JP2016138399A - ダンパー構造 - Google Patents

ダンパー構造 Download PDF

Info

Publication number
JP2016138399A
JP2016138399A JP2015013819A JP2015013819A JP2016138399A JP 2016138399 A JP2016138399 A JP 2016138399A JP 2015013819 A JP2015013819 A JP 2015013819A JP 2015013819 A JP2015013819 A JP 2015013819A JP 2016138399 A JP2016138399 A JP 2016138399A
Authority
JP
Japan
Prior art keywords
axial
force member
axial force
axial direction
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015013819A
Other languages
English (en)
Inventor
綾那 伊藤
Ayana Ito
綾那 伊藤
清水 信孝
Nobutaka Shimizu
信孝 清水
佐藤 圭一
Keiichi Sato
圭一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015013819A priority Critical patent/JP2016138399A/ja
Publication of JP2016138399A publication Critical patent/JP2016138399A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

【課題】エネルギー吸収部をせん断降伏させることで安定したエネルギー吸収性能を確保することのできるダンパー構造を提供する。
【解決手段】建築物に設けられて引張荷重T又は圧縮荷重Pが作用する軸力部材7のダンパー構造1に関する。本発明を適用したダンパー構造1は、軸力部材7の側面70で軸方向Yの一部に設けられるエネルギー吸収部2と、軸力部材7の側面70に沿ってエネルギー吸収部2に近接させて設けられる補剛部5とを備える。エネルギー吸収部2は、軸力部材7の側面70にスリット3を形成することにより設けられるものであり、引張荷重T又は圧縮荷重Pが軸力部材7に作用したときに、スリット3の周囲を面内変形させることで、補剛部5により所定の剛性を確保しながら、せん断降伏してエネルギーを吸収するものである。
【選択図】図3

Description

本発明は、建築物に設けられて引張荷重又は圧縮荷重が作用する軸力部材のダンパー構造に関する。
従来から、外力として作用する引張力又は圧縮力によるエネルギーを吸収するものとして、例えば、特許文献1〜3に開示される鋼材ダンパー等が提案されている。
特許文献1に開示された鋼材ダンパーは、筒形状の鋼板の中間部に複数の長円形状スリットが設けられて、筒形状の鋼板の両端部にボルトを連結させて、さらにこのボルトをブレース材に連結させることで、ブレース材に作用する引張力又は圧縮力によるエネルギー吸収を試みるものである。
特許文献2に開示された鋼製構造部材は、断面においてウェブがほぼ直交するH形鋼の組み合わせであり、かつH形鋼のうちの少なくとも1つのウェブに複数の開口部を備えるH形鋼の複合体とすることで、引張力又は圧縮力によるエネルギーを吸収するための高ダンピング特性を有するものとなる。
特許文献3に開示されたダンパーは、互いに平行に配置される一対の平行板部と、平行板部を連結するエネルギー吸収用の板状ウェブ部と、一対の平行板部の両端間にそれぞれ接続した一対の垂直材とでなり、板状ウェブ部の断面形状は、一対の平行板部間の中央が突出するように片面側に突出して、少なくとも突出端が湾曲した湾曲形状となる。
特開平3−183873号公報 特開平11−107576号公報 特開2014−190099号公報
しかし、特許文献1に開示された鋼材ダンパーは、軸方向の引張力がブレース材に作用したときに、特許文献1の第1図等に開示された長円形状スリットの寸法、配置等によると、各々の長円形状スリットの側方が軸方向に延びて引張変形して、各々の長円形状スリットの軸方向の近傍が面内方向で曲げ変形しないものとなり、現実には、筒形状の鋼板が曲げ降伏することなく、引張降伏するものとなる。
また、特許文献1に開示された鋼材ダンパーは、各々の長円形状スリットの側方が軸方向に延び、曲げ降伏ではなく引張降伏が先行することで、引張力を受けた後にブレース材に圧縮力が作用した際に、各々の長円形状スリットの側方が軸方向に座屈変形し、早期に耐力劣化を生じるため、安定したエネルギー吸収性能を確保することができないものとなるという問題点があった。
また、特許文献1に開示された鋼材ダンパーは、筒形状の鋼板が角形鋼管等の補剛部で補剛されるものとなっていないため、筒形状の鋼板の全体座屈及びエネルギー吸収部の局所的な座屈を抑制することが困難なものとなるという問題点があった。なお、特許文献1に開示された鋼材ダンパーは、長円形状スリットが軸方向で5段もの多数段に亘って形成されており、筒形状の鋼板の剛性低下が大きいものとなる。
さらに、特許文献1に開示された鋼材ダンパーは、ブレース材に筒形状の鋼板を連結させてエネルギー吸収を試みるものの、現実には、筒形状の鋼板のエネルギー吸収部が引張降伏となり、座屈発生による早期の耐力低下を引き起こして、安定したエネルギー吸収性能を確保することができないものとなるという問題点があった。
特許文献2に開示された鋼製構造部材は、複数のH形鋼を接合して複合体を構成するものであり、接合作業等に必要となる施工コストが大きく、また、特許文献3に開示されたダンパーは、板状ウェブ部の断面形状が特殊形状となり、ダンパー部材の製造に必要となる製作コストが大きいものとなるという問題点があった。
そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、エネルギー吸収部をせん断降伏させることで安定したエネルギー吸収性能を確保することのできるダンパー構造を提供することにある。
第1発明に係るダンパー構造は、建築物に設けられて引張荷重又は圧縮荷重が作用する軸力部材のダンパー構造であって、軸力部材の側面で軸方向の一部に設けられるエネルギー吸収部と、軸力部材の側面に沿って前記エネルギー吸収部に近接させて設けられる補剛部とを備え、前記エネルギー吸収部は、軸力部材の側面にスリットを形成することにより設けられるものであり、引張荷重又は圧縮荷重が軸力部材に作用したときに、前記スリットの周囲を面内変形させることで、前記補剛部により所定の剛性を確保しながら、せん断降伏してエネルギーを吸収するものであることを特徴とする。
第2発明に係るダンパー構造は、第1発明において、前記スリットは、軸力部材の側面で軸方向の各断面の一箇所以上に形成されるものであり、軸力部材の軸方向に対して略直角に延びて配置されることを特徴とする。
第3発明に係るダンパー構造は、第1発明において、前記スリットは、軸力部材の側面で軸方向の各断面の一箇所以上に形成されるものであり、軸力部材の軸方向に対して傾斜するように延びて配置されることを特徴とする。
第4発明に係るダンパー構造は、第1発明又は第2発明において、前記エネルギー吸収部は、軸力部材の側面で略矩形状の前記スリットが複数形成されるものであり、軸力部材の軸方向で2段以上に形成された複数の前記スリットが、軸力部材の軸直交方向で互いの位置を異ならせて配置されることを特徴とする。
第5発明に係るダンパー構造は、第4発明において、前記エネルギー吸収部は、軸力部材の軸直交方向に隣り合う前記スリットの軸直交方向間隔βと、軸力部材の軸方向に隣り合う前記スリットが軸直交方向で互いに重なり合った重複幅γと、軸力部材の軸方向に隣り合う前記スリットの軸方向間隔δとが、下記(1)、(2)式により規定される関係を満足することを特徴とする。ここで、D:軸力部材の外径とする。
Figure 2016138399
Figure 2016138399
第1発明〜第5発明によれば、スリットの周囲を面内変形させて、エネルギー吸収部をせん断降伏させることで、地震等のエネルギーを吸収することのできる崩壊機構を実現して、早期の座屈発生による耐力低下を回避して、安定したエネルギー吸収性能を確保することが可能となる。
第1発明〜第5発明によれば、略矩形状等で単純形状のスリットを形成することでエネルギー吸収部が設けられるため、軸力部材の側面の切欠加工を容易なものとして、エネルギー吸収部の製作コストを低減させることが可能となる。
第1発明〜第5発明によれば、スリットの周囲が面内変形することで、エネルギー吸収部がせん断降伏するものとなり、早期に座屈しにくいことから、軸力部材の軸方向でエネルギー吸収部が設けられる短い範囲のみを補剛部で補剛するものとしても、軸力部材の軸方向の鉛直変位に補剛部が十分に追随して、エネルギー吸収部の座屈変形を確実に防止しながら、安定したエネルギー吸収性能を確保することが可能となる。
特に、第3発明によれば、エネルギー吸収部が軸力部材の軸周方向に左回転又は右回転するものとなるため、軸方向に作用する引張荷重又は圧縮荷重が、軸周方向の回転エネルギーに変換されるものとなり、エネルギー吸収部に軸周方向の回転によるエネルギー吸収性能が付加されることで、エネルギー吸収部のせん断降伏によるエネルギー吸収性能と一体になって、非常に安定したエネルギー吸収性能を確保することが可能となる。
本発明を適用したダンパー構造が導入される枠材を示す斜視図である。 (a)は、本発明を適用したダンパー構造が導入される枠材が変位する前の状態を示す正面図であり、(b)は、枠材が変位した後の状態を示す正面図である。 (a)は、本発明を適用したダンパー構造の軸力部材を示す平面図であり、(b)は、その正面図である。 本発明を適用したダンパー構造を示す正面図である。 (a)は、本発明を適用したダンパー構造で枠材まで延びる軸力部材に補剛部を外装させた状態を示す正面図であり、(b)は、枠材から延びる補剛部を軸力部材に外装させた状態を示す正面図である。 (a)は、本発明を適用したダンパー構造で枠材まで延びる軸力部材に補剛部を内装させた状態を示す正面図であり、(b)は、枠材から延びる補剛部を軸力部材に内装させた状態を示す正面図である。 本発明を適用したダンパー構造のエネルギー吸収部を示す正面図である。 (a)は、図7に示す軸力部材のA−A線断面図であり、(b)は、そのB−B線断面図であり、(c)は、そのC−C線断面図である。 本発明を適用したダンパー構造の第1実施形態に係るエネルギー吸収部を示す正面図である。 (a)は、本発明を適用したダンパー構造でエネルギー吸収部がせん断降伏する前の状態を示す正面図であり、(b)は、エネルギー吸収部がせん断降伏した後の状態を示す正面図である。 (a)は、本発明を適用したダンパー構造で引張荷重によりエネルギー吸収部がせん断降伏する状態を示す正面図であり、(b)は、圧縮荷重によりエネルギー吸収部がせん断降伏する状態を示す正面図である。 (a)は、従来の鋼材ダンパーが引張降伏する前の状態を示す正面図であり、(b)は、その引張降伏した後の状態を示す正面図である。 本発明を適用したダンパー構造のFEM解析モデルを示す正面図である。 本発明を適用したダンパー構造と従来の鋼材ダンパーとの崩壊機構の比較を示すグラフである。 本発明を適用したダンパー構造の第2実施形態に係るエネルギー吸収部を示す正面図である。 本発明を適用したダンパー構造の第3実施形態に係るエネルギー吸収部を示す正面図である。 本発明を適用したダンパー構造の第3実施形態に係るエネルギー吸収部が軸周方向に回転する状態を示す斜視図である。
以下、本発明を適用したダンパー構造1を実施するための形態について、図面を参照しながら詳細に説明する。
本発明を適用したダンパー構造1は、図1に示すように、主に、住宅、学校、事務所、病院施設等の建築物の耐力壁を構成する枠材8に取り付けられたブレース等の軸力部材7に導入されるものである。また、本発明を適用したダンパー構造1は、プラント構造物、鉄塔等を含んだ建築物の架構柱等の軸力部材7にも導入される。枠材8は、例えば、一対の縦枠81及び横枠82で四方を取り囲んで、枠内空間80を形成するものとなる。
枠材8は、例えば、図2(a)に示すように、枠内空間80の上部80aにおいて、左下隅から右上隅に向けて傾斜して延びるブレース等の軸力部材7が設けられるとともに、枠内空間80の下部80bにおいて、左上隅から右下隅に向けて傾斜して延びるブレース等の軸力部材7が設けられる。
枠材8は、図2(b)に示すように、地震又は風等により水平力Hが作用することで、一対の縦枠81が幅方向に傾倒するように変位する。このとき、枠材8は、例えば、枠内空間80の上部80aの軸力部材7に引張荷重Tが作用するものとなるとともに、枠内空間80の下部80bの軸力部材7に圧縮荷重Pが作用するものとなる。
枠材8は、例えば、枠材8の高さ寸法hを3000mm、枠材8の幅寸法wを1000mmとして、水平力Hを20kN、層間変形角を1/30とした場合に、各々の軸力部材7の耐力を36kN以上、各々の軸力部材7の変形性能を28mm以上確保することが要求される。
軸力部材7は、図3に示すように、軸直交方向Zに配置されて軸方向Yに延びる一対のフランジ部71と、一対のフランジ部71に連設されて軸直交方向Xに配置されるウェブ部72とを有して、断面略C形状に形成された溝形鋼、リップ付形鋼等が用いられる。軸力部材7は、これに限らず、断面略矩形状の角形鋼管や、断面略円形状の円形鋼管等が用いられてもよい。軸力部材7は、如何なる鋼種のものが用いられてもよい。
軸力部材7は、フランジ部71又はウェブ部72等により軸方向Yに延びる側面70が形成されて、軸方向Yの引張荷重T又は圧縮荷重Pが軸力部材7の側面70に作用するものとなる。軸力部材7は、例えば、形鋼等の板厚tbを1.6mm〜3.0mm程度、軸直交方向Xの外径Dを50mm〜100mm程度とする。
本発明を適用したダンパー構造1は、軸力部材7の側面70で軸方向Yの一部に設けられるエネルギー吸収部2と、軸力部材7の側面70に沿って設けられる補剛部5とを備える。
本発明を適用したダンパー構造1は、図4に示すように、軸力部材7の側面70にスリット3を形成することによりエネルギー吸収部2が設けられるものであり、エネルギー吸収部2に近接させて、角形鋼管等を用いた補剛部5が設けられる。
補剛部5は、断面略矩形状の角形鋼管が用いられるものであるが、これに限らず、断面略C形状に形成された溝形鋼、リップ付形鋼や、断面略円形状の円形鋼管等が用いられてもよい。補剛部5は、例えば、形鋼等の板厚tsを1.6mm〜3.0mm程度、軸力部材7の側面70との離間距離dを3mm程度とする。
補剛部5は、図5(a)に示すように、軸方向Yで両方の端部5aが軸力部材7の側面70に配置されることで、軸力部材7の軸方向Yで一部の範囲に設けられる。補剛部5は、これに限らず、図5(b)に示すように、軸方向Yの一方の端部5aが軸力部材7の側面70に配置されるとともに、軸方向Yの他方の端部5aが枠材8まで延びて設けられてもよい。
補剛部5は、図5(a)に示すように、軸方向Yの枠材8側又は軸力部材7側の何れかの端部5aが、軸力部材7の側面70にビス止め、隅肉溶接等により接合部6で接合される。また、補剛部5は、図5(b)に示すように、軸方向Yの枠材8側が、軸力部材7の側面70にビス止め、隅肉溶接等により接合部6で接合される。補剛部5は、軸力部材7の軸方向Yの全長に亘ることなく、エネルギー吸収部2のみを覆うようにして、角形鋼管等の補剛部5の内側に軸力部材7を挿通させることで、角形鋼管等の補剛部5が軸力部材7に外装されるものとなる。
補剛部5は、これに限らず、図6に示すように、軸力部材7の内側に角形鋼管等の補剛部5を挿通させることで、角形鋼管等の補剛部5が軸力部材7に内装されてもよい。補剛部5は、軸力部材7の軸方向Yの全長に亘ることなく、エネルギー吸収部2のみの内側に、角形鋼管等の補剛部5が軸力部材7に内装されて設けられるものとなる。
エネルギー吸収部2は、軸力部材7の軸方向Yで側面70にスリット3が形成された範囲を包摂して、軸力部材7の側面70に沿って補剛部5が取り付けられる。エネルギー吸収部2は、図5、図6に示すように、軸力部材7の軸方向Yの片端又は両端に設けられるものであるが、これに限らず、軸力部材7の軸方向Yの略中央に設けられてもよい。
エネルギー吸収部2は、第1実施形態において、図7に示すように、軸力部材7の側面70で略矩形状のスリット3が複数形成される。エネルギー吸収部2は、軸力部材7の軸直交方向X及び軸方向Yで複数のスリット3が互いに所定の間隔を空けて形成されて、複数のスリット3が軸直交方向X及び軸方向Yに並んで配置されるものとなる。
エネルギー吸収部2は、軸直交方向Xに並んで配置された複数のスリット3が、軸方向Yで2段以上に亘って形成される。エネルギー吸収部2は、軸直交方向Xに並んで配置された複数のスリット3が、特に、軸方向Yで2段に亘って形成されて、軸方向Yの各段において、軸力部材7の軸直交方向Xで互いの位置を異ならせて配置されるものとなる。
スリット3は、略矩形状に形成されることで、軸直交方向Xに延びる長辺3aと、軸方向Yに延びる短辺3bとを有して、長辺3aが軸方向Yに対して略直角に延びて形成されるものとなる。スリット3は、これに限らず、軸直交方向Xを長手方向として、略長円形状又は略楕円形状等に形成されてもよい。
スリット3は、長辺3aが軸方向Yに対して略直角に延びて形成されることで、軸力部材7の軸方向Yに対して略直角に延びて配置されるものとなる。スリット3は、軸力部材7の側面70で軸方向Yの各断面の一箇所以上に形成されて、軸直交方向Xの何れの位置においても、軸力部材7の側面70が軸方向Yで部分的に切り欠かれる。
スリット3は、軸力部材7の側面70で軸方向Yの各断面の一箇所以上に形成されることで、例えば、図8(a)、(b)に示すように、軸方向Yの一箇所で、軸力部材7の側面70が切り欠かれる箇所と、図8(c)に示すように、軸方向Yの二箇所で、軸力部材7の側面70が切り欠かれる箇所とが形成されるものとなる。
エネルギー吸収部2は、図9に示すように、各々のスリット3の長辺3aが軸直交方向Xに延びることで、所定の軸直交方向幅αを有して、また、各々のスリット3の短辺3bが軸方向Yに延びることで、所定の軸方向長さεを有する。
エネルギー吸収部2は、複数のスリット3が軸力部材7の軸直交方向X及び軸方向Yで互いに所定の間隔を空けて形成されることで、軸力部材7の軸直交方向Xに隣り合うスリット3が所定の軸直交方向間隔βを有して、また、軸力部材7の軸方向Yに隣り合うスリット3の所定の軸方向間隔δを有する。
エネルギー吸収部2は、軸力部材7の軸直交方向Xに隣り合って一対となったスリット3の短辺3bの間に、所定の軸直交方向間隔βで軸方向Yに延びる縦平面20が形成されるものとなり、また、軸力部材7の軸方向Yに隣り合って一対となったスリット3の長辺3aの間に、所定の軸方向間隔δで軸直交方向Xに延びる横平面21が形成されるものとなる。なお、ここで、縦平面20とは、例えば、軸直交方向Xで互いに隣り合うスリット3の最小間隔を幅とし、スリット3の軸方向長さεを高さとする長方形の領域を指す。また、横平面21とは、例えば、軸方向Yに隣り合うスリット3が軸直交方向Xで互いに重なり合った重複幅γを幅とし、その両端から上下のスリット端部より軸方向Yに区切った領域を指す。
エネルギー吸収部2は、軸直交方向Xに並んで配置された複数のスリット3が、軸方向Yで2段以上に亘って形成されて、軸方向Yの各段において、軸力部材7の軸直交方向Xで互いの位置を異ならせて配置されることで、軸方向Yに隣り合うスリット3が軸直交方向Xで互いに重なり合って、軸直交方向Xに延びる横平面21で所定の重複幅γを有する。
エネルギー吸収部2は、軸力部材7の軸直交方向Xに隣り合うスリット3の軸直交方向間隔βと、軸力部材7の軸方向Yに隣り合うスリット3が軸直交方向Xで互いに重なり合った重複幅γと、軸力部材7の軸方向Yに隣り合うスリット3の軸方向間隔δとが、下記(1)、(2)式により規定される関係を満足する。ここで、D:軸力部材7の外径、β:縦平面20の軸直交方向Xの幅、δ:横平面21における軸方向Yで互いに隣り合うスリット3の最小間隔とする。
Figure 2016138399
Figure 2016138399
エネルギー吸収部2は、下記(3)式により規定される関係を満足することで、軸力部材7の外径D内に、スリット3及び縦平面20の各々が2つ以上配置されることが規定される。また、エネルギー吸収部2は、下記(4)式により規定される関係を満足することで、横平面21のせん断降伏応力が、縦平面20の引張降伏応力以下となることが規定されて、下記(3)、(4)式を展開すると、上記(1)、(2)式が導出される。ここで、t:エネルギー吸収部2の板厚、σy:エネルギー吸収部2の部材の降伏応力とする。
Figure 2016138399
Figure 2016138399
エネルギー吸収部2は、図10(a)に示すように、軸方向Yの引張荷重T又は圧縮荷重Pが軸力部材7の側面70に作用したときに、図10(b)に示すように、スリット3の周囲に形成された横平面21を面内変形させることで、複数のスリット3が形成された範囲でせん断降伏するものとなる。ここで、せん断降伏とは、せん断力のみによって降伏にいたること、及び、引張力とせん断力とが作用する場合においてもせん断力が主に作用して降伏にいたることをいう。
エネルギー吸収部2は、図11(a)に示すように、軸力部材7の側面70に引張荷重Tが作用したときに、スリット3の周囲の横平面21で、一方の対角線上21aに引張応力σtが発生するとともに、他方の対角線上21bに圧縮応力σpが発生する。また、エネルギー吸収部2は、図11(b)に示すように、軸力部材7の側面70に圧縮荷重Pが作用したときに、スリット3の周囲の横平面21で、一方の対角線上21aに圧縮応力σpが発生するとともに、他方の対角線上21bに引張応力σtが発生する。
エネルギー吸収部2は、軸力部材7の側面70に引張荷重T又は圧縮荷重Pが作用したときに、スリット3の周囲の横平面21でせん断降伏領域を大きく確保しながら、引張応力σtと圧縮応力σpとが交互に発生して均衡するものとなり、せん断降伏が支配的なものとなって、スリット3の周囲でエネルギー吸収部2の耐力上昇を抑制させたものとなる。
このとき、エネルギー吸収部2は、特に、軸直交方向間隔βと軸方向間隔δとが上記(2)式により規定される関係を満足することで、軸力部材7に引張荷重T又は圧縮荷重Pが作用したときに、スリット3の長辺3aが傾斜状に変形して、スリット3の周囲の横平面21が面内方向でせん断変形するものとなり、引張荷重T又は圧縮荷重Pが所定の大きさとなったときにせん断降伏する。
これに対して、従来の鋼材ダンパー9は、図12(a)に示すように、軸直交方向間隔βが3mm、軸方向間隔δが4mmであり、上記(2)式に代入すると、β/δ=3/4<2/√3となるため、上記(2)式で規定する範囲外となる。従来の鋼材ダンパー9は、軸方向Yの引張荷重Tがブレース材90に作用したときに、図12(b)に示すように、長円形状スリット91の側方に形成された縦平面92が軸方向Yに延びて引張変形することで、長円形状スリット91の軸方向Yの近傍に形成された横平面93が面内方向でせん断変形しないため、所定の引張荷重Tの大きさとなったときに、せん断降伏することなく、引張降伏をするものとなる。
このとき、従来の鋼材ダンパー9は、長円形状スリット91の側方に形成された縦平面92が、鋼材そのものの材料特性による引張強度しか発現せず、地震又は風等により引張力を受けた後、圧縮力がブレース材90に作用すると、長円形状スリット91の側方の縦平面92が軸方向Yに座屈変形する。
本発明を適用したダンパー構造1は、図13に示すように、軸力部材7の板厚tbを2.3mm、外径Dを75mmとして、SGC400(JIS G 3302)相当の軸力部材7の下端7aを固定するとともに、軸力部材7の上端7bに引張荷重T又は圧縮荷重Pを単純載荷して、エネルギー吸収部2での鉛直変位と鉛直反力との関係をFEM解析により求めることで、図14に示すように、エネルギー吸収部2で所定の崩壊機構を示すことがわかる。
図14では、本発明を適用したダンパー構造1(実線)において、軸直交方向幅α=20mm、軸直交方向間隔β=10mm、重複幅γ=5mm、軸方向間隔δ=5mm、軸方向長さε=5mmとして、従来の鋼材ダンパー9(破線)において、軸直交方向幅α=25mm、軸直交方向間隔β=5mm、重複幅γ=10mm、軸方向間隔δ=10mm、軸方向長さε=10mmとする。
本発明を適用したダンパー構造1(実線)は、上記(1)式に代入すると、D/(β+γ)=5>4となり、上記(2)式に代入すると、β/δ=2>2/√3となるため、本発明で規定される範囲内となる。従来の鋼材ダンパー9(破線)は、上記(1)式に代入すると、D/(β+γ)=5>4となり、上記(2)式に代入すると、β/δ=0.5<2/√3となるため、上記(1)式は満たすが、上記(2)式を満たさず、本発明で規定される範囲外となる。
本発明を適用したダンパー構造1(実線)は、エネルギー吸収部2においてスリット3の周囲で横平面21が繰り返して面内変形することで、早期に座屈が生じることなく、引張荷重T、圧縮荷重Pが作用する場合ともに荷重―変位関係は同様の傾向を示し、地震又は風等のエネルギーを吸収することのできる崩壊機構となる。これに対して、従来の鋼材ダンパー9は、鉛直変位が正方向に増大するとき、早期に引張降伏を生じ、材料引張試験と同様の加工硬化特性を示すものとなり、また、鉛直変位が負方向に増大するとき、早期に座屈変形するため、鉛直変位が増大しても鉛直反力が増大せず、地震又は風等のエネルギーを十分に吸収できない崩壊機構となる。
本発明を適用したダンパー構造1は、軸力部材7の外径Dとの関係で、軸直交方向間隔βと重複幅γとが、上記(1)式により規定される関係を満足することで、エネルギー吸収部2の軸方向Yの各段において、図9に示すように、軸力部材7の側面70を切り欠いたスリット3の側方で、軸力部材7の側面70が残存する縦平面20が少なくとも2箇所に形成されるものとなり、スリット3が形成されることによる軸力部材7の側面70の断面欠損を抑制させて、エネルギー吸収部2で所定の剛性を確保して座屈変形を防止することができる。
本発明を適用したダンパー構造1は、エネルギー吸収部2で所定の剛性を確保して座屈変形を防止することで、スリット3の周囲で横平面21を繰り返して面内変形させるものとなり、地震又は風等のエネルギーを確実に吸収することができる。本発明を適用したダンパー構造1は、特に、軸直交方向Xに並んで配置された複数のスリット3が、軸方向Yで2段にのみ形成されることで、スリット3が形成されることによる軸力部材7の側面70の断面欠損を抑制させて、エネルギー吸収部2の剛性の向上を確実なものとして、エネルギー吸収部2の座屈変形を確実に防止することができるものとなる。
エネルギー吸収部2は、第2実施形態において、図15に示すように、略楕円形状のスリット3が軸力部材7の側面70に複数形成される。エネルギー吸収部2は、軸直交方向Xに並んで配置された複数の略楕円形状のスリット3が、軸方向Yで2段以上に亘って形成されて、軸方向Yの各段において、単一の接線TLを共有するものとなる。
エネルギー吸収部2は、軸方向Yの各段において、軸直交方向Xに並んで配置された複数のスリット3の共有する単一の接線TLが、軸方向Yに対して略直角に延びて形成されることで、複数のスリット3が軸力部材7の軸方向Yに対して略直角に延びて配置されるものとなる。
エネルギー吸収部2は、軸力部材7の側面70で軸方向Yの各断面の一箇所以上にスリット3が形成される。エネルギー吸収部2は、軸直交方向Xに並んで配置された複数のスリット3が、特に、軸方向Yで2段に亘って形成されるとともに、軸方向Yの各段において、軸力部材7の軸直交方向Xで互いの位置を異ならせて配置されるものとなる。
エネルギー吸収部2は、軸力部材7の軸直交方向Xに隣り合って一対となったスリット3の間に、所定の軸直交方向間隔βで軸方向Yに延びる縦平面20が形成されるものとなり、また、軸力部材7の軸方向Yに隣り合って一対となったスリット3の間に、所定の軸方向間隔δで軸直交方向Xに延びる横平面21が形成されるものとなる。
このとき、エネルギー吸収部2は、軸力部材7に引張荷重T又は圧縮荷重Pが作用したときに、軸直交方向Xに延びる横平面21が面内方向でせん断変形するものとなり、引張荷重T又は圧縮荷重Pが所定の大きさとなったときにせん断降伏する。このとき、エネルギー吸収部2は、第2実施形態においても、スリット3の周囲で横平面21が繰り返して面内変形することで、座屈変形を防止しながら、地震等のエネルギーを吸収することのできる崩壊機構となる。
エネルギー吸収部2は、第3実施形態において、図16に示すように、軸力部材7の側面70で略矩形状等のスリット3が複数形成されて、各々のスリット3が軸力部材7の軸方向Yに対して傾斜するように延びて配置されるものとなる。
エネルギー吸収部2は、軸直交方向Xに並んで配置された複数のスリット3が、軸方向Yで2段以上に亘って形成されるものであり、特に、軸方向Yで2段に亘って形成されて、軸方向Yの各段において、互いに軸方向Yに対して傾斜する方向を異ならせて、各々のスリット3が配置されるものとなる。
スリット3は、略矩形状に形成されることで、軸直交方向Xに延びる長辺3aと、軸方向Yに延びる短辺3bとを有して、長辺3aが軸方向Yに対して傾斜するように延びて形成されるものとなる。スリット3は、これに限らず、軸方向Yに対して傾斜する方向を長手方向として、略長円形状又は略楕円形状等に形成されてもよい。
スリット3は、軸力部材7の側面70で軸方向Yの各断面の一箇所以上に形成されることで、例えば、軸方向Yの二箇所で、軸力部材7の側面70が切り欠かれる箇所が形成されて、軸直交方向Xの何れの位置においても、軸力部材7の側面70が軸方向Yで部分的に切り欠かれるものとなる。
エネルギー吸収部2は、軸力部材7の軸直交方向Xに隣り合って一対となったスリット3の間に、軸方向Yに延びる横平面21が形成されて、軸力部材7に引張荷重T又は圧縮荷重Pが作用したときに、軸方向Yに延びる横平面21が面内方向に変形することで、引張荷重T又は圧縮荷重Pが所定の大きさとなったときに引張力も作用するが、主に、せん断力が作用し降伏する。このとき、エネルギー吸収部2は、第3実施形態においても、スリット3の周囲で横平面21が繰り返して面内変形することで、座屈変形を防止しながら、地震等のエネルギーを吸収することのできる崩壊機構となる。
エネルギー吸収部2は、特に、第3実施形態において、軸力部材7の軸方向Yに対して傾斜するように延びて各々のスリット3が配置されるため、軸力部材7に引張荷重T又は圧縮荷重Pが作用したときに、図17に示すように、軸力部材7の下端7a及び上端7bが、軸方向Yで互いに離間又は接近する方向に変位して、軸方向Yに延びる横平面21が、軸力部材7の軸周方向Wに左回転L又は右回転Rするものとなる。
本発明を適用したダンパー構造1は、第1実施形態〜第3実施形態に係る何れのエネルギー吸収部2においても、図9、図15、図16に示すように、略矩形状等で単純形状のスリット3を形成することでエネルギー吸収部2が設けられるため、軸力部材7の側面70の切欠加工を容易なものとして、エネルギー吸収部2の製作コストを低減させることが可能となる。
本発明を適用したダンパー構造1は、第1実施形態〜第3実施形態に係る何れのエネルギー吸収部2においても、スリット3の周囲で横平面21を面内変形させて、エネルギー吸収部2をせん断降伏させることで、地震等のエネルギーを吸収することのできる崩壊機構を実現して、早期の座屈発生による耐力低下やスリップ性状を回避して、安定したエネルギー吸収性能を確保することが可能となる。
本発明を適用したダンパー構造1は、第1実施形態〜第3実施形態に係る何れのエネルギー吸収部2においても、軸力部材7の側面70に沿ってエネルギー吸収部2に近接させて補剛部5が設けられる。本発明を適用したダンパー構造1は、角形鋼管等の補剛部5が軸力部材7に外装又は内装されて、軸力部材7の側面70に補剛部5の端部5aが接合されることで、複数のスリット3が形成されたエネルギー吸収部2が軸方向Yに座屈変形を確実に抑制し、補剛部5によりエネルギー吸収部2で所定の剛性を確保することができるものとなる。
本発明を適用したダンパー構造1は、第1実施形態〜第3実施形態に係る何れのエネルギー吸収部2においても、スリット3の周囲で横平面21が面内変形することで、補剛部5により所定の剛性を確保しながら、エネルギー吸収部2がせん断降伏するものとなる。特に、本発明を適用したダンパー構造1は、エネルギー吸収部2が引張降伏ではなくせん断降伏するものとなり、座屈が生じにくいため、軸力部材7の軸方向Yでエネルギー吸収部2が設けられる短い範囲のみを補剛部5で補剛するものとしても、軸力部材7の軸方向Yの鉛直変位に補剛部5が十分に追随して、エネルギー吸収部2の座屈変形を確実に防止しながら、安定したエネルギー吸収性能を確保することが可能となる。
また、本発明を適用したダンパー構造1は、特に、第3実施形態に係るエネルギー吸収部2において、図17に示すように、軸方向Yに延びる横平面21が、軸力部材7の軸周方向Wに左回転L又は右回転Rするものとなるため、軸方向Yに作用する引張荷重T又は圧縮荷重Pが、軸周方向Wの回転エネルギーに変換されるものとなり、エネルギー吸収部2に軸周方向Wの回転によるエネルギー吸収性能が付加されることで、エネルギー吸収部2のせん断降伏によるエネルギー吸収性能と一体になって、非常に安定したエネルギー吸収性能を確保することが可能となる。
なお、本発明を適用したダンパー構造1は、特に、第3実施形態に係るエネルギー吸収部2において、エネルギー吸収部2の横平面21と補剛部5との間で、横平面21及び補剛部5の内面に当接させて、ゴム等の粘弾性体50が設けられるものとすることで、軸周方向Wの回転エネルギーが粘弾性体50により減衰されるものとなり、エネルギー吸収部2で軸周方向Wの回転によるエネルギー吸収性能を向上させることが可能となる。
以上、本発明の実施形態の例について詳細に説明したが、上述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。
例えば、本発明を適用したダンパー構造1は、軸力部材7の側面70を切り欠くことによりスリット3が形成されるものであるが、これに限らず、スリット3が形成された別途の部材をエネルギー吸収部2として、別途の部材で構成されたエネルギー吸収部2が軸力部材7に接着等で連結されて、軸力部材7の軸方向Yの一部にエネルギー吸収部2が設けられてもよい。
1 :ダンパー構造
2 :エネルギー吸収部
20 :縦平面
21 :横平面
3 :スリット
3a :長辺
3b :短辺
5 :補剛部
5a :端部
6 :接合部
50 :粘弾性体
7 :軸力部材
7a :下端
7b :上端
70 :側面
71 :フランジ部
72 :ウェブ部
8 :枠材
80 :枠内空間
80a :上部
80b :下部
81 :縦枠
82 :横枠
W :軸周方向
X :軸直交方向
Y :軸方向

Claims (5)

  1. 建築物に設けられて引張荷重又は圧縮荷重が作用する軸力部材のダンパー構造であって、
    軸力部材の側面で軸方向の一部に設けられるエネルギー吸収部と、軸力部材の側面に沿って前記エネルギー吸収部に近接させて設けられる補剛部とを備え、
    前記エネルギー吸収部は、軸力部材の側面にスリットを形成することにより設けられるものであり、引張荷重又は圧縮荷重が軸力部材に作用したときに、前記スリットの周囲を面内変形させることで、前記補剛部により所定の剛性を確保しながら、せん断降伏してエネルギーを吸収するものであること
    を特徴とするダンパー構造。
  2. 前記スリットは、軸力部材の側面で軸方向の各断面の一箇所以上に形成されるものであり、軸力部材の軸方向に対して略直角に延びて配置されること
    を特徴とする請求項1記載のダンパー構造。
  3. 前記スリットは、軸力部材の側面で軸方向の各断面の一箇所以上に形成されるものであり、軸力部材の軸方向に対して傾斜するように延びて配置されること
    を特徴とする請求項1記載のダンパー構造。
  4. 前記エネルギー吸収部は、軸力部材の側面で略矩形状の前記スリットが複数形成されるものであり、軸力部材の軸方向で2段以上に形成された複数の前記スリットが、軸力部材の軸直交方向で互いの位置を異ならせて配置されること
    を特徴とする請求項1又は2記載のダンパー構造。
  5. 前記エネルギー吸収部は、軸力部材の軸直交方向に隣り合う前記スリットの軸直交方向間隔βと、軸力部材の軸方向に隣り合う前記スリットが軸直交方向で互いに重なり合った重複幅γと、軸力部材の軸方向に隣り合う前記スリットの軸方向間隔δとが、下記(1)、(2)式により規定される関係を満足すること
    を特徴とする請求項4記載のダンパー構造。
    Figure 2016138399
    Figure 2016138399
    ここで、D:軸力部材の外径とする。
JP2015013819A 2015-01-28 2015-01-28 ダンパー構造 Pending JP2016138399A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015013819A JP2016138399A (ja) 2015-01-28 2015-01-28 ダンパー構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015013819A JP2016138399A (ja) 2015-01-28 2015-01-28 ダンパー構造

Publications (1)

Publication Number Publication Date
JP2016138399A true JP2016138399A (ja) 2016-08-04

Family

ID=56559951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015013819A Pending JP2016138399A (ja) 2015-01-28 2015-01-28 ダンパー構造

Country Status (1)

Country Link
JP (1) JP2016138399A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031997A1 (ja) * 2021-08-30 2023-03-09 三菱重工業株式会社 履歴型ダンパ構造体およびその組立方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183873A (ja) * 1989-12-14 1991-08-09 Kajima Corp 鋼材ダンパー
US20040000103A1 (en) * 2002-06-26 2004-01-01 Ching-Shyang Chen Earthquake energy eliminator
JP2005194794A (ja) * 2004-01-08 2005-07-21 Shimizu Corp ブレースダンパー
JP2012082668A (ja) * 2010-02-16 2012-04-26 Norimine Okura 締結具
JP2012225411A (ja) * 2011-04-19 2012-11-15 Kajima Corp 変形制限機能付きダンパー内蔵耐震装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183873A (ja) * 1989-12-14 1991-08-09 Kajima Corp 鋼材ダンパー
US20040000103A1 (en) * 2002-06-26 2004-01-01 Ching-Shyang Chen Earthquake energy eliminator
JP2005194794A (ja) * 2004-01-08 2005-07-21 Shimizu Corp ブレースダンパー
JP2012082668A (ja) * 2010-02-16 2012-04-26 Norimine Okura 締結具
JP2012225411A (ja) * 2011-04-19 2012-11-15 Kajima Corp 変形制限機能付きダンパー内蔵耐震装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023031997A1 (ja) * 2021-08-30 2023-03-09 三菱重工業株式会社 履歴型ダンパ構造体およびその組立方法

Similar Documents

Publication Publication Date Title
US8590220B2 (en) Metal joint, damping structure, and architectural construction
JP5486278B2 (ja) 粘弾性ダンパの取付方法
JP5432763B2 (ja) 座屈拘束ブレース及びこれを用いた耐力フレーム
JP5383166B2 (ja) 波形鋼板耐震壁、波形鋼板耐震壁の設計方法、及び建築物
JP2017133282A (ja) 鋼製デバイス及び耐力壁
JP6941467B2 (ja) ダンパー、及びダンパーの製作方法
JP2009047193A (ja) ダンパー装置および構造物
JP5486430B2 (ja) 耐力フレームの構造
JP2012219437A (ja) 座屈拘束ブレース、これを用いた耐力フレーム及び座屈拘束ブレースの製造方法
JP6872891B2 (ja) 柱梁接合部の補強構造
JP6589922B2 (ja) 梁の補強構造および梁の補強工法
JP4414832B2 (ja) 開口部を有する波形鋼板を用いた耐震壁
JP4414833B2 (ja) 波形鋼板を用いた耐震壁
JP2004232292A (ja) ブレースダンパー
JP2016138399A (ja) ダンパー構造
JP4395419B2 (ja) 制震間柱
JP6447227B2 (ja) ダンパー構造
JP6268998B2 (ja) 鋼製部材の端部構造
JP5305756B2 (ja) 波形鋼板を用いた制振壁
JP6171596B2 (ja) 壁パネル
KR101798007B1 (ko) 건축물용 프레임
JP2020045671A (ja) 柱梁接合部コア
JP6882071B2 (ja) ダンパー
JP2018025036A (ja) ダンパー構造及び耐力壁
JP2017096018A (ja) 制振ブレース

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181002