JP7396332B2 - 既存岸壁の改良構造及び該改良構造の施工方法 - Google Patents

既存岸壁の改良構造及び該改良構造の施工方法 Download PDF

Info

Publication number
JP7396332B2
JP7396332B2 JP2021104558A JP2021104558A JP7396332B2 JP 7396332 B2 JP7396332 B2 JP 7396332B2 JP 2021104558 A JP2021104558 A JP 2021104558A JP 2021104558 A JP2021104558 A JP 2021104558A JP 7396332 B2 JP7396332 B2 JP 7396332B2
Authority
JP
Japan
Prior art keywords
wall
existing
quay
sheet piles
newly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021104558A
Other languages
English (en)
Other versions
JP2023003464A (ja
Inventor
進吾 粟津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021104558A priority Critical patent/JP7396332B2/ja
Publication of JP2023003464A publication Critical patent/JP2023003464A/ja
Application granted granted Critical
Publication of JP7396332B2 publication Critical patent/JP7396332B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Description

本発明は、既存岸壁における既存壁体の水域側に設けられて既存岸壁を改良する既存岸壁の改良構造及びその施工方法に関する。
なお、本明細書における岸壁には、直立壁を有する矢板式岸壁、重力式岸壁、セル式岸壁等の船舶の接岸機能を有するものの他、同様の直立壁を有して船舶の接岸機能を有していない護岸や、同様の直立壁を有した防波堤も含む。
既存岸壁として矢板式岸壁を例に挙げて以下説明する。
既存の矢板式岸壁41としては、図21に示すように、複数の矢板を水底地盤43に打設して形成した既存壁体45の上端の上部工47を陸上部48に設け、この上部工47と控え工49をタイ材51で連結して支持するようにしたものがある。
このような矢板式岸壁41においては、例えば、改訂された港湾基準への対応、耐震性向上、エプロン上の上載荷重の増加、船舶の大型化に伴う岸壁水深の増深、既存構造の劣化対応、供用期間の延長等の要因により補強等の改良が必要となる場合がある。この場合、港湾計画への影響を最小限とするため、岸壁法線の水域側への前出しは、なるべく小さく(できれば無し)することが望ましい。
既存の矢板式岸壁の改良構造の例としては、例えば特許文献1に開示された、「既設岸壁の改修補強構造」がある。
同文献に開示の「既設岸壁の改修補強構造」は、「矢板壁をタイ材を介して控え工で支持してなる既設岸壁の改修補強構造であって、既設控え工の反岸壁側に、該既設控え工から離間されて独立して設けられ、下端部が所定深度まで立て込まれた新設控え工と、該新設控え工の頭部から既設矢板壁の所定位置に向けて斜め下方に延設されて、両端が該新設控え工と既設矢板壁とに止着された新設のタイ材と、を有し、
前記新設控え工は、鋼管内にコンクリートを充填されて形成される鋼管杭であるとともに、前記既設控え工に沿って適宜間隔を空けて複数配設され、前記新設タイ材は、前記鋼管杭から放射状に複数設けられている、ことを特徴とする」(請求項4参照)ものである。
この方法によると、既設の矢板壁との係止位置を任意に設置可能であり、かつ矢板壁に発生する曲げモーメントを低減できるため、改良方法として有効な方法である。
また、特許文献2に開示された「既設矢板岸壁の補強構造」では、既設矢板壁の水域側に頭部にL形構造物を有する杭式構造物を設置し、L形構造物と既存矢板壁と一体化することで補強する構造が提案されている。この方法によると、既存矢板壁の水域側のみを改良する補強構造なので、陸上部での施工が制限される場合でも適用ができる。
特許第4876991号公報 特許第5347898号公報
特許文献1に開示の構造は、工事における岸壁占有期間の短縮化を図ることを目的の一つとしており、それ故に陸側に新設の控え工を設置することが必須となっている。
しかしながら、既存の矢板式岸壁の改良工事においては、陸域側での施工が制限される場合もあり、このような場合には適用できないという問題がある。
また、新設タイ材が、鋼管杭から放射状に複数設けられていることから、タイ材の張力管理が難しいという問題もある。
上記の説明は既存岸壁が矢板式岸壁を例に挙げたが、既存岸壁にはケーソンを用いた重力式岸壁やセル式岸壁等の直立壁を有するものがあり、この場合においても、陸上部での施工が制限される場合があり、同様の問題がある。
特許文献2に開示の構造は、陸域側の施工は必要ないが、補強効果を発揮するためには既存矢板壁とL形構造物とを一体化させる必要がある。これは、水底面近くの浅い地盤内では、地震時に土が杭の間をすり抜けて流動するため、L形構造物と既存矢板壁を一体化しなければ既存矢板壁の変形を抑えることができないためである。一体化のためには、既存矢板壁に水中スタッド溶接を多量に行う必要があり、施工コストが高額になるとともに、溶接による矢板壁の脆化が懸念されるという問題がある。
また、既存壁体への溶接が必要という点から、ケーソンを用いた重力式岸壁等のコンクリートによる直立壁には適用できない。
本発明はかかる課題を解決するためになされたものであり、陸上部での施工が制限される場合にも適用可能な既存岸壁の改良構造及び該改良構造の施工方法を提供することを目的としている。
(1)本発明に係る既存岸壁の改良構造は、既存岸壁における既存壁体の水域側に該既存壁体と所定の隙間を設けて打設され、鋼矢板もしくは鋼管矢板である矢板を連結してなる第1新設壁体と、
該第1新設壁体と平行に、水域側に間隔をあけて打設され、鋼矢板もしくは鋼管矢板である矢板を連結してなる第2新設壁体と、
前記第1新設壁体と前記第2新設壁体との間に両壁体に直交する方向に所定間隔で複数設けられた仕切り壁体と、
前記第1新設壁体と前記既存壁体との間に設けられて水平力を伝達する水平力伝達部材とを備え、
前記第1新設壁体及び前記第2新設壁体を構成する矢板は、その一部が支持層まで根入れされた長尺矢板で、他の矢板は支持層より浅い深さまで根入れされた短尺矢板であり、前記第1新設壁体と前記第2新設壁体の前記長尺矢板は同間隔で配置され、
前記仕切り壁体は、前記第1新設壁体及び前記第2新設壁体を構成する短尺矢板と同じ根入れ深さであることを特徴とするものである。
(2)また、上記(1)に記載のものにおいて、前記長尺矢板は鋼管矢板であり、前記短尺矢板の下端と高さ方向同位置から鋼管直径3倍以上の長さの範囲において、降伏強度400N/mm2以上及び/又は鋼管の外径R(mm)と鋼管の肉厚t(mm)との比R/tがR/t≦80であることを特徴とするものである。
(3)また、上記(1)又は(2)に記載のものにおいて、前記既存岸壁が、下端側を地盤に根入れすると共に上端側をタイ材によって控え工で支持する矢板式岸壁の場合において、前記水平力伝達部材が(1)式を満たす位置に配置されていることを特徴とするものである。
Figure 0007396332000001
ここで、
D:既存岸壁の矢板の根入長(m)
HT:既存岸壁の水底面からタイ材取り付け位置までの高さ(m)
E:既存岸壁の矢板のヤング率(kN/m2)
I:既存岸壁の単位幅あたりの矢板の断面2次モーメント(m4/m)
lh:既存岸壁の矢板が根入れされている地盤の地盤反力係数(kN/m3)
H:水底面から水平力伝達部材上端までの高さ(m)
(4)また、上記(1)乃至(3)のいずれかに記載の既存岸壁の改良構造の施工方法であって、
前記既存壁体の水域側に、該既存壁体と所定の隙間を設けて前記第1新設壁体を打設する工程と、
前記第1新設壁体と平行して、水域側に間隔をあけて、前記第2新設壁体を打設する工程と、
前記第1新設壁体と前記第2新設壁体との間に所定間隔で両壁体に直交方向に仕切り壁体を打設する工程と、
前記既存壁体と前記第1新設壁体との隙間に水平伝達部材を配設する工程と、を備えたことを特徴とするものである。
本発明に係る既存岸壁の改良構造は、陸上部での施工が制限される場合にも適用可能であり、施工性に優れている。
また、高コストな地盤改良をせずとも、岸壁天端の水平変形量を抑えることが可能となる。
更に、水平力伝達部材は、既存壁体からの水平力を第1新設壁体に伝達できればよく、それ故に水平力伝達部材は既存壁体と第1新設壁体と一体化される必要がないため、水中におけるスタッド溶接等を不要とすることができる。
本発明の実施の形態1に係る既存岸壁の改良構造の斜視図である。 図1に示した既存岸壁の改良構造の側面図である。 図1に示す既存岸壁の改良構造の作用を説明する説明図である。 本発明の実施の形態1に係る既存岸壁の改良構造の他の態様の斜視図である。 図4に示した既存岸壁の改良構造の側面図である。 既存壁体に作用する荷重を説明する説明図である。 実施の形態2に係る式の導出過程で行った試設計の概要を説明する説明図である。 実施の形態2に係る式の導出過程で行った試設計の結果を整理した散布図である。 本発明の実施の形態2に係る既存岸壁の改良構造の説明図である。 実施例1に係る改良構造の説明図である。 実施例2に係る改良構造の説明図である。 実施例3に係る改良構造の説明図である。 実施例4に係る改良構造の説明図である。 本発明の効果を確認するシミュレーション解析の対象とした既存の矢板式岸壁の説明図である。 シミュレーション解析の対象とした本発明改良構造の説明図である。 シミュレーション解析の対象とした従来例の改良構造の説明図である。 シミュレーション解析に用いた地震動を示す図である。 改良前のシミュレーション解析結果を示す図である。 本発明改良構造のシミュレーション解析結果を示す図である。 従来例に係る改良構造のシミュレーション解析結果を示す図である。 改良対象となる既存の矢板式岸壁の説明図である。 本発明に至った経緯を説明する説明図である(その1)。 本発明に至った経緯を説明する説明図である(その2)。
実施の形態を説明する前に本発明に至った経緯を説明する。
<本発明に至った経緯>
耐震強化岸壁に指定されている既存岸壁41の改良設計においては、レベル2地震動(発生する可能性がある最大級の地震動)の発生後の、岸壁の使用性(緊急物資輸送等のために直ちに船舶を停泊できるか)が重要となる。このような使用性確保の観点から、地震時の岸壁天端の水域側への水平変形量を抑えることが要求される。
陸上部48での施工が制限される場合には、地震時に既存壁体45に作用する土圧を抑えることが難しいため、既存壁体45の水域側地盤の変形量が小さくなるように補強することで、岸壁天端の水平変形量を抑える方法が有効となる。
図22は図21に示した既存岸壁41の水域側に自立式矢板53を打設して補強した構造の、地震時の変形を模擬的に示したものである。
上述したように、既存岸壁41の地震時水平変形量を抑制するためには、岸壁の水域側地盤の変形量を抑える必要がある。しかし、水域側地盤の浅層領域は上載圧が小さく水平抵抗力も小さいため、地震時土圧が作用すると自立式矢板53が既存岸壁41の変形を抑えられずに撓んでしまう。結果として、既存岸壁41の水域側に矢板を打設しても、補強効果は小さい。
図23は既存岸壁41の水域側に補強杭55を打設して補強した構造の、地震時の変形を模擬的に示したものである。杭は自立式矢板53よりも水平抵抗力が大きいが、矢板と異なり岸壁法線方向(図23の紙面直交方向)に離散的に配置されるため、地震時に杭の間を土がすり抜ける。そのため、地震時土圧が作用すると補強杭55は既存岸壁41の変形を抑えられないため、既存岸壁41の水域側に補強杭55を打設しても、矢板と同様に補強効果は小さい。
一方、水域側地盤の深層領域は上載圧が大きいため、地震時の地盤変形量は比較的小さい。そのため、離散的に杭を配置してもすり抜ける土の移動量が小さく、逆に杭に対する地盤の水平抵抗力は大きい。
以上のように、既存壁体45の水域側地盤の変形量が小さくなるように補強するには、浅層領域は離散的に配置される杭では十分でなく矢板のように面での補強が必要であるが、深層領域は杭での補強でも有効である。
本発明はかかる知見に基づくものであり、その具体例を以下の実施の形態で詳細に説明する。
[実施の形態1]
本実施の形態の既存岸壁の改良構造1(以下、単に「改良構造1」という場合あり)は、図1、図2に示すように、既存岸壁41における既存壁体45の水域側に既存壁体45と所定の隙間を設けて打設され、鋼矢板もしくは鋼管矢板である矢板を連結してなる第1新設壁体3と、第1新設壁体3と平行に、水域側に間隔をあけて打設され、鋼矢板もしくは鋼管矢板である矢板を連結してなる第2新設壁体5と、第1新設壁体3と第2新設壁体5との間に所定間隔で両壁体に直交する方向に設けられた仕切り壁体7と、第1新設壁体3と既存壁体45との間に設けられて水平力を伝達する水平力伝達部材9とを備えている。
以下、各構成を詳細に説明する。なお、図1、2において既存岸壁41を示した図22と同一部分には同一の符号を付して説明を省略する。
<第1新設壁体、第2新設壁体>
第1新設壁体3及び第2新設壁体5を構成する矢板は、その一部が支持層まで根入れされた長尺矢板11で、他の矢板は支持層より浅い深さまで根入れされた短尺矢板13である。
短尺矢板13は、既存岸壁41の水域側地盤の軟弱な深さ領域を拘束する深さまで根入れされていればよく、具体的には3m以上が望ましい。これより根入れ深さが浅いと、前述する水平抵抗が発揮されない可能性がある。逆に根入れ深さが深すぎると、材料費や施工手間が大きくなって不経済となるため10m以下が望ましい。
第1新設壁体3および第2新設壁体5を構成する矢板は、直線形鋼矢板、H形鋼矢板、U形鋼矢板、Z形鋼矢板、ハット形鋼矢板、鋼管矢板およびこれらを組み合わせた矢板が考えられる。
また、鋼管矢板の場合の連結継手の形状も限定されない。仕切り壁体7は、岸壁法線直角方向に並ぶようにするため、第1新設壁体3と第2新設壁体5の長尺矢板11の配置は揃えることが望ましい。
長尺矢板11が鋼管矢板の場合、短尺矢板13より下方の部分は隣接する矢板と連結されていないので、連結継手が不要となる。構造形式上、短尺矢板部に大きな荷重は作用せず、断面二次モーメントの大きな矢板は必要ないため、例えば長尺矢板11は鋼管矢板、短尺矢板13をハット形鋼矢板といった組み合わせにすることで、合理的な構造とすることができる。
本発明の改良構造1では、連結された第1新設壁体3、第2新設壁体5、および仕切り壁体7から、長尺矢板11に荷重が伝達することで、短尺矢板13より下方の長尺矢板11に大きな変形が生じる。そのため、長尺矢板11を鋼管矢板として、短尺矢板下端と高さ方向同位置から鋼管の直径の3倍以上の長さ範囲は、鋼管矢板の変形性能を高くすることで合理的な設計が可能となる。具体的には、一般的に使用される降伏強度235N/mm2級や315N/mm2級の鋼管矢板よりも、降伏強度400N/mm2以上の鋼管矢板を使用することが望ましい。また、鋼管の径厚比がR/t=100程度になると、局部座屈が発生する可能性が高くなり、許容できる変形量が小さくなるため、R/t≦80とすることが望ましい。ここで、R:鋼管の外径(mm)、t:鋼管の肉厚(mm)である。なお、これらの条件は、短尺矢板下端と高さ方向同位置付近のみでなく、全ての部位について満たされていても問題ない。
<仕切り壁体>
仕切り壁体7は、第1新設壁体3及び第2新設壁体5を構成する短尺矢板13と同じ根入れ深さである。
仕切り壁体7を構成する矢板についても、直線形鋼矢板、H形鋼矢板、U形鋼矢板、Z形鋼矢板、ハット形鋼矢板、鋼管矢板およびこれらを組み合わせた矢板が考えられる。第1新設壁体3と第2新設壁体5への荷重の伝達を円滑にするため、仕切り壁体7は、図1に示すように、それぞれの長尺矢板11同士を繋ぐように配置されることが望ましい。
<水平力伝達部材>
水平力伝達部材9は、既存壁体45と第1新設壁体3との隙間に配設されて既存壁体45が水域側に変形しようとする水平力を第1新設壁体3に伝達するものである。地震の揺れにより、既存壁体45は一時的には陸域側に変形するが、徐々に水域側への変形が大きくなる。すなわち、水平力伝達部材9は既存壁体45の陸域側への変形を抑える必要がないため、引張力を伝達する必要はなく、圧縮力の伝達機能のみあればよい。水平力伝達部材9はかかる機能を発揮できれば、その材料等は限定されず、例えば石材、水中コンクリート、水中モルタルなど、箱状構造体と既存壁体45の水平方向の圧縮力の伝達が可能なものであればよい。
もっとも、水平力伝達部材9の上部は確実に水平力を伝達できるように、水中コンクリートまたは水中モルタルで構成するのが望ましい。
既存壁体45に作用する荷重(例えば地震時荷重やエプロン上に物を置いたときの荷重、増深によって生じた土圧増分等)は、水平力伝達部材9とその下方の地盤を介して第1新設壁体3に伝達されるため、第1新設壁体3には水平力のみが伝達される構造である。このため、既存壁体45と第1新設壁体3とを一体化する必要がなく、水中におけるスタッド溶接等を不要とすることができる。
上記のように構成された本実施の形態に係る改良構造1の作用を図3に基づいて説明する。図3は本実施の形態の改良構造1における地震時の変形を模擬的に示したものである。
本実施の形態では、既存岸壁41の水域側地盤の浅層領域は、短尺矢板13の内部に拘束されることで一体となって変形する。短尺矢板13より深部の地盤は上載圧が大きいので、前述のように、離散的に配置された矢板でも大きな水平抵抗を期待できる。これらのことから、本発明の補強構造では、水平力伝達部材9を介して第1新設壁体3の水平抵抗を既存壁体45に伝えることで、岸壁天端の水平変形量を抑えることが可能となる。
なお、本実施の形態の場合には、既存壁体45の水域側に第1新設壁体3が打設されるため、岸壁法線が水域側に出っ張ることがある。このため、船舶の接岸の支障とならないように、既存の上部工47を水域側に拡幅する増幅上部工15を設置するようにすればよい(図2参照)。もっとも、増幅上部工15は岸壁全長の必要はなく、また、増幅上部工15を設けることなく接岸用の防舷材を変えることで対応可能なこともある。
上記の実施の形態では、第1新設壁体3の上端を水底地盤43の近傍にしたものであったが、本発明はこれに限られるものではなく、図4、図5に示すように、第1新設壁体3の上端を既存壁体45と同じ高さにして、第1新設壁体3と既存壁体45の上部工47を一体化させてもよい。
[実施の形態2]
本実施の形態は、水平力伝達部材9の位置の最適化を図ったものである。すなわち、本実施の形態に係る既存岸壁の改良構造1は、既存岸壁41が、下端側を地盤に根入れすると共に上端側をタイ材51によって控え工49で支持する矢板式岸壁の場合において、水平力伝達部材9が(1)式を満たす位置に配置されている。
Figure 0007396332000002
ここで、
D:既存岸壁の矢板の根入長(m)
HT:既存岸壁の水底面からタイ材取り付け位置までの高さ(m)
E:既存岸壁の矢板のヤング率(kN/m2)
I:既存岸壁の単位幅あたりの矢板の断面2次モーメント(m4/m)
lh:既存岸壁の矢板が根入れされている地盤の地盤反力係数(kN/m3)
H:水底面から水平力伝達部材上端までの高さ(m)
以下、(1)式の導出した過程を説明する。
水平力伝達部材9を通じて、既存壁体45にかかる荷重が第1新設壁体3に伝達するとき、既存壁体45に作用するせん断力も第1新設壁体3に伝達する。第1新設壁体3に伝達するせん断力が大きいと、第1新設壁体3の水域側への変形量が増大するため、既設壁体の水域側への変形量や作用する曲げモーメントも増大する。そのため、既存壁体45に作用するせん断力が小さい位置に、水平力伝達部材9が存在することが望ましい。
既存岸壁41が、下端側を地盤に根入れすると共に上端側をタイ材51によって控え工49で支持する矢板式岸壁の場合における、既存壁体45に作用する荷重を図6に示す。図6(a)は既存壁体45に作用する土圧分布を模式的に示したものであり、上部の支点はタイ材取付点を、下部の支点は水底面を表している。このとき、図6(b)に示すようなせん断力と、図6(c)に示すような曲げモーメントが発生する。ここで、水域に凸となる場合を正の曲げモーメントとする(+Mと表記)。
既存壁体45に作用するせん断力が0になる位置は、作用する曲げモーメントの変曲点(増加から減少に変わる位置)と等しくなる。これは水底面より上の範囲において、既存壁体45に作用する最大曲げモーメントの発生位置とも一致する。
既存岸壁41としての矢板式岸壁における矢板への最大曲げモーメントの発生位置は、既存壁体45の壁高さ、タイ材51の取り付け位置、鋼材の降伏強度、矢板の形状、地盤条件、設計震度等により変化する。そこで、さまざまな条件における矢板式岸壁の試設計を実施し、最大曲げモーメントの発生位置を調べた。
試設計の概要を図7に示す。なお、図7において図1と同一部分及び対応する部分には同一の符号を付してある。
矢板式岸壁は、図7に示すように、矢板の下端側を水底地盤43に根入れすると共に、上端側をタイ材51によって控え工49で支持してなるものを対象としている。
試計算の条件は次に示すとおりである。
水深は-4.5m、-7.5m、-10.5m、-14m、-17m、-20mの6種類で岸壁天端は+3m、タイ材51取り付け点は+2mで固定した。また、残留水位は+1mで固定とした。
水底地盤43は、緩い、中位、堅い、の3種類とした。せん断抵抗角と地盤反力係数lhは、「緩い」では、30°と24MN/m3、「中位」では、35°と38MN/m3、「堅い」では40°と58MN/m3とした。
矢板式岸壁の背後には裏込石を配置することにし、せん断抵抗角は40°とした。地盤の単位体積重量は、水底地盤43、裏込石とも共通で水中単位体積重量は10kN/m3、気中では18kN/m3とした。
設計震度は、レベル1地震を対象として、地域ごとの設計地震動を用いて検討地点の地盤の1次元地震応答解析結果から設計震度を求めることになっているが、本検討では0.05、0.15、0.25を対象とした。
矢板は鋼製とし、鋼材の降伏強度の特性値は、SKY400として235N/mm2、SKY490として315N/mm2の他に、最大600N/mm2までを想定した。
国内外のさまざまな形状の矢板を対象に試設計を行い、矢板に発生する最大応力が、235~600N/mm2の間に収まる形状を対象に、最大曲げモーメントの発生位置を調べた。
試設計の実施数は1000以上あるため、結果の一部を表1に示す。設計条件として「水深」、「水底面からタイ材取り付け位置までの高さHT」、「水底地盤条件」、「設計震度」を、設計に用いた矢板条件として「ヤング率E」、「断面二次モーメントI」、「断面係数」を、試設計の結果として「矢板に発生する応力」、「矢板の根入長D」、「最大曲げモーメントの発生位置H」を、結果の考察として「(HT)4/(EI)×lh」、「H/D」を示している。
Figure 0007396332000003
表1に示されたものの中から考察すると、ばらつきはあるが「(HT)4/(EI)×lh」が大きくなるほど「H/D」の値が大きくなる傾向にある。すべての試設計の結果について、横軸に「(HT)4/(EI)×lh」を、縦軸に「H/D」をとった散布図を図8に示す。両者には相関があり、「H/D」は下式で示す範囲に分布していることが分かる。
Figure 0007396332000004
岸壁改良の設計をする場合、既存壁体45の「水底面からタイ材取り付け位置までの高さHT」、「ヤング率E」、「断面二次モーメントI」、「地盤反力係数lh」、「矢板の根入長D」は既知であることが多いので、下記に示す式(1)に従って水平力伝達部材9の位置を決めることで、効果的に既存壁体45を改良することができる。
なお、岸壁改良に伴って、水域側水底面の掘削による増深が行われる場合、D、HT、Hは増深後の値を使用するものとする。
Figure 0007396332000005
ここで、
D:既存岸壁の矢板の根入長(m)
HT:既存岸壁の水底面からタイ材取り付け位置までの高さ(m)
E:既存岸壁の矢板のヤング率(kN/m2)
I:既存岸壁の単位幅あたりの矢板の断面2次モーメント(m4/m)
lh:既存岸壁の矢板が根入れされている地盤の地盤反力係数(kN/m3)
H:水底面から水平力伝達部材上端までの高さ(m)
水平力伝達部材9が式(1)の位置にある場合の、岸壁改良構造の一例を図9に示す。第1新設壁体3の既存壁体45側の杭挿通孔の上端が、水平力伝達部材9の位置と同じ高さに位置しており、水平力伝達部材9より下部の第1新設壁体3と既存壁体45との隙間は、砂や固化処理土などで中詰めされる。
[実施の形態3]
次に上記のような既存岸壁の改良構造1の施工方法について説明する。
既存壁体45の水域側に既存壁体45と所定の隙間を設けて第1新設壁体3を打設する(新設壁体打設工程)。この際、長尺矢板11が鋼管矢板の場合、短尺矢板13より下部は連結継手を設けなくてもよい。
次に、第1新設壁体3と平行に、水域側に間隔をあけて、第2新設壁体5を打設する(第2新設壁体打設工程)。この際、第1新設壁体3と第2新設壁体5との間隔が狭いと水平抵抗小さくなる可能性があるため、間隔は5m以上あることが望ましい。
また、次工程で仕切り壁体7を打設する際、仕切り壁体7が岸壁直角方向に並ぶように、第2新設壁体5の長尺矢板11の配置は、第1新設壁体3と揃えることが望ましい。
次に、第1新設壁体3と第2新設壁体5との間に隔壁を設ける形で、仕切り壁体7を打設する(仕切り壁体打設工程)。この際、仕切り壁体7の根入れ深さは短尺矢板13の根入れ深さと合わせることが望ましい。
また、仕切り壁体7は、第1新設壁体3の長尺矢板11と第2新設壁体5の長尺矢板11を結ぶように打設すると、荷重の伝達が円滑になる。
最後に、第1新設壁体3と既存壁体45との隙間に、水中コンクリート又は水中モルタルを打設して水平力伝達部材9を構築する(水平力伝達部材構築工程)。
なお、施工順序は特に限定されず、どの工程を先に行ってもよい。特に、第1新設壁体3、仕切り壁体7、第2新設壁体5の順に、陸域側から水域側に施工していくことで、施工機械の移動回数が少なくなって効率的に施工できるという効果も考えられる。
以上のように、本実施の形態によれば、陸上部48での施工がなく水域側のみでの施工が可能であり、陸側の施工が制限される場合にも適用可能である。
また、既存壁体45と第1新設壁体3との間では、水平力を伝達できればよく、それ故に既存壁体45と第1新設壁体3は一体化される必要がなく、水中におけるスタッド溶接等を不要とすることができる。スタッド溶接の場合、鋼材が溶接に対応した成分のものでないと溶接による脆化が懸念されるが、本実施の形態ではこのようなことが懸念されることがない。
船舶の大型化に伴う岸壁水深の増深が必要な場合は、第1新設壁体3打設工程の後に、水域側水底面を掘削して水深を深くする水底面掘削工程を行うようにすればよい。既存岸壁41が増深に対して構造上の余裕がない場合においても、本実施の形態では第1新設壁体3、第2新設壁体5等の諸元を適正に変更することで、構造上の余裕を持たせることができるので、増深を問題なく行うことができる。
[実施例1]
ケーソン17を用いた重力式岸壁19を対象に、本発明の改良構造1で増深改良を行った例を図10に示す。第1新設壁体3を鋼管矢板として、基礎捨石21を打ち抜いて打設した後に第1新設壁体3の水域側の基礎捨石21を除去することで、基礎捨石21の厚み分の増深が可能となる。水平力伝達部材9は、ケーソン17のフーチング部23に被せるように配置させることで、地震時のケーソン17の水域側への滑動を抑えることができる。
[実施例2]
桟橋構造物25を対象に、本発明の構造で増深改良を行った例を図11に示す。図11に示す例では、陸上部48と水域との境界部には土留め擁壁27が設けられている。
この場合は、増深による桟橋の鋼管杭29の地盤反力低下に対する補強が主目的となるので、水平力伝達部材9は配置しなくてもよい。
本発明の改良構造1で増深した場合は、第1新設壁体3、第2新設壁体5、仕切り壁体7が地盤流動を抑制することで、桟橋の鋼管杭29に作用する荷重も抑制することができる。この点、例えば、箱状構造体の代わりに自立式矢板53を打設して増深した場合は、地震時の地盤流動量が増大して桟橋の鋼管杭29に作用する荷重が大きくなる。
[実施例3]
陸域側に控え工49を有する矢板式岸壁の隅角部の補強として、本発明の改良構造1を適用した例の平面図を図12に示す。
控え工49の鋼管杭は、地盤抵抗が十分に発揮されるという前提のもとで二次元断面として設計される。しかし、隅角部は控え工49が入り組んだ構造となり、十分な地盤抵抗が発揮されない可能性があるため、二次元断面とみなすことができない。
そこで、図12に示すように、本発明の改良構造1によって水域側地盤の補強を併用することで、地盤抵抗が十分に発揮されない矢板式岸壁の隅角部の補強を効果的に行うことができる。
[実施例4]
本発明の構造の岸壁以外への適用例として、重力式の津波防波堤31の補強の例を図13に示す。防波堤の背面側の航路を阻害しない補強方法として、ケーソン17の背面に自立式の鋼矢板あるいは鋼管矢板を打設する方法が考えられるが、津波波力が作用した時に矢板が大きく背面側にたわみ、十分な補強効果が得られない可能性がある。この点、本発明の改良構造1では、補強部分のたわみが少ないため、粘り強い構造が期待できる。
なお、津波防波堤31の背面補強の場合には、ケーソン17に作用する揚圧力(底から上向きにかかる津波波力)を小さくするため、水平力伝達部材9は透水性の高いものにすることが望ましい。
[実施例5]
本発明の効果を確認するため、シミュレーション解析を行ったので、以下これについて説明する。
実験は、図14に示す-12.6m水深の既存の矢板式岸壁(既存壁体45は鋼管矢板)を対象とし、設計震度は変えず、水深のみ-15mに増深する改良を行う場合について検討した。
検討条件として、鋼材部分は50年分の標準的な腐食量による減肉を考慮した。
本発明の補強構造を図15に、構造諸元を表2に示す。なお、表2中の改良構造1における長尺矢板11の下部の規格名称は、鋼板の規格を記載している。
Figure 0007396332000006
比較のため、従来技術として既存壁体45の水域側に、新たに新設壁体32、新設控え工33、新設タイ材35を有する新設矢板式岸壁37を設けた構造を図16に示す。構造諸元を表3に示す。
Figure 0007396332000007
本発明に係る改良構造1(以下、「本発明改良構造1」という)と従来技術の概算コストを比較試算すると、本発明改良構造1の方が鋼材重量が小さく、材料費と施工費の合計も3割程度安価となった。
本発明改良構造1と従来技術の耐震性能を比較するため、構造物と地盤の相互作用を考慮した地震応答解析を行った。解析プログラムは、下記の文献に示されたFLIPを用いた。
文献:Iai,S.,Matsunaga,Y.and Kameoka,T.:Strain space plasticity model for cyclic mobility, Soils and Foundations, Vol.32,No.2,pp.1-15,1992.
また、主な解析定数を表4に示す。設計対象の地震動は図17に示すものである。
Figure 0007396332000008
岸壁天端(図14、図15、図16のA点)の水平変位を壁高(岸壁天端から水底面までの距離)で除した時刻歴を、図18~図20に示す。図18が図14に示した改良前のもの、図19が図15に示した本発明による増深後のもの、図20が図16に示した従来技術による増深後のものである。ここで、水平変位は水域側への変位が負の値をとる。
図15および図16の岸壁では、図14の岸壁において矢板の海側の地盤が掘削され、水深が深くなっている。矢板の海側を掘削すると、陸側からの土圧に対する矢板根入部の抵抗力が小さくなるため、地震時の矢板の海側の変形量が増加する。そのため、図15や図16のような構造の補強を行い、矢板の変形量を掘削前の図14と同等以下に抑えることになる。
図19~図20に示す結果から、増深により既存壁体45が変形しやすくなったにも関わらず、本発明の改良工法の耐震性能は増深前と同等になった。また、その耐震性能は従来技術と遜色ないことが分かる。
1 既存岸壁の改良構造
3 第1新設壁体
5 第2新設壁体
7 仕切り壁体
9 水平力伝達部材
11 長尺矢板
13 短尺矢板
15 増幅上部工
17 ケーソン
19 重力式岸壁
21 基礎捨石
23 フーチング部
25 桟橋式構造物
27 土留め擁壁
29 鋼管杭
31 津波防波堤
32 新設壁体
33 新設控え工
35 新設タイ材
37 新設矢板式岸壁
41 既存の矢板式岸壁(既存岸壁)
43 水底地盤
45 既存壁体
47 上部工
48 陸上部
49 控え工
51 タイ材
53 自立式矢板
55 補強杭

Claims (4)

  1. 既存岸壁における既存壁体の水域側に該既存壁体と所定の隙間を設けて打設され、鋼矢板もしくは鋼管矢板である矢板を連結してなる第1新設壁体と、
    該第1新設壁体と平行に、水域側に間隔をあけて打設され、鋼矢板もしくは鋼管矢板である矢板を連結してなる第2新設壁体と、
    前記第1新設壁体と前記第2新設壁体との間に両壁体に直交する方向に所定間隔で複数設けられた仕切り壁体と、
    前記第1新設壁体と前記既存壁体との間に設けられて水平力を伝達する水平力伝達部材とを備え、
    前記第1新設壁体及び前記第2新設壁体を構成する矢板は、その一部が支持層まで根入れされた鋼管矢板からなる長尺矢板で、他の矢板は支持層より浅い深さで、3m以上、10m以下まで根入れされた短尺矢板であり、前記第1新設壁体と前記第2新設壁体の前記長尺矢板は、前記既存岸壁直角方向に並ぶように同間隔で配置され、
    前記仕切り壁体は、前記第1新設壁体及び前記第2新設壁体を構成する短尺矢板と同じ根入れ深さで、前記第1新設壁体及び前記第2新設壁体を構成する長尺矢板を繋ぐように配置されていることを特徴とする既存岸壁の改良構造。
  2. 前記長尺矢板は鋼管矢板であり、前記短尺矢板の下端と高さ方向同位置から鋼管直径3倍以上の長さの範囲において、降伏強度400N/mm2以上及び/又は鋼管の外径R(mm)と鋼管の肉厚t(mm)との比R/tがR/t≦80であることを特徴とする請求項1記載の既存岸壁の改良構造。
  3. 前記既存岸壁が、下端側を地盤に根入れすると共に上端側をタイ材によって控え工で支持する矢板式岸壁の場合において、前記水平力伝達部材が(1)式を満たす位置に配置されていることを特徴とする請求項1又は2に記載の既存岸壁の改良構造。
    Figure 0007396332000009
    ここで、
    D:既存岸壁の矢板の根入長(m)
    HT:既存岸壁の水底面からタイ材取り付け位置までの高さ(m)
    E:既存岸壁の矢板のヤング率(kN/m2)
    I:既存岸壁の単位幅あたりの矢板の断面2次モーメント(m4/m)
    lh:既存岸壁の矢板が根入れされている地盤の地盤反力係数(kN/m3)
    H:水底面から水平力伝達部材上端までの高さ(m)
  4. 請求項1乃至3のいずれかに記載の既存岸壁の改良構造の施工方法であって、
    前記既存壁体の水域側に、該既存壁体と所定の隙間を設けて前記第1新設壁体を打設する工程と、
    前記第1新設壁体と平行して、水域側に間隔をあけて、前記第2新設壁体を打設する工程と、
    前記第1新設壁体と前記第2新設壁体との間に所定間隔で両壁体に直交方向に仕切り壁体を打設する工程と、
    前記既存壁体と前記第1新設壁体との隙間に水平伝達部材を配設する工程と、を備え
    前記第2新設壁体を打設する工程において、長尺矢板を前記第1新設壁体の長尺矢板と揃えるように配置し、前記仕切り壁体を打設する工程において、仕切り壁体は前記第1新設壁体と前記第2新設壁体の前記長尺矢板を繋ぐように配置することを特徴とする既存岸壁の施工方法。
JP2021104558A 2021-06-24 2021-06-24 既存岸壁の改良構造及び該改良構造の施工方法 Active JP7396332B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021104558A JP7396332B2 (ja) 2021-06-24 2021-06-24 既存岸壁の改良構造及び該改良構造の施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021104558A JP7396332B2 (ja) 2021-06-24 2021-06-24 既存岸壁の改良構造及び該改良構造の施工方法

Publications (2)

Publication Number Publication Date
JP2023003464A JP2023003464A (ja) 2023-01-17
JP7396332B2 true JP7396332B2 (ja) 2023-12-12

Family

ID=85100919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021104558A Active JP7396332B2 (ja) 2021-06-24 2021-06-24 既存岸壁の改良構造及び該改良構造の施工方法

Country Status (1)

Country Link
JP (1) JP7396332B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083651A (ja) 2004-09-17 2006-03-30 Kajima Corp 消波構造物、消波構造物の構築方法
JP2008303598A (ja) 2007-06-07 2008-12-18 Nippon Steel Corp 多柱式橋脚における柱脚構造
JP2012007325A (ja) 2010-06-23 2012-01-12 Sumitomo Metal Ind Ltd 鋼管矢板壁構造
JP2012097415A (ja) 2010-10-29 2012-05-24 Jfe Steel Corp 鋼管矢板式係船岸
JP2020204151A (ja) 2019-06-14 2020-12-24 Jfeスチール株式会社 既存矢板式岸壁の改良構造及び改良方法
JP2021063404A (ja) 2019-10-17 2021-04-22 Jfeスチール株式会社 既存岸壁の改良構造及び改良方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083651A (ja) 2004-09-17 2006-03-30 Kajima Corp 消波構造物、消波構造物の構築方法
JP2008303598A (ja) 2007-06-07 2008-12-18 Nippon Steel Corp 多柱式橋脚における柱脚構造
JP2012007325A (ja) 2010-06-23 2012-01-12 Sumitomo Metal Ind Ltd 鋼管矢板壁構造
JP2012097415A (ja) 2010-10-29 2012-05-24 Jfe Steel Corp 鋼管矢板式係船岸
JP2020204151A (ja) 2019-06-14 2020-12-24 Jfeスチール株式会社 既存矢板式岸壁の改良構造及び改良方法
JP2021063404A (ja) 2019-10-17 2021-04-22 Jfeスチール株式会社 既存岸壁の改良構造及び改良方法

Also Published As

Publication number Publication date
JP2023003464A (ja) 2023-01-17

Similar Documents

Publication Publication Date Title
JP5445351B2 (ja) 盛土の補強構造
CN101294394A (zh) 钢空腔沉箱-桩逆作法复合基础及施工方法
JP5471797B2 (ja) 護岸構造及び既設護岸構造の耐震補強構造
JP4281567B2 (ja) 既設橋脚基礎の補強構造および既設橋脚基礎の補強方法
KR20120012504A (ko) 조립케이슨을 이용한 현장타설말뚝
KR101256274B1 (ko) 조립케이슨 및 쟈켓을 이용한 알시디(rcd)공법
JP7017541B2 (ja) 既存矢板式岸壁の改良構造及び改良方法
JP4987652B2 (ja) 盛土の補強構造と補強方法および線状盛土
JP7396332B2 (ja) 既存岸壁の改良構造及び該改良構造の施工方法
JP7149919B2 (ja) 既存岸壁の改良構造及び改良方法
JP7396331B2 (ja) 既存岸壁の改良構造及び該改良構造の施工方法
JPH09279540A (ja) 重力式港湾構造物の耐震補強構造
Tsinker Anchored sheet pile bulkheads: Design practice
JP4958064B2 (ja) 岸壁の耐震補強構造
JP6292028B2 (ja) 盛土補強構造
CN211006518U (zh) 一种新型板桩码头结构
JPH09296427A (ja) 水域構造物及びその構築方法
KR20210047481A (ko) 해상활주로용 복합케이슨의 코어(core)벽체 구조물
JP7359515B2 (ja) 地中構造物の液状化対策構造
JP2020117959A (ja) 堤体の補強構造
JPH0913343A (ja) 護岸構造物およびその構築方法
JP7469608B2 (ja) 支持構造、重力式防波堤及び重力式防波堤の施工方法
JP7362325B2 (ja) 防潮堤
El-Sayed A Study to Select Optimum Quay Wall Structural
JP2564819B2 (ja) 既設ケーソンの耐震補強構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7396332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150