WO2018117269A1 - ハット形鋼矢板 - Google Patents

ハット形鋼矢板 Download PDF

Info

Publication number
WO2018117269A1
WO2018117269A1 PCT/JP2017/046264 JP2017046264W WO2018117269A1 WO 2018117269 A1 WO2018117269 A1 WO 2018117269A1 JP 2017046264 W JP2017046264 W JP 2017046264W WO 2018117269 A1 WO2018117269 A1 WO 2018117269A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
sheet pile
shaped
pair
web
Prior art date
Application number
PCT/JP2017/046264
Other languages
English (en)
French (fr)
Inventor
恩田 邦彦
正嗣 道野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2018117269A1 publication Critical patent/WO2018117269A1/ja
Priority to PH12019501449A priority Critical patent/PH12019501449A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel

Definitions

  • the present invention relates to a hat-shaped steel sheet pile (cold hat-shaped steel sheet pile) formed by cold working and placed in the ground to constitute a wall.
  • the size of the steel sheet pile such as the number of models and / or the width of the steel sheet pile is limited due to restrictions on factory facilities. For this reason, the cross-sectional shape of the hat-shaped steel sheet pile may not always be optimal and reasonable for the structural performance required at each construction site. In other words, in the case of a hat-shaped steel sheet pile formed by hot rolling, a material closer to the required structural performance is selected from existing sizes.
  • Some hat-shaped steel sheet piles are formed by cold working (bending) (see, for example, Patent Document 1). Such a steel sheet pile has a relatively high degree of freedom in adjusting its size, so it is possible to provide a hat-shaped steel sheet pile having a cross-sectional shape close to the optimum for the structural performance required for each construction site. .
  • the arm portion When comparing the web portion and the arm portion, the arm portion is provided with a joint at the tip thereof, so that the cross-sectional rigidity is larger than that of the web portion, so that early buckling is unlikely to occur.
  • the web portion has a small cross-sectional rigidity.
  • the sheet thickness is reduced, in the hat-shaped steel sheet pile formed by cold working that has substantially the same sheet thickness at all sites, the web portion is most likely to be the weak spot. For this reason, when the compressive stress by a bending moment acts on a web part, buckling arises at an early stage. As a result, there is a risk that the wall will collapse (decrease in deformation performance) at a load level (bending moment) smaller than the expected yield strength (yield moment) or total plastic moment.
  • FIG. 1 of patent document 1 there exists a bending part bent in U shape or V shape in the center of a web part.
  • the bent portion is formed for the mark at the center of the plate in the cold sheet pile manufacturing process.
  • the bent portion is a very small dent, and its size is much smaller than a protrusion-shaped portion in the present invention described later.
  • the target action of the bent portion is completely different from the target action of the projection-shaped portion of the present invention.
  • the present invention has been made to solve the above-described problems, and prevents the early buckling in the web portion of the hat-shaped steel sheet pile and improves the deformation performance, thereby reducing the thickness of the hat-shaped steel sheet pile having a large cross-sectional shape.
  • the object is to provide a hat-shaped steel sheet pile with improved cross-sectional performance and excellent economy and production efficiency.
  • the hat-shaped steel sheet pile according to the present invention includes a web portion, a pair of flange portions, a pair of arm portions, and a pair of joint portions.
  • a pair of flange portions are formed at both ends of the web portion, and an arm portion constituting the pair of arm portions is formed at the end portions of the flange portions constituting the pair of flange portions.
  • the joint part which comprises a pair of joint part is provided in the front-end
  • the said hat-shaped steel sheet pile has the protrusion-shaped part which satisfies the following formula
  • V height of projection-shaped portion (mm)
  • W width of projection-shaped portion base (mm) (W ⁇ 5 ⁇ V)
  • n number of projection-shaped portions
  • H height of steel sheet pile step surface (Mm)
  • B Steel sheet pile web width (mm)
  • t Steel sheet pile web thickness (mm)
  • ⁇ y Yield strain of steel sheet pile
  • the hat-shaped steel sheet pile according to the present invention includes a web portion, a pair of flange portions, a pair of arm portions, and a pair of joint portions.
  • a pair of flange portions are formed at both ends of the web portion, and an arm portion constituting the pair of arm portions is formed at the end portions of the flange portions constituting the pair of flange portions.
  • the joint part which comprises a pair of joint part is provided in the front-end
  • the said hat-shaped steel sheet pile has the protrusion-shaped part which satisfies the following formula
  • V height of projection-shaped portion (mm)
  • W width of projection-shaped portion base (mm) (W ⁇ 5 ⁇ V)
  • n number of projection-shaped portions
  • H height of steel sheet pile step surface (Mm)
  • B Steel sheet pile web width (mm)
  • t Steel sheet pile web thickness (mm)
  • ⁇ y Yield strain of steel sheet pile
  • the hat-shaped steel sheet pile according to the present invention includes a web portion, a pair of flange portions, a pair of arm portions, and a pair of joint portions.
  • a pair of flange portions are formed at both ends of the web portion, and an arm portion constituting the pair of arm portions is formed at the end portions of the flange portions constituting the pair of flange portions.
  • the joint part which comprises a pair of joint part is provided in the front-end
  • the said hat-shaped steel sheet pile has the protrusion-shaped part which satisfies the following formula
  • V height of projection-shaped portion (mm)
  • W width of projection-shaped portion base (mm) (W ⁇ 5 ⁇ V)
  • n number of projection-shaped portions
  • H height of steel sheet pile step surface (Mm)
  • B Steel sheet pile web width (mm)
  • t Steel sheet pile web thickness (mm)
  • ⁇ y Yield strain of steel sheet pile
  • an optimal steel sheet pile cross-sectional performance (deformation performance) can be obtained by providing a predetermined protrusion-shaped portion on the web portion.
  • a hat-shaped steel sheet pile 1 is a cold hat-shaped steel sheet pile manufactured by cold working (bending). As shown in FIG. 1, the hat-type steel sheet pile 1 includes a web portion 3, a pair of flange portions 5, a pair of arm portions 7, a pair of joint portions 9, and a protruding shape portion 11.
  • a pair of flange portions 5 are formed at both ends of the web portion 3. Specifically, the flange part 5 is provided in each edge part of the web part 3 in the width direction x of the hat-type steel sheet pile 1.
  • Arm portions 7 are formed at the end portions of the flange portions 5 constituting the pair of flange portions 5. Specifically, the arm portion 7 is provided at the outer end portion of the flange portion 5 in the width direction x. The inner end portion of the flange portion 5 in the width direction x is continuous with the end portion of the web portion 3 in the width direction x.
  • a joint portion 9 is provided at the tip of the arm portion 7 constituting the pair of arm portions 7. Specifically, the joint portion 9 is provided at the outer end portion of the arm portion 7 in the width direction x. The inner end portion of the arm portion 7 in the width direction x is continuous with the end portion of the flange portion 5 in the width direction x.
  • one joint part 9 and the other joint part 9 constituting the pair of arm parts 7 may be asymmetric in a cross-sectional view in the width direction x and the height direction y.
  • the hat-type steel sheet pile 1 has a protruding portion 11 on the web portion 3 over the entire length of the steel sheet pile. Specifically, the protrusion-shaped part 11 is provided on the web part 3. The protrusion-shaped part 11 is a part protruding in the height direction y of the hat-type steel sheet pile 1. In this embodiment, the protrusion-shaped part 11 protrudes to the side (inside) where the flange part 5 is arranged in the height direction y.
  • the protrusion-shaped part 11 extends over the entire length of the hat-type steel sheet pile 1 in the web part 3.
  • the length of the protruding portion 11 in the length direction z is the same as the length of the hat-type steel sheet pile 1 in the length direction z.
  • the length direction z is a direction orthogonal to the width direction x and the height direction y.
  • the protrusion-shaped part 11 satisfies the following expressions (1) and (2).
  • V height of projection-shaped portion (mm)
  • W width of projection-shaped portion base (mm) (W ⁇ 5 ⁇ V)
  • n number of projection-shaped portions
  • H height of steel sheet pile step surface (Mm)
  • B Steel sheet pile web width (mm)
  • t Steel sheet pile web thickness (mm)
  • ⁇ y Yield strain of steel sheet pile
  • V (height of the protrusion-shaped portion 11) is the length (height) of the protrusion-shaped portion 11 in the height direction y.
  • the protrusion-shaped portion root is an outer end portion of the protrusion-shaped portion 11 in the width direction x in a cross-sectional view in the width direction x and the height direction y. Therefore, W (the width of the protrusion-shaped portion base) is equal to the length (width) of the protrusion-shaped portion 11 in the width direction x.
  • H (steel sheet pile step height) is the height of the hat-type steel sheet pile 1 in the height direction y. That is, H is equal to the maximum length from the web part 3 to the flange part 7 in the height direction y.
  • B steel sheet pile web width
  • t plate thickness of the steel sheet pile web
  • Formula (1) prescribes
  • Formula (2) prescribes
  • a hat-shaped steel sheet pile with a value defined by the formula (2) smaller than 1.0 is of a level that collapses due to elastic buckling before reaching the yield moment.
  • Fig. 3 is a graph showing the analysis results.
  • the vertical axis represents (working load / yield load).
  • the horizontal axis shows the deformation performance.
  • the case of yielding at the same acting load as the yield load is expressed as deformation performance 1.0.
  • the deformation performance is 0.79 (less than 1.0, elastic buckling).
  • the deformation performance is 1.67. It can be seen that the hat-shaped steel sheet pile 1 provided with the protrusion-shaped portion 11 has improved deformation performance and the maximum load exceeds the yield load level.
  • the deformation performance can be increased by providing the web portion 3 with the projection-shaped portion 11, and therefore, the next effective height of the projection-shaped portion 11 was examined. Specifically, the increase in deformation performance was investigated when (height V of the protrusion-shaped portion) / (web width B) was changed from 0.02 to 0.135.
  • FIG. 4 shows the result of this study.
  • the horizontal axis represents (height V of the protruding portion) / (web width B).
  • the vertical axis indicates the deformation performance increment rate.
  • the increment rate of the deformation performance tends to increase.
  • the required height of the protrusion-shaped portion 11 is defined by the formula (1).
  • the shape of the hat-shaped steel sheet pile 1 that is the subject of the present invention is close to a shape in which both ends of a linear plate element are bent in a cross-sectional view in the width direction x and the height direction y. That is, the web part 3 which becomes a weak spot location corresponds to the central linear part, and the flange part 5 corresponds to a part where both ends of the plate element are bent. Therefore, as a structure having a shape similar to the shape of the hat-shaped steel sheet pile 1, a square steel pipe having a square cross section as shown in FIG. That is, paying attention to one side of the square steel pipe, a square is formed by bending both ends of the linear plate element to 90 °.
  • a square steel pipe is similar to a hat-shaped steel sheet pile in that it is formed by bending both ends of a straight plate element.
  • the difference between the hat-shaped steel sheet pile 1 and the square steel pipe is the bending angle of the plate-like element at the end of the web portion 3.
  • the square steel pipe is bent at a bending angle of 90 °
  • the hat-shaped steel sheet pile 1 is bent at a bending angle smaller than 90 °. Since square steel pipes are basically square, the cross-sectional width and the cross-sectional height are equivalent.
  • the hat-shaped steel sheet pile 1 it is necessary to assume a case where the length (B) of the web portion 3 and the height (H) of the steel sheet pile are different.
  • the deformation performance evaluation formula (7) By providing the protrusion-shaped part 11 on the web part 3, the cross-sectional rigidity of the web part 3 is increased, so that the deformation performance of the hat-shaped steel sheet pile 1 is improved.
  • This effect can be expressed in the deformation performance evaluation formula (7) by apparently increasing the plate thickness t. Therefore, assuming that the web plate thickness increasing effect due to the provision of the protrusion-shaped portion 11 is ⁇ t, the deformation performance evaluation formula is expressed by Expression (8).
  • Fig. 8 shows a comparison between the deformation performance evaluation formula (10) and the analysis results.
  • the wall structure using the hat-shaped steel sheet pile 1 is roughly divided into a temporary wall and a permanent wall (permanent structure).
  • a steel sheet pile is designed assuming behavior within an elastic range (below the yield load level) (referred to as elastic design).
  • the permanent wall (permanent structure) has a long service period, and may be designed in the event of a large earthquake. In that case, it is designed assuming behavior in the plastic region after reaching the yield load (referred to as plastic design).
  • the upper and lower limit values of the deformation performance ⁇ when used for a temporary wall (applied to elastic design) were examined.
  • the deformation performance ⁇ of the steel sheet pile should be 1.5.
  • the protrusion-shaped portion 11 is provided on the web portion 3 so as to satisfy the formula (2) (and the formula (1)).
  • the hat-shaped steel sheet pile according to the present embodiment is excellent in deformation performance by providing the web portion 3 with the protrusion-shaped portion 11 that satisfies the equations (1) and (2). As a result, even when the yield load is exceeded when used for a temporary wall, the hat-shaped steel sheet pile does not collapse and does not cause the primary collapse of the ground.
  • the hat-shaped steel sheet pile 1 is applied as a temporary wall, but in the present embodiment, it is applied as a permanent wall (permanent structure) (application to plastic design).
  • the value of deformation performance ⁇ was examined.
  • the level of deformation performance required for steel sheet piles varies depending on the structure and environment.
  • the ability to withstand the total plastic moment load of the steel sheet pile is essential.
  • the web portion 3 is set so as to satisfy the expression (3) (and the expression (1)) so that the deformation performance ⁇ of the hat-shaped steel sheet pile 1 satisfies 2.0 ⁇ ⁇ ⁇ 10.
  • the protrusion-shaped portion 11 may be provided in
  • the hat-shaped steel sheet pile of the present embodiment is excellent in deformation performance by providing the web portion 3 with the protruding portion 11 that satisfies the equations (1) and (3). As a result, the hat-shaped steel sheet pile does not collapse and does not cause the primary collapse of the ground even if the yield load is exceeded when it is used for a permanent wall (permanent structure).
  • This embodiment relates to a steel sheet pile suitable for application to road structures and harbor structures.
  • the plastic structure is designed for the main structure of road structure and port structure.
  • Equation (4) (and Equation (1)) is set so that the deformation performance ⁇ of the hat-shaped steel sheet pile 1 is 2.0 ⁇ ⁇ ⁇ 4.0. What is necessary is just to make it provide the protrusion-shaped part 11 in the web part 3 so that it may be satisfied.
  • the hat-shaped steel sheet pile according to the present embodiment is excellent in deformation performance by providing the web portion 3 with the protruding shape portion 11 that satisfies the equations (1) and (4).
  • the hat-shaped steel sheet pile will not collapse even if it exceeds the yield load when used in road structures or harbor structures, and it satisfies the upper limit of deformation performance required for road structures and harbor structures. ing.
  • the width W of the base of the protrusion-shaped part 11 is smaller than five times the height V of the protrusion-shaped part 11 (W ⁇ 5 ⁇ V).
  • W ⁇ 5 ⁇ V is as follows.
  • V ⁇ B / 16 is defined by the equation (1).
  • W 5 ⁇ V (exceeding the maximum width) is substituted into the equation (1), W ⁇ B ⁇ 5/16.
  • W 5 ⁇ V (exceeding the maximum width) is substituted into the equation (1), W ⁇ B ⁇ 5/16.
  • the base width W of the protrusion-shaped portion 11 occupies about 1/3 or more of the web width B.
  • the length of the web parallel part on both sides of the protrusion-shaped part 11 in the width direction x is less than the root width W.
  • the shape of the protrusion-shaped portion 11 is V-shaped as shown in FIGS.
  • the shape of the protrusion-shaped part 11 in the present invention is not limited to this.
  • the protrusion-shaped portion 11 may have an arcuate roundness. That is, it may be arcuate in a cross-sectional view in the width direction x and the height direction y. Further, the shape of the protrusion-shaped portion 11 may be trapezoidal.
  • the height V of the protrusion-shaped portions 11 need not be the same.
  • the height V of the plurality of protrusion-shaped portions 11 may be different.
  • the protruding direction of the protruding portion 11 is not limited to this.
  • the protrusion-shaped part 11 may protrude to the outer surface side of the web part 3, that is, the side where the flange part 5 is not arranged in the height direction y.
  • the protruding portion 11 is provided on the web portion 3.
  • the protruding portion 11 may be provided on the arm portion 7. You may provide the protrusion-shaped part 11 in the corner
  • FIG. The protrusion-shaped portion 11 may be provided at a corner portion that is a bending portion between the arm portion 7 and the flange portion 5.
  • the protruding portion 11 may be provided on the flange portion 5. In that case, you may attach to the center vicinity of the flange part 5.
  • FIG. The protruding portion 11 may be provided near the base of the flange portion 5.
  • the protrusion-shaped part 11 may be attached near the base of the arm part 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

本発明に係るハット形鋼矢板1は、ウェブ部3と、一対のフランジ部5と、一対のアーム部7と、一対の継手部9と、を有する。ウェブ部3の両端に一対のフランジ部5が形成され、一対のフランジ部5を構成するフランジ部5の端部に一対のアーム部7を構成するアーム部7が形成されるとともに、アーム部7の先端に一対の継手部9を構成する継手部9が設けられる。ハット形鋼矢板1において、ウェブ部3に、鋼矢板1の全長にわたって、以下の式(1)および式(2)を満足する突起形状部11を有することを特徴とするものである。 ここに、V:突起形状部の高さ(mm)、W:突起形状部付け根の幅(mm)(W<5×V)、n:突起形状部の数、H:鋼矢板段面高さ(mm)、B:鋼矢板ウェブ幅(mm)、t:鋼矢板ウェブの板厚(mm)、ε:鋼矢板の降伏ひずみ

Description

ハット形鋼矢板
 本発明は、冷間加工により成形され、地中に打設されて壁を構成するハット形鋼矢板(冷間ハット形鋼矢板)に関するものである。
 熱間圧延により成形されるハット形鋼矢板は、工場設備などの制約上、型式の数及び/又は鋼矢板幅などの鋼矢板のサイズが限られる。このため、当該ハット形鋼矢板の断面形状は、各施工現場で必要とされる構造性能に対し、必ずしも最適で合理的でないことがある。つまり、熱間圧延によって形成されるハット形鋼矢板の場合、既存のサイズの中から、必要とされる構造性能により近いものを選択することが行われている。
 ハット形鋼矢板には、冷間加工(曲げ加工)で成形されるものもある(例えば、特許文献1参照)。このような鋼矢板では、そのサイズを調整する自由度が比較的高いので、施工現場ごとに必要とされる構造性能に対し、最適に近い断面形状のハット型鋼矢板を提供することが可能である。
実開平4-108619号公報
 冷間加工(曲げ加工)により製造されるハット形鋼矢板の断面性能向上、製造能率向上を達成するためには、板厚を薄くして断面形状を大きくすることが有効である。しかしながら、冷間加工(曲げ加工)で成形される鋼矢板は、その製法上、ウェブ部、フランジ部、アーム部のいずれの部位においても、ほぼ同一の板厚となる。このため、板厚を薄くした場合、以下のような問題が生ずる。
 ハット形鋼矢板を地中に打設して壁構造を構成する際、壁体には土圧および水圧により発生する曲げモーメントが卓越して作用する。壁体に曲げモーメントが作用した場合、ハット形鋼矢板において最も大きな応力が作用する箇所は、最外縁および最内縁に位置するウェブ部およびアーム部である。
 ウェブ部とアーム部を比較すると、アーム部は、その先端部に継手が設けられていることから、ウェブ部に比べて断面剛性が大きくなるため早期の座屈は生じにくい。これに対して、ウェブ部は、断面剛性が小さい。板厚を薄くした場合、全ての部位でほぼ同一の板厚になる冷間加工で形成されるハット形鋼矢板では、ウェブ部は、弱点箇所に最もなりやすい。このため、曲げモーメントによる圧縮応力がウェブ部に作用した場合、早期に座屈が生じる。その結果、期待される降伏耐力(降伏モーメント)または全塑性モーメントよりも小さい荷重レベル(曲げモーメント)で、壁体が崩壊する危険性がある(変形性能の低下)。
 なお、特許文献1の図1を見ると、ウェブ部の中央にU字状又はV字状に屈曲した屈曲部がある。この屈曲部は、冷間矢板の製造工程において、板中心の目印のために形成されるものである。屈曲部は、ごくわずかな凹みであり、後述する本願発明における突起形状部に比較するとその大きさが格段に小さい。屈曲部の目的作用は、本願発明の突起形状部の目的作用とは全く異なるものである。
 本発明は、上述した課題を解決するためになされたものであり、ハット形鋼矢板のウェブ部における早期座屈を防止し、変形性能を高めることで、薄肉大断面形状のハット形鋼矢板の断面性能を向上し、経済性、製造能率に優れたハット形鋼矢板を提供することを目的としている。
 (1)本発明に係るハット形鋼矢板は、ウェブ部と、一対のフランジ部と、一対のアーム部と、一対の継手部と、を有する。ハット形鋼矢板には、ウェブ部の両端に一対のフランジ部が形成され、一対のフランジ部を構成するフランジ部の端部に一対のアーム部を構成するアーム部が形成されるとともに、アーム部の先端に一対の継手部を構成する継手部が設けられる。前記ハット形鋼矢板は、前記ウェブ部に、鋼矢板全長にわたって、以下の式(1)および式(2)を満足する突起形状部を有することを特徴とするものである。
Figure JPOXMLDOC01-appb-M000004
  ここに、V:突起形状部の高さ(mm)、W:突起形状部付け根の幅(mm)(W<5×V)、n:突起形状部の数、H:鋼矢板段面高さ(mm)、B:鋼矢板ウェブ幅(mm)、t:鋼矢板ウェブの板厚(mm)、ε:鋼矢板の降伏ひずみ
 (2)本発明に係るハット形鋼矢板は、ウェブ部と、一対のフランジ部と、一対のアーム部と、一対の継手部と、を有する。ハット形鋼矢板には、ウェブ部の両端に一対のフランジ部が形成され、一対のフランジ部を構成するフランジ部の端部に一対のアーム部を構成するアーム部が形成されるとともに、アーム部の先端に一対の継手部を構成する継手部が設けられる。前記ハット形鋼矢板は、前記ウェブ部に、鋼矢板全長にわたって、以下の式(1)および式(3)を満足する突起形状部を有することを特徴とするものである。
Figure JPOXMLDOC01-appb-M000005
  ここに、V:突起形状部の高さ(mm)、W:突起形状部付け根の幅(mm)(W<5×V)、n:突起形状部の数、H:鋼矢板段面高さ(mm)、B:鋼矢板ウェブ幅(mm)、t:鋼矢板ウェブの板厚(mm)、ε:鋼矢板の降伏ひずみ
 (3)本発明に係るハット形鋼矢板は、ウェブ部と、一対のフランジ部と、一対のアーム部と、一対の継手部と、を有する。ハット形鋼矢板には、ウェブ部の両端に一対のフランジ部が形成され、一対のフランジ部を構成するフランジ部の端部に一対のアーム部を構成するアーム部が形成されるとともに、アーム部の先端に一対の継手部を構成する継手部が設けられる。前記ハット形鋼矢板は、前記ウェブ部に、鋼矢板全長にわたって、以下の式(1)および式(4)を満足する突起形状部を有することを特徴とするものである。
Figure JPOXMLDOC01-appb-M000006
  ここに、V:突起形状部の高さ(mm)、W:突起形状部付け根の幅(mm)(W<5×V)、n:突起形状部の数、H:鋼矢板段面高さ(mm)、B:鋼矢板ウェブ幅(mm)、t:鋼矢板ウェブの板厚(mm)、ε:鋼矢板の降伏ひずみ
 本発明のハット形鋼矢板においては、ウェブ部に所定の突起形状部を設けることで、最適な鋼矢板断面性能(変形性能)が得られる。その結果、経済性、製造能率に優れた板厚の薄いハット形鋼矢板が実現できる。
本発明の実施の形態に係るハット形鋼矢板の形状を説明する説明図である。 本発明の実施の形態に係るハット形鋼矢板の形状を規定する式の導出過程を説明する説明図であって、対象としたハット形鋼矢板の形状の説明図である。 本発明の実施の形態に係るハット形鋼矢板の形状を規定する式の導出過程を説明する説明図であって、突起形状部の有り無しの変形性能に与える影響を示すグラフである。 本発明の実施の形態に係るハット形鋼矢板の形状を規定する式の導出過程を説明する説明図であって、有効な突起形状部高さの範囲を求めるのに用いた解析結果のグラフである。 本発明の実施の形態に係るハット形鋼矢板の形状を規定する式の導出過程を説明するのに用いた角型鋼管の断面図である。 本発明の実施の形態に係るハット形鋼矢板の形状を規定する式の導出過程を説明する説明図であって、ハット形鋼矢板の形状に関する影響を見るための解析結果のグラフである。 本発明の実施の形態に係るハット形鋼矢板の形状を規定する式の導出過程を説明する説明図であって、ウェブ幅Bと断面高さHの比による影響を見るための解析結果のグラフである。 本発明の実施の形態に係るハット形鋼矢板の形状を規定する式の導出過程を説明する説明図であって、突起形状部の形状に関する影響を見るための解析結果のグラフである。 本実施の形態に係るハット形鋼矢板の形状の他の態様を説明する説明図である(その1)。 本実施の形態に係るハット形鋼矢板の形状の他の態様を説明する説明図である(その2)。 本実施の形態に係るハット形鋼矢板の形状の他の態様を説明する説明図である(その3)。
 [実施の形態1]
 本発明の一実施の形態に係るハット形鋼矢板1は、冷間加工(曲げ加工)により製造された冷間ハット形鋼矢板である。図1に示すように、ハット型鋼矢板1は、ウェブ部3、一対のフランジ部5、一対のアーム部7、一対の継手部9、及び突起形状部11を有する。
 ウェブ部3の両端に一対のフランジ部5が形成される。具体的には、ハット型鋼矢板1の幅方向xにおけるウェブ部3の各端部に、フランジ部5が設けられる。
 一対のフランジ部5を構成するフランジ部5の端部にアーム部7が形成される。具体的には、幅方向xにおけるフランジ部5の外側の端部に、アーム部7が設けられる。幅方向xにおけるフランジ部5の内側の端部は、幅方向xにおけるウェブ部3の端部と連なる。
 一対のアーム部7を構成するアーム部7の先端に継手部9が設けられる。具体的には、幅方向xにおけるアーム部7の外側の端部に、継手部9が設けられる。幅方向xにおけるアーム部7の内側の端部は、幅方向xにおけるフランジ部5の端部と連なる。なお、一対のアーム部7を構成する一方の継手部9と他方の継手部9とは、幅方向x及び高さ方向yにおける断面視において、非対称であってもよい。
 ハット型鋼矢板1は、ウェブ部3に、鋼矢板全長にわたって、突起形状部11を有する。具体的には、突起形状部11は、ウェブ部3に設けられる。突起形状部11は、ハット型鋼矢板1の高さ方向yに突出した部分である。本実施形態において、突起形状部11は、高さ方向yにおいてフランジ部5が配置される側(内側)に突出する。
 突起形状部11は、ウェブ部3においてハット型鋼矢板1の全長にわたって延びる。長さ方向zにおける突起形状部11の長さは、長さ方向zにおけるハット型鋼矢板1の長さと同じである。なお、長さ方向zは、幅方向x及び高さ方向yに直交する方向である。
 突起形状部11は、以下の式(1)および式(2)を満足する。
Figure JPOXMLDOC01-appb-M000007
  ここに、V:突起形状部の高さ(mm)、W:突起形状部付け根の幅(mm)(W<5×V)、n:突起形状部の数、H:鋼矢板段面高さ(mm)、B:鋼矢板ウェブ幅(mm)、t:鋼矢板ウェブの板厚(mm)、ε:鋼矢板の降伏ひずみ
 なお、V(突起形状部11の高さ)は、高さ方向yにおける突起形状部11の長さ(高さ)である。突起形状部付け根は、幅方向x及び高さ方向yにおける断面視において、幅方向xにおける突起形状部11の外側の端部である。従って、W(突起形状部付け根の幅)は、幅方向xにおける突起形状部11の長さ(幅)と等しい。H(鋼矢板段面高さ)は、高さ方向yにおけるハット型鋼矢板1の高さである。すなわち、Hは、高さ方向yにおけるウェブ部3からフランジ部7までの最大長さに等しい。B(鋼矢板ウェブ幅)は、幅方向xにおけるウェブ部3の長さ(幅)である。t(鋼矢板ウェブの板厚)は、高さ方向におけるウェブ部3の高さ(厚み)である。
 式(1)は、本発明の効果を奏するのに必要な突起形状部11の高さを規定する。式(2)は、鋼矢板断面の変形性能を規定する。式(2)により規定される値が1.0より小さいハット形鋼矢板は、降伏モーメントに到達する前に、弾性座屈により崩壊するレベルのものである。以下、式(1)及び式(2)を導出した経緯について説明する。
 まず、図2(a)に示す突起形状部11のないハット形鋼矢板13及びそのウェブ部3に突起形状部11を設けた図2(b)に示すハット形鋼矢板1の変形性能について、解析により検討した。ε=0.0016である。
 図3は解析結果をグラフに表したものである。縦軸が(作用荷重/降伏荷重)を示す。横軸が変形性能を示す。図3において、降伏荷重と同じ作用荷重のときに降伏する場合を変形性能1.0として表現している。
 図3より、突起形状部11のないハット形鋼矢板13である図2(a)のケースでは、変形性能が0.79(1.0未満、弾性座屈)である。一方、ウェブ中央に高さ27mmの突起形状部11を設けた図2(b)のケースでは、変形性能が1.67である。突起形状部11を設けられたハット形鋼矢板1では、変形性能が向上し、最大荷重が降伏荷重レベルを上回っていることが分かる。この場合の変形性能の増分率は、「0.79/1.67-1(=1.11)」と表すことができる。
 このように、ウェブ部3に突起形状部11を設けることで変形性能を増加させることができると判明したので、次に効果的な突起形状部11の高さについて検討した。具体的には、(突起形状部の高さV)/(ウェブ幅B)を、0.02から0.135まで変えたときの、変形性能の増分について調査した。
 図4は、この検討結果を示すものである。横軸が(突起形状部の高さV)/(ウェブ幅B)を示す。縦軸が変形性能の増分率を示す。(突起形状部の高さV)/(ウェブ幅B)が大きくなるほど、変形性能の増分率が大きくなる傾向にある。しかしながら、(突起形状部の高さV)/(ウェブ幅B)が1/16未満の場合、変形性能の増分率は微小(0.3以下)である。従って、十分な変形性能の向上が果たされない。そこで、本発明においては、必要な突起形状部11の高さを式(1)で規定した。
    V≧B/16  ・・・・(1)
 次に、解析結果より、鋼矢板断面形状及び突起形状部11の形状と、ハット形鋼矢板1の変形性能と、の関係式を導くための検討を行った。
 本発明の対象であるハット形鋼矢板1の形状は、幅方向x及び高さ方向yにおける断面視において、直線状の板要素の両端が曲げられた形状に近い。すなわち、弱点箇所になるウェブ部3は、中央の直線状の部分に対応し、フランジ部5が板要素の両端が曲げられた部分に対応する。従って、ハット形鋼矢板1の形状に類似する形状を有する構造体として、図5に示すような四角形断面を有する角型鋼管が挙げられる。すなわち角型鋼管における一辺に着目すると、直線状の板要素の両端が90°に曲げられることにより、四角形が形成されている。角型鋼管は、直線状の板要素の両端を曲げられて形成されている点でハット形鋼矢板と類似している。
 そこで、例えば文献「桑村仁「鋼構造の性能と設計」(2002年、共同出版)」などで既往の知見として示されている下記に示す角形鋼管(幅B、高さB、板厚t、降伏ひずみε、等辺形状)の変形性能μの評価式(5)を参照し、本式をもとに、ハット形鋼矢板断面形状(突起形状部11を考慮)の場合の変形性能評価式を導くこととした。
Figure JPOXMLDOC01-appb-M000008
 なお、ハット形鋼矢板1と角形鋼管とで異なる点としては、ウェブ部3の端部での板状要素の折り曲げ角度である。角型鋼管は、90°の折り曲げ角度で曲げられているのに対し、ハット形鋼矢板1は、90°より小さい折り曲げ角度で曲げられている。角型鋼管は、正方形が基本であるため、断面幅と断面高さは等価である。一方、ハット形鋼矢板1では、ウェブ部3の長さ(B)と、鋼矢板の高さ(H)は、異なるケースも想定する必要がある。
 そこで、このような形状の違いの影響を見るため、ウェブ部3に突起形状部11を設けないハット形鋼矢板において、以下の条件にて解析した場合の、一般化幅厚比β(=B/t×ε 0.5)と変形性能μの関係を図6に示す。   
  ・ハット形鋼矢板1のウェブ幅Bと断面高さHの比(H/B):0.71、1.00、1.57
  ・板厚:6~18mm
 図6を見ると、ハット形鋼矢板1の変形性能μの解析値は、式(5)の角形鋼管の変形性能評価式をやや下回る傾向にあることが分かる。そこで、ハット形鋼矢板1の変形性能μの評価式として、式(5)の右辺の分子の値5を解析結果に基づいて修正すると以下の式(6)となる。
Figure JPOXMLDOC01-appb-M000009
 また、同じ一般化幅厚比βでも、H/Bが小さいほど変形性能は大きくなっている。ハット形鋼矢板1の場合にはウェブ幅Bと断面高さHの比による影響があることがわかった。そこで、図6の横軸の一般化幅厚比βに(H/B)0.1を乗じて、ウェブ幅の補正を行った。補正幅厚比β(=B/t×ε 0.5×(H/B)0.1)と変形性能μの関係を図7に示す。補正幅厚比βを用いた下記に示す変形性能評価式(7)と解析結果はよく一致した。
Figure JPOXMLDOC01-appb-M000010
 次に、ハット形鋼矢板1のウェブ部3に設けた突起形状部11の形状に関する影響を評価した。
 ウェブ部3に突起形状部11を設けることにより、ウェブ部3の断面剛性が増大することから、ハット形鋼矢板1の変形性能向上がもたらされる。この効果について、変形性能評価式(7)においては、板厚tを見かけ上、増大させることで表現できる。そこで、突起形状部11を設けることによるウェブ板厚増大効果分をΔtとすると、変形性能評価式は式(8)となる。
Figure JPOXMLDOC01-appb-M000011
 ここで、Δtに寄与する因子としては、突起形状部の高さV、突起形状部付け根の幅W、突起形状部の数n、鋼矢板ウェブ幅(ウェブ幅Bに(H/B)0.1を乗じて補正)が考えられる。これらを考慮して、解析結果との比較を行った結果、Δtを式(9)で評価すれば、近似できることがわかった。
Figure JPOXMLDOC01-appb-M000012
 また、式(8)に式(9)を代入すると、ウェブ部3に設けた突起形状部11を考慮した変形性能評価式(10)が導かれる。
Figure JPOXMLDOC01-appb-M000013
 変形性能評価式(10)と解析結果の比較を図8に示す。
 なお、ウェブ中央に突起形状部11を1つ設けたケースの他、図9に示すように、突起形状部11を2箇所設けたケースや、図10に示すように突起形状部11を3箇所設けたケースについても検討した。
 次に、式(10)で規定された変形性能μの上下限値について検討した。
 ハット形鋼矢板1を用いた壁体構造は、仮設壁と本設壁(永久構造)とに大別される。一般に仮設壁においては、鋼矢板は弾性範囲内(降伏荷重レベル以下)での挙動を想定して設計される(弾性設計という)。一方、本設壁(永久構造)では、供用期間が長いことから、大地震を受けた場合の設計が行われることもある。その場合には、降伏荷重到達以降の塑性域での挙動を想定して設計される(塑性設計という)。
 そこで、本実施の形態では、仮設壁に供用される場合(弾性設計への適用)の変形性能μの上下限値について検討した。
 弾性設計においては、想定される作用力は降伏荷重以下であることから、図3に示す、作用荷重/降伏荷重と変形性能の関係を例にとると、変形性能μ=1.0(降伏荷重到達時)までの鋼矢板の性能を保証すれば良いこととなる。
 しかし、鋼矢板の品質、形状のバラツキや、施工における誤差(傾き、回転、ずれなど)による、作用荷重の増加の可能性があり、降伏荷重を超えてすぐに構造物が崩壊するリスクもある。これらを考慮すると、弾性設計においても、鋼矢板の変形性能μは1.5を確保すべきである。
 一方、鋼矢板の剛性を高めて変形性能を高めていくと、大きな塑性変形が生じても鋼矢板の耐荷力は保持できる。しかしながら、今度は地盤の主働崩壊など別の要因で壁構造が壊れる可能性がある。一般に鋼矢板の降伏時の変形は、回転角1/50程度である。鋼矢板の変形性能が10であれば、回転角は1/50×10=1/5である。回転角が1/5以上となる変形が生じると地盤の主働崩壊が生じるレベルとなる。したがって、地盤の主働崩壊を避けるという観点から変形性能μは、10以下であることが好ましい。よって、弾性設計を想定する場合は、ハット形鋼矢板1の変形性能μが1.5≦μ≦10となるようにすることが好ましい。
 以上から、式(2)(および式(1))を満足するよう、ウェブ部3に突起形状部11を設けることとした。
Figure JPOXMLDOC01-appb-M000014
 以上のように、本実施の形態のハット形鋼矢板は、式(1)及び式(2)を満たす突起形状部11をウェブ部3に設けたことにより、変形性能に優れる。その結果、仮設壁に供用した場合において降伏荷重を超えても、当該ハット形鋼矢板は、崩壊することなく、また地盤の主働崩壊を生ずることもない。
 [実施の形態2]
 上記の実施の形態1では、ハット形鋼矢板1を仮設壁として適用する場合であったが、本実施の形態では、本設壁(永久構造)として適用する場合(塑性設計への適用)の変形性能μの値について検討した。
 塑性設計において、鋼矢板に必要とされる変形性能のレベルは、構造物や環境しだいで様々である。しかしながら、鋼矢板の全塑性モーメント荷重に耐える性能は必須となる。そして、一般に変形性能μが2以上であれば、全塑性モーメント荷重レベルに達する。そのため、塑性設計を想定する場合は、ハット形鋼矢板1の変形性能μが2.0≦μ≦10となるよう、式(3)(および式(1))を満足するよう、ウェブ部3に突起形状部11を設けるようにすればよい。
Figure JPOXMLDOC01-appb-M000015
 以上のように、本実施の形態のハット形鋼矢板は、式(1)及び式(3)を満たす突起形状部11をウェブ部3に設けたことにより、変形性能に優れる。その結果、本設壁(永久構造)に供用した場合において降伏荷重を超えても、当該ハット形鋼矢板は、崩壊することなく、また地盤の主働崩壊を生ずることもない。
 [実施の形態3]
 本実施の形態は、道路構造や港湾構造への適用に好適な鋼矢板に関するものである。
 道路構造、港湾構造の本設構造では塑性設計が行われる。一般に変形性能μ=4が要求性能の上限とされる。
 したがって、道路構造や港湾構造に適用される場合には、ハット形鋼矢板1の変形性能μが2.0≦μ≦4.0となるよう、式(4)(および式(1))を満足するよう、ウェブ部3に突起形状部11を設けるようにすればよい。
Figure JPOXMLDOC01-appb-M000016
 以上のように、本実施の形態のハット形鋼矢板は、式(1)及び式(4)を満たす突起形状部11をウェブ部3に設けたことにより、変形性能に優れる。その結果、道路構造や港湾構造に供用した場合において降伏荷重を超えても、当該ハット形鋼矢板は、崩壊することがなく、また道路構造や港湾構造に要求される変形性能の上限値を満たしている。
 なお、突起形状部11の付け根の幅Wが突起形状部11の高さVの5倍より小さい(W<5×V)ことが望ましい。W<5×Vとする理由は以下の通りである。
 本発明では式(1)によってV≧B/16と規定しており、この式(1)にW=5×V(最大幅越え)を代入すると、W≧B×5/16となる。これは突起形状部11の付け根の幅Wが、ウェブ幅Bに対して約1/3以上を占めることとなる。ウェブ部3の中央にこのような突起形状部11を配した場合、幅方向xにおける突起形状部11の両側のウェブ平行部の長さが付け根の幅Wを下回る。ウェブ部3に作用する土水圧がウェブ部3の全体にバランスよく伝わらなくなる懸念がある。また、鋼矢板壁方向に沿って切梁、腹起しを設置する際、十分な荷重伝達ができなくなる可能性がある。そこで、これを避けるため、W<5×Vとするのが望ましい。
 上記の実施の形態においては、突起形状部11の形状として図1、図8及び図9に示すようなV字状のものを示した。しかしながら、本発明における突起形状部11の形状はこれに限定されない。例えば、図11に示すように、突起形状部11は、円弧状の丸みを有してもよい。すなわち、幅方向x及び高さ方向yにおける断面視において、円弧状であってもよい。また、突起形状部11の形状は、台形状であってもよい。
 複数の突起形状部11を設ける場合には、突起形状部11の高さVは同じである必要はない。複数の突起形状部11の高さVは、異なってもよい。
 突起形状部11の突出する方向(張出し方向)について、上記の説明では、ウェブ部3の内面側、すなわち、高さ方向yにおいてフランジ部5が配置される側に突出する(張出す)場合を例に挙げて説明した。しかしながら、本発明においては、突起形状部11の突出する方向はこれに限定されない。突起形状部11は、ウェブ部3の外面側、すなわち、高さ方向yにおいてフランジ部5が配置されない側に突出してもよい。
 なお、本発明では、ウェブ部3に突起形状部11を設けることが前提となっている。これに加えて、突起形状部11をアーム部7に設けてもよい。突起形状部11をウェブ部3とフランジ部5との変曲部分である隅角部に設けてもよい。突起形状部11をアーム部7とフランジ部5との変曲部分である隅角部に設けてもよい。
 鋼矢板断面高さHが、ウェブ幅Bよりも大きい場合、突起形状部11をフランジ部5に設けてもよい。その場合は、フランジ部5の中央付近につけてもよい。突起形状部11をフランジ部5の付け根近傍に設けてもよい。突起形状部11をアーム部7の付け根近傍につけてもよい。 
 [実施例]
 実施の形態1~3に含まれる具体的なハット型鋼矢板1及び突起形状部11を設けていないハット型鋼矢板(比較例)を下記の表に示す。
Figure JPOXMLDOC01-appb-T000017
  1 ハット形鋼矢板
  3 ウェブ部
  5 フランジ部
  7 アーム部
  9 継手部
 11 突起形状部
 13 ハット形鋼矢板(突起形状部のないもの)

Claims (3)

  1.  ウェブ部と、
     一対のフランジ部と、
     一対のアーム部と、
     一対の継手部と、を有し、
     前記ウェブ部の両端に前記一対のフランジ部が形成され、前記一対のフランジ部を構成するフランジ部の端部に前記一対のアーム部を構成するアーム部が形成されるとともに、前記アーム部の先端に前記一対の継手部を構成する継手部が設けられたハット形鋼矢板において、
     前記ウェブ部に、鋼矢板全長にわたって、以下の式(1)および式(2)を満足する突起形状部を有することを特徴とするハット形鋼矢板。
    Figure JPOXMLDOC01-appb-M000001
      ここに、V:突起形状部の高さ(mm)、W:突起形状部付け根の幅(mm)(W<5×V)、n:突起形状部の数、H:鋼矢板段面高さ(mm)、B:鋼矢板ウェブ幅(mm)、t:鋼矢板ウェブの板厚(mm)、ε:鋼矢板の降伏ひずみ
  2.  ウェブ部と、
     一対のフランジ部と、
     一対のアーム部と、
     一対の継手部と、を有し、
     前記ウェブ部の両端に前記一対のフランジ部が形成され、前記一対のフランジ部を構成するフランジ部の端部に前記一対のアーム部を構成するアーム部が形成されるとともに、前記アーム部の先端に前記一対の継手部を構成する継手部が設けられたハット形鋼矢板において、
     前記ウェブ部に、鋼矢板全長にわたって、以下の式(1)および式(3)を満足する突起形状部を有することを特徴とするハット形鋼矢板。
    Figure JPOXMLDOC01-appb-M000002
      ここに、V:突起形状部の高さ(mm)、W:突起形状部付け根の幅(mm)(W<5×V)、n:突起形状部の数、H:鋼矢板段面高さ(mm)、B:鋼矢板ウェブ幅(mm)、t:鋼矢板ウェブの板厚(mm)、ε:鋼矢板の降伏ひずみ
  3.  ウェブ部と、
     一対のフランジ部と、
     一対のアーム部と、
     一対の継手部と、を有し、
     前記ウェブ部の両端に前記一対のフランジ部が形成され、前記一対のフランジ部を構成するフランジ部の端部に前記一対のアーム部を構成するアーム部が形成されるとともに、前記アーム部の先端に前記一対の継手部を構成する継手部が設けられたハット形鋼矢板において、
     前記ウェブ部に、鋼矢板全長にわたって、以下の式(1)および式(4)を満足する突起形状部を有することを特徴とするハット形鋼矢板。
    Figure JPOXMLDOC01-appb-M000003
      ここに、V:突起形状部の高さ(mm)、W:突起形状部付け根の幅(mm)(W<5×V)、n:突起形状部の数、H:鋼矢板段面高さ(mm)、B:鋼矢板ウェブ幅(mm)、t:鋼矢板ウェブの板厚(mm)、ε:鋼矢板の降伏ひずみ
PCT/JP2017/046264 2016-12-22 2017-12-22 ハット形鋼矢板 WO2018117269A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12019501449A PH12019501449A1 (en) 2016-12-22 2019-06-21 Hat-shaped steel sheet pile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-248961 2016-12-22
JP2016248961A JP6740891B2 (ja) 2016-12-22 2016-12-22 ハット形鋼矢板

Publications (1)

Publication Number Publication Date
WO2018117269A1 true WO2018117269A1 (ja) 2018-06-28

Family

ID=62626660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046264 WO2018117269A1 (ja) 2016-12-22 2017-12-22 ハット形鋼矢板

Country Status (4)

Country Link
JP (1) JP6740891B2 (ja)
PH (1) PH12019501449A1 (ja)
SG (1) SG10202107373WA (ja)
WO (1) WO2018117269A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143891B2 (ja) * 2018-08-31 2022-09-29 日本製鉄株式会社 ハット形鋼矢板の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162460A (ja) * 2002-11-15 2004-06-10 Nippon Steel Corp ハット型鋼矢板
US7278803B1 (en) * 2006-09-05 2007-10-09 Jeff M Moreau Corrugated asymmetrical retaining wall panel
WO2010023929A1 (ja) * 2008-08-29 2010-03-04 新日本製鐵株式会社 鋼矢板
JP2012007325A (ja) * 2010-06-23 2012-01-12 Sumitomo Metal Ind Ltd 鋼管矢板壁構造
WO2012098634A1 (ja) * 2011-01-17 2012-07-26 日鐵住金建材株式会社 鋼矢板
JP2015165074A (ja) * 2014-03-03 2015-09-17 Jfeスチール株式会社 直線形鋼矢板、該直線形鋼矢板を用いた構造物の補強構造及び補強方法
JP2015197037A (ja) * 2014-04-03 2015-11-09 株式会社コーワン 鋼矢板圧入工法及び鋼矢板圧入引抜機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1937758A (en) * 1932-08-11 1933-12-05 Frederic R Harris Sheet piling
JP4012407B2 (ja) * 2002-02-08 2007-11-21 新日本製鐵株式会社 ハット型鋼矢板の製造方法
JP4351066B2 (ja) * 2002-02-14 2009-10-28 オング,チン,チャイ コネクタ
JP2015107037A (ja) * 2013-12-02 2015-06-08 国立大学法人 東京大学 エレクトレット発電装置及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162460A (ja) * 2002-11-15 2004-06-10 Nippon Steel Corp ハット型鋼矢板
US7278803B1 (en) * 2006-09-05 2007-10-09 Jeff M Moreau Corrugated asymmetrical retaining wall panel
WO2010023929A1 (ja) * 2008-08-29 2010-03-04 新日本製鐵株式会社 鋼矢板
JP2012007325A (ja) * 2010-06-23 2012-01-12 Sumitomo Metal Ind Ltd 鋼管矢板壁構造
WO2012098634A1 (ja) * 2011-01-17 2012-07-26 日鐵住金建材株式会社 鋼矢板
JP2015165074A (ja) * 2014-03-03 2015-09-17 Jfeスチール株式会社 直線形鋼矢板、該直線形鋼矢板を用いた構造物の補強構造及び補強方法
JP2015197037A (ja) * 2014-04-03 2015-11-09 株式会社コーワン 鋼矢板圧入工法及び鋼矢板圧入引抜機

Also Published As

Publication number Publication date
JP2018104889A (ja) 2018-07-05
PH12019501449A1 (en) 2020-06-01
JP6740891B2 (ja) 2020-08-19
SG10202107373WA (en) 2021-08-30

Similar Documents

Publication Publication Date Title
JP4873097B2 (ja) Z形鋼矢板
JP5764945B2 (ja) ハット形鋼矢板
JP6108031B2 (ja) 鋼矢板
JPWO2011125347A1 (ja) 鋼管矢板と鋼矢板の連結壁構造およびその構築方法
JP2014148798A (ja) 鋼矢板
WO2018117269A1 (ja) ハット形鋼矢板
JP5114741B2 (ja) ハット形鋼矢板
JP6741136B2 (ja) ハット形鋼矢板の製造方法及び設計方法
JP2018016953A (ja) 梁補強金具
JP5731647B2 (ja) 波付鋼板の設計方法、及び波付鋼板フリューム
JP7143891B2 (ja) ハット形鋼矢板の製造方法
JP6296199B1 (ja) ハット形鋼矢板及び壁体
WO2013171910A1 (ja) Z形鋼矢板、該z形鋼矢板で形成された鋼矢板壁
JP2008007960A (ja) 建築構造用折板材
JPWO2020045114A1 (ja) ハット形鋼矢板および鋼矢板壁の製造方法
WO2020045113A1 (ja) ハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法
JP2019157495A (ja) 塔状構造物の制振構造
JP5736866B2 (ja) Z形鋼矢板の断面形状設定方法
WO2020045115A1 (ja) ハット形鋼矢板および鋼矢板壁の製造方法
JP6330478B2 (ja) 鋼管
WO2020045118A1 (ja) ハット形鋼矢板
WO2020183587A1 (ja) 溶接組立h形鋼
KR101390883B1 (ko) 해트형 강 시트 파일
JP5176338B2 (ja) 建築構造用折板材
JP2015224420A (ja) せん断パネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883442

Country of ref document: EP

Kind code of ref document: A1