WO2015152302A1 - ガスバリア性フィルムおよびその製造方法、並びにこれを用いた電子デバイスおよびその製造方法 - Google Patents
ガスバリア性フィルムおよびその製造方法、並びにこれを用いた電子デバイスおよびその製造方法 Download PDFInfo
- Publication number
- WO2015152302A1 WO2015152302A1 PCT/JP2015/060269 JP2015060269W WO2015152302A1 WO 2015152302 A1 WO2015152302 A1 WO 2015152302A1 JP 2015060269 W JP2015060269 W JP 2015060269W WO 2015152302 A1 WO2015152302 A1 WO 2015152302A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas barrier
- layer
- film
- protective film
- barrier film
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 356
- 238000000034 method Methods 0.000 title claims description 84
- 238000004519 manufacturing process Methods 0.000 title claims description 42
- 239000010410 layer Substances 0.000 claims abstract description 408
- 230000001681 protective effect Effects 0.000 claims abstract description 140
- 238000000576 coating method Methods 0.000 claims abstract description 102
- 239000011248 coating agent Substances 0.000 claims abstract description 100
- 239000012790 adhesive layer Substances 0.000 claims abstract description 45
- 229920001709 polysilazane Polymers 0.000 claims abstract description 30
- 238000001035 drying Methods 0.000 claims abstract description 19
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 230000001678 irradiating effect Effects 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims description 57
- 238000011282 treatment Methods 0.000 claims description 44
- 150000001875 compounds Chemical class 0.000 claims description 31
- 238000012986 modification Methods 0.000 claims description 31
- 230000004048 modification Effects 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 29
- 230000001070 adhesive effect Effects 0.000 abstract description 65
- 239000000853 adhesive Substances 0.000 abstract description 63
- 239000010408 film Substances 0.000 description 414
- 239000007789 gas Substances 0.000 description 342
- 239000000463 material Substances 0.000 description 62
- 229920005989 resin Polymers 0.000 description 59
- 239000011347 resin Substances 0.000 description 59
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 50
- -1 acryloyl compound Chemical class 0.000 description 50
- 238000005229 chemical vapour deposition Methods 0.000 description 38
- 230000015572 biosynthetic process Effects 0.000 description 32
- 238000005755 formation reaction Methods 0.000 description 32
- 238000005401 electroluminescence Methods 0.000 description 31
- 239000000243 solution Substances 0.000 description 28
- 238000005259 measurement Methods 0.000 description 25
- 229910052751 metal Inorganic materials 0.000 description 23
- 239000002184 metal Substances 0.000 description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 22
- 239000001301 oxygen Substances 0.000 description 22
- 229910052760 oxygen Inorganic materials 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 239000011241 protective layer Substances 0.000 description 20
- 239000002904 solvent Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 16
- 238000001420 photoelectron spectroscopy Methods 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 15
- 229920001971 elastomer Polymers 0.000 description 15
- 239000005060 rubber Substances 0.000 description 15
- 229910052710 silicon Inorganic materials 0.000 description 15
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 14
- 229910052791 calcium Inorganic materials 0.000 description 14
- 239000011575 calcium Substances 0.000 description 14
- 238000004132 cross linking Methods 0.000 description 14
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 14
- 238000007789 sealing Methods 0.000 description 14
- 239000010703 silicon Substances 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 13
- 238000004140 cleaning Methods 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 13
- 239000002346 layers by function Substances 0.000 description 13
- 238000004804 winding Methods 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 12
- 238000001723 curing Methods 0.000 description 12
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 238000007740 vapor deposition Methods 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 239000003431 cross linking reagent Substances 0.000 description 10
- 230000005525 hole transport Effects 0.000 description 10
- 125000000217 alkyl group Chemical group 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 230000002265 prevention Effects 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 208000028659 discharge Diseases 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 150000002430 hydrocarbons Chemical group 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 239000011342 resin composition Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 125000003342 alkenyl group Chemical group 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910052753 mercury Inorganic materials 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 6
- 244000043261 Hevea brasiliensis Species 0.000 description 5
- 238000007259 addition reaction Methods 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000009477 glass transition Effects 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 229920003052 natural elastomer Polymers 0.000 description 5
- 229920001194 natural rubber Polymers 0.000 description 5
- 239000002985 plastic film Substances 0.000 description 5
- 229920006255 plastic film Polymers 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 5
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000005038 ethylene vinyl acetate Substances 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 239000011147 inorganic material Substances 0.000 description 4
- 239000005001 laminate film Substances 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 229920005672 polyolefin resin Polymers 0.000 description 4
- 238000002407 reforming Methods 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000000805 composite resin Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 230000005865 ionizing radiation Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000012948 isocyanate Substances 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920005668 polycarbonate resin Polymers 0.000 description 3
- 239000004431 polycarbonate resin Substances 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 150000003377 silicon compounds Chemical class 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000004210 ether based solvent Substances 0.000 description 2
- 238000007765 extrusion coating Methods 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 125000006038 hexenyl group Chemical group 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- TXXWBTOATXBWDR-UHFFFAOYSA-N n,n,n',n'-tetramethylhexane-1,6-diamine Chemical compound CN(C)CCCCCCN(C)C TXXWBTOATXBWDR-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920002587 poly(1,3-butadiene) polymer Polymers 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000013464 silicone adhesive Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 125000005369 trialkoxysilyl group Chemical group 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- KJDMMCYMVUTZSN-UHFFFAOYSA-N (1-ethynylcyclohexyl)oxy-trimethylsilane Chemical compound C[Si](C)(C)OC1(C#C)CCCCC1 KJDMMCYMVUTZSN-UHFFFAOYSA-N 0.000 description 1
- ODIGIKRIUKFKHP-UHFFFAOYSA-N (n-propan-2-yloxycarbonylanilino) acetate Chemical compound CC(C)OC(=O)N(OC(C)=O)C1=CC=CC=C1 ODIGIKRIUKFKHP-UHFFFAOYSA-N 0.000 description 1
- MBVAQOHBPXKYMF-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;rhodium Chemical compound [Rh].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O MBVAQOHBPXKYMF-LNTINUHCSA-N 0.000 description 1
- KLFRPGNCEJNEKU-FDGPNNRMSA-L (z)-4-oxopent-2-en-2-olate;platinum(2+) Chemical compound [Pt+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O KLFRPGNCEJNEKU-FDGPNNRMSA-L 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- NBUKAOOFKZFCGD-UHFFFAOYSA-N 2,2,3,3-tetrafluoropropan-1-ol Chemical compound OCC(F)(F)C(F)F NBUKAOOFKZFCGD-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 1
- VMAWODUEPLAHOE-UHFFFAOYSA-N 2,4,6,8-tetrakis(ethenyl)-2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C=C[Si]1(C)O[Si](C)(C=C)O[Si](C)(C=C)O[Si](C)(C=C)O1 VMAWODUEPLAHOE-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- CEBKHWWANWSNTI-UHFFFAOYSA-N 2-methylbut-3-yn-2-ol Chemical compound CC(C)(O)C#C CEBKHWWANWSNTI-UHFFFAOYSA-N 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- NECRQCBKTGZNMH-UHFFFAOYSA-N 3,5-dimethylhex-1-yn-3-ol Chemical compound CC(C)CC(C)(O)C#C NECRQCBKTGZNMH-UHFFFAOYSA-N 0.000 description 1
- ZCTILCZSUSTVHT-UHFFFAOYSA-N 3,5-dimethylhex-1-yn-3-yloxy(trimethyl)silane Chemical compound CC(C)CC(C)(C#C)O[Si](C)(C)C ZCTILCZSUSTVHT-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000887125 Chaptalia nutans Species 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- IDCBOTIENDVCBQ-UHFFFAOYSA-N TEPP Chemical compound CCOP(=O)(OCC)OP(=O)(OCC)OCC IDCBOTIENDVCBQ-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 125000004062 acenaphthenyl group Chemical group C1(CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000004054 acenaphthylenyl group Chemical group C1(=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 229940045985 antineoplastic platinum compound Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- NFCHUEIPYPEHNE-UHFFFAOYSA-N bis(2,2-dimethylbut-3-ynoxy)-dimethylsilane Chemical compound C#CC(C)(C)CO[Si](C)(C)OCC(C)(C)C#C NFCHUEIPYPEHNE-UHFFFAOYSA-N 0.000 description 1
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 125000002676 chrysenyl group Chemical group C1(=CC=CC=2C3=CC=C4C=CC=CC4=C3C=CC12)* 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000009820 dry lamination Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- QXLPXWSKPNOQLE-UHFFFAOYSA-N methylpentynol Chemical compound CCC(C)(O)C#C QXLPXWSKPNOQLE-UHFFFAOYSA-N 0.000 description 1
- DMQSHEKGGUOYJS-UHFFFAOYSA-N n,n,n',n'-tetramethylpropane-1,3-diamine Chemical compound CN(C)CCCN(C)C DMQSHEKGGUOYJS-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 150000002941 palladium compounds Chemical class 0.000 description 1
- ZVSLRJWQDNRUDU-UHFFFAOYSA-L palladium(2+);propanoate Chemical compound [Pd+2].CCC([O-])=O.CCC([O-])=O ZVSLRJWQDNRUDU-UHFFFAOYSA-L 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000001828 phenalenyl group Chemical group C1(C=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 150000003058 platinum compounds Chemical class 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003284 rhodium compounds Chemical class 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 1
- DJZKNOVUNYPPEE-UHFFFAOYSA-N tetradecane-1,4,11,14-tetracarboxamide Chemical compound NC(=O)CCCC(C(N)=O)CCCCCCC(C(N)=O)CCCC(N)=O DJZKNOVUNYPPEE-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- JNRUXZIXAXHXTN-UHFFFAOYSA-N trimethyl(2-methylbut-3-yn-2-yloxy)silane Chemical compound C#CC(C)(C)O[Si](C)(C)C JNRUXZIXAXHXTN-UHFFFAOYSA-N 0.000 description 1
- NWMVPLQDJXJDEW-UHFFFAOYSA-N trimethyl(3-methylpent-1-yn-3-yloxy)silane Chemical compound CCC(C)(C#C)O[Si](C)(C)C NWMVPLQDJXJDEW-UHFFFAOYSA-N 0.000 description 1
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a gas barrier film and a manufacturing method thereof, an electronic device using the same, and a manufacturing method thereof. More specifically, the present invention relates to a gas barrier film having a protective film and a manufacturing method thereof, and an electronic device using the gas barrier film from which the protective film has been peeled, and a manufacturing method thereof.
- a gas barrier film that prevents permeation of water vapor, oxygen, and the like is being used in the field of electronic devices such as liquid crystal display elements (LCD), solar cells (PV), and organic electroluminescence (EL) elements.
- a gas barrier film applicable to such an electronic device is continuously produced by, for example, a roll-to-roll method, a film formation surface at the time of winding (specifically, a film formed on the surface of a resin substrate)
- a protective film is attached to the film-forming surface through an adhesive layer before winding with a winding roller, or a protective layer is provided.
- the provision of the protective film has an advantage of helping to protect the surface of the gas barrier film from damage and easily installing the gas barrier film on an object to be applied. For this reason, examination of the manufacturing method of the gas barrier film which bonded the protective film is performed.
- Patent Document 1 discloses a technique for preventing the gas barrier film from being bent by shrinking the laminate film due to a temperature drop after laminating film lamination by adjusting the temperature and tension at the time of laminating film lamination. Yes.
- the surface of the gas barrier layer (inorganic film having gas barrier properties) immediately after being formed by irradiating active energy rays to the layer containing polysilazane is extremely clean, it is excessive when a protective film is bonded to the gas barrier layer.
- the pressure-sensitive adhesive derived from the pressure-sensitive adhesive layer of the protective film remains on the gas barrier film after the protective film is peeled off.
- the pressure-sensitive adhesive remaining on the gas barrier film causes corrosion of the element when an electronic device is formed on the film. Therefore, a process such as UV cleaning is required to remove the pressure-sensitive adhesive, thereby reducing production efficiency. Cause it. Further, if the gas barrier layer is formed and left for a long time without a protective film, excessive adhesion of the protective film can be avoided, but productivity is lowered.
- an object of the present invention is to provide a gas barrier film that can simplify the process of removing the adhesive remaining after the protective film is removed.
- the present inventor conducted intensive research to solve the above problems. As a result, it was found that the above problem can be solved by setting the element abundance ratio C / Si of the outermost layer portion of the gas barrier layer measured with the protective film peeled to a certain value or less, and the present invention has been completed. It was.
- the present invention comprises a substrate, A gas barrier layer disposed on one side of the substrate; A protective film disposed on the gas barrier layer via an adhesive layer; A gas barrier film having The gas barrier layer is formed by irradiating an active energy ray on a coating film obtained by applying a coating liquid containing a polysilazane compound on the substrate and drying it, and then subjecting it to a modification treatment.
- the gas barrier film is characterized in that an element abundance ratio C / Si of an outermost layer portion of the gas barrier layer measured in a state where the protective film is peeled is 1.5 or less.
- a gas barrier film that can simplify the process of removing the adhesive remaining after the protective film is removed.
- the present invention is a gas barrier film comprising a substrate, a gas barrier layer disposed on one surface of the substrate, and a protective film disposed on the gas barrier layer via an adhesive layer,
- the gas barrier layer is formed by irradiating an active energy ray on a coating film obtained by applying a coating liquid containing a polysilazane compound on the substrate and drying it, and then subjecting it to a modification treatment.
- the element abundance ratio C / Si of the outermost layer portion range from the surface to the depth of 2.8 nm in terms of SiO 2 of XPS) measured with the protective film peeled is 1.5 or less. This is a gas barrier film.
- the gas barrier film of the present invention having such a configuration can simplify the process of removing the adhesive remaining after the protective film is removed.
- a conventional protective film for a gas barrier film is effective in terms of preventing damage to the gas barrier layer, but since the amount of the adhesive remaining after peeling is large, the adhesive on the surface is required before the electronic device is provided on the gas barrier layer. A process such as UV cleaning is required. Since the time required for this treatment is proportional to the remaining amount of the pressure-sensitive adhesive, in the conventional method for producing a gas barrier film for electronic devices, it takes time to remove the remaining pressure-sensitive adhesive, and the productivity is lowered.
- the “element content ratio C / Si of the outermost layer portion of the gas barrier layer measured with the protective film peeled” representing the residual amount of the adhesive is 1.5 or less. If it is, the removal process of the residual adhesive before use of a gas-barrier film may be completed for a short time, and the said process can be eliminated depending on the case. Therefore, the gas barrier film according to the present invention can simplify the process after removing the protective film (before use).
- measurements such as operation and physical properties are performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
- a gas barrier film 201 of the present invention includes a base material 55, a gas barrier layer 52 formed on the base material 55, and a protective film bonded to the gas barrier layer 52 via an adhesive layer 51. 50.
- the gas barrier film 201 of the present invention comprises (a) a control layer 53 (for example, an organic layer, a hygroscopic layer, an antistatic layer, a smooth layer) between the base 55 and the gas barrier layer 52 formed on the base 55.
- an intermediate layer 54 for example, an anchor coat layer, a smooth layer, or the like
- another functional layer not shown: organic layer, moisture absorption layer, antistatic layer, etc.
- a smooth layer, bleed-out layer a structure in which the above (a) to (c) are appropriately combined may be used.
- a plastic film or a sheet is usually used as a substrate, and a film or sheet made of a colorless and transparent resin is preferably used.
- the plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold a silicon-containing film or the like, and can be appropriately selected according to the purpose of use.
- Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide.
- Resin cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modification
- thermoplastic resins such as polycarbonate resin, fluorene ring-modified polyester resin, and acryloyl compound.
- the substrate is preferably made of a heat-resistant material.
- a resin base material having a predetermined linear expansion coefficient and a predetermined glass transition temperature (Tg) described in paragraph “0028” of JP-A-2015-24384 (also referred to as publicly known document 1) is provided in the same paragraph. It is preferably used from the description in “0028”.
- thermoplastic resin that can be used as the substrate include those described in paragraphs “0029” to “0030” of publicly known document 1.
- the base material is preferably transparent, but transparency is not necessarily required when it is not installed on the observation side.
- the transparent material a material having a predetermined light transmittance obtained by the measurement method described in paragraph “0034” of publicly known document 1 is preferably used.
- an opaque material what is illustrated to paragraph "0035" of well-known literature 1 etc. are mentioned.
- the thickness of the base material used for the gas barrier film according to the present invention is not particularly limited because it is appropriately selected depending on the application, but is typically 1 to 800 ⁇ m, preferably 10 to 200 ⁇ m.
- the base material may have functional layers such as a transparent conductive layer and a primer layer on the base material.
- As the functional layer in addition to those described above, those described in paragraph numbers “0036” to “0038” of JP-A-2006-289627 can be preferably used.
- the substrate preferably has a high surface smoothness.
- the surface smoothness those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the silicon-containing film is provided, may be polished to improve smoothness.
- the base material using the above-described resins or the like may be an unstretched film or a stretched film.
- various known treatments for improving adhesion such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and lamination of a primer layer described later Etc. may be performed, and it is preferable to combine the above treatments as necessary.
- the gas barrier layer irradiates a coating film obtained by applying and drying a coating liquid containing a polysilazane compound (hereinafter also simply referred to as “coating liquid”) on one surface of a substrate and irradiating active energy rays. It is formed by a modification treatment.
- coating liquid a coating liquid containing a polysilazane compound
- the coating solution contains a polysilazane compound.
- Polysilazane compound is a polymer having a bond such as Si—N, Si—H, or N—H in its structure, such as SiO 2 , Si 3 N 4 , and their intermediate solid solution SiO x N y . Functions as an inorganic precursor.
- the polysilazane compound is not particularly limited, but is preferably a compound that is converted to silica by being converted to silica at a relatively low temperature in consideration of the modification treatment described later, for example, in JP-A-8-112879. It is preferable that it is a compound which has the main skeleton which consists of a unit represented by the following general formula (1) of description.
- R 1 , R 2 and R 3 represent a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. At this time, R 1 , R 2 and R 3 may be the same or different.
- examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms.
- the aryl group include aryl groups having 6 to 30 carbon atoms.
- non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc.
- non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, nap
- the (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
- the substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group.
- R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
- Perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred.
- a gas barrier layer (gas barrier film) formed from such polysilazane exhibits high density.
- Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and can be a liquid or solid substance (depending on the molecular weight).
- the perhydropolysilazane may be a commercially available product.
- Examples of the commercially available product include AQUAMICA NN120, NN120-10, NN120-20, NN110, NAX120, NAX120-20, NAX110, NL120A, NL120-20, NL110A, NL150A, NP110, NP140 (all are made by AZ Electronic Materials Co., Ltd.) and the like.
- the content of the polysilazane compound in the coating solution varies depending on the desired film thickness of the gas barrier layer, the pot life of the coating solution, etc., but is 0.2% by mass to 35% by mass with respect to the total amount of the coating solution. Is preferred.
- the coating solution may further contain an amine catalyst, a metal, and a solvent.
- Amine catalyst and metal An amine catalyst and a metal can promote the conversion of a polysilazane compound into a silicon oxide compound in the modification treatment described below.
- the amine catalyst that can be used is not particularly limited, but N, N-dimethylethanolamine, N, N-diethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N ′ -Tetramethyl-1,3-diaminopropane, N, N, N ', N'-tetramethyl-1,6-diaminohexane.
- the metal that can be used is not particularly limited, and examples thereof include platinum compounds such as platinum acetylacetonate, palladium compounds such as palladium propionate, and rhodium compounds such as rhodium acetylacetonate.
- the amine catalyst and the metal are preferably contained in an amount of 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, and further preferably 0.5 to 2% by mass with respect to the polysilazane compound. .
- the addition amount of the amine catalyst or the metal is within the above range, it is preferable because excessive silanol formation, a decrease in film density, an increase in film defects, and the like due to rapid progress of the reaction can be prevented.
- the solvent that can be contained in the coating solution is not particularly limited as long as it does not react with the polysilazane compound, and a known solvent can be used.
- a known solvent can be used.
- Specific examples include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons; ether solvents such as aliphatic ethers and alicyclic ethers. More specifically, examples of the hydrocarbon solvent include pentane, hexane, cyclohexane, toluene, xylene, solvesso, turben, methylene chloride, trichloroethane, and the like.
- ether solvents examples include dibutyl ether, dioxane, and tetrahydrofuran. These solvents can be used alone or in admixture of two or more. These solvents can be appropriately selected according to the purpose in consideration of the solubility of the polysilazane compound and the evaporation rate of the solvent.
- a coating film is obtained by apply
- a coating method of the coating solution a known method can be adopted as appropriate.
- coating methods include spin coating, roll coating, flow coating, ink jet, spray coating, printing, dip coating, casting film formation, bar coating, wireless bar coating, and gravure printing. Law.
- the coating thickness can be appropriately set according to the purpose.
- the coating thickness is preferably 10 to 1000 nm after drying, more preferably 20 to 600 nm, and still more preferably 40 to 400 nm. If the film thickness is 10 nm or more, sufficient barrier properties can be obtained, and if it is 1000 nm or less, stable coating properties can be obtained at the time of layer formation, and high light transmittance can be realized.
- the coating film After applying the coating solution, the coating film is dried. By drying the coating film, the organic solvent contained in the coating film can be removed.
- the drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 20 to 200 ° C.
- the drying temperature is preferably set to 150 ° C. or lower in consideration of deformation of the base material due to heat.
- the modification treatment of the coating film (gas barrier layer formed by the coating method) in the present invention refers to a conversion reaction of a silicon compound to silicon oxide or silicon oxynitride, and specifically, the gas barrier film of the present invention. Is a process for forming an inorganic thin film (that is, a gas barrier layer) at a level that can contribute to the development of gas barrier properties as a whole.
- the conversion reaction of the silicon compound to silicon oxide or silicon oxynitride can be applied by appropriately selecting a known method.
- modification treatment include irradiation with active energy rays, and specifically include plasma treatment, ultraviolet irradiation treatment, or ion implantation treatment.
- Vacuum ultraviolet irradiation treatment excimer irradiation treatment
- the most preferable modification treatment method is a treatment by vacuum ultraviolet irradiation (excimer irradiation treatment).
- the wavelength used is required to be 200 nm or less from the viewpoint of efficient modification, and light energy of 100 to 200 nm, which is larger than the interatomic bond strength in the polysilazane compound, may be used.
- the following is a method for forming a silicon oxide film.
- the modification of the polysilazane compound means that the polysilazane compound is converted into a silicon oxide compound and / or a silicon oxynitride compound.
- the light source of vacuum ultraviolet light (also referred to as vacuum ultraviolet light) is not particularly limited, and a known light source can be used.
- a low pressure mercury lamp, an excimer lamp, etc. are mentioned.
- an excimer lamp, particularly a xenon (Xe) excimer lamp is preferable to use.
- Such an excimer light (vacuum ultraviolet light) irradiation apparatus can use a commercially available lamp (for example, Ushio Electric Co., Ltd., M.D.Com Co., Ltd.).
- the irradiation intensity of the vacuum ultraviolet light irradiation varies depending on the composition and concentration of the substrate used and the gas barrier layer, but is preferably 1 mW / cm 2 to 100 kW / cm 2 , and preferably 1 mW / cm 2 to 10 W / cm 2. It is more preferable that
- the time of vacuum ultraviolet light irradiation varies depending on the composition and concentration of the base material and gas barrier layer used, but is preferably 0.1 second to 10 minutes, more preferably 0.5 seconds to 3 minutes. preferable.
- Integrated light quantity of vacuum ultraviolet light is not particularly limited, preferably from 200 ⁇ 5000mJ / cm 2, and more preferably 500 ⁇ 3000mJ / cm 2. It is preferable that the accumulated amount of vacuum ultraviolet light is 200 mJ / cm 2 or more because high barrier properties can be obtained by sufficient modification. On the other hand, when the cumulative amount of vacuum ultraviolet light is 5000 mJ / cm 2 or less, it is preferable because a gas barrier layer having high smoothness can be formed without deformation of the substrate.
- the irradiation temperature of the vacuum ultraviolet light varies depending on the substrate to be applied, and can be appropriately determined by those skilled in the art.
- the irradiation temperature of the vacuum ultraviolet light is preferably 50 to 200 ° C, more preferably 80 to 150 ° C. It is preferable for the irradiation temperature to be within the above-mentioned range since deformation of the base material, deterioration of strength, etc. are unlikely to occur and the characteristics of the base material are not impaired.
- the irradiation atmosphere of the vacuum ultraviolet light is not particularly limited, but it is preferably performed in an atmosphere containing oxygen from the viewpoint of generating active oxygen and ozone and efficiently modifying.
- the oxygen concentration in the vacuum ultraviolet irradiation is preferably 10 to 10000 volume ppm (0.001 to 1 volume%), more preferably 50 to 5000 volume ppm. It is preferable that the oxygen concentration is 10 ppm by volume or more because the reforming efficiency is increased. On the other hand, when the oxygen concentration is 10,000 ppm by volume or less, the substitution time between the atmosphere and oxygen can be shortened, which is preferable.
- the coating film which is the target of the active energy ray irradiation treatment is mixed with oxygen and a small amount of moisture at the time of application, and adsorbed oxygen and adsorbed water may also be present in the substrate and adjacent layers. If oxygen or the like is used, the oxygen source required for generation of active oxygen or ozone for performing the reforming process may be sufficient without newly introducing oxygen into the irradiation chamber.
- the vacuum ultraviolet light of 172 nm like the Xe excimer lamp is absorbed by oxygen, the amount of vacuum ultraviolet light reaching the coating film may be decreased. Therefore, the oxygen concentration is set low when the vacuum ultraviolet light is irradiated. In addition, it is preferable that the vacuum ultraviolet light be able to efficiently reach the coating film.
- the film thickness, density, and the like of the gas barrier layer obtained by the above-described modification treatment can be controlled by appropriately selecting application conditions, vacuum ultraviolet light irradiation conditions, and the like.
- the film thickness and density of the gas barrier layer can be controlled by appropriately selecting the irradiation method of vacuum ultraviolet light from continuous irradiation, irradiation divided into a plurality of times, and so-called pulsed irradiation, etc. in which the plurality of times of irradiation is short. Can be done.
- the thickness (application thickness) of the gas barrier layer can be appropriately set according to the purpose.
- the thickness (coating thickness) of the gas barrier layer is preferably about 1 nm to 100 ⁇ m, more preferably about 10 nm to 10 ⁇ m, and more preferably 50 nm to 2 ⁇ m after drying. More preferably, the thickness is 20 nm to 1 ⁇ m. If the thickness of the gas barrier layer is 1 nm or more, sufficient barrier properties can be obtained, and if it is 100 ⁇ m or less, stable coating properties can be obtained when forming the gas barrier layer, and high light transmittance can be realized.
- the gas barrier layer preferably has an appropriate surface smoothness.
- the center line average roughness (Ra) of the gas barrier layer is preferably 50 nm or less, and more preferably 10 nm or less.
- the lower limit of the center line average roughness (Ra) of such a gas barrier layer is not particularly limited, but is practically 0.01 nm or more and preferably 0.1 nm or more. If it is such a gas barrier layer having Ra, another gas barrier layer can also be formed on the gas barrier layer corresponding to the unevenness in the gas barrier layer. For this reason, another gas barrier layer can more efficiently coat defects such as cracks and dangling bonds generated in the gas barrier layer, thereby forming a dense surface.
- the center line average roughness (Ra) of the gas barrier layer is measured by using an atomic force microscope (AFM), performing an automatic tilt correction process on the AFM topography image obtained by measuring the surface of the sample, It can be obtained by performing a three-dimensional roughness analysis.
- AFM atomic force microscope
- the degree of the reforming treatment can be confirmed by determining each atomic composition ratio of silicon (Si) atoms, nitrogen (N) atoms, oxygen (O) atoms, etc. by XPS analysis of the formed gas barrier layer.
- XPS analysis is measured by the method described in Examples.
- the gas barrier property of the gas barrier layer may be somewhat low. More specifically, the water vapor barrier property of the gas barrier layer is preferably 100 hours or more, more preferably 200 hours or more until the area where the metal calcium is corroded reaches 50% or more.
- the “water vapor barrier property” can be measured by the method described in “Evaluation 2: Evaluation of water vapor barrier property” in Examples. However, in the method described in the examples, the measurement is performed every 20 hours. For example, the measurement is initially performed every 50 hours, and when the corroded area approaches 50%, the measurement interval is shortened to corrode. You may specify the time until the done area becomes 50% or more. As described above, the measurement time interval is not particularly limited, but may be appropriately devised so that the number of measurements is further reduced.
- the gas barrier film may have a control layer / intermediate layer / protective layer / functional layer.
- the control layer is usually disposed between the substrate and the gas barrier layer.
- the “protective layer” is different from the “protective film”.
- the control layer / intermediate layer / protective layer / functional layer may be a CVD layer (a layer formed by a chemical vapor deposition (CVD) method), and preferably the control layer is a CVD layer.
- the CVD layer includes at least one oxide, nitride, oxynitride, or oxycarbide selected from the group consisting of silicon, aluminum, and titanium.
- the at least one oxide, nitride, oxynitride, or oxycarbide selected from the group consisting of silicon, aluminum, and titanium include silicon oxide (SiO 2 ), silicon nitride, silicon oxynitride ( These composites include SiON), silicon oxycarbide (SiOC), silicon carbide, aluminum oxide, titanium oxide, and aluminum silicate. These may contain other elements as secondary components.
- a CVD layer has a gas barrier property by having the said compound.
- the permeated water amount measured by the following method is 0.1 g / (m 2 ⁇ 24 h) or less. And is more preferably 0.01 g / (m 2 ⁇ 24 h) or less.
- the vacuum state is released, and the aluminum sealing side is quickly passed through a UV-curable resin (manufactured by Nagase ChemteX Corporation) to 0.2 mm thick quartz glass in a dry nitrogen gas atmosphere.
- the cell for evaluation is manufactured by facing and irradiating with ultraviolet rays.
- the obtained sample is stored under high temperature and high humidity of 85 ° C. and 85% RH, and the amount of moisture permeated into the cell is calculated from the corrosion amount of metallic calcium based on the method described in Japanese Patent Application Laid-Open No. 2005-283561. .
- a sample obtained by vapor-depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of a laminate sample as a comparative sample is similarly used.
- the sample is stored at 85 ° C. and 85% RH under high temperature and high humidity, and it is confirmed that metal calcium corrosion does not occur even after 300 hours.
- a silicon compound, a titanium compound, and an aluminum compound are used as a raw material compound used for forming the CVD layer.
- a decomposition gas for decomposing a raw material gas containing metal to obtain an inorganic compound hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide gas, Nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor and the like can be mentioned.
- the decomposition gas may be mixed with an inert gas such as argon gas or helium gas.
- the source gas containing metal is a source compound used for forming the CVD layer.
- FIG. 2 is a schematic view showing an example of a vacuum plasma CVD apparatus used for forming a CVD layer according to the present invention.
- the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface inside the vacuum chamber 102. Further, a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105.
- a heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102.
- a heat medium is disposed in the heat medium circulation system 106.
- the heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium.
- a heating / cooling device 160 having a storage device is provided.
- An apparatus that can be used when manufacturing a CVD layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film formation rollers and a plasma power source, and the pair of film formations. It is preferable that the apparatus has a configuration capable of discharging between rollers. For example, when the manufacturing apparatus shown in FIG. 3 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible.
- FIG. 3 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing a CVD layer.
- the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
- FIG. 3 includes a delivery roller 32, transport rollers 33, 34, 35, and 36, film formation rollers 39 and 40, a gas supply pipe 41, a plasma generation power source 42, and a film formation roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45.
- a manufacturing apparatus at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generating power source 42, and the magnetic field generating apparatuses 43 and 44 are arranged in a vacuum chamber (not shown). ing.
- the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump. Details relating to the apparatus can be referred to conventionally known documents, for example, Japanese Patent Application Laid-Open No. 2011-73430.
- the CVD layer is formed by a plasma CVD method using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode shown in FIG.
- a plasma CVD apparatus roll-to-roll method
- This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode.
- Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
- An intermediate layer / protective layer / functional layer is separately provided between the above-described base material and the gas barrier layer or control layer formed on the base material or on the surface of any one of the above-mentioned layers as long as the effects of the present invention are not impaired. May be provided.
- the surface opposite to the surface on which the gas barrier layer of the substrate is disposed substrate surface
- an anchor coat layer, smooth Intermediate layers such as layers and bleed-out prevention layers can be formed.
- the intermediate layer is preferably formed between the base material and the gas barrier layer.
- an anchor coat layer On the base material of the gas barrier film according to the present invention, an anchor coat layer may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion).
- the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One type or two or more types can be used in combination.
- a commercially available product may be used as the anchor coating agent. Specifically, a UV curable organic / inorganic hybrid hard coat material OPSTARZ5011 manufactured by JSR Corporation can be used.
- the above-mentioned anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, and the like, and is coated by drying and removing the solvent, diluent, etc. Can do.
- the application amount of the anchor coating agent is preferably about 0.1 to 5 g / m 2 (dry state).
- a commercially available base material with an easy-adhesion layer may be used.
- the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
- a vapor phase method such as physical vapor deposition or chemical vapor deposition.
- an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
- the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10.0 ⁇ m.
- the smooth layer is usually formed on one surface of the substrate, flattenes the rough surface of the substrate with minute protrusions, etc., and generates irregularities and pinholes in the gas barrier layer formed on the substrate It has the function to prevent.
- the smooth layer can be formed by applying a photosensitive resin composition on a substrate and then curing it.
- the photosensitive resin composition usually contains a photosensitive resin, a photopolymerization initiator, and a solvent.
- the photosensitive resin is not particularly limited as long as it is a photosensitive resin containing a reactive monomer having at least one photopolymerizable unsaturated bond in the molecule, but an acrylate compound having a radical reactive unsaturated bond.
- Resin containing acrylate compound and mercapto compound having thiol group resin containing polyfunctional acrylate monomer such as epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene glycol acrylate, glycerol methacrylate, etc. Can be mentioned. These resins can be used alone or in admixture of two or more.
- the photosensitive resin composition may further contain additives such as an antioxidant, an ultraviolet absorber, a plasticizer, inorganic particles, and a resin other than the photosensitive resin as necessary.
- the smoothness of the smooth layer is a value expressed by the surface roughness specified in JIS B 0601, and the maximum cross-sectional height Rt (p) is preferably 10 to 30 nm.
- Rt (p) is 10 nm or more
- the coating means contacts the smooth layer surface by a coating method such as a wire bar or a wireless bar.
- Rt (p) is 30 nm or less because the unevenness of the gas barrier layer obtained in the steps described later can be smoothed.
- the thickness of the smooth layer is not particularly limited, but is preferably 1 to 10 ⁇ m, and more preferably 2 to 7 ⁇ m. It is preferable that the thickness of the smooth layer is 1 ⁇ m or more because the function as the smooth layer can be sufficiently exhibited. On the other hand, when the thickness of the smooth layer is 10 ⁇ m or less, the balance of the optical properties of the gas barrier film can be adjusted, and curling of the gas barrier film can be suppressed.
- bleed-out prevention layer In the base material having a smooth layer, unreacted oligomers or the like may migrate from the base material to the surface during heating, and the base material surface may be contaminated.
- the bleed-out prevention layer has a function of suppressing contamination of the substrate surface.
- the bleed-out prevention layer is usually provided on the surface opposite to the smooth layer of the substrate having the smooth layer.
- the bleed-out prevention layer may have the same configuration as the smooth layer as long as it has the above function. That is, the bleed-out prevention layer can be formed by applying a photosensitive resin composition on a substrate and then curing it.
- the photosensitive resin composition includes a photosensitive resin, a photopolymerization initiator, and a solvent.
- the photosensitive resin, the photopolymerization initiator, and the solvent the same ones as those described in the smooth layer can be used.
- the photosensitive resin composition may further contain additives such as an antioxidant, an ultraviolet absorber, a plasticizer, inorganic particles, and a resin other than the photosensitive resin, as in the above-described smooth layer. .
- a predetermined dilution solvent is added to prepare a coating solution, and the coating solution is applied onto a substrate by a known coating method. Thereafter, the bleed-out preventing layer can be formed by irradiating with ionizing radiation and curing.
- the thickness of the bleed-out prevention layer is preferably 1 to 10 ⁇ m, and more preferably 2 to 7 ⁇ m. It is preferable that the thickness of the bleed-out preventing layer is 1 ⁇ m or more because the heat resistance of the gas barrier film can be improved. On the other hand, when the thickness of the bleed-out prevention layer is 10 ⁇ m or less, the optical characteristics of the gas barrier film are preferably adjusted, and curling of the gas barrier film can be suppressed.
- the total film thickness of the base material and the intermediate layer is 5 It is preferably ⁇ 500 ⁇ m, more preferably 25 to 250 ⁇ m.
- an intermediate layer may be formed between the gas barrier layer and the control layer.
- the intermediate layer can be formed for the purpose of enhancing the gas barrier property of the gas barrier layer, the purpose of enhancing the adhesion between the gas barrier layer and the control layer, or the like. Under the present circumstances, the said intermediate
- the intermediate layer may be any of an inorganic layer, an organic layer, an organic-inorganic hybrid layer, and the like, but is preferably an inorganic layer.
- the material for the inorganic layer is not particularly limited, and examples thereof include zirconia and titania.
- the thickness of the inorganic layer is preferably 0.05 to 10 nm, and more preferably 0.1 to 5 nm.
- an organic resin such as an organic monomer, oligomer or polymer, or an organic / inorganic composite resin layer using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group is preferably used. It can.
- These organic resins or organic-inorganic composite resins preferably have a polymerizable group or a crosslinkable group, contain these organic resins or organic-inorganic composite resins, and contain a polymerization initiator, a crosslinking agent, etc. as necessary. It is preferable to apply a light irradiation treatment or a heat treatment to the layer formed by coating from the organic resin composition coating solution to be cured.
- the protective layer can contain an inorganic material. Inclusion of an inorganic material generally leads to an increase in the elastic modulus of the protective layer.
- the elastic modulus of the protective layer can be adjusted to a desired value by appropriately adjusting the content ratio of the inorganic material.
- the protective layer is blended with the organic resin or inorganic material and other components as necessary, and prepared as a coating solution by using a diluting solvent as necessary, and the coating solution is conventionally known on the substrate surface. It is preferable to form the film by applying it with an application method and then curing it by irradiation with ionizing radiation.
- irradiating with ionizing radiation ultraviolet rays in a wavelength region of 100 to 400 nm, preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, or the like are irradiated.
- the irradiation can be performed by irradiating an electron beam having a wavelength region of 100 nm or less emitted from a scanning or curtain type electron beam accelerator.
- the protective layer can be cured by irradiation with the above excimer lamp.
- the overcoat layer is preferably cured by irradiation with an excimer lamp.
- the protective layer a method of forming the intermediate polysiloxane modified layer can be applied.
- the gas barrier film according to the present invention has a protective film disposed on the gas barrier layer via an adhesive layer.
- a protective film By providing the protective film, it helps to protect the surface of the gas barrier film from damage, and is easy to install on an object to which the gas barrier film is applied. Therefore, when the gas barrier film according to the present invention is used as a substrate of an electronic device such as an organic EL element, it is possible to prevent deterioration of the element due to a defect in the gas barrier layer.
- the gas barrier film according to the present invention is characterized in that the element abundance ratio C / Si of the outermost layer portion of the gas barrier layer measured in a state where the protective film is peeled is 1.5 or less.
- the element abundance ratio C / Si of the outermost layer portion of the gas barrier layer measured in a state where the protective film is peeled off is larger than 1.5, the time required for the step of removing the residual adhesive becomes longer, and the viewpoint of productivity Is not preferable.
- the element abundance ratio C / Si of the outermost layer portion of the gas barrier layer is preferably 1.2 or less.
- the gas barrier film according to the present invention is kept for a certain time from the end of the modification treatment to the bonding of the protective film.
- the element abundance ratio C / Si of the outermost layer portion of the gas barrier layer is more preferably 1.0 or less, still more preferably 0.8 or less, still more preferably 0.6 or less, and particularly preferably Is less than 0.5.
- the element abundance ratio C / Si of the outermost layer portion of the gas barrier layer after the protective film is peeled is less than 0.5, in some cases, it is not necessary to perform the step of removing the residual adhesive described later, and the gas barrier according to the present invention.
- Productivity of an electronic device in which an electronic device body is provided on a conductive film can be greatly improved.
- the XPS measurement is performed by measuring the surface of the gas barrier layer on the side opposite to the base material while sputtering with Ar at a certain depth, and plotting C / Si, as in the XPS analysis conditions of the following examples. be able to.
- the “outermost layer portion of the gas barrier layer” means a portion where the first plot is measured when the plot interval is set to 2.8 nm in terms of SiO 2 as described in Examples. .
- the C / Si measurement was performed within 6 hours after peeling the gas barrier film according to the present invention with the protective film adhered for 1 minute or more after the sample was prepared, by cutting the sample into a size matching the XPS apparatus. Mean value.
- the protective film according to the present invention is not particularly limited, but includes a film made of at least a resin material.
- the protective film in the present invention may be wound into a roll before being bonded to the gas barrier layer of the gas barrier film. Moreover, you may have a release layer on the film surface by the side of the adhesion layer, and you may wind in the roll shape in the state which bonded the release layer.
- the resin material (resin film) used for the protective film is not particularly limited, but is a polyolefin film such as polyethylene film or polypropylene film; a polyester film such as polyethylene terephthalate or polybutylene terephthalate; a polyamide such as hexamethylene adipamide. Films; halogen-containing films such as polyvinyl chloride, polyvinylidene chloride, polyfluoroethylene; plastic films such as polyvinyl acetate such as polyvinyl acetate, polyvinyl alcohol, and ethylene vinyl acetate copolymer, and derivative films thereof are paper It is preferable because it does not generate fine dust.
- a polyethylene terephthalate film is preferably used from the viewpoints of heat resistance and availability.
- the thickness of the protective film is not particularly limited, but a thickness of 10 ⁇ m to 300 ⁇ m is used. Preferably, the thickness is from 25 ⁇ m to 150 ⁇ m. If it is 10 ⁇ m or more, the film can be handled well without being too thin. On the other hand, if it is 300 micrometers or less, a protective film will not become hard too much and favorable conveyance property and the adhesiveness to a roll will be obtained.
- the adhesive layer is disposed between the gas barrier layer and the protective film for the purpose of bonding the protective film on the gas barrier layer.
- the pressure-sensitive adhesive layer can be formed by applying a pressure-sensitive adhesive composition to which a crosslinking agent is added to the pressure-sensitive adhesive and crosslinking.
- the protective film on which the adhesive layer is formed is also referred to as a protective film with an adhesive layer. That is, the protective film with an adhesive layer is a configuration having a protective film of a base material and an adhesive layer formed on the base material (protective film), and those having these configurations are simply described as protective films. There is also a case.
- the type of the adhesive is not particularly limited, and for example, an acrylic adhesive, a rubber adhesive, a urethane adhesive, a silicon adhesive, an ultraviolet curable adhesive, a polyolefin adhesive, an ethylene vinyl acetate copolymer (EVA) ) -Based pressure-sensitive adhesives, etc., and preferably at least one selected from acrylic pressure-sensitive adhesives, silicon-based pressure-sensitive adhesives, and rubber-based pressure-sensitive adhesives.
- acrylic pressure-sensitive adhesive for example, a homopolymer of (meth) acrylic acid ester or a copolymer with another copolymerizable monomer is used.
- monomers or copolymerizable monomers constituting these copolymers include alkyl esters of (meth) acrylic acid (for example, methyl esters, ethyl esters, butyl esters, 2-ethylhexyl esters, octyl esters, isoforms).
- Nonyl esters, etc. hydroxyalkyl esters of (meth) acrylic acid (eg, hydroxyethyl ester, hydroxybutyl ester, hydroxyhexyl ester), (meth) acrylic acid glycidyl ester, (meth) acrylic acid, itaconic acid, maleic anhydride Acid, (meth) acrylic acid amide, (meth) acrylic acid N-hydroxymethylamide, (meth) acrylic acid alkylaminoalkyl ester (for example, dimethylaminoethyl methacrylate, t-butynoleaminoethylol) Methacrylate etc.), vinyl acetate, styrene, and acrylonitrile.
- an alkyl acrylate ester having a homopolymer glass transition point of 500 ° C. or lower is usually used.
- the curing agent for the acrylic pressure-sensitive adhesive for example, an isocyanate-based, epoxy-based, or alidiline-based curing agent can be used.
- an isocyanate curing agent an aromatic type such as tonoleylene diisocyanate (TDI) can be preferably used in order to obtain a stable adhesive force even after long-term storage and to form a harder adhesive layer.
- the pressure-sensitive adhesive may contain, for example, a stabilizer, an ultraviolet absorber, a flame retardant, and an antistatic agent as additives.
- low surface energy such as organic resin such as wax, silicon, fluorine, etc. is used to such an extent that these components do not migrate to the counterpart substrate. You may add the component which has.
- organic resin such as wax, a higher fatty acid ester or a low molecular weight phthalate ester may be used.
- the rubber-based pressure-sensitive adhesive examples include polyisobutylene rubber, butyl rubber and a mixture thereof, or these rubber-based pressure-sensitive adhesives such as apinic acid rosin ester, terpene / phenol copolymer, terpene / indene copolymer, etc. Those containing a tackifier are used.
- Examples of the base polymer of the rubber adhesive include natural rubber, isoprene rubber, styrene-tadiene rubber, recycled rubber, polyisobutylene rubber, styrene-isoprene styrene rubber, styrene butadiene styrene rubber, and the like. It is done.
- the block rubber-based pressure-sensitive adhesive is a block copolymer represented by the general formula ABA or a block copolymer represented by the general formula AB (where A is a styrene polymer block, B Is a butadiene polymer block, an isoprene polymer block, or an olefin polymer block obtained by hydrogenating them, and is mainly composed of a styrene-based thermoplastic elastomer), and is mainly composed of a tackifier resin, a softener and the like. Composition.
- the styrene polymer block A preferably has an average molecular weight of about 4,000 to 120,000, and more preferably about 10,000 to 60,000.
- the glass transition temperature is preferably 150 ° C. or higher.
- the butadiene polymer block, the isoprene polymer block, or the olefin polymer block B obtained by hydrogenation thereof preferably has an average molecular weight of about 30,000 to 400,000, and more preferably 60,000 to 200,000. About 000 is more preferable.
- the glass transition temperature is preferably ⁇ 150 ° C. or lower.
- a / B is 50/50 or less, the rubber elasticity of the polymer does not become small at room temperature, and the adhesiveness can be sufficiently expressed.
- the value of A / B is 5/95 or more, the styrene domain will not be sparse, the cohesive force will not be insufficient, and the desired adhesive force can be obtained. For this reason, it is possible to effectively prevent problems such as tearing of the adhesive layer during peeling.
- the releasability from the protective film can be improved.
- the polyolefin resin include low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, ethylene ⁇ -olefin copolymer, propylene ⁇ -olefin copolymer, ethylene-ethyl acrylate copolymer, ethylene -Vinyl acetate copolymer, ethylene methyl methacrylate copolymer, ethylene n-butyl acrylate copolymer, and mixtures thereof.
- the polyolefin resin preferably has a low molecular weight, and specifically, the low molecular weight extracted by boiling boiling with n-pentane is preferably less than 1.0% by mass. If the low molecular weight component is less than 1.0% by mass, the low molecular weight component can maintain (hold) the adhesive force without affecting the adhesive property according to the temperature change or change with time. is there.
- the affinity with the gas barrier layer (white back surface provided with a coating film mainly composed of polyvinyl alcohol) can be further reduced.
- This silicone oil is a high molecular compound with a polyalkoxysiloxane chain in the main chain, which increases the hydrophobicity of the adhesive layer and further bleeds to the adhesive interface, ie, the adhesive layer surface. It works to make the progress (promotion) phenomenon difficult to occur.
- the adhesive layer is obtained by adding a crosslinking agent to the rubber-based adhesive and crosslinking.
- crosslinking agent for example, sulfur, a vulcanization aid, and a vulcanization accelerator (typically, dibutylthiocarbamate zinc, etc.) are used for crosslinking of the natural rubber-based pressure-sensitive adhesive.
- Polyisocyanates are used as a cross-linking agent capable of cross-linking an adhesive made from natural rubber and carboxylic acid copolymerized polyisoprene at room temperature.
- Polyalkylphenol resins are used as a crosslinking agent in which a crosslinking agent such as butyl rubber and natural rubber has heat resistance and non-fouling characteristics.
- silicone-based adhesive there are an addition reaction curable silicone adhesive and a condensation polymerization curable silicone adhesive.
- an addition reaction curable type is preferably used.
- composition of the addition reaction curable silicone pressure-sensitive adhesive composition those listed below are preferably used.
- A Polydiorganosiloxane having two or more alkenyl groups in one molecule
- B Polyorganosiloxane containing SiH groups
- C Control agent
- D Platinum catalyst
- E Conductive fine particles where (A ) Component is a polydiorganosiloxane having two or more alkenyl groups in one molecule, and examples of such alkenyl group-containing polydiorganosiloxane include those represented by the following general formula (1).
- R is a monovalent hydrocarbon group having 1 to 10 carbon atoms
- X is an alkenyl group-containing organic group.
- p is 2 or more.
- R is a monovalent hydrocarbon group having 1 to 10 carbon atoms, specifically, an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, a cycloalkyl group such as a cyclohexyl group, a phenyl group or a tolyl group.
- An aryl group such as, for example, is mentioned, and a methyl group and a phenyl group are particularly preferable.
- X is an alkenyl group-containing organic group, preferably having 2 to 10 carbon atoms, specifically, vinyl group, allyl group, hexenyl group, octenyl group, acryloylpropyl group, acryloylmethyl group, methacryloylpropyl group, cyclohexenylethyl group.
- the properties of the polydiorganosiloxane may be oily or raw rubbery, and the viscosity of the component (A) is preferably 100 mPa ⁇ s or more, particularly 1,000 mPa ⁇ s or more at 250 ° C.
- the upper limit is not particularly limited, but is preferably selected so that the degree of polymerization is 20,000 or less because of easy mixing with other components.
- (A) component may be used individually by 1 type, and may use 2 or more types together.
- the polyorganosiloxane containing SiH groups as the component (B) is a crosslinking agent, and is an organohydropolysiloxane having at least 2, preferably 3 or more hydrogen atoms bonded to silicon atoms in one molecule. , Branched, annular, etc. can be used.
- R 1 is a monovalent hydrocarbon group containing no aliphatic unsaturated bond having 1 to 6 carbon atoms.
- b is an integer of 0 to 3
- x and y are integers, respectively, and indicate the number at which the viscosity of this organohydropolysiloxane at 250 ° C. is 1 to 5,000 mPa ⁇ s.
- the viscosity of this organohydropolysiloxane at 250 ° C. is preferably 1 to 5,000 mPa ⁇ s, particularly 5 to 1000 mPa ⁇ s, and may be a mixture of two or more.
- Crosslinking by addition reaction occurs between the component (A) and the component (B) of the crosslinking agent, and the gel fraction of the adhesive layer after curing is determined by the proportion of the crosslinking component. It is preferable that the molar ratio of the SiH group in the component (B) to the alkenyl group in the component (B) is 0.5 to 20, particularly 0.8 to 15. If it is 0.5 or more, the crosslinking density is maintained, and a holding force can be obtained accordingly. On the other hand, if it is 20 or less, adhesive force and tack can be obtained.
- the proportion of the cross-linking component in the composition may be increased. There may be effects such as reduced flexibility. From such a point, the blending mass ratio of the component (A) / (B) may be 20/80 to 80/20, and particularly preferably 45/55 to 70/30. If the blending ratio of component (A) is 20/80 or more, sufficient adhesive properties such as adhesive strength and tack can be obtained, and if it is 80/20 or less, sufficient heat resistance is obtained.
- Component (C) is an addition reaction control agent, so that when a silicone pressure-sensitive adhesive composition is prepared and applied to a substrate, the treatment liquid does not thicken or gel before heat curing. It is to be added.
- component (C) examples include 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, -Ethynylcyclohexanol, 3-methyl-3-trimethylsiloxy-1-butyne, 3-methyl-3-trimethylsiloxy-1-pentyne, 3,5-dimethyl-3-trimethylsiloxy-1-hexyne, 1-ethynyl -1-trimethylsiloxycyclohexane, bis (2,2-dimethyl-3-butynoxy) dimethylsilane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,1 3,3-tetramethyl-1,3-divinyldisiloxane, and the like.
- the amount of component (C) is preferably in the range of 0 to 5.0 parts by weight, particularly 0.05 to 2.0 parts by weight, based on a total of 100 parts by weight of components (A) and (B). Is preferred. If it is 5.0 mass parts or less, sufficient curability can be expressed.
- Component (D) is a platinum catalyst, containing chloroplatinic acid, an alcohol solution of chloroplatinic acid, a reaction product of chloroplatinic acid and alcohol, a reaction product of chloroplatinic acid and an olefin compound, and containing chloroplatinic acid and a vinyl group
- a reaction product with siloxane can be used.
- the addition amount of the component (D) is preferably 1 to 5,000 ppm, particularly 5 to 2,000 ppm in terms of platinum with respect to the total amount of the components (A) and (B). If it is 1 ppm or more, sufficient curability is obtained, the crosslinking density is high, and the holding power can be maintained.
- the shape of the conductive fine particles of the component is not particularly limited, such as spherical, dendritic, and needle-like.
- the particle size is not particularly limited, but it is preferable that the maximum particle size does not exceed 1.5 times the coating thickness of the pressure-sensitive adhesive. If the maximum particle size does not exceed 1.5 times the adhesive coating thickness, the conductive fine particles will not protrude too much on the adhesive coating surface, and the floating from the adherend will start from this part. Etc. can be suppressed.
- a crosslinking agent for example, a crosslinking agent, a catalyst, a plasticizer, an antioxidant, a colorant, an antistatic agent, a filler, a tackifier, a surfactant, and the like may be added.
- a crosslinking agent for example, a crosslinking agent, a catalyst, a plasticizer, an antioxidant, a colorant, an antistatic agent, a filler, a tackifier, a surfactant, and the like may be added.
- the adhesive layer on the substrate As a method of coating the adhesive layer on the substrate, it is performed by a roll coater, blade coater, bar coater, air knife coater, gravure coater, reverse coater, die coater, lip coater, spray coater, comma coater, etc.
- An adhesive layer is formed through smoothing, drying, heating, electron beam exposure processes such as ultraviolet rays, and the like.
- the adhesive strength of the adhesive is preferably 0.001 N / 25 cm or more. If the pressure-sensitive adhesive has an adhesive strength of 0.001 N / 25 cm or more, sufficient adhesion to the film can be obtained, peeling during continuous conveyance does not occur, and it is already due to contact with a roll or the like during conveyance. The influence on the formed gas barrier film can be prevented. Further, the adhesive strength of the adhesive is preferably 50 N / 25 cm or less. If the adhesive strength of the pressure-sensitive adhesive is 50 N / 25 cm or less, the gas barrier film is destroyed or the pressure-sensitive adhesive is applied onto the gas barrier film without applying excessive force to the gas barrier film when the resin material is peeled off. It is preferable in that it is less likely to cause residue.
- the adhesive strength of the pressure-sensitive adhesive can be determined by measuring 20 minutes after the protective film is pressure-bonded to the test plate using Corning 1737 as a test plate according to a measurement method based on JIS Z 0237.
- the thickness of the adhesive layer is preferably 0.1 ⁇ m or more and 30 ⁇ m or less. If the thickness of the pressure-sensitive adhesive layer is 0.1 ⁇ m or more, sufficient adhesion between the resin material and the gas barrier film can be obtained, peeling during continuous conveyance does not occur, and rolls during conveyance, etc. The influence on the gas barrier film already formed by the contact can be prevented. In addition, when the thickness of the adhesive layer is 30 ⁇ m or less, when the protective film is peeled off, the gas barrier film is destroyed or the adhesive on the gas barrier film without applying excessive force to the gas barrier film. Does not cause excessive residue.
- the weight average molecular weight of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is preferably 400,000 or more and 1.4 million or less. If the weight average molecular weight is 400,000 or more, the adhesive strength is not excessive, and if it is 1.4 million or less, sufficient adhesive strength can be obtained. When the weight average molecular weight is within the above range, it is possible to prevent the adhesive from remaining on the gas barrier layer, and particularly when a gas barrier film is formed by the plasma treatment method, heat and energy are applied. If the molecular weight is within an appropriate range, it is possible to prevent the adhesive material from being transferred or peeled off.
- the coating film obtained by applying and drying a coating liquid containing a polysilazane compound on one surface of the substrate is irradiated with an active energy ray to be modified.
- a method for producing a gas barrier film comprising the step (1) of forming a gas barrier layer and the step (2) of bonding a protective film on the gas barrier layer via an adhesive layer.
- “application of a coating solution containing a polysilazane compound on one surface of a substrate” means (1) a mode in which a coating solution containing a polysilazane compound is directly applied directly on one surface of a substrate.
- a coating liquid containing a polysilazane compound on the surface of the laminate in which the control layer, intermediate layer, protective layer or functional layer described in the first embodiment is laminated on one surface of the substrate The form which apply
- the element abundance ratio C / Si of the outermost layer portion of the gas barrier layer measured in a state where the protective film is peeled off is the same as in the first embodiment of the present invention. It is 1.5 or less, preferably 1.2 or less.
- the time required for the step of removing the residual adhesive becomes longer, and the viewpoint of productivity This is because it is not preferable.
- the method for measuring the element abundance ratio C / Si of the outermost layer portion of the gas barrier layer measured with the protective film peeled is as described in the first embodiment of the present invention.
- the manufacturing method may include a step (3) of forming at least one of a control layer, an intermediate layer, a protective layer, and a functional layer. More specifically, in the step (3), a coating liquid (for example, a second coating liquid containing polysiloxane) for forming at least one of a control layer, an intermediate layer, a protective layer, and a functional layer is applied. It is a process of forming a corresponding layer.
- the coating film obtained by applying the second coating solution may be subjected to a curing treatment such as vacuum ultraviolet light irradiation.
- a curing treatment such as vacuum ultraviolet light irradiation.
- the protective film is bonded to the gas barrier layer formed on the resin substrate as in the step (1) or the step (1) and the step (3) through an adhesive layer.
- the gas barrier film can be transported and stored without exposing the surface of the gas barrier layer.
- finish of the modification process in the process (1) which forms a gas barrier layer to bonding of the said protective film is 5. It is preferable to set it as 2 seconds or more, More preferably, it is 10 seconds or more, More preferably, it is 3 minutes or more. If the time from the end of the modification treatment to the pasting of the protective film is 5 seconds or more, the cleanliness of the gas barrier layer surface is reduced, and excessive adhesion of the protective film to the gas barrier layer is prevented. It is preferable from the viewpoint that the element abundance ratio C / Si of the outermost layer portion of the gas barrier layer measured in the peeled state can be reduced to 1.5 or less.
- finish of a modification process to bonding of the said protective film it is more preferable that it is 3 minutes or less. If the time from completion
- the element abundance ratio C / Si can be reduced to 1.2 or less.
- the time point of “end of the modification process” is a time point when the irradiation of the active energy ray is finished on the coating film.
- it is set as the time (measurement start time) after irradiating the active energy ray to all the coating films after forming a coating film on a roll-shaped base film.
- the time point (until the bonding of the protective film) (measurement end time) refers to the time point when the protective film starts to be bonded onto the gas barrier layer of the gas barrier film.
- the two films were first overlapped while the roll-shaped gas barrier film and the roll-shaped protective film with the adhesive layer were pulled out and conveyed. Time).
- the step (2) of laminating the protective film may be an on-line system in which the protective film is laminated continuously with the formation of the gas barrier layer, or after the gas barrier layer is formed, the gas barrier property is once formed on the winding shaft. After winding up the film, it may be an off-line method in which a protective film is bonded in a separate step. Moreover, also when performing the removal process (4) of a residual adhesive when peeling the bonded protective film from the surface of a gas barrier layer, it is an online which removes the remainder of the adhesive mentioned later continuously after peeling. An off-line system in which the resin base material having the gas barrier layer is wound up once after the protective film with the adhesive layer is peeled off and the remaining adhesive is removed in a separate process may be used.
- the resin base material of the gas barrier film is manufactured as an elongated body, but it is not desirable to perform a long manufacturing process in one line from the viewpoint of space and conveyance. At the same time, if a defect occurs in a part of the line, it is preferable to divide into a plurality of lines from the viewpoint of availability and yield. For example, it is necessary to stop the entire line. In that case, it is convenient to wind up the resin base material which is a long body around a roll once, and to convey or store. Furthermore, when the surface of the gas barrier layer in the middle of production is exposed when winding on a roll, the surface of the gas barrier layer is damaged due to foreign matter adhering to the back surface of the resin base material or scratches with the resin base material. Gas barrier properties are reduced. Therefore, it is advantageous to protect the surface of the gas barrier layer once with a protective film before winding it on a roll.
- the protective film with the pressure-sensitive adhesive layer is mainly composed of a base material for the protective film and a pressure-sensitive adhesive layer containing the pressure-sensitive adhesive formed on the base material (protective film).
- a release layer containing a release agent is provided thereon (hereinafter, the protective film with the pressure-sensitive adhesive layer having the above structure is also simply referred to as a protective film).
- the protective film is preferably prepared in a rolled state with the release layer inside. Next, the resin material having releasability is fed out from the roll, the release layer is separated to expose the adhesive layer, and the separated release layer is wound up on a take-up roll.
- the gas barrier film having a gas barrier layer is conveyed in the horizontal direction from the gas barrier layer forming step to the position of the protective film disposed on the downstream side. Subsequently, the adhesive layer of the said protective film is bonded and bonded on the gas barrier film surface.
- the adhesive layer of the protective film on the surface of the gas barrier film after completion of the gas barrier layer forming step, more specifically, as described above, from the end of the modification treatment in the gas barrier layer forming step, the adhesive layer of the protective film on the surface of the gas barrier film.
- the time until bonding is set to a certain time or more, preferably 5 seconds or more.
- the gas barrier film on which the protective film is bonded is wound up in a roll shape around a winding core attached to a winding shaft.
- the protective film protects the surface of the gas barrier film, it is effective for adhesion of foreign matters adhering to the back surface of the gas barrier film to the gas barrier layer and generation of scratches during transportation, when winding in a roll shape. Can be prevented.
- ⁇ Third embodiment electronic device>
- the remaining adhesive is further removed.
- an electronic device main body is provided on the gas barrier layer (which is the outermost layer) of the gas barrier film. That is, an electronic device including an electronic device main body and a gas barrier film from which the above protective film is peeled is provided.
- the gas barrier film of the present invention as described above has excellent gas barrier properties, transparency, and flexibility. Therefore, the gas barrier film of the present invention is used for various applications such as electronic devices such as packages, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, and liquid crystal display elements. Can do.
- electronic devices such as packages, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, and liquid crystal display elements. Can do.
- the electronic device body is disposed on the gas barrier layer of the gas barrier film according to the present invention.
- the electronic device body a known electronic device body to which sealing with a gas barrier film can be applied can be used.
- an organic EL element a solar cell (PV), a liquid crystal display element (LCD), electronic paper, a thin film transistor, a touch panel, and the like can be given.
- the electronic device body is preferably an organic EL element or a solar cell.
- FIG. 4 shows an example of an organic EL panel 301 which is an electronic device using the gas barrier film 202 according to the present invention as a sealing film as shown in FIG.
- the organic EL panel 301 includes a gas barrier film 202 from which the protective film has been peeled off (preferably, the remaining adhesive is further removed), a transparent electrode 64 such as ITO formed on the gas barrier film 202, and the transparent electrode 64.
- An organic EL element 61 formed on the gas barrier film 202 and a counter film 62 disposed via an adhesive layer 63 provided so as to cover the organic EL element 61 are provided. It can be said that the transparent electrode 64 forms part of the organic EL element 61.
- the transparent electrode 64 and the organic EL element 61 are formed on the surface of the gas barrier film 202 on which the gas barrier layer is formed (the surface exposed by peeling off the protective film).
- the counter film 62 may be a metal film such as an aluminum foil or the gas barrier film according to the present invention. When a gas barrier film is used for the counter film 62, the surface on which the gas barrier layer is formed may be attached to the organic EL element 61 with the adhesive layer 63.
- ⁇ Fourth Embodiment: Electronic Device Manufacturing Method> after peeling a protective film from the gas barrier film which concerns on this invention, or the gas barrier film obtained by the manufacturing method which concerns on this invention, it becomes a gas barrier film (it becomes outermost layer).
- a method for manufacturing an electronic device comprising the step of forming an electronic device body on a gas barrier layer.
- an electronic device manufacturing method including a step (4) of peeling a protective film from a gas barrier film according to the present invention and a step (6) of forming an electronic device body on a gas barrier layer of the gas barrier film.
- the manufacturing method may include a step (5) of removing the residual pressure-sensitive adhesive after the step (4).
- steps (4) to (6) will be described.
- Step (4): peeling of protective film This is a step of removing the protective film (with an adhesive layer) by peeling it from the gas barrier layer when the electronic device is formed on the gas barrier layer of the gas barrier film.
- the gas barrier film according to the present invention is used as a sealing film for an electronic device, it is used after the protective film is peeled off from the gas barrier layer.
- the method for peeling the protective film from the gas barrier layer of the gas barrier film is not particularly limited, but it is preferable to peel the protective film while feeding the gas barrier film bonded with the protective film from the wound roll. .
- the peeled protective film can be collected by winding it on another roll.
- the gas barrier layer of the gas barrier film from which the protective film has been peeled is exposed again.
- the element abundance ratio C / Si of the outermost layer portion of the gas barrier layer indicating the amount of the remaining adhesive on the surface of the gas barrier layer after peeling of the protective film is 0.5 or more. When there is, it is conveyed to the removal process of a residual adhesive.
- Step (5) Removal of residual adhesive
- the residual pressure-sensitive adhesive removing step (5) is a step of removing the pressure-sensitive adhesive remaining on the surface of the gas barrier layer after the protective film is peeled off.
- the method for removing the residual pressure-sensitive adhesive is not particularly limited, but it is preferable to apply energy to the gas barrier film surface with active energy rays.
- this step is performed with an element abundance ratio C / Si of the outermost layer portion of the gas barrier layer measured in a state where the protective film is peeled off. If it is less than 0.5, it can be omitted.
- the amount of the adhesive remaining on the gas barrier layer of the gas barrier film can be confirmed, for example, by analyzing the gas barrier layer surface of the gas barrier film by XPS as described later.
- the application of energy to the gas barrier layer surface of the gas barrier film is basically performed by bonding any protective film through any adhesive layer (that is, with any residual adhesive derived from any adhesive layer). Can be applied).
- any protective film that is, with any residual adhesive derived from any adhesive layer.
- Can be applied when the resin material having releasability is bonded and wound into a roll, it is stored for about 1 to 20 hours, typically overnight. The effect of remaining can be reduced.
- the smoothness of the gas barrier layer surface of a gas barrier film can be improved by energy provision.
- the energy to be applied is preferably a kind selected from ultraviolet light, corona discharge, plasma discharge, and laser light. Of these, it is preferable to use the same energy as that used for forming the gas barrier film from the viewpoint of simplicity of equipment and cost. As with the formation of the gas barrier film, the energy to be applied is particularly preferably vacuum ultraviolet light having a wavelength of 150 to 200 nm.
- the energy provision in the removal process (5) of a residual adhesive is the amount of energy provision used for formation of a gas barrier film, when the same method as the energy provision for formation of a gas barrier film is used. It is preferably 1% or more and less than 100%, more preferably 1 to 20%, still more preferably 5 to 15%.
- the specific energy application amount varies depending on the composition of the gas barrier film and the energy source, and can be appropriately selected depending on them.
- the same method as that described in the gas barrier film forming step (1) can be adopted except for the energy irradiation amount.
- the irradiation amount particularly in the case of atmospheric pressure plasma irradiation is preferably 1 J / cm 2 or more and less than 200 J / cm 2 , more preferably 5 to 50 J / cm 2 .
- a corona discharge process can be given to a gas-barrier film using a conventionally well-known corona discharge processing apparatus (for example, Kasuga Denki Co., Ltd. make).
- the output is preferably 10 mW ⁇ min / m 2 or more, more preferably 10 to 200 W ⁇ min / m 2 .
- the amount of energy irradiation is within the above range, the desired effect of improving the gas barrier property can be obtained, and there is no problem with the gas barrier film due to excessive energy irradiation.
- Step (6) is a step of forming the electronic device body on the gas barrier layer of the gas barrier film from which the protective film has been peeled off in the step (4) or the steps (4) and (5).
- the organic EL element 301 will be described as an example.
- organic EL element 301 a method for manufacturing an organic EL element including an anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
- a desired electrode material for example, a thin film made of an anode material is formed on the gas barrier film 202 so as to have a thickness of 1 ⁇ m or less, preferably 10 to 200 nm, for example, by a method such as vapor deposition, sputtering, or plasma CVD. Then, an anode is produced.
- an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, which are organic EL element materials, is formed thereon.
- a method for forming this organic compound thin film there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method), etc., but a homogeneous film is easily obtained and pinholes are not easily generated. From the point of view, the vacuum deposition method, the spin coating method, the ink jet method, and the printing method are particularly preferable. Further, different film forming methods may be applied for each layer.
- the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 ⁇ 6 to 10 ⁇ 2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within a range of 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a film thickness of 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
- a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, and a cathode is provided.
- a desired organic EL element can be obtained.
- the organic EL element 301 is manufactured from the anode and the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere. In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order.
- a voltage of about 2 to 40 V is applied with the anode being positive and the cathode being negative.
- An alternating voltage may be applied.
- the alternating current waveform to be applied may be arbitrary.
- roller CVD method Using a discharge plasma CVD apparatus between rollers to which the magnetic field shown in FIG. 3 is applied (hereinafter, this method is referred to as “roller CVD method”), a heat-resistant laminate is formed on the surface of the resin substrate opposite to the anchor coat layer. Mount the resin substrate on the equipment so that the laminate film side (rear surface) of the resin substrate to which the film is bonded is in contact with the film formation roller, and anchor coating layer according to the following film formation conditions (plasma CVD conditions) On top, a control layer (CVD layer) having gas barrier properties was formed under the condition of a thickness of 100 nm.
- Control layer by CVD method deposition of CVD layer
- Control layer by CVD method CVD layer deposition was performed under the following conditions (film deposition conditions) in terms of an effective film width of 1000 mm.
- the power supply frequency was 84 kHz
- the temperatures of the film deposition rolls were all 30 ° C. It was.
- ⁇ Formation of gas barrier layer coating method> Specifically, a coating liquid containing a polysilazane compound (polysilazane-containing coating liquid) was applied and dried on the anchor coat layer / control layer (CVD layer) on the resin substrate by the coating method shown below. A gas barrier layer was formed by irradiating the coating film with an active energy ray and modifying it.
- the polysilazane-containing coating solution was applied by spin coating so that the film thickness after drying was 80 nm, and dried at 80 ° C. for 2 minutes.
- the dried coating film was subjected to a vacuum ultraviolet irradiation treatment according to the following method using a Xe excimer lamp having a wavelength of 172 nm to form a gas barrier layer.
- the dry film thickness was measured by cross-sectional TEM observation.
- the oxygen concentration during irradiation treatment was 0.1 vol% or less, and the irradiation energy was 2 J / cm 2 .
- the base material on which the coating film (polysilazane layer) fixed on the operation stage was formed was subjected to a modification treatment under the following conditions to form a gas barrier layer.
- Excimer lamp light intensity 130 mW / cm 2 (172 nm)
- Distance between sample and light source 1mm
- Stage heating temperature 70 ° C
- Oxygen concentration in the irradiation device 0.1% by volume
- Excimer lamp irradiation time 10 seconds.
- a laminate film which is a protective film with a pressure-sensitive adhesive layer, was pasted after 5 seconds after the modification treatment. That is, the time from the end of the modification treatment to the bonding of the protective film was 5 seconds.
- Toraytec 7332 manufactured by Toray was used as a laminate film.
- end of the modification process and “until bonding of the protective film” are as described in “Step (2): bonding of protective film” of the second embodiment.
- Example 1 the gas barrier films of Examples 2 to 5 and Comparative Example 1 were prepared in the same manner except that the time from the end of the modification treatment to the bonding of the protective film was changed as shown in Table 1. Produced.
- Example 6 to 10 Comparative Example 2
- the gas barriers of Examples 6 to 10 and Comparative Example 2 were the same as in Examples 1 to 5 and Comparative Example 1 except that the type of the protective film with the adhesive layer was changed to VLH9 manufactured by Mitsui Chemicals, Inc. A conductive film was prepared.
- Example 11 to 15 and Comparative Example 3 The gas barrier properties of Examples 11 to 15 and Comparative Example 3 were the same as in Examples 1 to 5 and Comparative Example 1 except that the type of the protective film with the adhesive layer was changed to PAC3J manufactured by Sanei Kaken Co., Ltd. A film was prepared.
- Example 16 to 20 Comparative Example 4
- the gas barrier properties of Examples 16 to 20 and Comparative Example 4 were the same as in Examples 1 to 5 and Comparative Example 1 except that the type of the protective film with the adhesive layer was changed to 010M manufactured by Futamura Chemical Co., Ltd. A film was prepared.
- the measurement location was 1/5, 2/5, 3/5, and 4/5 with respect to the length in the width direction of the gas barrier film.
- the position of 10, 20, 30, 40 cm is measured from one end.
- the element abundance ratio C / Si in the outermost layer was obtained by averaging the measurement results at the above four locations.
- the XPS analysis in the present invention was performed under the following conditions, but the composition distribution in the thickness direction of the gas barrier layer (especially the element abundance ratio C / Si in the outermost layer) even when the apparatus and measurement conditions were changed. Applicable if it can be measured.
- the resolution in the thickness direction is mainly maintained at a certain level or more, and the element abundance ratio C / To prevent the element abundance ratio C / Si necessary for calculating whether or not Si is 1.5 or less from the decimal point and the second digit up to the second digit depending on the etching depth per one time
- the etching depth (corresponding to the conditions of the following sputter ion and depth profile) at each measurement location (4 locations) is preferably 1 to 15 nm, and more preferably 1 to 10 nm.
- the plot value including the depth 2.8 nm in terms of SiO 2 from the surface layer is the same value as the element abundance ratio C / Si. Applicable if available.
- the etching depth per one measurement point (corresponding to the conditions of the following sputter ion and depth profile) was adjusted to 2.8 nm (SiO 2 conversion) as shown below.
- ⁇ XPS analysis conditions >> ⁇ Equipment: ULVAC-PHI QUANTERASXM ⁇ X-ray source: Monochromatic Al-K ⁇ Measurement area: Si2p, C1s, N1s, O1s ⁇ Sputtering ion: Ar (2 keV) Depth profile: repeats measurement after sputtering for a certain time. In one measurement, the sputtering time was adjusted so that the thickness was about 2.8 nm in terms of SiO 2 .
- the background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area.
- MultiPak manufactured by ULVAC-PHI was used for data processing.
- the gas barrier film sample after peeling of the protective film placed in the chamber of the cleaning apparatus was irradiated with UV light (ultraviolet rays) for 1 minute using the introduced gas as air.
- UV light ultraviolet rays
- the gas barrier film is taken out, and the composition in the thickness direction of the gas barrier layer exposed on the surface of the gas barrier film within 1 minute to 24 hours (the same time as the above XPS analysis) is taken.
- the distribution was measured under the same conditions as the XPS analysis described above. This operation was repeated, and the time required for the element abundance ratio C / Si in the outermost layer portion of the gas barrier layer of the gas barrier film sample to be less than 0.5 was determined.
- the productivity is determined according to the following criteria. Evaluated. The obtained results are shown in Table 1.
- UV cleaning time is performed for a sample having an element abundance ratio C / Si of the outermost layer portion of the gas barrier layer of less than 0.5. It was determined that it was unnecessary, and UV cleaning was not performed.
- Vapor deposition device JEE-400, a vacuum vapor deposition device manufactured by JEOL Ltd. Constant temperature and humidity oven: Yamato Humidic Chamber IG47M ⁇ Evaluation materials> Metal that reacts with moisture and corrodes: Calcium metal (granular) Water vapor impervious metal: Aluminum (diameter ( ⁇ ) 3-5mm, granular) ⁇ Preparation of water vapor barrier property sample>
- gas barrier films Examples 1 to 20 and Comparative Examples 1 to 4
- JEE-400 vacuum deposition apparatus
- metal calcium was deposited on the surface of the gas barrier layer exposed on the surface of the gas barrier film in a size of 12 mm ⁇ 12 mm through the mask so that the deposited film thickness was 80 nm.
- the mask was removed in a vacuum state, and aluminum was vapor-deposited on the entire surface of one side of the sheet and temporarily sealed.
- the vacuum state was released, and it was quickly transferred to a dry nitrogen gas atmosphere.
- a quartz glass with a thickness of 0.2 mm is bonded to the temporarily sealed aluminum vapor-deposited surface via a sealing UV curable resin (manufactured by Nagase ChemteX Corporation), and the UV curable resin is cured and bonded by irradiating with UV light. Then, the sample for water vapor barrier property evaluation was produced.
- the obtained water vapor barrier property evaluation sample was stored under high temperature and high humidity of 85 ° C. and 85% RH, and corrosion of metallic calcium was observed. Observation is performed every 20 hours after storage, and the area where metal calcium corrodes relative to the metal calcium vapor deposition area of 12 mm ⁇ 12 mm is calculated in%, and the time until the area where metal calcium corrodes becomes 50% or more is reached.
- the water vapor barrier property was evaluated according to the following criteria. The evaluation results thus obtained are shown in Table 1 below.
- ⁇ Time until the corroded area of metallic calcium reaches 50% or more is 100 hours or more.
- hole transport layer Polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS: Baytron (registered trademark) P AI 4083, manufactured by Bayer) diluted with 65% pure water and 5% methanol to form hole transport layer It was prepared as a coating solution.
- PEDOT / PSS Baytron (registered trademark) P AI 4083, manufactured by Bayer
- the surface opposite to the surface on which the first electrode layer of the gas barrier film was formed was subjected to a cleaning surface modification treatment.
- a cleaning surface modification treatment a low-pressure mercury lamp (wavelength: 184.9 nm, irradiation intensity: 15 mW / cm 2 ) was used, and the distance from the gas barrier film was 10 mm. Note that a static eliminator using weak X-rays was used for the charge removal treatment.
- the thickness of the coating liquid for hole transport layer formation prepared above is 50 nm after drying under the conditions of 25 ° C. and 50% relative humidity (RH) in the air. It applied using the extrusion coating machine. About the obtained coating film, the solvent was removed by blowing air at a distance of 100 mm in height from the film formation surface under the conditions of a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 100 ° C., and then heat treatment A back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. by an apparatus to form a hole transport layer.
- RH relative humidity
- the white light emitting layer forming coating solution prepared above is dried under an atmosphere having a nitrogen gas concentration of 99% or more at a coating temperature of 25 ° C. and a coating speed of 1 m / min. It apply
- the solvent was removed by blowing air at a distance of 100 mm in height from the film formation surface under the conditions of a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., and then heat treatment The back surface heat transfer type heat treatment was performed at a temperature of 130 ° C. by an apparatus to form a light emitting layer.
- Electron Transport Layer The following EA was dissolved in 2,2,3,3-tetrafluoro-1-propanol so as to be a 0.5 mass% solution, and an electron transport layer forming coating solution was prepared. .
- the thickness of the coating liquid for electron transport layer preparation prepared above is dried under the conditions of a nitrogen gas concentration of 99% or more, a coating temperature of 25 ° C., and a coating speed of 1 m / min. It apply
- the solvent was removed by blowing air at a distance of 100 mm in height from the film formation surface under the conditions of a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., and then heat treatment The back surface heat transfer type heat treatment was performed at a temperature of 200 ° C. by an apparatus to form an electron transport layer.
- An electron injection layer was formed on the electron transport layer formed above. More specifically, a gas barrier film including a first electrode layer, a hole transport layer, a light emitting layer, and an electron transport layer was put into a decompression chamber and decompressed to 5 ⁇ 10 ⁇ 4 Pa. An electron injection layer having a thickness of 3 nm was formed by heating cesium fluoride of a tantalum vapor deposition boat prepared in advance in the vacuum chamber.
- a second electrode was formed on the electron injection layer formed as described above, except for the portion to be the extraction electrode on the first electrode. More specifically, a gas barrier film including a first electrode layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer was put into a decompression chamber and decompressed to 5 ⁇ 10 ⁇ 4 Pa.
- a second electrode was formed by using aluminum as the second electrode forming material, having an extraction electrode, and forming a mask pattern by vapor deposition so that the emission area was 50 mm ⁇ 50 mm. Note that the thickness of the second electrode was 100 nm.
- the gas barrier film formed up to the second electrode was moved to a nitrogen atmosphere and cut into a specified size using an ultraviolet laser.
- Electrode lead connection An anisotropic conductive film DP3232S9 (manufactured by Sony Chemical & Information Device Co., Ltd.) is used for the cut gas barrier film, and a flexible printed circuit board (base film: polyimide 12.5 ⁇ m, rolled copper foil 18 ⁇ m, coverlay: Polyimide 12.5 ⁇ m, surface-treated NiAu plating) was connected. At this time, the connection was made by crimping for 10 seconds at a temperature of 170 ° C. (ACF temperature of 140 ° C. measured separately using a thermocouple) and a pressure of 2 MPa.
- the organic EL element 1 was produced by adhere
- thermosetting adhesive containing epoxy adhesive bisphenol A diglycidyl ether (DGEBA), dicyandiamide (DICY), and an epoxy adduct curing accelerator was used. .
- a thermosetting adhesive with a thickness of 20 ⁇ m was uniformly applied to the aluminum surface along the adhesive surface (shiny surface) of the aluminum foil.
- the sealing member is closely attached and arranged so as to cover the joint between the extraction electrode and the electrode lead, and is closely attached by the pressure roll under the conditions of a pressure roll temperature of 120 ° C., a pressure of 0.5 MPa, and an apparatus speed of 0.3 m / min. Sealed.
- 1 gas barrier film (configuration including a base material and a CVD layer), 2, 55, 110 substrate, 3 CVD layer (control layer, intermediate layer, protective layer or functional layer, etc.) 31 manufacturing equipment, 32 Feeding roller, 33, 34, 35, 36 transport rollers, 39, 40 Deposition roller, 41 gas supply pipe, 42 Power supply for plasma generation, 43, 44 Magnetic field generator, 45 take-up roller, 101 plasma CVD apparatus, 102 vacuum chamber, 103 cathode electrode, 105 susceptors, 106 heat medium circulation system, 107 vacuum exhaust system, 108 gas introduction system, 109 high frequency power supply, 160 Heating and cooling device.
- 201 gas barrier film before protective film peeling
- 202 gas barrier film after protective film peeling
- 50 protective film 51 adhesive layer
- 52 gas barrier layer 53
- Control layer for example, organic layer, moisture absorption layer, antistatic layer, smooth layer, bleed out layer
- 54 intermediate layers eg, anchor coat layers, smooth layers, and bleed-out prevention layers
- 301 organic EL panel 61 organic EL elements, 62 Opposite film, 63 adhesive layer, 64 Transparent electrode.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Laminated Bodies (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
前記基材の一方の面上に配置されたガスバリア層と、
前記ガスバリア層上に粘着層を介して配置された保護フィルムと、
を有するガスバリア性フィルムであって、
前記ガスバリア層が、前記基材上にポリシラザン化合物を含有する塗布液を塗布して乾燥させて得られた塗膜に活性エネルギー線を照射して改質処理することにより形成されたものであり、
前記保護フィルムを剥離した状態で測定される前記ガスバリア層の最表層部の元素存在比C/Siが1.5以下であることを特徴とする、ガスバリア性フィルムである。
本発明のガスバリア性フィルムの層の構成について、図1を用いて説明する。図1に示すように、本発明のガスバリア性フィルム201は、基材55、基材55上に形成されたガスバリア層52、および前記ガスバリア層52に粘着層51を介して貼合された保護フィルム50を有する。本発明のガスバリア性フィルム201は、(ア)基材55と当該基材55上に形成されるガスバリア層52との間に制御層53(例えば、有機層、吸湿層、帯電防止層、平滑層、ブリードアウト層)を設けた構造;(イ)基材55と当該基材55上に形成されるガスバリア層52または制御層53との間に中間層54(例えば、アンカーコート層、平滑層、およびブリードアウト防止層)を設けた構造;(ウ)ガスバリア層52が形成されていない側の基材55上に別の機能層(図示せず:例えば、有機層、吸湿層、帯電防止層、平滑層、ブリードアウト層)を設けた構造;上記(ア)~(ウ)を適宜組み合わせた構造などであってもよい。
本発明に係るガスバリア性フィルムは、通常、基材として、プラスチックフィルムまたはシートが用いられ、無色透明な樹脂からなるフィルムまたはシートが好ましく用いられる。用いられるプラスチックフィルムは、シリコン含有膜等を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
ガスバリア層は、基材の一方の面上にポリシラザン化合物を含有する塗布液(以下、単に「塗布液」とも称する)を塗布して乾燥させて得られた塗膜に活性エネルギー線を照射して改質処理することにより形成される。
塗布液は、ポリシラザン化合物を含む。
ポリシラザン化合物とは、その構造内にSi-N、Si-H、N-H等の結合を有するポリマーであり、SiO2、Si3N4、およびこれらの中間固溶体SiOxNy等の無機前駆体として機能する。
アミン触媒および金属は、後述する改質処理において、ポリシラザン化合物の酸化ケイ素化合物への転化を促進しうる。
塗布液に含有されうる溶媒としては、ポリシラザン化合物と反応するものでなければ特に制限はなく、公知の溶媒が用いられうる。具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、ハロゲン化炭化水素等の炭化水素系溶媒;脂肪族エーテル、脂環式エーテル等のエーテル系溶媒が挙げられる。より詳細には、炭化水素溶媒としては、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン、塩化メチレン、トリクロロエタン等が挙げられる。また、エーテル系溶媒としては、ジブチルエーテル、ジオキサン、テトラヒドロフラン等が挙げられる。これらの溶媒は単独で、または2種以上を混合して用いられうる。これらの溶媒は、ポリシラザン化合物の溶解度や溶剤の蒸発速度等を考慮し、目的に応じて適宜選択されうる。
上記塗布液を基材上に塗布して乾燥することによって、塗膜が得られる。
本発明における上記塗膜(塗布法により形成されたガスバリア層)の改質処理とは、ケイ素化合物の酸化ケイ素または酸窒化ケイ素等への転化反応を指し、具体的には本発明のガスバリア性フィルムが全体としてガスバリア性を発現するのに貢献できるレベルの無機薄膜(であるガスバリア層)を形成する処理をいう。
本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、改質を効率的に行う観点から使用する波長は200nm以下である必要があり、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用いればよく、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。ここで、ポリシラザン化合物の改質とは、ポリシラザン化合物が酸化ケイ素化合物および/または酸窒化ケイ素化合物へ転化することを意味する。
一実施形態において、ガスバリア性フィルムは制御層/中間層/保護層/機能層を有していてもよい。制御層は、通常、基材とガスバリア層との間に配置される。なお、ここでいう「保護層」は、「保護フィルム」とは異なるものである。
前記制御層/中間層/保護層/機能層は、CVD層(化学気相蒸着(CVD)法により形成された層)であってもよく、好ましくは、制御層は、CVD層である。ここで、CVD層は、ケイ素、アルミニウムおよびチタンからなる群より選択される少なくとも1種の酸化物、窒化物、酸窒化物または酸炭化物の少なくとも1種を含む。ケイ素、アルミニウムおよびチタンからなる群より選択される少なくとも1種の酸化物、窒化物、酸窒化物または酸炭化物としては、具体的には、酸化ケイ素(SiO2)、窒化ケイ素、酸窒化ケイ素(SiON)、酸炭化ケイ素(SiOC)、炭化ケイ素、酸化アルミニウム、酸化チタン、およびアルミニウムシリケートなどのこれらの複合体が挙げられる。これらは、副次的な成分として他の元素を含有してもよい。
以下の測定方法に従って、基材上にCVD層を形成させた積層体試料の透過水分量を測定する。
上述の基材と当該基材上に形成されるガスバリア層または制御層との間または上記いずれかの層の表面に、本発明の効果を損なわない範囲で別途、中間層/保護層/機能層を設けてもよい。例えば、基材のガスバリア層が配置された面とは反対の面(基材表面)(機能層)、基材とガスバリア層または制御層との間(中間層)には、アンカーコート層、平滑層、およびブリードアウト防止層等の中間層が形成されうる。なお、中間層は、基材とガスバリア層との間に形成されることが好ましい。
本発明に係るガスバリア性フィルムの基材上には、接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1種または2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTARZ7501を用いることができる。
平滑層は、通常、基材の一方の面上に形成され、微小な突起等が存在する基材の粗面を平坦化し、基材上に成膜するガスバリア層などにおける凹凸やピンホールの発生を防止する機能を有する。平滑層は、感光性樹脂組成物を基材上に塗布した後、硬化させることによって形成されうる。
平滑層を有する基材は、加熱の際に基材中から表面に未反応のオリゴマー等が移行して、基材表面が汚染されうる。ブリードアウト防止層は、当該基材表面の汚染を抑制する機能を有する。当該ブリードアウト防止層は、通常、平滑層を有する基材の平滑層とは反対の面に設けられる。
保護層に用いられる有機物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂層を好ましく用いることができる。これらの有機樹脂もしくは有機無機複合樹脂は重合性基や架橋性基を有することが好ましく、これらの有機樹脂もしくは有機無機複合樹脂を含有し、必要に応じて重合開始剤や架橋剤等を含有する有機樹脂組成物塗布液から塗布形成した層に、光照射処理や熱処理を加えて硬化させることが好ましい。
本発明に係るガスバリア性フィルムは、前記ガスバリア層上に粘着層を介して配置された保護フィルムを有する。保護フィルムを備えることにより、ガスバリア性フィルム表面を損傷から保護するのに役立ち、かつ、ガスバリア性フィルムを適用する対象物に設置し易い。よって、本発明に係るガスバリア性フィルムを有機EL素子等の電子デバイスの基板として使用する場合にガスバリア層の欠陥による素子の劣化を防ぐことができる。
粘着層は、ガスバリア層上に保護フィルムを貼り合せる目的で、ガスバリア層と保護フィルムとの間に配置されている。保護フィルム上に、粘着剤に、架橋剤を添加した粘着剤組成物を塗布し、架橋することで粘着層を形成できる。以下、粘着層を形成した保護フィルムを粘着層付きの保護フィルムともいう。すなわち、粘着層付きの保護フィルムは、基材の保護フィルムと、該基材(保護フィルム)上に形成した粘着層とを有する構成であり、これらの構成を有するものを、単に保護フィルムとして説明する場合もある。
(A)1分子中に2個以上のアルケニル基を有するポリジオルガノシロキサン
(B)SiH基を含有するポリオルガノシロキサン
(C)制御剤
(D)白金触媒
(E)導電性微粒子
ここで、(A)成分は、1分子中に2個以上のアルケニル基を有するポリジオルガノシロキサンであり、このようなアルケニル基含有ポリジオルガノシロキサンとしては、下記一般式(1)で示されるものが例示できる。
R(3-a)XaSiO-(RXSiO)m-(R2SiO)n-(RXSiO)p-R(3-a)XaSiO
一般式(1)において、Rは炭素数1~10の1価炭化水素基であり、Xはアルケニル基含有の有機基である。aは0~3の整数で1が好ましく、mは0以上であるが、a=0の場合、mは2以上であり、m及びnは、それぞれ100≦m+n≦20,000を満足する数であり、pは2以上である。
HbR1 (3-b)SiO-(HR1SiO)x-(HR1SiO)y-SiR1 (3-b)H
一般式(2)において、R1は炭素数1~6の脂肪族不飽和結合を含有しない1価炭化水素基である。bは0~3の整数、x、yはそれぞれ整数であり、このオルガノヒドロポリシロキサンの250℃における粘度が1~5,000mPa・sとなる数を示す。
本発明の第2の形態によれば、基材の一方の面上にポリシラザン化合物を含有する塗布液を塗布して乾燥させて得られた塗膜に活性エネルギー線を照射して改質処理することによりガスバリア層を形成する工程(1)と、前記ガスバリア層上に、保護フィルムを粘着層を介して貼合する工程(2)と、を含むガスバリア性フィルムの製造方法が提供される。ここで、「基材の一方の面上にポリシラザン化合物を含有する塗布液を塗布」とは、(1)基材の一方の面の直上に直接、ポリシラザン化合物を含有する塗布液を塗布する形態のほか、さらに(2)基材の一方の面上に上記第1の形態で説明した制御層、中間層、保護層ないし機能層が積層された積層体の表面にポリシラザン化合物を含有する塗布液を塗布する形態を含む。かかる製造方法により得られたガスバリア性フィルムについても、本発明の第1の形態と同様に、前記保護フィルムを剥離した状態で測定される前記ガスバリア層の最表層部の元素存在比C/Siが1.5以下、好ましくは1.2以下であることを特徴とする。前記保護フィルムを剥離した状態で測定される前記ガスバリア層の最表層部の元素存在比C/Siが1.5より大きいと、残存粘着剤の除去工程に要する時間が長くなり、生産性の観点から好ましくないためである。保護フィルムを剥離した状態で測定される前記ガスバリア層の最表層部の元素存在比C/Siの測定方法などは、本発明の第1の形態で説明した通りである。
上記第1の形態において、工程(1)または工程(1)および工程(3)のように樹脂基材上に形成したガスバリア層に、保護フィルムを粘着層を介して貼合する工程である。本工程を設けることによりガスバリア層の表面を露出させることなく、ガスバリア性フィルムを搬送、保管等することができる。
本発明の一実施形態によれば、本発明に係るガスバリア性フィルムまたは本発明に係る製造方法により得られたガスバリア性フィルムから保護フィルムを剥離した後、(好ましくは、更に残存粘着剤を除去した後、)ガスバリア性フィルムの(最表層となる)ガスバリア層上に電子デバイス本体が設けられてなることを特徴とする、電子デバイスが提供される。即ち、電子デバイス本体と、上述の保護フィルムを剥離したガスバリア性フィルムとを含む電子デバイスが提供される。
上記したような本発明のガスバリア性フィルムは、優れたガスバリア性、透明性、屈曲性を有する。このため、本発明のガスバリア性フィルムは、電子デバイス等のパッケージ、光電変換素子(太陽電池素子)や有機エレクトロルミネッセンス(EL)素子、液晶表示素子等の電子デバイスなど、様々な用途に使用することができる。
電子デバイス本体は、本発明に係るガスバリア性フィルムのガスバリア層上に配置される。電子デバイス本体としては、ガスバリア性フィルムによる封止が適用されうる公知の電子デバイスの本体が使用できる。例えば、有機EL素子、太陽電池(PV)、液晶表示素子(LCD)、電子ペーパー、薄膜トランジスタ、タッチパネル等が挙げられる。本発明の効果がより効率的に得られるという観点から、該電子デバイス本体は、有機EL素子または太陽電池であることが好ましい。これらの電子デバイス本体の構成についても、特に制限はなく、従来公知の構成を有しうる。
本発明の第4の形態によれば、本発明に係るガスバリア性フィルムまたは本発明に係る製造方法により得られたガスバリア性フィルムから保護フィルムを剥離した後、ガスバリア性フィルムの(最表層となる)ガスバリア層上に電子デバイス本体を形成する工程を含むことを特徴とする、電子デバイスの製造方法が提供される。本発明に係るガスバリア性フィルムから保護フィルムを剥離する工程(4)と、ガスバリア性フィルムのガスバリア層上に電子デバイス本体を形成する工程(6)と、を含む電子デバイスの製造方法が提供される。一実施形態において、前記製造方法は、前記工程(4)の後に残存粘着剤を除去する工程(5)を含んでもよい。以下、工程(4)~(6)について説明する。
電子デバイスをガスバリア性フィルムのガスバリア層上に形成する際に(粘着剤層付の)保護フィルムをガスバリア層から剥離することにより除去する工程である。
保護フィルムを剥離した後には、上記のように、ガスバリア層上に粘着層由来の粘着剤が残存し、電子デバイス用途でガスバリア性フィルムを使用する際にガスバリア性の低下や素子の劣化などの原因となる場合がある。残存粘着剤の除去工程(5)は、保護フィルム剥離後にガスバリア層表面に残存する粘着剤を除去する工程である。残存粘着剤の除去の方法としては、特に限定されないが、ガスバリア性フィルム表面に対して活性エネルギー線によりエネルギー付与することが好ましい。なお、本ガスバリア性フィルムを封止フィルムとして使用する電子デバイスにもよるが、本工程は、前記保護フィルムを剥離した状態で測定される前記ガスバリア層の最表層部の元素存在比C/Siが0.5未満であれば省略することができる。
工程(6)は、前記工程(4)、または工程(4)および工程(5)により保護フィルムを剥離したガスバリア性フィルムのガスバリア層上に電子デバイス本体を形成する工程である。以下、有機EL素子301を例として説明する。
《ガスバリア性フィルムの作製》
[実施例1]
〈基材〉
基材として、厚さ50μmのポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム株式会社製、商品名「テイジンテトロンフィルム」)(以下、樹脂基材ともいう)を用いた。
上記樹脂基材の易接着面側に、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTARZ7501を用い、乾燥後の層厚が4.0μmになるように塗布した後、乾燥条件として、80℃で3分間の乾燥を行った。次いで、空気雰囲気下で、高圧水銀ランプを使用し、硬化条件;1.0J/cm2で硬化を行い、アンカーコート層を形成した。
図3に記載の磁場を印加したローラー間放電プラズマCVD装置(以下、この方法をローラーCVD法と称す。)を用い、上記樹脂基材の前記アンカーコート層とは反対の面に耐熱性のラミネートフィルムを貼り合せた樹脂基材のラミネートフィルム側(裏面)が成膜ローラーと接触するようにして、樹脂基材を装置に装着し、下記の成膜条件(プラズマCVD条件)により、アンカーコート層上に、ガスバリア性を有する制御層(CVD層)を、厚さが100nmとなる条件で成膜した。
CVD法による制御層(CVD層の成膜は、成膜有効幅1000mm換算として、下記(成膜条件)で行った。その他の条件として、電源周波数は84kHz、成膜ロールの温度はすべて30℃とした。
原料ガス(HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute、0℃、1気圧基準)
酸素ガスの供給量:500sccm(0℃、1気圧基準)
真空チャンバ内の真空度:2Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:80kHz
フィルムの搬送速度:1.0m/min。
樹脂基材上のアンカーコート層/制御層(CVD層)上に、以下に示す塗布法により、詳しくは、ポリシラザン化合物を含有する塗布液(ポリシラザン含有塗布液)を塗布、乾燥させて得られた塗膜に活性エネルギー線を照射して改質処理することにより、ガスバリア層を形成した。
パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン(TMDAH)、(アミン触媒の含量:5質量%))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで適宜希釈し、ポリシラザン含有塗布液を調製した。
次いで、上記形成した塗膜に対し、下記の方法に従って、酸素濃度0.1体積%で、改質処理を実施した。
装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
照射波長:172nm
ランプ封入ガス:Xe。
稼動ステージ上に固定した上記塗膜(ポリシラザン層)を形成した基材に対し、以下の条件で改質処理を行って、ガスバリア層を形成した。
試料と光源の距離:1mm
ステージ加熱温度:70℃
照射装置内の酸素濃度:0.1体積%
エキシマランプ照射時間:10秒。
改質処理終了後、5秒後に粘着剤層付の保護フィルムであるラミネートフィルムを貼り合わせた。即ち、上記改質処理の終了から前記保護フィルムの貼合までの時間を5秒とした。ラミネートフィルムは、東レ製トレテック7332を使用した。なお、「改質処理の終了」及び「保護フィルムの貼合まで」については、第2の形態の「工程(2):保護フィルムの貼合」において説明した通りである。
実施例1において、改質処理の終了から前記保護フィルムの貼合までの時間を表1に示すように変更した以外は、同様にして、実施例2~5、比較例1のガスバリア性フィルムを作製した。
実施例1~5、比較例1において、前記粘着剤層付の保護フィルムの種類を三井化学東セロ株式会社製、VLH9に変更した以外は同様にして、実施例6~10、比較例2のガスバリア性フィルムを作製した。
実施例1~5、比較例1において、前記粘着剤層付の保護フィルムの種類を株式会社サンエー化研製、PAC3Jに変更した以外は同様にして、実施例11~15、比較例3のガスバリア性フィルムを作製した。
実施例1~5、比較例1において、前記粘着剤層付の保護フィルムの種類をフタムラ化学株式会社製、010Mに変更した以外は同様にして、実施例16~20、比較例4のガスバリア性フィルムを作製した。
(保護フィルム剥離後のガスバリア層の最表層部の元素存在比C/Si(残存粘着剤の量)の測定)
上記のように作製した各実施例および各比較例のガスバリア性フィルムについて、粘着剤層付の保護フィルムをガスバリア性フィルムから剥離した後、1分以上24時間以内(ここでは、いずれの試料もフィルム剥離後約5分でXPS装置内にセットし、真空引きを開始した。装置内にセットしてから測定開始までは23時間以内である。)に、ガスバリア性フィルム表面に露出したガスバリア層の厚さ方向の組成分布を、XPS(光電子分光法)分析により下記のように測定した。なお、保護フィルム剥離後、上記時間内に測定すれば測定結果に影響しない。
・装置:アルバックファイ製QUANTERASXM
・X線源:単色化Al-Kα
・測定領域:Si2p、C1s、N1s、O1s
・スパッタイオン:Ar(2keV)
・デプスプロファイル:一定時間スパッタ後、測定を繰り返す。1回の測定は、SiO2換算で、約2.8nmの厚さ分となるようにスパッタ時間を調整した。
◎:UV洗浄が不要、
○:UV洗浄に要する時間が、5分未満、
△:UV洗浄に要する時間が、5分以上10分未満、
×:UV洗浄に要する時間が、10分以上。
水蒸気バリア性の評価を行うにあたって、以下の装置と材料を使用した。
蒸着装置:日本電子(株)製真空蒸着装置JEE-400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
〈評価材料〉
水分と反応して腐食する金属:金属カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(直径(φ)3~5mm、粒状)
〈水蒸気バリア性評価用試料の作製〉
真空蒸着装置(JEE-400)を用い、作製したガスバリア性フィルム(実施例1~20、比較例1~4)について、作製後、粘着剤層付の保護フィルムをガスバリア性フィルムから剥離した後、1分時間以上24時間以内に、ガスバリア性フィルム表面に露出したガスバリア層表面に、マスクを通して12mm×12mmのサイズで金属カルシウムを蒸着膜厚が80nmとなるように蒸着させた。
○:金属カルシウムが腐食した面積が50%以上になるまでの時間が、200時間以上である。
実施例1~20および比較例1~4で製造したガスバリア性フィルムから粘着剤層付の保護フィルムを剥離したガスバリア性フィルムを封止フィルムとして用いて、以下の方法で有機EL素子を作製した。
実施例1で製造したガスバリア性フィルムについて、製造粘着層付保護フィルムを貼り合わせた後、10分以上1年以内に(ここでは、いずれの試料も約1か月とした)、粘着剤層付の保護フィルムをガスバリア性フィルムから剥離した後、1分以上24時間以内(上記XPS分析と同じ時間とした)に、ガスバリア性フィルム表面に露出したガスバリア層上に、厚さ150nmのITO(インジウムチンオキシド)をスパッタ法により成膜した。次いで、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターニングは発光面積が50mm平方となるように行った。
ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS:Baytron(登録商標) P AI 4083、Bayer社製)を純水65%およびメタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
ホスト材のH-Aを1.0gと、ドーパント材のD-Aを100mgと、ドーパント材のD-Bを0.2mgと、ドーパント材のD-Cを0.2mgと、を100gのトルエンに溶解し、白色発光層形成用塗布液として準備した。
下記E-Aを、0.5質量%溶液となるように2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し、電子輸送層形成用塗布液を準備した。
上記で形成した電子輸送層上に、電子注入層を形成した。より詳細には、第1電極層、正孔輸送層、発光層、および電子輸送層を備えるガスバリア性フィルムを減圧チャンバに投入し、5×10-4Paまで減圧した。減圧チャンバ内に予め準備していたタンタル製蒸着ボートのフッ化セシウムを加熱することで、厚さ3nmの電子注入層を形成した。
第1電極上に取り出し電極になる部分を除き、上記で形成した電子注入層上に第2電極を形成した。より詳細には、第1電極層、正孔輸送層、発光層、電子輸送層、および電子注入層を備えるガスバリア性フィルムを減圧チャンバに投入し、5×10-4Paまで減圧した。第2電極形成材料としてアルミニウム用いて、取り出し電極を有し、かつ、発光面積が50mm×50mmとなるように蒸着法でマスクパターン成膜して、第2電極を形成した。なお、第2電極の厚さは100nmであった。
第2電極まで形成したガスバリア性フィルムを、窒素雰囲気に移動させて、紫外線レーザーを用いて規定の大きさに裁断した。
裁断したガスバリア性フィルムに、異方性導電フィルムDP3232S9(ソニーケミカル&インフォメーションデバイス株式会社製)を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。この際、温度170℃(別途熱電対を用いて測定したACF温度140℃)、圧力2MPaで10秒間圧着を行うことで接続を行った。
電極リード(フレキシブルプリント基板)を接続したガスバリア性フィルムを、市販のロールラミネート装置を用いて封止部材を接着することで、有機EL素子1を作製した。より詳細には、封止部材には、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を介して貼合したもの(接着剤層の厚み1.5μm)を用いた。封止部材を接着するための接着剤としては、エポキシ系接着剤であるビスフェノールAジグリシジルエーテル(DGEBA)、ジシアンジアミド(DICY)、およびエポキシアダクト系硬化促進剤を含む熱硬化性接着剤を用いた。ディスペンサを使用して、アルミニウム面にアルミ箔の接着面(つや面)に沿って厚み20μmで熱硬化性接着剤を均一に塗布した。次いで、封止部材を、取り出し電極および電極リードの接合部を覆うようにして密着・配置し、圧着ロール温度120℃、圧力0.5MPa、装置速度0.3m/minの条件で圧着ロールにより密着封止した。
2、55、110 基材、
3 CVD層(制御層、中間層、保護層ないし機能層等)、
31 製造装置、
32 送り出しローラー、
33、34、35、36 搬送ローラー、
39、40 成膜ローラー、
41 ガス供給管、
42 プラズマ発生用電源、
43、44 磁場発生装置、
45 巻取りローラー、
101 プラズマCVD装置、
102 真空槽、
103 カソード電極、
105 サセプタ、
106 熱媒体循環系、
107 真空排気系、
108 ガス導入系、
109 高周波電源、
160 加熱冷却装置。
201 ガスバリア性フィルム(保護フィルム剥離前)、
202 ガスバリア性フィルム(保護フィルム剥離後)、
50 保護フィルム
51 粘着層、
52 ガスバリア層、
53 制御層(CVD層;例えば、有機層、吸湿層、帯電防止層、平滑層、ブリードアウト層)、
54 中間層(例えば、アンカーコート層、平滑層、およびブリードアウト防止層)、
301 有機ELパネル、
61 有機EL素子、
62 対向フィルム、
63 接着剤層、
64 透明電極。
Claims (5)
- 基材と、
前記基材の一方の面上に配置されたガスバリア層と、
前記ガスバリア層上に粘着層を介して配置された保護フィルムと、
を有するガスバリア性フィルムであって、
前記ガスバリア層が、前記基材上にポリシラザン化合物を含有する塗布液を塗布して乾燥させて得られた塗膜に活性エネルギー線を照射して改質処理することにより形成されたものであり、
前記保護フィルムを剥離した状態で測定される前記ガスバリア層の最表層部の元素存在比C/Siが1.5以下であることを特徴とする、ガスバリア性フィルム。 - 前記元素存在比C/Siが、1.2以下である、請求項1に記載のガスバリア性フィルム。
- 請求項1または2に記載のガスバリア性フィルムの製造方法であって、
前記改質処理の終了から前記保護フィルムの貼合までの時間が5秒~3分である、ガスバリア性フィルムの製造方法。 - 請求項1または2に記載のガスバリア性フィルムまたは請求項3に記載の製造方法により得られたガスバリア性フィルムから保護フィルムを剥離した後、前記ガスバリア層上に電子デバイス本体が設けられてなることを特徴とする、電子デバイス。
- 請求項1または2に記載のガスバリア性フィルムまたは請求項3に記載の製造方法により得られたガスバリア性フィルムから保護フィルムを剥離した後、前記ガスバリア層上に電子デバイス本体を形成する工程を含むことを特徴とする、電子デバイスの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167026481A KR20160127079A (ko) | 2014-03-31 | 2015-03-31 | 가스 배리어성 필름 및 그 제조 방법과, 이것을 사용한 전자 디바이스 및 그 제조 방법 |
CN201580016562.8A CN106132695B (zh) | 2014-03-31 | 2015-03-31 | 气体阻隔性膜及使用其的电子设备、及两者的制造方法 |
JP2016511966A JP6614136B2 (ja) | 2014-03-31 | 2015-03-31 | ガスバリア性フィルムおよびその製造方法、並びにこれを用いた電子デバイスおよびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014074403 | 2014-03-31 | ||
JP2014-074403 | 2014-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015152302A1 true WO2015152302A1 (ja) | 2015-10-08 |
Family
ID=54240620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/060269 WO2015152302A1 (ja) | 2014-03-31 | 2015-03-31 | ガスバリア性フィルムおよびその製造方法、並びにこれを用いた電子デバイスおよびその製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6614136B2 (ja) |
KR (1) | KR20160127079A (ja) |
CN (1) | CN106132695B (ja) |
WO (1) | WO2015152302A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107482131A (zh) * | 2017-08-14 | 2017-12-15 | 宁波安特弗新材料科技有限公司 | 一种阻隔膜及其制备方法 |
WO2018101083A1 (ja) * | 2016-11-29 | 2018-06-07 | 住友化学株式会社 | 積層体及びこれを含むデバイス |
KR101910188B1 (ko) * | 2016-09-30 | 2018-10-19 | 한국생산기술연구원 | Uv 펄스를 이용한 실라잔 개질방법 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106531908A (zh) * | 2016-11-30 | 2017-03-22 | 四川赛尔雷新能源科技有限公司 | 一种双膜软包锂电池 |
US12104075B2 (en) * | 2016-12-09 | 2024-10-01 | Lg Chem, Ltd. | Encapsulating composition |
KR102572921B1 (ko) * | 2017-03-28 | 2023-08-30 | 린텍 가부시키가이샤 | 가스 배리어성 적층체 |
CN111565928B (zh) * | 2018-01-02 | 2022-03-29 | 东友精细化工有限公司 | 偏光板及包含其的图像显示装置 |
KR20210120990A (ko) | 2018-11-09 | 2021-10-07 | 소프레시 인코포레이티드 | 블로운 필름 재료 및 그것의 제조를 위한 프로세스들 및 그것의 용도들 |
CN111211246B (zh) * | 2020-01-16 | 2023-01-10 | 合肥鑫晟光电科技有限公司 | 柔性衬底、显示面板及柔性衬底的制备方法 |
CN111190303B (zh) * | 2020-03-18 | 2022-08-23 | 惠州市华星光电技术有限公司 | 显示面板 |
CN111775518A (zh) * | 2020-07-01 | 2020-10-16 | 汕头万顺新材集团股份有限公司 | 一种耐候性高的阻隔膜结构 |
CN115635699B (zh) * | 2022-11-07 | 2023-08-18 | 江苏耐斯数码科技股份有限公司 | 一种热塑性弹性体油囊布制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011007543A1 (ja) * | 2009-07-17 | 2011-01-20 | 三井化学株式会社 | 積層体およびその製造方法 |
WO2012014653A1 (ja) * | 2010-07-27 | 2012-02-02 | コニカミノルタホールディングス株式会社 | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス |
JP2012067193A (ja) * | 2010-09-24 | 2012-04-05 | Konica Minolta Holdings Inc | ガスバリア性フィルムの洗浄方法、ガスバリア性包装体及び有機電子デバイス |
JP2013123895A (ja) * | 2011-12-16 | 2013-06-24 | Konica Minolta Advanced Layers Inc | ガスバリアーフィルム及びガスバリアーフィルムの製造方法 |
JP2013226758A (ja) * | 2012-04-26 | 2013-11-07 | Konica Minolta Inc | ガスバリア性フィルムの製造方法 |
WO2014007277A1 (ja) * | 2012-07-06 | 2014-01-09 | 三井化学株式会社 | 積層体 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5093107B2 (ja) * | 2006-05-25 | 2012-12-05 | コニカミノルタホールディングス株式会社 | ガスバリア性樹脂基材の製造方法及びガスバリア性樹脂基材の製造装置 |
JP2012052170A (ja) | 2010-08-31 | 2012-03-15 | Fujifilm Corp | 機能性フィルムの製造方法 |
WO2012173040A1 (ja) * | 2011-06-15 | 2012-12-20 | コニカミノルタホールディングス株式会社 | 水蒸気バリアフィルム、及びその製造方法、並びにこれを用いた電子機器 |
WO2013089046A1 (ja) * | 2011-12-16 | 2013-06-20 | コニカミノルタ株式会社 | ガスバリアーフィルム |
JP2013208855A (ja) | 2012-03-30 | 2013-10-10 | Fujifilm Corp | 機能性フィルムの製造方法、及びその製造装置 |
JP5899044B2 (ja) * | 2012-05-08 | 2016-04-06 | 三菱樹脂株式会社 | ガスバリア性フィルム |
-
2015
- 2015-03-31 KR KR1020167026481A patent/KR20160127079A/ko not_active Application Discontinuation
- 2015-03-31 JP JP2016511966A patent/JP6614136B2/ja not_active Expired - Fee Related
- 2015-03-31 CN CN201580016562.8A patent/CN106132695B/zh not_active Expired - Fee Related
- 2015-03-31 WO PCT/JP2015/060269 patent/WO2015152302A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011007543A1 (ja) * | 2009-07-17 | 2011-01-20 | 三井化学株式会社 | 積層体およびその製造方法 |
WO2012014653A1 (ja) * | 2010-07-27 | 2012-02-02 | コニカミノルタホールディングス株式会社 | ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス |
JP2012067193A (ja) * | 2010-09-24 | 2012-04-05 | Konica Minolta Holdings Inc | ガスバリア性フィルムの洗浄方法、ガスバリア性包装体及び有機電子デバイス |
JP2013123895A (ja) * | 2011-12-16 | 2013-06-24 | Konica Minolta Advanced Layers Inc | ガスバリアーフィルム及びガスバリアーフィルムの製造方法 |
JP2013226758A (ja) * | 2012-04-26 | 2013-11-07 | Konica Minolta Inc | ガスバリア性フィルムの製造方法 |
WO2014007277A1 (ja) * | 2012-07-06 | 2014-01-09 | 三井化学株式会社 | 積層体 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101910188B1 (ko) * | 2016-09-30 | 2018-10-19 | 한국생산기술연구원 | Uv 펄스를 이용한 실라잔 개질방법 |
WO2018101083A1 (ja) * | 2016-11-29 | 2018-06-07 | 住友化学株式会社 | 積層体及びこれを含むデバイス |
CN107482131A (zh) * | 2017-08-14 | 2017-12-15 | 宁波安特弗新材料科技有限公司 | 一种阻隔膜及其制备方法 |
CN107482131B (zh) * | 2017-08-14 | 2019-05-10 | 宁波安特弗新材料科技有限公司 | 一种阻隔膜 |
Also Published As
Publication number | Publication date |
---|---|
CN106132695A (zh) | 2016-11-16 |
JP6614136B2 (ja) | 2019-12-04 |
CN106132695B (zh) | 2019-09-20 |
KR20160127079A (ko) | 2016-11-02 |
JPWO2015152302A1 (ja) | 2017-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6614136B2 (ja) | ガスバリア性フィルムおよびその製造方法、並びにこれを用いた電子デバイスおよびその製造方法 | |
JP6814158B2 (ja) | 接着剤組成物、封止シート、及び封止体 | |
JP6353990B1 (ja) | 接着剤組成物、封止シート、及び封止体 | |
JP6940224B2 (ja) | ガスバリア性積層体、及び封止体 | |
JP6814157B2 (ja) | 接着剤組成物、封止シート、及び封止体 | |
TWI742153B (zh) | 接著劑組成物、密封薄片以及密封體 | |
JP6485455B2 (ja) | ガスバリアーフィルム及びガスバリアーフィルムの製造方法 | |
JP6353991B1 (ja) | 接着剤組成物、封止シート、及び封止体 | |
JP7158377B2 (ja) | ガスバリア性フィルム、及び封止体 | |
JP2010140705A (ja) | 有機エレクトロルミネッセンスパネル及びその製造方法、該有機エレクトロルミネッセンスパネルを用いた照明装置、表示装置 | |
WO2018123724A1 (ja) | ガスバリアー性フィルム及びガスバリアー性フィルムの製造方法 | |
JPWO2014163062A1 (ja) | ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス | |
JP2012067193A (ja) | ガスバリア性フィルムの洗浄方法、ガスバリア性包装体及び有機電子デバイス | |
JP5581834B2 (ja) | ガスバリア性フィルムの製造方法、有機電子デバイス | |
TW201801918A (zh) | 長形的阻氣性積層體 | |
TWI745492B (zh) | 積層體及含有該積層體的裝置 | |
JP6885412B2 (ja) | 機能性フィルム積層体、及び、電子デバイスの製造方法 | |
JP4861036B2 (ja) | 剥離シートおよびその製造方法 | |
JP4914241B2 (ja) | 剥離シートおよび粘着体 | |
JP2015202620A (ja) | ガスバリア性フィルムの製造方法および電子デバイスの製造方法 | |
JP7188669B2 (ja) | 封止体の製造方法 | |
WO2015029732A1 (ja) | ガスバリアフィルムおよびガスバリアフィルムの製造方法 | |
JP2005011649A (ja) | 接着方法、その接着方法を利用可能なエレクトロルミネッセンスパネルの製造方法、及びエレクトロルミネッセンスパネル | |
WO2018207508A1 (ja) | ガスバリアフィルムおよびガスバリアフィルムの製造方法 | |
TW201805160A (zh) | 阻氣性積層體、電子裝置用零件及電子裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15773706 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016511966 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020167026481 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15773706 Country of ref document: EP Kind code of ref document: A1 |