WO2015145773A1 - 熱交換器用フィンの製造装置 - Google Patents

熱交換器用フィンの製造装置 Download PDF

Info

Publication number
WO2015145773A1
WO2015145773A1 PCT/JP2014/059355 JP2014059355W WO2015145773A1 WO 2015145773 A1 WO2015145773 A1 WO 2015145773A1 JP 2014059355 W JP2014059355 W JP 2014059355W WO 2015145773 A1 WO2015145773 A1 WO 2015145773A1
Authority
WO
WIPO (PCT)
Prior art keywords
cut
punch
punches
current value
heat exchanger
Prior art date
Application number
PCT/JP2014/059355
Other languages
English (en)
French (fr)
Inventor
正直 柄澤
博文 馬場
利幸 七嵐
Original Assignee
日高精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日高精機株式会社 filed Critical 日高精機株式会社
Priority to KR1020167019368A priority Critical patent/KR101840727B1/ko
Priority to CN201480077644.9A priority patent/CN106132581B/zh
Priority to JP2016509863A priority patent/JP6166840B2/ja
Priority to US15/109,485 priority patent/US9987673B2/en
Priority to PCT/JP2014/059355 priority patent/WO2015145773A1/ja
Publication of WO2015145773A1 publication Critical patent/WO2015145773A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/022Making the fins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/002Drive of the tools

Definitions

  • the present invention relates to a fin manufacturing apparatus used for a heat exchanger.
  • a heat exchanger such as a cooler is configured by laminating a plurality of heat exchanger fins each having a plurality of through holes into which heat exchange tubes are inserted.
  • Such heat exchanger fins are manufactured by the heat exchanger fin manufacturing apparatus shown in FIG.
  • the heat exchanger fin manufacturing apparatus is provided with an uncoiler 12 in which a thin metal plate (metal strip) 10 such as aluminum is wound in a coil shape.
  • the metal strip 10 drawn out from the uncoiler 12 through the pinch roll 14 is inserted into the oil applying device 16, processing oil is adhered to the surface thereof, and supplied to the mold 20 provided in the press device 18. .
  • the mold 20 includes an upper die set 22 that can move up and down and a lower die set 24 that is stationary.
  • the upper die set 22 is provided with a plurality of punches along the transfer direction of the metal strip 10.
  • the lower die set 24 is provided with a die at each position facing the plurality of punches of the upper die set 22.
  • a feeding device 8 and an inter-row slit device 9 are provided on the downstream side of the mold device 20.
  • the feeding device 8 inserts a feeding pin into the through hole of the metal strip 10 and pulls the metal strip to intermittently feed.
  • the metal strip 10 in which the through-hole was formed is cut
  • the metal strip 10 thus formed is transported by a predetermined distance in a predetermined direction, then cut to a predetermined length by the cut-off device 26, and then accommodated in the stacker 28.
  • the through-hole provided in the metal strip 10 as a product accommodated in the stacker 28 is a place where a heat exchange tube of a heat exchanger such as a cooler to be finally accommodated is inserted.
  • a heat exchange tube of a heat exchanger such as a cooler to be finally accommodated is inserted.
  • Various numbers of through holes are desired depending on the configuration of a heat exchanger such as a cooler to be accommodated.
  • the feeding device is controlled to send the length of five through holes at a time in the conveying direction.
  • the feeding device is controlled to send the length of five through holes at a time in the conveying direction.
  • five punches having the same shape and five dies corresponding thereto are arranged along the transport direction.
  • the feeding device is controlled so as to feed the formed five through holes at a time in the conveying direction.
  • the length of the five through holes is sent to the cut-off device by the feeding device, the length of the five through holes by the one time feeding device Will be cut off after being sent.
  • the metal strip after the through holes are formed is slackened in front of the cutoff device (reference numeral B in FIG. 12).
  • the feed amount and the number of through holes of the product are different as described above, in addition to the method of sagging the metal strip in front of the cutoff device, the feed amount is made smaller than the number of punches, and 1 A method of hitting the punch twice with respect to one (or a plurality) of already formed through holes is also conceivable.
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to adjust the number of punches and the number of through holes or notches in an actual product by slacking a metal strip or punching.
  • An object of the present invention is to provide a heat exchanger fin manufacturing apparatus that can be executed without being hit twice.
  • a metal die is formed by pressing a plurality of through holes or a plurality of notches on a metal thin plate, and a plurality of through holes.
  • the mold in a heat exchanger fin manufacturing apparatus comprising a cut-off device that cuts a metal strip having a plurality of cutout portions into a predetermined length, the mold includes a metal strip along a conveying direction of the metal strip. A plurality of punches and dies for forming a plurality of through-holes or a plurality of notches are provided, and a feeding device is provided for feeding the formed plurality of through-holes or notches in the conveying direction by a single feeding operation.
  • the cut-off device is provided with cut-off punches having the same number of punches and dies as the number of punches and dies along the conveying direction of the metal strip, and a cut-off punch driving unit for individually operating the cut-off punches.
  • a cut-off punch driving unit for individually operating the cut-off punches.
  • the metal strip is formed by any one of the cut-off punches based on the number of feed operations of the feed device. It is characterized in that a control unit for controlling whether to cut the cut punch punch is controlled.
  • the interval between the cut-off punches along the conveying direction is an interval that is an integer multiple of one or more of the interval between the punch and the die along the conveying direction, and the punch along the conveying direction.
  • the distance may be smaller than the entire distance of the die.
  • the control unit cuts off the most upstream side from the mold closing after the mold is closed once. Add the total distance between the punch and die along the transport direction to the number of through-holes or notches extending downstream from the punch to the downstream side from the current most upstream cut-off punch A current value that is the number of through-holes or notches extending toward the center is calculated, the current value is compared with the predetermined number, and the mold is used until the current value is equal to or greater than the predetermined number.
  • the difference obtained by subtracting the predetermined number from the current value is calculated at intervals between the cut-off punches along the conveyance direction. Divide, and if the remainder is 0, the number of quotients If the value is 0, the cut-off punch on the most upstream side is driven, and every time the number of quotients increases, the cut-off punch on the downstream side is driven one by one from the most upstream side, and any one of the cut-off punches is driven.
  • the current value is subtracted from the actual position, such as 0 on the most upstream side and 1 on the downstream side, with the position number of the cut-off punch from the most upstream at the interval between the cut-off punches.
  • the product obtained by multiplying each numerical value by the mutual interval along the conveyance direction of each cut-off punch is used as the current value, and then the current value is compared with the predetermined number, so that the current value is equal to or greater than the predetermined number.
  • the process returns to the step of repeatedly performing mold closing with the mold until the current value is divided, and if the remainder is other than 0, the current value is compared with the predetermined number, and the current value is greater than or equal to the predetermined number. Until the mold is closed It may be characterized by returning to the step of running.
  • FIG. 3A is a plan view of a flat tube fin.
  • FIG. 3B is a side view of the flat tube fin.
  • FIG. 1 shows a schematic configuration of an entire heat exchanger fin manufacturing apparatus according to the present invention.
  • the heat exchanger fin manufacturing apparatus 30 described below is an example of a manufacturing apparatus for manufacturing a flat tube fin in which a notch is formed.
  • An unprocessed metal thin plate 41 such as aluminum is wound around an uncoiler 40 in a coil shape.
  • the metal thin plate 41 is pulled out from the uncoiler 40 by a feeding device (not shown) and introduced into the press device 48.
  • a mold device 46 is disposed inside the press device 48.
  • the thin plate 41 is formed into a metal strip 49 having a predetermined shape by the mold device 46.
  • a cut-off device 60 is provided on the downstream side of the press device 48.
  • the metal strip 49 formed into a predetermined shape is cut into a predetermined length by the cut-off device 60, and the flat tube fin 29 as a product is manufactured.
  • a stack device for stacking the manufactured flat tube fins 29 is provided on the downstream side of the cut-off device 60, but the illustration and description of the stack device are omitted in FIG.
  • a metal strip 49 formed in the pressing device 48 is shown in FIG. 2, and flat tube fins as products obtained by cutting the metal strip 49 into a product width are shown in FIGS. 3A and 3B.
  • the metal strip 49 shown in FIG. 2 is formed by arranging four products in the product width direction orthogonal to the transport direction.
  • a specific product obtained from the metal strip 49 has a plurality of notches 34 into which flat tubes are inserted, and a louver 35 is formed between the notches 34 and 34.
  • a plate-like portion 36 is formed.
  • openings 37 formed by cutting and raising a metal thin plate are formed on both ends of the louver 35 in the width direction.
  • the opening 37 on one side is formed on the tip side of the plate-like part 36.
  • the notch 34 is formed only from one side in the width direction of the flat tube fin 29. Accordingly, the plurality of plate-like portions 36 between the cutout portion 34 and the cutout portion 34 are connected by a connection portion 38 that continuously extends along the longitudinal direction. Of the two openings 37, 37 for the one louver 35, the other opening 37 is formed on the connecting portion 38.
  • FIG. 4 shows a schematic configuration of the press apparatus.
  • the mold device 46 in the press device 48 includes a lower die 73 provided with a die 76 and an upper die 78 provided with a punch 75.
  • the upper die 78 is lowered toward the lower die 73, and the notch 34, the louver 35, and the opening 37 are formed in the metal strip 49 by the punch 75 and the die 76.
  • a feeding device 50 for feeding the metal strip 49 in the transport direction is provided on the downstream side of the mold device 46.
  • the metal strip processed by the mold device 46 is intermittently sent in the transport direction by the feeding device 50.
  • a reciprocating unit 51 that can move in the horizontal direction reciprocates between an initial position and a transport position to pull the metal strip 49.
  • a feed pin 55 is disposed on the upper surface of the reciprocating unit 51 so as to protrude upward. The feed pin 55 enters the notch 34 formed in the metal strip 49 from below, and the feed pin 55 is pulled. As a result, the metal strip 49 moves to the transport position.
  • a plurality of (for example, five) punches 75 and dies 76 in the mold device 46 are provided along the conveying direction of the metal strip 49, and five notches are formed by one mold closing operation of the press device 48. 34 is formed. Then, before the next mold closing operation, the feeding device 50 feeds the five notches 34 to the downstream side.
  • An inter-row slit device 52 is provided on the downstream side of the feeding device 50.
  • the inter-row slit device 52 has an upper blade 53 disposed on the upper surface side of the metal strip 49 and a lower blade 54 disposed on the lower surface side of the metal strip 49.
  • the inter-row slit device 52 may be provided so as to operate using the vertical movement operation of the press device 48.
  • the upper blade 53 and the lower blade 54 are formed long along the conveying direction of the metal strip 49, and the intermittently fed metal strip 49 is cut by the meshed upper blade 53 and lower blade 54. Then, a strip-shaped product (hereinafter sometimes referred to as a metal strip having a product width) that is long in the conveying direction is manufactured.
  • the metal strips 49 having a plurality of product widths cut to the product width by the inter-row slit device 52 are fed into a cut-off device 60 that is provided separately.
  • a buffer portion is formed between the press device 48 and the cut-off device 60 so that a plurality of metal strips 49 having a product width are bent downward ( (See symbol B in FIG. 12).
  • the configuration of the cutoff device 60 is provided as described later, the necessity for this buffer portion is eliminated.
  • the cut-off device 60 forms flat tube fins 29 as products by cutting the metal strips 49 of each product width into a predetermined length.
  • the cut-off device 60 includes a plurality of cut-off punches 68 arranged on the upper surface side of the product-width metal strip 49 and along the conveying direction, and each cut-off punch 68 on the lower surface side of the product-width metal strip 49. And a plurality of cut-off dies 69 arranged at corresponding positions along the conveying direction.
  • cut-off punches 68 and cut-off dies 69 are provided along the transport direction.
  • the cutoff device shown in FIG. Five cut-off punches 68 and five cut-off dies 69 are provided along the carrying direction.
  • the plurality of cutoff punches 68 are described with reference numerals 68-1, 68-2, 68-3, 68-4, 68-5 from the most upstream side to the downstream side.
  • the arrangement interval N in the conveyance direction of each cut-off punch 68 is one or more of the intervals of the punch 75 along the conveyance direction (may be the interval of the die 76). And an interval smaller than the entire interval of the plurality of punches 75 (intervals of the plurality of dies 76) along the transport direction.
  • the interval between the punches 75 is X
  • the interval N between the cut-off punches 68 is X, 2X, 3X,... And smaller than the entire interval between the plurality of punches 75.
  • the overall interval between the plurality of punches 75 along the transport direction is 5X. Therefore, the intervals between the cut-off punches 68 are X, 2X, 3X, and smaller than 5X.
  • the interval along the conveyance direction of the punch 75 is regarded as a basic unit of length, in the following description, the interval between the punches is defined as a pitch, for example, one die closing.
  • the number of cutouts 34 formed and discharged in step 5 may be described as 5P if the number of punches is five.
  • Each cut-off punch 68 is disposed inside each storage hole 71 formed in the upper mold 70, and is movable in the vertical direction within the storage hole 71. Further, each cut-off punch 68 can be operated individually, and a cut-off punch driving unit 72 is provided above each cut-off punch 68.
  • the cut-off punch driving unit 72 may be an actuator that can drive the cut-off punch 68 in the vertical direction, such as an air cylinder, a servo motor, or a solenoid.
  • Each cut-off die 69 is fixed in the lower die 77 and cuts the metal strip 49 together with the cut-off punch 68 that descends.
  • Each cut-off punch drive unit 72 is connected to a control unit 80 for controlling these drives.
  • the control unit 80 includes a central processing unit such as a CPU and a memory that stores an operation program and the like.
  • the control unit 80 is provided with a press signal from the press device 48 and is operated in conjunction with the feed timing of the feed device 50 in the press device 48. Then, the control unit 80 controls the drive of each cut-off punch 68 by transmitting a control signal to each cut-off punch drive unit 72 according to a preset control program.
  • the control unit 80 When the cut-off punch driving unit 72 is an air cylinder, the control unit 80 outputs a control signal for controlling the air supply to the air cylinder. When the cut-off punch driving unit 72 is a servo motor or a solenoid, the control unit 80 It outputs control signals to servo motors and solenoids.
  • the upper mold 78 in the mold apparatus 46 operates to close the mold once, and the plurality of punches 75 in the mold apparatus 46 are lowered simultaneously. Thereby, a plurality of notches 34 are formed simultaneously, and the feeding device 50 sends the metal strip 49 in the transport direction at the same pitch as the number of the notches 34 formed (step S100).
  • the controller 80 determines the number of cutouts (indicated as P in FIG. 6) sent in the transport direction after one mold closing, and the downstream side from the currently most upstream cut-off punch 68-1.
  • the number of notched portions 34 extending in this manner is added (step S101). This added value is hereinafter referred to as the current value.
  • control unit 80 displays the current value calculated in step S101 and the number of notches necessary for the flat tube fin as a product, that is, the number of product stages (here, the set value: The predetermined number in the range is compared (step S102).
  • control unit 80 proceeds to the next step if the current value is greater than or equal to the set value, and closes the mold device 46 if the current value is less than the set value. It returns to step S100 to perform (step S104).
  • control unit 80 divides the difference obtained by subtracting the set value from the current value by the mutual interval (unit is pitch) along the cut-off punch conveyance direction (step S106).
  • the control unit 80 determines whether or not the remainder is 0 as a result of dividing the difference obtained by subtracting the set value from the current value by the mutual interval (unit is pitch) along the conveyance direction of the cutoff punch (step S108). . If the remainder is not 0, the process returns to step S100 for closing the mold device 46.
  • control unit 80 divides the difference obtained by subtracting the set value from the current value by the interval (unit is pitch) along the conveyance direction of the cut-off punch (see FIG. 6, which cut-off punch 68 is to be driven is determined based on the value of A).
  • step S110 the control unit 80 outputs a control signal to drive the cut-off punch 68-1 on the most upstream side (step S112). That is, by cutting with the cut-off punch 68-1, the flat tube fin extending downstream from the cut-off punch 68-1 has the necessary number of cutouts as a product. Then, the control unit 80 multiplies the current value by the position ⁇ 1 from the most upstream side of the cutoff punch along the mutual distance along the conveyance direction of the cutoff punch, and sets this product as the current value (Step S80). S114). When the most upstream cut-off punch 68-1 is driven, 0 is multiplied, so the current value is 0. And it returns to step S101 which compares a present value with a setting value.
  • Step S116 If the value of the quotient is not 0 but 1 (step S116), the control unit 80 outputs a control signal to drive the second cutoff punch 68-2 on the downstream side with 1 being the most upstream side (1). Step S118). That is, by cutting with the cut-off punch 68-2, the flat tube fin extending downstream from the cut-off punch 68-2 has the necessary number of cutouts as a product. Then, the control unit 80 multiplies the current value by the position ⁇ 1 from the most upstream side of the cutoff punch along the mutual distance along the conveyance direction of the cutoff punch, and sets this product as the current value (Step S80). S120).
  • step S122 If the value of the quotient is not 0 but 2 (step S122), the controller 80 outputs a control signal to drive the third cutoff punch 68-3 on the downstream side with the most upstream side being 1 (step S122). Step S124). That is, by cutting with the cut-off punch 68-3, the flat tube fin extending downstream from the cut-off punch 68-3 has the necessary number of cutouts as a product. Then, the control unit 80 multiplies the current value by the position ⁇ 1 from the most upstream side of the cutoff punch along the mutual distance along the conveyance direction of the cutoff punch, and sets this product as the current value (Step S80). S126).
  • step S128 If the value of the quotient is not 0 but 3 (step S128), the control unit 80 outputs a control signal to drive the fourth cutoff punch 68-4 on the downstream side with the most upstream side being 1 (step S128). Step S130). That is, by cutting with the cut-off punch 68-4, the flat tube fin extending downstream from the cut-off punch 68-4 has the necessary number of cutouts as a product. Then, the control unit 80 multiplies the current value by the position ⁇ 1 from the most upstream side of the cutoff punch along the mutual distance along the conveyance direction of the cutoff punch, and sets this product as the current value (Step S80). S132).
  • step S134 the control unit 80 outputs a control signal to drive the fifth cutoff punch 68-5 on the downstream side with 1 being the most upstream side (step S134).
  • step S136 That is, by cutting with the cut-off punch 68-5, the flat tube fin extending downstream from the cut-off punch 68-5 has the necessary number of cutouts as a product. Then, the control unit 80 multiplies the current value by the position ⁇ 1 from the most upstream side of the cutoff punch along the mutual distance along the conveyance direction of the cutoff punch, and sets this product as the current value (Step S80). S132).
  • the driving method of the cutoff device by specific numerical values will be described.
  • the upper mold 78 in the mold apparatus 46 operates to close the mold once, and the plurality of punches 75 in the mold apparatus 46 are lowered simultaneously. Thereby, the five notch parts 34 are formed simultaneously, and the feeding apparatus 50 sends the metal strip 49 in the transport direction by 5P feeding (step S200).
  • the control unit 80 includes the number of notches 5 sent in the conveying direction after one mold closing, and the notch 34 currently extending toward the downstream side from the most upstream cut-off punch 68-1. Are added (step S201).
  • the number of notches 34 extending from the uppermost cut-off punch 68-1 toward the downstream side is zero. Therefore, the current value is 5 in step S201.
  • control unit 80 manufactures the current value calculated in step S201 and the number of notches necessary for the flat tube fin as a product, that is, the number of product stages (set value in FIG. 7: here, 51-stage product). An example will be given) (step S202). Since the current value is 5, it is less than the set value of 51.
  • the controller 80 repeatedly manufactures flat tube fins by closing the mold device 46 until the current value becomes equal to or greater than the set value.
  • step S206 the control unit 80 determines (current value ⁇ set value) / cutoff in step S206.
  • step S228 the controller 80 outputs a control signal for driving the fourth cutoff punch 68-4 from the most upstream side (step S230).
  • the product 9 is set as the current value (step S232). And it returns to step S201 which compares a present value with a setting value.
  • the current value is 9, so that the flat tube fins are repeatedly manufactured by closing the mold device 46 until the current value becomes the set value 51 or more.
  • step S216 the control unit 80 outputs a control signal for driving the second cutoff punch 68-2 from the most upstream side (step S218).
  • the product 3 is set as the current value (step S220).
  • step S201 which compares a present value with a setting value. After returning to step S202, the above-described flow is repeated.
  • the number of punches 75 along the transport direction is five, and the example in which the feeding device 50 performs 5P feeding has been described. However, the number of punches 75 along the transport direction is five. Other numbers may be used.
  • the distance between the cut-off punches along the conveying direction is 3P in the above-described embodiment, but the distance between the punch and the die along the conveying direction is an integer multiple of 1 or more and the conveying distance. What is necessary is just a space
  • the manufacturing apparatus which has been described above has been described using a manufacturing apparatus for manufacturing flat tube fins as an example.
  • the present invention can also be applied to a heat exchanger fin manufacturing apparatus in which a through hole with a collar for inserting a round tubular heat exchange tube is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Punching Or Piercing (AREA)
  • Forging (AREA)
  • Making Paper Articles (AREA)

Abstract

 パンチの数と実際の製品における透孔又は切り欠き部の数との調整を、金属帯状体をたるませたりパンチを二度打ちしたりせずに実行可能な熱交換器用フィンの製造装置を提供することを課題とする。 解決手段として、金型(46)には、金属帯状体(49)の搬送方向に沿って複数の透孔又は複数の切り欠き部を形成するパンチ(75)及びダイ(76)がそれぞれ複数設けられ、形成された複数の透孔又は切り欠き部を1回の送り動作で搬送方向に送る、送り装置(50)が設けられ、金属帯状体(49)を所定長さに切断するカットオフ装置(60)には、金属帯状体(49)の搬送方向に沿ったパンチ及びダイの数と同じ数のカットオフパンチ(68)が配置され、各カットオフパンチ(68)を個別に動作させるカットオフパンチ駆動部(72)が複数設けられ、各カットオフパンチ駆動部(72)を制御する制御部(80)が設けられている。

Description

熱交換器用フィンの製造装置
 本発明は、熱交換器に用いるフィンの製造装置に関する。
 クーラー等の熱交換器は、熱交換チューブを挿入する透孔が複数個穿設された熱交換器用フィンが複数枚積層されて構成されている。
 かかる熱交換器用フィンは、図12に示す熱交換器用フィンの製造装置によって製造される。
 熱交換器用フィンの製造装置には、アルミニウム等の金属製の薄板(金属帯状体)10がコイル状に巻かれたアンコイラー12が設けられている。アンコイラー12からピンチロール14を経て引き出された金属帯状体10は、オイル付与装置16に挿入され、加工用オイルをその表面に付着され、プレス装置18内に設けられた金型20に供給される。
 金型20は、内部に上下動可能な上型ダイセット22と、静止状態にある下型ダイセット24とが設けられている。
 上型ダイセット22には、金属帯状体10の移送方向に沿って複数のパンチが設けられている。
 また、下型ダイセット24には、上型ダイセット22の複数のパンチと対向するそれぞれの位置にダイが設けられている。
 上型ダイセット22と下型ダイセット24の1回の型閉じによって、金属帯状体の移送方向に沿って複数のカラー付透孔(図示せず:本明細書中、単に透孔と称する場合がある)が所定の方向に所定の間隔で形成される。
 なお、金型装置20の下流側には、送り装置8と列間スリット装置9が設けられている。送り装置8は、金属帯状体10の透孔内に送りピンを挿入して金属帯状体を牽引して間欠送りする。
 そして、透孔が形成された金属帯状体10は、列間スリット装置9によって幅方向に複数本の製品幅の金属帯状体を形成するように切断される。
 このようにして形成された金属帯状体10は、所定方向に所定距離移送された後、カットオフ装置26によって所定長さに切断された後、スタッカ28に収容される。
特許第3881991号公報
 ところで、スタッカ28に収容された製品としての金属帯状体10に設けられている透孔は、最終的に収納されるクーラー等の熱交換器の熱交換チューブが挿入される箇所となる。形成される透孔の数は、収納されるクーラー等の熱交換器の構成に合わせて様々な数のものが所望される。
 また、金型の一回の型閉じによって、複数の透孔を同時に形成することが一般的であり、金属帯状体の搬送方向に沿って複数のパンチ及びダイが設けられている。
 例えば、一回の型閉じで搬送方向に沿って5つの透孔が同時に形成される場合には、送り装置が、5つの透孔分の長さを一度に搬送方向に送るように制御される。
 上記のように例えば5つの透孔を同時に形成する場合、同じ形状の5つのパンチとこれに対応する5つのダイが搬送方向に沿って配置されている。
 ところで、上記の例で5つのパンチが設けられている場合においては、送り装置が、形成した5つの透孔を一度に搬送方向に送るように制御されるが、最終的な製品として1つの熱交換器用フィンに10個の透孔が必要である場合、送り装置で5つの透孔分の長さがカットオフ装置に送られた場合でも、もう1回送り装置で5つの透孔分の長さが送られてきてから切断することとなる。
 上記のように送り量と、製品の透孔の数が異なる場合には、透孔が形成された後の金属帯状体をカットオフ装置の手前でたるませておき(図12の符号B)、カットオフ装置への金属帯状体の送り量を金型装置における送り量とは異なる量にすることで、パンチの数と実際の製品に必要な透孔の数の調整を図ることができた。
 しかし、強度が弱いか又は剛性が高く折れやすい熱交換器用フィンの場合には、たるませることができず、パンチの数と実際の製品に必要な透孔の数の調整を図ることができないという課題がある。
 特に、多穴の扁平チューブを用いた熱交換器用フィン(例えば図3Aおよび図3B参照:以下、扁平チューブ用フィンと称する場合がある)については、扁平チューブが挿入される切り欠き部が複数個所に形成されており、強度的に弱い場合がある。
 上記のように送り量と、製品の透孔の数が異なる場合には、カットオフ装置の手前で金属帯状体をたるませる方法の他に、パンチの数よりも送り量を少なくして、1つ(又は複数)のすでに形成された透孔に対してパンチを二度打ちする方法も考えられる。
 しかし、このような方法では、製品の破損等の危険もあるし、また上記の扁平チューブ用フィンでは切り欠き部やルーバーをパンチが二度打ちすることは極めて困難である。
 そこで、本発明は上記課題を解決すべくなされ、その目的とするところは、パンチの数と実際の製品における透孔又は切り欠き部の数との調整を、金属帯状体をたるませたりパンチを二度打ちしたりせずに実行可能な熱交換器用フィンの製造装置を提供することにある。
 本発明にかかる熱交換器用フィンの製造装置によれば、金属製の薄板に、複数の透孔又は複数の切り欠き部をプレス加工して金属帯状体を形成する金型と、複数の透孔又は複数の切り欠き部が形成された金属帯状体を所定長さに切断するカットオフ装置とを具備する熱交換器用フィンの製造装置において、前記金型には、金属帯状体の搬送方向に沿って複数の透孔又は複数の切り欠き部を形成するパンチ及びダイがそれぞれ複数設けられ、形成された複数の透孔又は切り欠き部を1回の送り動作で搬送方向に送る、送り装置が設けられ、前記カットオフ装置には、金属帯状体の搬送方向に沿ったパンチ及びダイの数と同じ数のカットオフパンチが配置され、各前記カットオフパンチを個別に動作させるカットオフパンチ駆動部が複数設けられ、製造する熱交換器用フィンに形成させるべき透孔又は切り欠き部の所定数に対応して、前記送り装置の送り動作回数に基づいて各前記カットオフパンチのうちいずれのカットオフパンチによって金属帯状体を切断するかを判断して前記カットオフパンチ駆動部を制御する制御部が設けられていることを特徴としている。
 この構成を採用することによって、金属帯状体の送り回数に対して、複数のカットオフパンチのいずれかを選択動作させて金属帯状体を切断することで、パンチの数にかかわらずに所望の透孔数又は切り欠き部数の製品を製造することができる。
 また、各前記カットオフパンチの搬送方向に沿った互いの間隔は、前記搬送方向に沿ったパンチ及びダイの間隔の1以上の整数倍の間隔であって、且つ前記搬送方向に沿ったパンチ及びダイの全体の間隔よりも小さい間隔であることを特徴としてもよい。
 また、前記制御部は、所定数の透孔又は切り欠き部を有する熱交換器用フィンを製造する際に、前記金型による1回の型閉じ終了後に、型閉じ前から最上流側のカットオフパンチから下流側に向けて延びている透孔又は切り欠き部の数に、前記搬送方向に沿ったパンチ及びダイの全体の間隔を加算して、現在の最上流側のカットオフパンチから下流側に向けて延びている透孔又は切り欠き部の数である現在値を算出し、前記現在値と前記所定数とを比較して、前記現在値が前記所定数以上になるまで前記金型による型閉じを繰り返し実行し、前記現在値が前記所定数以上になった場合には、前記現在値から前記所定数を減算した差分を、各前記カットオフパンチの搬送方向に沿った互いの間隔で除算し、除算して余りが0であれば、商の数値が0の場合には最上流側のカットオフパンチを駆動し、商の数が1増えるごとに最上流側から1つずつ下流側のカットオフパンチを駆動し、いずれかのカットオフパンチが駆動終了後、前記現在値を、各前記カットオフパンチの互いの間隔に最上流からのカットオフパンチの位置番号として最上流側を0、1つ下流側を1のように実際の位置から1減算した数値を、各前記カットオフパンチの搬送方向に沿った互いの間隔で乗算した積を、前記現在値とし、その後前記現在値と前記所定数とを比較して前記現在値が前記所定数以上になるまで前記金型による型閉じを繰り返し実行する工程に戻り、除算して余りが0以外であれば、前記現在値と前記所定数とを比較して、前記現在値が前記所定数以上になるまで前記金型による型閉じを繰り返し実行する工程に戻ることを特徴としてもよい。
 本発明によれば、パンチの数と実際の製品における透孔又は切り欠き部の数との調整を、金属帯状体をたるませたりパンチを二度打ちしたりせずに行うことができる。
本発明に係る熱交換器用フィンの製造装置の全体構成を示す説明図である。 金型装置によって形成された金属帯状体の説明図である。 図3Aは、扁平チューブ用フィンの平面図である。図3Bは、扁平チューブ用フィンの側面図である。 金型装置の内部構成を示す説明図である。 カットオフ装置の構成を示す説明図である。 カットオフパンチの駆動方法を説明するフローチャートである。 5P送りの場合のカットオフパンチの駆動方法を説明するフローチャートである。 51段製品の場合のカットオフパンチの駆動と送り回数を示す説明図である。 52段製品の場合のカットオフパンチの駆動と送り回数を示す説明図である。 53段製品の場合のカットオフパンチの駆動と送り回数を示す説明図である。 54段製品の場合のカットオフパンチの駆動と送り回数を示す説明図である。 従来の熱交換器用フィンの製造装置の全体構成を示す説明図である。
 本発明に係る熱交換器用フィンの製造装置全体の概略構成を図1に示す。なお、以下で説明する熱交換器用フィンの製造装置30は、切り欠き部が形成された扁平チューブ用フィンを製造する製造装置を例としている。
 アルミニウム等の未加工の金属製の薄板41は、アンコイラー40にコイル状に巻回されている。
 金属製の薄板41は、図示しない送り装置によってアンコイラー40から引き出され、プレス装置48内に導入される。
 プレス装置48内には、金型装置46が内部に配置されている。薄板41は、金型装置46によって所定の形状の金属帯状体49に形成される。
 プレス装置48の下流側には、カットオフ装置60が設けられている。カットオフ装置60によって、所定の形状に成形された金属帯状体49は所定長さに切断され、製品としての扁平チューブ用フィン29が製造される。
 なお、カットオフ装置60の下流側には、製造された扁平チューブ用フィン29を積層するスタック装置が設けられていることが好ましいが、図1ではスタック装置の図示及び説明は省略する。
 プレス装置48において形成された金属帯状体49を図2に、この金属帯状体49を製品幅に切断した製品としての扁平チューブ用フィンを図3Aおよび図3Bに示す。
 図2に示されている金属帯状体49は、搬送方向に直交する製品幅方向に4つの製品が並んで形成されている。
 金属帯状体49から得られる具体的な製品は、扁平チューブが挿入される切り欠き部34が複数箇所に形成されており、切り欠き部34と切り欠き部34との間は、ルーバー35が形成された板状部36が形成されている。
 また、ルーバー35の幅方向の両端部側には、金属製の薄板が切り起こされて形成された開口部37が形成されている。1つのルーバー35に対する2つの開口部37,37のうち、一方側の開口部37は、板状部36の先端部側に形成されている。
 切り欠き部34は、扁平チューブ用フィン29の幅方向の一方側からのみ形成されている。したがって、切り欠き部34と切り欠き部34との間の複数の板状部36は、長手方向に沿って連続して伸びる連結部38によって連結されている。
 上記の1つのルーバー35に対する2つの開口部37,37のうち、他方側の開口部37は、この連結部38上に形成されている。
 図4に、プレス装置の概略構成を示す。
 プレス装置48内の金型装置46は、ダイ76が設けられた下型73と、パンチ75が設けられた上型78とを具備している。上型78は下型73に向けて下降し、パンチ75とダイ76とによって金属帯状体49に切り欠き部34、ルーバー35、開口部37を形成する。
 金型装置46の下流側には、金属帯状体49を搬送方向へ送る送り装置50が設けられている。金型装置46によって加工された金属帯状体は、送り装置50によって間欠的に搬送方向に送られる。
 送り装置50は、水平方向に移動可能な往復動ユニット51が、初期位置と搬送位置との間を往復動して金属帯状体49を牽引する。往復動ユニット51の上面には、送りピン55が上方に突出して配置されており、送りピン55が金属帯状体49に形成された切り欠き部34に下方から進入し、送りピン55が牽引することで金属帯状体49が搬送位置まで移動する。
 金型装置46内のパンチ75とダイ76は、金属帯状体49の搬送方向に沿って複数個(例えば5個)設けられ、プレス装置48の1回の型閉じ動作によって5個の切り欠き部34が形成される。そして、次の型閉じ動作の前に送り装置50によって、5個の切り欠き部34の分下流側に送られる。
 そして、上記のように5個の切り欠き部34を下流側に送ると、切り欠き部34が形成されていない未加工部分が5個のパンチとダイとの間に配置されることとなる。続いて、プレス装置48の型閉じによって、再び5個の切り欠き部34が形成される。
 送り装置50の下流側には、列間スリット装置52が設けられている。列間スリット装置52は、金属帯状体49の上面側に配置された上刃53と、金属帯状体49の下面側に配置された下刃54とを有する。列間スリット装置52は、プレス装置48の上下動動作を利用して動作するように設けるとよい。
 上刃53及び下刃54は、金属帯状体49の搬送方向に沿って長尺に形成されており、間欠送りされる金属帯状体49を、噛み合わせた上刃53と下刃54とで切断し、搬送方向に長い帯状の製品(以下、製品幅の金属帯状体と称する場合がある)を製造する。
 列間スリット装置52によって製品幅に切断された、複数本の製品幅の金属帯状体49は、それぞれが別体に設けられたカットオフ装置60内に送り込まれる。
 なお、従来の製造装置であれば、プレス装置48とカットオフ装置60との間には、複数本の製品幅の金属帯状体49を下方に撓ませるようにしてバッファ部分を形成していた(図12の符号B参照)。しかし、本願発明では、カットオフ装置60の構成を後述のように設けたため、このバッファ部分の必要がなくなっている。
 カットオフ装置60について図5に基づいて説明する。
 カットオフ装置60は、各々の製品幅の金属帯状体49を所定長さに切断することにより、製品としての扁平チューブ用フィン29を形成する。
 カットオフ装置60は、製品幅の金属帯状体49の上面側に配置されて搬送方向に沿った複数のカットオフパンチ68と、製品幅の金属帯状体49の下面側において各カットオフパンチ68と対応する位置に配置されて搬送方向に沿った複数のカットオフダイ69とを有する。
 カットオフパンチ68と、カットオフダイ69は、それぞれ金属帯状体49の搬送方向に沿ったパンチ及びダイの数と同じ数だけ、搬送方向に沿って設けられている。ここでは、上述したように金型装置46内のパンチ75とダイ76は、金属帯状体49の搬送方向に沿って5個設けられている例を説明したので、図5に示すカットオフ装置も、カットオフパンチ68と、カットオフダイ69は、搬送方向に沿ってそれぞれ5台設けられている。
 図5では、複数のカットオフパンチ68に対して最上流側から下流に向けて68-1、68-2、68-3、68-4、68-5という符号をつけて説明している。
 また、各カットオフパンチ68の搬送方向の配置間隔N(すなわち、カットオフダイ69の搬送方向の配置間隔)は、搬送方向に沿ったパンチ75の間隔(ダイ76の間隔でもよい)の1以上の整数倍の間隔であって、且つ搬送方向に沿った複数のパンチ75(複数のダイ76の間隔)の全体の間隔よりも小さい間隔として設ける。
 具体的には、パンチ75の間隔をXとした場合、カットオフパンチ68の間隔Nは、X、2X、3X・・であり、且つ複数のパンチ75の全体間隔よりも小さい間隔である。本実施形態では、パンチ75は5個設けているので、搬送方向に沿った複数のパンチ75の全体の間隔は5Xである。したがって、カットオフパンチ68の間隔は、X、2X、3X・・であって、且つ5Xよりも小さい間隔となる。
 なお、本願の製造装置においては、パンチ75の搬送方向に沿った間隔を、長さの基本単位としてとらえているので、以下の説明においては、パンチの間隔をピッチとし、たとえば1回の型閉じにおいて形成され排出される切り欠き部34の数をパンチの数が5個であれば5Pとして説明する場合もある。
 各カットオフパンチ68は、上型70に形成された各収納孔71内部に配置されており、収納孔71内で上下方向に移動可能である。また、各カットオフパンチ68は個別に動作可能であって、各カットオフパンチ68の上部には、それぞれカットオフパンチ駆動部72が設けられている。
 カットオフパンチ駆動部72としては、エアシリンダー、サーボモータ、ソレノイドなどカットオフパンチ68を上下方向に駆動可能なアクチュエータであればよい。
 各カットオフダイ69は、下型77内に固定されているものであり、下降してくるカットオフパンチ68とともに、金属帯状体49を切断する。
 各カットオフパンチ駆動部72には、これらの駆動を制御するための制御部80が接続されている。制御部80は、CPU等の中央処理演算装置と、動作プログラム等を記憶しているメモリ等から構成されている。
 制御部80には、プレス装置48からのプレス信号が入力され、プレス装置48内の送り装置50の送りタイミングと連動して動作するように設けられている。
 そして制御部80は、あらかじめ設定された制御プログラムによって、各カットオフパンチ駆動部72に制御信号を送信して各カットオフパンチ68の駆動を制御する。
 カットオフパンチ駆動部72がエアシリンダーである場合には、制御部80は、エアシリンダーへのエア供給を制御する制御信号を出力し、サーボモータやソレノイドなどの場合には、制御部80は、サーボモータやソレノイドなどへ制御信号を出力するものである。
 次に、複数のカットオフパンチの駆動方法の一般的な方法について、図6に示すフローチャートに基づいて説明する。
 熱交換器用フィンの製造装置が動作を開始すると、金型装置46内の上型78が動作して1回の型閉じで、金型装置46内の複数のパンチ75が同時に下降する。これにより、複数の切り欠き部34が同時に形成され、形成された切り欠き部34の数と同じピッチで送り装置50が金属帯状体49を搬送方向に送る(ステップS100)。
 制御部80は、1回の型閉じ後に搬送方向に送られた切り欠き部の数(図6ではPと表している)と、現在最上流側のカットオフパンチ68-1から下流側に向けて延出している切り欠き部34の数を加算する(ステップS101)。この加算した値を以下では現在値と称する。
 次に、制御部80は、ステップS101において算出した現在値と、製品である扁平チューブ用フィンに必要な切り欠き部の数すなわち製品段数(ここでは、設定値と表示している:特許請求の範囲でいう所定数)とを比較する(ステップS102)。
 制御部80は、現在値と設定値とを比較した結果、現在値が設定値以上であれば、次のステップに進み、現在値が設定値未満であれば、金型装置46の型閉じを行うステップS100に戻る(ステップS104)。
 現在値が設定値以上の場合、制御部80は、現在値から設定値を減算した差分を、カットオフパンチの搬送方向に沿った互いの間隔(単位はピッチ)で除算する(ステップS106)。
 制御部80は、現在値から設定値を減算した差分を、カットオフパンチの搬送方向に沿った互いの間隔(単位はピッチ)で除算した結果、余りが0かどうかを判断する(ステップS108)。
 余りが0ではない場合、金型装置46の型閉じを行うステップS100に戻る。
 ステップS108において余りが0であった場合、制御部80は、現在値から設定値を減算した差分を、カットオフパンチの搬送方向に沿った互いの間隔(単位はピッチ)で除算した商(図6ではAと表示している)の値によって、複数のカットオフパンチのうちいずれのカットオフパンチ68を駆動させるかを判断する。
 制御部80は、商の値が0であれば(ステップS110)、最上流側のカットオフパンチ68-1を駆動するよう制御信号を出力する(ステップS112)。すなわち、カットオフパンチ68-1で切断することにより、カットオフパンチ68-1よりも下流側に延びている扁平チューブ用フィンは製品として必要な切り欠き部数を有していることとなる。
 そして、制御部80は、現在値を、カットオフパンチの搬送方向に沿った互いの間隔に、カットオフパンチの最上流側からの位置―1を乗算し、この積を現在値とする(ステップS114)。最上流側のカットオフパンチ68-1を駆動した場合には、0を乗算するので現在値は0となる。そして、現在値と設定値とを比較するステップS101に戻る。
 制御部80は、商の値が0でなく、1であれば(ステップS116)、最上流側を1として下流側の2番目のカットオフパンチ68-2を駆動するよう制御信号を出力する(ステップS118)。すなわち、カットオフパンチ68-2で切断することにより、カットオフパンチ68-2よりも下流側に延びている扁平チューブ用フィンは製品として必要な切り欠き部数を有していることとなる。
 そして、制御部80は、現在値を、カットオフパンチの搬送方向に沿った互いの間隔に、カットオフパンチの最上流側からの位置―1を乗算し、この積を現在値とする(ステップS120)。最上流から2つ目のカットオフパンチ68-2を駆動した場合には、1を乗算するので、現在値はカットオフパンチの搬送方向に沿った互いの間隔となる。そして、現在値と設定値とを比較するステップS101に戻る。
 制御部80は、商の値が0でなく、2であれば(ステップS122)、最上流側を1として下流側の3番目のカットオフパンチ68-3を駆動するよう制御信号を出力する(ステップS124)。すなわち、カットオフパンチ68-3で切断することにより、カットオフパンチ68-3よりも下流側に延びている扁平チューブ用フィンは製品として必要な切り欠き部数を有していることとなる。
 そして、制御部80は、現在値を、カットオフパンチの搬送方向に沿った互いの間隔に、カットオフパンチの最上流側からの位置―1を乗算し、この積を現在値とする(ステップS126)。最上流から3つ目のカットオフパンチ68-3を駆動した場合には、2を乗算するので、現在値はカットオフパンチの搬送方向に沿った互いの間隔の2倍となる。そして、現在値と設定値とを比較するステップS101に戻る。
 制御部80は、商の値が0でなく、3であれば(ステップS128)、最上流側を1として下流側の4番目のカットオフパンチ68-4を駆動するよう制御信号を出力する(ステップS130)。すなわち、カットオフパンチ68-4で切断することにより、カットオフパンチ68-4よりも下流側に延びている扁平チューブ用フィンは製品として必要な切り欠き部数を有していることとなる。
 そして、制御部80は、現在値を、カットオフパンチの搬送方向に沿った互いの間隔に、カットオフパンチの最上流側からの位置―1を乗算し、この積を現在値とする(ステップS132)。最上流から4つ目のカットオフパンチ68-4を駆動した場合には、3を乗算するので、現在値はカットオフパンチの搬送方向に沿った互いの間隔の3倍となる。そして、現在値と設定値とを比較するステップS101に戻る。
 制御部80は、商の値が0でなく4であれば(ステップS134)、最上流側を1として下流側の5番目のカットオフパンチ68-5を駆動するよう制御信号を出力する(ステップS136)。すなわち、カットオフパンチ68-5で切断することにより、カットオフパンチ68-5よりも下流側に延びている扁平チューブ用フィンは製品として必要な切り欠き部数を有していることとなる。
 そして、制御部80は、現在値を、カットオフパンチの搬送方向に沿った互いの間隔に、カットオフパンチの最上流側からの位置―1を乗算し、この積を現在値とする(ステップS132)。最上流から5つ目のカットオフパンチ68-5を駆動した場合には、4を乗算するので、現在値はカットオフパンチの搬送方向に沿った互いの間隔の4倍となる。そして、現在値と設定値とを比較するステップS101に戻る。
 次に、図7のフローチャート及び図8に基づいて、具体的な数値によるカットオフ装置の駆動方法について説明する。
 熱交換器用フィンの製造装置が動作を開始すると、金型装置46内の上型78が動作して1回の型閉じで、金型装置46内の複数のパンチ75が同時に下降する。これにより、5個の切り欠き部34が同時に形成され、送り装置50は5P送りで金属帯状体49を搬送方向に送る(ステップS200)。
 制御部80は、1回の型閉じ後に搬送方向に送られた切り欠き部の数5と、現在最上流側のカットオフパンチ68-1から下流側に向けて延出している切り欠き部34の数を加算する(ステップS201)。装置を最初に作動させた場合には、最上流側のカットオフパンチ68-1から下流側に向けて延出している切り欠き部34の数は0である。したがって、ステップS201においては現在値は5である。
 次に、制御部80は、ステップS201において算出した現在値と、製品である扁平チューブ用フィンに必要な切り欠き部の数すなわち製品段数(図7の設定値:ここでは51段製品を製造する例を挙げる)とを比較する(ステップS202)。現在値は5であるから、設定値である51未満である。
 制御部80は、現在値が設定値以上になるまで、金型装置46の型閉じによる扁平チューブ用フィンの製造を繰り返し行う。
 現在値が設定値以上となった場合、すなわち型閉じ及び送り動作を11回繰り返すと、現在値は55となるので、制御部80は、ステップS206において、(現在値-設定値)/カットオフパンチの搬送方向に沿った互いの間隔、の商を算出する。
 本実施形態では(55-51)/3=1・・・1(余り1)となるので、ステップS208では余りが0とならず、再度型閉じ動作を行うステップに戻る。
 型閉じ及び送り動作をさらに1回(すなわち前回まで11回行ったので、合わせて12回送りとなった)行うと、現在値は5×12で60となる。
 制御部80は、ステップS206において、(現在値-設定値)/カットオフパンチの搬送方向に沿った互いの間隔、の商を算出すると、(60-51)/3=3(余り0)となるので、次のステップS210に進むことができる。
 ここでは、商(A)は3であるから、ステップS228に進む。そして、制御部80は、最上流側から4つ目のカットオフパンチ68-4を駆動する制御信号を出力する(ステップS230)。
 そして、制御部80は、現在値を、カットオフパンチの搬送方向に沿った互いの間隔3に、カットオフパンチの最上流側からの4―1を乗算し(3×3=9)、この積9を現在値とする(ステップS232)。
 そして、現在値と設定値とを比較するステップS201に戻る。
 カットオフパンチ68-4によって切断後に、現在値は9となったので、現在値が設定値51以上となるまで、金型装置46の型閉じによる扁平チューブ用フィンの製造を繰り返し行う。
 現在値が設定値以上となった場合、すなわち型閉じ及び送り動作を9回繰り返すと、現在値は45+9=54となるので、制御部80は、ステップS206において、(現在値-設定値)/カットオフパンチの搬送方向に沿った互いの間隔、の商を算出する。
 本実施形態では(54-51)/3=1(余り0)となるので、次のステップS210に進む。
 ここでは、商(A)は1であるから、ステップS216に進む。そして、制御部80は、最上流側から2つ目のカットオフパンチ68-2を駆動する制御信号を出力する(ステップS218)。
 そして、制御部80は、現在値を、カットオフパンチの搬送方向に沿った互いの間隔3に、カットオフパンチの最上流側からの2―1を乗算し(3×1=3)、この積3を現在値とする(ステップS220)。
 そして、現在値と設定値とを比較するステップS201に戻る。
 ステップS202に戻った後は、上述してきたフローを繰り返し行う。
 なお、図7、図8においては51段製品を製造する場合について説明したが、図9に示すように52段製品を製造する場合、図10に示すように53段製品を製造する場合、図11に示すように54段製品を製造する場合など、様々な段数の製品を、図6に示したフローに基づいて複数のカットオフパンチ68を制御して製造できる。
 このため、列間スリット装置52とカットオフ装置60との間に、金属帯状体49を撓ませるループを形成しておかなくてもよく、またパンチの二度打ちをしなくても所定段数の製品を製造可能である。したがって、様々な段数の製品を製造可能な装置であっても、装置全体を小型化できるとともに、生産効率を下げなくても製造可能となる。
 また、上述してきた実施形態では、搬送方向に沿ったパンチ75の数が5個であり、送り装置50が5P送りを行う例で説明したが、搬送方向に沿ったパンチ75の数は5個以外の数であってもよい。
 さらに、カットオフパンチの搬送方向に沿った互いの間隔は上述した実施形態では3Pであったが、搬送方向に沿ったパンチ及びダイの間隔の1以上の整数倍の間隔であって、且つ搬送方向に沿ったパンチ及びダイの全体の間隔よりも小さい間隔であればよい。
 また、上述してきた製造装置は、扁平チューブ用フィンを製造する製造装置を例として説明してきた。
 しかし、本発明としては、丸管状の熱交換チューブを挿入するカラー付透孔が形成されている熱交換器用フィンの製造装置に適用させることもできる。
 以上本発明につき好適な実施形態を挙げて種々説明したが、本発明はこの実施形態に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのはもちろんである。

Claims (3)

  1.  金属製の薄板に、複数の透孔又は複数の切り欠き部をプレス加工して金属帯状体を形成する金型と、複数の透孔又は複数の切り欠き部が形成された金属帯状体を所定長さに切断するカットオフ装置とを具備する熱交換器用フィンの製造装置において、
     前記金型には、金属帯状体の搬送方向に沿って複数の透孔又は複数の切り欠き部を形成するパンチ及びダイがそれぞれ複数設けられ、
     形成された複数の透孔又は切り欠き部を1回の送り動作で搬送方向に送る、送り装置が設けられ、
     前記カットオフ装置には、金属帯状体の搬送方向に沿ったパンチ及びダイの数と同じ数のカットオフパンチが配置され、
     各前記カットオフパンチを個別に動作させるカットオフパンチ駆動部が複数設けられ、
     製造する熱交換器用フィンに形成させるべき透孔又は切り欠き部の所定数に対応して、前記送り装置の送り動作回数に基づいて各前記カットオフパンチのうちいずれのカットオフパンチによって金属帯状体を切断するかを判断して前記カットオフパンチ駆動部を制御する制御部が設けられていることを特徴とする熱交換器用フィンの製造装置。
  2.  各前記カットオフパンチの搬送方向に沿った互いの間隔は、前記搬送方向に沿ったパンチ及びダイの間隔の1以上の整数倍の間隔であって、且つ前記搬送方向に沿ったパンチ及びダイの全体の間隔よりも小さい間隔であることを特徴とする請求項1記載の熱交換器用フィンの製造装置。
  3.  前記制御部は、
     所定数の透孔又は切り欠き部を有する熱交換器用フィンを製造する際に、
     前記金型による1回の型閉じ終了後に、型閉じ前から最上流側のカットオフパンチから下流側に向けて延びている透孔又は切り欠き部の数に、前記搬送方向に沿ったパンチ及びダイの全体の間隔を加算して、現在の最上流側のカットオフパンチから下流側に向けて延びている透孔又は切り欠き部の数である現在値を算出し、
     前記現在値と前記所定数とを比較して、前記現在値が前記所定数以上になるまで前記金型による型閉じを繰り返し実行し、
     前記現在値が前記所定数以上になった場合には、前記現在値から前記所定数を減算した差分を、各前記カットオフパンチの搬送方向に沿った互いの間隔で除算し、
     除算して余りが0であれば、商の数値が0の場合には最上流側のカットオフパンチを駆動し、商の数が1増えるごとに最上流側から1つずつ下流側のカットオフパンチを駆動し、いずれかのカットオフパンチが駆動終了後、前記現在値を、各前記カットオフパンチの互いの間隔に最上流からのカットオフパンチの位置番号として最上流側を0、1つ下流側を1のように実際の位置から1減算した数値を、各前記カットオフパンチの搬送方向に沿った互いの間隔で乗算した積を、前記現在値とし、その後前記現在値と前記所定数とを比較して前記現在値が前記所定数以上になるまで前記金型による型閉じを繰り返し実行する工程に戻り、
     除算して余りが0以外であれば、前記現在値と前記所定数とを比較して、前記現在値が前記所定数以上になるまで前記金型による型閉じを繰り返し実行する工程に戻ることを特徴とする請求項2記載の熱交換器用フィンの製造装置。
     
     
     
PCT/JP2014/059355 2014-03-28 2014-03-28 熱交換器用フィンの製造装置 WO2015145773A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167019368A KR101840727B1 (ko) 2014-03-28 2014-03-28 열교환기용 핀의 제조 장치
CN201480077644.9A CN106132581B (zh) 2014-03-28 2014-03-28 热交换器用翅片的制造装置
JP2016509863A JP6166840B2 (ja) 2014-03-28 2014-03-28 熱交換器用フィンの製造装置
US15/109,485 US9987673B2 (en) 2014-03-28 2014-03-28 Manufacturing apparatus for heat exchanger fins
PCT/JP2014/059355 WO2015145773A1 (ja) 2014-03-28 2014-03-28 熱交換器用フィンの製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059355 WO2015145773A1 (ja) 2014-03-28 2014-03-28 熱交換器用フィンの製造装置

Publications (1)

Publication Number Publication Date
WO2015145773A1 true WO2015145773A1 (ja) 2015-10-01

Family

ID=54194357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059355 WO2015145773A1 (ja) 2014-03-28 2014-03-28 熱交換器用フィンの製造装置

Country Status (5)

Country Link
US (1) US9987673B2 (ja)
JP (1) JP6166840B2 (ja)
KR (1) KR101840727B1 (ja)
CN (1) CN106132581B (ja)
WO (1) WO2015145773A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102277669B1 (ko) * 2015-06-18 2021-07-16 히다카 세이키 가부시키가이샤 열교환기용 핀으로의 편평 튜브 삽입 장치
KR102297779B1 (ko) * 2015-07-08 2021-09-03 히다카 세이키 가부시키가이샤 열교환기용 핀으로의 편평 튜브 삽입 장치
WO2018073929A1 (ja) * 2016-10-20 2018-04-26 日高精機株式会社 熱交換器用フィンの製造装置
CN108246916B (zh) * 2017-12-04 2023-12-22 林宇凯 一种翅片穿管装置
WO2019131377A1 (ja) * 2017-12-26 2019-07-04 三菱電機株式会社 フィン製造装置及びフィン製造方法
WO2019198471A1 (ja) * 2018-04-10 2019-10-17 三菱電機株式会社 フィン製造装置及びフィン製造方法
CH716574A1 (de) * 2019-09-10 2021-03-15 Berhalter Ag Stanzmaschine zum Stanzen von Etiketten und Deckeln.
JP6647613B1 (ja) * 2019-10-08 2020-02-14 日高精機株式会社 切断装置
JP6671742B1 (ja) * 2019-12-23 2020-03-25 日高精機株式会社 熱交換器用フィン製造用金型装置
CN114309216B (zh) * 2022-01-21 2024-07-09 庐江力翔电池科技有限责任公司 一种电池盖板连续生产用冲压设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251795A (ja) * 1987-04-08 1988-10-19 Hitachi Ltd 熱交換器およびその製造方法
JPH0663662A (ja) * 1992-08-18 1994-03-08 Uno Kinzoku Kogyo Kk パンチプレス装置
JPH09155600A (ja) * 1995-11-30 1997-06-17 Denso Corp 板材のプレス加工方法およびプレス加工装置
US20030126743A1 (en) * 2002-01-18 2003-07-10 Meng-Cheng Huang Automatic shaping method and structure of fin and connection element
JP2003320433A (ja) * 2002-05-02 2003-11-11 Hidaka Seiki Kk 熱交換器用フィンの製造装置
US20120255410A1 (en) * 2010-01-26 2012-10-11 Hisayoshi Kido Cutting apparatus

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226343A (en) * 1988-06-03 1993-07-13 Nestec S.A. Ultrasonic cutting apparatus
JP2784289B2 (ja) * 1991-12-17 1998-08-06 日高精機株式会社 金属帯状体の送り装置
JPH10263733A (ja) * 1997-03-24 1998-10-06 Toshiba Corp 切断積層装置
ATE272469T1 (de) * 1998-06-10 2004-08-15 Esterer Wd Gmbh & Co Vorrichtung und verfahren zum zerteilen von baumstämmen
KR200305565Y1 (ko) 2002-11-15 2003-02-26 류현서 다기능 앵글 가공장치
JP4043435B2 (ja) * 2003-12-18 2008-02-06 日高精機株式会社 熱交換器用フィンの製造装置
JP3881991B2 (ja) 2004-07-08 2007-02-14 日高精機株式会社 金属帯状体の送り装置
JP4375351B2 (ja) * 2006-03-13 2009-12-02 富士通株式会社 金属薄板の送り装置
CN101121154B (zh) * 2006-08-09 2010-07-07 唐忠库 高效防磨筒式旋风除尘器
JP4929364B2 (ja) * 2010-02-19 2012-05-09 日高精機株式会社 コルゲートフィン製造装置
JP5090485B2 (ja) * 2010-03-01 2012-12-05 日高精機株式会社 コルゲートフィン製造装置
JP2012016713A (ja) * 2010-07-07 2012-01-26 Eco:Kk 集積装置
JP5197715B2 (ja) * 2010-11-02 2013-05-15 日高精機株式会社 切断装置
JP5295290B2 (ja) * 2011-03-04 2013-09-18 日高精機株式会社 扁平チューブ用フィンの製造装置
JP5445870B2 (ja) * 2011-11-28 2014-03-19 日高精機株式会社 金属帯状体の送り装置
US9199346B2 (en) * 2011-12-22 2015-12-01 Hidaka Seiki Kabushiki Kaisha Manufacturing apparatus for flattened tube fins
JP5445876B2 (ja) * 2012-08-21 2014-03-19 日高精機株式会社 扁平チューブ用フィンの製造装置
JP5522419B2 (ja) * 2012-08-30 2014-06-18 日高精機株式会社 扁平チューブ用フィンの製造装置
JP5594674B2 (ja) * 2012-10-03 2014-09-24 日高精機株式会社 スタック装置及び扁平チューブ用フィンの製造装置
CN203390052U (zh) * 2013-08-20 2014-01-15 潍坊奥腾冷弯机械有限公司 波浪板生产线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251795A (ja) * 1987-04-08 1988-10-19 Hitachi Ltd 熱交換器およびその製造方法
JPH0663662A (ja) * 1992-08-18 1994-03-08 Uno Kinzoku Kogyo Kk パンチプレス装置
JPH09155600A (ja) * 1995-11-30 1997-06-17 Denso Corp 板材のプレス加工方法およびプレス加工装置
US20030126743A1 (en) * 2002-01-18 2003-07-10 Meng-Cheng Huang Automatic shaping method and structure of fin and connection element
JP2003320433A (ja) * 2002-05-02 2003-11-11 Hidaka Seiki Kk 熱交換器用フィンの製造装置
US20120255410A1 (en) * 2010-01-26 2012-10-11 Hisayoshi Kido Cutting apparatus

Also Published As

Publication number Publication date
US20160325339A1 (en) 2016-11-10
JP6166840B2 (ja) 2017-07-19
KR101840727B1 (ko) 2018-03-21
US9987673B2 (en) 2018-06-05
CN106132581A (zh) 2016-11-16
CN106132581B (zh) 2017-12-19
KR20160101090A (ko) 2016-08-24
JPWO2015145773A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6166840B2 (ja) 熱交換器用フィンの製造装置
JP5578378B2 (ja) 熱交換器用フィンの製造装置
US9358603B2 (en) Feeding apparatus for metal strips and manufacturing apparatus for heat exchanger fins
JP5505913B2 (ja) 扁平チューブ用フィンの製造装置
JP5445876B2 (ja) 扁平チューブ用フィンの製造装置
JP5522419B2 (ja) 扁平チューブ用フィンの製造装置
US9259775B2 (en) Corrugated plate manufacturing apparatus
US20140090238A1 (en) Stacking apparatus and manufacturing apparatus for flattened tube fins
US8720247B2 (en) Method for bending process and processing machine
JP5445875B2 (ja) 扁平チューブ用フィンおよび扁平チューブ用フィンの製造金型と金属帯状体の送り装置
US10220431B2 (en) Offset fin manufacturing method and offset fin manufacturing apparatus
JP6435346B2 (ja) 熱交換器用フィンの製造装置
JP5915640B2 (ja) 熱交換器用フィン製造装置、熱交換器用フィン製造方法、及び、熱交換器製造方法
JP6435347B2 (ja) 熱交換器用フィンの製造方法
US9993862B2 (en) Fin manufacturing apparatus
WO2015029145A1 (ja) 扁平チューブ用フィンの製造装置
JPH06154924A (ja) プレス加工方法
KR20120046681A (ko) 절단 장치
JP5931139B2 (ja) 熱交換器の製造装置
JP2015123454A (ja) 熱交換器用フィンの製造装置、熱交換器用フィン、及び、熱交換器
JP2023132563A (ja) 熱交換器、フィン製造装置、フィン製造方法、フィンスタック装置およびフィンスタック方法
JP2016198777A (ja) 熱交換器の製造方法
JP2013220450A (ja) 扁平チューブ用フィンの製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509863

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15109485

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167019368

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/01/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14887608

Country of ref document: EP

Kind code of ref document: A1