WO2015133551A1 - オーステナイト系耐熱鋼 - Google Patents

オーステナイト系耐熱鋼 Download PDF

Info

Publication number
WO2015133551A1
WO2015133551A1 PCT/JP2015/056433 JP2015056433W WO2015133551A1 WO 2015133551 A1 WO2015133551 A1 WO 2015133551A1 JP 2015056433 W JP2015056433 W JP 2015056433W WO 2015133551 A1 WO2015133551 A1 WO 2015133551A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
heat treatment
steel
content
Prior art date
Application number
PCT/JP2015/056433
Other languages
English (en)
French (fr)
Inventor
剛夫 宮村
難波 茂信
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54055354&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015133551(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US15/123,125 priority Critical patent/US20170067139A1/en
Priority to EP15758391.5A priority patent/EP3115476A4/en
Priority to CN201580011341.1A priority patent/CN106062230B/zh
Priority to KR1020167023997A priority patent/KR101770536B1/ko
Publication of WO2015133551A1 publication Critical patent/WO2015133551A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to an austenitic heat resistant steel.
  • the method of coarsening the crystal grains inhibits the formation of the Cr 2 O 3 protective film, so that the steam oxidation resistance may be lowered.
  • the element addition amount it is necessary to increase the element addition amount. If the amount of element addition is increased, various basic characteristics other than creep strength may be adversely affected. Further, when the amount of element addition is increased, the raw material cost increases, and there is a possibility that economic efficiency is impaired. For this reason, a method of obtaining a solid solution strengthening action in a heat resistant material is not desirable as a method of obtaining a desired strength.
  • the method of obtaining the effect of precipitation strengthening can strongly suppress the movement of dislocation accompanying deformation and can greatly improve the creep strength.
  • many heat-resistant members are manufactured in the order of softening heat treatment, cold working, and final heat treatment.
  • the final heat treatment is performed by heating to a high temperature followed by a rapid cooling treatment in the actual use environment or in the creep test. It is necessary to previously dissolve the element that precipitates therein.
  • Patent Document 1 discloses an austenitic stainless steel containing one or two of Ti: 0.15 to 0.5 mass% and Nb: 0.3 to 1.5 mass%.
  • the final softening temperature is set to over 1200 ° C. to 1350 ° C. and heated. After cooling at a cooling rate of 500 ° C./hr or more, 20 to 90% of cold working is added. Next, by heating to a temperature of 1070 to 1300 ° C. and 30 ° C. lower than the final softening temperature, and performing a final heat treatment of cooling at a cooling rate of air cooling or higher, the creep strength is high, and the fine grain structure has good corrosion resistance.
  • a method for producing austenitic stainless steel is disclosed.
  • Patent Document 1 a part of the element to be precipitated in an actual use environment or a creep test is precipitated in a small amount in the above-described final heat treatment stage, and crystallized due to the grain boundary pinning effect by the precipitate. This is to suppress grain coarsening. That is, the method disclosed in Patent Document 1 precipitates the difference in the amount of solid solution corresponding to this temperature difference by raising the softening heat treatment temperature before cold working to a certain level or more with respect to the final heat treatment. Thus, by devising two heat treatment temperatures, improvement in creep strength by high-temperature heat treatment and formation of a structure (fine crystal grain structure) containing a lot of fine crystal grains are achieved.
  • the manufacturing equipment used in actual production has an upper limit temperature.
  • the softening heat treatment temperature is raised to the equipment upper limit temperature, in order to provide a difference between the two heat treatment temperatures as in the method disclosed in Patent Document 1, it is necessary to set the final heat treatment temperature lower than the equipment upper limit temperature. .
  • the decrease in the final heat treatment temperature decreases the amount of precipitation formed in the actual use environment or during the creep test, and as a result, the creep strength may not be sufficiently improved.
  • the invention disclosed in Patent Document 1 obtains excellent steam oxidation resistance by making a fine grain structure, and obtains a pinning effect of grain boundaries by precipitating a small amount of precipitates. It has a creep strength.
  • lowering the final heat treatment temperature to obtain a pinning effect means that the deposits that should be formed in the actual use environment or during the creep test are used in advance and sacrificed. Conceivable.
  • the conventional technology cannot sufficiently utilize the precipitation strengthening that can be obtained from the steel material components.
  • the creep strength is a limiting factor that determines the thickness of the member. Therefore, if the creep strength is improved, the thickness can be reduced and the cost can be reduced.
  • austenitic heat-resistant steel has sufficient creep strength, and it can be said that it has not led to cost reduction.
  • the final heat treatment temperature is lowered when the method disclosed in Patent Document 1 is applied. There must be. As described above, when the final heat treatment temperature is lowered, the solid solution amount of the precipitated element is lowered. Therefore, it is presumed that precipitation strengthening cannot be utilized to the maximum and the effect of improving the creep strength cannot be fully expressed.
  • This invention is made
  • the creep strength has been arranged focusing on the solid solution amount of the precipitated element depending on the temperature of the heat treatment. Therefore, generally, when the final heat treatment temperature is lowered, the amount of precipitated elements decreases, and the amount of fine precipitates newly precipitated in the actual use environment or during the creep test is reduced. Has been thought to be lower.
  • the temperature difference between the softening heat treatment and the final heat treatment is set to 30 ° C. or more, and the precipitation of some precipitation elements is suppressed by the final heat treatment, thereby suppressing the coarsening of crystal grains. is doing.
  • the precipitate that is precipitated by this operation is a precipitate that is supposed to be deposited in the actual use environment or during the creep test and contribute to the improvement of the creep strength. That is, the austenitic stainless steel manufactured by the method disclosed in Patent Document 1 cannot sufficiently improve the creep strength by the amount of the precipitated element to suppress the coarsening of crystal grains. The possibility is high.
  • the present inventors have intensively studied whether or not the precipitate formed by this final heat treatment can directly affect the improvement of creep strength.
  • the inventors of the present invention maintain specific amounts of precipitation elements added and solid solution amounts within a certain range, and within a certain range the precipitation particle size and precipitation amount contained in the steel. It was found that the precipitate obtained by performing the final heat treatment at a lower temperature than in the prior art can improve the creep strength. That is, the present inventors have found that precipitates formed by performing final heat treatment under specific heat treatment conditions contribute to improvement of creep strength as fine precipitates as they are. This finding exceeds the concept of the prior art that the creep strength is superior to conventional precipitates obtained by heat treatment at high temperatures. It was also found that the final heat treatment is performed under the specific heat treatment conditions described above (lower temperature than before), so that the fine grain structure can be maintained and the steam oxidation resistance can be maintained.
  • the precipitate formed by the final heat treatment suppresses creep deformation more effectively than the precipitate formed during the creep test.
  • precipitates formed during a creep test on an austenitic heat resistant steel are formed along dislocations introduced with deformation. Since dislocations are concentrated in the vicinity of the grain boundaries, the distribution of precipitates becomes nonuniform.
  • the precipitate formed by the final heat treatment when manufacturing the austenitic heat resistant steel is uniformly formed in the grains.
  • the precipitate formed by the final heat treatment can efficiently suppress the dislocation movement accompanying the creep deformation from the initial stage of deformation throughout the grain. For these reasons, it is presumed that good creep strength can be obtained when the final heat treatment is performed under specific heat treatment conditions as described above. This knowledge goes beyond the concept of the solid solution amount of the precipitation element depending on the temperature of the conventional heat treatment.
  • the austenitic heat-resisting steel according to the present invention which is made on the basis of the above findings and solves the above-mentioned problems, is C: 0.05 to 0.16% by mass, Si: 0.1 to 1% by mass, Mn: 0.0.
  • precipitation cumulative number particle size precipitates in the range of 100nm exceeds the 0nm density 0.1-2.0 units / [mu] m 2, the distribution of the precipitated particles size and the cumulative number density
  • the precipitation particle diameter corresponding to the half value of the cumulative number density is 70 nm or less
  • the average hardness is 160 Hv or less
  • the crystal grain size number is 7.5 or more.
  • the austenitic heat-resisting steel according to the present invention can have precipitates that can be obtained by performing the final heat treatment under a specific heat treatment condition with the steel material component in the above-described range.
  • This precipitate is one in which the particle diameter and the amount of precipitation contained in the steel fall within a certain range, and contributes to the improvement of the creep strength as a fine precipitate as it is after the precipitation.
  • this fine precipitate can improve the creep strength as compared with the conventional precipitate formed by final heat treatment at a high temperature.
  • the final heat treatment is performed at specific heat treatment conditions, specifically at a lower temperature than before, the fine grain structure can be maintained and the steam oxidation resistance is excellent. can do.
  • the austenitic heat-resisting steel according to the present invention further includes Zr: 0.3% by mass or less (not including 0% by mass), rare earth elements: 0.15% by mass or less (not including 0% by mass), and W : It is preferable to contain at least one of 3% by mass or less (not including 0% by mass).
  • the high temperature strength can be improved by precipitation strengthening.
  • the austenitic heat-resisting steel according to the present invention contains a rare earth element in the above-described range, the oxidation resistance of the stainless steel can be improved.
  • the austenitic heat-resisting steel according to the present invention contains W in the above-described range, the high temperature strength can be improved by solid solution strengthening.
  • the austenitic heat-resisting steel according to the present invention has the steel material component in the above-described range, and the precipitate particle diameter and the precipitation amount contained in the steel are within a certain range, so that it is excellent while maintaining a fine grain structure.
  • the steel material components are C: 0.05 to 0.16 mass%, Si: 0.1 to 1 mass%, Mn: 0.1 to 2.5 mass%, P : 0.01 to 0.05 mass%, S: 0.005 mass% or less (excluding 0 mass%), Ni: 7 to 12 mass%, Cr: 16 to 20 mass%, Cu: 2 to 4 mass %, Mo: 0.1 to 0.8 mass%, Nb: 0.1 to 0.6 mass%, Ti: 0.1 to 0.6 mass%, B: 0.0005 to 0.005 mass%, N: 0.001 to 0.15 mass%, Mg: 0.005 mass% or less (not including 0 mass%) and Ca: 0.005 mass% or less (not including 0 mass%)
  • the total of the Nb content and the Ti content is 0.3% by mass
  • the austenitic heat-resistant steel according to the present embodiment further includes Zr: 0.3% by mass or less (excluding 0% by mass), rare earth element: 0.15% by mass or less (not including 0% by mass), and It is preferable to contain at least one of W: 3 mass% or less (excluding 0 mass%).
  • the austenitic heat-resistant steel according to the present embodiment is a fire SUS321J2HTB steel (18 mass% Cr-10 mass% Ni-3 mass% Cu-Nb) using Ti as a precipitation element. , Ti steel).
  • the austenitic heat-resisting steel according to the present embodiment comprising the above-described steel material components has a cumulative number density of precipitates in the range of the precipitate particle diameter exceeding 0 nm and 100 nm, 0.1 to 2.0 pieces / ⁇ m 2 ,
  • the precipitated particle size corresponding to the half value of the cumulative number density is 70 nm or less
  • the average hardness is 160 Hv or less
  • the crystal grain size number is 7.5 or more.
  • the precipitated particle diameter refers to a value calculated as the equivalent-circle diameter of the precipitated particles (precipitate).
  • the means for solving the problem it is possible to obtain a precipitate in which the precipitate particle size and the precipitation amount contained in the steel are within a certain range by performing the final heat treatment under specific heat treatment conditions.
  • the above average hardness and grain size number can also be controlled by controlling the heat treatment temperature. Specific heat treatment conditions and heat treatment temperatures will be described later.
  • the austenitic heat-resistant steel according to the present embodiment is excellent in steam oxidation resistance.
  • the austenitic heat-resistant steel according to the present embodiment is similar to the fire SUS321J2HTB steel using Ti as a precipitation element.
  • the following steel material components have the following effects, and if they deviate from the predetermined contents, the following problems may occur.
  • C has the effect
  • 0.05 mass% or more is contained in order to acquire the effect
  • the lower limit of the C content is preferably 0.08% by mass, and more preferably 0.09% by mass.
  • the upper limit of the C content is preferably 0.15% by mass, and more preferably 0.13% by mass.
  • Si has a deoxidizing action in the molten steel and effectively acts to improve oxidation resistance.
  • Si is contained in an amount of 0.1% by mass or more in order to obtain a deoxidizing action in molten steel and an action for improving oxidation resistance.
  • the steel material may be brittle, which is not preferable.
  • the lower limit of the Si content is preferably 0.2% by mass, and more preferably 0.3% by mass.
  • the upper limit of the Si content is preferably 0.7% by mass, and more preferably 0.5% by mass.
  • Mn has a deoxidizing action in molten steel.
  • 0.1 mass% or more of Mn is contained.
  • the Mn content exceeds 2.5 mass%, it is not preferable because it promotes coarsening of carbide precipitation.
  • the lower limit of the Mn content is preferably 0.2% by mass, and more preferably 0.3% by mass.
  • the upper limit of the Mn content is preferably 2.0% by mass, and more preferably 1.8% by mass.
  • P 0.01 to 0.05% by mass
  • P has the effect of improving the high temperature strength.
  • 0.01 mass% or more of P is contained in order to improve the high temperature strength.
  • the lower limit of the P content is preferably 0.015% by mass, and more preferably 0.02% by mass.
  • the upper limit of the P content is preferably 0.04% by mass, and more preferably 0.03% by mass.
  • S 0.005 mass% or less (excluding 0 mass%)
  • S is an inevitable impurity. If the S content becomes excessive and exceeds 0.005% by mass, the hot workability is deteriorated.
  • the S content is set to 0.005 mass% or less so as not to deteriorate the hot workability. The smaller the S content, the better.
  • the upper limit of the S content is preferably 0.002% by mass, and more preferably 0.001% by mass.
  • Ni has the effect of stabilizing the austenite phase.
  • 7% by mass or more of Ni is contained in order to stabilize the austenite phase.
  • the lower limit of the Ni content is preferably 9% by mass, and more preferably 9.5% by mass.
  • the upper limit of the Ni content is preferably 11.5% by mass, and more preferably 11% by mass.
  • Cr 16 to 20% by mass
  • Cr has the effect of improving the oxidation resistance and corrosion resistance of the steel material.
  • Cr in order to improve the oxidation resistance and corrosion resistance of the steel material, Cr is contained in an amount of 16% by mass or more. However, if the Cr content exceeds 20% by mass, the steel material becomes brittle.
  • the lower limit of the Cr content is preferably 17.5% by mass, and more preferably 18% by mass.
  • the upper limit of the Cr content is preferably 19.5% by mass, and more preferably 19% by mass.
  • Cu has the effect of forming precipitates in steel and improving high temperature strength.
  • 2 mass% or more of Cu is contained.
  • the lower limit of the Cu content is preferably 2.5% by mass, and more preferably 2.8% by mass.
  • the upper limit of the Cu content is preferably 3.5% by mass, and more preferably 3.2% by mass.
  • Mo 0.1 to 0.8% by mass
  • Mo has the effect
  • Mo is contained in an amount of 0.1% by mass or more. However, if the Mo content becomes excessive and exceeds 0.8% by mass, the steel material becomes brittle.
  • the lower limit of the Mo content is preferably 0.2% by mass, and more preferably 0.3% by mass.
  • the upper limit of the Mo content is preferably 0.6% by mass, and more preferably 0.5% by mass.
  • Nb 0.1 to 0.6% by mass
  • Ti 0.1 to 0.6% by mass
  • Total of Nb content and Ti content is 0.3 mass% or more
  • Nb and Ti can be precipitated as carbonitrides (carbides, nitrides or carbonitrides) to improve the high-temperature strength. Moreover, this precipitate suppresses the coarsening of crystal grains and promotes the diffusion of Cr. It can be said that it is a part of the most important element in the present invention because it exerts a secondary effect of improving corrosion resistance (water vapor oxidation resistance) by diffusion of Cr.
  • Nb and Ti precipitates are formed to improve the high-temperature strength and to exert the effect of improving the steam oxidation resistance, so that Nb is 0.1% by mass or more and Ti is 0.1%. It is contained by mass% or more. By simultaneously containing Nb and Ti, the contribution to the improvement of the high temperature strength of the precipitate can be further increased. However, if these are not contained so that the total of the Nb content and the Ti content is 0.3% by mass or more, it is impossible to ensure the minimum necessary precipitation amount.
  • the minimum of Nb content shall be 0.2 mass%.
  • the lower limit of the Ti content is preferably 0.15% by mass.
  • the lower limit of the total content of Nb and Ti is preferably 0.35% by mass.
  • the upper limit of content of Nb and Ti is respectively 0.4 mass%, and it is more preferable to set it as 0.3 mass%.
  • B has the effect of promoting the formation of M 23 C 6 type carbide (M is a carbide forming element) and improving the high temperature strength.
  • M is a carbide forming element
  • B in order to improve high temperature strength, 0.0005 mass% or more of B is contained.
  • the lower limit of the B content is preferably 0.001% by mass, and more preferably 0.0015% by mass.
  • the upper limit of the B content is preferably 0.004% by mass, and more preferably 0.003% by mass.
  • N has the effect of improving the high-temperature strength by solid solution strengthening.
  • N is added in an amount of 0.001% by mass or more in order to improve the high temperature strength.
  • the lower limit of the N content is preferably 0.002% by mass, more preferably 0.003% by mass.
  • the upper limit of the N content is preferably 0.08% by mass, and more preferably 0.04% by mass.
  • Mg and Ca act as desulfurization / deoxidation elements and have an effect of improving the hot workability of the steel material.
  • Ca and Mg may be contained in a range of 0.005% by mass or less.
  • the upper limit of Ca and Mg is preferably 0.002% by mass.
  • Zr 0.3% by mass or less (excluding 0% by mass)
  • Zr is an optional component and has the effect of improving the high-temperature strength by precipitation strengthening. However, if the Zr content becomes excessive and exceeds 0.3% by mass, a coarse intermetallic compound is formed, resulting in a decrease in hot ductility. In addition, it is preferable that the upper limit of Zr content shall be 0.25 mass%. However, since inclusion of Zr increases the cost of the steel material, it may be included as necessary.
  • Rare earth elements are optional components and have the effect of improving the oxidation resistance of stainless steel. That is, the generation of oxide scale can be suppressed by arbitrarily containing rare earth elements. However, if the content of the rare earth element becomes excessive and exceeds 0.15% by mass, a part of the grain boundary is melted in a high temperature environment and hot workability is hindered.
  • the upper limit of the rare earth element content is preferably 0.1% by mass, and more preferably 0.05% by mass.
  • the rare earth element is one or more elements selected from a total of 17 elements including Sc and Y and 15 lanthanoid elements represented by La, Ce, and Nd.
  • the rare earth element content is a total content of one or more elements selected from 17 elements.
  • W 3% by mass or less (excluding 0% by mass)
  • W is an optional component and has the effect of improving the high temperature strength by solid solution strengthening. However, if the W content is excessive and exceeds 3% by mass, a coarse intermetallic compound is formed, resulting in a decrease in high temperature ductility.
  • the upper limit of the W content is preferably 2.5% by mass, and more preferably 2.0% by mass.
  • the steel material component described above exhibits the above-described action by being contained, but at the same time increases the cost. Therefore, what is necessary is just to set content according to a required reinforcement
  • the balance is Fe and inevitable impurities
  • the balance is Fe and other inevitable impurities.
  • other inevitable impurities include Al, Sn, Zn, Pb, As, Bi, Sb, Te, Se, and In. Inevitable impurities are preferably reduced as much as possible.
  • Al is 0.01% by mass or less
  • Sn is 0.005% by mass or less
  • Zn is 0.01% by mass or less
  • Pb is 0.002%.
  • Mass% or less As is 0.01 mass% or less
  • Bi is 0.002 mass% or less
  • Sb is 0.002 mass% or less
  • Te 0.01 mass% or less
  • Se is 0.002 mass% or less
  • In It is recommended that the content be 0.002% by mass or less.
  • the average hardness (Vickers hardness) is set to 160 Hv or less in order to secure the solid solution amount of the elements that are deposited in the actual use environment or the creep test after the above-described component range. If the average hardness exceeds 160 Hv, the solid solution amount of the element that precipitates in the actual use environment or during the creep test cannot be secured, so the creep strength decreases.
  • the upper limit of the average hardness is preferably 140 Hv.
  • the lower limit of the average hardness is preferably 100 Hv, more preferably 110 Hv.
  • Vickers hardness can be measured based on JISZ2244: 2009, for example.
  • the precipitate particle diameter corresponding to half the cumulative number density is kept as fine as 70 nm or less while forming a certain amount of precipitates of 100 nm or less, thus improving the creep strength.
  • the lower limit of the cumulative number density mentioned above is preferably of a 0.3 / ⁇ m 2, and more preferably set to 0.4 / ⁇ m 2.
  • the upper limit of the precipitated particle diameter corresponding to the half value of the cumulative number density is preferably 60 nm, and more preferably 50 nm.
  • the lower limit of the precipitated particle diameter corresponding to the half value of the cumulative number density exceeds 0 nm. The method for measuring the precipitated particle diameter and the cumulative number density will be described later.
  • the metal structure is in a sufficiently fine state and can be referred to as a fine crystal grain structure. Therefore, the steam oxidation resistance can be maintained.
  • the final heat treatment may be performed under specific heat treatment conditions described later.
  • the final heat treatment may be performed under the condition that the coarsening factor is 2000 ° C. ⁇ min or less. This “condition that the coarsening factor of the precipitate is 2000 ° C./min or less” is the specific heat treatment condition described above.
  • the coarsening factor of the precipitate is an index representing the influence of heat on the coarsening of the precipitate, and is a value obtained by integrating over time a temperature of 900 ° C. or higher at which the growth of the precipitate proceeds with respect to the temperature history during the heat treatment. is there. Note that this coarsening factor must include not only the heat treatment holding time but also the heating time and cooling time of 900 ° C. or higher.
  • the coarsening factor of a conventional austenitic heat resistant steel that contains Ti as a precipitation element and has sufficiently increased high-temperature strength, such as fire SUS321J2HTB steel is about 3000 to 7000 ° C./min.
  • the coarsening factor is set to 2000 ° C. ⁇ min or less.
  • the lower limit of the coarsening factor is preferably larger than 473 ° C./min, more preferably 500 ° C./min or more, and even more preferably 821 ° C./min or more.
  • the maximum temperature reached and the holding time can be adjusted according to the constraints of the equipment.
  • the softening heat treatment it is necessary to carry out the softening heat treatment at a temperature higher by 30 ° C. or more than the final heat treatment to dissolve the precipitated elements. That is, the temperature lower by 30 ° C. than the softening heat treatment is the upper limit temperature of the final heat treatment.
  • the “cumulative number density of precipitates having a diameter exceeding 0 nm and in the range of 100 nm” can be understood from numerical values with a horizontal axis of 90 to 100 nm.
  • precipitation particle diameter corresponding to half the cumulative number density of precipitates in the range where the precipitation particle diameter exceeds 0 nm and 100 nm in the example in the figure, the point of 50 to 60 nm and the point of 60 to 70 nm are It can be understood from the numerical value on the horizontal axis that intersects with the half value of the numerical value of 90 to 100 nm.
  • the austenitic heat-resisting steel according to the present embodiment described above has the steel material component in the above-described range and the precipitated particle diameter and precipitation amount contained in the steel are within a certain range, the fine grain structure is While maintaining, it can have excellent creep strength. Therefore, conventionally, the grain size has been reduced while sacrificing the amount of precipitation formed in the actual use environment or during the creep test. However, in the austenitic heat-resisting steel according to the present embodiment, it has been conventionally sacrificed. Precipitation can also contribute to the improvement of creep strength. Therefore, the precipitation strengthening action can be maximized even when the upper limit temperature of the heat treatment exists due to equipment restrictions and the like.
  • the austenitic heat-resistant steel using Ti as a precipitation element it is possible to provide a heat-resistant stainless steel having a further improved creep strength while having a fine grain structure. Since the austenitic heat-resistant steel according to the present embodiment can improve the creep strength, the thickness of the heat-resistant member can be made thinner than before, and the cost reduction as a heat-resistant component can be realized.
  • the heat treatment temperature and time were changed in the range of 1040 to 1215 ° C. and 0.5 to 10 minutes, that is, the coarsening factor [° C./min] of the precipitate was changed, and Table 2 No. Steel materials shown in 1-31 were prepared.
  • the grain size number and the creep rupture time were measured as follows. These measurement results are shown in Table 2 together with the coarsening factor.
  • numerical values represented by underlines and italics indicate that the requirements of the present invention are not satisfied.
  • Vickers hardness [Hv] The Vickers hardness is No. A Vickers hardness test was performed on each of the steel materials 1 to 31 in accordance with JIS Z 2244: 2009, and the hardness was measured. The load in the Vickers hardness test was measured at 10 kg. Those having a Vickers hardness of 160 Hv or less were evaluated as being excellent in average hardness, and those having a Vickers hardness exceeding 160 Hv were evaluated as being inferior in average hardness.
  • the grain size number is No. With respect to each of the steel materials shown in 1-31, the structure was observed with a microscope in accordance with JIS G 0551: 2013, and the crystal grain size number was measured. Those having a crystal grain size number of 7.5 or more were accepted and those less than 7.5 were rejected.
  • Creep rupture time [hours] The creep rupture time is no. Test pieces were prepared from the steel materials shown in 1 to 31 in accordance with JIS Z 2271: 2010, and were tested and measured. Those having a creep rupture time of 650 hours or more were evaluated as being excellent in creep strength, and those having a creep rupture time of less than 650 hours were evaluated as being inferior in creep strength.
  • no. 4 and 7, no. 11 and 14, no. 16 and 18, no. 20 and 23, no. Nos. 25 and 28 are examples in which the latter number is lower than the former number in the heat treatment temperature.
  • 4 and 7, no. 11 and 14, no. Nos. 25 and 28 are examples in which the temperature was lowered by 20 ° C.
  • Nos. 16 and 18 are examples in which the temperature is lowered by 10 ° C. 20 and 23 are examples in which the temperature was lowered by 30 ° C.
  • No. 9 The steel material shown in No. 9 is a comparative example in which the precipitation component could not be sufficiently dissolved because the coarsening factor of the precipitate was too low.
  • the No. Although the steel material shown in No. 9 had a fine grain structure, it was confirmed that the Vickers hardness (average hardness) deviated from the definition of the present invention and the creep rupture time was reduced.
  • the steel materials shown in 29 to 31 are comparative examples in which the chemical composition deviates from the definition of the present invention. Of these, No. Although the steel materials shown in 29 and 30 have coarse grains and include elements desirable for creep strength, the creep strength of all the steel materials is less than 650 hours, and an insufficient strength can be obtained as compared with the examples. It was. No. The steel material shown in No. 31 has a crystal grain size number of 7.5 and a good fine grain structure is obtained, but the creep strength is less than 650 hours, and only an insufficient strength is obtained as compared with the examples. There wasn't.
  • the steel materials shown in 3, 6, 10, 13, 15, 22, and 27 have a good fine crystal grain structure with a crystal grain size number of 7.5 or more.
  • the steel materials shown in 3, 6, 10, 13, 15, 22, and 27 are, in the distribution of the cumulative number density of precipitates and the number of precipitated particles in the range of the precipitate particle diameter exceeding 0 nm and 100 nm, The creep rupture time was inferior when compared with the examples (both were comparative examples) because at least one of the precipitate particle diameters corresponding to the half value of the cumulative number density was not satisfied.
  • the steel material satisfying the provisions of the present invention (steel material according to the embodiment) has a fine grain structure compared with the steel material not satisfying the provisions of the present invention (steel material according to the comparative example). Was confirmed to be excellent.
  • the austenitic heat-resistant steel of the present invention exhibits excellent creep strength even in a high temperature environment, it is useful for energy-related equipment such as boilers and reaction vessels. Excellent creep strength even in high temperature environments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

質量%で、C:0.05~0.16%、Si:0.1~1%、Mn:0.1~2.5%、P:0.01~0.05%、S:0.005%以下、Ni:7~12%、Cr:16~20%、Cu:2~4%、Mo:0.1~0.8%、Nb:0.1~0.6%、Ti:0.1~0.6%、B:0.0005~0.005%、N:0.001~0.15%を含有し、かつ、Mg:0.005%以下及びCa:0.005%以下のうちの少なくとも一つを含有し、前記Nbと前記Tiの含有量の合計が0.3%以上、残部Fe及び不可避不純物からなり、析出粒子径が0nmを超え100nmの析出物の累積数密度が0.1~2.0個/μm2、累積数密度と析出粒子径の分布において、累積数密度の半値に相当する析出粒子径が70nm以下、平均硬さが160Hv以下、結晶粒度番号が7.5以上であるオーステナイト系耐熱鋼。

Description

オーステナイト系耐熱鋼
 本発明は、オーステナイト系耐熱鋼に関する。
 一般に、ボイラや反応容器等のエネルギー関連機器では数百度以上の高温プロセスが用いられており、高温環境においても優れたクリープ強度を有する耐熱材料が必要とされている。
 この耐熱材料では、高温環境中で優れたクリープ強度を得るため、高温環境で鋼中に固溶し得る元素を添加して固溶強化の作用を得る方法、高温環境で析出する元素を添加して高温環境中に析出物を形成させ析出強化の作用を得る方法、結晶粒を粗大化させて粒界すべりを抑制する方法などがある。
 このうち、結晶粒を粗大化する方法は、Cr保護膜の形成を阻害するため、耐水蒸気酸化性が低下するおそれがある。
 また、固溶強化を作用させるためには元素添加量を多くすることが必要となる。元素添加量を多くすると、クリープ強度以外の様々な基本特性に悪影響を及ぼすおそれがある。
 また、元素添加量を多くすると、原料費が増加し、経済性を損なう可能性もある。そのため、耐熱材料において固溶強化の作用を得る方法は、所望の強度を得る方法として望ましいとはいえない。
 一方、析出強化の作用を得る方法は、変形に伴う転位の移動を強力に抑制でき、大幅にクリープ強度を改善できることが知られている。ここで、耐熱部材の多くは、軟化熱処理、冷間加工、最終熱処理の順で製造される。これらの処理において、実際に使用される高温環境中またはクリープ試験中に多量の析出を生じさせるためには、最終熱処理で高温への加熱とそれに続く急冷処理を行い、実使用環境中やクリープ試験中に析出する元素を予め固溶させておく必要がある。析出成分をより多く固溶させるためには、このような最終熱処理をなるべく高い温度で行う必要があるものの、結晶粒の粗大化を招くおそれがあり、結果的に耐水蒸気酸化性が低下してしまう可能性がある。
 このような状況下、特許文献1には、Ti:0.15~0.5質量%およびNb:0.3~1.5質量%のうちの1種または2種を含有するオーステナイト系ステンレス鋼の冷間加工工程において、最終軟化温度を1200℃超~1350℃に設定して加熱し、500℃/hr以上の冷却速度で冷却した後、20~90%の冷間加工を加え、さらにこれについで1070~1300℃で、かつ最終軟化温度より30℃以上低い温度に加熱し、空冷以上の冷却速度で冷却の最終熱処理を施すことにより、クリープ強度が高く、細粒組織で耐食性の良好なオーステナイト系ステンレス鋼の製造方法が開示されている。
 この特許文献1に開示されている方法は、実使用環境中やクリープ試験中に析出させる元素の一部を前述の最終熱処理の段階で少量だけ析出させ、析出物による粒界のピンニング効果によって結晶粒の粗大化を抑制するというものである。つまり、特許文献1に開示されている方法は、最終熱処理に対して冷間加工前の軟化熱処理温度を一定以上高めることで、この温度差に対応した固溶量の差分を析出させている。このように、2つの熱処理温度を工夫することによって、高温熱処理によるクリープ強度の改善と、微細な結晶粒を多く含んでなる組織(微細結晶粒組織)の形成を両立させている。
日本国特公平5-69885号公報
 しかしながら、実生産で使用する製造設備には上限温度がある。軟化熱処理温度を設備上限温度まで上げた場合、特許文献1に開示されている方法のように2つの熱処理温度に差を設けるためには、最終熱処理温度を設備上限よりも低く設定する必要がある。しかし、最終熱処理温度の低下は、実使用環境中やクリープ試験中に形成される析出量を減少させることになるので、結果的にクリープ強度を十分に向上できていない可能性がある。特に、特許文献1に開示されている発明は、微細結晶粒組織とすることによって優れた耐水蒸気酸化性を得るとともに、少量の析出物を析出させることにより粒界のピンニング効果を得、優れたクリープ強度を有するようにしている。しかし、前記したように、最終熱処理温度を低下させてピンニング効果を得るということは、実使用環境中やクリープ試験中に形成されるはずの析出物を先取り的に使用し、犠牲にしていると考えられる。
 特に、析出元素としてTiを使用している火SUS321J1HTB鋼や火SUS321J2HTB鋼などの鋼材では、Ti炭化物の微細析出の有無が高温強度を大きく左右する。また、そもそもこれらの鋼材では、Tiの固溶温度域が高温であるので、軟化熱処理温度は設備の制約で上限に達してしまう場合が多い。そのため、軟化熱処理の温度と最終熱処理温度との間に温度差を設けるためには最終熱処理温度を下げざるを得ず、実使用環境中やクリープ試験中に析出するTiの固溶量を確保できない場合がある。
 このように、原理的に考えると、従来技術は鋼材成分から得られ得る析出強化を十分に活用できていないということが推測される。なお、耐熱部材の多くはクリープ強度が部材の肉厚を決定する制約因子になっているので、クリープ強度が向上すれば肉厚を薄くすることができ、低コスト化できると考えられる。しかしながら、現在のところ、オーステナイト系耐熱鋼は十分なクリープ強度を得ているとは言い難く、低コスト化に結び付いていない状況にあるといえる。
 また、耐水蒸気酸化性を維持するため、オーステナイト系耐熱鋼の組織を微細結晶粒組織にすることを前提とすると、特許文献1に開示されている方法を適用した場合、最終熱処理温度を低くしなければならない。前記したように、最終熱処理温度を低くすると、析出元素の固溶量が低下してしまう。従って、析出強化を最大限に活用することができず、クリープ強度を向上させる効果を十分に発現できているとはいえないと推測される。
 本発明はこのような状況に鑑みてなされたものであり、微細結晶粒組織を保ちながら、優れたクリープ強度を有するオーステナイト系耐熱鋼を提供することを課題とする。
 従来は、熱処理の温度に依存する析出元素の固溶量に着目してクリープ強度の整理がなされていた。そのため、一般的には、最終熱処理温度を下げると析出元素の固溶量が減少して実使用環境中やクリープ試験中に新たに析出する微細な析出物の量が減ることになり、クリープ強度が低くなると考えられてきた。
 そのような中、特許文献1に開示されている方法では、軟化熱処理及び最終熱処理の温度差を30℃以上とし、最終熱処理で一部の析出元素を析出させることで結晶粒の粗大化を抑制している。しかしながら、前記したように、この操作によって析出させる析出物は、本来実使用環境中やクリープ試験中に析出してクリープ強度の向上に寄与するはずの析出物である。すなわち、特許文献1に開示されている方法で製造されたオーステナイト系ステンレス鋼は、結晶粒の粗大化を抑制するために析出元素を析出させた分だけ、クリープ強度を十分に向上させることができない可能性が高くなるということである。
 本発明者らは、この最終熱処理で形成される析出物をクリープ強度の向上に直接作用させることができないか鋭意研究を行った。その結果、本発明者らは、析出元素の添加量および固溶量を一定範囲に保ち、かつ、鋼中に含まれる析出粒子径および析出量を一定範囲に収めて特定の熱処理条件(具体的には、従来よりも低温で最終熱処理を行う)で最終熱処理を行って得られた析出物は、クリープ強度を向上することができることを見出した。
 つまり、本発明者らは、特定の熱処理条件の最終熱処理を行って形成された析出物が、そのまま微細析出物としてクリープ強度の向上に寄与することを見出した。この知見は、高温で熱処理して得られる従来の析出物よりもクリープ強度が優れるという、従来技術の概念を超えるものである。
 また、前記した特定の熱処理条件(従来よりも低温)で最終熱処理を行うので、微細結晶粒組織を保つことができ、耐水蒸気酸化性を維持することができることも見出した。
 なお、特定の熱処理条件で最終熱処理を行った場合であっても(従来よりも低温で最終熱処理を行っても)、良好なクリープ強度を得ることができる理由として次のことも考えられる。
 今回、本発明者らは、オーステナイト系耐熱鋼において、最終熱処理で形成された析出物が、クリープ試験中に形成される析出物よりも効果的にクリープ変形を抑制することを見出した。通常、オーステナイト系耐熱鋼に対するクリープ試験中に形成される析出物は、変形に伴って導入される転位に沿って形成される。転位は結晶粒界近傍に集中するので、析出物の分布も不均一になる。
 これに対し、オーステナイト系耐熱鋼を製造する際の最終熱処理で形成される析出物は、粒内に均一に形成される。そのため、当該最終熱処理で形成される析出物は、クリープ変形に伴う転位運動を粒内全体で変形初期から効率よく抑制することができると考えられる。このような理由により、前記した如く特定の熱処理条件で最終熱処理を行うと、良好なクリープ強度を得ることができると推測される。この知見は、従来の熱処理の温度に依存する析出元素の固溶量の概念を超えたものである。
 以上の知見に基づいて成され、前記課題を解決した本発明に係るオーステナイト系耐熱鋼は、C:0.05~0.16質量%、Si:0.1~1質量%、Mn:0.1~2.5質量%、P:0.01~0.05質量%、S:0.005質量%以下(0質量%を含まない)、Ni:7~12質量%、Cr:16~20質量%、Cu:2~4質量%、Mo:0.1~0.8質量%、Nb:0.1~0.6質量%、Ti:0.1~0.6質量%、B:0.0005~0.005質量%、N:0.001~0.15質量%を含有し、かつ、Mg:0.005質量%以下(0質量%を含まない)およびCa:0.005質量%以下(0質量%を含まない)のうちの少なくとも一つを含有し、前記Nbの含有量と前記Tiの含有量の合計が0.3質量%以上、残部がFeおよび不可避不純物からなり、析出粒子径が0nmを超え100nmの範囲にある析出物の累積数密度が0.1~2.0個/μm、累積数密度と析出粒子径の分布において、前記累積数密度の半値に相当する析出粒子径が70nm以下、平均硬さが160Hv以下、かつ、結晶粒度番号が7.5以上である構成とした。
 このような構成としているので、本発明に係るオーステナイト系耐熱鋼は、鋼材成分を前記した範囲とし、かつ、特定の熱処理条件で最終熱処理を行って得ることができる析出物を備えることができる。この析出物は、鋼中に含まれる析出粒子径および析出量を一定範囲に収めたものであり、析出後そのまま微細析出物としてクリープ強度の向上に寄与する。この微細析出物は、前記したように、従来の高い温度で最終熱処理して析出させた析出物よりもクリープ強度を向上させることができる。そして、これに加え、特定の熱処理条件、具体的には、従来よりも低い温度で最終熱処理を行っていることから、微細結晶粒組織を保つことができ、耐水蒸気酸化性に優れたものとすることができる。
 なお、本発明に係るオーステナイト系耐熱鋼は、さらに、Zr:0.3質量%以下(0質量%を含まない)、希土類元素:0.15質量%以下(0質量%を含まない)およびW:3質量%以下(0質量%を含まない)のうちの少なくとも一つを含有しているのが好ましい。
 本発明に係るオーステナイト系耐熱鋼は、Zrを前記した範囲で含有している場合、析出強化によって高温強度を向上させることができる。また、本発明に係るオーステナイト系耐熱鋼は、希土類元素を前記した範囲で含有している場合、ステンレス鋼の耐酸化性を向上させることができる。さらに、本発明に係るオーステナイト系耐熱鋼は、Wを前記した範囲で含有している場合、固溶強化によって高温強度を向上させることができる。
 本発明に係るオーステナイト系耐熱鋼は、鋼材成分を前記した範囲とし、かつ、鋼中に含まれる析出粒子径および析出量を一定範囲に収めているので、微細結晶粒組織を保ちながら、優れたクリープ強度を有することができる。
累積数密度と析出粒子径の分布において、前記累積数密度の半値に相当する析出粒子径を求めることを説明するグラフである。なお、横軸は析出粒子径(nm)であり、縦軸は累積数密度(個/μm)である。
[オーステナイト系耐熱鋼] 
 以下、本発明に係るオーステナイト系耐熱鋼を実施するための形態(実施形態)について詳細に説明する。
 本実施形態に係るオーステナイト系耐熱鋼は、鋼材成分が、C:0.05~0.16質量%、Si:0.1~1質量%、Mn:0.1~2.5質量%、P:0.01~0.05質量%、S:0.005質量%以下(0質量%を含まない)、Ni:7~12質量%、Cr:16~20質量%、Cu:2~4質量%、Mo:0.1~0.8質量%、Nb:0.1~0.6質量%、Ti:0.1~0.6質量%、B:0.0005~0.005質量%、N:0.001~0.15質量%、Mg:0.005質量%以下(0質量%を含まない)およびCa:0.005質量%以下(0質量%を含まない)のうちの少なくとも一つを含有し、前記Nbの含有量と前記Tiの含有量の合計が0.3質量%以上、残部がFeおよび不可避不純物からなる。
 なお、本実施形態に係るオーステナイト系耐熱鋼は、さらに、Zr:0.3質量%以下(0質量%を含まない)、希土類元素:0.15質量%以下(0質量%を含まない)およびW:3質量%以下(0質量%を含まない)のうちの少なくとも一つを含有しているのが好ましい。
 前記した鋼材成分をみて分かるように、本実施形態に係るオーステナイト系耐熱鋼は、析出元素としてTiを使用している火SUS321J2HTB鋼(18質量%Cr-10質量%Ni-3質量%Cu-Nb,Ti鋼)に類するものである。
 そして、前記した鋼材成分からなる本実施形態に係るオーステナイト系耐熱鋼は、析出粒子径が0nmを超え100nmの範囲にある析出物の累積数密度が0.1~2.0個/μm、累積数密度と析出粒子径の分布において、前記した累積数密度の半値に相当する析出粒子径が70nm以下、平均硬さが160Hv以下、かつ、結晶粒度番号が7.5以上である。なお、本明細書において、析出粒子径とは、析出粒子(析出物)の円相当径として算出したものをいう。
 ここで、鋼中に含まれる析出粒子径および析出量を一定範囲に収めた析出物が、特定の熱処理条件で最終熱処理を行うことで得ることができることは、課題を解決するための手段において既に述べているとおりである。前記した平均硬さや結晶粒度番号も熱処理温度を制御することで制御することができる。特定の熱処理条件や熱処理温度については後述する。
 前記したように、特定の熱処理条件を行って得られた析出物は、微細析出物としてクリープ強度の向上に寄与する。また、特定の熱処理条件を行っていることから、結晶粒が微細な微細結晶粒組織を保つことができる。そのため、本実施形態に係るオーステナイト系耐熱鋼は耐水蒸気酸化性に優れたものとなる。
 以下、本実施形態に係るオーステナイト系耐熱鋼の鋼材成分と、鋼中に含まれる析出粒子径および析出量を一定範囲に収めた理由などについて説明する。
 なお、前記したように、本実施形態に係るオーステナイト系耐熱鋼は、析出元素としてTiを使用している火SUS321J2HTB鋼に類する。火SUS321J2HTB鋼において下記鋼材成分はそれぞれ以下に記載する作用を奏し、所定の含有量を外れると以下に記載する不具合が生じる場合がある。
[C:0.05~0.16質量%] 
 Cは、炭化物を形成して高温強度を向上させる作用がある。本実施形態では、高温強度を向上させる作用を得るため、Cを0.05質量%以上含有させている。しかしながら、C含有量が過剰になって0.16質量%を超えると、粗大な炭化物を形成し、高温強度を向上させることができない。
 なお、C含有量の下限は0.08質量%とするのが好ましく、0.09質量%とするのがより好ましい。C含有量の上限は0.15質量%とするのが好ましく、0.13質量%とするのがより好ましい。
[Si:0.1~1質量%]
 Siは、溶鋼中で脱酸作用を有するとともに、耐酸化性の向上に有効に作用する。本実施形態では、溶鋼中での脱酸作用と耐酸化性を向上させる作用とを得るため、Siを0.1質量%以上含有させている。しかしながら、Si含有量が過剰になって1質量%を超えると鋼材の脆化をもたらすことがあるため好ましくない。
 なお、Si含有量の下限は0.2質量%とするのが好ましく、0.3質量%とするのがより好ましい。Si含有量の上限は0.7質量%とするのが好ましく、0.5質量%とするのがより好ましい。
[Mn:0.1~2.5質量%]
 Mnは、溶鋼中で脱酸作用を有する。本実施形態では、溶鋼中での脱酸作用を得るため、Mnを0.1質量%以上含有させている。しかしながら、Mn含有量が2.5質量%を超えると炭化物析出の粗大化を助長するため好ましくない。
 なお、Mn含有量の下限は0.2質量%とするのが好ましく、0.3質量%とするのがより好ましい。Mn含有量の上限は2.0質量%とするのが好ましく、1.8質量%とするのがより好ましい。
[P:0.01~0.05質量%] 
 Pは、高温強度を向上させる作用がある。本実施形態では、高温強度を向上させるため、Pを0.01質量%以上含有させている。しかしながら、P含有量が過剰になり、0.05質量%を超えると溶接性を損なうおそれがある。
 なお、P含有量の下限は0.015質量%とするのが好ましく、0.02質量%とするのがより好ましい。P含有量の上限は0.04質量%とするのが好ましく、0.03質量%とするのがより好ましい。
[S:0.005質量%以下(0質量%を含まない)] 
 Sは、不可避不純物である。S含有量が過剰となり、0.005質量%を超えると熱間加工性を劣化させる。本実施形態では、熱間加工性を劣化させないようにするため、S含有量を0.005質量%以下としている。S含有量は少ないほど好ましい。
 なお、S含有量の上限は0.002質量%とするのが好ましく、0.001質量%とするのがより好ましい。
[Ni:7~12質量%]
 Niは、オーステナイト相を安定化させる作用がある。本実施形態では、オーステナイト相を安定化させるため、Niを7質量%以上含有させている。しかしながら、Ni含有量が12質量%を超えると鋼材のコスト増加をもたらすことになる。
 なお、Ni含有量の下限は9質量%とするのが好ましく、9.5質量%とするのがより好ましい。Ni含有量の上限は11.5質量%とするのが好ましく、11質量%とするのがより好ましい。
[Cr:16~20質量%]
 Crは、鋼材の耐酸化性および耐食性を向上させる作用がある。本実施形態では、鋼材の耐酸化性および耐食性を向上させるため、Crを16質量%以上含有させている。しかしながら、Cr含有量が20質量%を超えると鋼材の脆化を招いてしまう。
 なお、Cr含有量の下限は17.5質量%とするのが好ましく、18質量%とするのがより好ましい。Cr含有量の上限は19.5質量%とするのが好ましく、19質量%とするのがより好ましい。
[Cu:2~4質量%]
 Cuは、鋼中で析出物を形成し、高温強度を向上させる作用がある。本実施形態では、高温強度を向上させるため、Cuを2質量%以上含有させている。しかしながら、Cu含有量が過剰になり、4質量%を超えるとその効果は飽和する。
 なお、Cu含有量の下限は2.5質量%とするのが好ましく、2.8質量%とするのがより好ましい。Cu含有量の上限は3.5質量%とするのが好ましく、3.2質量%とするのがより好ましい。
[Mo:0.1~0.8質量%]
 Moは、耐食性を向上させる作用がある。本実施形態では、耐食性を向上させるため、Moを0.1質量%以上含有させている。しかしながら、Mo含有量が過剰になり、0.8質量%を超えると鋼材の脆化を招いてしまう。
 なお、Mo含有量の下限は0.2質量%とするのが好ましく、0.3質量%とするのがより好ましい。Mo含有量の上限は0.6質量%とするのが好ましく、0.5質量%とするのがより好ましい。
[Nb:0.1~0.6質量%]
[Ti:0.1~0.6質量%]
[Nbの含有量とTiの含有量の合計が0.3質量%以上]
 NbおよびTiは、炭窒化物(炭化物、窒化物または炭窒化物)として析出させることで、高温強度を改善することができる。また、この析出物が結晶粒の粗大化を抑制し、Crの拡散を促進する。Crの拡散によって副次的に耐食性(耐水蒸気酸化性)向上の作用を発揮するため、本発明において最も重要な元素の一部であるといえる。
 本実施形態では、NbおよびTiの析出物を形成させ、高温強度を改善したり、耐水蒸気酸化性向上の作用を発揮させたりするため、Nbを0.1質量%以上、Tiを0.1質量%以上含有させている。NbとTiを同時に含有させることで析出物の高温強度の向上への寄与をより高めることができる。
 ただし、これらはNbの含有量とTiの含有量の合計が0.3質量%以上となるように含有させなければ、最低限必要な析出量を確保することできない。
 なお、Nb含有量の下限は0.2質量%とするのが好ましい。Ti含有量の下限は0.15質量%とするのが好ましい。また、Nbの含有量とTiの含有量を合計した下限は0.35質量%とするのが好ましい。
 その一方で、Nb含有量が過剰となって0.6質量%を超えたり、Ti含有量が過剰となって0.6質量%を超えたりすると、いずれの場合も析出物が粗大化し、靭性の低下を招くことになる。
 なお、NbおよびTiの含有量の上限はそれぞれ0.4質量%とするのが好ましく、0.3質量%とするのがより好ましい。
[B:0.0005~0.005質量%]
 Bは、M23型炭化物(Mは炭化物形成元素)の形成を促進させ、高温強度を改善する作用がある。本実施形態では、高温強度を改善させるため、Bを0.0005質量%以上含有させている。しかしながら、B含有量が過剰になり、0.005質量%を超えると溶接性の低下を招いてしまう。
 なお、B含有量の下限は0.001質量%とするのが好ましく、0.0015質量%とするのがより好ましい。B含有量の上限は0.004質量%とするのが好ましく、0.003質量%とするのがより好ましい。
[N:0.001~0.15質量%] 
 Nは、固溶強化によって高温強度を向上させる作用がある。本実施形態では、高温強度を向上させるため、Nを0.001質量%以上含有させている。しかしながら、N含有量が過剰になり、0.15質量%を超えると粗大なTi窒化物やNb窒化物の形成を招いて靭性を悪化させるおそれがある。
 なお、N含有量の下限は0.002質量%とするのが好ましく、0.003質量%とするのがより好ましい。N含有量の上限は0.08質量%とするのが好ましく、0.04質量%とするのがより好ましい。
[Mg:0.005質量%以下(0質量%を含まない)およびCa:0.005質量%以下(0質量%を含まない)のうちの少なくとも一つ]
 MgおよびCaは、脱硫・脱酸元素として作用し、鋼材の熱間加工性を改善する作用がある。不可避不純物として含まれるSの含有量に応じて、CaおよびMgを0.005質量%以下の範囲で含有させるとよい。
 なお、CaおよびMgの上限はいずれも0.002質量%とするのが好ましい。
[Zr:0.3質量%以下(0質量%を含まない)]
 Zrは、任意成分であり、析出強化によって高温強度を向上させる作用がある。しかしながら、Zr含有量が過剰となり、0.3質量%を超えると粗大な金属間化合物を形成して高温延性の低下を招いてしまう。
 なお、Zr含有量の上限は0.25質量%とするのが好ましい。 
 但し、Zrを含有させると鋼材のコストが増加するため、必要に応じて含有させればよい。 
[希土類元素:0.15質量%以下(0質量%を含まない)]
 希土類元素は、任意成分であり、ステンレス鋼の耐酸化性を向上させる作用がある。
 つまり、希土類元素を任意に含有させることによって、酸化スケールの生成を抑制することができる。しかしながら、希土類元素の含有量が過剰となり、0.15質量%を超えると、高温環境で粒界の一部が溶融して熱間加工性を阻害するため好ましくない。
 なお、希土類元素の含有量の上限は0.1質量%とするのが好ましく、0.05質量%とするのがより好ましい。
 ここで、希土類元素は、ScおよびYと、La、Ce、Ndに代表されるランタノイド元素15種と、の合計17種の元素から選択された1種以上の元素である。また、希土類元素の含有量は、17種の元素から選択された1種以上の元素の合計含有量である。
[W:3質量%以下(0質量%を含まない)] 
 Wは、任意成分であり、固溶強化によって高温強度を向上させる作用がある。しかしながら、W含有量が過剰となり、3質量%を超えると粗大な金属間化合物を形成して高温延性の低下を招いてしまう。
 なお、W含有量の上限は2.5質量%とするのが好ましく、2.0質量%とするのがより好ましい。
 以上に説明した鋼材成分は、含有させることによって前記したような作用を発揮するが、それと同時にコスト増を招く。そのため、必要な強化量と許容されるコストに応じて含有量を設定すればよい。
[残部がFeおよび不可避不純物]
 残部は、Feおよびその他の不可避不純物である。その他の不可避不純物としては、例えば、Al、Sn、Zn、Pb、As、Bi、Sb、Te、Se、Inなどが挙げられる。
 なお、不可避不純物は可能な限り少なくすることが望ましく、その目安として、Alは0.01質量%以下、Snは0.005質量%以下、Znは0.01質量%以下、Pbは0.002質量%以下、Asは0.01質量%以下、Biは0.002質量%以下、Sbは0.002質量%以下、Teは0.01質量%以下、Seは0.002質量以下、Inは0.002質量%以下とすることが推奨される。
[平均硬さが160Hv以下]
 前記した成分範囲としたうえで、実使用環境中やクリープ試験中に析出する元素の固溶量を確保するため、本実施形態では、平均硬さ(ビッカース硬さ)を160Hv以下としている。平均硬さが160Hvを超えると、実使用環境中やクリープ試験中に析出する元素の固溶量を確保することができないため、クリープ強度が低下する。平均硬さを160Hv以下とするには、前述の成分組成にもよるが、例えば1150℃以上の温度で熱処理を行い、水冷による冷却を行うことにより、容易に得ることができる。
 なお、平均硬さの上限は140Hvとするのが好ましい。また、平均硬さの下限は100Hvとするのが好ましく、110Hvとするのがより好ましい。
 なお、ビッカース硬さは、例えば、JIS Z 2244:2009に準拠して測定することができる。
[析出粒子径が0nmを超え100nmの範囲にある析出物の累積数密度が0.1~2.0個/μm
[累積数密度と析出粒子径の分布において、前記累積数密度の半値に相当する析出粒子径が70nm以下]
 析出粒子径が0nmを超え100nmの範囲にある析出物の累積数密度を0.1~2.0個/μmとし、且つ、累積数密度と析出粒子径の分布において、前記累積数密度の半値に相当する析出粒子径が70nm以下とすることにより、クリープ強度を向上させることができる。
 すなわち、最終熱処理で形成させる析出物について、100nm以下の析出物を一定量形成させながら、累積数密度の半値に相当する析出粒子径を70nm以下と微細なままにしているので、クリープ強度を向上させることができる。
 前記した累積数密度の下限は0.3/μmとするのが好ましく、0.4/μmとするのがより好ましい。
 また、前記した累積数密度の半値に相当する析出粒子径の上限は、60nmとするのが好ましく、50nmとするのがより好ましい。なお、前記累積数密度の半値に相当する析出粒子径の下限は0nmを超える。
 当該析出粒子径および前記した累積数密度の測定方法については後記する。
[結晶粒度番号が7.5以上]
 結晶粒度番号が7.5以上であれば、金属組織が十分微細な状態であり、微細結晶粒組織ということができる。従って、耐水蒸気酸化性を維持することができる。
 結晶粒度番号を7.5以上とするには、後記する特定の熱処理条件で最終熱処理を行えばよい。
[特定の熱処理条件で最終熱処理]
 鋼中に含まれる析出粒子径および析出量を一定範囲に収め、かつ、結晶粒度番号を7.5以上とするためには、前記鋼材成分、硬さ範囲を前提としたうえで、析出物の粗大化因子が2000℃・min以下となる条件で最終熱処理を行えばよい。なお、この「析出物の粗大化因子が2000℃・min以下となる条件」が、前記した特定の熱処理条件である。
 析出物の粗大化因子とは、析出物の粗大化に及ぼす熱の影響を表す指標であり、熱処理中の温度履歴に関して析出物の成長が進行する900℃以上の温度を時間で積分した値である。なお、この粗大化因子は、熱処理の保持時間だけでなく、900℃以上の昇温時間および冷却時間も含めなければならない。ちなみに、火SUS321J2HTB鋼のような、析出元素としてTiを含有し、高温強度を十分高めた従来のオーステナイト系耐熱鋼の粗大化因子は、3000~7000℃・min程度となる。これに対し、本実施形態に係るオーステナイト系耐熱鋼では、前記したように、粗大化因子を2000℃・min以下としている。なお、粗大化因子の下限は、473℃・minよりも大きくするのが好ましく、500℃・min以上とするのがより好ましく、821℃・min以上とするのがさらに好ましい。
 前記した粗大化因子を満たしていると、到達最高温度および保持時間について、設備の制約等に応じた調節が可能となる。ここで、従来技術同様に析出物を形成させるためには、軟化熱処理を最終熱処理よりも30℃以上高い温度で実施して析出元素を固溶させておく必要がある。すなわち、軟化熱処理より30℃低い温度が、前記した最終熱処理の上限温度となる。
[析出粒子径および累積数密度の測定方法]
 粗大化因子が前記した条件を満たすか否かを判断するためには、析出物の数密度およびサイズ分布を定量化する必要がある。これは、鋼材断面にて析出物が分散した様子を捉えたミクロ画像を採取し、これを画像解析によって定量化することで得ることができる。ミクロ画像は、例えば、電解研磨された鋼材表面を走査型電子顕微鏡で撮影することで得ることができる。析出物が微細である場合には、走査型電子顕微鏡に替えて透過型電子顕微鏡を用いるとよい。なお、定量精度の観点から、析出物は少なくとも200個以上を定量し、0nmを超え100nmを10nm毎のヒストグラムで整理するとよい。
 つまり、図1に示すグラフのように、縦軸に10nm毎の累積数密度(個/μm)、横軸に析出粒子径(nm)をプロットすることで、本発明で規定する“析出粒子径が0nmを超え100nmの範囲にある析出物の累積数密度”を、横軸が90~100nmの数値から理解することができる。また、“析出粒子径が0nmを超え100nmの範囲にある析出物の累積数密度の半値に相当する析出粒子径”については、図中の例では50~60nmの点と60~70nmの点を結び、90~100nmの数値の半値と交わる横軸数値で理解することができる。
 以上に説明した本実施形態に係るオーステナイト系耐熱鋼は、鋼材成分を前記した範囲とし、かつ、鋼中に含まれる析出粒子径および析出量を一定範囲に収めているので、微細結晶粒組織を保ちながら、優れたクリープ強度を有することができる。
 そのため、従来は実使用環境中やクリープ試験中に形成される析出量を犠牲にしながら結晶粒の微細化を図っていたが、本実施形態に係るオーステナイト系耐熱鋼では、従来、犠牲になっていた析出もクリープ強度の向上に寄与させることができる。従って、設備の制約等により、熱処理の上限温度が存在する場合であっても、析出強化作用を最大限に得ることができる。これにより、析出元素としてTiを使用するオーステナイト系耐熱鋼において、微細結晶粒組織としながらもクリープ強度をさらに高めた耐熱ステンレス鋼を提供することができる。本実施形態に係るオーステナイト系耐熱鋼は、クリープ強度を向上させることができるため、従来よりも耐熱部材の肉厚を薄くできることができ、耐熱部品としての低コスト化を実現することができる。
 次に、本発明の効果を奏する実施例と、そうでない比較例と、を参照して、本発明の内容について具体的に説明する。
 表1に示す鋼材成分No.A~Fに示す各種鋼材を溶解し、真空溶解炉(VIF)にて溶製した20kgインゴットを幅130mm×厚さ20mmの寸法に熱間鍛造加工した。
 その後、1250℃で軟化熱処理を施し、冷間圧延によって厚さ13mmまで加工して母材とした。なお、表1に示すNo.A~Fの鋼材のうち、No.A~Eは、所謂火SUS321J2HTB鋼に類するものであり、本発明で規定する化学成分組成を満足する鋼材である。これに対し、No.Fは本発明で規定する化学成分組成を外れる鋼材である。
 なお、表1中、下線および斜字体で表している数値は、本発明の要件を満たさないことを示している。
Figure JPOXMLDOC01-appb-T000001
 前記各々の母材に対して、1040~1215℃、0.5~10分の範囲で熱処理温度と時間を変化させ、すなわち、析出物の粗大化因子[℃・min]を変化させ、表2のNo.1~31に示す鋼材を用意した。これらの鋼材のビッカース硬さ、析出粒子径が0nmを超え100nmの範囲にある析出物の累積数密度、累積数密度と析出粒子径の分布において、前記累積数密度の半値に相当する析出粒子径、結晶粒度番号、およびクリープ破断時間を次のようにして測定した。これらの測定結果を粗大化因子とともに表2に示す。
 なお、表2中、下線および斜字体で表している数値は、本発明の要件を満たさないことを示している。 
(1)ビッカース硬さ[Hv] 
 ビッカース硬さは、No.1~31に示すそれぞれの鋼材に対してJIS Z 2244:2009に準拠してビッカース硬さ試験を行い、その硬さを測定した。なお、ビッカース硬さ試験の荷重は10kgで測定した。ビッカース硬さが160Hv以下のものを平均硬さに優れると評価し、160Hvを超えるものを平均硬さに劣ると評価した。
(2)析出粒子径が0nmを超え100nmの範囲にある析出物の累積数密度[μm/cm
(3)累積数密度と析出粒子径の分布において、前記累積数密度の半値に相当する析出粒子径[μm] 
 前記(2)の累積数密度および前記(3)の累積数密度の半値に相当する析出粒子径は、電解研磨された鋼材表面から走査型電子顕微鏡を用いて6000倍の画像を撮像し、最低200個以上の析出物を画像解析するとともに、前記した図1に示したようなグラフを作成して、累積数密度と析出粒子径の分布を算出した。
 このとき、6000倍の倍率において20nmの物体を認識できるような画像が得られており、本実施例においてはそれ以上に微細な析出物は存在しないことを透過型電子顕微鏡で確認している。
(4)結晶粒度番号 
 結晶粒度番号は、No.1~31に示すそれぞれの鋼材に対し、JIS G 0551:2013に準拠して組織を顕微鏡観察し、結晶粒度番号を測定した。結晶粒度番号が7.5以上のものを合格とし、7.5未満のものを不合格とした。
(5)クリープ破断時間[時間] 
 クリープ破断時間は、No.1~31に示すそれぞれの鋼材から、JIS Z 2271:2010に準拠して試験片を作製し、試験を行って測定した。クリープ破断時間が650時間以上のものをクリープ強度に優れると評価し、650時間未満のものをクリープ強度に劣ると評価した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明の所望する効果を奏するNo.4、5、7、8、11、12、14、16、17、18、20、21、23、25、26、28に示す鋼材は、クリープ破断時間が650時間以上となっており、各々の成分で比較例よりも優れたクリープ破断強度が得られていることが確認できた。また、これらNo.4、5、7、8、11、12、14、16、17、18、20、21、23、25、26、28に示す鋼材は、いずれも結晶粒が微細である(微細結晶粒組織である)ことが確認できた(いずれも実施例)。
 なお、微細結晶粒組織であるこれらの例は、良好な耐水蒸気酸化特性を得ることができると推察される。
 特に、No.4と7、No.11と14、No.16と18、No.20と23、No.25と28は、それぞれ後者の番号が前者の番号に比べて熱処理温度を低温化させた実施例である、具体的には、No.4と7、No.11と14、No.25と28は、20℃低温化させた例であり、No.16と18は10℃低温化させた例であり、No.20と23は30℃低温化させた例である。
 これらの内、No.16と18、No.20と23、No.25と28の結果から、高温で熱処理した前者の番号に比べて後者の番号の方が、クリープ破断時間が増加していることが分かった。かかる知見は、本発明で得られるクリープ強度の改善効果が“熱処理温度の高い方が、クリープ強度が高い”という析出元素の固溶量に着目した従来の知見とは異なる作用による可能性があることを示している。
 一方、表2に示すように、No.1、2、19、24に示す鋼材は、熱処理条件(析出物の粗大化因子)が不適切であったため、結晶粒が粗大化した比較例である。すなわち、これらの鋼材は、従来技術(例えば、特許文献1に記載の発明)で成し遂げられていた微細結晶粒組織とすることも実現できなかった。そのため、これらNo.1、2、19、24に示す鋼材は、良好な耐水蒸気酸化特性を得ることができないと推察される。
 また、No.9に示す鋼材は、析出物の粗大化因子が低過ぎたため、析出成分を十分に固溶できなかった比較例である。当該No.9に示す鋼材は、微細結晶粒組織であったものの、ビッカース硬さ(平均硬さ)が本発明の規定を外れ、クリープ破断時間が低下していることが確認された。
 No.29~31に示す鋼材は、化学成分組成が本発明の規定を外れた比較例である。
 これらのうち、No.29、30に示す鋼材は、結晶粒が粗大でクリープ強度に望ましい要素を含んでいるものの、何れの鋼材もクリープ強度は650時間を下回り、実施例と比較して不十分な強度しか得られなかった。
 また、No.31に示す鋼材は、結晶粒度番号が7.5であり、良好な微細結晶粒組織が得られているものの、クリープ強度は650時間を下回り、実施例と比較して不十分な強度しか得られなかった。
 No.3、6、10、13、15、22、27に示す鋼材は、結晶粒度番号が7.5以上の良好な微細結晶粒組織が得られている。しかしながら、これらNo.3、6、10、13、15、22、27に示す鋼材は、析出粒子径が0nmを超え100nmの範囲にある析出物の累積数密度、および、累積数密度と析出粒子径の分布において、前記累積数密度の半値に相当する析出粒子径のうちの少なくとも一方の規定を満たさないため、実施例と比較すると、クリープ破断時間が劣っていた(いずれも比較例)。
 以上のことから、本発明の規定を満たす鋼材(実施例に係る鋼材)は、本発明の規定を満たさない鋼材(比較例に係る鋼材)に比べて微細結晶粒組織としたうえでのクリープ強度が優れていることが確認された。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2014年3月5日出願の日本特許出願(特願2014-042889)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のオーステナイト系耐熱鋼は、高温環境においても優れたクリープ強度を示すことから、ボイラや反応容器等のエネルギー関連機器に有用である。高温環境においても優れたクリープ強度を有する。

Claims (2)

  1.  C :0.05~0.16質量%、 
     Si:0.1~1質量%、 
     Mn:0.1~2.5質量%、 
     P :0.01~0.05質量%、 
     S :0.005質量%以下(0質量%を含まない)、 
     Ni:7~12質量%、 
     Cr:16~20質量%、 
     Cu:2~4質量%、 
     Mo:0.1~0.8質量%、 
     Nb:0.1~0.6質量%、 
     Ti:0.1~0.6質量%、 
     B :0.0005~0.005質量%、 
     N :0.001~0.15質量%を含有し、かつ、 
     Mg:0.005質量%以下(0質量%を含まない)およびCa:0.005質量%以下(0質量%を含まない)のうちの少なくとも一つを含有し、
     前記Nbの含有量と前記Tiの含有量の合計が0.3質量%以上、
     残部がFeおよび不可避不純物からなり、 
     析出粒子径が0nmを超え100nmの範囲にある析出物の累積数密度が0.1~2.0個/μm、 
     累積数密度と析出粒子径の分布において、前記累積数密度の半値に相当する析出粒子径が70nm以下、 
     平均硬さが160Hv以下、かつ、 
     結晶粒度番号が7.5以上である 
    ことを特徴とするオーステナイト系耐熱鋼。
  2.  さらに、Zr:0.3質量%以下(0質量%を含まない)、希土類元素:0.15質量%以下(0質量%を含まない)およびW:3質量%以下(0質量%を含まない)のうちの少なくとも一つを含有していることを特徴とする請求項1に記載のオーステナイト系耐熱鋼。
     
     
PCT/JP2015/056433 2014-03-05 2015-03-04 オーステナイト系耐熱鋼 WO2015133551A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/123,125 US20170067139A1 (en) 2014-03-05 2015-03-04 Austenitic heat-resistant steel
EP15758391.5A EP3115476A4 (en) 2014-03-05 2015-03-04 Austenitic heat-resistant alloy
CN201580011341.1A CN106062230B (zh) 2014-03-05 2015-03-04 奥氏体系耐热钢
KR1020167023997A KR101770536B1 (ko) 2014-03-05 2015-03-04 오스테나이트계 내열강

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014042889A JP6289941B2 (ja) 2014-03-05 2014-03-05 オーステナイト系耐熱鋼
JP2014-042889 2014-03-05

Publications (1)

Publication Number Publication Date
WO2015133551A1 true WO2015133551A1 (ja) 2015-09-11

Family

ID=54055354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056433 WO2015133551A1 (ja) 2014-03-05 2015-03-04 オーステナイト系耐熱鋼

Country Status (6)

Country Link
US (1) US20170067139A1 (ja)
EP (1) EP3115476A4 (ja)
JP (1) JP6289941B2 (ja)
KR (1) KR101770536B1 (ja)
CN (1) CN106062230B (ja)
WO (1) WO2015133551A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105951002A (zh) * 2016-05-25 2016-09-21 江苏金基特钢有限公司 一种耐腐蚀易成型不锈钢丝的制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143960B1 (ja) * 2011-05-11 2013-02-13 株式会社神戸製鋼所 高温強度と耐繰返し酸化特性に優れた耐熱オーステナイト系ステンレス鋼
JP2017014575A (ja) * 2015-07-01 2017-01-19 新日鐵住金株式会社 オーステナイト系耐熱合金及び溶接構造物
JP6623719B2 (ja) * 2015-11-25 2019-12-25 日本製鉄株式会社 オーステナイト系ステンレス鋼
JP6638551B2 (ja) * 2016-05-09 2020-01-29 日本製鉄株式会社 オーステナイト系耐熱鋼溶接金属およびそれを有する溶接継手
CN106544601A (zh) * 2016-12-29 2017-03-29 董世祥 多性能耐高温系列铸钢
CN109554609B (zh) * 2017-09-26 2022-03-15 宝钢德盛不锈钢有限公司 一种表面免起皮的奥氏体耐热钢及其制造方法
KR102255016B1 (ko) * 2017-10-03 2021-05-24 닛폰세이테츠 가부시키가이샤 오스테나이트계 내열강용 용접 재료, 용접 금속 및 용접 구조물 그리고 용접 금속 및 용접 구조물의 제조 방법
CN109576580B (zh) * 2018-11-29 2020-09-29 武汉华培动力科技有限公司 柴油机可变截面增压器喷嘴组件用耐热钢及冶炼方法
EP4144871A1 (en) * 2020-04-30 2023-03-08 Nippon Steel Corporation Austenitic heat-resistant steel
WO2021220913A1 (ja) * 2020-04-30 2021-11-04 日本製鉄株式会社 オーステナイト系耐熱鋼の製造方法
US20220145174A1 (en) * 2020-11-05 2022-05-12 Seoul National University R&Db Foundation Perovskite color converter and method of manufacturing the same
CN116200668B (zh) * 2023-04-17 2023-11-14 宁波晴力紧固件有限公司 一种耐热高强度紧固件材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165655A (ja) * 1995-12-14 1997-06-24 Nkk Corp 高温機器用オーステナイトステンレス鋼およびその製造方法
JP2005281855A (ja) * 2004-03-04 2005-10-13 Daido Steel Co Ltd 耐熱オーステナイト系ステンレス鋼及びその製造方法
JP2013133533A (ja) * 2011-12-27 2013-07-08 Kobe Steel Ltd 耐スケール剥離性に優れた耐熱オーステナイト系ステンレス鋼およびステンレス鋼管

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167726A (ja) * 1982-03-29 1983-10-04 Sumitomo Metal Ind Ltd オ−ステナイト系ステンレス鋼の製造方法
JPH01287249A (ja) * 1988-12-27 1989-11-17 Nkk Corp オーステナイトステンレス鋼管およびその製造法
JPH0569885A (ja) 1991-09-13 1993-03-23 Nhk Spring Co Ltd 駐艇装置用台車
JP3282481B2 (ja) * 1996-01-31 2002-05-13 三菱マテリアル株式会社 耐熱鋼
JP3463617B2 (ja) * 1999-08-06 2003-11-05 住友金属工業株式会社 熱間加工性に優れる継目無鋼管用オーステナイト系耐熱鋼
JP4173611B2 (ja) * 1999-09-29 2008-10-29 日新製鋼株式会社 二重構造エキゾーストマニホールドの内管用オーステナイト系ステンレス鋼
JP2002146481A (ja) 2000-11-07 2002-05-22 Nippon Steel Corp 電縫溶接性に優れた酸化物分散強化型フェライト系電縫ボイラ用鋼および鋼管
JP2003301242A (ja) * 2002-04-11 2003-10-24 Jfe Steel Kk 高Cr−Ni系耐熱鋼および耐クリープ特性に優れた高温用部材の製造方法
JP4578280B2 (ja) * 2005-03-08 2010-11-10 日新製鋼株式会社 自動車給油系部材用オーステナイト系ステンレス鋼
CN100577844C (zh) * 2005-04-04 2010-01-06 住友金属工业株式会社 奥氏体类不锈钢
JP5794945B2 (ja) * 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 耐熱オーステナイト系ステンレス鋼板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165655A (ja) * 1995-12-14 1997-06-24 Nkk Corp 高温機器用オーステナイトステンレス鋼およびその製造方法
JP2005281855A (ja) * 2004-03-04 2005-10-13 Daido Steel Co Ltd 耐熱オーステナイト系ステンレス鋼及びその製造方法
JP2013133533A (ja) * 2011-12-27 2013-07-08 Kobe Steel Ltd 耐スケール剥離性に優れた耐熱オーステナイト系ステンレス鋼およびステンレス鋼管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3115476A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105951002A (zh) * 2016-05-25 2016-09-21 江苏金基特钢有限公司 一种耐腐蚀易成型不锈钢丝的制备方法

Also Published As

Publication number Publication date
JP2015168834A (ja) 2015-09-28
JP6289941B2 (ja) 2018-03-07
CN106062230A (zh) 2016-10-26
EP3115476A4 (en) 2017-11-01
KR101770536B1 (ko) 2017-08-22
US20170067139A1 (en) 2017-03-09
KR20160116344A (ko) 2016-10-07
CN106062230B (zh) 2017-07-14
EP3115476A1 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6289941B2 (ja) オーステナイト系耐熱鋼
KR101256268B1 (ko) 오스테나이트계 스테인리스강
WO2018151222A1 (ja) Ni基耐熱合金およびその製造方法
US20190284666A1 (en) NiCrFe Alloy
JP2016196685A (ja) Ni基耐熱合金溶接継手の製造方法およびそれを用いて得られる溶接継手
JP6477252B2 (ja) オーステナイト系耐熱合金および耐熱耐圧部材
JP5846076B2 (ja) オーステナイト系耐熱合金
JP6620475B2 (ja) Ni基耐熱合金管の製造方法
JP2020105572A (ja) オーステナイト系耐熱鋼
JP6520546B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
JP6160787B2 (ja) 薄板及びその製造方法
JP6816779B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
WO2017056674A1 (ja) 低熱膨張超耐熱合金及びその製造方法
JP2005002451A (ja) 耐熱ばね用Fe−Ni−Cr基合金および耐熱ばねの製造方法
JP6547599B2 (ja) オーステナイト系耐熱鋼
US20200318225A1 (en) Austenitic stainless steel
JP6575392B2 (ja) 高Crフェライト系耐熱鋼
JP6690359B2 (ja) オーステナイト系耐熱合金部材およびその製造方法
JP7372537B2 (ja) オーステナイト系耐熱鋼
JP2016176119A (ja) フェライト系耐熱鋼
JPWO2018066573A1 (ja) オーステナイト系耐熱合金およびそれを用いた溶接継手
JP6690499B2 (ja) オーステナイト系ステンレス鋼板及びその製造方法
JP7256374B2 (ja) オーステナイト系耐熱合金部材
JP6025216B2 (ja) Fe−Ni基合金およびFe−Ni基合金の製造法
JP2020079437A (ja) オーステナイト系ステンレス鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167023997

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15123125

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015758391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015758391

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE