WO2015136840A1 - 両面研磨装置用キャリアの製造方法及び両面研磨装置用キャリア並びに両面研磨方法 - Google Patents

両面研磨装置用キャリアの製造方法及び両面研磨装置用キャリア並びに両面研磨方法 Download PDF

Info

Publication number
WO2015136840A1
WO2015136840A1 PCT/JP2015/000662 JP2015000662W WO2015136840A1 WO 2015136840 A1 WO2015136840 A1 WO 2015136840A1 JP 2015000662 W JP2015000662 W JP 2015000662W WO 2015136840 A1 WO2015136840 A1 WO 2015136840A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
double
polishing apparatus
side polishing
hole
Prior art date
Application number
PCT/JP2015/000662
Other languages
English (en)
French (fr)
Inventor
佐藤 一弥
佑宜 田中
小林 修一
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN201580011151.XA priority Critical patent/CN106061679B/zh
Priority to KR1020167024531A priority patent/KR20160133437A/ko
Priority to DE112015000878.0T priority patent/DE112015000878T5/de
Priority to SG11201607115QA priority patent/SG11201607115QA/en
Priority to US15/122,520 priority patent/US20170069502A1/en
Publication of WO2015136840A1 publication Critical patent/WO2015136840A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/28Work carriers for double side lapping of plane surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support

Definitions

  • the present invention relates to a method for manufacturing a carrier for a double-side polishing apparatus, a carrier for a double-side polishing apparatus, and a double-side polishing method.
  • a disc-shaped carrier for a double-side polishing apparatus provided with a holding hole for holding a semiconductor wafer is generally used (Patent Document 1). reference).
  • the thickness of one carrier body is not the average value but the range of all data (difference between the maximum value and the minimum value), the range becomes as large as 3 ⁇ m and has a characteristic thickness distribution. I found out.
  • This characteristic distribution means the central portion of the carrier body (the central portion means the portion closest to the center of the peripheral portion of the work hole when the center of the carrier body is included in the work hole storing the workpiece. .) Is a distribution that is thicker than other parts.
  • the insert thickness needs to be uniform in the circumferential direction of the work hole in order to make the semiconductor wafer highly flat.
  • the thickness of the insert becomes non-uniform due to the carrier body thickness distribution, and the semiconductor wafer is flat. Deterioration of the degree will be invited. Nevertheless, no technology has been developed so far to cope with the thickness distribution of the carrier body, particularly the thickness of the center of the carrier body, which is thicker than other parts.
  • the present invention has been made in view of the above-described problems, and a method of manufacturing a carrier for a double-side polishing apparatus and a double-side polishing apparatus capable of improving the variation in thickness distribution that occurs when the carrier for a double-side polishing apparatus is wrapped. Another object is to provide a double-side polishing method using the carrier for carrier and the carrier for double-side polishing apparatus.
  • the double-side polishing apparatus is configured such that a carrier for a gear-shaped double-side polishing apparatus having a holding hole for holding a semiconductor wafer is sandwiched between upper and lower surface plates of a wrapping apparatus.
  • a method of manufacturing a carrier for a double-side polishing apparatus by lapping by revolving and rotating a carrier for a carrier, and having a hole for holding the carrier for a double-side polishing apparatus, which is larger than the carrier for a double-side polishing apparatus
  • a gear-shaped outer carrier of a size is prepared, and the outer carrier is decentered with respect to the center of the outer carrier, and the outer carrier is accommodated in the hole by storing the carrier for the double-side polishing apparatus in the hole.
  • the carrier for the double-side polishing apparatus is held by a carrier, and the center of the hole is opposite to the center of the outer carrier.
  • the carrier for the double-side polishing apparatus is rotated and revolved while the held carrier for the double-side polishing apparatus is sandwiched between the upper and lower surface plates of the wrapping apparatus in an eccentric state.
  • a method for manufacturing a carrier for a double-side polishing apparatus is provided.
  • the carrier for a double-side polishing apparatus that suppresses the thickness distribution that has conventionally occurred in the lapping process, in particular, the distribution in which the center portion of the carrier body becomes thicker than other portions, and the thickness variation is suppressed to be small. Can be manufactured.
  • the shape of the hole is circular, and the amount of eccentricity of the center of the hole with respect to the center of the outer carrier is 1/5 or more of the diameter of the hole. In this way, it is possible to manufacture a carrier for a double-side polishing apparatus in which the thickness variation is suppressed to be small, and the thickness range is particularly suppressed to 2 ⁇ m or less.
  • the shape of the hole can be made circular, and the diameter of the hole can be made 0.5 mm to 1.0 mm larger than the diameter of the tooth tip circle of the carrier for the double-side polishing apparatus.
  • the outer carrier does not hinder the rotation of the carrier for the double-side polishing apparatus in the hole. Can be manufactured.
  • the tip circle diameter of the outer carrier is 1.5 times or more of the tip circle diameter of the carrier for the double-side polishing apparatus. In this way, it is possible to manufacture a carrier for a double-side polishing apparatus in which the thickness variation is suppressed to be small, and the thickness range is particularly suppressed to 2 ⁇ m or less.
  • the material of the outer carrier may be carbon tool steel, stainless steel, or titanium. These materials are suitable for the material of the outer carrier.
  • the material of the carrier for a double-side polishing apparatus can be stainless steel or titanium. These materials are suitable as the material for the carrier for the double-side polishing apparatus.
  • the carrier for double-side polish apparatuses manufactured with said manufacturing method is provided.
  • Such a carrier for a double-side polishing apparatus has a thickness range of 2 ⁇ m or less, for example, and has a small variation in thickness distribution, so that it becomes a carrier for a double-side polishing apparatus capable of manufacturing a highly flat semiconductor wafer.
  • the double-side polishing apparatus while holding the semiconductor wafer by using the carrier for the double-side polishing apparatus, Provided is a semiconductor wafer double-side polishing method for polishing both sides of a semiconductor wafer by sliding the upper and lower surfaces of the held semiconductor wafer.
  • a highly flat semiconductor wafer can be manufactured by the double-side polishing method using the carrier for a double-side polishing apparatus having a small variation in thickness distribution as described above.
  • the present invention can produce a carrier for a double-side polishing apparatus with a small variation in thickness distribution, and a double-side polishing using this carrier for a double-side polishing apparatus can obtain a semiconductor wafer that is flatter than before.
  • the present invention is not limited to this.
  • the center portion of the carrier body has been thickened.
  • the thickness of the insert to be fitted in the subsequent process also varies.
  • such a carrier for a double-side polishing apparatus having a non-uniform thickness of the insert or carrier body is used for double-side polishing of a semiconductor wafer, there is a problem that the flatness of the semiconductor wafer deteriorates.
  • the present inventors investigated the cause of the above-described thickness variation that occurs in the lapping process of the carrier for a double-side polishing apparatus.
  • the distribution of the thickening of the center portion of the carrier for the double-side polishing apparatus is caused by the work hole of the carrier for double-side polishing apparatus (the hole for housing the semiconductor wafer) being eccentric from the center of the carrier for double-side polishing apparatus.
  • the center portion was found to have a smaller distance (eccentricity) from the center of the carrier for the double-side polishing apparatus than the other portions.
  • FIG. 6B shows the distance to the center of the peripheral edge of the work hole 22.
  • the relationship between the amount of eccentricity (distance from the center) X and the thickness displacement Y in the carrier for the double-side polishing apparatus having such a size is obtained by fitting the measured values (curve regression) as shown in FIG. 1).
  • the present inventors hold the carrier for a double-side polishing apparatus with a holding member, and rotate and revolve together with the holding member. I came up with a lapping process.
  • a hole having a hole for storing the carrier for the double-side polishing apparatus, and the center of the hole being eccentric with respect to the center of the holding member hereinafter, this holding member is referred to as an outer carrier.
  • the amount of eccentricity of the center of the hole with respect to the center of the outer carrier is superimposed on the amount of eccentricity of the carrier for the lapping target double-side polishing apparatus, so that the amount of eccentricity necessary for uniform thickness distribution can be secured.
  • the present invention has been completed.
  • a method for manufacturing a carrier for a double-side polishing apparatus a carrier for a double-side polishing apparatus, and a double-side polishing method of the present invention will be described.
  • a method for manufacturing a carrier for a double-side polishing apparatus according to the present invention will be described with reference to the case where the lapping apparatus shown in FIG. 1 is used.
  • the carrier for the double-side polishing apparatus to be lapped is a 20B (tooth diameter 525 mm) size
  • the carrier for the lapping apparatus of 32B (tooth diameter 814 mm) size is used as the outer carrier.
  • the present invention is not limited to this.
  • the lapping apparatus 10 includes an upper surface plate 11, a lower surface plate 12, a sun gear 13, an internal gear 14, and a nozzle 15.
  • a sun gear 13 is provided at the center of the lower surface plate 12, and an internal gear 14 is provided adjacent to the peripheral edge of the lower surface plate 12.
  • the nozzle 15 supplies the slurry 16 between the upper and lower surface plates 11 and 12 from a hole provided in the upper surface plate 11 during lapping.
  • an outer carrier 1 as shown in FIGS. 1, 2, and 3 is prepared.
  • the outer carrier 1 has a hole 2 for holding the carrier W for a double-side polishing apparatus, and the center C 2 of the hole 2 is eccentric with respect to the center C 1 of the outer carrier 1 as shown in FIG. Prepare and use it.
  • the material of the outer carrier 1 can be carbon tool steel, stainless steel, or titanium. These materials are suitable for lapping because of their high wear resistance.
  • the outer carrier 1 is engaged with the sun gear 13 and the internal gear 14 of the lapping device 10, and the carrier W for the double-side polishing apparatus is stored and held in the hole 2 of the outer carrier 1.
  • the outer carrier 1 by engaging the outer carrier 1 with the sun gear 13 and the internal gear 14, these gears are rotated, and planetary motion (rotation) around the sun gear 13 is caused by the outer carrier 1 and the carrier W for the double-side polishing apparatus. And revolving motion).
  • both surfaces of the carrier W for the double-side polishing apparatus are sandwiched between the upper surface plate 11 and the lower surface plate 12, and the slurry 16 is supplied from the nozzle 15.
  • the upper surface plate 11 and the lower surface plate 12 are rotated in relative directions.
  • the eccentric amount of the outer carrier 1 is superimposed on the eccentric amount of the original carrier W for double-side polishing apparatus, and the thickness distribution is made uniform. The necessary eccentricity will be ensured. As a result, variation in the thickness distribution of the carrier W for double-side polishing apparatus is eliminated, and a carrier for double-side polishing apparatus having high thickness uniformity can be obtained.
  • the tooth tip circle diameter of the outer carrier 1 is 1.5 times or more of the tooth tip circle diameter of the carrier W for double-side polishing apparatus. If it does in this way, the carrier for double-side polish apparatuses which suppressed the thickness range to 2 micrometers or less can be manufactured.
  • the shape of the hole 2 is circular, and the amount of eccentricity of the center of the hole 2 with respect to the center of the outer carrier 1 is 1/5 or more of the diameter of the hole 2. If it does in this way, the carrier for double-side polish apparatuses which suppressed the thickness range to 2 micrometers or less can be manufactured. Hereinafter, these reasons will be described.
  • the thickness range of the carrier W for a double-side polishing apparatus is desirably 2 ⁇ m or less.
  • a carrier for a double-side polishing apparatus to be wrapped is a 20B (tooth tip diameter 525 mm) size and a carrier for a lapping apparatus 32B (tip tip diameter 814 mm) size is used as an outer carrier
  • the eccentricity amount X necessary for setting the thickness range Y ⁇ 2 ⁇ m is about 180 mm.
  • FIG. 6B An example of a general carrier for a double-side polishing apparatus having a 20B size and an eccentricity of 85 to 90 mm with respect to the center of the work hole 22 as shown in FIG. 6A is shown in FIG. 6B.
  • the minimum distance from the center of the carrier for the double-side polishing apparatus to the periphery of the work hole is about 70 mm. Therefore, when the center C 1 and the outer carrier 1 and the center C 2 of the holes 2 is about 110mm eccentricity of the outer carrier 1 as shown in FIG. 3, the eccentricity amount of total 2 ⁇ m below about 180mm next Thickness Range And can.
  • a carrier for a lapping device having a tip circle diameter of 814 mm (32B size) as an outer carrier as in this example.
  • the root diameter can be 49/50 with respect to the tip diameter
  • the outer carrier 1 is selected, the difference between the radius of the outer carrier 1 and the radius of the hole 2 can be referred to.
  • the outer carrier 1 when wrapping the double-side polishing machine carrier W having a size of 20B (tooth tip diameter 525 mm), the outer carrier 1 is preferably 32B (tip tip diameter 814 mm) or more. That is, not only in this case but also in other cases, the thickness range is set to 2 ⁇ m or less by setting the tooth tip circle diameter of the outer carrier 1 to 1.5 times or more of the tooth tip circle diameter of the carrier for the double-side polishing apparatus. The amount of eccentricity can be ensured.
  • the center of the hole 2 can be offset by 110 mm or more from the center of the carrier to achieve a thickness range of 2 ⁇ m or less. That is, not limited to this case, the amount of eccentricity of the center of the hole 2 with respect to the center of the outer carrier 1 is the diameter of the hole 2 that houses the double-side polishing apparatus carrier W (in this case, the teeth of the double-side polishing apparatus carrier W). By setting it to 1/5 or more of about 525.5 mm, which is substantially the same as the diameter of the tip circle, it is possible to secure an eccentric amount that satisfies a thickness range of 2 ⁇ m or less.
  • the shape of the hole 2 is preferably circular, and the diameter of the hole 2 is preferably 0.5 mm to 1.0 mm larger than the diameter of the tooth tip circle of the carrier W for a double-side polishing apparatus.
  • the double-side polishing apparatus carrier W is placed in the hole 2. Since the rotation is not hindered, a carrier for a double-side polishing apparatus with little thickness variation can be reliably manufactured.
  • the material of the carrier W for a double-side polishing apparatus can be stainless steel or titanium.
  • the manufacturing method of the present invention is particularly suitable for manufacturing a carrier W for a double-side polishing apparatus made of these materials.
  • the lapping condition may be a general condition
  • the slurry 16 may be a general one such as GC # 2000 and finished to a predetermined thickness with a predetermined pressure.
  • the resin thickness is set by fitting it into the inner peripheral portion of the work hole 22 while pressing the resin insert made of EG (glass epoxy resin) or aramid. Polishing of the finish for aligning may be performed, and the carrier W for double-side polish apparatuses may be produced.
  • the double-side polishing apparatus carrier W manufactured by the manufacturing method of the present invention as described above is a double-side polishing apparatus carrier having almost no variation in thickness distribution after lapping and high flatness. If it is such, when it uses for double-sided grinding
  • the upper and lower surfaces of the semiconductor wafer held on the upper and lower surface plates to which the polishing cloth is attached are slidably contacted while holding the semiconductor wafer using the carrier W for the double-side polishing apparatus.
  • a highly flat semiconductor wafer can be manufactured by the double-side polishing method using the carrier for a double-side polishing apparatus having a small thickness variation as described above.
  • a case where a carrier for a double-side polishing apparatus having a size of 20B is used as a target for lapping and a carrier for a lapping apparatus having a size of 32B is used as an outer carrier is described as an example.
  • the object of the lapping process is not limited to the above-mentioned size, and the outer carrier is as described above as long as the center of the hole for storing the object of the lapping process is eccentric with respect to the center of the outer carrier. It is not necessary to use a wrapping device carrier.
  • Example 1 A titanium double-side polishing apparatus carrier having a size of 20B (tooth diameter 525 mm, root diameter 515 mm) was lapped on both sides with a lapping apparatus as shown in FIGS. At this time, a wrapping device carrier made of carbon tool steel having a size of 32B (tooth tip diameter 814 mm, tooth bottom circle diameter 797.7 mm) was used as an outer carrier. Further, the hole of the outer carrier was a circle having a diameter of 525.5 mm. At this time, the eccentricity of the center of the hole with respect to the center of the outer carrier was 110 mm. The slurry was lapped to a constant thickness under a constant load condition using GC # 2000. Table 1 shows the conditions of the carrier for the double-side polishing apparatus and the outer carrier to be lapped at this time.
  • the flatness distribution of the carrier for a double-sided polishing apparatus made of titanium after lapping was measured.
  • the flatness distribution of the peripheral part of a work hole was measured using the laser displacement meter by KEYENCE company for the measurement.
  • the results are shown in FIG. Note that the angle of the horizontal axis of the graph of FIG. 4 indicates the angle of the measurement portion at the peripheral edge of the work hole, as in FIGS. 6 (a) and 6 (b).
  • the flatness distribution after the lapping process was uniform without the central portion (around 180 °) being extremely thicker than the other portions as in the comparative example described later. Further, the thickness range was 1.12 ⁇ m, and the thickness deviation (thickness variation) was 0.30 ⁇ m, which was a significantly better value than the comparative example.
  • an insert having an inner diameter of 300.5 mm made of aramid resin was fitted into the inner periphery of the work hole of the carrier for a double-sided polishing machine made of titanium after lapping.
  • the inserts were fitted together while being pressed, and finish polishing was performed to align the thickness of the insert with the thickness of the carrier for a double-side polishing apparatus, thereby producing a carrier for a double-side polishing apparatus.
  • double-side polishing of a semiconductor silicon wafer having a diameter of 300 mm was performed.
  • DSP-20B manufactured by Fujikoshi Machine, MH-S15A manufactured by Nitta Haas, and GLANZOX2100 manufactured by Fujimi Incorporated were used as the polishing slurry.
  • the number of wafers processed per batch was 5, and 10 batches were processed each.
  • ESFQR Edge Site frontier referenced squares / Range
  • Table 3 shows the flatness measurement results of the semiconductor silicon wafer.
  • ESFQRmax was 31.24 nm
  • ESFQRsigma (deviation) was 5.07.
  • the ESFQR was improved by 10% in average value and the deviation was improved by about 50% compared with the comparative example, and the flatness was good.
  • Example 2 A 20B double-sided polishing apparatus carrier was lapped under the same conditions as in Example 1 except that the eccentricity of the center of the hole with respect to the center of the outer carrier was 90 mm, and the flatness distribution was measured.
  • Table 1 shows the conditions of the carrier for the double-side polishing apparatus and the outer carrier to be lapped at this time.
  • the measurement result of the flatness distribution after lapping is shown in FIG. As shown in FIG. 4, the flatness distribution after the lapping process was uniform without the central portion being extremely thicker than the other portions as in the comparative example described later. Further, the thickness range was 1.75 ⁇ m, and the thickness deviation (thickness variation) was 0.46 ⁇ m, which was a favorable value compared to the comparative example.
  • the insert was fitted into the carrier for a double-side polishing apparatus after lapping in the same manner as in Example 1. Thereafter, using this carrier for a double-side polishing apparatus, double-side polishing of the semiconductor silicon wafer was performed in the same manner as in Example 1, and the ESFQR of the polished semiconductor silicon wafer was measured.
  • the results are shown in Table 3. Compared with the comparative example, the maximum value of ESFQR was 33.00 nm, and the deviation (variation) was as small as 7.56, and the flatness of the semiconductor wafer was greatly improved.
  • Example 3 Other than changing the outer carrier to a carrier for lapping device of size 30B (tip circle diameter 743.8 mm, root circle diameter 730.8 mm) and setting the eccentric amount of the center of the hole to the center of the outer carrier to 90 mm, Under the same conditions as in Example 1, a carrier for a double-side polishing apparatus having a size of 20B was lapped, and the flatness distribution was measured. Table 1 shows the conditions of the carrier for the double-side polishing apparatus and the outer carrier to be lapped at this time. Moreover, the measurement result of the flatness distribution after lapping is shown in FIG. As shown in FIG. 4, the flatness distribution after the lapping processing was uniform without the central portion becoming extremely thicker than the other portions as in the comparative example described later. Moreover, the thickness range was 1.96 ⁇ m, and the thickness deviation was 0.39 ⁇ m, which was a favorable value compared to the comparative example.
  • the insert was fitted into the carrier for a double-side polishing apparatus after lapping in the same manner as in Example 1. Thereafter, using this carrier for a double-side polishing apparatus, double-side polishing of the semiconductor silicon wafer was performed in the same manner as in Example 1, and the ESFQR of the polished semiconductor silicon wafer was measured.
  • the results are shown in Table 3. Compared with the comparative example, the maximum value of ESFQR was 33.17 nm and the variation (deviation) was as small as 7.9 nm, and the flatness of the semiconductor wafer was greatly improved.
  • the double-side polishing apparatus carrier W to be lapped is not held by the outer carrier, but is directly meshed with the sun gear 113 and the internal gear 114 of the lapping apparatus 110 and lapped.
  • the carrier for a double-side polishing apparatus was lapped under the conditions, and the flatness distribution was measured.
  • Table 1 shows the conditions of the carrier for the double-side polishing apparatus and the outer carrier to be lapped at this time.
  • the measurement result of the flatness distribution after lapping is shown in FIG.
  • the center part of the carrier for a double-side polishing apparatus was thick.
  • the thickness range was 3.04 ⁇ m, and the thickness variation was 0.81 ⁇ m, which was significantly worse than that of Example 1-3.
  • Example 3 the insert was fitted into the carrier for a double-side polishing apparatus after lapping in the same manner as in Example 1. Thereafter, using this carrier for a double-side polishing apparatus, double-side polishing of the semiconductor silicon wafer was performed in the same manner as in Example 1, and the ESFQR of the polished semiconductor silicon wafer was measured. The results are shown in Table 3. In the comparative example, the maximum value of ESFQR was 40.04 nm and the variation (deviation) was 12.03 nm, and the flatness of the semiconductor wafer was significantly deteriorated as compared with Example 1-3.
  • Table 4 summarizes the conditions of the examples and comparative examples, the measured values of the thickness range of the carrier for a double-side polishing apparatus after lapping, and the ESFQR of the semiconductor wafer after double-side polishing.
  • Example 1-3 As described above, in Examples 1-3 to which the manufacturing method of the present invention was applied, the variation and range of the thickness distribution of the carrier for the double-side polishing apparatus were significantly improved as compared with the comparative example. Further, the double-side polishing using the carrier for the double-side polishing apparatus produced in Example 1-3 significantly improved the flatness of the semiconductor wafer.
  • Example 2 although the eccentric amount of the center of the hole with respect to the center of the outer carrier is not 1/5 or more of the diameter of the hole, the diameter of the tip of the outer carrier is the tip of the tip of the carrier for the double-side polishing apparatus. Since the diameter was 1.5 times or more, the result was even better than Example 3.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 本発明は、半導体ウェーハを保持するための保持孔が形成された歯車形の両面研磨装置用キャリアをラッピング加工して両面研磨装置用キャリアを製造する方法であって、両面研磨装置用キャリアを保持するためのホールを有し両面研磨装置用キャリアよりも大きいサイズのアウターキャリアを用意し、ホールの中心がアウターキャリアの中心に対し偏芯したものとし、ホールに両面研磨装置用キャリアを収納して両面研磨装置用キャリアを保持し、ホールの中心がアウターキャリアの中心に対して偏芯した状態で両面研磨装置用キャリアをラッピング加工することを特徴とする両面研磨装置用キャリアの製造方法である。これにより、両面研磨装置用キャリアをラッピングする場合に発生する厚み分布のバラツキを改善できる両面研磨装置用キャリアの製造方法、両面研磨装置用キャリア並びにこの両面研磨装置用キャリアを用いた両面研磨方法が提供される。

Description

両面研磨装置用キャリアの製造方法及び両面研磨装置用キャリア並びに両面研磨方法
 本発明は、両面研磨装置用キャリアの製造方法及び両面研磨装置用キャリア並びに両面研磨方法に関する。
 シリコンウェーハ等の半導体ウェーハを平坦化するための両面研磨装置において、半導体ウェーハを保持するための保持孔が設けられた円盤状の両面研磨装置用キャリアが一般的に用いられている(特許文献1参照)。
 この両面研磨装置用キャリアの製造過程において、1ロット内のキャリア同士の厚みバラツキを抑えることは当然であるが、1枚当たりの厚みバラツキ、つまり平面度を均一にすることは、この両面研磨装置用キャリアを使用して半導体ウェーハを高平坦度化するための両面研磨を行う上で重要な要素である。
 そのため、両面研磨装置用キャリアの製造過程において、ロット内の厚みバラツキを抑えるためにラッピング加工が行われている(特許文献2参照)。このラッピング加工を施された両面研磨装置用キャリアのキャリアボディ(キャリア本体)の厚みを平均値でみると、ロット内バラツキで2μm程度となっている。
特開2001-30161号公報 特開2009-135424号公報
 しかしながら、キャリアボディ1枚の厚みを平均値ではなく、全データのレンジ(最大値と最小値の差)で見た場合にはレンジが3μm以上と大きくなり、また特徴的な厚み分布を有していることがわかった。この特徴的な分布とは、キャリアボディの中央部(中央部とは、キャリアボディの中心がワークを収納するワークホールに含まれる場合においては、ワークホール周縁部の最も中心に近い部分を意味する。)が他の部分に比べて厚くなっている分布である。
 このような厚みバラツキがキャリアボディに発生すると、ワークホールの内周部にも厚みバラツキが発生し、この厚みバラツキに倣ってインサートに厚み分布が形成されてしまうという問題も発生する(インサートとは半導体ウェーハのエッジ部分の保護のため、ワークホール内周部に嵌め込まれる樹脂製のキャリア構成部材である。)。
 半導体ウェーハの高平坦化のためにインサートの厚みはワークホールの周方向で均一であることが必要であるが、キャリアボディの厚み分布によりインサートの厚みは不均一となってしまい、半導体ウェーハの平坦度の悪化を招いてしまう。それにも関わらず、キャリアボディの厚み分布、特にキャリアボディ中央部の厚みが他の部分に比べ厚くなることへの対策を行った技術はこれまでに開発されていなかった。
 本発明は前述のような問題に鑑みてなされたもので、両面研磨装置用キャリアをラッピングする場合に発生する厚み分布のバラツキを改善することができる両面研磨装置用キャリアの製造方法及び両面研磨装置用キャリア並びにこの両面研磨装置用キャリアを用いた両面研磨方法を提供することを目的とする。
 上記目的を達成するために、本発明によれば、半導体ウェーハを保持するための保持孔が形成された歯車形の両面研磨装置用キャリアをラッピング装置の上下定盤で挟みながら、前記両面研磨装置用キャリアを公転及び自転させることでラッピング加工して両面研磨装置用キャリアを製造する方法であって、前記両面研磨装置用キャリアを保持するためのホールを有する、前記両面研磨装置用キャリアよりも大きいサイズの歯車形のアウターキャリアを用意し、該アウターキャリアを前記ホールの中心が前記アウターキャリアの中心に対し偏芯したものとし、前記ホールに前記両面研磨装置用キャリアを収納することで、前記アウターキャリアで前記両面研磨装置用キャリアを保持し、前記ホールの中心が前記アウターキャリアの中心に対して偏芯した状態で、該保持した両面研磨装置用キャリアを前記ラッピング装置の上下定盤で挟みながら、前記アウターキャリア及び前記両面研磨装置用キャリアを自転及び公転させることで前記両面研磨装置用キャリアをラッピング加工することを特徴とする両面研磨装置用キャリアの製造方法を提供する。
 このようにすれば、従来ラッピング工程で発生していた厚みの分布、特にキャリアボディ中央部が他の部分に比べ厚くなる分布の発生を抑制し、厚みバラツキが小さく抑えられた両面研磨装置用キャリアを製造することができる。
 このとき、前記ホールの形状を円形とし、前記ホールの中心の前記アウターキャリアの中心に対する偏芯量を、前記ホールの直径の1/5以上とすることが好ましい。
 このようにすれば、より厚みバラツキが小さく抑えられ、特に厚みレンジが2μm以下に抑えられた両面研磨装置用キャリアを製造することができる。
 またこのとき、前記ホールの形状を円形とし、前記ホールの直径を前記両面研磨装置用キャリアの歯先円直径より0.5mm~1.0mm大きくすることができる。
 このようにすれば、両面研磨装置用キャリアのラッピングの際に、アウターキャリアがホール内での両面研磨装置用キャリアの自転を阻害することが無いため、厚みバラツキが少ない両面研磨装置用キャリアを確実に製造することができる。
 このとき、前記アウターキャリアの歯先円直径を、前記両面研磨装置用キャリアの歯先円直径の1.5倍以上とすることが好ましい。
 このようにすれば、より厚みバラツキが小さく抑えられ、特に厚みレンジが2μm以下に抑えられた両面研磨装置用キャリアを製造することができる。
 またこのとき、前記アウターキャリアの材質を炭素工具鋼、ステンレス鋼、又はチタンとすることを特徴とすることができる。
 アウターキャリアの材質としてはこれらの材料が好適である。
 このとき、前記両面研磨装置用キャリアの材質をステンレス鋼又はチタンとすることができる。
 両面研磨装置用キャリアの材質としてはこれらの材料が好適である。
 また、上記目的を達成するために、本発明によれば、上記の製造方法で製造された両面研磨装置用キャリアを提供する。
 このような両面研磨装置用キャリアであれば、例えば厚みレンジが2μm以下のものであり、厚み分布のバラツキが小さいので、高平坦な半導体ウェーハを製造可能な両面研磨装置用キャリアとなる。
 また、上記目的を達成するために、本発明によれば、両面研磨装置において、上記の両面研磨装置用キャリアを使用して半導体ウェーハを保持しながら、研磨布の貼付された上下定盤に前記保持した半導体ウェーハの上下面を摺接することで、半導体ウェーハを両面研磨する半導体ウェーハの両面研磨方法を提供する。
 上記のような厚み分布のバラツキが小さい両面研磨装置用キャリアを用いた両面研磨方法であれば、高平坦な半導体ウェーハを製造可能である。
 本発明は、厚み分布のバラツキが小さい両面研磨装置用キャリアを製造することができ、この両面研磨装置用キャリアを使用した両面研磨では、従来よりも高平坦な半導体ウェーハを得ることができる。
本発明の両面研磨装置用キャリアの製造方法に使用するラッピング装置の一例を示した概略図である。 本発明の両面研磨装置用キャリアの製造方法に使用するラッピング装置の下定盤の一例を示す上面図である。 本発明の両面研磨装置用キャリアの製造方法に使用するアウターキャリアの一例を示した概略図である。 実施例、比較例におけるラッピング後の両面研磨装置用キャリアの平面度分布を示す図である。 比較例において使用したラッピング装置を示した概略図である。 (a)20Bサイズの両面研磨装置用キャリアの一例を示した概略図である。(b)ワークホール周縁部の中心に対する距離を示す図である。 偏芯量Xと厚み変位Yのフィッティング式を示したグラフである。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 上述のように、従来、両面研磨装置用キャリアをラッピング加工する場合に、キャリアボディの中央部が厚くなってしまっていた。このように、キャリアボディに厚み分布のバラツキが有ると、後工程で嵌め込むインサートの厚みにもバラツキが生まれてしまう。このようなインサートやキャリアボディの厚さが不均一な両面研磨装置用キャリアを半導体ウェーハの両面研磨に使用すると、半導体ウェーハの平坦度が悪化するという問題があった。
 そこで、本発明者等は両面研磨装置用キャリアのラッピング加工で発生する上記のような厚みバラツキの発生原因を調査した。
 その結果、両面研磨装置用キャリアの中央部が厚くなる分布を形成する原因は、両面研磨装置用キャリアのワークホール(半導体ウェーハを収納する穴)が両面研磨装置用キャリアの中心から偏芯しており、ラッピング加工時において、中央部は両面研磨装置用キャリアの中心からの距離(偏芯量)が他の部分に比べて少ないためであることを発見した。
 例えば、図6(a)に示すような、20Bサイズ(歯先円直径525mm)の標準的な両面研磨装置用キャリアWにおける偏心量を考える。このキャリアWの各部の中心に対する距離(偏心量)は、最小となる箇所、即ち中央部(この場合は、ワークホール22周縁部の最も中心に近い部分)で約70mm、最大となる箇所で約250mmある。図6(b)にワークホール22周縁部の中心に対する距離を示す。
 このようなサイズの両面研磨装置用キャリアにおける、偏心量(中心からの距離)Xと厚み変位Yの関係は、図7に示すように実測値をフィッティング(曲線回帰)した結果、下記の式(1)で表される。尚、厚み変位Yは偏心量が最大となる点の厚みを基準とした。
 Y=-7×10-5×X+0.0106X+2.4102 ・・・ 式(1)
 図7及び式(1)に示すように、偏芯量と平面度(厚み分布)は逆相関関係にある。従って、両面研磨装置用キャリアの中央部においても偏芯量を確保することが、平面度改善に必要な要件であることがわかった。
 以上のことから、まず本発明者等は両面研磨装置用キャリアの両面をラッピング加工する際に、従来とは異なり、両面研磨装置用キャリアを保持部材で保持し、保持部材と共に自転及び公転させてラッピング加工することに想到した。そして、この保持部材として、両面研磨装置用キャリアを収納するホールを有し、更にホールの中心を保持部材の中心に対し偏芯させたもの(以下、この保持部材をアウターキャリアと呼ぶ)を使用することで、アウターキャリア中心に対するホールの中心の偏芯量が、ラッピング対象の両面研磨装置用キャリアの偏芯量に重畳されて厚み分布の均一化に必要な偏芯量を確保できることに想到し、本発明を完成させた。
 以下、本発明の両面研磨装置用キャリアの製造方法、両面研磨装置用キャリア、両面研磨方法について説明する。
 まず、本発明の両面研磨装置用キャリアの製造方法を、図1に示したラッピング装置を使用する場合を例にして説明する。また、ここでは、ラッピング対象の両面研磨装置用キャリアは、20B(歯先直径525mm)サイズのものを、アウターキャリアとして32B(歯先円直径814mm)サイズのラッピング装置用キャリアを使用した場合を例にして説明するが、これに限定されることはない。
 図1、図2のように、ラッピング装置10は上定盤11、下定盤12、サンギア13、インターナルギア14、ノズル15を具備している。
 下定盤12上の中心部分にはサンギア13が設けられ、下定盤12の周縁部に隣接するようにインターナルギア14が設けられている。また、ノズル15はラッピング加工時に、上定盤11に設けられた穴から上下定盤11、12の間にスラリー16を供給する。
 このようなラッピング装置10において、まず、図1、図2、図3に示すようなアウターキャリア1を用意する。本発明において、このアウターキャリア1として、両面研磨装置用キャリアWを保持するホール2を有し、図3のように、ホール2の中心Cがアウターキャリア1の中心Cに対して偏芯したものを用意し使用する。
 このとき、アウターキャリア1の材質を炭素工具鋼、ステンレス鋼、又はチタンとすることができる。
 これらの材料は、耐摩耗性が高いためラッピング加工に好適である。
 そして、図1、2に示すように、アウターキャリア1をラッピング装置10のサンギア13とインターナルギア14に噛合させ、アウターキャリア1のホール2に両面研磨装置用キャリアWを収納し保持する。
 このようにして、アウターキャリア1をサンギア13とインターナルギア14に噛合することで、これらのギアをそれぞれ自転させ、アウターキャリア1と両面研磨装置用キャリアWにサンギア13を中心とした遊星運動(自転及び公転運動)をさせることができる状態となる。
 その後、図1に示すように両面研磨装置用キャリアWの両面を上定盤11と下定盤12で挟み込み、ノズル15からスラリー16を供給するとともに、サンギア13とインターナルギア14によってアウターキャリア1を遊星運動させ、同時に上定盤11と下定盤12を相対方向に回転させる。このように、ホール2の中心Cがアウターキャリア1の中心Cに対して偏芯した状態で両面研磨装置用キャリアWの両面を同時にラッピング加工する。
 このようにラッピング加工して両面研磨装置用キャリアWを製造することで、アウターキャリア1の偏芯量が元の両面研磨装置用キャリアWの偏芯量に重畳されて、厚み分布の均一化に必要な偏芯量が確保されることとなる。その結果、両面研磨装置用キャリアWの厚み分布のバラツキが解消され、厚みの均一性が高い両面研磨装置用キャリアを得ることができる。
 このとき、アウターキャリア1の歯先円直径を、両面研磨装置用キャリアWの歯先円直径の1.5倍以上とすることが好ましい。
 このようにすれば、厚みレンジを2μm以下に抑えた両面研磨装置用キャリアを製造することができる。
 またこのとき、ホール2の形状を円形とし、ホール2の中心のアウターキャリア1の中心に対する偏芯量を、ホール2の直径の1/5以上とすることが好ましい。
 このようにすれば、厚みレンジを2μm以下に抑えた両面研磨装置用キャリアを製造することができる。
 以下、これらの理由を説明する。
 平坦度の均一性の観点から、両面研磨装置用キャリアWの厚みレンジは2μm以下が望ましい。本形態のように、例えばラッピング対象の両面研磨装置用キャリアとして、20B(歯先直径525mm)サイズのものを、アウターキャリアとして32B(歯先円直径814mm)サイズのラッピング装置用キャリアを使用した場合、上記のフィッティングした式(1)及び図7から、厚みレンジY≦2μmとするために必要な偏芯量Xは約180mmとなる。
 図6(a)に示したような、20Bサイズで、ワークホール22の中心に対する偏芯量が85~90mmの一般的な両面研磨装置用キャリアを例に述べると、図6(b)に示すように、両面研磨装置用キャリア中心からワークホール周縁部の最小距離は約70mmである。
 したがって、図3に示すようなアウターキャリア1の中心Cとホール2の中心Cを約110mm偏芯させたアウターキャリア1を用いれば、合計の偏芯量は約180mmとなり厚みレンジを2μm以下とできる。
 これは、本例のように歯先円直径814mm(32Bサイズ)のラッピング装置用キャリアをアウターキャリアとして用いることで満足できる。
 キャリアと噛合するピンギアサイズにもよるが、歯底円直径は歯先円直径に対して49/50とすることができ、32Bサイズの歯底円直径は797.7mmとできる。従って、アウターキャリアが重畳可能な偏芯量を計算すると(797.7-525)÷2=136.4mmであり110mmを充分にカバーできる。
 このように、アウターキャリア1を選択する際には、アウターキャリア1の半径とホール2の半径の差を参照することができる。
 そしてこのように、20Bサイズ(歯先円直径525mm)の両面研磨装置用キャリアWをラッピングする場合、アウターキャリア1は、32B(歯先円直径814mm)サイズ以上が好ましくなる。即ち、この場合に限らず他の場合においても、アウターキャリア1の歯先円直径を、両面研磨装置用キャリアの歯先円直径の1.5倍以上とすることで、厚みレンジが2μm以下となる偏芯量を確保できる。
 またこの場合には、ホール2の中心はキャリア中心から110mm以上偏芯させることで厚みレンジは2μm以下を達成できる。即ち、この場合に限らず、ホール2の中心のアウターキャリア1の中心に対する偏芯量を、両面研磨装置用キャリアWを収納するホール2の直径(この場合では、両面研磨装置用キャリアWの歯先円直径と略同一の約525.5mm)の1/5以上とすることで、厚みレンジが2μm以下を満たす偏芯量を確保できる。
 また、本発明では、ホール2の形状を円形とし、ホール2の直径を両面研磨装置用キャリアWの歯先円直径より0.5mm~1.0mm大きくすることが好ましい。
 このように、ラッピングする両面研磨装置用キャリアWと、これを収納、保持するホール2の内周に0.5mm~1.0mmの遊びがあれば、両面研磨装置用キャリアWがホール2内で自転するのを阻害しないため、厚みバラツキが少ない両面研磨装置用キャリアを確実に製造することができる。
 また、本発明では両面研磨装置用キャリアWの材質をステンレス鋼又はチタンとすることができる。
 本発明の製造方法は、特にこれらの材質の両面研磨装置用キャリアWの製造に好適である。
 尚、本発明では、ラッピング条件は一般的な条件で良く、スラリー16は例えばGC#2000等の一般的なものを使用し、所定圧で所定厚みに仕上げればよい。上記のように両面研磨装置用キャリアWのラッピング加工を行った後、EG(ガラスエポキシ樹脂)やアラミド製の樹脂製インサートを加圧しながら、ワークホール22の内周部分に嵌めこみ、樹脂厚みを揃える為の仕上げのポリッシュ加工を行い、両面研磨装置用キャリアWを作製してもよい。
 上記のような、本発明の製造方法で製造された両面研磨装置用キャリアWであれば、ラッピング加工後の厚みの分布のバラツキがほとんどなく平坦度の高い両面研磨装置用キャリアとなる。
 このようなものであれば、両面研磨装置にて半導体ウェーハの両面研磨に使用した際に、半導体ウェーハの平坦度を良好なものとできる。
 また本発明では、両面研磨装置において、上記の両面研磨装置用キャリアWを使用して半導体ウェーハを保持しながら、研磨布の貼付された上下定盤に保持した半導体ウェーハの上下面を摺接することで、半導体ウェーハを両面研磨する半導体ウェーハの両面研磨方法を提供する。
 上記のような厚みバラツキの小さい両面研磨装置用キャリアを用いた両面研磨方法であれば、高平坦な半導体ウェーハを製造可能である。
 尚、上記の説明では、ラッピング加工の対象として、20Bサイズの両面研磨装置用キャリアを、アウターキャリアとして32Bサイズのラッピング装置用キャリアを使用した場合を例としたが、これに限定されない。ラッピング加工の対象は上記サイズのものに限定されず、また、アウターキャリアとしては、ラッピング加工の対象を収納するホールの中心がアウターキャリアの中心に対して偏芯したものであれば、上記のようなラッピング装置用キャリアを使用しなくても良い。
 また、上記の説明では、図1、2のように、ラッピング装置10において、両面研磨装置用キャリアWを一枚ラッピングする場合を例としたが、これに限らず複数枚の両面研磨装置用キャリアWを同時にラッピング加工しても良く、このようにすることで効率よく研磨装置用キャリアを製造できる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 20B(歯先円直径525mm、歯底円直径515mm)サイズのチタン製の両面研磨装置用キャリアを、図1、図2に示すようなラッピング装置で両面をラッピング加工した。
 このとき、アウターキャリアとして32B(歯先円直径814mm、歯底円直径797.7mm)サイズの炭素工具鋼製のラッピング装置用キャリアを使用した。また、このアウターキャリアのホールは、直径525.5mmの円形とした。このときの、ホールの中心のアウターキャリアの中心に対する偏芯量は110mmとした。
 スラリーは、GC#2000を用い、一定荷重条件で一定厚みまでラッピング加工した。
 このときの、ラッピング対象の両面研磨装置用キャリア及びアウターキャリアの条件を表1に示す。
 次に、ラッピング加工後のチタン製の両面研磨装置用キャリアの平面度分布を測定した。尚、測定にはKEYENCE社製レーザー変位計を使用して、ワークホール周縁部の平面度分布を測定した。
 その結果を、図4及び表2に示す。尚、図4のグラフの横軸の角度は、図6(a)、(b)の場合と同様にワークホール周縁部における測定部分の角度を示している。
 図4に示すように、ラッピング加工後の平面度分布は、後述する比較例のように中央部(180°付近)が他の部分よりも極端に厚くなることは無く、均一であった。また、厚みレンジは1.12μm、厚みの偏差(厚みバラツキ)は0.30μmと比較例に比べて格段に良好な値となった。
 その後、ラッピング加工後のチタン製の両面研磨装置用キャリアのワークホール内周にアラミド樹脂製の内径300.5mmのインサートを嵌め合わせた。インサートは押圧しながら嵌め合わせをし、インサートの厚みを両面研磨装置用キャリアの厚みに揃えるための仕上げ研磨加工を行い、両面研磨装置用キャリアを作製した。
 これを用いて直径300mmの半導体シリコンウェーハの両面研磨加工を行った。両面研磨機は不二越機械製DSP-20B、研磨パッドはニッタ・ハース製MH-S15A、研磨スラリーはフジミインコーポレーテッド製GLANZOX2100を用いた。両面研磨加工は1バッチあたりのウェーハ加工枚数は5枚であり各10バッチ加工を行った。
 その後、研磨後の半導体シリコンウェーハのフラットネスとして、KLA-Tencor社製Wafersight M49mode 1mmEEにて、ESFQR(Edge Site Frontsurface referenced least sQuares/Range)を測定した。
 半導体シリコンウェーハのフラットネス測定結果を表3に示す。
 実施例1において、ESFQRmaxは31.24nm、ESFQRsigma(偏差)は5.07となった。また、比較例に比べESFQRは平均値で10%、偏差は約50%改善し、フラットネスは良好となった。
(実施例2)
 ホールの中心のアウターキャリアの中心に対する偏芯量を90mmとしたこと以外、実施例1と同様な条件で、20Bサイズの両面研磨装置用キャリアをラッピング加工し、平面度分布を測定した。このときの、ラッピング対象の両面研磨装置用キャリア及びアウターキャリアの条件を表1に示す。
 また、ラッピング加工後の平面度分布の測定結果を、図4及び表2に示す。
 図4に示すように、ラッピング加工後の平面度分布は後述する比較例のように中央部が他の部分よりも極端に厚くなることは無く、均一であった。また、厚みレンジは1.75μm、厚みの偏差(厚みバラツキ)は0.46μmと比較例に比べて良好な値となった。
 次に、ラッピング後の両面研磨装置用キャリアに実施例1と同様にインサートを嵌め合わせた。その後、この両面研磨装置用キャリアを使用して、実施例1と同様に半導体シリコンウェーハの両面研磨加工を行い、研磨後の半導体シリコンウェーハのESFQRを測定した。
 その結果を表3に示す。
 比較例に比べESFQRの最大値33.00nm、偏差(バラツキ)は7.56と小さく、半導体ウェーハのフラットネスが大幅に改善した。
(実施例3)
 アウターキャリアを30B(歯先円直径743.8mm、歯底円直径730.8mm)サイズのラッピング装置用キャリアに変更し、ホールの中心のアウターキャリアの中心に対する偏芯量を90mmとしたこと以外、実施例1と同様な条件で、20Bサイズの両面研磨装置用キャリアをラッピング加工し、平面度分布を測定した。このときの、ラッピング対象の両面研磨装置用キャリア及びアウターキャリアの条件を表1に示す。
 また、ラッピング加工後の平面度分布の測定結果を、図4及び表2に示す。
 図4に示すように、ラッピング加工後の平面度分布は、後述する比較例のように中央部が他の部分よりも極端に厚くなることは無く、均一であった。また、厚みレンジは1.96μm、厚みの偏差は0.39μmと比較例に比べて良好な値となった。
 次に、ラッピング後の両面研磨装置用キャリアに実施例1と同様にインサートを嵌め合わせた。その後、この両面研磨装置用キャリアを使用して、実施例1と同様に半導体シリコンウェーハの両面研磨加工を行い、研磨後の半導体シリコンウェーハのESFQRを測定した。
 その結果を表3に示す。
 比較例に比べESFQRの最大値は33.17nm、バラツキ(偏差)は7.9nmと小さく、半導体ウェーハのフラットネスが大幅に改善した。
(比較例1)
 図5のように、ラッピング対象の両面研磨装置用キャリアWをアウターキャリアで保持せず、直接ラッピング装置110のサンギア113及びインターナルギア114に噛合させてラッピング加工したこと以外、実施例1と同様な条件で両面研磨装置用キャリアをラッピング加工し、平面度分布を測定した。このときの、ラッピング対象の両面研磨装置用キャリア及びアウターキャリアの条件を表1に示す。
 また、ラッピング加工後の平面度分布の測定結果を、図4及び表2に示す。
 図4に示すように、比較例では両面研磨装置用キャリアの中央部が厚くなっていた。また、厚みレンジは3.04μm、厚みバラツキは0.81μmと実施例1-3に比べ大幅に悪化していた。
 次に、ラッピング後の両面研磨装置用キャリアに実施例1と同様にインサートを嵌め合わせた。その後、この両面研磨装置用キャリアを使用して、実施例1と同様に半導体シリコンウェーハの両面研磨加工を行い、研磨後の半導体シリコンウェーハのESFQRを測定した。
 その結果を表3に示す。
 比較例では、ESFQRの最大値40.04nm、バラツキ(偏差)12.03nmとなり、半導体ウェーハのフラットネスが実施例1-3に比べて大幅に悪化した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表4に実施例、比較例の条件、ラッピング後の両面研磨装置用キャリアの厚みレンジの測定値、両面研磨後の半導体ウェーハのESFQRをまとめたものを示す。
Figure JPOXMLDOC01-appb-T000004
 上記のように、本発明の製造方法を適用した実施例1-3は、比較例に比べ両面研磨装置用キャリアの厚み分布のバラツキやレンジが大幅に改善された。
 更に、実施例1-3で製造した両面研磨装置用キャリアを使用した両面研磨では半導体ウェーハのフラットネスも大幅に改善された。
 また、実施例1ではホールの中心のアウターキャリアの中心に対する偏芯量をホールの直径の1/5(=0.20)以上とし、アウターキャリアの歯先円直径を、両面研磨装置用キャリアの歯先円直径の1.5倍以上としたため実施例2、3よりもさらに良好な結果となった。
 実施例2ではホールの中心のアウターキャリアの中心に対する偏芯量をホールの直径の1/5以上とはしていないものの、アウターキャリアの歯先円直径を、両面研磨装置用キャリアの歯先円直径の1.5倍以上としているため実施例3よりもさらに良好な結果となった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1.  半導体ウェーハを保持するための保持孔が形成された歯車形の両面研磨装置用キャリアをラッピング装置の上下定盤で挟みながら、前記両面研磨装置用キャリアを公転及び自転させることでラッピング加工して両面研磨装置用キャリアを製造する方法であって、
     前記両面研磨装置用キャリアを保持するためのホールを有する、前記両面研磨装置用キャリアよりも大きいサイズの歯車形のアウターキャリアを用意し、該アウターキャリアを前記ホールの中心が前記アウターキャリアの中心に対し偏芯したものとし、
     前記ホールに前記両面研磨装置用キャリアを収納することで、前記アウターキャリアで前記両面研磨装置用キャリアを保持し、
     前記ホールの中心が前記アウターキャリアの中心に対して偏芯した状態で、該保持した両面研磨装置用キャリアを前記ラッピング装置の上下定盤で挟みながら、前記アウターキャリア及び前記両面研磨装置用キャリアを自転及び公転させることで前記両面研磨装置用キャリアをラッピング加工することを特徴とする両面研磨装置用キャリアの製造方法。
  2.  前記ホールの形状を円形とし、前記ホールの中心の前記アウターキャリアの中心に対する偏芯量を、前記ホールの直径の1/5以上とすることを特徴とする請求項1に記載の両面研磨装置用キャリアの製造方法。
  3.  前記ホールの形状を円形とし、前記ホールの直径を前記両面研磨装置用キャリアの歯先円直径より0.5mm~1.0mm大きくすることを特徴とする請求項1又は請求項2に記載の両面研磨装置用キャリアの製造方法。
  4.  前記アウターキャリアの歯先円直径を、前記両面研磨装置用キャリアの歯先円直径の1.5倍以上とすることを特徴とする請求項1から請求項3のいずれか1項に記載の両面研磨装置用キャリアの製造方法。
  5.  前記アウターキャリアの材質を炭素工具鋼、ステンレス鋼、又はチタンとすることを特徴とする請求項1から請求項4のいずれか1項に記載の両面研磨装置用キャリアの製造方法。
  6.  前記両面研磨装置用キャリアの材質をステンレス鋼又はチタンとすることを特徴とする請求項1から請求項5のいずれか1項に記載の両面研磨装置用キャリアの製造方法。
  7.  請求項1から請求項6のいずれか1項に記載の製造方法で製造された両面研磨装置用キャリア。
  8.  両面研磨装置において、請求項7に記載の両面研磨装置用キャリアを使用して半導体ウェーハを保持しながら、研磨布の貼付された上下定盤に前記保持した半導体ウェーハの上下面を摺接することで、半導体ウェーハを両面研磨する半導体ウェーハの両面研磨方法。
PCT/JP2015/000662 2014-03-14 2015-02-13 両面研磨装置用キャリアの製造方法及び両面研磨装置用キャリア並びに両面研磨方法 WO2015136840A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580011151.XA CN106061679B (zh) 2014-03-14 2015-02-13 双面研磨装置用载体的制造方法及双面研磨装置用载体并用的双面研磨方法
KR1020167024531A KR20160133437A (ko) 2014-03-14 2015-02-13 양면연마장치용 캐리어의 제조방법 및 양면연마장치용 캐리어 그리고 양면연마방법
DE112015000878.0T DE112015000878T5 (de) 2014-03-14 2015-02-13 Herstellungsverfahren eines Trägers für eine Vorrichtung zum doppelseitigen Polieren, Träger für eine Vorrichtung zum doppelseitigen Polieren und Verfahren zum doppelseitigen Polieren
SG11201607115QA SG11201607115QA (en) 2014-03-14 2015-02-13 Manufacturing method of carrier for double-side polishing apparatus,carrier for double-side polishing apparatus, and double-side polishing method
US15/122,520 US20170069502A1 (en) 2014-03-14 2015-02-13 Manufacturing method of carrier for double-side polishing apparatus, carrier for double-side polishing apparatus, and double-side polishing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-051332 2014-03-14
JP2014051332A JP6056793B2 (ja) 2014-03-14 2014-03-14 両面研磨装置用キャリアの製造方法及び両面研磨方法

Publications (1)

Publication Number Publication Date
WO2015136840A1 true WO2015136840A1 (ja) 2015-09-17

Family

ID=54071303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000662 WO2015136840A1 (ja) 2014-03-14 2015-02-13 両面研磨装置用キャリアの製造方法及び両面研磨装置用キャリア並びに両面研磨方法

Country Status (8)

Country Link
US (1) US20170069502A1 (ja)
JP (1) JP6056793B2 (ja)
KR (1) KR20160133437A (ja)
CN (1) CN106061679B (ja)
DE (1) DE112015000878T5 (ja)
SG (1) SG11201607115QA (ja)
TW (1) TWI593512B (ja)
WO (1) WO2015136840A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186490A (ja) * 2018-04-16 2019-10-24 株式会社Sumco キャリア、キャリアの製造方法、キャリアの評価方法および半導体ウェーハの研磨方法
JPWO2019188818A1 (ja) * 2018-03-30 2021-02-12 積水化成品工業株式会社 ハイドロゲル
US11052506B2 (en) * 2015-10-09 2021-07-06 Sumco Corporation Carrier ring, grinding device, and grinding method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6424809B2 (ja) 2015-12-11 2018-11-21 信越半導体株式会社 ウェーハの両面研磨方法
JP6443370B2 (ja) * 2016-03-18 2018-12-26 信越半導体株式会社 両面研磨装置用のキャリアの製造方法およびウェーハの両面研磨方法
JP6665827B2 (ja) 2017-04-20 2020-03-13 信越半導体株式会社 ウェーハの両面研磨方法
CN107584407B (zh) * 2017-07-08 2019-02-19 合肥嘉东光学股份有限公司 一种激光晶体双面抛光装置
JP6935635B2 (ja) * 2017-09-06 2021-09-15 スピードファム株式会社 両面研磨装置用の被研磨物保持用キャリア
JP7088522B2 (ja) * 2017-09-27 2022-06-21 スピードファム株式会社 ワークキャリアの製造方法及びワークキャリアの研磨用拡幅部材
JP7425411B2 (ja) * 2020-10-12 2024-01-31 株式会社Sumco キャリア測定装置、キャリア測定方法、及びキャリア管理方法
JP7435436B2 (ja) * 2020-12-24 2024-02-21 株式会社Sumco キャリアプレートの研磨方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004058201A (ja) * 2002-07-29 2004-02-26 Hoya Corp ワークの研磨方法および電子デバイス用基板の製造方法
JP2005014178A (ja) * 2003-06-27 2005-01-20 Kyocera Kinseki Corp 研磨装置用ダブルキャリア
JP2005066773A (ja) * 2003-08-26 2005-03-17 Murata Mfg Co Ltd ラップ加工用キャリアの厚み加工方法
JP2010023217A (ja) * 2008-07-24 2010-02-04 Kyocera Chemical Corp 被研磨物保持用キャリアディスク
JP2011143477A (ja) * 2010-01-12 2011-07-28 Shin Etsu Handotai Co Ltd 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法
JP2013502719A (ja) * 2009-08-21 2013-01-24 エルジー シルトロン インコーポレーテッド 両面研磨装置及びそのためのキャリア

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153453A (ja) * 1998-11-19 2000-06-06 Ngk Insulators Ltd ガラス基板の研磨方法
JP2001030161A (ja) * 1999-07-16 2001-02-06 Toshiro Doi 研磨加工装置のキャリア
JP3791302B2 (ja) * 2000-05-31 2006-06-28 株式会社Sumco 両面研磨装置を用いた半導体ウェーハの研磨方法
JP4241164B2 (ja) * 2003-04-23 2009-03-18 日立電線株式会社 半導体ウェハ研磨機
JPWO2006090661A1 (ja) * 2005-02-25 2008-07-24 信越半導体株式会社 両面研磨装置用キャリアおよびこれを用いた両面研磨装置、両面研磨方法
KR100898821B1 (ko) * 2007-11-29 2009-05-22 주식회사 실트론 웨이퍼 캐리어의 제조방법
JP4985451B2 (ja) * 2008-02-14 2012-07-25 信越半導体株式会社 ワークの両頭研削装置およびワークの両頭研削方法
JP2009285768A (ja) * 2008-05-28 2009-12-10 Sumco Corp 半導体ウェーハの研削方法および研削装置
JP5233888B2 (ja) * 2009-07-21 2013-07-10 信越半導体株式会社 両面研磨装置用キャリアの製造方法、両面研磨装置用キャリア及びウェーハの両面研磨方法
JP5056961B2 (ja) * 2010-02-01 2012-10-24 旭硝子株式会社 磁気記録媒体用ガラス基板及びその製造方法
DE102010063179B4 (de) * 2010-12-15 2012-10-04 Siltronic Ag Verfahren zur gleichzeitigen Material abtragenden Bearbeitung beider Seiten mindestens dreier Halbleiterscheiben

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004058201A (ja) * 2002-07-29 2004-02-26 Hoya Corp ワークの研磨方法および電子デバイス用基板の製造方法
JP2005014178A (ja) * 2003-06-27 2005-01-20 Kyocera Kinseki Corp 研磨装置用ダブルキャリア
JP2005066773A (ja) * 2003-08-26 2005-03-17 Murata Mfg Co Ltd ラップ加工用キャリアの厚み加工方法
JP2010023217A (ja) * 2008-07-24 2010-02-04 Kyocera Chemical Corp 被研磨物保持用キャリアディスク
JP2013502719A (ja) * 2009-08-21 2013-01-24 エルジー シルトロン インコーポレーテッド 両面研磨装置及びそのためのキャリア
JP2011143477A (ja) * 2010-01-12 2011-07-28 Shin Etsu Handotai Co Ltd 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11052506B2 (en) * 2015-10-09 2021-07-06 Sumco Corporation Carrier ring, grinding device, and grinding method
JPWO2019188818A1 (ja) * 2018-03-30 2021-02-12 積水化成品工業株式会社 ハイドロゲル
JP2019186490A (ja) * 2018-04-16 2019-10-24 株式会社Sumco キャリア、キャリアの製造方法、キャリアの評価方法および半導体ウェーハの研磨方法

Also Published As

Publication number Publication date
CN106061679B (zh) 2017-07-21
US20170069502A1 (en) 2017-03-09
JP6056793B2 (ja) 2017-01-11
TW201544245A (zh) 2015-12-01
TWI593512B (zh) 2017-08-01
KR20160133437A (ko) 2016-11-22
CN106061679A (zh) 2016-10-26
DE112015000878T5 (de) 2016-11-10
JP2015174168A (ja) 2015-10-05
SG11201607115QA (en) 2016-10-28

Similar Documents

Publication Publication Date Title
JP6056793B2 (ja) 両面研磨装置用キャリアの製造方法及び両面研磨方法
TWI595548B (zh) Method for processing semiconductor wafer, method for manufacturing bonded wafer, and method for manufacturing epitaxial wafer
JP5233888B2 (ja) 両面研磨装置用キャリアの製造方法、両面研磨装置用キャリア及びウェーハの両面研磨方法
US10335918B2 (en) Workpiece processing apparatus
TW200819242A (en) Carrier for double side polishing device, and double side polishing device and double side polishing method using the carrier
JP6443370B2 (ja) 両面研磨装置用のキャリアの製造方法およびウェーハの両面研磨方法
KR102004705B1 (ko) 양면 연마 방법
JP5648623B2 (ja) 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法
US11453098B2 (en) Carrier for double-side polishing apparatus, double-side polishing apparatus, and double-side polishing method
CN108349058B (zh) 承载环、磨削装置及磨削方法
KR102657849B1 (ko) 캐리어의 제조방법 및 웨이퍼의 양면 연마방법
TW201440954A (zh) 雙面研磨拋光方法及其系統
WO2019044497A1 (ja) キャリアの製造方法およびウェーハの研磨方法
JP6939752B2 (ja) シリコンウェーハのヘリカル面取り加工方法
WO2018012097A1 (ja) 両面研磨装置
KR20170087300A (ko) 에지 그라인딩 장치
WO2014076955A1 (ja) 半導体ウェハの両面研磨装置および半導体ウェハの製造方法
TW201733737A (zh) 晶圓之兩面研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15122520

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167024531

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015000878

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15762292

Country of ref document: EP

Kind code of ref document: A1