本発明では、従来の既存鋼矢板に比べて、施工性および経済性のうち少なくとも一方の性能に優れた断面形状の鋼矢板を提供することができる。
 また、本発明では、断面形状の小さいものから大きい鋼矢板について施工性評価指標および経済性評価指標で評価して好適な断面形状のものを決定することができる。例えば、従来の評価方法では、施工性を評価できなかった有効幅1270mm以上の鋼矢板であっても、本発明の評価方法を適用することができる。
 また、本発明では、前記鋼矢板であって、前記第二フランジの先端に有する一対の継手の嵌合中心間の長さを有効幅とし、前記有効幅を1270mm以上とすることができる。
 また、本発明では、断面高さHと継手を除いた前記第一フランジの板厚、ウェブの板厚、または第二フランジの板厚のうちの最小の板厚である最小板厚tとの比H/tが39未満の範囲を満足するように設定されていることが好ましい。
 また、本発明では、対象地盤のN値が35未満である場合に、断面高さHと継手を除いた前記第一フランジの板厚、ウェブの板厚、または第二フランジの板厚のうちの最小の板厚である最小板厚tとの比H/tが45未満の範囲を満足するように設定されていることが好ましい。
 また、本発明では、前記鋼矢板の第一フランジ幅、ウェブ角度から決まる幾何制約と、座屈防止のための鋼材降伏強度に応じた幅厚比から規定される構造制約と、が設定されていることが好ましい。
この場合、鋼矢板の第一フランジ幅、ウェブ角度から決まる幾何制約を満足し、例えば、EURO CODEのclass3の規格で設定されている幅厚比制約を構造制約として規格が要求する座屈性能を満足する式群を設定することができ、鋼矢板の幾何制約および構造制約を満足した鋼矢板を提供することができる。
 また、本発明では、鋼矢板は熱間で製造されることが好ましい。熱間での鋼矢板の製造では、鋼矢板の断面内において板厚差をつけることができるため、断面が変形しやすい箇所の板厚を増やすといった製造が可能となり、打設時の断面変形をより効果的に抑え、打設抵抗の増大を抑制することができる。
 前記鋼矢板は、第一フランジと該第一フランジの両端から延伸する一対のウェブからなり、当該ウェブの前記第一フランジの反対側に前記第一フランジと平行に伸びる先端に継手を有する一対の第二フランジを有するハット形状のハット形鋼矢板であっても良い。また、前記鋼矢板は、ウェブと該ウェブの両端に反対方向に延伸する端部に継手を有する平行な一対のフランジからなるZ形状の鋼矢板において、継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板であり、前記2枚一組のZ形鋼矢板において、継手を嵌合した側の両者のフランジが第一フランジとされ、継手を嵌合しない側の両者のフランジが第二フランジとされても良い。
 本発明の鋼矢板によれば、閉塞抵抗を考慮した評価方法を用いることで、いずれの既存鋼矢板に比べて施工性および経済性のうち少なくとも一方の性能に優れた好適な断面形状の鋼矢板を提供することができる。
 鋼矢板打設時に支配的な抵抗となる閉塞抵抗が抑制された鋼矢板となっているため、施工荷重を低減でき大型の施工重機が不要となり施工費を抑制することができる。また、施工速度に大きな影響を与える全幅変化量と相関の高い断面形状因子である(断面高さ/最小板厚)比を制限しているため、打設時の鋼矢板の全幅変形量を製作許容差内に抑制し、全幅の変化が殆ど無い健全な状態の鋼矢板の打設速度と同等な良好な施工を行うことができるため、経済的な高剛性の薄肉大断面の鋼矢板であっても施工歩掛りの低下を防ぐことができる。
 さらに、鋼材降伏強度に応じた幅厚比から規定される座屈防止に関する構造制約を満足しているため、薄肉で経済的な鋼矢板でありながら、打設時の局部的な変形を防止できる鋼矢板を提供することができる。
断面形状がハット形状であるハット形鋼矢板もしくは継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板の構成を示す図である。 本発明の実施の形態による打設抵抗評価式を説明するための鋼矢板の構成を示す斜視図である。 鋼矢板の閉塞領域について説明する図である。 既存鋼矢板における前記ハット形鋼矢板一枚当たりまたは継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板一組当たりの閉塞抵抗と断面積の比を示す施工性評価指数(F閉塞/A)と、既存鋼矢板における壁体形成時の壁方向の幅1m当たりの断面積と断面係数の比を示す経済性評価指数(A/Ze)との関係を示す図である。 模型試験により算出した、閉塞領域の放物線の二次関数の係数a模型と鋼矢板断面のウェブ角度θ模型の関係を示す図である。 模型試験により算出した、閉塞領域の放物線の二次関数の定数c模型からなる関数(H模型-c模型)/H模型と鋼矢板断面形状因子から構成される式との関係を示す図である。 模型試験により算出した、閉塞領域に関する関数(U模型-k×L模型)/A模型閉塞と鋼矢板断面形状因子から構成される式との関係を示す図である。 打設抵抗評価式による打設抵抗Fと打設抵抗計測値の関係を示す図である。 既存鋼矢板の断面係数を表す図である。 閉塞抵抗F閉塞の計算手順および計算条件を示したフローチャートを示す図である。 図4の第1式群を示す図である。 図4の第2式群を示す図である。 図4の第3式群を示す図である。 鋼矢板の(断面高さ/最小板厚)比と全幅差との関係を示す図である。 鋼矢板の施工性を示す図であって、打設時間と打設深度との関係を示す図である。 本実施の形態による打設抵抗評価式による打設抵抗Fと動的抵抗の関係を示した図である。 第1実施例による鋼矢板の断面形状を示す図である。 図17の鋼矢板を第1式群によって評価した結果を示す図である。 第2実施例による鋼矢板の断面形状を示す図である。 図19の鋼矢板を第2式群によって評価した結果を示す図である。 第3実施例による鋼矢板の断面形状を示す図である。 図21の鋼矢板を第3式群によって評価した結果を示す図である。 第4実施例による鋼矢板の断面形状を示す図である。 図23の鋼矢板を第3式群によって評価した結果を示す図である。 従来技術による施工性指標Rと動的抵抗の関係を示す実大施工試験結果を示す図である。 N値=1の場合の第1式群を示す図である。 N値=1の場合の第2式群を示す図である。 N値=1の場合の第3式群を示す図である。 N値=50の場合の第1式群を示す図である。 N値=50の場合の第2式群を示す図である。 N値=50の場合の第3式群を示す図である。 (断面高さH/最小板厚t)比≦45の範囲に設定した際の実大施工試験における地盤条件を示すグラフである。 (断面高さH/最小板厚t)比が39の鋼矢板の打設前後の全幅差を示すグラフである。 (断面高さH/最小板厚t)比が42の鋼矢板の打設前後の全幅差を示すグラフである。 (断面高さH/最小板厚t)比が45の鋼矢板の打設前後の全幅差を示すグラフである。
 1 ハット形鋼矢板
 2 Z形鋼矢板
 3 鋼矢板
 11 第一フランジ
 12 ウェブ
 13 第二フランジ
 G1 第1式群
 G2 第2式群
 G3 第3式群
 以下、本発明の実施の形態による鋼矢板について、図面に基づいて説明する。
 本実施の形態の鋼矢板は、ハット形状からなるハット形鋼矢板1、またはZ形状からなるZ形鋼矢板2を対象としている。これらハット形鋼矢板1、およびZ形鋼矢板2を総称して単に「鋼矢板3」という。この鋼矢板3は、壁体を構成した際に当該壁体の中立軸に略平行であり、前記中立軸を挟んで対称に位置し互いに平行である第一フランジおよび第二フランジと、これら第一フランジと第二フランジを繋ぐウェブを有している。そして、壁体において隣接する第一フランジ同士あるいは第二フランジ同士の中点間を1つの単位とする鋼矢板とする。この1単位としての鋼矢板は、1枚のハット形鋼矢板1か、あるいは2枚(1組)のZ形鋼矢板の継手を嵌合させてハット形形状としたものを指す。
 先ず、図1(a)に示すハット形鋼矢板1について説明する。ハット形鋼矢板1は、第一フランジ11と、第一フランジ11の両端から延伸する一対のウェブ12と、からなり、ウェブ12の第一フランジ11の反対側に第一フランジ11と平行に伸びる先端に継手を有する一対の第二フランジ13を有するハット形状の鋼矢板である。
 また、Z形鋼矢板2は、ウェブ12と、ウェブ12の両端に反対方向に延伸する端部に継手を有する平行な一対のフランジ11、13と、からなるZ形状の鋼矢板であって、継手を嵌合させてハット形状の鋼矢板とした2枚で一組となる場合において、継手を嵌合した側の両者のフランジからなる第一フランジ11と、継手を嵌合しない側の第二フランジ13と、を有する。
 本実施の形態の鋼矢板3には、図2および図3に示すように、打設時に前記第一フランジ11と前記第一フランジ11の両端から延伸する一対のウェブ12で囲まれた領域において、鋼矢板表面と地盤との界面に生じる摩擦抵抗が重なり合うことで周辺地盤よりも高い拘束圧が発生する閉塞領域が形成される。図2に示すように、前記閉塞領域には鋼矢板打設時に支配的な抵抗となる閉塞抵抗が発生する。前記閉塞抵抗を示す閉塞抵抗式F閉塞を新たに作成し、既に評価方法が知られている矢板先端断面に作用する先端抵抗F先端および前記閉塞領域に面する周面を除いた外周面に作用する外周抵抗F外周と、の和を打設抵抗Fとした前記打設抵抗Fを求めるための打設抵抗評価式が作成され、前記打設抵抗評価式は、後述する実大施工試験結果より、従来の施工性指標Rの適用範囲外であった有効幅の領域の施工性評価が可能であることが検証されている。つまり、新たに作成した前記閉塞抵抗式は、その施工性評価の妥当性が確認されている。既存鋼矢板よりも施工性に優れるハット形鋼矢板またはZ形鋼矢板の断面形状を案出するために、打設抵抗の支配的な抵抗となる閉塞抵抗に着目し、既存鋼矢板よりも閉塞抵抗が抑制された断面形状を見出すための施工性評価指数として、前記閉塞抵抗式により求められる前記ハット形鋼矢板1枚当たりまたは前記2枚一組のZ形鋼矢板一組当たりの閉塞抵抗(F閉塞)の断面積(A)に対する比を示す施工性評価指数(F閉塞/A)が設定され、さらには、経済性にも優れるハット形鋼矢板またはZ形鋼矢板を案出するために、壁体形成時の壁方向の幅1m当たりの断面積Aと断面係数Zeの比を示す経済性評価指数(A/Ze)が設定され、前記施工性評価指数および経済性評価指数をそれぞれ横軸および縦軸として表現されたグラフが作成される。
 図4は、既存鋼矢板における前記ハット形鋼矢板一枚当たりまたは継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板一組当たりの閉塞抵抗の断面積に対する比を示す施工性評価指数と、既存鋼矢板における壁体形成時の壁方向の幅1m当たりの断面積Aと断面係数Zeの比を示す経済性評価指数(A/Ze)と、の関係を表したグラフとなっている。さらに、前記施工性評価指数および経済評価指数の下限ラインで離散的に分類される断面係数Zeに応じた3つの断面形状群をグループ化し、既存鋼矢板の施工性評価指標および経済性評価指標の下限領域を鋼矢板3の上限として規定する性能範囲として定式化した前記3つの断面形状群に応じた3つの式群(後述する第1式群G1、第2式群G2、第3式群G3)が設定され、そのうち評価対象となる当該鋼矢板3の断面係数Zeに対応する式群において、前記評価対象の鋼矢板3の施工性評価指数(F閉塞/A)および経済性評価指数(A/Ze)のうち少なくとも一方の値がいずれの既存鋼矢板の値より小さくなるように設定された構成となっている。
 上述した閉塞抵抗式について、さらに具体的に説明する。
 図2および図3(a)に示すように、鋼矢板3を打設すると、打設時に第一フランジ11と、第一フランジ11の両端から延伸する一対のウェブ12で囲まれた領域において、第一フランジ11側に沿うとともに、上面視で第一フランジ11側に凸となる放物線状の高い地盤応力が発生する閉塞領域(閉塞面積A閉塞)が存在し、この閉塞現象による抵抗が閉塞抵抗F閉塞となる。
 これは、発明者が、実大鋼矢板に対して異なる相似則となる縮尺1/5、1/7.5、および1/10の鋼矢板模型の土槽試験を実施し、試験後の鋼矢板に付着している破砕した土粒子および周辺地盤を観察した結果による。土粒子が破砕していることは、その場所に高い応力が発生していたことを示す。以下に詳細を示すが、図3(a)に示すように、破砕して細かくなった土粒子が、第一フランジ11と、第一フランジ11の両端から延伸する一対のウェブ12で囲まれた領域において、第一フランジ11側に沿うとともに、上面視で第一フランジ11側に凸となる放物線状に付着し、閉塞領域を形成していることを確認した(図3(b)参照)。また、鋼矢板の付着土の形成状況、すなわち閉塞領域の放物線Bの形は、鋼矢板の断面形状によって異なっていることが明らかとなった。
 さらに、閉塞領域の放物線の二次関数の係数a、およびフランジ面から放物線頂点までの距離cと断面形状との関連を調査すると、代表値として縮尺1/5の鋼矢板模型において図5から図7に示すように、閉塞領域の放物線Bの二次関数の係数a模型、図3(a)における原点Oから放物線頂点までの距離c模型からなる関数(H模型-c模型)/H模型および閉塞面積A模型閉塞、閉塞領域に面する鋼矢板3の周長U模型、閉塞領域の放物線Bの周長L模型、および鋼矢板と地盤の界面の摩擦力と地盤と地盤の摩擦力の比kの関数からなる(U模型-k×L模型)/ A模型閉塞と断面形状のウェブ角度θ模型、および(第一フランジ幅Wf模型/断面高さH模型)比との間には式(1)から式(4)に示される関係があることを明らかとなった。
Figure JPOXMLDOC01-appb-M000013
 さらに閉塞領域を詳細に調査すると、鋼矢板模型の断面形状が相似形である複数の異なる縮尺比の鋼矢板模型の閉塞領域の形は略相似形の関係となっていることが確認された。つまり、代表値としての縮尺比を例えば1/5と設定した場合、縮尺1/5の鋼矢板模型における閉塞領域の形は断面形状因子との間に式(1)から式(4)の関係があり、これらの式(1)から式(4)を利用して後述する閉塞抵抗を算定する上で必要となる閉塞領域に面する鋼矢板3の周長U模型および(U模型-k×L模型)/ A模型閉塞が算定できる。そして、鋼矢板模型の断面形状が相似形である場合においては閉塞領域の形も略相似形であることから、実大鋼矢板についての閉塞領域に面する鋼矢板3の周長U、(U-k×L)/A閉塞をそれぞれ模型の5倍、1/5倍と評価し実大鋼矢板の閉塞抵抗を算定される。このため、実大鋼矢板の計算では、式(1)から式(4)は例えば5の係数を掛けるなどして変形すると式(1)’から式(4)’のようになる。このように算定された実大鋼矢板の閉塞抵抗の評価方法の妥当性については後述する実大鋼矢板施工試験結果で確認されている。
 また、土と鋼矢板模型試験体の摩擦係数を設定し、断面形状から式(1)から式(4)の関係式に基づき後述する閉塞抵抗式により評価した閉塞抵抗と、別途評価した矢板先端断面に作用する先端抵抗F先端および前記閉塞領域に面する周面を除いた外周面に作用する外周抵抗F外周、の和を打設抵抗Fとする打設抵抗評価式と縮尺1/5の鋼矢板模型の打設抵抗計測値とを比較した。その結果、図8に示すように各深度における打設抵抗評価式による打設抵抗Fの値は打設抵抗計測値と良い一致を示しており、打設抵抗評価式および後述する閉塞抵抗式のモデル化の妥当性を確認することができる。
 式(5)に示す打設抵抗評価式は、第一フランジと第一フランジの両端から延伸する一対のウェブからなり、ウェブの前記第一フランジの反対側に前記第一フランジと平行に伸びる先端に継手を有する一対の第二フランジからなるハット形状の鋼矢板と、ウェブとウェブの両端に反対方向に延伸する端部に継手を有する平行な一対のフランジからなるZ形状の鋼矢板において、一枚のハット形鋼矢板または継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板において、前記ハット形または前記2枚一組のZ形鋼矢板の有効幅が1270mm以上の場合において、前記2枚一組のZ形鋼矢板において、継手を嵌合した側の両者のフランジを第一フランジおよび継手を嵌合しない側の両者のフランジを第二フランジとしたとき、打設時に第一フランジと前記第一フランジの両端から延伸する一対のウェブで囲まれた領域において、鋼矢板表面と地盤との界面に生じる摩擦抵抗が重なり合うことで周辺地盤よりも高い拘束圧が発生する閉塞領域に沿う鋼矢板打設時に支配的な抵抗となる閉塞抵抗F閉塞と、鋼矢板3の先端断面(断面積A)に作用する先端抵抗F先端(純断面先端抵抗力)、前記鋼矢板の閉塞領域に面する周面を除いた外周面に作用する外周抵抗F外周と、の和で表される。
Figure JPOXMLDOC01-appb-M000014
 上記式(5)の閉塞抵抗F閉塞は、図1に示すように、鋼矢板3の断面形状の第一フランジ幅Wf、ウェブ12と第二フランジ13とがなす角度の補角であるウェブ角度θと、断面高さHに基づいて計算される。すなわち、閉塞抵抗F閉塞は、式(6)となる。A閉塞は閉塞面積、Uは閉塞領域に面する鋼矢板3の周長、Lは閉塞領域の放物線Bの周長であり、(U-k×L)/ A閉塞は図7に示されるように断面形状のウェブ角度θと、断面高さHおよび第一フランジ幅Wfから式(3)により算定される。なお、σは閉塞領域の鉛直応力であって、式(7)により算定される。式(7)において、γは土の単位体積重量(例えば、1.8×10-8kN/mm)である。ここで、式(7)のσは、受働土圧係数と対象地盤のN値、相対密度により決まる有効土被り圧との積以下となる。
Figure JPOXMLDOC01-appb-M000015
 式(7)において、μは、μ=tanδと表される土と鋼矢板3の摩擦係数であり、例えば、δ=15°などが一般的に用いられる。Zは打設深度、νはランキンの受働土圧係数(ν=tan(45°+φ°/2))であって、内部摩擦角φは例えば対象地盤のN値より算出される。
Figure JPOXMLDOC01-appb-M000016
 先端抵抗F先端は、式(8)となる。ここで、αは支持力係数、Aは断面積(mm)、Nは対象地盤の先端N値である。支持力係数αは、道路土工仮設構造物工指針(社団法人日本道路協会、平成11年3月、68~70頁)において、α=200に設定されている。
Figure JPOXMLDOC01-appb-M000017
 外周抵抗F外周は、式(9)となる。ここで、Kはヤーキーの静止土圧係数(K=1-sinφ)であって、内部摩擦角φは、例えば対象地盤のN値より算出される。
Figure JPOXMLDOC01-appb-M000018
 U外周は、鋼矢板の閉塞領域に面する周面を除いた外周面の周長、すなわち閉塞領域外周長であり、図3に示す閉塞面積Aと鋼矢板3の交点座標(X,Y)が放物線Bと直線Tとの連立方程式、式(10)、式(11)により算出される。そして、前記交点座標(X,Y)は、解の公式により、式(12)、式(13)の通りa,cによって表すことができ、閉塞領域に面する鋼矢板3の周長であるUは、式(14)により算出することができる。なお、ここではXは、0より大きい値としている。そして、閉塞領域外周長であるU外周は、鋼矢板3の周長から閉塞領域に面する鋼矢板3の周長であるUを差し引いた長さとなる。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 なお、ウェブ12と第二フランジ13とがなす角度の補角であるウェブ角度θが極端に緩くなる場合など、放物線Bが解をもたないときには、閉塞領域が生じないことを意味するため、その場合には経済性のみを既存断面の性能以上となることを評価すればよい。すなわち、本発明者が既存断面の施工性を評価したところ、既存断面にはいずれも閉塞領域が生じており閉塞抵抗が発生することから、既存断面よりも閉塞領域が生じない断面は施工性が優れているのが明らかであるので、経済性のみ既存断面の性能と同等以上となることを評価すればよい。
 次に、本実施の形態の施工性評価指標と経済性評価指標について、具体的に説明する。 図4は、既存鋼矢板における前記ハット形鋼矢板一枚当たりまたは継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板一組当たりの前記閉塞抵抗F閉塞と断面積Aの比を示す施工性評価指数(F閉塞/A)と、既存鋼矢板における壁体形成時の壁方向の幅1m当たりの断面積Aと断面係数Zeの比を示す経済性評価指数(A/Ze)と、の関係を表したグラフである。なお、F閉塞/Aの単位は(kN/枚)/(cm/枚)であり、A/Zeの単位は(cm/m)/(cm/m)である。
 図4のグラフにおいて、横軸は、施工性評価指数(F閉塞/A)であり、この値が小さいほど閉塞し難く、施工性に優れた断面であると評価することができる。縦軸は、経済性評価指数(A/Ze)であり、この値が小さいほど壁体形成時の壁方向の幅1m当たりの断面積、さらには鋼重が軽く経済性に優れた断面であると評価することができる。また、既存鋼矢板における前記ハット形鋼矢板一枚当たりまたは継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板一組当たりの閉塞抵抗F閉塞の計算については、計算手順および計算条件を示したフローチャートを図10に示しており、閉塞抵抗F閉塞は、断面形状のウェブ角度θ、断面高さH、第一フランジ幅Wfおよび計算条件としてμ=0.27、ν=3.3、γ=1.8×10-8kN/mm、Z=15000mm、N値20、相対密度Dr=80%のもとで計算されている。
 ここでは、計算条件において、例えば対象地盤のN値20で相対密度Dr(%)が80%の地盤に対して、15000mmの打設深度Zで鋼矢板3を打設した条件で計算されているが、このような地盤条件や打設深度に限定されるものではない。特に、地盤条件としての対象地盤のN値は計算条件の一例であり、その値は20に限られるものではなく、例えばN値は0~50の範囲内において定められ、その定められた条件とそれに付随する計算条件に基き閉塞抵抗F閉塞が計算される。ここで、式(7)のσは、打設深度Zの指数関数として表現されているが、打設深度Zに応じて無限に上昇し得るものではなく、地盤によって定められる上限値を有する。すなわち、打設深度Zに応じてσが上昇し、鋼矢板先端の地盤が受動破壊状態となる応力レベルまで上昇すると、鋼矢板先端の地盤が破壊状態となっているため、それ以上σが上昇することはない。従って、式(7)のσは、受働土圧係数(ν)と対象地盤のN値(N)、相対密度(Dr)により決まる有効土被り圧(σv0)との積(v×σv0)以下となる。対象地盤の有効土被り圧(σv0)の評価方法に関しては、例えば、港湾の施設の技術上の基準・同解説(社団法人日本港湾協会、平成19年7月、上巻320~321頁)に示されている、Dr(%)=21×〔100×N/(σv0+70)〕0.5なる関係式を適用した場合、式(7)のσは、ν×{(441×N)/Dr-0.7}×10-4kN/mm以下となる。
 すなわち、σは、
Figure JPOXMLDOC01-appb-M000022
とした場合において、
σは式(7)および式(7)’の小さい方の値によって算定される。
 この図4のグラフにおいて、前記施工性評価指数および経済性評価指数の下限ラインで離散的に分類される断面係数Zeに応じた3つの断面形状群にグループ化し、既存鋼矢板の施工性評価指標および経済性評価指標の下限領域を鋼矢板3の上限として規定する性能範囲として定式化した前記3つの断面形状群に応じた3つの式群(第1式群G1、第2式群G2、第3式群G3)が設定されている。なお、断面係数Zeに応じた3つの式群が設定されている理由としては、断面係数1700cm/m以上の既存鋼矢板が、図9に示すように断面係数が1700≦Ze≦2300cm/m、2300<Ze≦3400cm/mおよび3400cm/m<Zeの3つのグループに分かれているためである。また、既存鋼矢板の断面係数が3つのグループに大別される1つの理由としては、断面サイズや必要となる製造時の圧下能力が幅広く異なる既存鋼矢板の断面形状群が、製造効率の関係より、断面サイズや必要となる製造時の圧下能力が近い3つの断面係数クラスの断面形状群に集約されて製造されていることが挙げられる。
 具体的に式群は、式(15)の範囲に応じた第1式群G1と、式(16)の範囲に応じた第2式群G2と、式(17)の範囲に応じた第3式群G3と、に分別されている。
Figure JPOXMLDOC01-appb-M000023
 なお、最も断面係数Zeが大きい既存鋼矢板は約5500cm/m未満であることから、後述する第3式群G3の限界ラインは、既存鋼矢板の断面係数の範囲を3400<Ze≦5500cm/mとした条件のもとで設定されている。なお、断面係数Zeが5500cm/mを超える鋼矢板3を作成する場合は、その経済性および施工性の性能は、第3式群G3によって示される性能範囲と比較されればよい。すなわち、断面係数Zeが3400cm/mを超える鋼矢板3に対応する式群は第3式群G3である。
 そして、各式群G1、G2、G3は、それぞれ図11~図13に示すような複数の限界ラインを示す式から構成されており、これら限界ラインは、図4における各式群G1~G3のそれぞれの多数のプロットの下限値を包絡するラインである。ただし、これらのラインには前記プロットは含まれない。
 これら式群G1、G2、G3の限界ラインのうち下限ラインは、断面形状がハット形である鋼矢板もしくは継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板を保持するための当該鋼矢板3の第一フランジ幅Wf、ウェブ角度θから決まる幾何制約と、座屈防止のための鋼材降伏強度に応じた幅厚比から規定される構造制約と、から設定されている。
 幾何制約としては、第一フランジ幅がWf>0、ウェブ角度が0°<θ<90°となる制約である。
 また、構造制約としては、例えばEURO CODEに示すclass3の幅厚比(参考:(第一フランジ幅Wf/フランジ板厚tf)/ε<66、ここで降伏強度240N/mの場合ε=0.99)が制約となる。
 上述した各式群を構成する限界ライン(式)について、さらに具体的に説明する。
 図11に示すように、第1式群G1は、7つの限界ラインG1a,G1b,G1c,G1d,G1e,G1f,G1gから構成されている。
 第1限界ラインG1aは、1.40≦(F閉塞/A)≦1.80において、A/Ze=0.0766で表され、第1式群G1の経済性評価指標の上限ラインとなる。
 第2限界ラインG1bは、1.00≦(F閉塞/A)≦1.40において、A/Ze=-0.03×(F閉塞/A)+0.1186で表され、第1式群G1の経済性評価指標、施工性評価指標の上限ラインに相当する。
 第3限界ラインG1cは、0.11≦(F閉塞/A)≦1.00において、A/Ze=0.0884で表され、第1式群G1の経済性評価指標の上限ラインに相当する。第4限界ラインG1dは、0.0785≦(A/Ze)≦0.0884において、F閉塞/A=0.11で表され、幾何制約または構造制約から設定される第1式群G1の下限ラインを示している。
 第5限界ラインG1eは、0.11≦(F閉塞/A)≦1.20において、A/Ze=-0.0208×(F閉塞/A)+0.0809で表され、構造制約から設定される第1式群G1の下限ラインを示している。
 第6限界ラインG1fは、1.20≦(F閉塞/A)≦1.80において、A/Ze=0.0560で表され、構造制約から設定される第1式群G1の下限ラインを示している。
 第7限界ラインG1gは、0.0560≦(A/Ze)≦0.0766において、F閉塞/A=1.8で表され、第1式群G1の施工性評価指標の上限ラインに相当する。
 図12に示すように、第2式群G2は、8つの限界ラインG2a,G2b,G2c,G2d,G2e,G2f,G2g,G2hから構成されている。
 第1限界ラインG2aは、1.04≦(F閉塞/A)≦1.20において、A/Ze=0.0713で表され、第2式群G2の経済性評価指標の上限ラインに相当する。
 第2限界ラインG2bは、0.89≦(F閉塞/A)≦1.04において、A/Ze=-0.0077×F閉塞/A+0.0793で表され、第2式群G2の経済性評価指標、施工性評価指標の上限ラインに相当する。
 第3限界ラインG2cは、0.66≦(F閉塞/A)≦0.89において、A/Ze=-0.0306×F閉塞/A+0.0997で表され、第2式群G2の経済性評価指標、施工性評価指標の上限ラインに相当する。
 第4限界ラインG2dは、0.12≦(F閉塞/A)≦0.66において、A/Ze=0.0795で表され、第2式群G2の経済性評価指標の上限ラインに相当する。
 第5限界ラインG2eは、0.0633≦(A/Ze)≦0.0795において、F閉塞/A=0.12で表され、幾何制約または構造制約から設定される第2式群G2の下限ラインを示している。
 第6限界ラインG2fは、0.12≦(F閉塞/A)≦0.85において、A/Ze=-0.0225×F閉塞/A+0.066で表され、構造制約から設定される第2式群G2の下限ラインを示している。
 第7限界ラインG2gは、0.85≦(F閉塞/A)≦1.20において、A/Ze=0.0469で表され、構造制約から設定される第2式群G2の下限ラインを示している。
 第8限界ラインG2hは、0.0469≦(A/Ze)≦0.0713において、F閉塞/A=1.2で表され、第2式群G2の施工性評価指標の上限ラインに相当する。
 図13に示すように、第3式群G3は、6つの限界ラインG3a,G3b,G3c,G3d,G3e,G3fから構成されている。
 第1限界ラインG3aは、0.52≦(F閉塞/A)≦0.75において、A/Ze=0.0602で表され、第3式群G3の経済性評価指標の上限ラインに相当する。
 第2限界ラインG3bは、0.36≦(F閉塞/A)≦0.52において、A/Ze=-0.025×F閉塞/A+0.0732で表され、第3式群G3の経済性評価指標、施工性評価指標の上限ラインに相当する。
 第3限界ラインG3cは、0.13≦(F閉塞/A)≦0.36において、A/Ze=0.0642で表され、第3式群G3の経済性評価指標の上限ラインに相当する。
 第4限界ラインG3dは、0.0506≦(A/Ze)≦0.0642において、F閉塞/A=0.13で表され、幾何制約または構造制約から設定される第3式群G3の下限ラインを示している。
 第5限界ラインG3eは、0.13≦(F閉塞/A)≦0.75において、A/Ze=-0.0237×F閉塞/A+0.0538で表され、構造制約から設定される第3式群G3の下限ラインを示している。
 第6限界ラインG3fは、0.0360≦(A/Ze)≦0.0602において、F閉塞/A=0.75で表され、第3式群G3の施工性評価指標の上限ラインに相当する。
 また、図14は、施工時の断面変形と相関の高い断面形状因子である(断面高さH/最小板厚t)の比(H/t)を示しており、実大施工試験で得たデータである。現場では実大鋼矢板は第一フランジを把持して施工することがあるので、鋼矢板には偏心外力が作用する場合があり、鋼矢板断面が変形する場合がある。鋼矢板断面が変形すると断面形状の変化に応じて打設抵抗が増大することがある。そこで、複数の鋼矢板の実大施工試験結果に基づき断面変形と様々な形状因子との関係を調べたところ、H/tが39を超えると全幅差で10mmを超える断面変形を生じるという関係があることが明らかとなった。つまり、JIS製作許容差が全幅差で10mmであり、H/tが39を超えると前記JIS製作許容差を超える大きな断面変形を生じてしまうことを明らかにした。この知見から断面高さHと第一フランジ板厚、ウェブ板厚または第二フランジ板厚の最小板厚tとの比が39を超えると前記JIS製作許容差の10mm超える大きな変形が生じるので、断面高さHと最小板厚tとの比の制約値を39未満とすることが望ましい。
 なお、この図14に示すデータおよびH/tの制約値39の値は、対象地盤のN値が50未満の鋼矢板がウォータージェット等の補助工法無しで打設出来る標準地盤を対象としている。そのため、地盤の種類、強度によって制約値は異なる値となるが、対象地盤のN値50を上限とした本指標を用いることで、通常の鋼矢板打設を網羅することが出来る。
 また、図15は、図14に示すH/t<39の鋼矢板(5)と、H/t=39の鋼矢板(6)の施工時間を比較したものである。これにより、鋼矢板(6)は、打設深度が7m以下に深くなるに従い鋼矢板(5)よりも打設時間が長くなり、15mの打設で鋼矢板(5)に比べて約2倍の打設時間となり、施工性が著しく低下することが確認できる。したがって、H/tを39未満に設定することで良好な施工性を確保することが出来る。
 次に、本実施の形態で作成した打設抵抗評価式による打設抵抗Fについては、図16に示すように、実大鋼矢板の施工性の観点から定量評価が可能であるものと検証されている。
 図16は、基準とした鋼矢板(鋼矢板(1))を1とした場合の各鋼矢板の本実施の形態による打設抵抗評価式による打設抵抗Fの比率と動的抵抗Ruの比率の関係を示した図である。図16中の各鋼矢板には、有効幅が900mm以下、有効幅1270mm以上の鋼矢板が含まれている。この場合、打設抵抗評価式による打設抵抗Fの比率と動的抵抗Ruの比率の相関係数が0.912となり、打設抵抗評価式は、有効幅にかかわらず、すべての領域の形状に対して、施工性を好適に評価することが可能であり、すなわち、従来の施工性指標Rの適用範囲外である有効幅1270mm以上の実大鋼矢板の施工性評価が可能となることが確認できる。
 次に、上述した鋼矢板の作用について図面に基づいて詳細に説明する。図2および図3に示すように、本実施の形態では、ハット形状、またはZ形状からなる鋼矢板において、上記式(6)に示す打設時に第一フランジ11と前記第一フランジ11の両端から延伸する一対のウェブ12で囲まれた領域において、鋼矢板表面と地盤との界面に生じる摩擦抵抗が重なり合うことで周辺地盤よりも高い拘束圧が発生する閉塞領域に沿う鋼矢板打設時に支配的な抵抗となる閉塞抵抗F閉塞を算定項目とした閉塞抵抗式を作成し、この閉塞抵抗式に基づいて閉塞抵抗F閉塞を評価することで、有効幅、断面係数にかかわらず、すべての領域の形状に対して、施工性を好適に評価することが可能であり、特に、従来の施工性指標Rの適用範囲外である第二フランジの先端に有する一対の継手の嵌合中心間の長さを有効幅とし、前記有効幅が1270mm以上の実大鋼矢板の施工性評価が可能である。
 そして、前記閉塞抵抗F閉塞を用いて、前記ハット形鋼矢板一枚当たりまたは継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板一組当たりの閉塞抵抗F閉塞と断面積Aの比を示す施工性評価指数と、既存鋼矢板における壁体形成時の壁方向の幅1m当たりの断面積Aと断面係数Zeの比を示す経済性評価指数との関係をグラフで表すことで、断面係数Zeに応じた断面形状群をグループ化して、上述した断面係数Ze毎に分別した第1式群G1から第3式群G3を設け、これを鋼矢板3の性能範囲とすることができる。
 そのため、これら式群G1、G2、G3によって施工性評価指標および経済性評価指標の限界領域を設定することが可能となる。つまり、評価対象の鋼矢板3の施工性評価指数および経済性評価指数は、その評価対象の鋼矢板3の断面係数Zeが含まれる式群Gによって定式化された施工性評価指標および経済性評価指標の限界領域において、既存鋼矢板の施工性評価指数および経済性評価指数と比較して評価することができる。評価対象の鋼矢板は、その施工性評価指数および経済性評価指数のうち少なくとも一方の値がいずれの既存鋼矢板の値より小さくになるように設定することができる。
 したがって、従来の既存鋼矢板に比べて、施工性および経済性のうち少なくとも一方の性能に優れた断面形状の鋼矢板を提供することができる。
 また、本実施の形態では、ハット形状、またはZ形状からなる鋼矢板において、断面形状の小さいものから大きい鋼矢板について施工性評価指標および経済性評価指標で評価して好適な断面形状のものを決定することができる。例えば、従来の施工性指標Rの適用範囲外であった、第二フランジの先端に有する一対の継手の嵌合中心間の長さを有効幅とした場合における、前記有効幅が1270mm以上の実大鋼矢板であっても、本評価方法を適用することができる。
 また、本実施の形態では、施工時の断面変形と相関の高い断面形状因子である(断面高さ/最小板厚)比を式群の制約値として設け、(断面高さ/最小板厚)比<39の範囲となる鋼矢板とすることで、鋼矢板の全幅の変形量をJIS製作許容差内に抑制した施工を行うことができる。
 また、本実施の形態では、上記式(6)に示すように、評価対象の鋼矢板の断面形状の第一フランジ幅Wf、ウェブ角度θ、および断面高さHから、実大鋼矢板に適用可能な一連の式である、式(3)’、式(4)’、式(14)、式(12)、式(13)、式(1)’および式(2)’ならびに式(7)または式(7)’を用いて、閉塞抵抗F閉塞を容易に算定することができる利点がある。
 さらに、本実施の形態では、例えばEURO CODEのclass3の規格で設定されている幅厚比制約を構造制約とし、鋼矢板の第一フランジ幅、ウェブ角度から決まる断面形状がハット形であるハット形鋼矢板もしくは継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板を保持するための幾何制約を満足する式群を設定することができ、規格が要求する性能を満足した断面形状の鋼矢板を提供することができる。
 上述した本実施の形態による鋼矢板では、閉塞抵抗を考慮した評価方法を用いることで、既存鋼矢板に比べて施工性および経済性のうち少なくとも一方の性能に優れた好適な断面形状の鋼矢板を提供することができる。
 次に、上述した実施の形態による鋼矢板の効果を裏付けるための実施例について、以下説明する。
(第1実施例)
 第1実施例は、図17に示す鋼矢板の断面係数Zeが1700≦Ze≦2300cm/m(式(15))の範囲の第1式群G1(図18参照)に含まれる鋼矢板の一例である。本第1実施例では、継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板であり、各寸法は、図17、表1に示している。なお、図18に示すように、第1式群G1の既存鋼矢板における施工性評価指数(F閉塞/A)の下限値は1.4であり、経済性評価指数(A/Ze)の下限値が0.0766である。
Figure JPOXMLDOC01-appb-T000024
 表1に示すように、本第1実施例の鋼矢板は、断面係数Zeが2134cm/mであるので、第1式群G1に含まれ、第1式群G1の各限界ラインG1a~G1g(図11参照)を使用して評価することができる。
 図18に示すように、表1の断面形状に設定された第1実施例の鋼矢板の施工性評価指数(F閉塞/A)は0.94となり、経済性評価指数(A/Ze)が0.0734となった。つまり、第1実施例の鋼矢板は、経済性において、既存鋼矢板の経済性評価指数(A/Ze)の下限値(0.0766)よりも小さく、第1実施例の既存鋼矢板に対する性能は略4%の向上となる。また、施工性において、既存鋼矢板のうち経済性評価指数(A/Ze)が下限値(0.0766)となる既存鋼矢板の施工性評価指数(F閉塞/A)の下限値の1.40よりも小さく、第1実施例の既存鋼矢板に対する性能は略33%の向上となる。
 また、第1実施例の鋼矢板の施工性評価指数(F閉塞/A)は0.94であり、第1実施例の鋼矢板と施工性評価指数(F閉塞/A)が同じ(0.94)である既存鋼矢板の経済性評価指数(A/Ze)の下限値(0.0884)と比較すると、第1実施例の既存鋼矢板に対する性能は略17%の向上となる。
(第2実施例)
 第2実施例は、図19に示す断面係数Zeが2300<Ze≦3400cm/m(式(16))の範囲の第2式群G2(図20参照)に含まれる鋼矢板の一例である。本第2実施例では、継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板であり、各寸法は、図19、表2に示している。なお、図20に示すように、この断面形状と比較される既存鋼矢板の経済性評価指数(A/Ze)の下限値が0.0713であり、経済性評価指数(A/Ze)が0.0713における既存鋼矢板の施工性評価指数(F閉塞/A)の下限値は1.04である。
Figure JPOXMLDOC01-appb-T000025
 表2に示すように、本第2実施例の鋼矢板は、断面係数Zeが3057cm/mであるので、第2式群G2に含まれ、第2式群G2の各限界ラインG2a~G2h(図12参照)を使用して評価することができる。
 図20に示すように、表2の断面形状に設定された第2実施例の鋼矢板の施工性評価指数(F閉塞/A)は0.68となり、経済性評価指数(A/Ze)が0.0643となった。つまり、第2実施例の鋼矢板は、経済性において、既存鋼矢板の経済性評価指数(A/Ze)の下限値(0.0713)よりも小さく、第2実施例の既存鋼矢板に対する性能は略10%の向上となる。また、施工性において、既存鋼矢板のうち経済性評価指数(A/Ze)が下限値(0.0713)となる既存鋼矢板の施工性評価指数(F閉塞/A)の下限値の1.04よりも小さく、第2実施例の既存鋼矢板に対する性能は略35%の向上となる。
 また、第2実施例の鋼矢板の施工性評価指数(F閉塞/A)は0.68であり、第2実施例の鋼矢板と施工性評価指数(F閉塞/A)が同じ(0.68)である既存鋼矢板の経済性評価指数(A/Ze)の下限値(0.0789)と比較すると、第2実施例の既存鋼矢板に対する性能は略19%の向上となる。
(第3実施例)
 第3実施例は、図21に示す断面係数Zeが式(17)に示す3400cm/m<Zeの範囲の第3式群G3(図22参照)に含まれる鋼矢板の一例である。本第3実施例では、継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板であり、各寸法は、図21、表3に示している。そして、本第3実施例では、H/t>39としたケースである。なお、図22に示すように、この断面形状と比較される既存鋼矢板の経済性評価指数(A/Ze)の下限値が0.0602であり、経済性評価指数(A/Ze)が0.0602における既存鋼矢板の施工性評価指数(F閉塞/A)の下限値は0.52である。
Figure JPOXMLDOC01-appb-T000026
 表3に示すように、本第3実施例の鋼矢板は、断面係数Zeが4466cm/mであるので、第3式群G3に含まれ、第3式群G3の各限界ラインG3a~G3f(図13参照)を使用して評価することができる。
 図22に示すように、表3の断面形状に設定された第3実施例の鋼矢板の施工性評価指数(F閉塞/A)は0.49となり、経済性評価指数(A/Ze)が0.0507となった。つまり、第3実施例の鋼矢板は、経済性において、既存鋼矢板の経済性評価指数(A/Ze)の下限値(0.0602)よりも小さく、第3実施例の既存鋼矢板に対する性能は略16%の向上となる。また、施工性において、既存鋼矢板のうち経済性評価指数(A/Ze)が下限値(0.0602)となる既存鋼矢板の施工性評価指数(F閉塞/A)の下限値の0.52よりも小さく、第3実施例の既存鋼矢板に対する性能は略5%の向上となる。
 また、第3実施例の鋼矢板の施工性評価指数(F閉塞/A)は0.49であり、第3実施例の鋼矢板と施工性評価指数(F閉塞/A)が同じ0.49である既存鋼矢板の経済性評価指数(A/Ze)の下限値(0.0609)と比較すると、第3実施例の既存鋼矢板に対する性能は略17%の向上となる。
(第4実施例)
 第4実施例は、図23に示す断面係数Zeが式(17)に示す3400cm/m<Zeの範囲の第3式群G3(図24参照)に含まれる鋼矢板の一例である。本第4実施例では、継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板であり、各寸法は、図23、表4に示している。そして、本第4実施例では、H/t<39の制約条件を設けたケースである。なお、図24に示すように、この断面形状と比較される既存鋼矢板の経済性評価指数(A/Ze)の下限値が0.0602であり、経済性評価指数(A/Ze)が0.0602における既存鋼矢板の施工性評価指数(F閉塞/A)の下限値は0.52である。
Figure JPOXMLDOC01-appb-T000027
 表4に示すように、本第4実施例の鋼矢板は、断面係数Zeが4916cm/mであるので、第3式群G3に含まれ、第3式群G3の各限界ラインG3a~G3f(図13参照)を使用して評価することができる。
 図24に示すように、表4の断面寸法に設定された第4実施例の鋼矢板の施工性評価指数(F閉塞/A)は0.43となり、経済性評価指数(A/Ze)が0.0562となった。つまり、第4実施例の鋼矢板は、経済性において、既存鋼矢板の経済性評価指数(A/Ze)の下限値(0.0602)よりも小さく、第4実施例の既存鋼矢板に対する性能は略7%の向上となる。また、施工性において、既存鋼矢板のうち経済性評価指数(A/Ze)が下限値(0.0602)となる第4実施例の鋼矢板の施工性評価指数(F閉塞/A)の下限値の0.52よりも小さく、第4実施例の既存鋼矢板に対する性能は略18%の向上となる。
 また、第4実施例の鋼矢板の施工性評価指数(F閉塞/A)は0.43であり、第4実施例の鋼矢板と施工性評価指数(F閉塞/A)が同じ0.43である既存鋼矢板の経済性評価指数(A/Ze)の下限値(0.0625)と比較すると、第3実施例の既存鋼矢板に対する性能は略10%の向上となる。
 以上、本発明による鋼矢板の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 例えば、上述した実施の形態では、閉塞抵抗F閉塞の計算を行う条件として、μ=0.27、ν=3.3、γ=1.8×10-8kN/mm、Z=15000mm、N値20、相対密度Dr=80%を例示して説明し、図11~図13には当該条件において定まる各式群(第1式群G1、第2式群G2、第3式群G3)の限界ラインを図示し、これらの式群によって施工性評価指標Cおよび経済性評価指標Eの限界領域を設定し、これを鋼矢板の性能範囲としている。しかしながら、本発明の適用範囲はこれに限られるものではなく、例えば閉塞抵抗F閉塞の計算において地盤条件であるN値を異なる値とし、それに伴う計算条件において定まる各式群に基いて鋼矢板の性能範囲を定めても良い。
そこで、以下では、一例としてN値が1の場合と、N値が50の場合のそれぞれにおいて、それぞれの場合の式群(第1式群G1、第2式群G2、第3式群G3)について示し、N値が1の場合と50の場合の施工性評価指標Cおよび経済性評価指標Eの限界領域を図示する。
 (N値=1の場合)
 閉塞抵抗F閉塞の計算を行う条件として、μ=0.27、ν=2.0、γ=1.8×10-8kN/mm、Z=15000mm、N値1、相対密度Dr=20%とした。この時の式群Gは以下の表5に示す通りである。また、図26~28は、表5に示す各式群G1~G3を構成する複数の限界ラインを図示したものであり、上記実施の形態で説明した図11~13と同様に、それぞれの式群によって示される鋼矢板の性能範囲を示すものである。
 そして、この条件において実施例1~3の鋼矢板の閉塞抵抗F閉塞が計算され、実施例1~3の施工性評価指数(F閉塞/A)と経済性評価指数(A/Ze)の値がそれぞれ図26~28にプロットされている。図26~28をみると、N値=1の場合においてもN値=20とした場合と同様に、実施例1~3の鋼矢板は、それぞれの式群によって示される鋼矢板の性能範囲に入っており、地盤条件が変わっても矢板の形状は変わらずに、既存鋼矢板に比べて施工性ならびに経済性で優位な断面となることが出来る。
Figure JPOXMLDOC01-appb-T000028
 (N値=50の場合)
 閉塞抵抗F閉塞の計算を行う条件として、μ=0.27、ν=5.1、γ=1.8×10-8kN/mm、Z=15000mm、N値50、相対密度Dr=100%とした。この時の式群Gは以下の表6に示す通りである。また、図29~31は、表6に示す各式群G1~G3を構成する複数の限界ラインを図示したものであり、上記実施の形態で説明した図11~13と同様に、それぞれの式群によって示される鋼矢板の性能範囲を示すものである。
 そして、この条件において実施例1~3の鋼矢板の閉塞抵抗F閉塞が計算され、実施例1~3の施工性評価指数(F閉塞/A)と経済性評価指数(A/Ze)の値がそれぞれ図29~31にプロットされている。図29~31をみると、N値=50の場合においてもN値=20とした場合と同様に、実施例1~3の鋼矢板は、それぞれの式群によって示される鋼矢板の性能範囲に入っており、地盤条件が変わっても矢板の形状は変わらずに、既存鋼矢板に比べて施工性ならびに経済性で優位な断面となることが出来る。
Figure JPOXMLDOC01-appb-T000029
 図26~28、29~31に示すように、閉塞抵抗F閉塞の計算を行う条件を変えた場合であっても、式群Gを構成する複数の限界ラインから鋼矢板の性能範囲が特定され、施工性および経済性のうち少なくとも一方の性能に優れた断面形状の鋼矢板を提供できることが分かる。即ち、本発明技術はあらゆる地盤条件等のもとで適用可能であることが分かる。
 また、例えば、上述した実施の形態では、図14等を参照して説明したように、(断面高さH/最小板厚t)比<39の範囲を満足するように設定しているが、このような制約を設けることに限定されることはない。具体的には、地盤条件がN値≦35である場合には、(断面高さH/最小板厚t)比≦45の範囲を満足するように設定しても良い。以下では、(断面高さH/最小板厚t)比≦45の範囲に設定した際の実大施工試験についてのグラフを参照して、その理由について説明する。
 図32は、実大施工試験における地盤条件を示すグラフであり、N値の深度分布を表している。また、図33~35は、有効幅1270mm以上の鋼矢板の打設前後の全幅差を示すグラフであり、各グラフはそれぞれ(断面高さH/最小板厚t)比が39、42、45である場合を示している。
 図32に示すように、ここでの実大施工試験にかかる地盤条件では、深度8mでN値が35となっており、それよりも浅い層ではN値が35以下となっている。また、図33~35に示すように、(断面高さH/最小板厚t)比が39、42、45のいずれの鋼矢板においても、N値35以下の地盤(深度8mより浅い層)での全幅差は、JIS製作許容差である-5mm以上10mm以下の範囲内に収まっていることが分かる。即ち、N値≦35の地盤条件であれば、鋼矢板の(断面高さH/最小板厚t)比は45以下の範囲に設定できる。
 以上、図32~35を参照して説明したように、鋼矢板の(断面高さH/最小板厚t)比の範囲設定は、地盤条件に応じて好適に設定すればよく、上記実施の形態で設定した(断面高さH/最小板厚t)比<39の範囲に限られるものではない。
 また、本発明にかかる鋼矢板は熱間で製造されても良い。熱間での鋼矢板の製造では、鋼矢板の断面内において板厚差をつけることができるため、断面が変形しやすい箇所の板厚を増やすといった製造が可能となり、打設時の断面変形をより効果的に抑え、打設抵抗の増大を抑制することができる。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。
 本発明は、土木分野や建築分野において土留壁、護岸等として利用される鋼矢板に適用できる。

Claims (9)

  1. 壁体を構成する鋼矢板であり、
    当該壁体の中立軸に略平行であり、前記中立軸を挟んで対称に位置し互いに平行である第一フランジおよび第二フランジと、これら第一フランジと第二フランジを繋ぐウェブを有し、
    前記壁体において隣接する第一フランジ同士あるいは第二フランジ同士の中点間を1つの単位とする鋼矢板において、
     当該鋼矢板における1つの単位の両端に設けられる2つのフランジを第二フランジとしたとき、
    当該第二フランジの端部には鋼矢板同士を嵌合させるための継手が形成され、
     2つの前記第二フランジの先端に形成された一対の継手の嵌合中心間の長さを有効幅とし、前記有効幅が1270mm以上、断面係数Zeが1700≦Ze≦2300cm/mの範囲を満足する鋼矢板であって、
    対象地盤の土の単位体積重量γを1.8×10-8kN/mm、土と鋼矢板の摩擦係数μをtan15°、ランキンの受動土圧係数νを
    Figure JPOXMLDOC01-appb-M000001
    、相対密度Drを80%、N値を20、打設深度Zνを15000mmとした場合に、
     以下の式(18)、(19)で示される施工性評価指標Cおよび経済性評価指標Eが、以下の式(20)~(23)のいずれかを満足することを特徴とする、鋼矢板。
    C=F閉塞/A ・・・(18)
    E=A/Ze ・・・(19)
    0.11≦C≦1.00かつ-0.0208×C+0.0809≦E≦0.0884 ・・・(20)
    1.00<C≦1.20かつ-0.0208×C+0.0809≦E≦-0.03×C+0.1186 ・・・(21)
    1.20<C≦1.40かつ0.0560≦E≦-0.03×C+0.1186 ・・・(22)
    1.40<C≦1.80かつ0.0560≦E≦0.0766 ・・・(23)
    但し、F閉塞:以下の式(6)、(3)’、(4)’、(14)、(12)、(13)、(1)’および(2)’ならびに(7)または(7)’に基づき算定される閉塞抵抗(kN/枚)、A:断面積(cm/枚)、A:壁体形成時の壁方向の幅1m当たりの断面積(cm/m)であり、Wf:前記第一フランジの幅(mm)、H:前記中立軸に直交する方向の第一フランジと第二フランジ間の距離である断面高さ(mm)、θ:前記ウェブと前記第二フランジとがなす角度の補角であるウェブ角度(°)である。
    Figure JPOXMLDOC01-appb-M000002
  2. 壁体を構成する鋼矢板であり、
    当該壁体の中立軸に略平行であり、前記中立軸を挟んで対称に位置し互いに平行である第一フランジおよび第二フランジと、これら第一フランジと第二フランジを繋ぐウェブを有し、
    前記壁体において隣接する第一フランジ同士あるいは第二フランジ同士の中点間を1つの単位とする鋼矢板において、
     当該鋼矢板における1つの単位の両端に設けられる2つのフランジを第二フランジとしたとき、
    当該第二フランジの端部には鋼矢板同士を嵌合させるための継手が形成され、
     2つの前記第二フランジの先端に形成された一対の継手の嵌合中心間の長さを有効幅とし、前記有効幅が1270mm以上、断面係数Zeが2300<Ze≦3400cm/mの範囲を満足する鋼矢板であって、
    対象地盤の土の単位体積重量γを1.8×10-8kN/mm、土と鋼矢板の摩擦係数μをtan15°、ランキンの受動土圧係数νを
    Figure JPOXMLDOC01-appb-M000003
    、相対密度Drを80%、N値を20、打設深度Zνを15000mmとした場合に、
     以下の式(18)、(19)で示される施工性評価指標Cおよび経済性評価指標Eが、以下の式(24)~(28)のいずれかを満足することを特徴とする、鋼矢板。
    C=F閉塞/A ・・・(18)
    E=A/Ze ・・・(19)
    0.12≦C≦0.66かつ-0.0225×C+0.066≦E≦0.08 ・・・(24)
    0.66<C≦0.85かつ-0.0225×C+0.066≦E≦-0.0306×C+0.0997 ・・・(25)
    0.85<C≦0.89かつ0.0469≦E≦-0.0306×C+0.0997 ・・・(26)
    0.89<C≦1.04かつ0.0469≦E≦0.0077×C+0.0793 ・・・(27)
    1.04<C≦1.20かつ0.0469≦E≦0.0795 ・・・(28)
    但し、F閉塞:以下の式(6)、(3)’、(4)’、(14)、(12)、(13)、(1)’および(2)’ならびに(7)または(7)’に基づき算定される閉塞抵抗(kN/枚)、A:断面積(cm/枚)、A:壁体形成時の壁方向の幅1m当たりの断面積(cm/m)であり、Wf:前記第一フランジの幅(mm)、H:前記中立軸に直交する方向の第一フランジと第二フランジ間の距離である断面高さ(mm)、θ:前記ウェブと前記第二フランジとがなす角度の補角であるウェブ角度(°)である。
    Figure JPOXMLDOC01-appb-M000004
  3. 壁体を構成する鋼矢板であり、
    当該壁体の中立軸に略平行であり、前記中立軸を挟んで対称に位置し互いに平行である第一フランジおよび第二フランジと、これら第一フランジと第二フランジを繋ぐウェブを有し、
    前記壁体において隣接する第一フランジ同士あるいは第二フランジ同士の中点間を1つの単位とする鋼矢板において、
     当該鋼矢板における1つの単位の両端に設けられる2つのフランジを第二フランジとしたとき、
    当該第二フランジの端部には鋼矢板同士を嵌合させるための継手が形成され、
     2つの前記第二フランジの先端に形成された一対の継手の嵌合中心間の長さを有効幅とし、前記有効幅が1270mm以上、断面係数Zeが3400cm/m<Zeの範囲を満足する鋼矢板であって、
    対象地盤の土の単位体積重量γを1.8×10-8kN/mm、土と鋼矢板の摩擦係数μをtan15°、ランキンの受動土圧係数νを
    Figure JPOXMLDOC01-appb-M000005
    、相対密度Drを80%、N値を20、打設深度Zνを15000mmとした場合に、
     以下の式(18)、(19)で示される施工性評価指標Cおよび経済性評価指標Eが、以下の式(29)~(31)のいずれかを満足することを特徴とする、鋼矢板。
    C=F閉塞/A ・・・(18)
    E=A/Ze ・・・(19)
    0.13≦C≦0.36かつ-0.0237×C+0.0538≦E≦0.0642 ・・・(29)
    0.36<C≦0.52かつ-0.0237×C+0.0538≦E≦-0.025×C+0.0732 ・・・(30)
    0.52<C≦0.75かつ-0.0237×C+0.0538≦E≦0.0602 ・・・(31)
    但し、F閉塞:以下の式(6)、(3)’、(4)’、(14)、(12)、(13)、(1)’および(2)’ならびに(7)または(7)’に基づき算定される閉塞抵抗(kN/枚)、A:断面積(cm/枚)、A:壁体形成時の壁方向の幅1m当たりの断面積(cm/m)であり、Wf:前記第一フランジの幅(mm)、H:前記中立軸に直交する方向の第一フランジと第二フランジ間の距離である断面高さ(mm)、θ:前記ウェブと前記第二フランジとがなす角度の補角であるウェブ角度(°)である。
    Figure JPOXMLDOC01-appb-M000006
  4. 断面高さHと継手を除いた前記第一フランジの板厚、ウェブの板厚、または第二フランジの板厚のうちの最小の板厚である最小板厚tとの比H/tが39未満の範囲を満足するように設定されていることを特徴とする請求項1~3のいずれか1項に記載の鋼矢板。
  5. 対象地盤のN値が35以下である場合に、
    断面高さHと継手を除いた前記第一フランジの板厚、ウェブの板厚、または第二フランジの板厚のうちの最小の板厚である最小板厚tとの比H/tが45以下の範囲を満足するように設定されていることを特徴とする請求項1~3のいずれか1項に記載の鋼矢板。
  6. 前記鋼矢板の第一フランジ幅、ウェブ角度から決まる幾何制約と、
    座屈防止のための鋼材降伏強度に応じた幅厚比から規定される構造制約と、が設定されていることを特徴とする請求項1~5のいずれか1項に記載の鋼矢板。
  7. 熱間で製造されたことを特徴とする、請求項1~6のいずれか1項に記載の鋼矢板。
  8. 前記鋼矢板は、
    第一フランジと該第一フランジの両端から延伸する一対のウェブからなり、当該ウェブの前記第一フランジの反対側に前記第一フランジと平行に伸びる先端に継手を有する一対の第二フランジを有するハット形状のハット形鋼矢板である、請求項1~7のいずれか1項に記載の鋼矢板。
  9. 前記鋼矢板は、
    ウェブと該ウェブの両端に反対方向に延伸する端部に継手を有する平行な一対のフランジからなるZ形状の鋼矢板において、継手を嵌合させてハット形状にした2枚で一組となるZ形鋼矢板であり、
     前記2枚一組のZ形鋼矢板において、継手を嵌合した側の両者のフランジが第一フランジとされ、継手を嵌合しない側の両者のフランジが第二フランジとされることを特徴とする、請求項1~7のいずれか1項に記載の鋼矢板。
PCT/JP2014/068070 2014-04-18 2014-07-07 鋼矢板 WO2015159445A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016513607A JP6108031B2 (ja) 2014-04-18 2014-07-07 鋼矢板
CN201480063646.2A CN105765130B (zh) 2014-04-18 2014-07-07 钢板桩

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2014/061085 2014-04-18
PCT/JP2014/061085 WO2015159434A1 (ja) 2014-04-18 2014-04-18 鋼矢板

Publications (1)

Publication Number Publication Date
WO2015159445A1 true WO2015159445A1 (ja) 2015-10-22

Family

ID=54323671

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/061085 WO2015159434A1 (ja) 2014-04-18 2014-04-18 鋼矢板
PCT/JP2014/068070 WO2015159445A1 (ja) 2014-04-18 2014-07-07 鋼矢板

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061085 WO2015159434A1 (ja) 2014-04-18 2014-04-18 鋼矢板

Country Status (3)

Country Link
JP (1) JP6108031B2 (ja)
CN (1) CN105765130B (ja)
WO (2) WO2015159434A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069776A1 (ja) * 2017-10-02 2019-04-11 新日鐵住金株式会社 ハット形鋼矢板
WO2020045117A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法
WO2020045115A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法
WO2020045118A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板
WO2020045114A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法
WO2020045119A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板
WO2020045113A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045116A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873097B2 (ja) * 2009-12-11 2012-02-08 Jfeスチール株式会社 Z形鋼矢板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270413A (ja) * 1985-05-24 1986-11-29 Seibu Polymer Kasei Kk 鋼矢板の継手及びその施工法
LU88566A1 (fr) * 1994-12-07 1996-07-15 Profilarbed Sa Procédé de laminage de palplanches à section en forme de Z
CN1088486C (zh) * 1995-09-29 2002-07-31 住友金属工业株式会社 非对称钢板桩及其制造方法
GB9816698D0 (en) * 1998-07-31 1998-09-30 British Steel Plc Steel sheet piling
KR100711068B1 (ko) * 2002-10-31 2007-04-24 수미도모 메탈 인더스트리즈, 리미티드 강제 벽 및 그 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873097B2 (ja) * 2009-12-11 2012-02-08 Jfeスチール株式会社 Z形鋼矢板

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069776A1 (ja) * 2017-10-02 2019-04-11 新日鐵住金株式会社 ハット形鋼矢板
JPWO2019069776A1 (ja) * 2017-10-02 2019-11-14 日本製鉄株式会社 ハット形鋼矢板の設計方法、及びハット形鋼矢板の製造方法
WO2020045117A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法
WO2020045115A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法
WO2020045118A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板
WO2020045114A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法
WO2020045119A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板
WO2020045113A1 (ja) * 2018-08-31 2020-03-05 日本製鉄株式会社 ハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法
JPWO2020045119A1 (ja) * 2018-08-31 2021-04-08 日本製鉄株式会社 ハット形鋼矢板
JPWO2020045114A1 (ja) * 2018-08-31 2021-08-10 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法
JPWO2020045115A1 (ja) * 2018-08-31 2021-08-10 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法
JPWO2020045117A1 (ja) * 2018-08-31 2021-08-10 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法
JP2022120069A (ja) * 2018-08-31 2022-08-17 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法
JP2022120104A (ja) * 2018-08-31 2022-08-17 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法
JP2022120101A (ja) * 2018-08-31 2022-08-17 日本製鉄株式会社 ハット形鋼矢板および鋼矢板壁の製造方法
JP2022130453A (ja) * 2018-08-31 2022-09-06 日本製鉄株式会社 ハット形鋼矢板
JP7143891B2 (ja) 2018-08-31 2022-09-29 日本製鉄株式会社 ハット形鋼矢板の製造方法
JP7143890B2 (ja) 2018-08-31 2022-09-29 日本製鉄株式会社 ハット形鋼矢板の製造方法
JP7143888B2 (ja) 2018-08-31 2022-09-29 日本製鉄株式会社 ハット形鋼矢板の製造方法
JP7143887B2 (ja) 2018-08-31 2022-09-29 日本製鉄株式会社 ハット形鋼矢板の製造方法

Also Published As

Publication number Publication date
JP6108031B2 (ja) 2017-04-05
JPWO2015159445A1 (ja) 2017-04-13
CN105765130A (zh) 2016-07-13
WO2015159434A1 (ja) 2015-10-22
CN105765130B (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
JP6108031B2 (ja) 鋼矢板
JP2014148798A (ja) 鋼矢板
JP4873097B2 (ja) Z形鋼矢板
JP5764945B2 (ja) ハット形鋼矢板
CN101641479A (zh) 用于土壤颗粒约束的蜂窝状加固件
EP2894260B1 (en) Composite steel wall
WO2011004895A1 (ja) 圧延h形鋼
JP4370359B1 (ja) 液状化防止構造
Kay et al. Caisson Capacity in Clay: VHM Resistance Envelope: Part 3—Extension to Shallow Foundations
WO2018117269A1 (ja) ハット形鋼矢板
JP7143891B2 (ja) ハット形鋼矢板の製造方法
KR101667986B1 (ko) Z형강 널말뚝
WO2020045118A1 (ja) ハット形鋼矢板
WO2021157699A1 (ja) 鋼管杭
JP7396332B2 (ja) 既存岸壁の改良構造及び該改良構造の施工方法
RU2708330C1 (ru) Шпунтовая стенка
CN209128982U (zh) 一种探桩装置
JP6958527B2 (ja) 地すべり抑止用杭およびその設計方法
KR101390883B1 (ko) 해트형 강 시트 파일
JP4924362B2 (ja) 鋼矢板
JP6804728B2 (ja) 構造物の液状化対策構造の設計方法
JP6795483B2 (ja) 橋脚およびその製造方法
JP2022120104A (ja) ハット形鋼矢板および鋼矢板壁の製造方法
WO2020045113A1 (ja) ハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法
JP2023151227A (ja) 土木構造物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513607

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889624

Country of ref document: EP

Kind code of ref document: A1