WO2019069776A1 - ハット形鋼矢板 - Google Patents

ハット形鋼矢板 Download PDF

Info

Publication number
WO2019069776A1
WO2019069776A1 PCT/JP2018/035872 JP2018035872W WO2019069776A1 WO 2019069776 A1 WO2019069776 A1 WO 2019069776A1 JP 2018035872 W JP2018035872 W JP 2018035872W WO 2019069776 A1 WO2019069776 A1 WO 2019069776A1
Authority
WO
WIPO (PCT)
Prior art keywords
hat
steel sheet
shaped steel
cross
sheet pile
Prior art date
Application number
PCT/JP2018/035872
Other languages
English (en)
French (fr)
Inventor
正和 武野
典佳 原田
妙中 真治
雅司 北濱
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2019510977A priority Critical patent/JP6669309B2/ja
Priority to SG11202000245WA priority patent/SG11202000245WA/en
Priority to CN201880052395.6A priority patent/CN111032961A/zh
Priority to AU2018345052A priority patent/AU2018345052A1/en
Publication of WO2019069776A1 publication Critical patent/WO2019069776A1/ja
Priority to PH12020500110A priority patent/PH12020500110A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel

Definitions

  • the present invention relates to a hat-shaped steel sheet pile.
  • Priority is claimed on Japanese Patent Application No. 2017-193111, filed Oct. 2, 2017, the content of which is incorporated herein by reference.
  • a hat-shaped steel sheet pile that constitutes a wall with a plurality and extends in the longitudinal direction.
  • the hat-shaped steel sheet pile includes a web portion, a pair of flange portions extending at an angle to the web portion, and a pair of arm portions connected to the pair of flange portions.
  • the hat-shaped steel sheet pile is constructed, for example, by connecting a plurality of columns in the width direction to a quay wall or the like, thereby constituting a wall supporting an external force from the cross-sectional height direction orthogonal to the width direction in plan view seen from the longitudinal direction.
  • a driving method using an exciter by a chuck method or a holding method as shown in the following Patent Document 1 and the following Patent Document 2 is known. It is called a vibro hammer construction method.
  • the vibratory hammer construction method the hat-shaped steel sheet pile is driven on the ground in a state where the pair of flanges of the hat-shaped steel sheet pile is gripped by the holding portion of the heavy equipment for construction.
  • the press-in method is known as another method.
  • the hat-shaped steel sheet pile is held in a state in which each pair of arms in the hat-shaped steel sheet pile Strike on the ground.
  • the angle of the gripping portion in the heavy equipment for construction is a mechanism that rotates according to the angle formed by the pair of flange portions, but substantially two flange angles It corresponds to the If the gripping portion is made to correspond to a larger angle, the number of fixing holes provided in the gripping portion increases and the strength of the end portion of the gripping portion becomes insufficient, and the size of the adjusting jig for adjusting the position of the gripping portion growing. This degrades the workability and increases the cost of manufacturing equipment. For this reason, it was difficult to apply a holding part to a pair of flange parts which make various angles.
  • This invention is made in view of such a problem, While contributing to cost reduction, securing cross-sectional performance, the hat-shaped steel sheet pile which can ensure versatility of heavy construction machinery is provided.
  • the purpose is
  • a hat-shaped steel sheet pile according to an aspect of the present invention is a plurality of hat-shaped steel sheet piles that are arranged to constitute a wall and extend in the longitudinal direction, and the wall in a plan view seen from the longitudinal direction , And a pair of flange portions connected to the outer end of the web portion in the width direction and extending obliquely with respect to the web portion in the plan view, and the pair of flange portions A pair of arms extending in the widthwise direction in plan view and connected to the opposite end of the web along the widthwise direction in each of the flanges, and the widthwise direction in the hat-shaped steel sheet pile
  • the relationship between the cross sectional area A (cm 2 / m) and the second moment of area I (cm 4 / m) around the center of gravity of the cross section extending in the width direction in the plan view is 1 cm per 1 m.
  • the cross-sectional area A per size of 1 m in the width direction of the hat-shaped steel sheet pile and the cross-section secondary around the cross-sectional centerline extending in the width direction in plan view seen from the longitudinal direction The relationship with the moment I satisfies the equation (1). Therefore, even when the cross-sectional performance of the current hat-shaped steel sheet pile is secured or changed, the cross-sectional area can be reduced, which can contribute to cost reduction.
  • the relationship between the D1 and the D2 can be expressed by the equations (2A), (2B), (3A), (3B), (4A) and (4B), (5B), and (5B). Meet any one of the relationships.
  • the steel sheet pile of the present invention can be used for the current construction by changing the dimension in the width direction of the pair of holding parts of the heavy construction equipment used when constructing the hat-shaped steel sheet piles of various current sizes. Heavy machinery can be diverted, and versatility of construction heavy machinery can be secured.
  • the distance between the second intersections may be made equal to any one of the distances between the second intersections in current-sized hat-shaped steel sheet piles. It will be possible.
  • the hat-shaped steel sheet pile according to the above aspect it is possible to make the inclination angle of the pair of flanges equal to any one of the inclination angles of the flanges in the current sizes of hat-shaped steel sheet piles become.
  • the hat-shaped steel sheet pile of the present invention can be held as it is by the holding portion of the heavy construction machine used when constructing hat-shaped steel sheet piles of various current sizes. Work can be done smoothly.
  • the D1 and the D2 may satisfy the formula (2A) and the formula (2B).
  • the D1 and the D2 may satisfy the formula (3A) and the formula (3B).
  • the D1 and the D2 may satisfy the formula (4A) and the formula (4B).
  • the D1 and the D2 may satisfy the formula (5A) and the formula (5B).
  • the effective width W (mm) between the outer ends in the width direction in each of the pair of arms satisfies the formula (6)
  • the distance H (mm) in the cross sectional height direction may satisfy the equation (7). 876 ⁇ W ⁇ 932 (6) H ⁇ 400 (7)
  • the above-mentioned hat-shaped steel sheet pile uses the heavy machinery for construction of the current general-purpose press-in method, and while holding the arm portion by the clamping unit of the heavy-duty machine construction for press-in method, The possibility of being able to surround from the outside of the hat-shaped steel sheet pile in plan view is increased. Thereby, the versatility of the heavy construction equipment can be further secured.
  • the pair of flanges passes through the second intersection with the cross-sectional center of gravity line in each of the pair of flanges
  • the distance C (mm) between the surface facing the opposite side and the cross-sectional center of gravity line may satisfy Formula (8).
  • the third intersection point is located outside the hat-shaped steel sheet pile in the sectional height direction in the plan view. Therefore, when mounting a hat-shaped steel sheet pile on the ground, the soil located inside the hat-shaped steel sheet pile in the plan view is passed through the space between the pair of arms and the hat-shaped steel sheet pile It can be discharged outward along the width direction of the And by providing such a soil removal effect on the hat-shaped steel sheet pile, the workability of the hat-shaped steel sheet pile can be secured.
  • the hat-shaped steel sheet pile of the present invention it is possible to contribute to cost reduction while securing the cross-sectional performance, and also to ensure versatility of heavy construction equipment.
  • the hat-shaped steel sheet pile 1 extends in the longitudinal direction (Z direction).
  • a plurality of hat-shaped steel sheet piles 1 are arranged in the width direction (in the direction perpendicular to the Z direction, the X direction described later) to form a wall.
  • the wall extends in one direction in plan view seen from the longitudinal direction.
  • the one direction is referred to as the width direction (X direction)
  • the direction orthogonal to the width direction in the plan view is referred to as the cross-sectional height direction (Y direction).
  • description of a unit may be abbreviate
  • the hat-shaped steel sheet pile 1 includes a web portion 10 extending in the width direction, a pair of flange portions 11 connected to the outer end portion in the width direction of the web portion 10, and a web portion along the width direction in the pair of flange portions 11 And 10 a pair of arm portions 12 connected to the opposite end of 10.
  • the flange portion 11 extends obliquely with respect to the web portion 10 in the plan view.
  • the pair of flange portions 11 gradually expand in the width direction as they extend from the web portion 10.
  • the inclination angles with respect to the width direction in each of the pair of flanges 11 are equal to each other.
  • the arm portion 12 extends in the width direction in the plan view.
  • connection joint 13 is connected to each of the outer end portions in the width direction of the pair of arm portions 12.
  • the connection joint 13 is C-shaped in the plan view, and includes a connection port 13A opened in the cross-sectional height direction.
  • the directions in which the connection ports 13A of the pair of arm portions 12 are open are opposite to each other in the plan view.
  • the shape of the portion excluding the connection joint 13 is formed in line symmetry on the basis of the center line in the width direction.
  • a plurality of hat-shaped steel sheet piles 1 are arranged continuously in the width direction.
  • the directions of the cross-section height directions of the hat-shaped steel sheet piles 1 adjacent to each other in the width direction are the same.
  • a wall body extending in the width direction is constituted by the plurality of hat-shaped steel sheet piles 1 by fitting and connecting the mutually adjacent connection joints 13 to each other.
  • the section moment of inertia I (cm 4 / m) (hereinafter simply referred to as a section moment of inertia) around the section center of gravity line M extending in the width direction in plan view satisfies the equation (1)
  • the cross-sectional gravity center line M extending in the width direction in plan view means a straight line extending in the width direction, passing through the center of gravity of the hat-shaped steel sheet pile 1 in the plan view.
  • the cross-sectional area A and cross-sectional secondary moment I per 1 m in the width direction of the hat-shaped steel sheet pile are the cross-sectional area and cross-sectional secondary moment per steel sheet pile divided by the effective width W of the steel sheet .
  • the size per 1 m in the width direction of the hat-shaped steel sheet pile is omitted, and it simply refers to the cross-sectional area or the second moment of area.
  • the technical significance of Formula (1) will be described below.
  • the hat-shaped steel sheet pile 1 is required to have high cross-sectional performance such as, for example, a second moment of area, a cross-sectional coefficient, etc. in order to support an external force from the cross-sectional height direction. For this reason, while ensuring or changing the cross-sectional performance in the cross-sectional shape of the current hat-shaped steel sheet pile, the cross-sectional area along both the width direction and the cross-sectional height direction is reduced to change the cross-sectional shape contributing to cost reduction. Is required. Therefore, the present inventors arranged cross-sectional characteristics and major dimensions for each type of current hat-shaped steel sheet pile. The results are shown in Table 1.
  • the distance C in Table 1 is the distance (mm) between the surface facing the cross section gravity center line M along the width direction in the web portion 10 and the opposite side, and the cross section gravity center line M.
  • FIG. 2 shows a correlation diagram between the second moment of area I and the area A of the four types in Table 1.
  • the right side of equation (1) was derived as a straight line S connecting the values of the current models 10H and 45H. That is, when Formula (1) is satisfied, the cross-sectional area per second moment of area will be smaller than that of the current hat-shaped steel sheet pile, and it can be said that the cross-sectional shape is more economical than the current hat-shaped steel sheet pile.
  • the upper limit of the cross-sectional area A (cm 4 / m) may be 0.00252I + 94.0 or 0.00252I + 93.6.
  • the lower limit of the cross-sectional area A (cm 4 / m) is not particularly required, but may be 40, or 0.00252I + 40 as necessary.
  • the hat-shaped steel sheet pile according to the embodiment of the present invention can be classified into four types, that is, a 10H-compliant product, a 25H-compliant product, a 45H-compliant product, and a 50H-compliant product. In addition, these four types of corresponding products of this embodiment all satisfy Formula (1).
  • the distance D1 refers to the distance between the first intersection point P1 of the extension line of each of the pair of flanges 11 in a plan view and the cross-sectional center of gravity line M.
  • the distance D2 refers to the distance between the second intersection points P2 with the cross-sectional center of gravity line M in each of the pair of flanges 11 in plan view.
  • the distance D1 is smaller than the current hat-shaped steel sheet pile. It is required to be substantially equivalent. Since the distance D1 is substantially equal, the grip portion 30 of the heavy machine for construction of the current type 10H hat-shaped steel sheet pile can easily grip the pair of flange portions 11 of the hat-shaped steel sheet pile 1 It is.
  • B dimension in the width direction of the web portion 10 (mm)
  • flange angle (°)
  • C a surface of the web portion 10 opposite to the cross section gravity center line M along the width direction
  • cross section gravity center line The distance (mm) between M and tw: the thickness dimension (mm) of the web portion 10 are shown.
  • the distance H is between the surface facing the cross section center line M along the width direction in the web portion 10 and the surface facing the opposite side along the width direction in the arm portion 12. Indicates the distance (effective height).
  • D1 MAX (B / 2) x tan ⁇ + C-(tw / 2) + 0.04 x H (21)
  • D1 MIN (B / 2) ⁇ tan ⁇ + C ⁇ (tw / 2) ⁇ 0.04 ⁇ H (22) That is, if the value of D1 of the hat-shaped steel sheet pile 1 is within the range from D1 MAX in the equation (21) for the dimensions of each part of the current hat-shaped steel sheet pile to D1 MIN in the equation (22) Can be achieved.
  • the distance D2 between the second intersection points P2 with the cross-sectional center of gravity line M in each of the pair of flange portions 11 satisfies the formula (2B). 484.0 ⁇ D2 ⁇ 499.0 (2 B)
  • the technical significance of Formula (2B) is demonstrated.
  • the hat-type is formed by the holding portion 30 of the construction heavy machine. By gripping a portion on the cross section center of gravity line M of the steel sheet pile 1, it is possible to work in a stable state.
  • the distance D2 is required to be substantially equal to the current hat-shaped steel sheet pile.
  • the grip portion 30 of the heavy construction machine for hat-type steel sheet piles of the current model 10H can hold the hat-shaped steel sheet pile 1 as it is.
  • the effective width W is a distance from the fitting center of the connection joint 13 on one side in the width direction to the fitting center of the connection joint 13 on the other side in the width direction.
  • the fitting state of the connection joints 13 includes compression fitting, neutral fitting, tensile fitting, and the like.
  • connection joints 13 adjacent to each other are in a neutral fitting state in which neither compression nor tension is received.
  • the effective width W in the present embodiment corresponds to the distance between the joint centers in the neutral engagement state.
  • the effective width W (mm) between the outer end portions in the width direction of each of the pair of arms 12 satisfies the formula (6). 876 ⁇ W ⁇ 932 (6)
  • the technical significance of Formula (6) is demonstrated.
  • the said effective width W is substantially equivalent with respect to the present hat-shaped steel sheet pile.
  • the sandwiching portion 40 of the construction heavy machine in the current press-in method for the type 10H hat-shaped steel sheet pile can sandwich both ends of the pair of arm portions 12 It is.
  • the distance of the width direction which can be clamped by clamping part 40 is 876 mm to 932 mm in the construction heavy machinery for press-in construction methods currently used for hat type steel sheet piles of type 10H. That is, when the said effective width W satisfy
  • the holding portion 40 of the construction heavy machine is the hat-shaped steel sheet pile 1.
  • the distance H be substantially equal to that of the current hat-shaped steel sheet pile.
  • the distance in the cross-sectional height direction where the entire hat-shaped steel sheet pile 1 can be surrounded by the holding portion 40 is 400 mm. It was confirmed that That is, when the said distance H satisfy
  • the distance C (mm) between the surface facing the and the cross section center of gravity line M satisfies the equation (8).
  • the third intersection point P3 of the earth pressure application line is disposed outside the arm 12 in the cross-section height direction (lower side than the arm 12 in FIG. 1).
  • soil pressure is applied to the soil surrounded by the web portion 10 and the pair of flange portions 11, it is possible to push this soil to the outside of the arm portion 12 along the cross-sectional height direction ( Discharge effect).
  • filling Formula (8) 3rd intersection P3 of the action line of earth pressure can be arrange
  • the equation (3A) is obtained from the dimensions of the current model 25H hat-shaped steel sheet pile, the equations (21) and (22).
  • the type 25H refers to a hat-shaped steel sheet pile having a geometrical moment of inertia of about 24,400 (cm 4 / m).
  • the formula (3B) is satisfied instead of the formula (2B). 474.0 ⁇ D2 ⁇ 489.0 (3B)
  • the formula (3B) is obtained from the dimensions of the current type 25H hat-shaped steel sheet pile, the formula (23) and the formula (24).
  • the equation (4A) is obtained from the dimensions of the current model 45H hat-shaped steel sheet pile, the equations (21) and (22).
  • the type 45H refers to a hat-shaped steel sheet pile having a cross-sectional second moment of about 45,000 (cm 4 / m).
  • the hat-shaped steel sheet pile 4 corresponding to the type 50H of the present embodiment will be described.
  • the same parts as those in the above-described configuration are given the same reference numerals, and the description thereof is omitted, and only different points will be described.
  • the cross-sectional shape of the hat-shaped steel sheet pile corresponding to model 50H is substantially the same as that of model 45H, and the illustration is omitted.
  • the hat-shaped steel sheet pile 4 compatible with the model 50H satisfies the formulas (5A) and (5B).
  • Formula (5A) and Formula (5B) are obtained from each dimension of model 50 H, Formula (21), Formula (22), Formula (23), and Formula (24).
  • the type 50H refers to a hat-shaped steel sheet pile having a cross-sectional second moment of approximately 51, 100 (cm 4 / m). 625.2 ⁇ D1 ⁇ 654.8 (5A) 474.0 ⁇ D2 ⁇ 489.0 (5B)
  • the cross-sectional area A per 1 m in the width direction of the hat-shaped steel sheet pile and the second moment of area I around the cross-sectional gravity center line M extending in the width direction in plan view seen from the longitudinal direction If the relationship satisfies the equation (1), the cross-sectional area can be reduced while securing or changing the cross-sectional performance of the current hat-shaped steel sheet pile, which can contribute to cost reduction.
  • the relationship between the D1 and the D2 can be expressed by the equations (2A), (2B), (3A), (3B), (4A) and (4B), (5B), and (5B).
  • the effective width W between the outer end portions in the width direction in each of the pair of arm portions 12 satisfies the formula (6), and the width direction in the plan view between the web portion 10 and the arm portion 12 If the distance H in the cross-sectional height direction orthogonal to the above satisfies Expression (7), the possibility of being able to be constructed using a construction heavy machine of the current general-purpose press-in method increases. Thereby, the versatility of the heavy construction equipment can be further secured.
  • a third intersection point P3 of perpendiculars perpendicular to each of the pair of flange portions 11 passing through the second intersection point P2 with each of the pair of flange portions 11 with the cross section gravity center line M is the hat-shaped steel sheet pile 1 ⁇ If it is located on the outer side of 4 (that is, if the hat-shaped steel sheet pile satisfies the equation (8)), the hat-shaped steel sheet pile may be hat-shaped in plan view when it is installed on the ground.
  • the soil located inside the steel sheet piles 1 to 4 can be discharged toward the outside along the width direction of the hat-shaped steel sheet pile through the widthwise direction of the pair of arm portions 12. And by providing such a soil removal effect on the hat-shaped steel sheet pile, the workability of the hat-shaped steel sheet pile can be secured.
  • Examples 1 to 6 satisfy the formulas (2A) and (2B).
  • the hat-shaped steel sheet piles of Examples 1 to 6 can be classified as Type 10H compatible products. That is, construction using a construction heavy machine for the current model 10H hat-shaped steel sheet pile is possible.
  • Examples 7 to 12 satisfy Formula (3A) and Formula (3B). For this reason, the hat-shaped steel sheet piles of Examples 7 to 12 can be classified as Type 25 H compatible products. That is, construction using a construction heavy machine for the current type 25H hat-shaped steel sheet pile is possible.
  • Examples 13 to 18 all satisfy the formulas (4A), (5A), (4B), and (5B).
  • the hat-shaped steel sheet piles of Examples 13 to 18 can be classified into a type 45 H compatible product and further into a type 50 H compatible product. That is, the hat-shaped steel sheet piles of Examples 13 to 18 can be constructed using a construction heavy machine for hat-shaped steel sheet piles of both the current type 45H and the type 50H.
  • Example 19 satisfies Formula (4A) and Formula (4B). For this reason, the hat-shaped steel sheet pile of Example 19 can be classified into a type 45H corresponding article. That is, the hat-shaped steel sheet pile of Example 19 can be constructed using a construction heavy machine for the current type 45H hat-shaped steel sheet pile.
  • Example 20 satisfies Formula (5A) and Formula (5B).
  • the hat-shaped steel sheet pile of Example 20 can be classified into a type 50H corresponding article. That is, the hat-shaped steel sheet pile of Example 20 can be constructed using a construction heavy machine for the current type 50H hat-shaped steel sheet pile.
  • the effective width W (mm) between the outer end portions in the width direction of each of the pair of arm portions 12 satisfies the formula (6), and the web portion 10 and the arm portion 12
  • the present invention is not limited to such an embodiment.
  • the effective width W may not satisfy the equation (6), and the distance H may not satisfy the equation (7).

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

複数配置されて壁体を構成し、長手方向に延びるハット形鋼矢板1であって、前記ハット形鋼矢板1における幅方向の大きさ1m当たりにおいて、断面積A(cm/m)と、ハット形鋼矢板1の長手方向から見た平面視で幅方向に延びる断面重心線Mまわりの断面二次モーメントI(cm/m)と、の関係が式(1)を満たし、かつ前記平面視における一対のフランジ部11それぞれの延長線の第1交点P1と、前記断面重心線Mとの間の距離をD1(mm)、前記一対のフランジ部11それぞれにおける前記断面重心線Mとの第2交点P2同士の間の距離をD2(mm)としたとき、式(2A)且つ式(2B)、式(3A)且つ式(3B)、式(4A)且つ式(4B)、又は、式(5A)且つ式(5B)を満たす。 A<0.00252I+94.4…(1) 262.6<D1<281.0…(2A) 496.9<D1<520.9…(3A) 621.5<D1<650.9…(4A) 625.2<D1<654.8…(5A) 484.0<D2<499.0…(2B) 474.0<D2<489.0…(3B) 476.0<D2<491.0…(4B) 474.0<D2<489.0…(5B)

Description

ハット形鋼矢板
 本発明は、ハット形鋼矢板に関する。
 本願は、2017年10月2日に、日本に出願された特願2017-193111号に基づき優先権を主張し、その内容をここに援用する。
 従来から、複数で壁体を構成し、長手方向に延びるハット形鋼矢板が知られている。
 ハット形鋼矢板は、ウェブ部と、ウェブ部に対して傾斜して延びる一対のフランジ部と、一対のフランジ部それぞれに接続された一対のアーム部と、を備えている。
 このハット形鋼矢板は、例えば岸壁等に幅方向に複数連なって施工されることにより、長手方向から見た平面視で幅方向と直交する断面高さ方向からの外力を支持する壁体を構成する。このハット形鋼矢板を施工する方法として、例えば下記特許文献1および下記特許文献2に示されるようなチャック方法や挟持方法による起振機を用いた打設方法が知られており、これは一般にバイブロハンマ工法と呼ばれる。バイブロハンマ工法では、ハット形鋼矢板の一対のフランジ部を施工用重機の把持部で把持した状態で、ハット形鋼矢板を地面に打設する。
 その他の工法として、圧入工法が知られている。圧入工法では、ハット形鋼矢板全体をハット形鋼矢板の外側から囲繞しながら、ハット形鋼矢板における一対のアーム部それぞれを、施工用重機の挟持部で挟持した状態で、ハット形鋼矢板を地面に打設する。
日本国特許第3916621号公報 日本国特許第4656587号公報
 特許文献1に記載のチャック方法(把持方法)では、一対のフランジ部同士がなす角度に合わせて施工用重機における把持部の角度が回転する機構となっているが、実質的に2つのフランジ角度に対応したものとなっている。把持部をそれ以上の角度に対応させようとすると、把持部に設ける固定孔の数が多くなり把持部の端部の強度が不足するとともに、把持部の位置を調整する調整治具のサイズが大きくなる。これにより、作業性が悪くなり設備製造コストが増大する。このため、把持部を様々な角度をなす一対のフランジ部に適用することが困難であった。
 特許文献2に記載の挟持方法(把持方法)では、一対のフランジ部同士がなす角度に合わせて異なった位置決め部材が必要となる。
 一方で、様々な形状の鋼矢板断面に適応できるように鋼矢板断面に応じて個々に異なるバイブロハンマを用いることは、バイブロハンマの生産性悪化やコスト増大をもたらす。施工現場においても複数形状の断面を混在して取り扱う場合など、バイブロハンマ交換に伴う施工時間の増大や施工コストアップに繋がり、施工性が低下してしまう。そのため、バイブロハンマとしては、同一の型式で複数の鋼矢板断面に適応し得ることが有効であり、既存のバイブロハンマにおいても複数の鋼矢板型式を網羅できるよう設計され、汎用的に使用されている。
 ただし、バイブロハンマの振動をハット形鋼矢板に伝達して土中を掘進する打設エネルギーを、ハット形鋼矢板の長手方向におけるバイブロハンマで把持する側と反対の先端部に効率的に生じさせるには、バイブロハンマの駆動部からハット形鋼矢板を掴む把持部へのエネルギー伝達がスムーズになるよう機械設計がなされる。かつ打設時の施工誤差やハット形鋼矢板断面そのものの製造誤差を吸収し得るよう、把持部の可動範囲を狭めて強固に把持することが求められる。そのため、より経済性に優れた新たなハット形鋼矢板を提供する場合においては、バイブロハンマ製造の生産性や、施工現場での施工性を損なうことがないよう、最適設計された既存のバイブロハンマに適応し得ることが有利となる。特に、従来の400mm幅や600mm幅のU形鋼矢板よりも有効幅が大きくなる900mm幅のハット形鋼矢板においては、バイブロハンマの振動に伴う矢板断面方向に発生する横ブレが大きくなり、打設効率が低下してしまう。そのため、フランジの2箇所を把持することで横ブレ振動を抑制する、ダブルチャック方式のバイブロハンマが最適仕様に設計され使用されている。これにより、当該施工用重機に適応し得るハット形矢板断面を提供することは経済性向上に直結することができる。
 また、圧入工法においても、施工用重機の挟持部の形状の制約や、ハット形鋼矢板全体の大きさにより、適用できる断面形状が限られるという問題があった。
 本発明は、このような問題点に鑑みてなされたものであって、断面性能を確保しながらコスト削減に資するとともに、施工用重機の汎用性を確保することができるハット形鋼矢板を提供することを目的とする。
 上記課題を解決して係る目的を達成するために、本発明は以下の態様を採用した。
(1)本発明の一態様に係るハット形鋼矢板は、複数配置されて壁体を構成し、長手方向に延びるハット形鋼矢板であって、前記長手方向から見た平面視で前記壁体が延在する幅方向に延びるウェブ部と、前記ウェブ部における前記幅方向の外端部に接続され、前記平面視で前記ウェブ部に対して傾斜して延びる一対のフランジ部と、前記一対のフランジ部それぞれにおける前記幅方向に沿う前記ウェブ部の反対側の端部に接続され、前記平面視で前記幅方向に延びる一対のアーム部と、を備え、前記ハット形鋼矢板における前記幅方向の大きさ1m当たりにおいて、断面積A(cm/m)と、前記平面視で前記幅方向に延びる断面重心線まわりの断面二次モーメントI(cm/m)と、の関係が式(1)を満たし、かつ前記平面視における前記一対のフランジ部それぞれの延長線の第1交点と、前記断面重心線との間の距離をD1(mm)、前記一対のフランジ部それぞれにおける前記断面重心線との第2交点同士の間の距離をD2(mm)としたとき、
式(2A)且つ式(2B)、
式(3A)且つ式(3B)、
式(4A)且つ式(4B)、又は、
式(5A)且つ式(5B)
を満たす。
 A<0.00252I+94.4…(1)
 262.6<D1<281.0…(2A)
 496.9<D1<520.9…(3A)
 621.5<D1<650.9…(4A)
 625.2<D1<654.8…(5A)
 484.0<D2<499.0…(2B)
 474.0<D2<489.0…(3B)
 476.0<D2<491.0…(4B)
 474.0<D2<489.0…(5B)
 この態様に係るハット形鋼矢板によれば、ハット形鋼矢板における幅方向の大きさ1m当たりの断面積Aと、長手方向から見た平面視で幅方向に延びる断面重心線まわりの断面二次モーメントIと、の関係が式(1)を満たしている。そのため、現行のハット形鋼矢板における断面性能を確保又は変化させた場合でも、断面積を小さくすることが可能になり、コスト削減に資することができる。
 また、前記D1と前記D2の関係が、式(2A)且つ式(2B)、式(3A)且つ式(3B)、式(4A)且つ式(4B)、式(5A)且つ式(5B)のうちのいずれか1つの関係を満たしている。このため、現行の各種サイズのハット形鋼矢板それぞれを施工する際に用いていた、施工用重機の一対の把持部の幅方向の寸法を変えることで、本発明の鋼矢板に現行の施工用重機を転用することができ、施工用重機の汎用性を確保することができる。さらに、上記態様に係るハット形鋼矢板における、前記第2交点の間の距離を、現行の各種サイズのハット形鋼矢板における前記第2交点の間の距離のうちのいずれかと同等にすることが可能になる。また、上記態様に係るハット形鋼矢板における、一対のフランジ部同士の傾斜角を、現行の各種サイズのハット形鋼矢板におけるフランジ部同士の傾斜角のうちのいずれかと同等にすることが可能になる。
 これらにより、現行の各種サイズのハット形鋼矢板を施工する際に用いていた施工用重機の把持部により、本発明のハット形鋼矢板をそのまま把持することができ、従来の施工用重機による施工作業を円滑に行うことができる。
(2)上記(1)に記載のハット形鋼矢板において、前記D1及び前記D2が、前記式(2A)且つ前記式(2B)を満たしてもよい。
(3)上記(1)に記載のハット形鋼矢板において、前記D1及び前記D2が、前記式(3A)且つ前記式(3B)を満たしてもよい。
(4)上記(1)に記載のハット形鋼矢板において、前記D1及び前記D2が、前記式(4A)且つ前記式(4B)を満たしてもよい。
(5)上記(1)に記載のハット形鋼矢板において、前記D1及び前記D2が、前記式(5A)且つ前記式(5B)を満たしてもよい。
(6)上記(1)に記載のハット形鋼矢板においては、前記一対のアーム部それぞれにおける前記幅方向の外端部同士の間の有効幅W(mm)が、式(6)を満たし、かつ前記ウェブ部における幅方向に沿う断面重心線と反対側を向く面と前記アーム部における幅方向に沿う断面重心線と反対側を向く面との間における、前記平面視で前記幅方向と直交する断面高さ方向の距離H(mm)が式(7)を満たしてもよい。
 876≦W≦932…(6)
 H<400…(7)
 この場合には、前記有効幅Wが、式(6)を満たし、かつ前記距離Hが式(7)を満たしている。このため、上記のハット形鋼矢板は、現行の汎用的な圧入工法の施工用重機を用いて、圧入工法の施工用重機の挟持部により、アーム部を挟持しながら、ハット形鋼矢板全体を前記平面視でハット形鋼矢板の外側から囲繞することができる可能性が高まる。これにより、施工用重機の汎用性をより一層確保することができる。
(7)上記(1)から(6)のいずれか一項に記載のハット形鋼矢板においては、前記一対のフランジ部それぞれにおける前記断面重心線との第2交点を通り、前記一対のフランジ部それぞれに直交する垂線同士の第3交点と、前記断面重心線と、の間の距離L(mm)、前記ウェブ部における幅方向に沿う断面重心線と反対側を向く面と前記アーム部における幅方向に沿う断面重心線と反対側を向く面との間における、前記平面視で前記幅方向と直交する断面高さ方向の距離H(mm)、および前記ウェブ部における幅方向に沿う断面重心線と反対側を向く面と前記断面重心線との間の距離C(mm)が、式(8)を満たしてもよい。
 L>H-C…(8)
 この場合には、前記第3交点が、前記平面視で断面高さ方向においてハット形鋼矢板の外側に位置することとなる。このため、ハット形鋼矢板を地面に打設して施工する際に、前記平面視でハット形鋼矢板の内側に位置する土壌を、一対のアーム部同士の幅方向の間を通してハット形鋼矢板の幅方向に沿う外側に向けて排出することができる。そしてこのような排土効果をハット形鋼矢板に具備させることにより、ハット形鋼矢板の施工性を確保することができる。
 本発明のハット形鋼矢板によれば、断面性能を確保しながらコスト削減に資するとともに、施工用重機の汎用性を確保することができる。
本発明の一実施形態に係る主に型式10H対応のハット形鋼矢板を示す図であって、ハット形鋼矢板の長手方向から見た平面図である。 ハット形鋼矢板の断面積および断面二次モーメントの関係を示すグラフである。 同実施形態に係る主に型式25H対応のハット形鋼矢板を示す図であって、ハット形鋼矢板の長手方向から見た平面図である。 同実施形態に係る主に型式45H対応のハット形鋼矢板を示す図であって、ハット形鋼矢板の長手方向から見た平面図である。 ハット形鋼矢板の施工用重機のうち、(a)がバイブロハンマ工法に用いる把持部を示す図、(b)が圧入工法に用いる挟持部を示す図である。
 以下、本発明の一実施形態に係るハット形鋼矢板1について、図1および図2を参照して説明する。図1に示すように、ハット形鋼矢板1は、長手方向(Z方向)に延びる。ハット形鋼矢板1同士は、幅方向(Z方向と直交する方向で、後述のX方向)に複数配置されて壁体を構成する。壁体は、長手方向から見た平面視で、一方向に延びている。以下の説明において前記一方向を幅方向(X方向)といい、前記平面視で幅方向と直交する方向を断面高さ方向(Y方向)という。また、説明に用いる各変数のうち、符号が重複する変数については単位の記載を省略することがある。
 ハット形鋼矢板1は、幅方向に延びるウェブ部10と、ウェブ部10における幅方向の外端部に接続された一対のフランジ部11と、一対のフランジ部11それぞれにおける幅方向に沿うウェブ部10の反対側の端部に接続された一対のアーム部12と、を備えている。フランジ部11は、前記平面視でウェブ部10に対して傾斜して延びている。一対のフランジ部11は、ウェブ部10から延びるに従い漸次、幅方向に拡がっている。一対のフランジ部11それぞれにおける幅方向に対する傾斜角は互いに同等となっている。アーム部12は前記平面視で幅方向に延びている。
 一対のアーム部12における幅方向の各外端部には、連結継手13が接続されている。連結継手13は前記平面視でC字状をなし、断面高さ方向に開口する連結口13Aを備えている。一対のアーム部12それぞれの連結口13Aが開口する方向は、前記平面視において互いに反対である。ハット形鋼矢板1は、前記平面視において、連結継手13を除く部分の形状が、幅方向の中央線を基準とする線対称に形成されている。
 ハット形鋼矢板1は幅方向に連なって複数配置される。互いに幅方向に隣り合うハット形鋼矢板1同士の断面高さ方向の向きは互いに同一となっている。互いに隣り合う連結継手13同士を互いに嵌合して連結することで、複数のハット形鋼矢板1により幅方向に延在する壁体が構成される。
 そして本発明の一実施形態に係るハット形鋼矢板1では、ハット形鋼矢板における幅方向の大きさ1m当たり(すなわち、ハット形鋼矢板の幅1m当たり)において、断面積A(cm/m)と、前記平面視で幅方向に延びる断面重心線Mまわりの断面二次モーメントI(cm/m)(以下、単に断面二次モーメントという)と、の関係が式(1)を満たしている。ここで、前記平面視で幅方向に延びる断面重心線Mとは、前記平面視でハット形鋼矢板1の重心を通り、幅方向に延びる直線を意味する。
 A<0.00252I+94.4…(1)
ハット形鋼矢板における幅方向の大きさ1m当たりの断面積Aおよび断面二次モーメントIは、鋼矢板1枚当たりの断面積および断面二次モーメントを鋼矢板の有効幅Wで除したものである。以下の説明では、「ハット形鋼矢板における幅方向の大きさ1m当たりの」を省略し、単に断面積または断面二次モーメントをいう。
 以下に式(1)の技術的意義について説明する。
 ハット形鋼矢板1は、断面高さ方向からの外力を支持するため、例えば断面二次モーメントや断面係数等といった断面性能が高いことが求められる。このため、現行のハット形鋼矢板の断面形状における断面性能を確保又は変化させながら、幅方向および断面高さ方向の両方向に沿う断面積をより小さくして、コスト削減に資する断面形状に変更することが求められる。
 そこで本発明者らは、現行のハット形鋼矢板の型式毎に断面特性、および主要寸法を整理した。その結果を表1に示す。なお、表1中の距離Cとは、ウェブ部10における幅方向に沿う断面重心線Mと反対側を向く面と、断面重心線Mとの間の距離(mm)である。
Figure JPOXMLDOC01-appb-T000001
 次に、図2に、表1の4つの型式の断面二次モーメントIと断面積Aとの相関図を示す。現行の型式10H、45Hの各値を結んだ直線Sとして、式(1)の右辺を導出した。すなわち、式(1)を満たす場合には、現行のハット形鋼矢板よりも断面二次モーメントあたりの断面積が小さいこととなり、現行のハット形鋼矢板よりも経済的な断面形状であると言える。
 必要に応じて、断面積A(cm/m)の上限を、0.00252I+94.0または0.00252I+93.6としてもよい。断面積A(cm/m)の下限を特に定める必要はないが、40としてもよく、必要に応じて、0.00252I+40としてもよい。
 既存の型式10H、25H、45Hおよび50Hのハット形鋼矢板に対応する各型式専用の施工用重機(把持のための付属部品などを含む。以下同様。)をそのまま転用できると、経済的である。この観点から、式(1)以外の構成要件について、各型式対応品ごとに説明する。
後述するように、本発明の一実施形態に係るハット形鋼矢板は、型式10H対応品、型式25H対応品、型式45H対応品および型式50H対応品の4種類に分類することができる。なお、本実施形態のこれら4種類の対応品は、全て式(1)を満たす。
(型式10H対応品)
断面二次モーメントIが10,500(cm/m)程度のハット形鋼矢板を指す型式10Hのハット形鋼矢板1を例に、式(1)以外の構成要件について説明する。
断面高さ方向の距離D1(mm)および幅方向の距離D2(mm)の両方を組み合わせて適切に設定したハット形鋼矢板断面とすることで、既存の型式10Hのハット形鋼矢板用の施工用重機をそのまま適用でき、バイブロハンマで生じる打設エネルギーをハット形鋼矢板へ効率的に伝達できることを見出した。ここで、距離D1とは、平面視における一対のフランジ部11それぞれの延長線の第1交点P1と、断面重心線Mと、の間の距離を指す。距離D2とは、平面視における一対のフランジ部11それぞれにおける断面重心線Mとの第2交点P2同士の間の距離を指す。
 また、型式10H対応のハット形鋼矢板では、平面視における一対のフランジ部11それぞれの延長線の第1交点P1と、断面重心線Mと、の間の距離D1が、式(2A)を満たしている。
 262.6<D1<281.0…(2A)
 以下に、式(2A)の技術的意義について説明する。
 ハット形鋼矢板1を、図5(a)に示すように、バイブロハンマ工法で地面に打設するためには、現行の型式10Hのハット形鋼矢板に対応している施工用重機をそのまま転用できると、経済的である。そこで、ハット形鋼矢板1の一対のフランジ部11の断面重心線Mとの第2交点P2を把持する把持部30を使用するために、現行のハット形鋼矢板に対して、前記距離D1がほぼ同等であることが求められる。前記距離D1がほぼ同等であることで、現行の型式10Hのハット形鋼矢板の施工用重機の把持部30が、ハット形鋼矢板1の一対のフランジ部11を容易に把持することができるからである。
 ここで、前記距離D1は、図1に示すハット形鋼矢板1の各部の寸法を用いて、式(20)により表される。
 D1=(B/2)×tanθ+C-tw/2…(20)
 ここで、B:ウェブ部10の幅方向の寸法(mm)、θ:フランジ角(°)、C:ウェブ部10における幅方向に沿う断面重心線Mと反対側を向く面と、断面重心線Mとの間の距離(mm)、tw:ウェブ部10の厚み寸法(mm)をそれぞれ示す。
 次に、施工誤差の吸収や適切な打設エネルギー伝達を達成可能な距離D1を調査した結果、式(21)および式(22)が得られることを見出した。ここで、距離Hとは、ウェブ部10における幅方向に沿う断面重心線Mと反対側を向く面と、アーム部12における幅方向に沿う断面重心線Mと反対側を向く面との間における距離(有効高さ)を指す。
 D1MAX=(B/2)×tanθ+C-(tw/2)+0.04×H…(21)
 D1MIN=(B/2)×tanθ+C-(tw/2)-0.04×H…(22)
 すなわち、ハット形鋼矢板1のD1の値が、現行のハット形鋼矢板の各部の寸法についての式(21)におけるD1MAXから、式(22)におけるD1MINまでの範囲内であれば、効率的な打設を実現できる。
 そして、現行の型式10Hのハット形鋼矢板の各寸法、式(21)および式(22)から、式(2A)を得た。
 また、型式10H対応のハット形鋼矢板では、一対のフランジ部11それぞれにおける断面重心線Mとの第2交点P2同士の間の距離D2が、式(2B)を満たしている。
 484.0<D2<499.0…(2B)
 以下に、式(2B)の技術的意義について説明する。
 前述したように、ハット形鋼矢板1を、現行の型式10Hのハット形鋼矢板用の施工用重機を採用してバイブロハンマ工法で圧入する際には、施工用重機の把持部30により、ハット形鋼矢板1の断面重心線M上の部分を把持することで、安定した状態で作業を行うことができる。このため、現行のハット形鋼矢板に対して、前記距離D2がほぼ同等であることが求められる。前記距離D2がほぼ同等であることで、現行の型式10Hのハット形鋼矢板用の施工用重機の把持部30が、そのままハット形鋼矢板1を把持することができるからである。
 そして、施工誤差の吸収や適切な打設エネルギー伝達を達成可能とする距離D2を絞り込んだ結果、式(23)および式(24)が適切な範囲であることを見出した。
 D2MAX=D2+10…(23)
 D2MIN=D2-5…(24)
 すなわち、ハット形鋼矢板1のD2の値が、式(23)におけるD2MAXから、式(24)におけるD2MINまでの範囲であれば、効率的な打設を実現できる。
 ここで、前記有効幅Wとは、幅方向における一方側の連結継手13の嵌合中心から、幅方向における他方側の連結継手13の嵌合中心までの距離である。
 なお、連結継手13同士の嵌合状態には、圧縮嵌合、中立嵌合、および引張嵌合等がある。すなわち、互いに隣り合う連結継手13同士が、幅方向に互いに圧縮された状態の圧縮嵌合、互いに隣り合う連結継手13同士が、幅方向に互いに引っ張られた状態の引張嵌合、圧縮嵌合と引張嵌合との中間の状態であって、互いに隣り合う連結継手13同士が、互いに圧縮も引っ張りも受けていない状態の中立嵌合である。本実施形態における有効幅Wは、中立嵌合状態における継手中心の間の距離に相当する。
 そして、現行の型式10Hの各寸法、式(23)および式(24)から、式(2B)を得た。
 また、型式10H対応のハット形鋼矢板では、一対のアーム部12それぞれにおける幅方向の外端部同士の間の有効幅W(mm)が、式(6)を満たしている。
 876≦W≦932…(6)
 以下に、式(6)の技術的意義について説明する。
 ハット形鋼矢板1を、例えばバイブロハンマ工法ではなく、図5(b)に示すように、圧入工法で圧入するためには、現行の型式10Hのハット形鋼矢板用に使用している圧入工法用の施工用重機を転用することが経済的である。このため、ハット形鋼矢板1の一対のアーム部12における両端部を挟持する挟持部40を使用するために、現行のハット形鋼矢板に対して、前記有効幅Wがほぼ同等であることが好ましい。前記有効幅Wがほぼ同等であることで、型式10Hのハット形鋼矢板用の現行の圧入工法における施工用重機の挟持部40が、一対のアーム部12における両端部を挟持することができるからである。
 そして、現行の型式10Hのハット形鋼矢板用に使用されている圧入工法用の施工用重機において、挟持部40により挟持できる幅方向の距離が、876mmから932mmであることが確認された。すなわち、前記有効幅Wが、式(6)を満たす場合には、現行の圧入工法における施工用重機を採用することができる。なお、型式10H以外の型式20H、型式45Hおよび型式50Hの幅方向の距離が、876mmから932mmであることが確認できた。このため、これらの型式の対応品についても、式(6)を満たしていることが好ましい。
 また、型式10H対応のハット形鋼矢板では、前記距離H(mm)が式(7)を満たしている。
 H≦400…(7)
 以下に、式(7)の技術的意義について説明する。
 前述したように、ハット形鋼矢板1を、型式10Hのハット形鋼矢板用の現行の圧入工法における施工用重機を採用する場合には、施工用重機の挟持部40が、ハット形鋼矢板1全体をハット形鋼矢板1の外側から囲繞するため、前記距離Hが現行のハット形鋼矢板とほぼ同等であることが好ましい。前記距離Hがほぼ同等であることで、現行の施工用重機の挟持部40により、ハット形鋼矢板1全体をハット形鋼矢板1の外側から囲繞することができるからである。
 そして、現行の型式10Hのハット形鋼矢板用に採用されている圧入工法における施工用重機において、挟持部40によりハット形鋼矢板1全体を囲繞することができる断面高さ方向の距離が、400mm以下であることが確認された。すなわち、前記距離Hが式(7)を満たす場合には、現行の施工用重機の挟持部40を採用することができる。なお、型式10H以外の型式20H、型式45Hおよび型式50Hの断面高さ方向の距離が、400mm以下であることが確認できた。このため、これらの型式の対応品についても、式(6)を満たしていることが好ましい。
 また、型式10H対応のハット形鋼矢板では、一対のフランジ部11それぞれにおける断面重心線Mとの第2交点P2を通り、一対のフランジ部11それぞれに直交する垂線同士の第3交点P3と、断面重心線Mと、の間の距離L(mm)、ウェブ部10とアーム部12との間における、前記距離H(mm)、およびウェブ部10における幅方向に沿う断面重心線Mと反対側を向く面と断面重心線Mとの間の距離C(mm)が、式(8)を満たしている。
 L>H-C…(8)
 以下に、式(8)の技術的意義について説明する。
 ハット形鋼矢板1をバイブロハンマ工法又は圧入工法により地面に打設する際、幅方向に対向する一対のフランジ部11から、幅方向の内側に向かう一対の排土圧(土圧)が、互いに対抗して作用する。このため、ウェブ部10および一対のフランジ部11で囲まれた土壌が、排土圧により締め固められて、ハット形鋼矢板1を施工するための施工荷重が増大したり、ハット形鋼矢板1が土壌からの反力により変形したりすることがある。
 そこで、排土圧の作用線の第3交点P3を、断面高さ方向におけるアーム部12よりも断面高さ方向の外側に配置する(図1において、アーム部12よりも下側)。これにより、ウェブ部10および一対のフランジ部11で囲まれた土壌に排土圧が作用したときに、この土壌を、断面高さ方向に沿うアーム部12の外側に押し出すことが可能になる(排土効果)。このようにして、施工荷重の増大やハット形鋼矢板1の変形を抑えることができる。そして、式(8)を満たすことで、排土圧の作用線の第3交点P3を、断面高さ方向におけるアーム部12よりも外側に配置することができる。
(型式25H対応品)
 次に、本実施形態の型式25H対応のハット形鋼矢板2について、図3を参照して説明する。型式25H対応のハット形鋼矢板2においては、前述した構成と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図3に示すように、型式25H対応のハット形鋼矢板2では、特に断面高さ方向の大きさがハット形鋼矢板1よりも大きくなっている。このため、ハット形鋼矢板2における前記距離L,前記距離C、前記距離Hは、前述した式(8)を満たしていない。
 また、型式25H対応のハット形鋼矢板2では、式(2A)に代えて、式(3A)を満たしている。
 496.9<D1<520.9…(3A)
 型式25H対応のハット形鋼矢板2では、現行の型式25Hのハット形鋼矢板の各寸法、式(21)および式(22)から、式(3A)を得た。
 ここで、型式25Hとは、断面二次モーメントが24,400(cm/m)程度のハット形鋼矢板を指す。
 また、型式25H対応のハット形鋼矢板2では、式(2B)に代えて、式(3B)を満たしている。
 474.0<D2<489.0…(3B)
型式25H対応のハット形鋼矢板2では、現行の型式25Hのハット形鋼矢板の各寸法、式(23)および式(24)から、式(3B)を得た。
(型式45H対応品)
 次に、本実施形態の型式45H対応のハット形鋼矢板3について、図4を参照して説明する。型式45H対応のハット形鋼矢板3においては、前述した構成と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
図4に示すように、型式45H対応のハット形鋼矢板3では、特に断面高さ方向の大きさが、ハット形鋼矢板2よりもさらに大きくなっている。このため、型式45H対応のハット形鋼矢板3における前記距離L,前記距離C、前記距離Hは、前述した式(8)を満たしていない。
 また、型式45H対応のハット形鋼矢板3では、式(2A)に代えて、式(4A)を満たしている。
 621.5<D1<650.9…(4A)
 型式45H対応のハット形鋼矢板3では、現行の型式45Hのハット形鋼矢板の各寸法、式(21)および式(22)から、式(4A)を得た。
 ここで、型式45Hとは、断面二次モーメントが45,000(cm/m)程度のハット形鋼矢板を指す。
 また、型式45H対応のハット形鋼矢板3では、式(2B)に代えて、式(4B)を満たしている。
 476.0<D2<491.0…(4B)
型式45H対応のハット形鋼矢板3では、現行の型式45Hのハット形鋼矢板の各寸法、式(23)および式(24)から、式(4B)を得た。
(型式50H対応品)
 次に、本実施形態の型式50H対応のハット形鋼矢板4について説明する。型式50H対応のハット形鋼矢板4においては、前述した構成と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。なお、型式50H対応のハット形鋼矢板の断面形状は、型式45Hのものとほぼ同じであり、図示を省略した。
 型式50H対応のハット形鋼矢板4では、式(5A)および式(5B)を満たしている。式(5A)および式(5B)は、型式50Hの各寸法、式(21)、式(22)、式(23)および式(24)から得られる。
 ここで、型式50Hとは、断面二次モーメントが51,100(cm/m)程度のハット形鋼矢板を指す。
 625.2<D1<654.8…(5A)
 474.0<D2<489.0…(5B)
 以上説明したように、ハット形鋼矢板における幅方向の大きさ1m当たりの断面積Aと、長手方向から見た平面視で幅方向に延びる断面重心線Mまわりの断面二次モーメントIと、の関係が式(1)を満たしていれば、現行のハット形鋼矢板における断面性能を確保又は変化させながら、断面積を小さくすることが可能になり、コスト削減に資することができる。
 また、前記D1と前記D2の関係が、式(2A)且つ式(2B)、式(3A)且つ式(3B)、式(4A)且つ式(4B)、式(5A)且つ式(5B)のうちのいずれか1つの関係を満たしていれば、現行の各種サイズのハット形鋼矢板それぞれを施工する際に用いていた、施工用重機の一対の把持部30の幅方向の寸法を変えることで、現行の施工用重機を転用することができ、施工用重機の汎用性を確保することができる。
 また、一対のアーム部12それぞれにおける幅方向の外端部同士の間の有効幅Wが、式(6)を満たし、かつウェブ部10とアーム部12との間における、前記平面視で幅方向と直交する断面高さ方向の距離Hが式(7)を満たしていれば、現行の汎用的な圧入工法の施工用重機を用いて施工できる可能性が高まる。これにより、施工用重機の汎用性をより一層確保することができる。
 また、一対のフランジ部11それぞれにおける断面重心線Mとの第2交点P2を通り、一対のフランジ部11それぞれに直交する垂線同士の第3交点P3が、前記平面視でハット形鋼矢板1~4の外側に位置していれば(つまり、ハット形鋼矢板が式(8)を満たしていれば)、ハット形鋼矢板を地面に打設して施工する際に、前記平面視でハット形鋼矢板1~4の内側に位置する土壌を、一対のアーム部12同士の幅方向の間を通してハット形鋼矢板の幅方向に沿う外側に向けて排出することができる。そしてこのような排土効果をハット形鋼矢板に具備させることにより、ハット形鋼矢板の施工性を確保することができる。
 次に、本実施形態の実施例について説明する。式(1)、式(2)、式(2A)~式(5B)の条件を満たすように、試行錯誤しながら、20個のケースを設計した。その設計結果を表2に示す。なお、表2中の距離Cとは、ウェブ部10における幅方向に沿う断面重心線Mと反対側を向く面と、断面重心線Mとの間の距離(mm)である。
Figure JPOXMLDOC01-appb-T000002
 全ての実施例は、式(1)を満たしている。実施例1~6は、式(2A)および式(2B)を満たしている。このため、実施例1~6のハット形鋼矢板は、型式10H対応品に分類できる。つまり、現行の型式10Hのハット形鋼矢板用の施工用重機を用いた施工が可能である。
 実施例7~12は、式(3A)および式(3B)を満たしている。このため、実施例7~12のハット形鋼矢板は、型式25H対応品に分類できる。つまり、現行の型式25Hのハット形鋼矢板用の施工用重機を用いた施工が可能である。
 実施例13~18は、式(4A)、式(5A)、式(4B)、式(5B)を全て満たしている。このため、実施例13~18のハット形鋼矢板は、型式45H対応品にも、更には型式50H対応品にも分類できる。つまり、実施例13~18のハット形鋼矢板は、現行の型式45Hまたは型式50Hの双方のハット形鋼矢板用の施工用重機を用いた施工が可能である。
 実施例19は、式(4A)および式(4B)を満たしている。このため、実施例19のハット形鋼矢板は、型式45H対応品に分類できる。つまり、実施例19のハット形鋼矢板は、現行の型式45Hのハット形鋼矢板用の施工用重機を用いた施工が可能である。
 実施例20は、式(5A)および式(5B)を満たしている。このため、実施例20のハット形鋼矢板は、型式50H対応品に分類できる。つまり、実施例20のハット形鋼矢板は、現行の型式50Hのハット形鋼矢板用の施工用重機を用いた施工が可能である。
 以上、本発明の実施形態及び実施例について図面を参照して詳述したが、具体的な構成はこれらに限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。さらに、実施形態で示した構成のそれぞれを適宜組み合わせてもよい。
 例えば、上記実施形態においては、一対のアーム部12それぞれにおける幅方向の外端部同士の間の有効幅W(mm)が、式(6)を満たし、かつウェブ部10とアーム部12との間における断面高さ方向の距離H(mm)が式(7)を満たす構成を示したが、このような態様に限られない。前記有効幅Wが式(6)を満たさなくてもよいし、前記距離Hが式(7)を満たさなくてもよい。
 本発明によれば、断面性能を確保しながらコスト削減に資するとともに、施工用重機の汎用性を確保することができる。よって、本発明は、産業上の利用可能性は大である。
 1、2、3、4 ハット形鋼矢板
 10 ウェブ部
 11 フランジ部
 12 アーム部
 M 断面重心線

Claims (7)

  1.  複数配置されて壁体を構成し、長手方向に延びるハット形鋼矢板であって、
     前記長手方向から見た平面視で前記壁体が延在する幅方向に延びるウェブ部と、
     前記ウェブ部における前記幅方向の外端部に接続され、前記平面視で前記ウェブ部に対して傾斜して延びる一対のフランジ部と、
     前記一対のフランジ部それぞれにおける前記幅方向に沿う前記ウェブ部の反対側の端部に接続され、前記平面視で前記幅方向に延びる一対のアーム部と、を備え、
     前記ハット形鋼矢板における前記幅方向の大きさ1m当たりにおいて、断面積A(cm/m)と、前記平面視で前記幅方向に延びる断面重心線まわりの断面二次モーメントI(cm/m)と、の関係が式(1)を満たし、
     かつ前記平面視における前記一対のフランジ部それぞれの延長線の第1交点と、前記断面重心線との間の距離をD1(mm)、前記一対のフランジ部それぞれにおける前記断面重心線との第2交点同士の間の距離をD2(mm)としたとき、
    式(2A)且つ式(2B)、
    式(3A)且つ式(3B)、
    式(4A)且つ式(4B)、又は、
    式(5A)且つ式(5B)
    を満たすことを特徴とするハット形鋼矢板。
     A<0.00252I+94.4…(1)
     262.6<D1<281.0…(2A)
     496.9<D1<520.9…(3A)
     621.5<D1<650.9…(4A)
     625.2<D1<654.8…(5A)
     484.0<D2<499.0…(2B)
     474.0<D2<489.0…(3B)
     476.0<D2<491.0…(4B)
     474.0<D2<489.0…(5B)
  2.  前記D1及び前記D2が、前記式(2A)且つ前記式(2B)を満たすことを特徴とする請求項1に記載のハット形鋼矢板。
  3.  前記D1及び前記D2が、前記式(3A)且つ前記式(3B)を満たすことを特徴とする請求項1に記載のハット形鋼矢板。
  4.  前記D1及び前記D2が、前記式(4A)且つ前記式(4B)を満たすことを特徴とする請求項1に記載のハット形鋼矢板。
  5.  前記D1及び前記D2が、前記式(5A)且つ前記式(5B)を満たすことを特徴とする請求項1に記載のハット形鋼矢板。
  6.  前記一対のアーム部それぞれにおける前記幅方向の外端部同士の間の有効幅W(mm)が、式(6)を満たし、かつ前記ウェブ部における幅方向に沿う断面重心線と反対側を向く面と前記アーム部における幅方向に沿う断面重心線と反対側を向く面との間における、前記平面視で前記幅方向と直交する断面高さ方向の距離H(mm)が式(7)を満たすことを特徴とする請求項1に記載のハット形鋼矢板。
     876≦W≦932…(6)
     H≦400…(7)
  7.  前記一対のフランジ部それぞれにおける前記断面重心線との第2交点を通り、前記一対のフランジ部それぞれに直交する垂線同士の第3交点と、前記断面重心線と、の間の距離L(mm)、前記ウェブ部における幅方向に沿う断面重心線と反対側を向く面と前記アーム部における幅方向に沿う断面重心線と反対側を向く面との間における、前記平面視で前記幅方向と直交する断面高さ方向の距離H(mm)、および前記ウェブ部における幅方向に沿う断面重心線と反対側を向く面と前記断面重心線との間の距離C(mm)が、式(8)を満たすことを特徴とする請求項1から6のいずれか1項に記載のハット形鋼矢板。
     L>H-C…(8)
PCT/JP2018/035872 2017-10-02 2018-09-27 ハット形鋼矢板 WO2019069776A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019510977A JP6669309B2 (ja) 2017-10-02 2018-09-27 ハット形鋼矢板の設計方法、及びハット形鋼矢板の製造方法
SG11202000245WA SG11202000245WA (en) 2017-10-02 2018-09-27 Hat-type steel sheet pile
CN201880052395.6A CN111032961A (zh) 2017-10-02 2018-09-27 帽形钢板桩
AU2018345052A AU2018345052A1 (en) 2017-10-02 2018-09-27 Hat-type steel sheet pile
PH12020500110A PH12020500110A1 (en) 2017-10-02 2020-01-15 Hat-shaped steel sheet pile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-193111 2017-10-02
JP2017193111 2017-10-02

Publications (1)

Publication Number Publication Date
WO2019069776A1 true WO2019069776A1 (ja) 2019-04-11

Family

ID=65994217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035872 WO2019069776A1 (ja) 2017-10-02 2018-09-27 ハット形鋼矢板

Country Status (7)

Country Link
JP (1) JP6669309B2 (ja)
CN (1) CN111032961A (ja)
AU (1) AU2018345052A1 (ja)
PH (1) PH12020500110A1 (ja)
SG (1) SG11202000245WA (ja)
TW (1) TWI685601B (ja)
WO (1) WO2019069776A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443664B1 (en) * 1998-07-31 2002-09-03 Corus Uk Limited Metal sheet piling
JP2005048394A (ja) * 2003-07-31 2005-02-24 Nippon Steel Corp ハット型鋼矢板
JP2005213895A (ja) * 2004-01-30 2005-08-11 Sumitomo Metal Ind Ltd 高貫入性ハット形鋼矢板
JP2008223389A (ja) * 2007-03-14 2008-09-25 Nippon Steel Corp 鋼矢板および壁体ならびに鋼矢板の施工方法
JP2011140867A (ja) * 2009-12-11 2011-07-21 Jfe Steel Corp Z形鋼矢板
JP2012158910A (ja) * 2011-02-01 2012-08-23 Jfe Steel Corp ハット形鋼矢板
JP2012180714A (ja) * 2011-03-02 2012-09-20 Nippon Steel Corp 地下外壁構造
JP2012193540A (ja) * 2011-03-16 2012-10-11 Jfe Steel Corp Z形鋼矢板の断面形状設定方法
JP2014148798A (ja) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal 鋼矢板
WO2015159445A1 (ja) * 2014-04-18 2015-10-22 新日鐵住金株式会社 鋼矢板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3755296B2 (ja) * 1998-05-25 2006-03-15 株式会社トーメック ハット型土留鋼材の把持方法
JP3755381B2 (ja) * 2000-05-08 2006-03-15 調和工業株式会社 ハット型土留鋼材の把持装置、および同方法
JP3488230B1 (ja) * 2002-07-10 2004-01-19 新日本製鐵株式会社 圧延鋼矢板
EP1420116B1 (en) * 2002-11-15 2017-05-31 Nippon Steel & Sumitomo Metal Corporation Metal sheet pile
JP3488232B1 (ja) * 2002-11-15 2004-01-19 新日本製鐵株式会社 圧延鋼矢板
JP4101117B2 (ja) * 2003-05-28 2008-06-18 ヒロセ株式会社 ハット型土留鋼材の把持装置
JP3916621B2 (ja) * 2004-06-02 2007-05-16 調和工業株式会社 広幅鋼矢板のチャック方法、及び同装置
JP4656587B2 (ja) * 2006-09-13 2011-03-23 調和工業株式会社 杭を挟持する装置、および杭を挟持する方法
JP2008127771A (ja) * 2006-11-17 2008-06-05 Jfe Steel Kk ハット型鋼矢板
JP5764909B2 (ja) * 2010-10-28 2015-08-19 Jfeスチール株式会社 鋼矢板及び該鋼矢板によって形成された鋼矢板壁
TWI510695B (zh) * 2012-07-16 2015-12-01 Jfe Steel Corp 帽型鋼板樁
CN103572748B (zh) * 2012-07-27 2015-11-18 杰富意钢铁株式会社 帽形钢板桩

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6443664B1 (en) * 1998-07-31 2002-09-03 Corus Uk Limited Metal sheet piling
JP2005048394A (ja) * 2003-07-31 2005-02-24 Nippon Steel Corp ハット型鋼矢板
JP2005213895A (ja) * 2004-01-30 2005-08-11 Sumitomo Metal Ind Ltd 高貫入性ハット形鋼矢板
JP2008223389A (ja) * 2007-03-14 2008-09-25 Nippon Steel Corp 鋼矢板および壁体ならびに鋼矢板の施工方法
JP2011140867A (ja) * 2009-12-11 2011-07-21 Jfe Steel Corp Z形鋼矢板
JP2012158910A (ja) * 2011-02-01 2012-08-23 Jfe Steel Corp ハット形鋼矢板
JP2012180714A (ja) * 2011-03-02 2012-09-20 Nippon Steel Corp 地下外壁構造
JP2012193540A (ja) * 2011-03-16 2012-10-11 Jfe Steel Corp Z形鋼矢板の断面形状設定方法
JP2014148798A (ja) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal 鋼矢板
WO2015159445A1 (ja) * 2014-04-18 2015-10-22 新日鐵住金株式会社 鋼矢板

Also Published As

Publication number Publication date
TWI685601B (zh) 2020-02-21
AU2018345052A1 (en) 2020-02-06
JP6669309B2 (ja) 2020-03-18
CN111032961A (zh) 2020-04-17
TW201923198A (zh) 2019-06-16
JPWO2019069776A1 (ja) 2019-11-14
PH12020500110A1 (en) 2020-09-14
SG11202000245WA (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP2005299202A (ja) 鋼矢板とそれを用いた土留め構造及び土留め構造の構築方法
US20150197910A1 (en) Vibratory hammer having sequentially controllable sliding gripper
JPWO2011125347A1 (ja) 鋼管矢板と鋼矢板の連結壁構造およびその構築方法
WO2022068224A1 (zh) 双轮铣槽机的纠偏装置和双轮铣槽机
WO2019069776A1 (ja) ハット形鋼矢板
WO2010089966A1 (ja) 組合せ鋼矢板、組合せ鋼矢板を利用した連続壁、及び組合せ鋼矢板の圧入方法
JP2014020129A (ja) 鋼矢板及び鋼矢板壁体
KR101714422B1 (ko) 로더용 붐 제조 방법
CN211422744U (zh) 消声器支架
JP2007107218A (ja) 鋼矢板把持装置および鋼矢板打設装置
JP6269184B2 (ja) 組み合わせ鋼矢板、鋼矢板壁、および組み合わせ鋼矢板の施工方法
JP6288362B1 (ja) 鋼矢板の打設方法
JP3458109B1 (ja) ハット型鋼矢板
JP2012131580A (ja) 乗客コンベア
WO2018117269A1 (ja) ハット形鋼矢板
EP2466016A1 (en) Frame assembly and a method of manufacturing thereof
JP2014148788A (ja) Z形鋼矢板における打設用治具
JP6702279B2 (ja) 鋼矢板及びその施工方法
WO2015001917A1 (ja) 鋼矢板の地中変形防止装置及び地中変形防止方法、及び連続壁の地中変形防止装置
JP5825232B2 (ja) 組合せ鋼製壁および組合せ鋼製壁の設計方法
JP3188043U (ja) 鋼矢板の接合部材
JP2012188860A (ja) バイブロハンマ装置
JP7037130B2 (ja) 鋼矢板及びその施工方法
CN209798751U (zh) 一种振动锤用侧夹装置
JP2008019694A (ja) 杭を挟持する装置、および杭を挟持する方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019510977

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018345052

Country of ref document: AU

Date of ref document: 20180927

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864290

Country of ref document: EP

Kind code of ref document: A1