WO2020045113A1 - ハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法 - Google Patents

ハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法 Download PDF

Info

Publication number
WO2020045113A1
WO2020045113A1 PCT/JP2019/032109 JP2019032109W WO2020045113A1 WO 2020045113 A1 WO2020045113 A1 WO 2020045113A1 JP 2019032109 W JP2019032109 W JP 2019032109W WO 2020045113 A1 WO2020045113 A1 WO 2020045113A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
sheet pile
hat
shaped steel
pair
Prior art date
Application number
PCT/JP2019/032109
Other languages
English (en)
French (fr)
Inventor
典佳 原田
裕章 中山
正和 武野
妙中 真治
俊介 森安
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2020045113A1 publication Critical patent/WO2020045113A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel

Definitions

  • the present invention relates to a hat-shaped steel sheet pile, a steel sheet pile wall, and a method of manufacturing a steel sheet pile wall.
  • Patent Literature 1 discloses a technique for setting a flange angle in a cross section of a hat-shaped steel sheet pile, that is, an angle formed by a flange and a web and an arm, so that penetration resistance during driving is minimized.
  • Patent Literature 2 also describes a technique for determining a cross-sectional shape that optimizes both the economic efficiency, workability, and soundness of a hat-shaped steel sheet pile by focusing on the penetration resistance R.
  • Patent Literature 3 describes a cross-sectional shape of a steel sheet pile that is excellent in at least one of a workability evaluation index evaluated from dynamic resistance and an economic evaluation index.
  • Patent Document 4 describes a shape setting method of a hat-shaped steel sheet pile having excellent second moment of area in cross-sectional performance.
  • Non-Patent Document 1 describes, as a point to keep in mind when constructing a steel sheet pile, that the steel sheet pile may rotate around a joint and cause displacement.
  • Patent Documents 1 to 4 do not mention the rotation of steel sheet piles as described in Non-Patent Document 1.
  • each steel sheet pile is oriented in a wall thickness direction (formed by a flange and a web) on a steel sheet pile wall.
  • the direction of the convex shape is arranged so as to be staggered, so that the rotation around the joint generated at the time of construction is offset.
  • the orientation in the wall thickness direction is basically the same for all steel sheet piles, the rotation around the joint that occurs during construction is accumulated without canceling out Therefore, the impact on the construction due to the increase in the penetration resistance is likely to occur.
  • Non-Patent Document 1 describes that the rotation during the construction of the steel sheet pile is carefully monitored, and that if the rotation occurs, it is dealt with by once pulling out and performing the driving again.
  • the cross-sectional rotational deformation of the hat-shaped steel sheet pile can be reduced as the cross-sectional performance of the hat-shaped steel sheet pile, it is advantageous to make the hat-shaped steel sheet pile construction more efficient.
  • the present invention provides a new and improved hat-shaped steel sheet pile, a steel sheet pile wall, and a steel sheet pile wall capable of effectively reducing the rotational deformation of a cross section generated when the hat-shaped steel sheet pile is driven.
  • the aim is to provide a method.
  • the hat-shaped steel sheet pile has, in a cross section orthogonal to the longitudinal direction, a web extending along the width direction on the first side in the cross-section height direction, and from both ends in the width direction of the web.
  • a pair of flanges extending toward both sides in the width direction and toward the second side in the cross-sectional height direction, and a pair of flanges extending along the width direction from respective ends of the pair of flanges on the second side in the cross-sectional height direction;
  • a pair of arms extending toward both sides in the width direction, and a pair of fitting joints formed at ends of the pair of arms opposite to the pair of flanges.
  • the cross-sectional secondary pole moment Ipo about one fitting center of a pair of fitting joints in the cross section is larger than 8.0 ⁇ 10 5 cm 4, and the length Bw of the web in the width direction is one pair.
  • the length Ba of one of the arms satisfies the relationship of Ba / Bw> 0.2.
  • the length Bw of the web in the width direction and the length Ba of one of the pair of arms may satisfy a relationship of Ba / Bw ⁇ 0.6. Furthermore, the length Bw of the web in the width direction and the length Ba of one of the pair of arms may satisfy the relationship of Ba / Bw ⁇ 0.495. Further, the effective width W may be in a range of 105 cm ⁇ W ⁇ 150 cm, and the height H may be in a range of H ⁇ 45 cm.
  • a steel sheet pile wall in which the pair of fitting joints described above are fitted together and connected in the width direction.
  • the cross-sectional area A 1 (cm 2 / m) per 1 m of the width of the steel sheet pile wall and the cross-sectional coefficient Z 1 (cm 3 / m) around the neutral axis extending in the width direction are A 1 ⁇ 0.054Z 1 +70. You may satisfy the relationship.
  • a method of manufacturing a steel sheet pile wall is to form a hat-shaped steel sheet pile underground while fitting only one of a pair of fitting joints of a hat-shaped steel sheet pile to a fitting joint of a steel sheet pile previously placed. May be included.
  • FIG. 1 It is sectional drawing of the hat-shaped steel sheet pile which concerns on one Embodiment of this invention. It is a figure for demonstrating the fitting center of the hat-shaped steel sheet pile shown in FIG. It is a figure for conceptually explaining rotation deformation of the section which occurs in a hat-shaped steel sheet pile at the time of driving. It is a figure for explaining an outline of examination of a section shape of a hat-shaped steel sheet pile in this embodiment. It is a figure for explaining an outline of examination of a section shape of a hat-shaped steel sheet pile in this embodiment. It is a figure for explaining an outline of examination of a section shape of a hat-shaped steel sheet pile in this embodiment. It is a figure for explaining an outline of examination of a section shape of a hat-shaped steel sheet pile in this embodiment.
  • FIG. 9 is a graph showing the rotation angle calculated by the structural calculation on the vertical axis and the secondary pole moment of area around the fitting center on the horizontal axis for Comparative Examples, Examples, and Reference Examples.
  • 7 is a graph showing the rotational angle calculated by the structural calculation on the vertical axis and the secondary pole moment of area around the fitting center on the horizontal axis for the comparative example, the example, and the reference example under conditions different from FIG. is there. It is a graph which shows the cross-sectional area per 1 m of wall width of a steel sheet pile wall as a vertical axis, and the cross-sectional coefficient per 1 m of wall width similarly as a horizontal axis about a comparative example, an Example, and a reference example.
  • FIG. 1 is a sectional view of a hat-shaped steel sheet pile according to one embodiment of the present invention.
  • a hat-shaped steel sheet pile 1 has a cross section orthogonal to a longitudinal direction (z direction in the figure) and a first side (rear side in the y direction in the figure) in a section height direction.
  • a web 2 extending along the width direction (x direction in the figure), and both sides in the width direction from both ends in the width direction of the web 2 and second sides in the cross-section height direction (front side in the y direction in the figure) ),
  • the flanges 3A, 3B forming a flange angle ⁇ (the acute angle side) with the width direction, and from the respective ends of the flanges 3A, 3B on the second side in the section height direction in the width direction.
  • Arms 4A, 4B extending along the width direction and both sides in the width direction, and fitting joints 5A, 5B formed at ends of arms 4A, 4B opposite to flanges 3A, 3B.
  • FIG. 1 shows the dimensions of each part of the hat-shaped steel sheet pile 1.
  • the web 2 has a length Bw and a plate thickness tw.
  • the length Bw is a distance between two intersections formed between the thickness center line of the web 2 and the respective thickness center lines of the flanges 3A and 3B.
  • the flange 3A has a length Bf and a plate thickness tf.
  • the length Bf is a distance between two intersections formed between the thickness center line of the flange 3A and the respective thickness center lines of the web 2 and the arm 4A.
  • the arm 4A has a length Ba and a plate thickness ta.
  • Length Ba is the distance between the intersections formed between the thickness center line of the thickness center line and the flange 3A of the arms 4A, a fitting center E A fitting joint 5A. Since the cross-sectional shape of the hat-shaped steel sheet pile 1 is symmetrical about the neutral axis in the width direction (y-axis in the figure), the flange 3B has the same length Bf and plate thickness tf as the flange 3A, and the arm 4B. Has a length Ba and a plate thickness ta similarly to the arm 4A.
  • the effective width W of the hat-shaped steel sheet pile 1 the height H, the effective height Hc, the distance from the fitting center E A to a width direction of the neutral axis (y-axis in FIG.) Dy, and neutral axis of the section height direction from the fitting center E a distance Dx to the (x-axis in the drawing) are shown.
  • the effective width W is the distance between the mating fitting 5A, each of the mating centers E A of 5B, E B.
  • the height H is the height of the cross section of the hat-shaped steel sheet pile 1 including the thickness of the web 2 and the arms 4A and 4B and not including the overhang of the fitting joints 5A and 5B, and the effective height Hc is from the height H.
  • Hc H ⁇ (tw / 2 + ta / 2) obtained by subtracting half of the thickness of the web 2 and the arms 4A and 4B.
  • the hat-shaped steel sheet pile 1 of the present embodiment is greater than 8.0 ⁇ 10 5 cm 4 secondary section polar moment Ipo around the fitting center E A.
  • the length Bw of the web 2 and the length Ba of the arm 4A satisfy a relationship of Ba / Bw> 0.2.
  • the cross-sectional shape of the hat-shaped steel sheet pile 1 is because it is symmetrical about the central axis in the width direction is the same for secondary section polar moment Ipo around the fitting center E B of the mating joint 5B.
  • Ba / Bw> 0.2 also exists between the length Bw of the web 2 and the length Ba of the arm 4B.
  • the arm length Ba, the effective width W, the web length Bw, the height H, and the flange angle ⁇ are W ⁇ Bw ⁇ 2H / tan ⁇ > 0.
  • FIG. 2 is a view for explaining a fitting center of the hat-shaped steel sheet pile shown in FIG. 1.
  • the fitting joint 5B of another hat-shaped steel sheet pile 1 that is driven adjacent to the fitting joint 5B of the hat-shaped steel sheet pile 1 is fitted.
  • Fitting center E A fitting joint 5A when placing the arms 4B and the fitting joint 5B another hat-shaped steel sheet pile 1 virtually, end position of the arm 4A of the fitting joint 5A is formed And a point on the designed thickness center line of the arm 4A and the arm 4B, which is located between the end position of the arm 4B where the virtual fitting joint 5B is formed.
  • Fitting the center of the fitting joint 5B located on the opposite side of the hat-shaped steel sheet pile 1 E B can also be defined similarly.
  • FIG. 3 is a diagram for conceptually explaining rotational deformation of a cross section that occurs in a hat-shaped steel sheet pile during driving.
  • the hat-shaped steel sheet pile 1 is driven into the ground while fitting the fitting joint 5A to the fitting joint 5B of the hat-shaped steel sheet pile 1P previously placed.
  • the rotational deformation of the cross section that occurs hat-shaped steel sheet pile 1 of the punching ⁇ occurs around the fitting center E A fitting joint 5A.
  • the present inventors have conditions for effectively reducing possible hat-shaped steel sheet pile 1 of the cross-sectional shape rotational deformation of the striking ⁇ , focusing on secondary section polar moment Ipo around the fitting center E A Examined.
  • the secondary moment of area is already known as a physical property value relating to torsion.
  • the secondary moment of area in this case is generally calculated around the centroid of the section. That is, the fitting center E A fitting joint 5A of the hat-shaped steel sheet pile 1, as described above, i.e. taking into account the cross-sectional secondary polar moment about the periphery of the cross section is conventionally not performed.
  • the web 2, the flanges 3A and 3B and the arms 4A and 4B each form a beam having a rectangular cross section with a width of 100 cm and a height equal to the plate thickness tw, tf or ta.
  • FIG. 6 shows the definition of the rotation angle ⁇ O when the section of the hat-shaped steel sheet pile 1 shown in FIG. 5 undergoes rotational deformation.
  • Rotation angle phi O the flange 3A of the cross section, a straight line passing through the respective longitudinal midpoint F1, F2 of 3B, an angle formed between the straight line parallel to the street x O axis midpoint F1.
  • Table 1 below shows a conventional hat-shaped steel sheet pile (Comparative Examples 1 to 4), a hat-shaped steel sheet pile according to the present embodiment (Examples 1 to 27), and a hat-shaped steel sheet pile according to the reference example ( Sectional data of Reference Examples 1 to 4) are shown.
  • W is the effective width (cm)
  • H is the height (cm)
  • tw is the thickness of the web (cm)
  • A is the cross-sectional area (cm 2 )
  • Z is the cross-sectional modulus (cm 3 )
  • a and Z are values per hat-shaped steel sheet pile.
  • Iy is also the width direction of the neutral axis (y axis) of the second moment (cm 4)
  • Ip are the intersections of the respective neutral axes, that is, the secondary polar moments (cm 4 ) around the centroid of the cross section.
  • each neutral axis, and Ix and Iy are calculated in consideration of the curved shape between the web and the flange and between the flange and the arm, and the shape of the fitting joint.
  • Ixo is x O axis of the second moment shown in FIG. 4 (cm 4)
  • Iyo is likewise y O axis of the second moment (cm 4)
  • Ipo is x O axis and y intersection of the O-axis, that is, the fitting center E a around the secondary section polar moment (cm 4).
  • Iyo Iy + A ⁇ Dy 2 .
  • Ipo Ixo + Iyo.
  • the above-described second moment of area, second moment of area, and cross-sectional area are values per hat-shaped steel sheet pile.
  • FIG. 7 shows the distribution load q described above with reference to FIG. 4 of 100 kN / m 2 and the ground of Comparative Example 1 to Comparative Example 4, Example 1 to Example 27, and Reference Example 1 to Reference Example 4. on the vertical axis the angle of rotation ⁇ O (deg) calculated in the reaction coefficient 2.0 ⁇ 10 4 kN / m 3 and the structural calculation, fitting center E a around the cross-section second hat-shaped steel sheet pile primary It is a graph which shows the polar moment Ipo (cm 4 ) on the horizontal axis. Referring to the graph of FIG.
  • FIG. 8 shows a condition different from that of the example of FIG. 7, that is, a distribution load q of Comparative Example 1 to Comparative Example 4, Example 1 to Example 27, and Reference Example 1 to Reference Example 4, which is 1.0 ⁇ 10 3.
  • the fitting center E of the hat-shaped steel sheet pile 1 is set on the vertical axis, with the rotation angle ⁇ O (deg) calculated by the structural calculation with kN / m 2 and the ground reaction force coefficient being 2.0 ⁇ 10 4 kN / m 3.
  • ⁇ O (deg) calculated by the structural calculation with kN / m 2 and the ground reaction force coefficient being 2.0 ⁇ 10 4 kN / m 3.
  • the secondary polar moment of area Ipo is 8 compared to Comparative Examples 1 to 4 in which the secondary polar moment of area Ipo is less than 8.0 ⁇ 10 5 cm 4.
  • the rotation angle ⁇ O is small.
  • the secondary moment of area Ipo is larger than 8.0 ⁇ 10 5 cm 4 , and It can be specified that the length Bw of the web and the length Ba of the arm satisfy the relationship of Ba / Bw> 0.2. Further, since Ba / Bw in the examples is 0.298 or more, and exceeds 0.3 in 18 out of 27 cases, it can be specified that Ba / Bw> 0.3 is more preferable.
  • the web length Bw and the arm length Ba of the hat-shaped steel sheet pile may satisfy the relationship of Ba / Bw ⁇ 0.5.
  • the neutral axis in the cross-sectional height direction shifts from near the center of the flange.
  • it is known that in driving a hat-shaped steel sheet pile, it is efficient to apply a load in the vertical direction to the vicinity of the neutral axis in the sectional height direction for example, see Japanese Patent No. 3916621). reference).
  • An eccentric load acts on the web or arm when the neutral shaft deviates significantly from the vicinity of the center of the flange (for example, an eccentric load acts on the web when the neutral shaft deviates toward the arm side), causing deformation or construction of the steel sheet pile during driving. May lead to a decrease in gender.
  • the difference between the cross-sectional area of the web and the total cross-sectional area of the arms on both sides should not be too large, and the neutral axis in the cross-sectional height direction of the hat-shaped steel sheet pile is maintained near the center of the flange. It is desirable.
  • the cross-sectional area of the web be the product of the web length Bw and the plate thickness tw, that is, Bw ⁇ tw, and let the total cross-sectional area of the arms on both sides be Aa as shown in FIG.
  • the conditions (ii) and (iii) can be combined, and 2 ⁇ Ba ⁇ ta ⁇ 1.1 ⁇ Bw ⁇ tw, that is, (iv) Ba / Bw ⁇ 0.55 ⁇ tw / ta. Further, even when either the web thickness tw or the arm thickness ta is extremely small, it is difficult to secure the strength of the hat-shaped steel sheet pile, so that 0.9 ⁇ tw / ta ⁇ 1.1. Then, (iv) becomes Ba / Bw ⁇ 0.55 ⁇ 0.9, that is, Ba / Bw ⁇ 0.495. It is also desirable that the difference between the web thickness tw and the arm thickness ta is not too large.
  • the total length 2 ⁇ Ba of the arms on both sides is Bw by the amount of the joint. Shorter.
  • This condition is 2 ⁇ Ba ⁇ Bw, that is, Ba / Bw ⁇ 0.5.
  • the above two conditions are satisfied when Ba / Bw ⁇ 0.495 and Ba / Bw ⁇ 0.5, that is, when Ba / Bw ⁇ 0.495.
  • FIG. 9 is a cross-sectional view of Comparative Examples 1 to 4, Examples 1 to 27, and Reference Examples 1 to 4 in which fitting joints of hat-shaped steel sheet piles are fitted to each other and are connected in the width direction.
  • the sectional area A 1 (cm 2 / m) per 1 m of the wall width of the combined steel sheet pile wall is set on the vertical axis, and the section coefficient Z 1 (cm 3 / m) around the neutral axis extending in the width direction also per 1 m of the wall width. )
  • the conditions for reducing the rotational deformation of the cross section of the hat-shaped steel sheet pile 1 according to the present embodiment at the time of driving that is, the secondary moment of area Ipo is larger than 8.0 ⁇ 10 5 cm 4
  • the condition for reducing the weight of the steel sheet pile wall is that Ba / Bw ⁇ 0.6
  • the cross-sectional area A 1 (cm 2 / m) per 1 m of the width of the steel sheet pile wall and the cross-sectional modulus Z 1 (cm 3 / m) around the neutral axis extending in the width direction are A 1 ⁇ 0.054Z 1 +70. May be added.
  • the effective width W in Examples 1 to 27 was in the range of 105 cm ⁇ W ⁇ 150 cm.
  • the effective width W is less than 105 cm or larger than 150 cm, a similar condition can be applied as long as the value is close to the above range.
  • the height H is larger than 45 cm, a similar condition can be applied as long as the value is close to the above range.
  • a hat-shaped steel sheet pile having a cross-sectional shape in which rotational deformation of a cross-section generated at the time of driving is effectively reduced is provided.
  • Such a hat-shaped steel sheet pile is formed, for example, by fitting only one of a pair of fitting joints of the hat-shaped steel sheet pile to a fitting joint of a steel sheet pile previously driven.
  • the method is particularly advantageous in a method for manufacturing a steel sheet pile wall including a step of placing the sheet pile in the ground.
  • displacement is restrained by fitting one joint of a hat-shaped steel sheet pile into a joint of a steel sheet pile previously driven during casting.
  • the other joint has an asymmetric situation in which the displacement is not restricted, the rotation deformation of the cross section of the hat-shaped steel sheet pile can be effectively suppressed by applying the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

ハット形鋼矢板は、長手方向に直交する断面において、断面高さ方向の第1の側で幅方向に沿って延びるウェブと、ウェブの幅方向の両端部から幅方向の両側、かつ断面高さ方向の第2の側に向かって延びる1対のフランジと、断面高さ方向の第2の側で1対のフランジのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びる1対のアームと、1対のアームのそれぞれの1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備える。断面における1対の嵌合継手のうちの一方の嵌合中心を中心とする断面二次極モーメントIpoが8.0×10cmよりも大きく、幅方向におけるウェブの長さBwと1対のアームのうちの一方の長さBaとがBa/Bw>0.2の関係を満たす。

Description

ハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法
 本発明は、ハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法に関する。
 ハット形鋼矢板は、土木建築工事において、土留めや止水のための壁体を構築するために広く利用されている。ハット形鋼矢板の施工性や断面性能を向上させるための技術は、これまでにも種々提案されている。例えば、特許文献1には、打設時の貫入抵抗が最小限に抑えられるように、ハット形鋼矢板の断面におけるフランジ角度、すなわちフランジがウェブおよびアームとの間になす角度を設定する技術が記載されている。特許文献2にも、貫入抵抗Rに着目して、ハット形鋼矢板の経済性、施工性および健全性をともに最適化する断面形状を決定するための技術が記載されている。特許文献3には、動的抵抗から評価される施工性評価指標、および経済性評価指標のうち少なくとも一方に優れた鋼矢板の断面形状が記載されている。特許文献4には、断面性能のうち断面二次モーメントに優れたハット形鋼矢板の形状設定方法が記載されている。一方、非特許文献1では、鋼矢板の施工時の留意点として、鋼矢板が継手を中心にして回転し、位置のずれを生じることがあることが記載されている。
特許第3488233号公報 特開2012-158910号公報 国際公開第2015/159445号 特開2008-69631号公報
一般社団法人 鋼管杭・鋼矢板技術協会、「鋼矢板 設計から施工まで」、2014年10月
 上記の特許文献1から特許文献4では、非特許文献1に記載されたような鋼矢板の回転については言及されていない。施工時における鋼矢板の回転は、例えば打設時において一方の継手は先行して打設された鋼矢板の継手に嵌合することによって変位を拘束されるのに対し、他方の継手は変位が拘束されないという非対称な状況において生じるが、特許文献1から特許文献4においてそのような非対称な状況は想定されていない。
 ここで、図10Aおよび図10Bに示すように、従来用いられていたU形鋼矢板の場合には、鋼矢板壁においてそれぞれの鋼矢板が壁厚方向での向き(フランジおよびウェブによって形成される凸形の向き)が互い違いになるように配置されるため、施工時に生じる継手を中心とした回転は相殺される。一方、ハット形鋼矢板の場合には基本的にすべての鋼矢板で壁厚方向での向きが同じになるように配置されるため、施工時に生じる継手を中心とした回転が相殺されずに蓄積され、貫入抵抗の増大による施工への影響が発生しやすい。
 一方、非特許文献1では、鋼矢板の施工時の回転に対して、観測を入念に行うことや、回転が生じた場合は一旦抜き上げて再打込みを行うことで対処することが記載されているが、ハット形鋼矢板の断面性能として地中における断面の回転変形を低減させることができれば、ハット形鋼矢板の施工を効率化するために有利である。
 そこで、本発明は、ハット形鋼矢板の打設時に発生する断面の回転変形を効果的に低減することが可能な、新規かつ改良されたハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法を提供することを目的とする。
 本発明のある観点によれば、ハット形鋼矢板は、長手方向に直交する断面において、断面高さ方向の第1の側で幅方向に沿って延びるウェブと、ウェブの幅方向の両端部から幅方向の両側、かつ断面高さ方向の第2の側に向かって延びる1対のフランジと、断面高さ方向の第2の側で1対のフランジのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びる1対のアームと、1対のアームのそれぞれの1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備える。断面における1対の嵌合継手のうちの一方の嵌合中心を中心とする断面二次極モーメントIpoが8.0×10cmよりも大きく、幅方向におけるウェブの長さBwと1対のアームのうちの一方の長さBaとがBa/Bw>0.2の関係を満たす。
 上記のハット形鋼矢板において、幅方向におけるウェブの長さBwと1対のアームのうちの一方の長さBaとがBa/Bw<0.6の関係を満たしてもよい。さらに、幅方向におけるウェブの長さBwと1対のアームのうちの一方の長さBaとがBa/Bw<0.495の関係を満たしてもよい。また、有効幅Wが105cm≦W≦150cmの範囲にあってもよく、高さHがH≦45cmの範囲にあってもよい。
 本発明の別の観点によれば、上記の1対の嵌合継手を互いに嵌合させて幅方向につなぎ合わせた鋼矢板壁が提供される。鋼矢板壁の壁幅1mあたりの断面積A(cm/m)と、幅方向に延びる中立軸回りの断面係数Z(cm/m)とがA<0.054Z+70の関係を満たしてもよい。
 本発明のさらに別の観点によれば、上記のハット形鋼矢板を用いた鋼矢板壁の製造方法が提供される。鋼矢板壁の製造方法は、ハット形鋼矢板の1対の嵌合継手のうちの一方のみを先行して打設された鋼矢板の嵌合継手に嵌合させながらハット形鋼矢板を地中に打設する工程を含んでもよい。
 上記の構成によれば、ハット形鋼矢板の打設時に発生する断面の回転変形を効果的に低減することができる。
本発明の一実施形態に係るハット形鋼矢板の断面図である。 図1に示されたハット形鋼矢板の嵌合中心について説明するための図である。 打設時のハット形鋼矢板に発生する断面の回転変形について概念的に説明するための図である。 本実施形態におけるハット形鋼矢板の断面形状の検討の概要について説明するための図である。 本実施形態におけるハット形鋼矢板の断面形状の検討の概要について説明するための図である。 本実施形態におけるハット形鋼矢板の断面形状の検討の概要について説明するための図である。 比較例、実施例、および参考例について、構造計算で算出された回転角度を縦軸に、嵌合中心回りの断面二次極モーメントを横軸にして示すグラフである。 図7とは異なる条件で、比較例、実施例、および参考例について、構造計算で算出された回転角度を縦軸に、嵌合中心回りの断面二次極モーメントを横軸にして示すグラフである。 比較例、実施例、および参考例について、鋼矢板壁の壁幅1mあたりの断面積を縦軸に、同じく壁幅1mあたりの断面係数を横軸にして示すグラフである。 従来のU形鋼矢板における継手を中心とした回転の影響について説明するための図である。 従来のハット形鋼矢板における継手を中心とした回転の影響について説明するための図である。 本実施形態におけるハット形鋼矢板のアームの合計断面積について説明するための図である。
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 図1は、本発明の一実施形態に係るハット形鋼矢板の断面図である。図1に示されるように、ハット形鋼矢板1は、長手方向(図中のz方向)に直交する断面において、断面高さ方向の第1の側(図中のy方向の奥側)で幅方向(図中のx方向)に沿って延びるウェブ2と、ウェブ2の幅方向の両端部から幅方向の両側、かつ断面高さ方向の第2の側(図中のy方向の手前側)に向かって延び、幅方向との間にフランジ角度θ(鋭角側)をなすフランジ3A,3Bと、断面高さ方向の第2の側でフランジ3A,3Bのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びるアーム4A,4Bと、アーム4A,4Bのそれぞれのフランジ3A,3Bとは反対側の端部に形成される嵌合継手5A,5Bとを含む。
 ここで、図1には、ハット形鋼矢板1の各部分の寸法が記載されている。まず、ウェブ2については、長さBw、板厚twである。長さBwは、ウェブ2の板厚中心線と、フランジ3A,3Bのそれぞれの板厚中心線との間に形成される2つの交点の間の距離である。フランジ3Aについては、長さBf、板厚tfである。長さBfは、フランジ3Aの板厚中心線と、ウェブ2およびアーム4Aのそれぞれの板厚中心線との間に形成される2つの交点の間の距離である。アーム4Aについては、長さBa、板厚taである。長さBaは、アーム4Aの板厚中心線とフランジ3Aの板厚中心線との間に形成される交点と、嵌合継手5Aの嵌合中心Eとの間の距離である。なお、ハット形鋼矢板1の断面形状は幅方向の中立軸(図中のy軸)について対称であるため、フランジ3Bについてもフランジ3Aと同様に長さBf、板厚tfであり、アーム4Bについてもアーム4Aと同様に長さBa、板厚taである。
 さらに、図1には、ハット形鋼矢板1の有効幅W、高さH、有効高さHc、嵌合中心Eから幅方向の中立軸(図中のy軸)までの距離Dy、および嵌合中心Eから断面高さ方向の中立軸(図中のx軸)までの距離Dxが示されている。ここで、有効幅Wは、嵌合継手5A,5Bのそれぞれの嵌合中心E,Eの間の距離である。高さHは、ウェブ2およびアーム4A,4Bの板厚を含み嵌合継手5A,5Bの張り出しを含まないハット形鋼矢板1の断面の高さであり、有効高さHcは高さHからウェブ2およびアーム4A,4Bの板厚の半分を差し引いたもの、すなわちHc=H-(tw/2+ta/2)である。
 後述するように、本実施形態に係るハット形鋼矢板1では、嵌合中心Eを中心とする断面二次極モーメントIpoが8.0×10cmよりも大きい。また、ウェブ2の長さBwとアーム4Aの長さBaとはBa/Bw>0.2の関係を満たす。なお、ハット形鋼矢板1の断面形状は幅方向の中心軸について対称であるため、嵌合継手5Bの嵌合中心Eを中心とした断面二次極モーメントIpoについても同様である。また、ウェブ2の長さBwとアーム4Bの長さBaとの間でもBa/Bw>0.2となる。
 なお、図1に示されたハット形鋼矢板1の形状が幾何学的に成り立つ場合、アーム長さBa、有効幅W、ウェブ長さBw、高さHおよびフランジ角度θは、W-Bw-2H/tanθ>0の関係を満たしている。
 図2は、図1に示されたハット形鋼矢板の嵌合中心について説明するための図である。図示されているように、ハット形鋼矢板1の嵌合継手5Aには、隣接して打設される別のハット形鋼矢板1の嵌合継手5Bが嵌合する。嵌合継手5Aの嵌合中心Eは、別のハット形鋼矢板1のアーム4Bおよび嵌合継手5Bを仮想的に配置した場合に、嵌合継手5Aが形成されるアーム4Aの端部位置と、仮想的な嵌合継手5Bが形成されるアーム4Bの端部位置との中間に位置する、アーム4Aおよびアーム4Bの設計上の板厚中心線上の点として定義することができる。ハット形鋼矢板1の反対側に位置する嵌合継手5Bの嵌合中心Eも、同様に定義することができる。
 図3は、打設時のハット形鋼矢板に発生する断面の回転変形について概念的に説明するための図である。図3に示されるように、ハット形鋼矢板1は、先行して打設されたハット形鋼矢板1Pの嵌合継手5Bに嵌合継手5Aを嵌合させながら地中に打設される。従って、打設時のハット形鋼矢板1に発生する断面の回転変形は、嵌合継手5Aの嵌合中心Eを中心にして発生する。そこで、本発明者らは、打設時の回転変形を効果的に低減できるハット形鋼矢板1の断面形状の条件について、嵌合中心Eを中心とする断面二次極モーメントIpoに着目して検討した。
 ここで、断面二次極モーメントは、ねじりに関する物性値として既に知られている。しかしながら、この場合の断面二次極モーメントは断面の図心を中心として算出されることが一般的である。つまり、上記のようにハット形鋼矢板1の嵌合継手5Aの嵌合中心E、すなわち断面の周縁部を中心とした断面二次極モーメントを考慮することは、従来は行われていない。
 以下では、図4から図6をあわせて参照しながら、本実施形態におけるハット形鋼矢板の断面形状の検討の概要について説明する。本実施形態における検討では、ハット形鋼矢板の回転変形を構造計算によって算出するために、ハット形鋼矢板1の長手方向(図1に示すz方向)について100cmの区間におけるウェブ2、フランジ3A,3Bおよびアーム4A,4Bをそれぞれ梁とみなして、断面内(図1に示すx-y平面内)の曲げ変形量を算出した。この場合、ウェブ2、フランジ3A,3Bおよびアーム4A,4Bは、それぞれ、幅が100cmで、高さが板厚tw、tfまたはtaに等しい矩形断面の梁を形成する。
 図4に示すように、検討にあたっては、ハット形鋼矢板1にかかる力として、ウェブ2およびフランジ3A,3Bによって囲まれる閉塞領域側に作用する分布荷重q(kN/m)と、分布荷重に抵抗する形で反対側からウェブ2、フランジ3A,3B、およびアーム4A,4Bに作用する地盤反力の地盤反力係数k(kN/m)とを設定した。さらに、図5に示すように、嵌合継手5Aの嵌合中心Eを通りx軸(図1参照)に平行なx軸、および嵌合中心Eを通りy軸(図1参照)に平行なy軸を設定し、嵌合中心Eではx軸およびy軸ともにハット形鋼矢板1の変位が固定される一方で、x軸とy軸との交点、すなわち嵌合中心Eを中心にした回転が許容されるものとした。図6は、図5のようなハット形鋼矢板1の断面の回転変形が生じた場合の回転角度φの定義を示す。回転角度φは、断面におけるフランジ3A,3Bのそれぞれの長さ方向の中点F1,F2を通る直線と、中点F1を通りx軸に平行な直線とがなす角度である。
 以下の表1に、従来のハット形鋼矢板(比較例1~比較例4)、本実施形態に係るハット形鋼矢板(実施例1~実施例27)および参考例に係るハット形鋼矢板(参考例1~参考例4)の断面諸元を示す。表1において、Wは有効幅(cm)、Hは高さ(cm)、twはウェブの板厚(cm)、Aは断面積(cm)、Zは断面係数(cm)であり、AおよびZについてはハット形鋼矢板の1枚あたりの値である。Ixは図1に示す断面高さ方向の中立軸(x軸)回りの断面二次モーメント(cm)、Iyは同じく幅方向の中立軸(y軸)回りの断面二次モーメント(cm)、Ipはそれぞれの中立軸の交点、すなわち断面の図心回りの断面二次極モーメント(cm)である。なお、断面二次極モーメントIpは、Ip=Ix+Iyとして求めることができる。また、それぞれの中立軸、およびIx,Iyは、ウェブとフランジとの間、およびフランジとアームとの間の曲線形状、および嵌合継手の形状を考慮して算出されている。
 一方、表1において、Ixoは図4に示すx軸回りの断面二次モーメント(cm)、Iyoは同じくy軸回りの断面二次モーメント(cm)、Ipoはx軸とy軸との交点、すなわち嵌合中心E回りの断面二次極モーメント(cm)である。なお、Ixoは、ハット形鋼矢板の断面積A(cm)、およびx軸とx軸との間の距離Dx(cm)を用いて、Ixo=Ix+A×Dxとして求めることができる。また、Iyoは、断面積A(cm)およびy軸とy軸との間の距離Dy(cm)を用いて、Iyo=Iy+A×Dyとして求めることができる。Ipoは、Ipo=Ixo+Iyoとして求めることができる。なお、上記の断面二次モーメント、断面二次極モーメント、および断面積は、いずれもハット形鋼矢板1枚あたりの値である。
Figure JPOXMLDOC01-appb-T000001
 図7は、上記の比較例1~比較例4、実施例1~実施例27、および参考例1~参考例4について、図4を参照して説明した分布荷重qを100kN/m、地盤反力係数を2.0×10kN/mとした構造計算で算出された回転角度φ(deg)を縦軸に、ハット形鋼矢板1の嵌合中心E回りの断面二次極モーメントIpo(cm)を横軸にして示すグラフである。図7のグラフを参照すると、断面二次極モーメントIpoが8.0×10cm未満の比較例1~比較例4に比べて、断面二次極モーメントIpoが8.0×10cmよりも大きい実施例1~実施例27(最も小さいのは実施例3でIpo=8.37×10cm)では回転角度φが小さくなっている。
 図8は、比較例1~比較例4、実施例1~実施例27、および参考例1~参考例4について、図7の例とは異なる条件、すなわち分布荷重qを1.0×10kN/m、地盤反力係数を2.0×10kN/mとした構造計算で算出された回転角度φ(deg)を縦軸に、ハット形鋼矢板1の嵌合中心E回りの断面二次極モーメントIpo(cm)を横軸にして示すグラフである。図8のグラフでも、図7のグラフと同様に、断面二次極モーメントIpoが8.0×10cm未満の比較例1~比較例4に比べて、断面二次極モーメントIpoが8.0×10cmよりも大きい実施例1~実施例27では回転角度φが小さくなっている。
 図7および図8に示した構造計算の結果から、断面二次極モーメントIpoが8.0×10cmよりも大きいことは、ハット形鋼矢板1の打設時の回転変形を低減するための断面形状の条件の1つである可能性がある。
 一方、図7および図8に示した結果において、参考例1~参考例3では、断面二次極モーメントIpoが8.0×10cmよりも大きいにもかかわらず、回転角度φが低減されていない。また、参考例4では、断面二次極モーメントIpoが8.0×10cmよりも小さいにもかかわらず、回転角度φが低減されている。そこで、断面形状にさらなる条件がある可能性を考慮し、実施例1~実施例27および参考例1~参考例4のウェブおよびアームの長さを比較した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2において、実施例1~実施例27ではハット形鋼矢板のウェブの長さBwおよびアームの長さBaがBa/Bw>0.2の関係を満たす(最も小さいのは実施例19および実施例25でBa/Bw=0.298)のに対して、参考例1~参考例3ではBa/Bw<0.2である。Ba/Bwが小さい場合、ウェブの長さがアームの長さよりも極端に長くなるため、図4に示した分布荷重qを受ける領域が広くなり、結果として断面二次極モーメントIpoが大きくても回転角度φが低減されないと考えられる。従って、上記の例から、ハット形鋼矢板1の打設時の回転変形を低減するための断面形状の条件として、断面二次極モーメントIpoが8.0×10cmよりも大きく、かつウェブの長さBwとアームの長さBaとがBa/Bw>0.2の関係を満たすことが特定できる。また、実施例におけるBa/Bwは0.298以上であり、また27例中18例において0.3を超えていることから、より好ましくはBa/Bw>0.3であることも特定できる。
 一方、表2において、実施例1~実施例27ではハット形鋼矢板のウェブの長さBwおよびアームの長さBaがBa/Bw<0.6の関係を満たす(最も大きいのは実施例21でBa/Bw=0.502)のに対して、参考例4ではBa/Bw=0.806である。Ba/Bwが大きい場合、上述した参考例1~参考例3の場合とは逆に、ウェブの長さがアームの長さよりも極端に短くなるため、図4に示した分布荷重qを受ける領域が狭くなり、結果として断面二次極モーメントIpoを大きくしなくても回転角度φが低減されると考えられる。しかしながら、以下に説明する通り、このようなハット形鋼矢板の断面設計は、例えば鋼矢板壁の軽量化の観点において必ずしも合理的ではない。
 さらに、以下で述べるような理由により、ハット形鋼矢板のウェブの長さBwおよびアームの長さBaがBa/Bw<0.5の関係を満たすようにしてもよい。ハット形鋼矢板の断面において、ウェブの断面積と両側のアームの合計断面積とのバランスが崩れると、断面高さ方向の中立軸(図1に示すx軸)はフランジ中央付近からずれていくことになる。ここで、ハット形鋼矢板の打設では、断面高さ方向の中立軸付近に鉛直方向の荷重を作用させることが効率的であることが知られている(例えば、特許第3916621号明細書を参照)。中立軸がフランジ中央付近から大きくずれるとウェブまたはアームに偏心荷重が作用し(例えば、中立軸がアーム側にずれると、ウェブに偏心荷重が作用する)、打設時の鋼矢板の変形や施工性の低下につながる可能性がある。
 上記の点を考慮した場合、ウェブの断面積と両側のアームの合計断面積との差分が大きくなり過ぎないようにし、ハット形鋼矢板の断面高さ方向の中立軸をフランジ中央付近に維持することが望ましい。ここで、ウェブの断面積をウェブの長さBwおよび板厚twの積、すなわちBw×twとし、図11に示すように両側のアームの合計断面積をAaとする。ウェブの断面積に対して両側のアームの合計断面積Aaが±10%以内である場合、(i)0.9×Bw×tw≦Aaかつ(ii)Aa≦1.1×Bw×twとなる。一方、両側のアームの合計断面積Aaは、継手がある分、アームの長さBaおよび板厚taの積の2倍よりも大きく(iii)2×Ba×ta<Aaとなる。このうち(ii)および(iii)の条件は組み合わせることができ、2×Ba×ta<1.1×Bw×tw、すなわち(iv)Ba/Bw<0.55×tw/taとなる。さらに、ウェブの板厚twおよびアームの板厚taのどちらかが極端に小さい場合にもハット形鋼矢板の強度を確保することが難しくなることから、0.9≦tw/ta≦1.1とすると、上記(iv)はBa/Bw<0.55×0.9、すなわちBa/Bw<0.495となる。また、ウェブの板厚twとアームの板厚taとの差分も大きくなり過ぎないようにすることが望ましく、この観点からは、両側のアームの合計長さ2×Baが継手がある分だけBwより短くなる。この条件は、2×Ba<Bw、すなわちBa/Bw<0.5となる。上記の2つの条件が満たされるのは、Ba/Bw<0.495かつBa/Bw<0.5、すなわちBa/Bw<0.495の場合である。
 図9は、上記の比較例1~比較例4、実施例1~実施例27、および参考例1~参考例4について、ハット形鋼矢板の嵌合継手を互いに嵌合させて幅方向につなぎ合わせた鋼矢板壁の壁幅1mあたりの断面積A(cm/m)を縦軸に、同じく壁幅1mあたりの、幅方向に延びる中立軸回りの断面係数Z(cm/m)を横軸にして示すグラフである。比較例1~比較例4の鋼矢板壁における断面積Aと断面係数Zの関係を近似直線L(A=0.054Z+70)で表した場合、実施例1~実施例27の鋼矢板壁はいずれも近似直線Lよりも右下側、すなわち、A<0.054Z+70となる領域に位置し、比較例1~比較例4の鋼矢板壁よりも軽量化されている。一方、参考例4の鋼矢板壁は近似直線Lよりも左上側に位置し、比較例1~比較例4の鋼矢板壁よりも軽量化されているとはいえない。
 以上より、本実施形態に係るハット形鋼矢板1の打設時の断面の回転変形を低減するための条件、すなわち断面二次極モーメントIpoが8.0×10cmよりも大きく、かつウェブの長さBwとアームの長さBaとがBa/Bw>0.2の関係を満たすことに、鋼矢板壁を軽量化するための条件として、Ba/Bw<0.6であること、および鋼矢板壁の壁幅1mあたりの断面積A(cm/m)と、幅方向に延びる中立軸回りの断面係数Z(cm/m)とがA<0.054Z+70の関係を満たすことを加えてもよい。
 なお、上記の検討は、ハット形鋼矢板1の有効幅Wを拡大する検討の中で実施されたため、実施例1~実施例27において有効幅Wは105cm≦W≦150cmの範囲にある。しかしながら、例えば有効幅Wが105cm未満、または150cmよりも大きい場合であっても、上記の範囲に近い値であれば、同様の条件が適用可能である。
 また、上記のようにハット形鋼矢板1の有効幅Wを拡大する場合、製造性などの観点から高さHは有効幅Wに対して小さい範囲に収めることが望ましい。それゆえ、実施例1~実施例27において高さHはH≦45cmの範囲にある(最も大きいのは実施例25、実施例26および実施例27でH=40.0cm)。しかしながら、例えば高さHが45cmよりも大きい場合であっても、上記の範囲に近い値であれば、同様の条件が適用可能である。
 以上で説明したような本発明の実施形態によれば、打設時に発生する断面の回転変形が効果的に低減される断面形状のハット形鋼矢板が提供される。このようなハット形鋼矢板は、例えばハット形鋼矢板の1対の嵌合継手のうちの一方のみを先行して打設された鋼矢板の嵌合継手に嵌合させながらハット形鋼矢板を地中に打設する工程を含む鋼矢板壁の製造方法において、特に有利である。このような鋼矢板壁の製造方法では、打設時においてハット形鋼矢板の一方の継手が先行して打設された鋼矢板の継手に嵌合することによって変位を拘束されるのに対し、他方の継手は変位が拘束されないという非対称な状況が生じるが、本発明の実施形態を適用することによってハット形鋼矢板の断面の回転変形を効果的に抑制することができる。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 1…ハット形鋼矢板、1P…ハット形鋼矢板、2…ウェブ、3A,3B…フランジ、4A,4B…アーム、5A,5B…嵌合継手、E,E…嵌合中心。

Claims (7)

  1.  ハット形鋼矢板であって、
     長手方向に直交する断面において、断面高さ方向の第1の側で幅方向に沿って延びるウェブと、前記ウェブの前記幅方向の両端部から前記幅方向の両側、かつ前記断面高さ方向の第2の側に向かって延びる1対のフランジと、前記断面高さ方向の第2の側で前記1対のフランジのそれぞれの端部から前記幅方向に沿って、かつ前記幅方向の両側に向かって延びる1対のアームと、前記1対のアームのそれぞれの前記1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備え、
     前記断面における前記1対の嵌合継手のうちの一方の嵌合中心を中心とする断面二次極モーメントIpoが8.0×10cmよりも大きく、前記幅方向における前記ウェブの長さBwと前記1対のアームのうちの一方の長さBaとがBa/Bw>0.2の関係を満たすハット形鋼矢板。
  2.  前記幅方向における前記ウェブの長さBwと前記1対のアームのうちの一方の長さBaとがBa/Bw<0.6の関係を満たす、請求項1に記載のハット形鋼矢板。
  3.  前記幅方向における前記ウェブの長さBwと前記1対のアームのうちの一方の長さBaとがBa/Bw<0.495の関係を満たす、請求項2に記載のハット形鋼矢板。
  4.  有効幅Wが105cm≦W≦150cmの範囲にある、請求項1から請求項3のいずれか1項に記載のハット形鋼矢板。
  5.  高さHがH≦45cmの範囲にある、請求項1から請求項4のいずれか1項に記載のハット形鋼矢板。
  6.  請求項1から請求項5のいずれか1項に記載のハット形鋼矢板の前記1対の嵌合継手を互いに嵌合させて前記幅方向につなぎ合わせた鋼矢板壁であって、
     前記鋼矢板壁の壁幅1mあたりの断面積A(cm/m)と、前記幅方向に延びる中立軸回りの断面係数Z(cm/m)とがA<0.054Z+70の関係を満たす鋼矢板壁。
  7.  請求項1から請求項5のいずれか1項に記載のハット形鋼矢板を用いた鋼矢板壁の製造方法であって、
     前記ハット形鋼矢板の前記1対の嵌合継手のうちの一方のみを先行して打設された鋼矢板の嵌合継手に嵌合させながら前記ハット形鋼矢板を地中に打設する工程を含む鋼矢板壁の製造方法。
PCT/JP2019/032109 2018-08-31 2019-08-16 ハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法 WO2020045113A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-162390 2018-08-31
JP2018162390A JP2021183757A (ja) 2018-08-31 2018-08-31 鋼矢板および鋼矢板壁

Publications (1)

Publication Number Publication Date
WO2020045113A1 true WO2020045113A1 (ja) 2020-03-05

Family

ID=69644530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032109 WO2020045113A1 (ja) 2018-08-31 2019-08-16 ハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法

Country Status (2)

Country Link
JP (1) JP2021183757A (ja)
WO (1) WO2020045113A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488230B1 (ja) * 2002-07-10 2004-01-19 新日本製鐵株式会社 圧延鋼矢板
JP2005048394A (ja) * 2003-07-31 2005-02-24 Nippon Steel Corp ハット型鋼矢板
JP2005213895A (ja) * 2004-01-30 2005-08-11 Sumitomo Metal Ind Ltd 高貫入性ハット形鋼矢板
US7018140B1 (en) * 2004-11-23 2006-03-28 Chaparral Steel Company Z-shaped sheet piling
JP2008069631A (ja) * 2007-11-30 2008-03-27 Nippon Steel Corp ハット型鋼矢板およびその形状設定方法
JP2008127771A (ja) * 2006-11-17 2008-06-05 Jfe Steel Kk ハット型鋼矢板
WO2010023929A1 (ja) * 2008-08-29 2010-03-04 新日本製鐵株式会社 鋼矢板
JP2011140867A (ja) * 2009-12-11 2011-07-21 Jfe Steel Corp Z形鋼矢板
JP2012158910A (ja) * 2011-02-01 2012-08-23 Jfe Steel Corp ハット形鋼矢板
JP2014148798A (ja) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal 鋼矢板
WO2015159445A1 (ja) * 2014-04-18 2015-10-22 新日鐵住金株式会社 鋼矢板

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488230B1 (ja) * 2002-07-10 2004-01-19 新日本製鐵株式会社 圧延鋼矢板
JP2005048394A (ja) * 2003-07-31 2005-02-24 Nippon Steel Corp ハット型鋼矢板
JP2005213895A (ja) * 2004-01-30 2005-08-11 Sumitomo Metal Ind Ltd 高貫入性ハット形鋼矢板
US7018140B1 (en) * 2004-11-23 2006-03-28 Chaparral Steel Company Z-shaped sheet piling
JP2008127771A (ja) * 2006-11-17 2008-06-05 Jfe Steel Kk ハット型鋼矢板
JP2008069631A (ja) * 2007-11-30 2008-03-27 Nippon Steel Corp ハット型鋼矢板およびその形状設定方法
WO2010023929A1 (ja) * 2008-08-29 2010-03-04 新日本製鐵株式会社 鋼矢板
JP2011140867A (ja) * 2009-12-11 2011-07-21 Jfe Steel Corp Z形鋼矢板
JP2012158910A (ja) * 2011-02-01 2012-08-23 Jfe Steel Corp ハット形鋼矢板
JP2014148798A (ja) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal 鋼矢板
WO2015159445A1 (ja) * 2014-04-18 2015-10-22 新日鐵住金株式会社 鋼矢板
WO2015159434A1 (ja) * 2014-04-18 2015-10-22 新日鐵住金株式会社 鋼矢板

Also Published As

Publication number Publication date
JP2021183757A (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
US7360969B2 (en) Z-shaped sheet piling
JP2012158910A (ja) ハット形鋼矢板
JP4890646B2 (ja) 組合せ鋼矢板、組合せ鋼矢板により構成される土留め壁、及び組合せ鋼矢板の選定方法
WO2020045113A1 (ja) ハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法
JP5114741B2 (ja) ハット形鋼矢板
WO2014038533A1 (ja) 組合せ鋼製壁
JP5194782B2 (ja) ハット形鋼矢板
WO2020183587A1 (ja) 溶接組立h形鋼
WO2020045114A1 (ja) ハット形鋼矢板および鋼矢板壁の製造方法
JP2006241816A (ja) 地中連続壁
WO2020045115A1 (ja) ハット形鋼矢板および鋼矢板壁の製造方法
WO2018117269A1 (ja) ハット形鋼矢板
JP6269184B2 (ja) 組み合わせ鋼矢板、鋼矢板壁、および組み合わせ鋼矢板の施工方法
JP4007726B2 (ja) ラーメン構造
JP7143891B2 (ja) ハット形鋼矢板の製造方法
WO2020045116A1 (ja) ハット形鋼矢板および鋼矢板壁の製造方法
JP2021110149A (ja) 梁の開口補強方法及び梁の構造
WO2020045118A1 (ja) ハット形鋼矢板
JP6979283B2 (ja) 鋼管柱とh形鋼製梁との鋼製柱梁架構
JP7143890B2 (ja) ハット形鋼矢板の製造方法
JP6807787B2 (ja) 鉄骨梁補強構造
JPH06316922A (ja) 組み合わせ鋼矢板
JP2019015074A (ja) 鋼矢板及びその施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP