WO2020045119A1 - ハット形鋼矢板 - Google Patents

ハット形鋼矢板 Download PDF

Info

Publication number
WO2020045119A1
WO2020045119A1 PCT/JP2019/032115 JP2019032115W WO2020045119A1 WO 2020045119 A1 WO2020045119 A1 WO 2020045119A1 JP 2019032115 W JP2019032115 W JP 2019032115W WO 2020045119 A1 WO2020045119 A1 WO 2020045119A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
cross
web
flanges
section
Prior art date
Application number
PCT/JP2019/032115
Other languages
English (en)
French (fr)
Inventor
妙中 真治
俊介 森安
雅司 北濱
典佳 原田
正和 武野
裕章 中山
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020539352A priority Critical patent/JP7143891B2/ja
Publication of WO2020045119A1 publication Critical patent/WO2020045119A1/ja
Priority to JP2022093793A priority patent/JP2022130453A/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel

Definitions

  • the present invention relates to a hat-shaped steel sheet pile.
  • Hat-shaped steel sheet piles are widely used in civil engineering construction work to be poured into the ground to construct walls for earth retaining and waterproofing. For this reason, the bending performance of the wall has conventionally been emphasized. In addition, in order to improve economy, that is, to reduce the weight of the wall, the cross section of the hat-shaped steel sheet pile tends to be wider and thinner.
  • peripheral technologies for hat-shaped sheet piles have been developed, and the applicable range and applications have been expanded.
  • An example of peripheral technology development is the enlargement of heavy construction equipment.
  • the increase in the size of the heavy construction machine is, for example, to enable construction in a harder or deeper stratum or to improve construction efficiency.
  • the heavy construction machine is enlarged, not only bending stress is applied to the hat-shaped steel sheet pile after driving but also a large axial force is applied during construction.
  • Patent Literature 1 describes a technique using a steel sheet pile as a basic structure.
  • Patent Literature 2 discloses a technique of improving a supporting force by providing a closed portion only at a tip of a hat-shaped steel sheet pile in order to improve performance when a hat-shaped steel sheet pile is used as a base.
  • the performance of the hat-shaped steel sheet pile as an axial force member is required to be improved.
  • Patent Literature 3 proposes a technique for improving a buckling resistance by forming a bent portion at a corner in a cross section of a hat-shaped steel sheet pile.
  • the cross section of the hat-shaped steel sheet pile tends to be wider and thinner as described above, it is considered that the improvement of the buckling resistance against the axial force of the hat-shaped steel sheet pile will become more and more necessary in the future.
  • Patent Document 3 the technology described in Patent Document 3 is effective when viewed from a hat-shaped steel sheet pile as an axial force member, but leads to a reduction in the amount of steel material in the web portion. There is a possibility that the bending performance of the wall body, which is the performance originally expected for sheet piles, may be reduced. In addition, since the cross-sectional shape becomes complicated, a very advanced technique is required in the rolling manufacturing process, and it is difficult to increase the manufacturing efficiency. In consideration of these points, it is desirable to improve the buckling resistance against the axial force while maintaining the basic cross-sectional shape of the hat-shaped steel sheet pile including the web, the flange, and the arm.
  • an object of the present invention is to provide a new and improved hat-shaped steel sheet pile capable of improving the buckling resistance against axial force while maintaining the basic sectional shape of the hat-shaped steel sheet pile.
  • the hat-shaped steel sheet pile has, in a cross section orthogonal to the longitudinal direction, a web extending along the width direction on the first side in the cross-section height direction, and from both ends in the width direction of the web.
  • a pair of flanges extending toward both sides in the width direction and the second side in the cross-section height direction and forming a flange angle ⁇ with the width direction, and a pair of flanges on the second side in the cross-section height direction;
  • a pair of arms extending from the respective ends of the flanges along the width direction and toward both sides in the width direction are formed at ends opposite to the pair of flanges of each of the pair of arms.
  • a pair of fitting joints are formed at ends opposite to the pair of flanges of each of the pair of arms.
  • the ratio of the total length of the web, the pair of flanges, and the pair of arms in the cross section to the average thickness of the web, the pair of flanges, and the pair of arms is 120 or more, and the effective width B and the cross section in the cross section are
  • the effective height h and the flange angle ⁇ are the following formulas using a constant C (1.01 ⁇ C ⁇ 1.13) in a range where the thickness of the flange to the web is 0.6 or more and 1.0 or less.
  • the condition (i) is satisfied, and the effective width B, the web length Bw in the cross section, the cross section height H, and the flange angle ⁇ satisfy the relationship of B ⁇ Bw ⁇ 2H / tan ⁇ > 0.
  • a hat-shaped steel sheet pile includes, in a cross section orthogonal to a longitudinal direction, a web extending along a width direction on a first side in a cross-section height direction, and both ends in a width direction of the web. And a pair of flanges extending from both sides in the width direction and the second side in the cross-section height direction and forming a flange angle ⁇ with the width direction, and a pair of flanges on the second side in the cross-section height direction.
  • a pair of arms extending from the respective ends of the flanges along the width direction and toward both sides in the width direction, and formed at opposite ends of the pair of arms from the respective pair of flanges.
  • the ratio of the total length of the web, the pair of flanges, and the pair of arms in the cross section to the average thickness of the web, the pair of flanges, and the pair of arms is 120 or more.
  • the effective width B and the effective height h in the cross section and the flange angle ⁇ are constants C (1.03 ⁇ C ⁇ 1.13) when the thickness ratio of the flange to the web is 0.7 or more and 1.0 or less. Is satisfied, and the effective width B, the web length Bw in the cross section, the cross section height H, and the flange angle ⁇ satisfy the relationship of B ⁇ Bw ⁇ 2H / tan ⁇ > 0.
  • FIG. 1 is a sectional view of a hat-shaped steel sheet pile according to one embodiment of the present invention.
  • a hat-shaped steel sheet pile 1 has a cross section orthogonal to a longitudinal direction (z direction in the figure) and a first side (rear side in the y direction in the figure) in a section height direction.
  • a web 2 extending along the width direction (x direction in the figure), and both sides in the width direction from both ends in the width direction of the web 2 and second sides in the cross-section height direction (front side in the y direction in the figure) ),
  • the flanges 3A, 3B forming a flange angle ⁇ (the acute angle side) with the width direction, and from the respective ends of the flanges 3A, 3B on the second side in the section height direction in the width direction.
  • Arms 4A, 4B extending along the width direction and both sides in the width direction, and fitting joints 5A, 5B formed at ends of arms 4A, 4B opposite to flanges 3A, 3B.
  • each part of the hat-shaped steel sheet pile 1 specifically, the length Bw and the thickness tw of the web 2, the length Bf and the thickness tf of the flanges 3A and 3B, The length Ba and the plate thickness ta of the arms 4A and 4B are shown.
  • the length Bw is a distance between two intersections formed between the thickness center line of the web 2 and the respective thickness center lines of the flanges 3A and 3B.
  • the length Bf is the distance between two intersections formed between the thickness center line of the flange 3A and the respective thickness center lines of the web 2 and the arm 4A.
  • the length Ba is the distance between the intersections formed between the thickness center line of the thickness center line and the flange 3A of the arms 4A, a fitting center E A fitting joint 5A. Since the cross-sectional shape of the hat-shaped steel sheet pile 1 is symmetrical about the neutral axis in the width direction (the y-axis in the figure), the flange 3B has the same length Bf as the flange 3A, and the arm 4B has the arm 4A.
  • the length is Ba as in the case of
  • FIG. 1 shows an effective width B, a sectional height H, and an effective height h of the hat-shaped steel sheet pile 1.
  • the effective width B is the distance between the mating fitting 5A, each of the mating centers E A of 5B, E B.
  • the section height H is the section height of the hat-shaped steel sheet pile 1 including the thickness of the web 2 and the arms 4A and 4B and not including the protrusions of the fitting joints 5A and 5B
  • the effective height h is the section height.
  • H minus half the plate thickness of the web 2 and the arms 4A and 4B, that is, h H ⁇ (tw / 2 + ta / 2).
  • the ratio B TTL / t AVE of the total length B TTL to the average thickness t AVE is defined as “converted width-thickness ratio”.
  • the converted width-thickness ratio B TTL / t AVE is 120 or more, and the effective width B and the effective height h in the cross section and the flange angle ⁇ satisfy a predetermined relationship.
  • the total length B TTL is the sum of the lengths of the web 2, the flanges 3A and 3B, and the arms 4A and 4B, and is calculated by the following equation (1).
  • the average plate thickness t AVE is an average of the plate thicknesses of the web 2, the flanges 3A and 3B, and the arms 4A and 4B, and is calculated by the following equation (2).
  • FIG. 2 is a graph showing the relationship between the converted width / thickness ratio and the web width / thickness ratio (Bw / tw) in a conventional steel sheet pile product.
  • the present inventors have studied a method of improving the buckling strength against axial force while maintaining the basic cross-sectional shape of the hat-shaped steel sheet pile, but as described above, such a problem has been solved.
  • the hat-shaped sheet piles that are wider or thinner than currently known hat-shaped sheet piles, because the cross section of the sheet piles becomes more apparent in the tendency to be wider and thinner. Is reasonable.
  • FIG. 1 As shown in FIG.
  • steel sheet piles having a converted width-to-thickness ratio of 120 or more are not industrially realized not only in hat-shaped steel sheet piles but also in U-shaped steel sheet piles.
  • a hat-shaped steel sheet pile having a converted width-thickness ratio of 120 or more which is wider or thinner than a conventional steel sheet pile product, is targeted.
  • buckling strength analysis (eigenvalue analysis based on elasticity theory) was performed on hat-shaped steel sheet piles with a converted width-to-thickness ratio of 120 or more in various cross-sectional shapes with different effective widths, cross-sectional heights, and thicknesses
  • the relationship between the buckling strength of hat-shaped steel sheet pile and the representative element of the cross-sectional shape was analyzed. As a result, the following discovery was made.
  • the effective width B of the hat-shaped steel sheet pile 1 was 1350 mm, and the web thickness tw, the flange thickness tf, and the arm thickness ta were all 9.0 mm. Under these conditions, a plurality of hat-shaped steel sheet piles 1 are fitted to each other by fitting joints 5A and 5B and connected in the width direction, and the secondary moment of area per 1 m of the wall width of the steel sheet pile wall is about 10,000 cm.
  • a plurality of cross-sectional shapes of 4 / m were set. Table 1 shows the effective height h (mm) and the flange angle ⁇ (degree) of the set cross-sectional shape, and FIG. 3 schematically shows each cross-sectional shape.
  • FIG. 4 is a graph showing the results of buckling strength analysis in the first study example.
  • the horizontal axis shows the length (longitudinal dimension) of the hat-shaped steel sheet pile
  • the vertical axis shows the buckling strength (result of elastic analysis) of the hat-shaped steel sheet pile.
  • the local buckling mode occurs at the location indicated by the arrow (1) and the proof stress is reduced.
  • the strength in the local buckling mode (local buckling strength) was treated as a result, and the local buckling strength in each cross-sectional shape was compared.
  • FIG. 5 is a graph showing local buckling strength based on the results shown in FIG.
  • the horizontal axis indicates the flange angle ⁇ of each cross-sectional shape
  • the vertical axis indicates the local buckling resistance.
  • the local buckling strength rapidly increases as the flange angle ⁇ increases from a small value, but shows a local maximum value at a certain angle, and thereafter gradually decreases as the flange angle ⁇ increases. Is done.
  • the optimum flange angle ⁇ at which the local buckling strength is considered to have a maximum value is 33.5 °.
  • the flange angle ⁇ greatly contributes to the suppression of out-of-plane deformation due to local buckling of each part (web 2, flanges 3A and 3B and arms 4A and 4B) of the hat-shaped steel sheet pile 1. It is conceivable that. In other words, according to the above results, in the cross-sectional design of the hat-shaped steel sheet pile 1, the flange angle ⁇ is appropriately determined, and the effective height h is determined according to the relationship between the flange angle ⁇ and the second moment of area. This gives an optimal solution that maximizes local buckling strength.
  • the effective width B of the hat-shaped steel sheet pile 1 was 1350 mm
  • the web thickness tw and the arm thickness ta were 10.0 mm
  • the flange thickness was tf 8.0 mm.
  • Table 2 shows the set effective height h (mm) and flange angle ⁇ (deg) of the sectional shape.
  • FIG. 6 is a graph showing the local buckling strength based on the result of the buckling strength analysis in the second study example. Also in the graph of FIG. 6, it is observed that, similarly to FIG. 5, the local buckling strength shows a maximum value with respect to the flange angle ⁇ and changes. In the case of the example shown in FIG. 6, the optimum flange angle ⁇ at which the local buckling strength is considered to have a maximum value is 35.7 °. According to the results shown in FIGS.
  • the web thickness tw and the arm thickness ta are both 9.0 mm, but the flange thickness tf is reduced to 6.3 mm (the thickness of the flange relative to the web). Ratio 0.7).
  • the web thickness tw, the flange thickness tf, and the arm thickness ta are all 9.0 mm (the thickness ratio of the flange to the web is 1.0).
  • the web thickness tw and the arm thickness ta are both 12.5 mm, but the flange thickness tf is 7.5 mm (the thickness ratio of the flange to the web is 0.6).
  • FIG. 7 is a graph showing the relationship between the flange angle and the aspect ratio in the third study example.
  • the sheet thickness ratio is 1.0, 0.7, and 0.6
  • the flange angle ⁇ of the hat-shaped steel sheet pile 1 and the aspect ratio B / h. It is observed that there is a correlation independent of the effective width B and the second moment of area.
  • the plate thickness ratio is 0.7 in all cases. That is, in each example, the web thickness tw and the arm thickness ta are equal, and the flange thickness tf is 0.7 times the web thickness tw.
  • the same buckling strength analysis was performed in the cross-sectional shape as in the examples shown in FIGS. 4 to 6, and as a result, the optimum flange angle at which the local buckling strength is considered to have a maximum value is considered. ⁇ and the corresponding effective height h are set.
  • FIG. 8 is a graph showing the relationship between the flange angle and the aspect ratio in the fourth study example together with a part of the third study example (an example of the plate thickness ratio 0.7 shown in Table 3). Also in the graph of FIG. 8, it is observed that there is a correlation between the flange angle ⁇ of the hat-shaped steel sheet pile 1 and the aspect ratio B / h that does not depend on the effective width B or the second moment of area. Further, in the graph of FIG. 8, even in the case where the web thickness tw is different, in each example where the thickness ratio (0.7) is common, the flange angle ⁇ and the aspect ratio B / h are correlated on a substantially common curve. It is observed to show a relationship.
  • FIG. 9 and FIG. 10 are graphs showing the relationship between the flange angle and the aspect ratio in the third and fourth examination examples together with the approximate curve of the correlation for each plate thickness ratio.
  • the range that the thickness ratio of the hat-shaped steel sheet pile 1 can realistically take is generally 0.6 to 1.0.
  • the third and fourth examples include the upper and lower limits of the range of the thickness ratio. Accordingly, conditions that can be used for designing a realistic hat-shaped steel sheet pile 1 are expressed by the following equation (3) using a constant C based on two approximate curves shown in the graphs of FIGS. be able to.
  • FIG. 3 the range that the thickness ratio of the hat-shaped steel sheet pile 1 can realistically take.
  • FIG. 9 is a case where the range of the thickness ratio of the hat-shaped steel sheet pile 1 is 0.6 or more and 1.0 or less, and the range of the constant C is 1.01 ⁇ C ⁇ 1.13.
  • FIG. 10 shows the case where the range of the thickness ratio of the hat-shaped steel sheet pile 1 is 0.7 or more and 1.0 or less, and the range of the constant C is 1.03 ⁇ C ⁇ 1.13.
  • the cross-sectional shape of the actual hat-shaped steel sheet pile is not determined only in consideration of the buckling strength against the axial force.
  • the effective width and the effective height are greatly affected by manufacturing constraints.
  • the effective height of the hat-shaped steel sheet pile needs to be set so as to obtain the second moment of area required for the design of the wall.
  • the range is limited by the limitations of the manufacturing equipment and the technology level.
  • the correlation between the optimal flange angle and the aspect ratio for maximizing the local buckling strength found in the above study example is, as shown in the third study example, a hat-shaped steel. It does not depend on the effective width of the sheet pile or the second moment of area. Further, as shown in the fourth study example, the above correlation is affected by the sheet thickness ratio, but the influence by the absolute value of the sheet thickness is small. That is, according to the results of the above study, the condition of the cross-sectional shape that maximizes the local buckling strength is specified by the flange angle ⁇ and the two dimensionless quantities (the aspect ratio B / h and the thickness ratio tf / tw). Is done. By utilizing these conditions, it is possible to design the cross-sectional shape so as to maximize the local buckling strength, on the premise of the limitations of the manufacturing equipment and the required second moment of area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

ハット形鋼矢板は、長手方向に直交する断面において、幅方向に沿って延びるウェブと、ウェブの幅方向の両端部から幅方向の両側に向かって延び、幅方向との間にフランジ角度θをなす1対のフランジと、1対のフランジのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びる1対のアームと、1対のアームのそれぞれの1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備える。断面におけるウェブ、1対のフランジ、および1対のアームの合計長さの、ウェブ、1対のフランジ、および1対のアームの平均板厚に対する比は120以上である。断面における有効幅Bおよび有効高さh、ならびにフランジ角度θは、ウェブに対するフランジの板厚比が0.6以上、1.0以下の範囲において定数C(1.01≦C≦1.13)を用いた以下の式(i)の条件を満たし、有効幅B、断面におけるウェブ長さBw、断面高さHおよびフランジ角度θがB-Bw-2H/tanθ>0の関係を満たす。 

Description

ハット形鋼矢板
 本発明は、ハット形鋼矢板に関する。
 ハット形鋼矢板は、土木建築工事において、地中に打設して土留めや止水のための壁体を構築するために広く利用されている。そのため、従来から壁体の曲げ性能が重視されてきた。また、経済性の向上、すなわち壁体の軽量化のために、ハット形鋼矢板の断面は広幅化および薄肉化される傾向にある。
 一方、ハット形鋼矢板の性能や経済性が向上するに伴い、ハット形鋼矢板の周辺技術開発が行われるとともに、適用範囲や用途も拡大してきた。周辺技術開発の例として、施工重機の大型化が挙げられる。施工重機の大型化は、例えば、より固い地層、またはより深い地層への施工を可能にすることや、施工効率を上げることを目的とする。このように施工重機が大型化すると、ハット形鋼矢板には打設後に曲げ応力がかかるだけでなく、施工時に大きな軸力が作用することになる。
 また、ハット形鋼矢板の適用範囲の拡大も図られている。具体的には、例えば、従来の壁体に加えて、ハット形鋼矢板を基礎として利用することも多くなっている。例えば、特許文献1には、鋼矢板を基礎構造として利用する技術が記載されている。特許文献2には、ハット形鋼矢板を基礎として利用する場合の性能を向上させるため、ハット形鋼矢板の先端のみに閉塞部を設けることで、支持力を向上させる技術が記載されている。このように、ハット形鋼矢板を基礎として利用して支持力を負担させる場合、ハット形鋼矢板の軸力部材としての性能向上が求められる。
 ここで、一般に、軸力部材においては座屈への配慮が必要である。特に、ハット形鋼矢板のような薄肉板材で構成される断面では、座屈の中でも局部座屈に対して十分な注意が必要である。この観点から、特許文献3では、ハット形鋼矢板の断面において隅角部に折り曲げ成形部分を形成し、座屈耐力を向上させる技術が提案されている。上述のようにハット形鋼矢板断面が広幅化および薄肉化される傾向にあることを考慮すると、ハット形鋼矢板の軸力に対する座屈耐力の向上は今後ますます必要になると考えられる。
特許第3832845号公報 特許第4916932号公報 特許第4088041号公報
 しかしながら、上記の特許文献3に記載された技術は、ハット形鋼矢板を軸力部材として見た場合には効率的であるものの、ウェブ部分の鋼材量を低減させることにつながるため、ハット形鋼矢板に本来的に期待される性能である壁体の曲げ性能が低下する可能性がある。また、断面形状が複雑化することから、圧延製造過程において非常に高度な技術が必要とされ、また製造効率を高くすることが難しい。これらの点を考慮すると、ウェブ、フランジ、およびアームというハット形鋼矢板の基本的な断面形状を維持しつつ、軸力に対する座屈耐力を向上させることが望ましい。
 そこで、本発明は、ハット形鋼矢板の基本的な断面形状を維持しつつ、軸力に対する座屈耐力を向上させることが可能な、新規かつ改良されたハット形鋼矢板を提供することを目的とする。
 本発明のある観点によれば、ハット形鋼矢板は、長手方向に直交する断面において、断面高さ方向の第1の側で幅方向に沿って延びるウェブと、ウェブの幅方向の両端部から幅方向の両側、かつ断面高さ方向の第2の側に向かって延び、幅方向との間にフランジ角度θをなす1対のフランジと、断面高さ方向の第2の側で1対のフランジのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びる1対のアームと、1対のアームのそれぞれの1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備える。断面におけるウェブ、1対のフランジ、および1対のアームの合計長さの、ウェブ、1対のフランジ、および1対のアームの平均板厚に対する比は120以上であり、断面における有効幅Bおよび有効高さh、ならびにフランジ角度θは、ウェブに対するフランジの板厚比が0.6以上、1.0以下の範囲において定数C(1.01≦C≦1.13)を用いた以下の式(i)の条件を満たし、有効幅B、断面におけるウェブ長さBw、断面高さHおよびフランジ角度θがB-Bw-2H/tanθ>0の関係を満たす。
Figure JPOXMLDOC01-appb-M000003
 本発明の別の観点によれば、ハット形鋼矢板は、長手方向に直交する断面において、断面高さ方向の第1の側で幅方向に沿って延びるウェブと、ウェブの幅方向の両端部から幅方向の両側、かつ断面高さ方向の第2の側に向かって延び、幅方向との間にフランジ角度θをなす1対のフランジと、断面高さ方向の第2の側で1対のフランジのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びる1対のアームと、1対のアームのそれぞれの1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備える。断面におけるウェブ、1対のフランジ、および1対のアームの合計長さの、ウェブ、1対のフランジ、および1対のアームの平均板厚に対する比は120以上である。断面における有効幅Bおよび有効高さh、ならびにフランジ角度θは、ウェブに対するフランジの板厚比が0.7以上、1.0以下の範囲において定数C(1.03≦C≦1.13)を用いた以下の式(i)の条件を満たし、有効幅B、断面におけるウェブ長さBw、断面高さHおよびフランジ角度θがB-Bw-2H/tanθ>0の関係を満たす。
Figure JPOXMLDOC01-appb-M000004
 上記の構成によれば、ハット形鋼矢板の基本的な断面形状を維持しつつ、軸力に対する座屈耐力を向上させることができる。
本発明の一実施形態に係るハット形鋼矢板の断面図である。 従来の鋼矢板製品における換算幅厚比とウェブ幅厚比との関係を示すグラフである。 第1の検討例におけるハット形鋼矢板の断面形状を概略的に示す図である。 第1の検討例における座屈耐力解析の結果を示すグラフである 図4に示された結果に基づく局部座屈耐力を示すグラフである。 第2の検討例における座屈耐力解析の結果に基づく局部座屈耐力を示すグラフである。 第3の検討例におけるフランジ角度とアスペクト比との関係を示すグラフである。 第4の検討例におけるフランジ角度とアスペクト比との関係を、第3の検討例の一部とともに示すグラフである。 第3および第4の検討例におけるフランジ角度とアスペクト比との関係を、板厚比ごとの相関関係の近似曲線とともに示すグラフである。 第3および第4の検討例におけるフランジ角度とアスペクト比との関係を、板厚比ごとの相関関係の近似曲線とともに示すグラフである。
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 図1は、本発明の一実施形態に係るハット形鋼矢板の断面図である。図1に示されるように、ハット形鋼矢板1は、長手方向(図中のz方向)に直交する断面において、断面高さ方向の第1の側(図中のy方向の奥側)で幅方向(図中のx方向)に沿って延びるウェブ2と、ウェブ2の幅方向の両端部から幅方向の両側、かつ断面高さ方向の第2の側(図中のy方向の手前側)に向かって延び、幅方向との間にフランジ角度θ(鋭角側)をなすフランジ3A,3Bと、断面高さ方向の第2の側でフランジ3A,3Bのそれぞれの端部から幅方向に沿って、かつ幅方向の両側に向かって延びるアーム4A,4Bと、アーム4A,4Bのそれぞれのフランジ3A,3Bとは反対側の端部に形成される嵌合継手5A,5Bとを含む。
 ここで、図1には、ハット形鋼矢板1の各部分の寸法、具体的には、ウェブ2の長さBwおよび板厚twと、フランジ3A,3Bの長さBfおよび板厚tfと、アーム4A,4Bの長さBaおよび板厚taとが示されている。ここで、長さBwは、ウェブ2の板厚中心線と、フランジ3A,3Bのそれぞれの板厚中心線との間に形成される2つの交点の間の距離である。同様に、長さBfは、フランジ3Aの板厚中心線と、ウェブ2およびアーム4Aのそれぞれの板厚中心線との間に形成される2つの交点の間の距離である。また、長さBaは、アーム4Aの板厚中心線とフランジ3Aの板厚中心線との間に形成される交点と、嵌合継手5Aの嵌合中心Eとの間の距離である。なお、ハット形鋼矢板1の断面形状は幅方向の中立軸(図中のy軸)について対称であるため、フランジ3Bについてもフランジ3Aと同様に長さBfであり、アーム4Bについてもアーム4Aと同様に長さBaである。
 さらに、図1には、ハット形鋼矢板1の有効幅B、断面高さH、および有効高さhが示されている。ここで、有効幅Bは、嵌合継手5A,5Bのそれぞれの嵌合中心E,Eの間の距離である。断面高さHは、ウェブ2およびアーム4A,4Bの板厚を含み嵌合継手5A,5Bの張り出しを含まないハット形鋼矢板1の断面の高さであり、有効高さhは断面高さHからウェブ2およびアーム4A,4Bの板厚の半分を差し引いたもの、すなわちh=H-(tw/2+ta/2)である。なお、図1に示されたハット形鋼矢板1の形状が幾何学的に成り立つ場合、全幅B、ウェブ長さBw、断面高さHおよびフランジ角度θは、B-Bw-2H/tanθ>0の関係を満たしている。
 ここで、本実施形態に係るハット形鋼矢板1について、合計長さBTTLの平均板厚tAVEに対する比BTTL/tAVEを「換算幅厚比」として定義する。後述するように、ハット形鋼矢板1では、換算幅厚比BTTL/tAVEが120以上であり、断面における有効幅Bおよび有効高さh、ならびにフランジ角度θが所定の関係を満たす。ここで、合計長さBTTLは、ウェブ2、フランジ3A,3B、およびアーム4A,4Bの長さの合計であり、以下の式(1)で算出される。平均板厚tAVEは、ウェブ2、フランジ3A,3B、およびアーム4A,4Bの板厚の平均であり、以下の式(2)で算出される。
Figure JPOXMLDOC01-appb-M000005

Figure JPOXMLDOC01-appb-I000006
 図2は、従来の鋼矢板製品における換算幅厚比とウェブ幅厚比(Bw/tw)との関係を示すグラフである。本発明者らは、ハット形鋼矢板の基本的な断面形状を維持しつつ、軸力に対する座屈耐力を向上させる方法について検討したが、既に述べたように、このような課題はハット形鋼矢板の断面が広幅化および薄肉化される傾向の中でより顕在化するため、現在知られているハット形鋼矢板よりも広幅化、または薄肉化されたハット形鋼矢板を検討対象にすることは合理的である。ここで、図2に示すように、換算幅厚比が120以上の鋼矢板は、ハット形鋼矢板のみならずU字形状の鋼矢板においても、工業的には実現していないため、以下の検討では従来の鋼矢板製品よりも広幅化、または薄肉化された、換算幅厚比が120以上のハット形鋼矢板を対象とする。
 検討では、換算幅厚比が120以上のハット形鋼矢板について、有効幅、断面高さ、および板厚などを変化させた多様な断面形状において座屈耐力解析(弾性論に基づく固有値解析)を実施し、局部座屈モードを特定した上で、ハット形鋼矢板の座屈耐力と断面形状の代表要素との関係を分析した。その結果、以下で説明するような発見がなされた。
 (第1の検討例)
 まず、ハット形鋼矢板1の有効幅Bを1350mmとし、板厚についてはウェブ板厚tw、フランジ板厚tfおよびアーム板厚taをいずれも9.0mmとした。この条件の中で、複数のハット形鋼矢板1を嵌合継手5A,5Bで互いに嵌合させて幅方向につなぎ合わせた鋼矢板壁の壁幅1mあたりの断面二次モーメントが約10,000cm/mになる複数の断面形状を設定した。設定された断面形状の有効高さh(mm)およびフランジ角度θ(度)を表1に示すとともに、図3にそれぞれの断面形状を概略的に示す。
Figure JPOXMLDOC01-appb-T000007
 ここで、表1および図3に示されるように、壁幅1mあたりの断面二次モーメントの大きさを維持する場合、フランジ角度θが小さくなると有効高さhは大きくなる。これは、フランジ角度θが小さくなって断面二次モーメントが低下した分を、有効高さhを大きくすることによって補う必要があるためである。
 図4は、第1の検討例における座屈耐力解析の結果を示すグラフである。図4では、横軸にハット形鋼矢板の長さ(長手方向寸法)が示され、縦軸にハット形鋼矢板の座屈耐力(弾性解析結果)が示されている。図4のグラフでは、矢印(1)で示した箇所で局部座屈モードが発生し、耐力が低下することが観察される。本検討では、この局部座屈モードにおける耐力(局部座屈耐力)を結果として扱い、各断面形状における局部座屈耐力を比較した。なお、図4のグラフにおける矢印(2)は、この矢印が交差する箇所において、上から順に例1(θ=70°)、例2(θ=60°)、・・・、例9(θ=29°)の結果が示されていることを意味する。
 図5は、図4に示された結果に基づく局部座屈耐力を示すグラフである。図5では、横軸に各断面形状のフランジ角度θが示され、縦軸に局部座屈耐力が示されている。図5のグラフでは、局部座屈耐力はフランジ角度θが小さい値から大きくなると急速に増加するものの、ある角度で極大値を示し、その後はフランジ角度θが大きくなるに従って緩やかに減少することが観察される。図5に示された例の場合、局部座屈耐力が極大値を示すと考えられる最適なフランジ角度θは33.5°である。このような結果から、ハット形鋼矢板1の各部位(ウェブ2、フランジ3A,3Bおよびアーム4A,4B)の局部座屈に伴う面外変形の抑制には、フランジ角度θが大きく寄与するものと考えられる。つまり、上記の結果によれば、ハット形鋼矢板1の断面設計においては、フランジ角度θを適切に決定し、さらにフランジ角度θと断面二次モーメントとの関係に従って有効高さhを決定することによって、局部座屈耐力を最大化する最適解が得られる。
 (第2の検討例)
 次に、ハット形鋼矢板1の有効幅Bは1350mmのままで、板厚についてはウェブ板厚twおよびアーム板厚taを10.0mmとし、フランジ板厚をtf8.0mmとした。この条件の中で、鋼矢板壁の壁幅1mあたりの断面二次モーメントが約10,000cm/mになる複数の断面形状を設定した。設定された断面形状の有効高さh(mm)およびフランジ角度θ(deg)を表2に示す。
Figure JPOXMLDOC01-appb-T000008
 図6は、第2の検討例における座屈耐力解析の結果に基づく局部座屈耐力を示すグラフである。図6のグラフでも、図5と同様に、局部座屈耐力がフランジ角度θに対して極大値を示して変化することが観察される。図6に示された例の場合、局部座屈耐力が極大値を示すと考えられる最適なフランジ角度θは35.7°である。図5および図6に示された結果によれば、局部座屈に大きな影響を及ぼす因子である板厚を変化させた場合にも、フランジ角度θと、フランジ角度θと断面二次モーメントとの関係によって決まる有効高さhによって、局部座屈耐力を最大化する最適解が得られる。
 (第3の検討例)
 次に、ハット形鋼矢板1の有効幅Bが1100mm、1300mmおよび1500mmのそれぞれの場合で、鋼矢板壁の壁幅1mあたりの断面二次モーメントが約9,000cm/m(9,000クラス)~約55,000cm/m(55,000クラス)になる複数の断面形状を設定した。設定された断面形状の有効幅B(mm)、有効高さh(mm)、ウェブ板厚tw(mm)、アスペクト比B/h、フランジ角度θ(度)、および断面二次モーメントのクラスを表3から表5に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 ここで、表3に示す例では、ウェブ板厚twおよびアーム板厚taはいずれも9.0mmであるが、フランジ板厚tfは6.3mmに薄肉化されている(ウェブに対するフランジの板厚比が0.7)。表4に示す例では、ウェブ板厚tw、フランジ板厚tfおよびアーム板厚taがいずれも9.0mmである(ウェブに対するフランジの板厚比が1.0)。表5に示す例では、ウェブ板厚twおよびアーム板厚taはいずれも12.5mmであるが、フランジ板厚tfが7.5mmである(ウェブに対するフランジの板厚比が0.6)。表3から表5の各例では、断面形状において図4~図6に示された例と同様の座屈耐力解析を実施し、その結果において局部座屈耐力が極大値を示すと考えられる最適なフランジ角度θと、対応する有効高さhとが設定されている。
 図7は、第3の検討例におけるフランジ角度とアスペクト比との関係を示すグラフである。図7のグラフでは、板厚比が1.0の場合、0.7の場合、および0.6の場合のそれぞれで、ハット形鋼矢板1のフランジ角度θとアスペクト比B/hとの間に、有効幅Bや断面二次モーメントに依存しない相関があることが観察される。
 (第4の検討例)
 次に、上記の第3の検討例と同様の有効幅Bで、換算幅厚比が120以上になる範囲で板厚を増加させた。この例で設定された断面形状の有効幅B(mm)、有効高さh(mm)、ウェブ板厚tw(mm)、アスペクト比B/h、フランジ角度θ(度)、および断面二次モーメントのクラスを表6に示す。
Figure JPOXMLDOC01-appb-T000012
 ここで、表6に示す例では、いずれも板厚比が0.7である。すなわち、それぞれの例において、ウェブ板厚twとアーム板厚taとは等しく、フランジ板厚tfはウェブ板厚twの0.7倍である。表6の各例でも、断面形状において図4~図6に示された例と同様の座屈耐力解析を実施し、その結果において局部座屈耐力が極大値を示すと考えられる最適なフランジ角度θと、対応する有効高さhとが設定されている。
 図8は、第4の検討例におけるフランジ角度とアスペクト比との関係を、第3の検討例の一部(表3に示した板厚比0.7の例)とともに示すグラフである。図8のグラフでも、ハット形鋼矢板1のフランジ角度θとアスペクト比B/hとの間には有効幅Bや断面二次モーメントに依存しない相関があることが観察される。さらに、図8のグラフでは、ウェブ板厚twは違っても、板厚比(0.7)が共通する各例において、フランジ角度θとアスペクト比B/hとがほぼ共通の曲線上で相関関係を示すことが観察される。
 (検討例のまとめ)
 図9および図10は、第3および第4の検討例におけるフランジ角度とアスペクト比との関係を、板厚比ごとの相関関係の近似曲線とともに示すグラフである。ここで、上述のように経済性の観点と製造設備などの制約を考慮した場合、ハット形鋼矢板1の板厚比が現実的にとりうる範囲は概ね0.6~1.0であるが、第3および第4の検討例はこのような板厚比の範囲の上限および下限を含んでいる。従って、現実的なハット形鋼矢板1の設計に利用可能な条件を、図9および図10のグラフに示した2つの近似曲線に基づいて、定数Cを用いた以下の式(3)で表すことができる。ここで、図9は、ハット形鋼矢板1の板厚比の範囲を0.6以上、1.0以下とした場合であり、定数Cの範囲は1.01≦C≦1.13である。一方、図10は、ハット形鋼矢板1の板厚比の範囲を0.7以上、1.0以下とした場合であり、定数Cの範囲は1.03≦C≦1.13である。
Figure JPOXMLDOC01-appb-M000013
 実際のハット形鋼矢板の断面形状は、軸力に対する座屈耐力のみを考慮して決定されるわけではなく、例えば有効幅や有効高さが製造制約の影響を大きく受ける。また、ハット形鋼矢板の有効高さは、壁体の設計上必要とされる断面二次モーメントが得られるように設定する必要がある。また、経済性の観点からはウェブ板厚やアーム板厚をフランジ板厚よりも大きくする、すなわち上述した板厚比を1.0よりも小さくすることが望ましいが、実現可能な板厚比の範囲は製造設備の制約や技術レベルによって制約される。
 これに対して、上記の検討例で見出された局部座屈耐力を最大化する最適なフランジ角度とアスペクト比との相関関係は、第3の検討例で示されたように、ハット形鋼矢板の有効幅や断面二次モーメントに依存しない。また、第4の検討例で示されたように、上記の相関関係は板厚比の影響を受けるものの、板厚の絶対値による影響は小さい。つまり、上記の検討の結果によれば、局部座屈耐力を最大化する断面形状の条件は、フランジ角度θと2つの無次元量(アスペクト比B/hと板厚比tf/tw)によって特定される。この条件を利用すれば、製造設備の制約や必要とされる断面二次モーメントなどを前提とした上で、局部座屈耐力が最大化されるように断面形状を設計することが可能である。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 1…ハット形鋼矢板、2…ウェブ、3A,3B…フランジ、4A,4B…アーム、5A,5B…嵌合継手、E,E…嵌合中心。

Claims (2)

  1.  ハット形鋼矢板であって、
     長手方向に直交する断面において、断面高さ方向の第1の側で幅方向に沿って延びるウェブと、前記ウェブの前記幅方向の両端部から前記幅方向の両側、かつ前記断面高さ方向の第2の側に向かって延び、前記幅方向との間にフランジ角度θをなす1対のフランジと、前記断面高さ方向の第2の側で前記1対のフランジのそれぞれの端部から前記幅方向に沿って、かつ前記幅方向の両側に向かって延びる1対のアームと、前記1対のアームのそれぞれの前記1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備え、
     前記断面における前記ウェブ、前記1対のフランジ、および前記1対のアームの合計長さの、前記ウェブ、前記1対のフランジ、および前記1対のアームの平均板厚に対する比は120以上であり、
     前記断面における有効幅Bおよび有効高さh、ならびに前記フランジ角度θは、前記ウェブに対する前記フランジの板厚比が0.6以上、1.0以下の範囲において定数C(1.01≦C≦1.13)を用いた以下の式(i)の条件を満たし、前記有効幅B、前記断面におけるウェブ長さBw、断面高さHおよび前記フランジ角度θがB-Bw-2H/tanθ>0の関係を満たすハット形鋼矢板。 
    Figure JPOXMLDOC01-appb-I000001
  2.  ハット形鋼矢板であって、
     長手方向に直交する断面において、断面高さ方向の第1の側で幅方向に沿って延びるウェブと、前記ウェブの前記幅方向の両端部から前記幅方向の両側、かつ前記断面高さ方向の第2の側に向かって延び、前記幅方向との間にフランジ角度θをなす1対のフランジと、前記断面高さ方向の第2の側で前記1対のフランジのそれぞれの端部から前記幅方向に沿って、かつ前記幅方向の両側に向かって延びる1対のアームと、前記1対のアームのそれぞれの前記1対のフランジとは反対側の端部に形成される1対の嵌合継手とを備え、
     前記断面における前記ウェブ、前記1対のフランジ、および前記1対のアームの合計長さの、前記ウェブ、前記1対のフランジ、および前記1対のアームの平均板厚に対する比は120以上であり、
     前記断面における有効幅Bおよび有効高さh、ならびに前記フランジ角度θは、前記ウェブに対する前記フランジの板厚比が0.7以上、1.0以下の範囲において定数C(1.03≦C≦1.13)を用いた以下の式(i)の条件を満たし、前記有効幅B、前記断面におけるウェブ長さBw、断面高さHおよび前記フランジ角度θがB-Bw-2H/tanθ>0の関係を満たすハット形鋼矢板。
    Figure JPOXMLDOC01-appb-I000002
PCT/JP2019/032115 2018-08-31 2019-08-16 ハット形鋼矢板 WO2020045119A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020539352A JP7143891B2 (ja) 2018-08-31 2019-08-16 ハット形鋼矢板の製造方法
JP2022093793A JP2022130453A (ja) 2018-08-31 2022-06-09 ハット形鋼矢板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162676 2018-08-31
JP2018-162676 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045119A1 true WO2020045119A1 (ja) 2020-03-05

Family

ID=69643872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032115 WO2020045119A1 (ja) 2018-08-31 2019-08-16 ハット形鋼矢板

Country Status (2)

Country Link
JP (2) JP7143891B2 (ja)
WO (1) WO2020045119A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048394A (ja) * 2003-07-31 2005-02-24 Nippon Steel Corp ハット型鋼矢板
US7018140B1 (en) * 2004-11-23 2006-03-28 Chaparral Steel Company Z-shaped sheet piling
JP2008069631A (ja) * 2007-11-30 2008-03-27 Nippon Steel Corp ハット型鋼矢板およびその形状設定方法
JP2008127771A (ja) * 2006-11-17 2008-06-05 Jfe Steel Kk ハット型鋼矢板
WO2010023929A1 (ja) * 2008-08-29 2010-03-04 新日本製鐵株式会社 鋼矢板
JP2011140867A (ja) * 2009-12-11 2011-07-21 Jfe Steel Corp Z形鋼矢板
JP2012158910A (ja) * 2011-02-01 2012-08-23 Jfe Steel Corp ハット形鋼矢板
JP2014148798A (ja) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal 鋼矢板
WO2015159445A1 (ja) * 2014-04-18 2015-10-22 新日鐵住金株式会社 鋼矢板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6740891B2 (ja) 2016-12-22 2020-08-19 Jfeスチール株式会社 ハット形鋼矢板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048394A (ja) * 2003-07-31 2005-02-24 Nippon Steel Corp ハット型鋼矢板
US7018140B1 (en) * 2004-11-23 2006-03-28 Chaparral Steel Company Z-shaped sheet piling
JP2008127771A (ja) * 2006-11-17 2008-06-05 Jfe Steel Kk ハット型鋼矢板
JP2008069631A (ja) * 2007-11-30 2008-03-27 Nippon Steel Corp ハット型鋼矢板およびその形状設定方法
WO2010023929A1 (ja) * 2008-08-29 2010-03-04 新日本製鐵株式会社 鋼矢板
JP2011140867A (ja) * 2009-12-11 2011-07-21 Jfe Steel Corp Z形鋼矢板
JP2012158910A (ja) * 2011-02-01 2012-08-23 Jfe Steel Corp ハット形鋼矢板
JP2014148798A (ja) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal 鋼矢板
WO2015159445A1 (ja) * 2014-04-18 2015-10-22 新日鐵住金株式会社 鋼矢板
WO2015159434A1 (ja) * 2014-04-18 2015-10-22 新日鐵住金株式会社 鋼矢板

Also Published As

Publication number Publication date
JP2022130453A (ja) 2022-09-06
JPWO2020045119A1 (ja) 2021-04-08
JP7143891B2 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
JP5764945B2 (ja) ハット形鋼矢板
KR100571076B1 (ko) 금속 시트 파일
WO2011004895A1 (ja) 圧延h形鋼
WO2020045119A1 (ja) ハット形鋼矢板
JP5114741B2 (ja) ハット形鋼矢板
WO2018117269A1 (ja) ハット形鋼矢板
KR20120045423A (ko) 리브형태가 포함된 압연 형강을 이용하여 좌굴에 대한 저항성능을 강화시킨 각형강관 및 그 제조방법
JP4975384B2 (ja) 建築構造用折板材
JP2009191487A (ja) H形鋼
WO2013002095A1 (ja) 波付鋼板の設計方法、及び波付鋼板フリューム
JP2020157329A (ja) 溶接継手
JP7143887B2 (ja) ハット形鋼矢板の製造方法
WO2020045113A1 (ja) ハット形鋼矢板、鋼矢板壁および鋼矢板壁の製造方法
JP6741136B2 (ja) ハット形鋼矢板の製造方法及び設計方法
WO2020045116A1 (ja) ハット形鋼矢板および鋼矢板壁の製造方法
WO2020045118A1 (ja) ハット形鋼矢板
JPS6240092B2 (ja)
JP2024021554A (ja) 梁、及び、柱梁接合構造
JP2008223389A (ja) 鋼矢板および壁体ならびに鋼矢板の施工方法
JP2016138399A (ja) ダンパー構造
KR101390883B1 (ko) 해트형 강 시트 파일
JP2024021553A (ja) 梁の設計方法
JP6385717B2 (ja) せん断パネル
WO2018092591A1 (ja) ハット形鋼矢板及び壁体
JP5176338B2 (ja) 建築構造用折板材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853362

Country of ref document: EP

Kind code of ref document: A1