WO2015151625A1 - ポリブタジエン - Google Patents
ポリブタジエン Download PDFInfo
- Publication number
- WO2015151625A1 WO2015151625A1 PCT/JP2015/054521 JP2015054521W WO2015151625A1 WO 2015151625 A1 WO2015151625 A1 WO 2015151625A1 JP 2015054521 W JP2015054521 W JP 2015054521W WO 2015151625 A1 WO2015151625 A1 WO 2015151625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polybutadiene
- rubber
- weight
- tcp
- parts
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F136/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F136/02—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F136/04—Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F136/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F36/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/602—Component covered by group C08F4/60 with an organo-aluminium compound
- C08F4/6022—Component of C08F4/60 containing at least two different metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/70—Iron group metals, platinum group metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
Definitions
- the present invention relates to a polybutadiene having improved processability and wear resistance, and is used in tires, vibration proof rubbers, belts, hoses, seismic isolation rubbers, rubber crawlers, footwear members, and the like by blending them into a rubber composition. Relates to polybutadiene.
- Polybutadiene generally has higher abrasion resistance than other rubbers but is inferior in workability.
- wear resistance and workability are in a trade-off relationship, and attempts to improve one cause the performance of the other to deteriorate, so various improvements have been made so far.
- JP 2004-339467 A Japanese Patent Laid-Open No. 2004-211048 International Publication No. 2007/081018
- an object of the present invention is to provide a polybutadiene having improved processability and wear resistance.
- the polybutadiene according to the present invention is (A) Mooney viscosity (ML 1 + 4,100 ° C. ) is 43 or more, (B) The ratio (Tcp / ML 1 + 4,100 ° C. ) of the 5 wt% toluene solution viscosity (Tcp) to the Mooney viscosity (ML 1 + 4,100 ° C. ) is 0.9 to 2.3, (C) ML 1 + 4, 100 ° C.
- T80 stress relaxation time
- Mw / Mn molecular weight Distribution
- the weight average molecular weight (Mw) is 40.0 ⁇ 10 4 to 75.0 ⁇ 10 4 and (F) the ratio of the cis structure in the microstructure analysis is 98 mol% or less.
- the polybutadiene according to the present invention is preferably produced using a cobalt catalyst.
- polybutadiene having improved processability and wear resistance can be provided.
- the polybutadiene of the present invention has the following characteristics.
- Mooney viscosity (ML 1 + 4,100 ° C. ) is 43 or more.
- the Mooney viscosity (ML 1 + 4, 100 ° C. ) is preferably 45 to 74, more preferably 48 to 70, and still more preferably 50 to 65.
- ML 1 + 4, 100 ° C. is set to 43 or more, the wear resistance is further improved.
- ML 1 + 4, 100 ° C. is set to 74 or less, workability is further improved.
- the Mooney viscosity (ML 1 + 4, 100 ° C. ) was measured by the method described in Examples described later.
- Tcp / ML 1 + 4,100 ° C. The ratio (Tcp / ML 1 + 4,100 ° C. ) of the 5 wt% toluene solution viscosity (Tcp) to the Mooney viscosity (ML 1 + 4,100 ° C. ) is 0.9 to 2.3.
- Tcp / ML 1 + 4, 100 ° C. is preferably 1.2 to 1.9, and more preferably 1.4 to 1.7.
- Tcp / ML 1 + 4, 100 ° C. is an index of the degree of branching. If Tcp / ML 1 + 4, 100 ° C. is less than 0.9, the degree of branching is too large and wear resistance is reduced. On the other hand, if Tcp / ML 1 + 4 and 100 ° C.
- the stress relaxation time (T80) until the value is attenuated by 80% is 10.0 to 40.0 seconds.
- T80 is preferably 11.0 to 26.0 seconds, and more preferably 12.0 to 20.0 seconds. If T80 is less than 10.0 seconds, the rubber molecules are less entangled and the shear stress holding force is insufficient, so that it is difficult to obtain a good filler dispersion state. On the other hand, if T80 is longer than 40.0 seconds, the residual stress at the time of forming increases, so that the dimensional stability is inferior and the workability is lowered.
- stress relaxation time (T80) is measured by the method described in the Example mentioned later. The transition of the stress relaxation of rubber is determined by the combination of the elastic component and the viscous component. A slow stress relaxation indicates that there are many elastic components, and a fast stress relaxation indicates that there are many viscous components.
- Mw / Mn Molecular weight distribution (Mw / Mn) is 2.50 to 4.00.
- Mw / Mn is preferably 2.60 to 3.60, and more preferably 2.70 to 3.20. If Mw / Mn is less than 2.50, workability is lowered. On the other hand, if Mw / Mn is larger than 4.00, the wear resistance is lowered.
- the number average molecular weight (Mn), the weight average molecular weight (Mw), and the molecular weight distribution (Mw / Mn) are measured by the method described in the Example mentioned later.
- the weight average molecular weight (Mw) is preferably 40.0 ⁇ 10 4 to 75.0 ⁇ 10 4 , and 46.0 ⁇ 10 4 to 65.0 ⁇ 10 4. More preferably, it is 52.0 ⁇ 10 4 to 62.0 ⁇ 10 4 .
- Mw weight average molecular weight
- the ratio of the cis structure in (F) microstructural analysis is preferably 98 mol% or less, more preferably 94.0 to 97.8 mol%, and more preferably 95.0 to More preferably, it is 97.6 mol%.
- the ratio of the cis structure in the microstructure analysis is 98 mol% or less, it has a sufficient branched polymer chain, and the required stress relaxation time is easily obtained.
- the proportion of the cis structure in the microstructural analysis is too small, the wear resistance tends to decrease.
- the ratio of the microstructure is measured by a method described in Examples described later.
- the toluene solution viscosity (Tcp) is preferably 42 to 160, more preferably 55 to 135, and still more preferably 68 to 120.
- Tcp the toluene solution viscosity
- the wear resistance is further improved.
- Tcp 160 or less workability is further improved.
- the number average molecular weight (Mn) is preferably 12.5 ⁇ 10 4 to 30.0 ⁇ 10 4 , more preferably 16.0 ⁇ 10 4 to 23.0 ⁇ 10 4. Preferably, it is 17.0 ⁇ 10 4 to 20.3 ⁇ 10 4 .
- Mn the number average molecular weight
- the wear resistance is further improved.
- workability improves more by making Mn into 30.0 * 10 ⁇ 4 > or less.
- the proportion of the vinyl structure in the microstructural analysis is preferably 2 mol% or less, and more preferably 1.8 mol% or less.
- the proportion of the vinyl structure in the microstructure analysis is 2 mol% or less, the molecular mobility is improved, and the tan ⁇ of the dynamic viscoelastic property after vulcanization is improved.
- the vinyl structure ratio in the microstructural analysis is preferably as small as possible, but may be, for example, 1.0 mol% or more.
- the proportion of the trans structure in the microstructure analysis is preferably 2.0 mol% or less, more preferably 1.6 mol% or less, and 1.3 mol% or less. Further preferred.
- the ratio of the transformer structure in the microstructure analysis is preferably as small as possible, but may be, for example, 1.0 mol% or more.
- the polybutadiene of the present invention may or may not be modified with disulfur dichloride, monosulfur monochloride, other sulfur compounds, organic peroxides, t-butyl chloride, and the like.
- the polybutadiene of the present invention can be produced by a catalyst system comprising a transition metal catalyst, an organoaluminum compound, and water.
- Cobalt catalysts include cobalt chloride, cobalt bromide, cobalt nitrate, cobalt octylate (ethylhexanoate), cobalt naphthenate, cobalt acetate, cobalt malonate, etc .; cobalt bisacetylacetonate, cobalt trisacetylacetonate And organic base complexes such as acetoacetic acid ethyl ester cobalt, cobalt salt pyridine complex and picoline complex, or ethyl alcohol complex. Of these, octylic acid (ethylhexanoic acid) cobalt is preferable. If a polybutadiene having the above physical properties can be obtained, other catalysts such as a neodymium catalyst and a nickel catalyst can be used.
- the amount of the transition metal catalyst used can be appropriately adjusted so as to obtain a polybutadiene having a desired Mooney viscosity.
- organoaluminum compounds include trialkylaluminum; dialkylaluminum chloride, dialkylaluminum bromide, alkylaluminum sesquichloride, alkylaluminum sesquibromide, alkylaluminum dichloride, alkylaluminum dibromide, and other halogen-containing organoaluminum compounds; dialkylaluminum hydride, alkylaluminum Examples thereof include organic aluminum hydride compounds such as sesquihydrite.
- An organoaluminum compound can be used individually by 1 type, and can also be used together 2 or more types.
- trialkylaluminum examples include trimethylaluminum, triethylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, and tridecylaluminum.
- dialkyl aluminum chloride examples include dimethyl aluminum chloride and diethyl aluminum chloride.
- dialkylaluminum bromide examples include dimethylaluminum bromide and diethylaluminum bromide.
- alkylaluminum sesquichloride examples include methylaluminum sesquichloride and ethylaluminum sesquichloride.
- alkylaluminum sesquibromide examples include methylaluminum sesquibromide and ethylaluminum sesquibromide.
- alkylaluminum dichloride examples include methylaluminum dichloride and ethylaluminum dichloride.
- alkylaluminum dibromide examples include methylaluminum dibromide and ethylaluminum dibromide.
- Examples of didialkylaluminum hydrides include diethylaluminum hydride and diisobutylaluminum hydride.
- Examples of the alkylaluminum sesquihydride include ethylaluminum sesquihydride and isobutylaluminum sesquihydride.
- the mixing ratio of the organoaluminum compound and water is preferably 1.5 to 3 in terms of aluminum / water (molar ratio) because a polybutadiene having a desired T80 is easily obtained. 5 is more preferable.
- non-conjugated dienes such as cyclooctadiene, allene, and methylallene (1,2-butadiene); ⁇ -olefins such as ethylene, propylene, and 1-butene are used.
- a molecular weight regulator can also be used. Can be used. A molecular weight regulator can be used individually by 1 type, and can also be used together 2 or more types.
- the polymerization method is not particularly limited, and bulk polymerization (bulk polymerization) in which monomers are polymerized using a conjugated diene compound monomer such as 1,3-butadiene as a polymerization solvent, or solution polymerization in which monomers are dissolved in a solvent. Etc. can be applied.
- Solvents used in the solution polymerization include aromatic hydrocarbons such as toluene, benzene and xylene; saturated aliphatic hydrocarbons such as n-hexane, butane, heptane and pentane; alicyclic hydrocarbons such as cyclopentane and cyclohexane; Examples include olefinic hydrocarbons such as cis-2-butene and trans-2-butene; petroleum solvents such as mineral spirits, solvent naphtha, and kerosene; halogenated hydrocarbons such as methylene chloride. Of these, toluene, cyclohexane, or a mixed solvent of cis-2-butene and trans-2-butene is preferably used.
- the polymerization temperature is preferably in the range of ⁇ 30 to 150 ° C., more preferably in the range of 30 to 100 ° C., and more preferably 70 to 80 ° C. because polybutadiene having a desired T80 can be easily obtained.
- the polymerization time is preferably in the range of 1 minute to 12 hours, and more preferably in the range of 5 minutes to 5 hours.
- Anti-aging agents include phenol-based anti-aging agents such as 2,6-di-t-butyl-p-cresol (BHT), phosphorus-based anti-aging agents such as trinonylphenyl phosphite (TNP), and 4,6 And sulfur-based antioxidants such as bis (octylthiomethyl) -o-cresol and dilauryl-3,3′-thiodipropionate (TPL).
- BHT 2,6-di-t-butyl-p-cresol
- TNP trinonylphenyl phosphite
- sulfur-based antioxidants such as bis (octylthiomethyl) -o-cresol and dilauryl-3,3′-thiodipropionate (TPL).
- One type of anti-aging agent can be used alone, or two or more types can be used in combination.
- the addition amount of the antioxidant is preferably 0.001 to 5 parts by weight with respect to 100 parts by weight of polybut
- the inside of the polymerization tank is released as necessary, and further post-treatment such as washing and drying steps is performed, whereby polybutadiene having desired characteristics can be produced.
- the polybutadiene (a) of the present invention is preferably a rubber composition to which other rubber (b) and rubber reinforcing material (c) are added.
- This rubber composition can be used not only for tire applications such as treads, sidewalls, and chafers, but also for applications other than tires such as anti-vibration rubber, belts, hoses, seismic isolation rubber, rubber crawlers and footwear members. .
- a diene rubber other than polybutadiene having the above characteristics can be used.
- diene rubbers other than polybutadiene having the above characteristics include polybutadiene rubber, natural rubber, high cis polybutadiene rubber, low cis polybutadiene rubber (BR), syndiotactic-1,2-polybutadiene-containing butadiene rubber not having the above characteristics ( VCR), polymers of diene monomers such as isoprene rubber, butyl rubber and chloroprene rubber; acrylonitrile-diene copolymer rubbers such as acrylonitrile butadiene rubber (NBR), nitrile chloroprene rubber and nitrile isoprene rubber; emulsion polymerization or solution polymerization styrene butadiene rubber (SBR), styrene-diene copolymer rubbers such as styrene chloroprene rubber and
- butadiene rubber natural rubber, syndiotactic-1,2-polybutadiene-containing butadiene rubber, isoprene rubber, acrylonitrile butadiene rubber, and styrene butadiene rubber that do not have the above properties are preferable.
- solution polymerized styrene butadiene rubber s-SBR
- natural rubber natural rubber
- isoprene rubber acrylonitrile butadiene rubber
- styrene butadiene rubber acrylonitrile butadiene rubber
- styrene butadiene rubber that do not have the above properties
- s-SBR solution polymerized styrene butadiene rubber
- Other rubber components (b) can be used alone or in combination of two or more.
- Rubber reinforcing materials (c) include inorganic reinforcing materials such as carbon black, white carbon (silica), activated calcium carbonate, ultrafine magnesium silicate; polyethylene resin, polypropylene resin, high styrene resin, phenol resin, lignin, modified melamine Examples thereof include organic reinforcing materials such as resins, coumarone indene resins and petroleum resins. Of these, carbon black or silica is preferable.
- a rubber reinforcing material can be used individually by 1 type, and can also be used together 2 or more types.
- Examples of carbon black include FEF, FF, GPF, SAF, ISAF, SRF, and HAF. From the viewpoint of improving wear resistance, ISAF having a small particle diameter is preferable.
- the average particle size of carbon black is preferably 15 nm or more and 90 nm or less. It is preferable that the carbon black has a dibutyl phthalate (DBP) oil absorption of 70 ml / 100 g or more and 140 ml / 100 g or less.
- Examples of silica include Nipsil VN3 (trade name, manufactured by Tosoh Silica Corporation), Ultrasil 7000GR (trade name, manufactured by Evonik Degussa).
- the blending ratio of the above ingredients is 5 to 90 parts by weight of the polybutadiene (b) of the present invention and 95 to 10 parts by weight of the other rubber (b) and 100 parts by weight of the rubber component (b) + (b).
- the rubber reinforcing material (c) is preferably 1 to 100 parts by weight.
- the rubber component (A) + (B) is more preferably composed of 10 to 60 parts by weight of polybutadiene (A) and 90 to 40 parts by weight of other rubber (B), and 20 to 40 parts by weight of polybutadiene (A). And 80 to 60 parts by weight of other rubber (b).
- the rubber reinforcing material (c) is more preferably 30 to 90 parts by weight, and still more preferably 50 to 80 parts by weight with respect to 100 parts by weight of the rubber component (b) + (b).
- the rubber composition can be obtained by kneading each of the above components using a conventional Banbury, open roll, kneader, biaxial kneader or the like.
- silane coupling agents for rubber compositions, silane coupling agents, vulcanizing agents, vulcanization accelerators, anti-aging agents, fillers, process oils, zinc white, stearic acid, etc., which are usually used in the rubber industry as needed May be kneaded.
- silane coupling agent a silane coupling agent having a functional group capable of reacting with the polybutadiene (i) or other rubber component (b) of the present invention is particularly preferable.
- a silane coupling agent can also be used individually by 1 type, and can also be used together 2 or more types.
- vulcanizing agent known vulcanizing agents such as sulfur, organic peroxides, resin vulcanizing agents, metal oxides such as magnesium oxide, and the like are used.
- One vulcanizing agent can be used alone, or two or more vulcanizing agents can be used in combination.
- vulcanization accelerator known vulcanization aids such as aldehydes, ammonia, amines, guanidines, thioureas, thiazoles, thiurams, dithiocarbamates and xanthates are used.
- a vulcanization accelerator can be used individually by 1 type, and can also be used together 2 or more types.
- anti-aging agent examples include amine / ketone anti-aging agents, imidazole anti-aging agents, amine anti-aging agents, phenol anti-aging agents, sulfur anti-aging agents, and phosphorus anti-aging agents.
- One type of anti-aging agent can be used alone, or two or more types can be used in combination.
- filler examples include inorganic fillers such as calcium carbonate, basic magnesium carbonate, clay, Lissajous and diatomaceous earth; and organic fillers such as recycled rubber and powder rubber.
- a filler can be used individually by 1 type and can also be used together 2 or more types.
- any of an aromatic process oil, a naphthenic process oil, and a paraffinic process oil may be used. Further, low molecular weight liquid polybutadiene or tackifier may be used.
- One process oil can be used alone, or two or more process oils can be used in combination.
- Tcp 5% by weight toluene solution viscosity (Tcp)
- Tcp 5 wt% toluene solution viscosity (Tcp) of polybutadiene was obtained by dissolving 2.28 g of polymer in 50 ml of toluene, 400 was measured at 25 ° C.
- a viscometer calibration standard solution JIS Z8809
- Mooney viscosity (ML 1 + 4, 100 ° C ) The Mooney viscosity (ML 1 + 4, 100 ° C. ) of the polybutadiene and the blend was measured at 100 ° C. according to JIS-K6300. In addition, about ML 1 + 4,100 degreeC of a compound, the index
- Stress relaxation time (T80) The stress relaxation time (T80) of the polybutadiene and the blend was calculated by stress relaxation measurement according to ASTM D1646-7. Specifically, under the measurement condition of ML 1 + 4, 100 ° C. , the torque when the rotor stops after 4 minutes of measurement (0 second) is set to 100%, and the value is attenuated to 80% (ie, attenuates to 20%). ) (Unit: second) was measured as stress relaxation time T80.
- the number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of polybutadiene were calculated by standard polystyrene conversion by GPC method (trade name: HLC-8220, manufactured by Tosoh Corporation). Tetrahydrofuran was used as the solvent, two KF-805L (trade name) manufactured by Shodex were connected in series, and a suggestive refractometer (RI) was used as the detector.
- microstructure of polybutadiene was calculated by infrared absorption spectrum analysis. Specifically, the peak position derived from the microstructure (cis: 740cm -1, vinyl: 910cm -1, trans: 967cm -1) from the absorption intensity ratio was calculated microstructure of the polymer.
- Example 1 In a 1.5 L stainless steel reactor equipped with a stirrer, the content was replaced with nitrogen gas. 1.0 L of a polymerization solution (butadiene (BD): 34.2% by weight, cyclohexane (CH): 31.2% by weight, the rest) 2-butenes).
- BD butadiene
- CH cyclohexane
- a rubber composition containing styrene butadiene rubber was produced using the obtained polybutadiene. Specifically, first, 30 parts by weight of polybutadiene and 70 parts by weight of styrene butadiene rubber (SBR) were set at a temperature of 90 ° C. and a rotational speed of 68 rpm. BR-250) for 30 seconds. Then, 32.5 parts by weight of silica (Evonik Degussa, trade name: Ultrasil 7000GR), which is half the prescribed amount, and 5.2 parts by weight of a silane coupling agent (Evonik Degussa, trade name: si75). ).
- silica Engelnik Degussa, trade name: Ultrasil 7000GR
- the obtained kneaded product was cooled and allowed to cool with a 6-inch roll, and then re-milled again. Further, 1.7 parts by weight of the first vulcanization accelerator (manufactured by Ouchi Shinsei Co., Ltd., trade name: Noxeller CZ (CBS)) and 2 parts by weight of the second vulcanization accelerator (large Inner Emerging Company, trade name: Noxeller D (DPG)) and 1.4 parts by weight of vulcanizing agent (powder sulfur, manufactured by Tsurumi Chemical Co., Ltd.) are mixed by a 6-inch roll to produce a compound. did.
- the physical properties (Mooney viscosity) of the blend are shown in Table 1.
- the rubber composition was produced by putting the obtained compound into a metal mold
- the vulcanization time was twice as long as the vulcanization characteristic t90 at 160 ° C. obtained with a viscoelasticity measuring apparatus (trade name: RPA2000, manufactured by Alpha Technologies).
- Table 1 shows the physical properties (Lambourn wear coefficient) of the rubber composition obtained.
- Examples 2 to 9 The same procedure as in Example 1 was performed except that the raw material mixing ratio and the polymerization temperature were changed as shown in Table 2. The results are shown in Table 1. In Examples 7 and 8, triethylaluminum (TEA) was not used.
- TAA triethylaluminum
- Example 1 The same operation as in Example 1 was performed except that a commercially available polybutadiene (manufactured by Ube Industries, trade name: BR150L) was used. The results are shown in Table 1.
- Example 2 The same operation as in Example 1 was performed except that a commercially available polybutadiene (manufactured by Ube Industries, trade name: BR150B) was used. The results are shown in Table 1.
- Example 3 The same procedure as in Example 1 was performed except that trial polybutadiene was used. The results are shown in Table 1.
- Example 4 The same operation as in Example 1 was performed except that a commercially available polybutadiene (manufactured by Ube Industries, trade name: BR710) was used. The results are shown in Table 1.
- a vulcanization accelerator manufactured by Ouchi Shinsei Co., Ltd., trade name: Noxeller NS
- a vulcanizing agent prowder sulfur, Tsurumi Chemical Co., Ltd.
- Table 3 shows the physical properties (Mooney viscosity) of the blend.
- the rubber composition was produced by putting the obtained compound into a metal mold
- the vulcanization time was twice as long as the vulcanization characteristic t90 at 150 ° C. obtained with a viscoelasticity measuring device (trade name: RPA2000, manufactured by Alpha Technologies).
- Table 3 shows the physical properties (Lambourn wear coefficient) of the rubber composition obtained.
- Example 11 to 14 The same operation as in Example 10 was performed except that the polybutadiene obtained in Examples 3 and 7 to 9 was used. The results are shown in Table 3.
- the polybutadiene of the present invention has improved processability and wear resistance, it can be blended with a rubber composition to provide tires, anti-vibration rubber, belts, hoses, seismic isolation rubber, rubber crawlers and footwear members. Etc. can be used.
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Vibration Prevention Devices (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Tires In General (AREA)
Abstract
Description
(A)ムーニー粘度(ML1+4,100℃)が43以上、
(B)5重量%トルエン溶液粘度(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/ML1+4,100℃)が0.9~2.3、
(C)ML1+4,100℃測定終了時のトルクを100%としたとき、その値が80%減衰するまでの応力緩和時間(T80)が10.0~40.0秒、及び
(D)分子量分布(Mw/Mn)が2.50~4.00
の条件を満たす。
(E)重量平均分子量(Mw)が40.0×104~75.0×104、及び
(F)ミクロ構造分析におけるシス構造の割合が98モル%以下
の条件を満たすことが好ましい。
本発明のポリブタジエンは、以下の特性を有する。
本発明のポリブタジエンは、遷移金属触媒、有機アルミニウム化合物、及び水からなる触媒系により製造できる。
本発明のポリブタジエン(イ)は、その他のゴム(ロ)及びゴム補強材(ハ)を添加したゴム組成物とすることが好適である。このゴム組成物は、トレッド、サイドウォール、及びチェーファーなどのタイヤ用途だけでなく、防振ゴム、ベルト、ホース、免震ゴム、ゴムクローラ及び履物部材などのタイヤ以外の用途に用いることができる。
ポリブタジエンの5重量%トルエン溶液粘度(Tcp)は、ポリマー2.28gをトルエン50mlに溶解させた後、キャノンフェンスケ粘度計No.400を用いて25℃で測定した。なお、標準液としては、粘度計校正用標準液(JIS Z8809)を用いた。
ポリブタジエン及び配合物のムーニー粘度(ML1+4,100℃)は、JIS-K6300に準拠して100℃にて測定した。なお、配合物のML1+4,100℃については、比較例1又は比較例5を100とした指数を算出した(指数が大きいほど配合物のML1+4,100℃が小さく、加工性が良好となる)。
ポリブタジエン及び配合物の応力緩和時間(T80)は、ASTM D1646-7に準じた応力緩和測定により算出した。具体的には、ML1+4,100℃の測定条件下、測定4分後にローターが停止した時(0秒)のトルクを100%とし、その値が80%緩和するまで(すなわち20%に減衰するまで)の時間(単位:秒)を応力緩和時間T80として測定した。
ポリブタジエンの数平均分子量(Mn)、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)は、GPC法(東ソー社製、商品名:HLC-8220)により、標準ポリスチレン換算により算出した。溶媒はテトラヒドロフランを用い、カラムはShodex製KF-805L(商品名)を2本直列に接続し、検出器は示唆屈折計(RI)を用いた。
ポリブタジエンのミクロ構造は、赤外吸収スペクトル分析によって算出した。具体的には、ミクロ構造に由来するピーク位置(cis:740cm-1、vinyl:910cm-1、trans:967cm-1)の吸収強度比から、ポリマーのミクロ構造を算出した。
ゴム組成物の耐摩耗性の指標として、JIS-K6264に準拠したランボーン摩耗係数を、スリップ率20%で測定し、比較例1又は比較例5を100とした指数を算出した(指数が大きいほどランボーン摩耗係数が大きく、耐摩耗性が良好となる)。
窒素ガスで置換した内容1.5Lの撹拌機つきステンレス製反応槽中に、重合溶液1.0L(ブタジエン(BD):34.2重量%、シクロヘキサン(CH):31.2重量%、残りは2-ブテン類)を投入した。さらに、水(H2O)1.52mmol、ジエチルアルミニウムクロライド(DEAC)2.08mmol、トリエチルアルミニウム(TEA)0.52mmol、(全アルミニウム/水=1.71(混合モル比))、コバルトオクトエート(Cocat)20.94μmol、及びシクロオクタジエン(COD)6.05mmolを加え、72℃で20分間撹拌することで、1,4シス重合を行った。その後、4,6-ビス(オクチルチオメチル)-o-クレゾールを含むエタノールを加えて重合を停止し、未反応のブタジエン及び2-ブテン類を蒸発除去することで、ポリブタジエンを得た。その物性を表1に示す。
原料配合比及び重合温度を表2のように変更したこと以外は、実施例1と同様に実施した。結果を表1に示す。なお、実施例7及び8では、トリエチルアルミニウム(TEA)を使用しなかった。
市販のポリブタジエン(宇部興産社製、商品名:BR150L)を用いたこと以外は、実施例1と同様に実施した。結果を表1に示す。
市販のポリブタジエン(宇部興産社製、商品名:BR150B)を用いたこと以外は、実施例1と同様に実施した。結果を表1に示す。
試作ポリブタジエンを用いたこと以外は、実施例1と同様に実施した。結果を表1に示す。
市販のポリブタジエン(宇部興産社製、商品名:BR710)を用いたこと以外は、実施例1と同様に実施した。結果を表1に示す。
実施例1で得られたポリブタジエンを用いて天然ゴムを含むゴム組成物を作製した。具体的には、まず、50重量部のポリブタジエンと、50重量部の天然ゴム(RSS#1;ML1+4,100℃=70に調整)とを、温度90℃、回転数68rpmに設定したラボプラストミル(東洋精機製作所社製、商品名:BR-250型)を用いて60秒間混合した。その後、50重量部のカーボンブラック(ISAF)と、3重量部のオイル(H&R社製、商品名:VivaTec400)と、3重量部のZnO(堺化学工業社製、商品名:Sazex1号)と、2重量部のステアリン酸(旭電化社製、商品名:アデカ脂肪酸SA-300)と、2重量部の酸化防止剤(住友化学社製、商品名:アンチゲン6C)とを投入し、計4分間混練した。
実施例3及び7~9で得られたポリブタジエンを用いたこと以外は、実施例10と同様に実施した。結果を表3に示す。
比較例1、2、及び4で用いたポリブタジエンを用いたこと以外は、実施例10と同様に実施した。結果を表3に示す。
Claims (3)
- (A)ムーニー粘度(ML1+4,100℃)が43以上、
(B)5重量%トルエン溶液粘度(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/ML1+4,100℃)が0.9~2.3、
(C)ML1+4,100℃測定終了時のトルクを100%としたとき、その値が80%減衰するまでの応力緩和時間(T80)が10.0~40.0秒、及び
(D)分子量分布(Mw/Mn)が2.50~4.00
の条件を満たすポリブタジエン。 - さらに、
(E)重量平均分子量(Mw)が40.0×104~75.0×104、及び
(F)ミクロ構造分析におけるシス構造の割合が98モル%以下
の条件を満たす請求項1に記載のポリブタジエン。 - コバルト触媒を用いて製造されたものである請求項1又は2に記載のポリブタジエン。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580015168.2A CN106103505B (zh) | 2014-03-31 | 2015-02-19 | 聚丁二烯 |
US15/300,766 US9676881B2 (en) | 2014-03-31 | 2015-02-19 | Polybutadiene |
JP2015525334A JP5928660B2 (ja) | 2014-03-31 | 2015-02-19 | ポリブタジエン及びその製造方法 |
MYPI2016001621A MY174801A (en) | 2014-03-31 | 2015-02-19 | Polybutadiene |
EP15772497.2A EP3106479B1 (en) | 2014-03-31 | 2015-02-19 | Polybutadiene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-071188 | 2014-03-31 | ||
JP2014071188 | 2014-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015151625A1 true WO2015151625A1 (ja) | 2015-10-08 |
Family
ID=54239961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054521 WO2015151625A1 (ja) | 2014-03-31 | 2015-02-19 | ポリブタジエン |
Country Status (7)
Country | Link |
---|---|
US (1) | US9676881B2 (ja) |
EP (1) | EP3106479B1 (ja) |
JP (2) | JP5928660B2 (ja) |
CN (1) | CN106103505B (ja) |
MY (1) | MY174801A (ja) |
TW (1) | TWI554535B (ja) |
WO (1) | WO2015151625A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180134080A1 (en) * | 2016-11-16 | 2018-05-17 | Sumitomo Rubber Industries, Ltd. | Rubber composition for treads and pneumatic tire |
JPWO2017056767A1 (ja) * | 2015-09-30 | 2018-07-19 | 住友ゴム工業株式会社 | 空気入りタイヤ |
US20180258263A1 (en) * | 2017-03-08 | 2018-09-13 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tires and pneumatic tire |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017066176A (ja) * | 2015-09-28 | 2017-04-06 | 宇部興産株式会社 | ベルト用ゴム組成物、及びゴムベルト |
JP6645093B2 (ja) * | 2015-09-28 | 2020-02-12 | 宇部興産株式会社 | ゴルフボール用ゴム組成物、及びゴルフボール |
JP2017066175A (ja) * | 2015-09-28 | 2017-04-06 | 宇部興産株式会社 | 防振ゴム組成物、及び防振ゴム |
WO2019043929A1 (ja) * | 2017-09-01 | 2019-03-07 | 宇部興産株式会社 | ポリブタジエンゴム |
US11584808B2 (en) | 2019-12-30 | 2023-02-21 | Bridgestone Corporation | Polymerization catalyst composition and method of employing same |
CN111876017A (zh) * | 2020-09-02 | 2020-11-03 | 赵俊 | 一种疏水耐磨型环保油墨及其制备方法和应用 |
CN118696068A (zh) * | 2022-04-08 | 2024-09-24 | 阿朗新科德国有限责任公司 | 支化的改性二烯橡胶 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05194658A (ja) * | 1991-10-22 | 1993-08-03 | Ube Ind Ltd | ポリブタジエンゴム及びその組成物 |
JPH10298229A (ja) * | 1997-04-30 | 1998-11-10 | Ube Ind Ltd | ポリブタジエンの製造方法 |
JP2004263094A (ja) * | 2003-03-03 | 2004-09-24 | Ube Ind Ltd | ゴム組成物 |
JP2005154754A (ja) * | 2003-11-06 | 2005-06-16 | Ube Ind Ltd | 油展ポリブタジエン及びゴム組成物 |
JP2010163590A (ja) * | 2008-12-19 | 2010-07-29 | Ube Ind Ltd | 共役ジエン重合体の製造方法、ポリブタジエンおよびそれを用いたゴム組成物 |
JP2011079954A (ja) * | 2009-10-07 | 2011-04-21 | Ube Industries Ltd | シス−1,4−ポリブタジエンの製造方法および組成物 |
JP2012097271A (ja) * | 2011-12-26 | 2012-05-24 | Bridgestone Corp | 新規な官能化剤を用いて製造した官能化高シス−1,4−ポリブタジエン |
JP2013227524A (ja) * | 2012-03-30 | 2013-11-07 | Ube Industries Ltd | ビニル・シス−ポリブタジエンの製造方法及びそれによって得られたビニル・シス−ポリブタジエン |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0816398B1 (en) * | 1996-06-28 | 2002-08-14 | Ube Industries, Ltd. | Process for producing polybutadiene |
MY139537A (en) * | 2002-06-24 | 2009-10-30 | Ube Industries | Process of producing conjugated diene polymer |
JP4123019B2 (ja) | 2002-11-11 | 2008-07-23 | 宇部興産株式会社 | シス−1,4−ポリブタジエンおよびその製造方法 |
JP2004339467A (ja) | 2003-04-21 | 2004-12-02 | Ube Ind Ltd | タイヤ用ポリブタジエン組成物 |
MY140477A (en) | 2006-01-16 | 2009-12-31 | Ube Industries | Rubber composition for tire and tire |
CN101534908B (zh) * | 2006-12-20 | 2010-10-13 | 宇部兴产株式会社 | 高尔夫球用橡胶组合物和高尔夫球 |
EP2311889A1 (de) * | 2009-10-16 | 2011-04-20 | LANXESS Deutschland GmbH | Neodym-katalysierte Polybutadiene |
JP5603094B2 (ja) * | 2010-02-12 | 2014-10-08 | 山下ゴム株式会社 | 防振ゴム組成物 |
JP5938915B2 (ja) * | 2011-10-05 | 2016-06-22 | 宇部興産株式会社 | ポリブタジエンゴムの製造方法 |
-
2015
- 2015-02-19 JP JP2015525334A patent/JP5928660B2/ja active Active
- 2015-02-19 US US15/300,766 patent/US9676881B2/en active Active
- 2015-02-19 WO PCT/JP2015/054521 patent/WO2015151625A1/ja active Application Filing
- 2015-02-19 CN CN201580015168.2A patent/CN106103505B/zh active Active
- 2015-02-19 MY MYPI2016001621A patent/MY174801A/en unknown
- 2015-02-19 EP EP15772497.2A patent/EP3106479B1/en active Active
- 2015-03-24 TW TW104109340A patent/TWI554535B/zh active
-
2016
- 2016-04-22 JP JP2016085655A patent/JP5994956B1/ja not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05194658A (ja) * | 1991-10-22 | 1993-08-03 | Ube Ind Ltd | ポリブタジエンゴム及びその組成物 |
JPH10298229A (ja) * | 1997-04-30 | 1998-11-10 | Ube Ind Ltd | ポリブタジエンの製造方法 |
JP2004263094A (ja) * | 2003-03-03 | 2004-09-24 | Ube Ind Ltd | ゴム組成物 |
JP2005154754A (ja) * | 2003-11-06 | 2005-06-16 | Ube Ind Ltd | 油展ポリブタジエン及びゴム組成物 |
JP2010163590A (ja) * | 2008-12-19 | 2010-07-29 | Ube Ind Ltd | 共役ジエン重合体の製造方法、ポリブタジエンおよびそれを用いたゴム組成物 |
JP2011079954A (ja) * | 2009-10-07 | 2011-04-21 | Ube Industries Ltd | シス−1,4−ポリブタジエンの製造方法および組成物 |
JP2012097271A (ja) * | 2011-12-26 | 2012-05-24 | Bridgestone Corp | 新規な官能化剤を用いて製造した官能化高シス−1,4−ポリブタジエン |
JP2013227524A (ja) * | 2012-03-30 | 2013-11-07 | Ube Industries Ltd | ビニル・シス−ポリブタジエンの製造方法及びそれによって得られたビニル・シス−ポリブタジエン |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017056767A1 (ja) * | 2015-09-30 | 2018-07-19 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP2021073345A (ja) * | 2015-09-30 | 2021-05-13 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP7140212B2 (ja) | 2015-09-30 | 2022-09-21 | 住友ゴム工業株式会社 | 空気入りタイヤ |
JP7283860B2 (ja) | 2015-09-30 | 2023-05-30 | 住友ゴム工業株式会社 | 空気入りタイヤ |
US20180134080A1 (en) * | 2016-11-16 | 2018-05-17 | Sumitomo Rubber Industries, Ltd. | Rubber composition for treads and pneumatic tire |
EP3323630A1 (en) * | 2016-11-16 | 2018-05-23 | Sumitomo Rubber Industries, Ltd. | Rubber composition for treads and pneumatic tire |
US10639933B2 (en) * | 2016-11-16 | 2020-05-05 | Sumitomo Rubber Industries, Ltd. | Rubber composition for treads and pneumatic tire |
US20180258263A1 (en) * | 2017-03-08 | 2018-09-13 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tires and pneumatic tire |
Also Published As
Publication number | Publication date |
---|---|
JP5928660B2 (ja) | 2016-06-01 |
JPWO2015151625A1 (ja) | 2017-04-13 |
TWI554535B (zh) | 2016-10-21 |
US20170015766A1 (en) | 2017-01-19 |
CN106103505B (zh) | 2019-04-05 |
MY174801A (en) | 2020-05-15 |
JP2016172862A (ja) | 2016-09-29 |
JP5994956B1 (ja) | 2016-09-21 |
EP3106479B1 (en) | 2018-06-13 |
EP3106479A1 (en) | 2016-12-21 |
TW201540736A (zh) | 2015-11-01 |
US9676881B2 (en) | 2017-06-13 |
CN106103505A (zh) | 2016-11-09 |
EP3106479A4 (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5994956B1 (ja) | 防振ゴム、ベルト、ホース又は履物部材用ゴム組成物 | |
JP6114467B2 (ja) | タイヤ用ゴム組成物 | |
KR101339380B1 (ko) | 타이어용 고무 조성물 및 타이어 | |
JP6601594B2 (ja) | ポリブタジエンゴム | |
CN108070123B (zh) | 用于胎面的橡胶组合物和充气轮胎 | |
JP2018090820A (ja) | ポリブタジエン及びそれを用いたゴム組成物 | |
JP2018083932A (ja) | トレッド用ゴム組成物及び空気入りタイヤ | |
JP2017066175A (ja) | 防振ゴム組成物、及び防振ゴム | |
JP6645093B2 (ja) | ゴルフボール用ゴム組成物、及びゴルフボール | |
JP2022001647A (ja) | ゴム組成物及びその製造方法 | |
JP2017179117A (ja) | ポリブタジエンゴム及びその製造方法、並びにそれを用いたゴム組成物 | |
JP2017066176A (ja) | ベルト用ゴム組成物、及びゴムベルト | |
WO2019043930A1 (ja) | タイヤ用ゴム組成物 | |
WO2020116367A1 (ja) | ポリブタジエン、及びその製造方法 | |
JP2019218504A (ja) | ベーストレッドおよび空気入りタイヤ | |
JP5982873B2 (ja) | ポリブタジエンゴムおよびその製造方法 | |
JP2022001617A (ja) | 共役ジエン重合体組成物、及びその製造方法 | |
JP2019218503A (ja) | サイドウォールおよび空気入りタイヤ | |
JP2022024204A (ja) | ポリブタジエンの製造方法 | |
JP2019218505A (ja) | 重荷重タイヤ用キャップトレッドおよび空気入りタイヤ | |
WO2020054707A1 (ja) | ゴム組成物及びタイヤ | |
JP2019218502A (ja) | キャップトレッドおよび空気入りタイヤ | |
JP2018158964A (ja) | ポリブタジエン、ポリブタジエンゴム、ゴム組成物、タイヤ用ゴム組成物、タイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015525334 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15772497 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015772497 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015772497 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15300766 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |