WO2015001917A1 - 鋼矢板の地中変形防止装置及び地中変形防止方法、及び連続壁の地中変形防止装置 - Google Patents

鋼矢板の地中変形防止装置及び地中変形防止方法、及び連続壁の地中変形防止装置 Download PDF

Info

Publication number
WO2015001917A1
WO2015001917A1 PCT/JP2014/065230 JP2014065230W WO2015001917A1 WO 2015001917 A1 WO2015001917 A1 WO 2015001917A1 JP 2014065230 W JP2014065230 W JP 2014065230W WO 2015001917 A1 WO2015001917 A1 WO 2015001917A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet pile
steel sheet
flange
underground
underground deformation
Prior art date
Application number
PCT/JP2014/065230
Other languages
English (en)
French (fr)
Inventor
裕章 中山
龍田 昌毅
智矢 富永
篤史 加藤
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2015525112A priority Critical patent/JP5896082B2/ja
Publication of WO2015001917A1 publication Critical patent/WO2015001917A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/16Auxiliary devices rigidly or detachably arranged on sheet piles for facilitating assembly

Definitions

  • the present invention relates to a steel sheet pile underground deformation prevention device, a ground deformation prevention method, and a continuous wall underground deformation prevention device.
  • U-shaped, Z-shaped, straight and hat-shaped steel sheet piles are earth retaining walls that prevent the collapse of earth and sand, walls of underground structures, revetments for rivers and harbors, and road construction Used for walls.
  • the steel sheet pile has high rigidity, but may be deformed depending on the placement environment, the ground condition, or the like when placing on the ground.
  • FIGS. 16A and 16B are schematic diagrams showing deformation of the hat-shaped steel sheet pile 50 in the ground.
  • 16A is a schematic plan view of the hat-shaped steel sheet pile 50
  • FIG. 16B is a schematic side view of the hat-shaped steel sheet pile 50.
  • FIG. 16A when placing the hat-shaped steel sheet pile 50 (hereinafter also referred to as the steel sheet pile 50), a high horizontal earth pressure is generated in the closed area surrounded by the flange 50b and the web 50c, An earth pressure difference P occurs between the rear region side. Due to this earth pressure difference P, along the material axis direction Z (the height direction of the steel sheet pile 50, the direction in which the steel sheet pile 50 is driven, or the vertical direction: see FIG. 16B), the wall body orthogonal direction Y (wall Warp WP1 occurs in a direction orthogonal to the body (steel sheet pile wall) direction X (see FIG. 16A).
  • Z the height direction of the steel sheet pile 50, the direction in which the steel sheet pile 50 is driven, or the vertical direction: see FIG. 16B
  • the wall body orthogonal direction Y wall Warp WP1 occurs in a direction orthogonal to the body (steel sheet pile wall) direction X (see FIG. 16A).
  • the warping direction in the ground of the hat-shaped steel sheet pile 50 is different from the warping direction in the ground of the U-shaped steel sheet pile 60.
  • a steel sheet pile is driven while fitting one of the fitting joints of the steel sheet pile to be subsequently placed into the fitting joint of the steel sheet pile to be previously placed. At this time, if warpage occurs at the lower end of the steel sheet pile as described above, the steel sheet pile rotates in the horizontal direction around the fitting joint, or bending occurs.
  • the vertical accuracy in the ground of the steel pipe pile to be placed first, the accuracy of the distance between adjacent steel pipe piles, and the ground in the ground of the steel sheet pile to be subsequently placed is essential for reliably placing a steel sheet pile of a predetermined length between adjacent steel pipe piles.
  • FIG. 20 has shown the case where a hat-shaped steel sheet pile is driven, when setting a U-shaped steel sheet pile, the direction of the cross section of a U-shaped steel sheet pile is set to the direction of the cross section of an adjacent U-shaped steel sheet pile. The U-shaped steel sheet pile is driven so as to face each other.
  • FIG. 21 shows a method for driving the steel sheet pile 100 in Non-Patent Document 2 (see Non-Patent Document 2).
  • Non-Patent Document 2 two rows of guide piles 120 are arranged on the surface of the ground 90 in order to ensure an accurate driving position of the steel sheet pile 100 and stability during construction.
  • the two rows of guide piles 120 are arranged on both sides of the steel sheet pile wall 100 'in the normal direction so as to be parallel to the steel sheet pile wall 100' with the guide beam 110 interposed therebetween.
  • Non-Patent Document 2 In the driving method disclosed in Non-Patent Document 2, the accuracy of the placement position of the steel sheet pile 100 on the surface of the ground 90 is ensured by arranging the two rows of guiding piles 120 as described above. However, with the driving method disclosed in Non-Patent Document 2, warping and bending of the steel sheet pile 100 that occur in the ground 90 cannot be suppressed.
  • FIG. 22A and 22B show a state where the water jet pipe 16 is attached to the hat-shaped steel sheet pile 50.
  • FIG. FIG. 22A is a perspective view of the steel sheet pile 50
  • FIG. 22B is a plan view of the steel sheet pile 50.
  • the construction cost increases.
  • the water jet pipe 16 is left buried in the ground together with the hat-shaped steel sheet pile 50, when another steel sheet pile 50 is driven, another water jet pipe 16 is required and the construction cost increases.
  • the hat-shaped steel sheet pile 50 has been described as an example, but the same problem occurs in U-shaped, Z-shaped, and linear steel sheet piles.
  • a water jet pipe may be attached to at least one of the sheet pile receiving flange or the web material.
  • the passive surface flange may be disposed so as to face the lower sheet pile receiving flange.
  • the predetermined distance is provided between the upper end of the web material and the upper end of the upper sheet pile receiving flange.
  • Web material may be arranged.
  • a second aspect according to the present invention is a continuous wall underground deformation prevention device comprising a plurality of steel sheet pile underground deformation prevention devices according to any one of (1) to (13) above.
  • one of the steel sheet pile underground deformation prevention device web material and the other of the steel sheet pile underground deformation prevention device web material The one side end of the upper connecting plate is connected to the upper part of the web material of the underground deformation preventing device of the one steel sheet pile, and the other side end of the upper connecting plate However, it is connected to the upper part of the web material of the underground deformation prevention apparatus of said other steel sheet pile.
  • the lower end portion of the sheet pile receiving flange is inserted between the separation prevention jigs arranged on both sides of the lower end portion of the flange of the steel sheet pile. May be.
  • the steel sheet pile at the time of placing the steel sheet pile, it is possible to prevent deformation such as warping, bending, rotation, and inclination in the direction of the wall body of the steel sheet pile in the ground. It can be placed accurately and smoothly at a predetermined position.
  • a steel sheet pile built between the parent piles steel pipe piles
  • a predetermined position when forming a combination wall, a steel sheet pile built between the parent piles (steel pipe piles) can be placed accurately and smoothly at a predetermined position.
  • FIG. 12 It is a top view which shows the state which attached the underground deformation
  • FIG. 1 is a perspective view showing a steel sheet pile underground deformation preventing apparatus 10 according to the first embodiment.
  • the underground deformation prevention device 10 utilizes a sheet pile receiving flange 17 attached to a steel sheet pile flange (not shown in FIG. 1), a mounting jig 17c provided at an upper end portion of the sheet pile receiving flange 17, and a passive resistance of the ground. Then, a passive surface flange 18 that prevents deformation of the steel sheet pile in the ground, and a web material 19 that connects the sheet pile receiving flange 17 and the passive surface flange 18 are provided.
  • a suspension hole 19 a is provided at the upper end of the web material 19.
  • the suspension hole 19a is used for lifting the underground deformation prevention device 10 from the ground after the placement. Similar to the mounting jig 17c described above, it is preferable to provide the suspension hole 19a at a position where the underground deformation prevention device 10 can be lifted after the placement is completed. That is, it is preferable that the suspension hole 19a is provided in the web material 19 so as to be exposed to the ground after completion of the coping work.
  • the underground deformation prevention device 10 is attached to a flange of a steel sheet pile (see FIG. 3 and the like). Therefore, the underground deformation prevention device 10 is provided with a steel sheet pile so that the surface orthogonal to the direction in which the deformation of the flange of the steel sheet pile is noticeably generated (that is, the flange surface of the steel sheet pile) and the passive surface flange 18 are parallel to each other. It is preferable that it is attached to. Therefore, it is preferable to arrange the passive surface flange 18 so that the sheet pile receiving flange 17 parallel to the flange surface of the steel sheet pile and the passive surface flange 18 face each other substantially in parallel.
  • the water jet pipe 16 is disposed on the sheet pile receiving flange 17, but the water jet pipe 16 may be disposed on the web material 19. Moreover, the water jet pipe
  • a vibro hammer method for the placement of the steel sheet pile 50 to which the underground deformation prevention device 10 is attached, a vibro hammer method, a hammering method, a press-fitting method or the like can be used.
  • a vibro hammer construction method with a small size restriction.
  • the gripping length of the chuck of the vibratory hammer between the upper end (upper end surface) of the flange 50b of the steel sheet pile 50 and the upper end (upper end surface) of the sheet pile receiving flange 17 in the material axis direction Z. It is preferable to provide an interval of length L.
  • the grip length L of the chuck is, for example, 400 to 500 mm.
  • FIG. 20 is a plan view showing a state in which the underground deformation prevention device 10 is attached to a hat-shaped steel sheet pile composed of two steel sheet piles 100. is there.
  • the underground deformation preventing device 10 can be attached to the hat-shaped steel sheet pile while avoiding interference between the joint 100a and the sheet pile receiving flange 17. .
  • FIG. 9 is a perspective view showing a steel sheet pile underground deformation preventing apparatus 20 according to the second embodiment of the present invention.
  • the sheet pile receiving flange 17 is divided into an upper sheet pile receiving flange 17a and a lower sheet pile receiving flange 17b.
  • the deformation of the steel sheet pile is 1/10 of the total length of the steel sheet pile (height of the steel sheet pile) from the lower end of the steel sheet pile. It occurs remarkably in the range of. For this reason, it is preferable to make the height of the lower sheet pile receiving flange 17b and the passive surface flange 18 equal to or more than 1/10 of the total length of the steel sheet pile. For example, when the total length of the steel sheet pile is 20 m, the height of the lower sheet pile receiving flange 17b and the passive surface flange 18 is preferably 2 m or more.
  • the web material 19 is connected to the upper sheet pile receiving flange 17 a so that the upper end of the upper sheet pile receiving flange 17 a and the upper end of the web material 19 coincide with each other. ing.
  • the upper end of the upper sheet pile receiving flange 17a is extended in the material axial direction Z, and the web material 19 is connected at a position separated from the upper end of the upper sheet pile receiving flange 17a by a gripping length L or more. You may let them.
  • the steel sheet pile 50 and the upper sheet pile receiving flange 17a can be grasped simultaneously by the chuck of the vibrator hammer.
  • the load added to the attachment jig 17c at the time of placement can be reduced, the strength of the attachment jig 17c can be reduced. Therefore, for example, when a bolt is used as the mounting jig 17c, the number and diameter of the bolt can be reduced, and the cost can be reduced.
  • the underground deformation preventing device 30 can drive a plurality of connected steel sheet piles at the same time, the construction speed can be increased. Moreover, the stability at the time of construction can be ensured by connecting two adjacent underground deformation preventing devices 10. At this time, if the passive surface flanges 18 of the two adjacent underground deformation preventing devices 10 are integrated and connected, the stability at the time of placing can be further secured.
  • the upper connection plate 31 When placing a plurality of connected steel sheet piles (continuous walls composed of a plurality of steel sheet piles) using the underground deformation prevention device 30, the upper connection plate 31 is directly gripped by a vibro hammer and the steel sheet pile is driven. You may set up. As shown in FIG. 13, the upper connecting plate 31 may be provided with a gripping portion 31 a that protrudes upward from the upper end of the upper connecting plate 31, and the gripping portion 31 a may be gripped with a vibrator hammer.
  • FIG. 13 is a perspective view of the underground deformation preventing device 30 in which the grip portion 31a is provided on the upper connecting plate 31.
  • FIG. 13 When the space surrounded by the upper connecting plate 31 and the steel sheet pile is narrow and it is difficult to insert the chuck of the vibrator hammer, as shown in FIG. 13, by providing the upper connecting plate 31 with a grip portion 31a, The grip portion 31a protruding from the upper end can be gripped and placed.
  • FIG. 14A is a plan view showing a state in which the underground deformation preventing device 30 is attached to a continuous wall 50 ′ composed of two hat-shaped steel sheet piles 50. As shown in FIG. 14A, the underground deformation preventing device 30 is attached to the side of the hat-shaped steel sheet pile 50 that warps in the ground, out of the flange surfaces of the hat-shaped steel sheet pile 50 constituting the continuous wall 50 ′. .
  • FIGS. 15A and 15B are plan views showing a state in which the underground deformation preventing device 10 is attached to each of the two steel sheet piles 50.
  • FIG. FIG. 15A shows a case where the steel sheet pile is a hat-shaped steel sheet pile 50
  • FIG. 15B shows a case where the steel sheet pile is a U-shaped steel sheet pile 60.
  • the underground deformation prevention device 10 may be attached to each steel sheet pile and placed. Moreover, you may install by attaching the underground deformation
  • 15A shows the case where two steel sheet piles 50 are driven simultaneously, but similarly, when the three or more steel sheet piles 50 are driven simultaneously, each of the underground deformation prevention devices 10 or 20 is provided. What is necessary is just to attach to the steel sheet pile 50 and to drive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

 この地中変形防止装置は、鋼矢板のフランジに沿って取り付けられ、前記鋼矢板とともに打設され、打設終了後、前記鋼矢板から取り外されて、地中から引き抜かれる、鋼矢板の地中変形防止装置であって、前記鋼矢板のフランジに取り付けられる矢板受けフランジと;前記矢板受けフランジに対向するように配置される受働面フランジと;前記矢板受けフランジと前記受働面フランジとを連結するウェブ材と;前記矢板受けフランジの上端部に設けられる取付け治具と;を備える。

Description

鋼矢板の地中変形防止装置及び地中変形防止方法、及び連続壁の地中変形防止装置
 本発明は、鋼矢板の地中変形防止装置及び地中変形防止方法、及び連続壁の地中変形防止装置に関する。
 本願は、2013年7月3日に、日本に出願された特願2013-139903号に基づき優先権を主張し、その内容をここに援用する。
 土木建築分野において、U形、Z形、直線形、及びハット形の鋼矢板が、土砂の崩落を防ぐ土留め壁、地下構造物の壁、河川や港湾等の護岸壁、道路工事用の擁壁等に使用されている。鋼矢板は、剛性が高いが、地盤への打設時、打設環境や地盤状態等によっては変形することがある。
 図16Aおよび図16Bは、ハット形鋼矢板50の地盤中での変形を示す模式図である。なお、図16Aはハット形鋼矢板50の平面模式図であり、図16Bはハット形鋼矢板50の側面模式図である。
 図16Aに示すように、ハット形鋼矢板50(以下、鋼矢板50とも称する)の打設時には、フランジ50bとウェブ50cとで囲まれる閉塞領域において高い水平土圧が発生し、閉塞領域側と背面領域側との間で土圧差Pが生じる。この土圧差Pに起因し、材軸方向Z(鋼矢板50の高さ方向、鋼矢板50が打設される方向、または鉛直方向:図16B参照)に沿って、壁体直交方向Y(壁体(鋼矢板壁)方向Xに直交する方向:図16A参照)に反りWP1が発生する。この反りWP1により、ハット形鋼矢板50の下端50dは、背面領域側に反りWP1分移動する(WP1分移動後のハット形鋼矢板50の下端を50d’とする)。なお、図16Aにおける壁体方向Xは、鋼矢板50が複数打設されて壁体(鋼矢板壁)が形成される方向である。
 図17は、U形鋼矢板60(以下、鋼矢板60とも称する)の地盤中での変形を示す平面模式図である。図17では、閉塞領域側と背面領域側との間に発生する土圧差が、U形鋼矢板60の下端60dにおいて、フランジ60b、ウェブ60c、及びフランジ60bとウェブ60cとの接続部にそれぞれ作用する。その結果、フランジ60bおよびウェブ60cが曲線状に膨らむことになる。この膨らみに、下部地盤から面的に反力が作用し、U形鋼矢板60の下端60dにおいては、閉塞領域側への反りWP2が発生する。
 したがって、図16A、図16Bおよび図17に示すように、ハット形鋼矢板50における地盤中での反り方向は、U形鋼矢板60における地盤中での反り方向と異なる。
 通常、先行して打設される鋼矢板の嵌合継手に、後続して打設される鋼矢板の一方の嵌合継手を嵌合させながら鋼矢板を打設する。その際、上述のように鋼矢板の下端に反りが発生すると、嵌合継手を中心に鋼矢板が水平方向に回転したり、曲がりが発生したりする。
 図18は、打設された鋼矢板50が、この鋼矢板50に先行して打設された鋼矢板50xの嵌合継手50a’を中心に、水平方向(図18の矢印方向)に角度θだけ回転した状態を示す平面図である。嵌合継手50a’を中心に鋼矢板50が水平方向に回転すると、鋼矢板50の断面幅が変わってしまう。その結果、順次打設された鋼矢板は、壁体方向Xにおいて傾斜する。図19に、壁体方向Xにおいて鋼矢板50が地盤90中で傾斜している状態を示す。なお、図18および図19は、ハット形鋼矢板50を打設した場合を示しているが、例えば、U形鋼矢板60を打設した場合でも、同様の回転および傾斜が生じる。
 特に、硬質地盤に鋼矢板50(または鋼矢板60)を打設する場合、閉塞領域内の水平土圧がより大きくなる。この場合、反り、回転、及び曲がりの程度が大きくなり、鋼矢板50の断面幅が大きく変わって、鋼矢板50を打設することが困難となる。
 図20に、非特許文献1における、鋼管杭70と鋼矢板100とで構成されるコンビウォール(Combined Wall、または異種剛性擁壁とも言う)を示す(非特許文献1参照)。図20に示すように、まず、継手70aを有する複数の鋼管杭70(親杭)が、一定間隔で一列に打設される。次に、隣り合う鋼管杭70のうち、一方の鋼管杭70の継手70aと他方の鋼管杭70の継手70aとの間に、継手100aを介して互いに接続された2枚の鋼矢板100が打設される。
 コンビウォールの構築においては、先に打設される鋼管杭の地中での鉛直精度、隣り合う鋼管杭間の距離の正確度、及び、後続して打設される鋼矢板の地中での鉛直精度を確保することが、所定長さの鋼矢板を隣り合う鋼管杭間に確実に打設するうえで必須である。
 鋼矢板100を地盤に打設する際、図20に示すように、鋼矢板100の両側の継手100aを、隣接する鋼矢板100の継手100aと、鋼管杭70の継手70aとに嵌合させる必要がある。しかしながら、先行して打設された鋼矢板100の鉛直精度が悪かったり、後続して打設された鋼矢板100が、上述のように、地盤中で、反ったり、曲がったり、また、継手100aを軸に回転したりすると、継手100aにおける嵌合抵抗が増大する。このため、施工速度が低下し、鋼矢板を所定位置まで打ち込むことができなくなる。
 即ち、打設途中の鋼矢板に、上述のような、反り、回転、及び曲がりが発生し、鋼矢板の変形量が継手の許容裕度を超えると、一定間隔で打設された隣り合う鋼管杭の間に鋼矢板を打込むことができなくなる。なお、図20はハット形鋼矢板を打設する場合を示しているが、U形鋼矢板を打設する場合、U形鋼矢板の断面の向きが隣接するU形鋼矢板の断面の向きに対向するように、U形鋼矢板は打設される。したがって、U形鋼矢板を打設する場合、U形鋼矢板の反る方向が、隣接するU形鋼矢板に対して逆になる。その結果、U形鋼矢板を打設する場合、ハット形鋼矢板を打設する場合に比べて、継手嵌合摩擦が大きくなって鋼矢板の打設抵抗が増大し、鋼矢板を所定位置に打設することがより困難となる。
 また、打設される鋼矢板の枚数が多い場合、鋼矢板の鉛直精度の誤差が蓄積し、後続して打設される鋼矢板の施工に支障をきたす。また、鋼矢板の継手の嵌合裕度、および鋼管杭の継手の嵌合裕度の少なくとも一方が小さい場合、鋼矢板の打設は、地盤中での鉛直精度の影響を大きく受けることになる。
 図21に、非特許文献2における、鋼矢板100の打込み方法を示す(非特許文献2参照)。図21に示すように、非特許文献2では、鋼矢板100の正確な打込み位置と施工時の安定性を確保するため、地盤90の表面に2列の導杭120が配置される。2列の導杭120は、鋼矢板壁100’の法線方向の両側に、導梁110を挟んで、鋼矢板壁100’と平行になるように配置される。
 非特許文献2に開示された打ち込み方法では、2列の導杭120を上記のように配置することにより、地盤90の表面における鋼矢板100の打設位置の精度を確保している。しかしながら、非特許文献2に開示された打ち込み方法では、地盤90中で発生する鋼矢板100の反りおよび曲がりを抑制することはできない。
 一般に、硬質地盤に鋼矢板を打設する場合、打設抵抗が増大し、鋼矢板の反り、曲がり、および回転が生じ易くなるため、鋼矢板の地盤中での鉛直性(鉛直精度)を確保できない。このような場合、鋼矢板にウォータージェット管を取り付け、ウォータージェット管から噴射される水の水圧により、鋼矢板の下端付近の地盤を緩めて鋼矢板の打設を行う。
 図22Aおよび図22Bに、ハット形鋼矢板50にウォータージェット管16を取り付けた状態を示す。図22Aは鋼矢板50の斜視図であり、図22Bは鋼矢板50の平面図である。ハット形鋼矢板50にウォータージェット管16を取り付ける場合、打設される複数のハット形鋼矢板50のそれぞれに、ウォータージェット管16を取り付ける必要があり、施工手間が増える。
 また、ハット形鋼矢板50を打設した後、ウォータージェット管16をハット形鋼矢板50から取り外す場合、施工費が増大する。また、ウォータージェット管16をハット形鋼矢板50とともに地中に埋めたままにする場合、他の鋼矢板50を打設するときに、別のウォータージェット管16が必要となり、施工費が増大する。図22Aおよび図22Bでは、ハット形鋼矢板50を例に挙げて説明したが、U形、Z形、および直線形の鋼矢板においても、同様の問題が生ずる。
 また、鋼矢板の打設時、鋼矢板のねじれや座屈等を防止し、鋼矢板の地盤中での鉛直性を確保するために、アースオーガーで地盤を掘削する方法も用いられている。しかしながら、この方法は、特殊な施工機械を別途必要とするので、施工費が上昇する。
「Steel Foundation Solutions for Projects, Steel Sheet Piling, General Catalogue 2011」(Arcelor Mittal) 「鋼矢板 設計から施工まで」(鋼管杭協会,2007)
 本発明は、上記課題に鑑みてなされたものであり、アースオーガー等の特殊重機を使用せず、かつ現場で簡易に、打設時に地中で発生する鋼矢板の変形を防止して、鋼矢板の地盤中での鉛直精度を維持することができる、鋼矢板の地中変形防止装置および地中変形防止方法、および連続壁の地中変形防止装置を提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を採用する。
 (1)本発明に係る第1の態様は、鋼矢板のフランジに沿って取り付けられ、前記鋼矢板とともに打設され、打設終了後、前記鋼矢板から取り外されて、地中から引き抜かれる、鋼矢板の地中変形防止装置であって、前記鋼矢板のフランジに取り付けられる矢板受けフランジと;前記矢板受けフランジに対向するように配置される受働面フランジと;前記矢板受けフランジと前記受働面フランジとを連結するウェブ材と;前記矢板受けフランジの上端部に設けられる取付け治具と;を備える。
 (2)上記(1)に記載の態様において、前記受働面フランジと、前記矢板受けフランジとが実質的に平行であってもよい。
 (3)上記(1)または(2)に記載の態様において、前記受働面フランジが、前記矢板受けフランジの下端部に対向するように配置されていてもよい。
 (4)上記(1)~(3)のいずれか一項に記載の態様において、前記受働面フランジの高さが、打設時における、前記矢板受けフランジの下端から地盤表面までの高さ以下であってもよい。
 (5)上記(1)~(4)のいずれか一項に記載の態様において、前記矢板受けフランジまたは前記ウェブ材の少なくとも一方にウォータージェット管が取り付けられていてもよい。
 (6)上記(1)~(5)のいずれか一項に記載の態様において、前記ウェブ材の上端と、前記矢板受けフランジの上端との間に所定の間隔が設けられるように、前記ウェブ材が配置されていてもよい。
 (7)上記(1)または(2)に記載の態様において、前記矢板受けフランジが、上部矢板受けフランジと下部矢板受けフランジに分割されていてもよい。
 (8)上記(7)に記載の態様において、前記受働面フランジが、前記下部矢板受けフランジに対向するように配置されていてもよい。
 (9)上記(7)または(8)に記載の態様において、前記受働面フランジの高さが、打設時における、前記下部矢板受けフランジの下端から地盤表面までの高さ以下であってもよい。
 (10)上記(7)~(9)のいずれか一項に記載の態様において、前記ウェブ材にウォータージェット管が取り付けられていてもよい。
 (11)上記(7)~(10)のいずれか一項に記載の態様において、前記ウェブ材の上端と、前記上部矢板受けフランジの上端との間に所定の間隔が設けられるように、前記ウェブ材が配置されていてもよい。
 (12)上記(1)~(11)のいずれか一項に記載の態様において、前記受働面フランジが、前記受働面フランジの厚さ方向から見た場合に、四角形であり、かつ、前記四角形の2本の対角線のうち、一方の対角線の方向が前記鋼矢板の高さ方向と一致するように配置されてもよい。
 (13)上記(1)~(12)のいずれか一項に記載の態様において、前記取付け治具がボルトであってもよい。
 (14)本発明に係る第2の態様は、上記(1)~(13)のいずれか一項に記載の鋼矢板の地中変形防止装置を複数備える、連続壁の地中変形防止装置であって、隣り合う2つの前記鋼矢板の地中変形防止装置のうち、一方の前記鋼矢板の地中変形防止装置のウェブ材と、他方の前記鋼矢板の地中変形防止装置のウェブ材とを連結する上部連結板を備え、前記上部連結板の一方の側端が、前記一方の前記鋼矢板の地中変形防止装置のウェブ材の上部に接続され、前記上部連結板の他方の側端が、前記他方の前記鋼矢板の地中変形防止装置のウェブ材の上部に接続されている。
 (15)上記(14)に記載の態様において、前記上部連結板に、前記上部連結板の上端から上方へ突出する把持部が設けられてもよい。
 (16)本発明に係る第3の態様は、鋼矢板を打設する際、鋼矢板の地中での変形を防止する方法であって、鋼矢板のフランジに、上記(1)~(13)のいずれか一項に記載の鋼矢板の地中変形防止装置を取付ける第1工程と;前記鋼矢板、および前記鋼矢板の地中変形防止装置を打設する第2工程と;前記鋼矢板の地中変形防止装置を前記鋼矢板から取り外す第3工程と;前記鋼矢板の地中変形防止装置を地中から引き抜く第4工程と;を有する。
 (17)上記(16)に記載の態様において、前記第1工程では、前記鋼矢板のフランジの下端部の両側に配置された離脱防止治具の間に、前記矢板受けフランジの下端部を挿入してもよい。
 上記各態様によれば、鋼矢板の打設時において、地中で発生する鋼矢板の反り、曲り、回転、および壁体方向への傾斜などの変形を防止することができ、鋼矢板を地盤内の所定位置に正確にかつ円滑に打設することができる。特に、コンビウォールを形成する際、親杭(鋼管杭)の間に建て込む鋼矢板を、所定位置に正確にかつ円滑に打設することができる。
 また、上記各態様によれば、特殊な重機を必要とせずに、かつ現場で簡便に、打設時の地中での鋼矢板の変形を防止することができ、その結果、鋼矢板の施工性の向上、および打設後の鋼矢板の鉛直性の向上を図ることができる。
本発明の第1実施形態に係る鋼矢板の地中変形防止装置を示す斜視図である。 本発明の第1実施形態に係る地中変形防止装置を示す図であって、受働面フランジが、矢板受けフランジの下端部と対向するように配置された状態を示す斜視図である。 図2に示す地中変形防止装置をハット形鋼矢板に取り付けた状態を示す斜視図である。 図2に示す地中変形防止装置の変形例を示す斜視図である。 図2に示す地中変形防止装置の変形例を示す斜視図である。 図2に示す地中変形防止装置の変形例を示す斜視図である。 図20の二点鎖線の円で示した部分の拡大図であって、本発明の第1実施形態に係る地中変形防止装置の変形例を示す図である。 ハット形鋼矢板に図2に示す地中変形防止装置を取り付けた状態を示す斜視図であって、同地中変形防止装置の変形例を示す図である。 本発明の第2実施形態に係る鋼矢板の地中変形防止装置を示す斜視図である。 本発明の第2実施形態に係る地中変形防止装置をハット形鋼矢板に取り付けた状態を示す斜視図である。 本発明の第2実施形態に係る地中変形防止装置をハット形鋼矢板に取り付けた状態を示す斜視図であって、同地中変形防止装置の変形例を示す図である。 本発明の第3実施形態に係る連続壁の地中変形防止装置を示す斜視図である。 本発明の第3実施形態に係る地中変形防止装置を示す斜視図であって、同地中変形防止装置の変形例を示す図である。 図12に示す地中変形防止装置をハット形鋼矢板で構成される連続壁に取り付けた状態を示す平面図である。 図13に示す地中変形防止装置をU形鋼矢板で構成される連続壁に取り付けた状態を示す平面図である。 複数のハット形鋼矢板のそれぞれに、第1実施形態に係る地中変形防止装置または第2実施形態に係る地中変形防止装置を取り付けた状態を示す平面図である。 複数のU形鋼矢板のそれぞれに、第1実施形態に係る地中変形防止装置または第2実施形態に係る地中変形防止装置を取り付けた状態を示す平面図である。 ハット形鋼矢板の地盤中での変形状況を示す平面模式図である。 ハット形鋼矢板の地盤中での変形状況を示す側面模式図である。 U形鋼矢板の地盤中での変形状況を示す平面模式図である。 打設された鋼矢板が、先行して打設された鋼矢板の嵌合継手を中心に回転した状態を示す平面図である。 壁体方向において、鋼矢板が地中で傾斜している状態を示す図である。 非特許文献1における、鋼管杭と鋼矢板とで構成されたコンビウォールを示す平面図である(非特許文献1参照)。 非特許文献2における、鋼矢板の打込み方法を示す図である(非特許文献2参照)。 鋼矢板にウォータージェット管を取り付けた状態を示す斜視図である。 鋼矢板にウォータージェット管を取り付けた状態を示す平面図である。
 以下、図面を参照しながら、本発明の一実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(第1実施形態)
 まず、本発明の第1実施形態に係る鋼矢板の地中変形防止装置10について説明する。図1は、本第1実施形態に係る鋼矢板の地中変形防止装置10を示す斜視図である。地中変形防止装置10は、鋼矢板のフランジ(図1において不図示)に取り付けられる矢板受けフランジ17と、矢板受けフランジ17の上端部に設けられる取付け治具17cと、地盤の受働抵抗を利用して鋼矢板の地中での変形を防止する受働面フランジ18と、矢板受けフランジ17と受働面フランジ18とを連結するウェブ材19とを備える。
 図1に示すように、矢板受けフランジ17(地中変形防止装置10の第1フランジ)の上端部には、矢板受けフランジ17を鋼矢板のフランジに取り付けるための取付け治具17cが設けられている。取付け治具17cは、打設終了後に、地中変形防止装置10および鋼矢板のフランジから取り外される。したがって、打設終了後における取付け治具17cの取り外し作業を容易に行うため、打設終了後に取り外しができる位置に取付け治具17cを設けることが好ましい。ここで、鋼矢板の打設終了後には、コーピング作業のため、地盤表面から0.5~1.5mの深さの範囲で、地盤を掘る必要がある。したがって、打設終了後に取付け治具17cを取り外すため、コーピング作業完了後に、地上に露出するように、取付け治具17cが矢板受けフランジ17に設けられることが好ましい。
 ウェブ材19の上端部には、吊り孔19aが設けられている。吊り孔19aは、打設終了後、地中変形防止装置10を地中から吊り上げるために用いられる。上述の取付け治具17cと同様に、打設終了後に地中変形防止装置10を吊り上げることができる位置に吊り孔19aを設けることが好ましい。すなわち、コーピング作業完了後に、地上に露出するように、吊り孔19aがウェブ材19に設けられることが好ましい。 
 受働面フランジ18(地中変形防止装置10の第2フランジ)は、ウェブ材19を介して矢板受けフランジ17に対向するように配置される。受働面フランジ18を上記のように配置することにより、受働面フランジ18が鋼矢板とともに地中に進入していく過程で、受働面フランジ18の側面18aに対して、地盤の受働抵抗が垂直に作用する。つまり、打設過程において、鋼矢板のフランジに作用する土圧差P(図16A参照)は、受働面フランジ18の表面(側面18a)に作用する受働抵抗によって打ち消される。その結果、鋼矢板の地中での変形を防止することができる。受働面フランジ18は、地盤の受働抵抗を利用して鋼矢板の地中での変形を効果的に防止するために、矢板受けフランジ17に対し実質的に平行に配置されることが好ましい。しかしながら、受働面フランジ18の上記変形防止効果が得られる限りにおいて、受働面フランジ18は、矢板受けフランジ17に対し所定の角度をもって斜めに配置されてもよい。また、受働面フランジ18は、図1に示すような平板に限られず、例えば、折板、または波形の板であってもよい。
 受働面フランジ18として折板または波形の板を用いる場合、凹凸方向が鋼矢板の材軸方向Z(鋼矢板50の高さ方向、鋼矢板50が打設される方向、または鉛直方向:図16B参照)に一致すると、打設抵抗が増大してしまう。したがって、折板または波形の板を用いる場合には、凹凸方向が水平面方向(図1のX方向(壁体方向X:図16A参照)およびY方向(壁体直交方向Y:図16Aおよび図16B参照))と一致することが好ましい。また、受働面フランジ18として折板または波形の板を用いる場合、平板を用いる場合に比べて、受働抵抗が作用する面の面積を大きくすることができ、鋼矢板の変形抑制効果を大きくすることができる。
 また、後述するが、地中変形防止装置10は、鋼矢板のフランジに取り付けられる(図3等参照)。そのため、鋼矢板のフランジの変形が顕著に発生する方向に直交する面(即ち、鋼矢板のフランジ面)と、受働面フランジ18とが平行となるように、地中変形防止装置10が鋼矢板に取り付けられることが好ましい。したがって、鋼矢板のフランジ面と平行である矢板受けフランジ17と、受働面フランジ18とが実質的に平行に対向するように受働面フランジ18を配置することが好ましい。
 なお、図1では、矢板受けフランジ17に、地盤を軟化するために先端から水16aを噴射するウォータージェット管16が配設される。しかしながら、鋼矢板を軟質地盤に打設する場合、ウォータージェット管16は不要である。
 また、図1では、矢板受けフランジ17にウォータージェット管16が配設されているが、ウォータージェット管16がウェブ材19に配設されてもよい。また、ウォータージェット管16は、水16aが鋼矢板と地中変形防止装置10全体に行きわたるように、鋼矢板のフランジに近接する位置に配設されてもよい。
 なお、図1では、受働面フランジ18と矢板受けフランジ17とが同じ高さ(Z方向における長さ)を有する場合を示しているが、受働面フランジ18の高さと矢板受けフランジ17の高さは、異なっていてもよい。
 上述のように、鋼矢板は地盤中で変形し、鋼矢板の下端部付近で変形が顕著になることが多い(図16A、図16B、および図17参照)。そこで、施工性および施工コストの観点からは、受働面フランジ18の高さを矢板受けフランジ17の高さよりも小さくし、矢板受けフランジ17の下端部(または鋼矢板のフランジの下端部)に対向するように受働面フランジ18を配置することが好ましい。
 図2に示す地中変形防止装置10では、図1に示す受働面フランジ18の高さを小さくし、受働面フランジ18が、矢板受けフランジ17の下端部と対向するように配置されている。このように受働面フランジ18を配置することにより、受働面フランジ18の面積を小さくしても、効果的に鋼矢板の変形を防止することができる。また、図2に示す地中変形防止装置10では、図1に示す地中変形防止装置10に比べて、受働面フランジ18の面積が小さくなるため、鋼矢板の打設時に、受働面フランジ18が地盤から受ける摩擦抵抗を減少でき、また地中変形防止装置10の重量、材料費、及び加工費を低減できる。このため、打設抵抗および施工コストをさらに低減することができる。
 なお、図2では、受働面フランジ18は、矢板受けフランジ17の下端部に対向する位置に配置されるが、上記変形抑制効果が得られる限り、上記の位置に限定されない。例えば、打設条件等によっては、矢板受けフランジ17の中央部と対向する位置に配置されてもよい。
 また、受働面フランジ18は、上記変形抑制効果が得られる限り、鋼矢板の打設終了後、地盤表面から露出していてもよい。しかしながら、地中から引き抜いた地中変形防止装置10を別の鋼矢板に再使用することを考慮すれば、地中変形防止装置10の使いやすさを向上させるために、地中変形防止装置10の重量は、可能な限り軽いことが好ましい。そのため、受働面フランジ18の高さは、打設時における、矢板受けフランジ17の下端から地盤表面までの高さ以下であることが好ましい。
 また、地盤条件や打設方法等にもよるが、一般に、鋼矢板の変形は、鋼矢板の下端から、鋼矢板全長(鋼矢板の高さ)の1/10の長さの範囲で、顕著に発生する。このため、受働面フランジ18の高さを鋼矢板全長の1/10以上に設定することが好ましい。例えば、鋼矢板全長が20mの場合、受働面フランジ18の高さを2m以上に設定することが好ましい。
 受働面フランジ18の幅(図2におけるX方向の長さ)は、特に限定されず、鋼矢板のフランジの幅以上、または矢板受けフランジ17の幅以上でもよい。しかしながら、打設時に受働面フランジ18が地盤から受ける摩擦抵抗を抑制し、施工性を向上させる観点から、受働面フランジ18の幅は、矢板受けフランジ17の幅以下、又は鋼矢板のフランジの幅以下が好ましい。
 また、主に、鋼矢板のフランジ幅の領域で鋼矢板の変形を引き起こす大きな土圧が発生することを考慮すると、鋼矢板のフランジ幅程度に受働面フランジ18の幅を設定することにより、最も効果的に、鋼矢板の変形を防止しつつ、良好な施工性を確保することができる。
 したがって、施工性および施工コストの観点からは、鋼矢板の下端部で顕著に変形が発生することを考慮し、受働面フランジ18が矢板受けフランジ17の下端部(または鋼矢板のフランジの下端部)のみに対向するように、受働面フランジ18のサイズを設定して配置することが好ましい。
 図3は、図2に示す地中変形防止装置10をハット形鋼矢板50に取り付けた状態を示す斜視図である。地中変形防止装置10は、ハット形鋼矢板50のフランジ50bの背面領域側(図16Aおよび図16B参照)の面に取り付けられる。図3に示すように、ハット形鋼矢板50が地中で反る側(背面領域側)に地中変形防止装置10を配置することにより、ハット形鋼矢板50の反る方向に地中変形防止装置10の強軸方向を一致させることができる。
 ハット形鋼矢板50を打設する場合、ハット形鋼矢板50が地中で反る側(背面領域側)に地中変形防止装置10を配置することが好ましいが、打設環境や打設条件等によっては、地中変形防止装置10を、フランジ50bの閉塞領域側の面に取り付けてもよい。なお、U形鋼矢板60を打設する場合、上述のように、フランジ60bは閉塞領域側(図17参照)に反るため、地中変形防止装置10をフランジ60bの閉塞領域側に配置することが好ましい。
 鋼矢板50のフランジ50bの下端部の両側には、地中変形防止装置10が鋼矢板50のフランジ50bから離脱するのを防止する離脱防止治具11が配置される。離脱防止治具11は、図3に示すように、L形部材であることが好ましい。離脱防止治具11としてL形部材を用いた場合、矢板受けフランジ17の下端部を、確実に、鋼矢板50のフランジ50bに密接させた状態で、地中変形防止装置10を鋼矢板50に取り付けることができる。また、この場合、鋼矢板50のフランジ50bと直交する、離脱防止治具11の内面に、矢板受けフランジ17の側端面を密接させると、地中変形防止装置10のウェブ材19に作用する地盤からの抵抗を鋼矢板50に確実に伝えることができ、鋼矢板50の壁体方向Xにおける傾斜(図19参照)を防止することができる。
 上記のように、離脱防止治具11を用いて、地中変形防止装置10を鋼矢板50に取付けた後、鋼矢板50のフランジ50bの上端部に、矢板受けフランジ17の上端部を、取付け治具17cで固定する。なお、上述のように、打設終了後に取付け治具17cを矢板受けフランジ17から取り外すため、取付け治具17cは、コーピング作業完了後に、地上に露出するように、矢板受けフランジ17に設けられることが好ましい。
 地中変形防止装置10を取り付けた鋼矢板50の打設には、バイブロハンマ工法、打撃工法、圧入工法などを用いることができる。地中変形防止装置10を含めた鋼矢板50のサイズを考慮すると、打設には、サイズ制約の小さいバイブロハンマ工法を用いることが好ましい。バイブロハンマ工法を用いる場合、鋼矢板50のフランジ50bの上端(上端面)と、矢板受けフランジ17の上端(上端面)との間には、材軸方向Zにおいて、少なくとも、バイブロハンマのチャックの掴み長さL分の間隔を設けることが好ましい。チャックの掴み長さLは、例えば、400~500mmである。
 鋼矢板50の打設時、取付け治具17cには、打設抵抗により発生する剪断力が作用する。そのため、取付け治具17cには、この剪断力に耐える強度が必要である。取付け治具17cとして、例えば、ボルトを用いる場合、この剪断力に基づいて、ボルトの本数および径等を適宜設定することにより、要求される強度を確保することが望ましい。
 図3に示すように鋼矢板50に地中変形防止装置10を取付けた後、鋼矢板50を地中(地盤)に打設する。鋼矢板50の打設時、地中変形防止装置10の剛性で、鋼矢板50のフランジ50bの、壁体直交方向Yへの変形が抑制される。そして、地中変形防止装置10の受働面フランジ18に作用する地盤の受働抵抗によって、鋼矢板50のフランジ50bの閉塞領域側(図16Aおよび図16B参照)に作用する土圧差Pが打ち消されるので、鋼矢板50のフランジ50bの下端部の変形がさらに抑制される。
 打設終了後、取付け治具17cをフランジ50bおよび矢板受けフランジ17から取り外す。そして、ウェブ材19に設けられた吊り孔19aに吊上機のワイヤ先端を係合させて、ウェブ材19を吊り上げ、地中変形防止装置10を地中から引き抜く。引き抜かれた地中変形防止装置10は、別の鋼矢板の打設に用いられる。
 本第1実施形態では、ウェブ材19に吊り孔19aが設けられる場合を示した。しかしながら、例えば、図4に示すように、ウェブ材19には、貫通孔19bがさらに設けられてもよい。この場合、ウェブ材19の重量を低減することができるため、施工性の向上、およびコスト低減を図ることができる。
 また、本第1実施形態では、受働面フランジ18の形状は、受働面フランジ18の厚さ方向(壁体直交方向Y)から見た場合に四角形であり、受働面フランジ18の下端面が材軸方向Zに対して垂直になるように、配置される場合を示した。しかしながら、受働面フランジ18の打設抵抗を減少させる観点からは、受働面フランジ18の端面が材軸方向Zに対して傾斜するように、受働面フランジ18が配置されることが好ましい。特に、受働面フランジ18の側面18aにおける2本の対角線のうちの一方の対角線の方向が鋼矢板の材軸方向Z(鋼矢板の高さ方向)に一致するように、受働面フランジ18が配置されることが好ましい。この場合、受働面フランジ18の端面のうち、2つの端面が略均等に打設抵抗を受けることになるため、受働面フランジ18とウェブ材19との接合部分における応力集中を緩和することができる。
 また、上記の観点からは、図5に示すように、受働面フランジ18の側面18aが菱形であってもよく、この菱形の2本の対角線のうち、一方の対角線の方向が鋼矢板の材軸方向Zに一致するように配置されてもよい。このように、受働面フランジ18の側面18aを菱形にし、上記のように配置することにより、打設抵抗を減少させることができる。さらに、図5に示す受働面フランジ18の側面18aの面積(図5におけるY方向から見た場合の受働面フランジ18の面積)を、図2に示す受働面フランジ18の側面18aの面積(図2におけるY方向から見た場合の受働面フランジ18の面積)と同じにすれば、地盤からの受働抵抗を維持しつつ、受働面フランジ18の打設抵抗を減少させることができる。
 また、図5に示すように、受働面フランジ18の側面18aが菱形の場合、図5において二点鎖線で分割された上部面積Aの大きさと下部面積Bの大きさは同じになる。しかしながら、打設抵抗に耐えるための受働面フランジ18の強度を考慮すると、下部面積Bの大きさは、上部面積Aの大きさよりも小さいことがさらに好ましい。図6は、図5に示す下部面積Bが、上部面積Aよりも小さい場合を示す。図6に示すように、下部面積B’を上部面積A’よりも小さくすることにより、受働面フランジ18の強度を高めることができる。また、図6に示す受働面フランジ18の上部面積A’の大きさを、図5に示す上部面積Aと下部面積Bとの和に等しくすれば、地盤からの受働抵抗を維持しつつ、受働面フランジ18の強度を高めることができる。
 さらに、図5および図6に示すように、受働面フランジ18の下部(受働面フランジ18の下部面積B、B’に相当する部分)は、矢板受けフランジ17の下端よりも下方に突出することが好ましい。この場合、受働面フランジ18の下部の一部または全部が、矢板受けフランジ17の下端よりも下方に突出してもよい。受働面フランジ18の下部が矢板受けフランジ17の下端よりも下方に突出することで、地中変形防止装置10を鋼矢板50に取り付けた際、受働面フランジ18の下部が鋼矢板50の下端50dよりも下方に突出する。これにより、地盤の圧力がより高くなる地盤の深い位置に、受働面フランジ18が配置されることになるため、壁体直交方向Yへの変位に対して、より大きな受働抵抗を期待できる。また、所定の受働抵抗を得るために必要な面積を低減することができるため、受働面フランジ18の側面18aの面積を縮小することができ、材料費を低減することができる。
 本第1実施形態では、図3に示すように、ハット形鋼矢板50に地中変形防止装置10を取り付ける場合を示した。一方、図20に示す、2枚の鋼矢板100で構成されるハット形鋼矢板に、地中変形防止装置10を取り付ける場合、継手100aと矢板受けフランジ17とが干渉してしまい、地中変形防止装置10を鋼矢板100に取り付けることができない。しかしながら、矢板受けフランジ17に溝を設けることにより、地中変形防止装置10を鋼矢板100に取り付けることができる。図7は、図20の二点鎖線で示す円の拡大図であって、2枚の鋼矢板100で構成されるハット形鋼矢板に地中変形防止装置10を取り付けた状態を示す平面図である。図7に示すように、矢板受けフランジ17に溝部17dを設けることにより、継手100aと矢板受けフランジ17との干渉を避けながら、このハット形鋼矢板に地中変形防止装置10を取り付けることができる。
 また、本第1実施形態では、図3に示すように、矢板受けフランジ17の上端(上端面)とウェブ材19の上端(上端面)とが一致するように、ウェブ材19が矢板受けフランジ17に連結される。矢板受けフランジ17は、鋼矢板50のフランジ50bの上端から、チャックの掴み長さL分離れた位置に取り付けられる。しかしながら、図8に示すように、矢板受けフランジ17の上端を材軸方向Zに延長させて、ウェブ材19を矢板受けフランジ17の上端から掴み長さL以上離れた位置で連結(接続)させてもよい。この場合、フランジ50bの上端と矢板受けフランジ17の上端とを一致させた状態で、矢板受けフランジ17をフランジ50bに取り付けることができるため、バイブロハンマのチャックで鋼矢板50と矢板受けフランジ17とを同時に掴むことができる。これにより、打設時に取付け治具17cに加わる荷重を軽減することができるため、取付け治具17cの強度を低減することができる。したがって、取付け治具17cとして、例えば、ボルトを用いる場合、ボルトの本数および径等を低減することができ、コスト低減および施工性の向上を図ることができる。
 なお、チャックの掴み長さLに相当する長さを有する長辺と、チャック幅Wに相当する長さを有する短辺とで形成された、短形領域(図8に示す二点鎖線)に、取付け治具17cまたはウォータージェット管16が配置されると、バイブロハンマのチャックが鋼矢板50および矢板受けフランジ17を掴むことができない。そのため、取付け治具17cおよびウォータージェット管16は、図8に示すように、上記の短形領域を除く領域に配置される。なお、チャック幅Wは、例えば、200mmであり、チャックの掴み長さLは、上述のように、例えば400~500mmである。
(第2実施形態)
 次に、本発明の第2実施形態に係る鋼矢板の地中変形防止装置20について説明する。なお、上述した構成要素と同一の構成要素については、同一の符号を付すことにより以下での説明を省略する。
 図9は、本発明の第2実施形態に係る鋼矢板の地中変形防止装置20を示す斜視図である。本第2実施形態に係る鋼矢板の地中変形防止装置20では、矢板受けフランジ17が、上部矢板受けフランジ17aと下部矢板受けフランジ17bとに分割されている。
 地中変形防止装置20では、図9に示すように、受働面フランジ18は、下部矢板受けフランジ17bに対向する位置に配置される。このとき、鋼矢板のフランジ(図9において不図示)に作用する土圧を確実に受働面フランジ18に伝えるために、下部矢板受けフランジ17bの高さは、受働面フランジ18の高さと実質的に同一であることが好ましい。また、下部矢板受けフランジ17bの高さは、鋼矢板の変形が顕著に発生する範囲(すなわち、鋼矢板の下端部)を確実に網羅するように設定されることが好ましい。
 上述のように、地盤条件や打設方法等にも左右されるが、一般に、鋼矢板の変形は、鋼矢板の下端から、鋼矢板全長(鋼矢板の高さ)の1/10の長さの範囲で、顕著に発生する。このため、下部矢板受けフランジ17b及び受働面フランジ18の高さを鋼矢板全長の1/10の長さ以上とすることが好ましい。例えば、鋼矢板全長が20mの場合、下部矢板受けフランジ17b及び受働面フランジ18の高さは、2m以上であることが好ましい。
 地中変形防止装置20では、ウォータージェット管16を配設する場合、矢板受けフランジ17が上部矢板受けフランジ17aと下部矢板受けフランジ17bとに分割されているので、ウォータージェット管16は、ウェブ材19に配設される。このとき、ウォータージェット管16の下端から噴出する水16aが平面的に鋼矢板と地中変形防止装置20全体に行きわたるよう、鋼矢板のフランジに近い位置に、ウォータージェット管16を取り付けることが好ましい。
 また、地中変形防止装置20では、矢板受けフランジ17が上部矢板受けフランジ17aと下部矢板受けフランジ17bとに分割されているので、装置全体の重量、および地盤と接する面の面積を軽減することができ、製造コストの低減及び施工性の向上を図ることができる。
 図10は、図9に示す地中変形防止装置20を鋼矢板50に取り付けた状態を示す斜視図である。上述したように、本第2実施形態に係る地中変形防止装置20では、第1実施形態に係る地中変形装置10に比べて、装置重量、および地盤と接する面の面積が軽減されるので、打設時の荷重も軽減される。したがって、本第2実施形態に係る地中変形防止装置20では、第1実施形態に係る地中変形防止装置10に比べて、製造コストの低減、および施工性の向上を図ることができる。
 なお、図9および図10に示す地中変形防止装置20では、上部矢板受けフランジ17aの上端と、ウェブ材19の上端とが一致するように、ウェブ材19を上部矢板受けフランジ17aに連結させている。しかしながら、図11に示すように、上部矢板受けフランジ17aの上端を材軸方向Zに延長させて、ウェブ材19を上部矢板受けフランジ17aの上端からチャックの掴み長さL以上離れた位置で連結させてもよい。
 この場合、フランジ50bの上端と上部矢板受けフランジ17aの上端とを一致させた状態で、バイブロハンマのチャックで鋼矢板50と上部矢板受けフランジ17aとを同時に掴むことができる。これにより、打設時に取付け治具17cに加わる荷重を軽減することができるため、取付け治具17cの強度を低減することができる。したがって、取付け治具17cとして、例えば、ボルトを用いる場合、ボルトの本数および径等を低減することができ、コスト低減を図ることができる。
 なお、チャックの掴み長さLに相当する長さを有する長辺と、チャック幅Wに相当する長さを有する短辺とで形成された、短形領域(図11における二点鎖線)に、取付け治具17cが配置されると、バイブロハンマのチャックが鋼矢板50および上部矢板受けフランジ17aを掴むことができない。そのため、取付け治具17cは、上記の短形領域を除く領域に配置される。
(第3実施形態)
 次に、本発明の第3実施形態に係る連続壁の地中変形防止装置30について説明する。なお、上述した構成要素と同一の構成要素については、同一の符号を付すことにより以下での説明を省略する。
 図12は、本発明の第3実施形態に係る連続壁の地中変形防止装置30を示す斜視図である。地中変形防止装置30は、連続壁(連結された複数の鋼矢板)を打設するため、壁体方向Xに隣り合う2つの地中変形防止装置10、およびこれらの地中変形防止装置10を連結する上部連結板31を備える。上部連結板31は、隣り合う2つの地中変形防止装置10のうち、一方の地中変形防止装置10のウェブ材19の頭部(上部)と、他方の地中変形防止装置10のウェブ材19の頭部(上部)とを連結(接続)するように配置される。
 地中変形防止装置30では、連結された複数の鋼矢板を同時に打設することができるため、施工速度を速くすることができる。また、隣り合う2つの地中変形防止装置10を連結することにより、施工時の安定性を確保することができる。この際、隣り合う2つの地中変形防止装置10の受働面フランジ18を一体化して連結すれば、より打設時の安定性を確保することができる。
 地中変形防止装置30を用いて、連結された複数の鋼矢板(複数の鋼矢板で構成される連続壁)を打設する場合、上部連結板31をバイブロハンマで直接掴んで、鋼矢板を打設してもよい。また、図13に示すように、上部連結板31に、上部連結板31の上端から上方へ突出する把持部31aを設け、把持部31aをバイブロハンマで掴んで打設してもよい。
 図13に、上部連結板31に把持部31aを設けた地中変形防止装置30の斜視図を示す。上部連結板31と鋼矢板とで囲まれた空間が狭く、バイブロハンマのチャックが挿入困難なときには、図13に示すように、上部連結板31に把持部31aを設けることにより、上部連結板31の上端から突出した把持部31aを掴んで打設することができる。
 なお、本第3実施形態に係る地中変形防止装置30は、2つの地中変形防止装置10の代わりに、2つの地中変形防止装置20を備えてもよい。この場合、2つの地中変形防止装置10を備える場合に比べて、製造コストの低減および施工性の向上を図ることができる。
 また、地中変形防止装置30は、地中変形防止装置10および地中変形防止装置20の両方を備えてもよい。
 上述したように、地中変形防止装置10または地中変形防止装置20を、鋼矢板のフランジ面のうち、鋼矢板が地中で反る側の面に配置することにより、鋼矢板が地中で反る方向に地中変形防止装置10または地中変形防止装置20の強軸方向を一致させることが好ましい。すなわち、鋼矢板がハット形鋼矢板の場合、鋼矢板の背面領域側のフランジ面に地中変形防止装置10または20を取り付けることが好ましい。一方、鋼矢板がU形鋼矢板の場合、鋼矢板の閉塞領域側のフランジ面に地中変形防止装置10または20を取り付けることが好ましい。
 したがって、本第3実施形態に係る地中変形防止装置30も、鋼矢板のフランジ面のうち、鋼矢板が地中で反る側の面に配置されることが好ましい。
 図14Aは、地中変形防止装置30を2枚のハット形鋼矢板50で構成される連続壁50’に取り付けた状態を示す平面図である。図14Aに示すように、地中変形防止装置30は、連続壁50’を構成するハット形鋼矢板50のフランジ面のうち、ハット形鋼矢板50が地中で反る側に取り付けられている。
 図14Bは、地中変形防止装置30を2枚のU形鋼矢板60で構成される連続壁60’に取り付けた状態を示す平面図である。図14Bに示すように、隣り合う2つのU形鋼矢板60は、これらの断面の向きが互いに対向するように配置される。また、図14Bでは、上部連結板31に把持部31aが設けられている。図14Bに示すように、地中変形防止装置30を2つのU形鋼矢板60で構成される連続壁60’に取り付ける場合、U形鋼矢板60が地中で反る方向と、地中変形防止装置30の強軸方向とが一致するように、地中変形防止装置30を配置する。すなわち、地中変形防止装置30の矢板受けフランジ17が、U形鋼矢板60のフランジ面のうち、U形鋼矢板60が地中で反る側に配置される。
 図14Aおよび図14Bには、連続壁が2枚の鋼矢板で構成される場合を示したが、3枚以上の鋼矢板50または鋼矢板60で連続壁が構成される場合においても、地中変形防止装置30を適用することができる。すなわち、連続壁を構成する鋼矢板50または鋼矢板60の枚数に対応する地中変形防止装置10(または地中変形防止装置20)を用意し、隣り合う2つの地中変形防止装置10を上部連結板31で連結すればよい。
 なお、地中変形防止装置30を用いて複数の鋼矢板を同時に打設する場合、地中変形防止装置30および鋼矢板の重量が、打設重機の載荷荷重能力内である必要がある。したがって、地中変形防止装置30および鋼矢板の重量が打設重機の載荷荷重能力内となるように、例えば、同時に打設される鋼矢板の枚数を設定する必要がある。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲がこれらの実施形態のみに限定されるものではない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 例えば、第3実施形態に係る地中変形防止装置30において、上部連結板31または把持部31aをバイブロハンマで掴んで打設する場合、バイブロハンマからの荷重を鋼矢板に伝えるためには、鋼矢板のフランジに取り付けられる取付け治具17cの強度を、打設で発生する剪断力に耐えられる強度にする必要がある。取付け治具17cとして、例えば、ボルトを使用する場合、打設で発生する剪断力に耐えられる強度を確保するために、ボルトの数および径等を増大する必要がある。その結果、経済性が阻害される場合が生じる。そのため、地中変形防止装置30に作用する地盤からの打設抵抗よりも、鋼矢板に作用する地盤からの打設抵抗が大きくなる場合は、地中変形防止装置10または地中変形防止装置20を、それぞれの鋼矢板に独立して取り付け、鋼矢板を、直接、バイブロハンマで掴んで打設する方法が好ましい。
 図15Aおよび図15Bは、地中変形防止装置10を2枚の鋼矢板50のそれぞれに取り付けた状態を示す平面図である。図15Aは、鋼矢板がハット形鋼矢板50である場合を示し、図15Bは、鋼矢板がU形鋼矢板60である場合を示す。図15Aおよび図15Bに示すように、それぞれの鋼矢板に地中変形防止装置10を取り付けて打設してもよい。また、それぞれの鋼矢板に地中変形防止装置20を取り付けて打設してもよい。
 また、図15Aでは、2枚の鋼矢板50を同時に打設する場合を示したが、3枚以上の鋼矢板50を同時に打設する場合も同様に、地中変形防止装置10または20を各鋼矢板50に取り付けて打設すればよい。
 また、図15Bでは、2枚の鋼矢板60を同時に打設する場合を示したが、3枚以上の鋼矢板60を同時に打設する場合も同様に、地中変形防止装置10または20を各鋼矢板60に取り付けて打設すればよい。
 アースオーガー等の特殊重機を使用せず、かつ現場で簡易に、打設時に地中で発生する鋼矢板の変形を防止して、鋼矢板の地盤中での鉛直精度を維持することができる、鋼矢板の地中変形防止装置および地中変形防止方法、および連続壁の地中変形防止装置を提供することができる。
 10   地中変形防止装置
 11   離脱防止治具
 16   ウォータージェット管
 17   矢板受けフランジ
 17a  上部矢板受けフランジ
 17b  下部矢板受けフランジ
 17c  取付け治具
 18   受働面フランジ
 19   ウェブ材
 19a  吊り孔
 20   地中変形防止装置
 30   地中変形防止装置
 31   上部連結板
 31a  把持部
 50   ハット形鋼矢板
 50’  連続壁
 50a  嵌合継手
 50b  フランジ
 50c  ウェブ
 50d、50d’  ハット形鋼矢板の下端
 60   U形鋼矢板
 60’  連続壁
 70   鋼管杭
 70a  継手
 90   地盤
 100  鋼矢板
 100a 継手
 100’ 鋼矢板壁
 110  導梁
 120  導杭
 L    掴み長さ
 P    土圧差
 WP1、WP2  反り

Claims (17)

  1.  鋼矢板のフランジに沿って取り付けられ、前記鋼矢板とともに打設され、打設終了後、前記鋼矢板から取り外されて、地中から引き抜かれる、鋼矢板の地中変形防止装置であって、
     前記鋼矢板のフランジに取り付けられる矢板受けフランジと;
     前記矢板受けフランジに対向するように配置される受働面フランジと;
     前記矢板受けフランジと前記受働面フランジとを連結するウェブ材と;
     前記矢板受けフランジの上端部に設けられる取付け治具と;
    を備えることを特徴とする鋼矢板の地中変形防止装置。
  2.  前記受働面フランジと、前記矢板受けフランジとが実質的に平行であることを特徴とする請求項1に記載の鋼矢板の地中変形防止装置。
  3.  前記受働面フランジが、前記矢板受けフランジの下端部に対向するように配置されていることを特徴とする請求項1又は2に記載の鋼矢板の地中変形防止装置。
  4.  前記受働面フランジの高さが、打設時における、前記矢板受けフランジの下端から地盤表面までの高さ以下であることを特徴とする請求項1~3のいずれか一項に記載の鋼矢板の地中変形防止装置。
  5.  前記矢板受けフランジまたは前記ウェブ材の少なくとも一方にウォータージェット管が取り付けられていることを特徴とする請求項1~4のいずれか一項に記載の鋼矢板の地中変形防止装置。
  6.  前記ウェブ材の上端と、前記矢板受けフランジの上端との間に所定の間隔が設けられるように、前記ウェブ材が配置されていることを特徴とする請求項1~5のいずれか一項に記載の鋼矢板の地中変形防止装置。
  7.  前記矢板受けフランジが、上部矢板受けフランジと下部矢板受けフランジに分割されていることを特徴とする請求項1又は2に記載の鋼矢板の地中変形防止装置。
  8.  前記受働面フランジが、前記下部矢板受けフランジに対向するように配置されていることを特徴とする請求項7に記載の鋼矢板の地中変形防止装置。
  9.  前記受働面フランジの高さが、打設時における、前記下部矢板受けフランジの下端から地盤表面までの高さ以下であることを特徴とする請求項7または8に記載の鋼矢板の地中変形防止装置。
  10.  前記ウェブ材にウォータージェット管が取り付けられていることを特徴とする請求項7~9のいずれか一項に記載の鋼矢板の地中変形防止装置。
  11.  前記ウェブ材の上端と、前記上部矢板受けフランジの上端との間に所定の間隔が設けられるように、前記ウェブ材が配置されていることを特徴とする請求項7~10のいずれか一項に記載の鋼矢板の地中変形防止装置。
  12.  前記受働面フランジが、前記受働面フランジの厚さ方向から見た場合に、四角形であり、かつ、前記四角形の2本の対角線のうち、一方の対角線の方向が前記鋼矢板の高さ方向と一致するように配置されていることを特徴とする請求項1~11のいずれか一項に記載の地中変形防止装置。
  13.  前記取付け治具がボルトであることを特徴とする請求項1~12のいずれか一項に記載の鋼矢板の地中変形防止装置。
  14.  請求項1~13のいずれか一項に記載の鋼矢板の地中変形防止装置を複数備える、連続壁の地中変形防止装置であって、
     隣り合う2つの前記鋼矢板の地中変形防止装置のうち、一方の前記鋼矢板の地中変形防止装置のウェブ材と、他方の前記鋼矢板の地中変形防止装置のウェブ材とを連結する上部連結板を備え、
     前記上部連結板の一方の側端が、前記一方の前記鋼矢板の地中変形防止装置のウェブ材の上部に接続され、
     前記上部連結板の他方の側端が、前記他方の前記鋼矢板の地中変形防止装置のウェブ材の上部に接続されていることを特徴とする連続壁の地中変形防止装置。
  15.  前記上部連結板に、前記上部連結板の上端から上方へ突出する把持部が設けられていることを特徴とする請求項14に記載の連続壁の地中変形防止装置。
  16.  鋼矢板を打設する際、鋼矢板の地中での変形を防止する方法であって、
     鋼矢板のフランジに、請求項1~13のいずれか一項に記載の鋼矢板の地中変形防止装置を取り付ける第1工程と;
     前記鋼矢板、および前記鋼矢板の地中変形防止装置を打設する第2工程と;
     前記鋼矢板の地中変形防止装置を前記鋼矢板から取り外す第3工程と;
     前記鋼矢板の地中変形防止装置を地中から引き抜く第4工程と;
    を有することを特徴とする鋼矢板の地中変形防止方法。
  17.  前記第1工程では、
     前記鋼矢板のフランジの下端部の両側に配置された離脱防止治具の間に、前記矢板受けフランジの下端部を挿入する
    ことを特徴とする請求項16に記載の鋼矢板の地中変形防止方法。
PCT/JP2014/065230 2013-07-03 2014-06-09 鋼矢板の地中変形防止装置及び地中変形防止方法、及び連続壁の地中変形防止装置 WO2015001917A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015525112A JP5896082B2 (ja) 2013-07-03 2014-06-09 鋼矢板の地中変形防止装置及び地中変形防止方法、及び連続壁の地中変形防止装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013139903 2013-07-03
JP2013-139903 2013-07-03

Publications (1)

Publication Number Publication Date
WO2015001917A1 true WO2015001917A1 (ja) 2015-01-08

Family

ID=52143501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065230 WO2015001917A1 (ja) 2013-07-03 2014-06-09 鋼矢板の地中変形防止装置及び地中変形防止方法、及び連続壁の地中変形防止装置

Country Status (2)

Country Link
JP (1) JP5896082B2 (ja)
WO (1) WO2015001917A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114837194A (zh) * 2022-05-15 2022-08-02 中冶建工集团有限公司 一种提高pc组合桩稳定性的施工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132806U (ja) * 1975-04-17 1976-10-26
JPS62138737U (ja) * 1986-02-22 1987-09-01
JPH08170332A (ja) * 1994-12-16 1996-07-02 Fujita Corp シートパイルの打設補助装置及び打設方法
JP2002038481A (ja) * 2000-05-18 2002-02-06 Taisei Corp 地中打設鋼材の打設方法
JP2005299202A (ja) * 2004-04-12 2005-10-27 Nippon Steel Corp 鋼矢板とそれを用いた土留め構造及び土留め構造の構築方法
JP2008248503A (ja) * 2007-03-29 2008-10-16 Nippon Steel Corp 鋼矢板および鋼矢板基礎構造
JP2008267069A (ja) * 2007-04-24 2008-11-06 Nippon Steel Corp 地中連続壁用鋼材、地中連続壁および地中連続壁の構築方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132806U (ja) * 1975-04-17 1976-10-26
JPS62138737U (ja) * 1986-02-22 1987-09-01
JPH08170332A (ja) * 1994-12-16 1996-07-02 Fujita Corp シートパイルの打設補助装置及び打設方法
JP2002038481A (ja) * 2000-05-18 2002-02-06 Taisei Corp 地中打設鋼材の打設方法
JP2005299202A (ja) * 2004-04-12 2005-10-27 Nippon Steel Corp 鋼矢板とそれを用いた土留め構造及び土留め構造の構築方法
JP2008248503A (ja) * 2007-03-29 2008-10-16 Nippon Steel Corp 鋼矢板および鋼矢板基礎構造
JP2008267069A (ja) * 2007-04-24 2008-11-06 Nippon Steel Corp 地中連続壁用鋼材、地中連続壁および地中連続壁の構築方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114837194A (zh) * 2022-05-15 2022-08-02 中冶建工集团有限公司 一种提高pc组合桩稳定性的施工方法

Also Published As

Publication number Publication date
JP5896082B2 (ja) 2016-03-30
JPWO2015001917A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5825644B2 (ja) 桟橋構築方法
WO2013008905A1 (ja) 組合せ鋼矢板、地中連続壁、及び組合せ鋼矢板の再利用方法
WO2010089985A1 (ja) 基礎用鋼製部材、基礎用鋼製部材の打設方法、及び基礎用鋼製連続壁
JP2007297826A (ja) 橋脚の鋼板を用いた補強方法
JP5896082B2 (ja) 鋼矢板の地中変形防止装置及び地中変形防止方法、及び連続壁の地中変形防止装置
KR101672359B1 (ko) 지반 보강용 앙카 파일 시공방법
JP4893391B2 (ja) 鋼管矢板の腹起こし材、腹起こし、腹起こしを用いた鋼管矢板及びその施工方法
JP5693172B2 (ja) トンネル脚部補強構造
JP6138192B2 (ja) 鋼管杭施工方法
JP2007107218A (ja) 鋼矢板把持装置および鋼矢板打設装置
JP6710999B2 (ja) 既設構造物の仮受け工法
JP5169957B2 (ja) 杭の施工方法及び杭の施工治具
JP7339186B2 (ja) 六角形セグメント
JP5121028B2 (ja) ライナープレート及び深礎工法
JP2019056231A (ja) 岸壁構造
JP7102228B2 (ja) コンクリート矢板部材、土留め壁および土留め壁の構築方法
JP2017190635A (ja) 鋼管杭の施工方法
JP6269184B2 (ja) 組み合わせ鋼矢板、鋼矢板壁、および組み合わせ鋼矢板の施工方法
KR20200024563A (ko) 시공용이성을 향상시킨 무용접 phc파일 연결구조
JP2019070283A (ja) セグメント、埋設構造物及び埋設構造物の構築方法
KR102207398B1 (ko) 자켓구조물의 해상 설치를 위한 사전 지반 개량 공법 및 해상 파일 시공을 위한 사전 지반 개량 공법
JP5825232B2 (ja) 組合せ鋼製壁および組合せ鋼製壁の設計方法
KR102441971B1 (ko) 횡변위 제어용 윙을 갖는 해상 지지구조물의 시공방법
JP2019183437A (ja) 腹起し設置具及び腹起し設置構造
JP4196289B2 (ja) 杭体の施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525112

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820313

Country of ref document: EP

Kind code of ref document: A1