WO2015129448A1 - 静電荷像現像用トナー - Google Patents

静電荷像現像用トナー Download PDF

Info

Publication number
WO2015129448A1
WO2015129448A1 PCT/JP2015/053621 JP2015053621W WO2015129448A1 WO 2015129448 A1 WO2015129448 A1 WO 2015129448A1 JP 2015053621 W JP2015053621 W JP 2015053621W WO 2015129448 A1 WO2015129448 A1 WO 2015129448A1
Authority
WO
WIPO (PCT)
Prior art keywords
toner
resin
shell layer
mass
particles
Prior art date
Application number
PCT/JP2015/053621
Other languages
English (en)
French (fr)
Inventor
奨 角岡
Original Assignee
京セラドキュメントソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラドキュメントソリューションズ株式会社 filed Critical 京セラドキュメントソリューションズ株式会社
Priority to JP2016505133A priority Critical patent/JP6256589B2/ja
Priority to CN201580009944.8A priority patent/CN106030419B/zh
Priority to US15/120,715 priority patent/US9964885B2/en
Publication of WO2015129448A1 publication Critical patent/WO2015129448A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/09307Encapsulated toner particles specified by the shell material
    • G03G9/09314Macromolecular compounds
    • G03G9/09328Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0819Developers with toner particles characterised by the dimensions of the particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles
    • G03G9/0906Organic dyes
    • G03G9/0918Phthalocyanine dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • G03G9/09357Macromolecular compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • G03G9/09357Macromolecular compounds
    • G03G9/09371Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/09392Preparation thereof

Definitions

  • the present invention relates to an electrostatic image developing toner.
  • toner for developing an electrostatic charge image is fixed on a recording medium such as paper by heating and pressing using a fixing roller.
  • a toner for developing an electrostatic image having excellent low-temperature fixability that can be fixed at a lower temperature is required.
  • a binder resin having a low softening point (Tm) and a glass transition point (Tg) and a release agent having a low softening point are used.
  • the electrostatic image developing toner when the electrostatic image developing toner is stored at a high temperature, there may be a problem that the toner particles contained in the electrostatic image developing toner tend to aggregate. Since the charge amount of the aggregated toner tends to be lower than the charge amount of the non-aggregated toner, the aggregated toner is easily developed unnecessarily. As a result, image defects may occur.
  • the electrostatic image developing toner includes a plurality of toner particles.
  • Each toner particle is generally obtained through a mixing process, a kneading process, a pulverizing process, and a classification process in which components such as a release agent, a colorant, a charge control agent, and a magnetic powder are mixed with a binder resin. It is done.
  • the present invention has been made in view of the above problems, and provides an electrostatic image developing toner excellent in both low-temperature fixability and toner blocking properties.
  • the electrostatic image developing toner of the present invention contains a plurality of toner particles.
  • Each of the plurality of toner particles includes a toner core and a shell layer that covers the toner core.
  • the shell layer includes a thermosetting resin.
  • the content of the tetrahydrofuran insolubles in the toner is 90% by mass or more based on the mass of the toner.
  • the toner has a melt viscosity at 75 ° C. of 1.0 ⁇ 10 4 Pa ⁇ s to 1.0 ⁇ 10 5 Pa ⁇ s.
  • the present invention it is possible to provide a toner for developing an electrostatic image that is excellent in both low-temperature fixing property and toner blocking property.
  • the electrostatic image developing toner according to the exemplary embodiment includes a plurality of toner particles.
  • Each of the plurality of toner particles is composed of toner base particles and an optional external additive.
  • the toner base particles are composed of a toner core and a shell layer. The surface of the toner core is covered with a shell layer.
  • the toner core can include, for example, a binder resin.
  • the toner core may contain an optional component (for example, a release agent, a colorant, a charge control agent, and / or a magnetic powder) in addition to the binder resin as necessary.
  • an optional component for example, a release agent, a colorant, a charge control agent, and / or a magnetic powder
  • the binder resin contained in the toner core is not particularly limited as long as it is a binder resin for toner.
  • the binder resin include styrene resin, acrylic resin, styrene- (meth) acrylic resin, polyethylene resin, polypropylene resin, vinyl chloride resin, polyester resin, polyamide resin, urethane resin, and polyvinyl alcohol.
  • thermoplastic resins such as resins, vinyl ether resins, N-vinyl resins, or styrene-butadiene resins.
  • thermoplastic resins from the viewpoint of improving the dispersibility of the colorant in the toner, the charging property of the toner, or the fixing property of the toner to the recording medium, a styrene- (meth) acrylic resin or polyester Resins are preferred.
  • a styrene- (meth) acrylic resin or the polyester resin will be described.
  • acrylic and methacryl may be collectively referred to as “(meth) acryl”.
  • the styrene- (meth) acrylic resin is a copolymer of a styrene monomer and a (meth) acrylic monomer.
  • examples of the styrene monomer include styrene, ⁇ -methylstyrene, vinyl toluene, ⁇ -chlorostyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, and p-ethylstyrene.
  • (meth) acrylic monomers examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, iso-propyl acrylate, n-butyl acrylate, iso-butyl acrylate, 2-ethylhexyl acrylate, and methacrylic acid.
  • (meth) acrylic acid alkyl esters such as methyl acid, ethyl methacrylate, n-butyl methacrylate, or iso-butyl methacrylate.
  • the polyester resin can be obtained, for example, by polycondensation or copolycondensation of a divalent or trivalent or higher alcohol component and a divalent or trivalent or higher carboxylic acid component.
  • examples of the components used when synthesizing the polyester resin include the following divalent or trivalent or higher alcohol components and divalent or trivalent or higher carboxylic acid components.
  • divalent alcohol component examples include diols or bisphenols.
  • diol examples include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,4-butenediol, 1, Examples include 5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, dipropylene glycol, polyethylene glycol, polypropylene glycol, or polytetramethylene glycol.
  • bisphenols include bisphenol A, hydrogenated bisphenol A, polyoxyethylenated bisphenol A, and polyoxypropylenated bisphenol A.
  • trivalent or higher alcohol component include sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, 1,2,4-butanetriol. 1,2,5-pentanetriol, glycerol, diglycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, or 1,3,5-triol Hydroxymethylbenzene is mentioned.
  • divalent carboxylic acid component examples include maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, phthalic acid, isophthalic acid, terephthalic acid, cyclohexanedicarboxylic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, Examples include adipic acid, sebacic acid, azelaic acid, or malonic acid.
  • alkyl succinic acid examples include n-butyl succinic acid, isobutyl succinic acid, n-octyl succinic acid, n-dodecyl succinic acid, and isododecyl succinic acid.
  • alkenyl succinic acid examples include n-butenyl succinic acid, isobutenyl succinic acid, n-octenyl succinic acid, n-dodecenyl succinic acid, and isododecenyl succinic acid.
  • Examples of the trivalent or higher carboxylic acid component include 1,2,4-benzenetricarboxylic acid (for example, trimellitic acid), 1,2,5-benzenetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, , 2,4-naphthalenetricarboxylic acid, 1,2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-methylenecarboxypropane, 1,2, Examples include 4-cyclohexanetricarboxylic acid, tetra (methylenecarboxyl) methane, 1,2,7,8-octanetetracarboxylic acid, pyromellitic acid, or empole trimer acid.
  • 1,2,4-benzenetricarboxylic acid for example, trimellitic acid
  • 1,2,5-benzenetricarboxylic acid 2,5,7-naphthalenetricarboxylic acid
  • divalent or trivalent or higher carboxylic acid components may be used by transforming them into ester-forming derivatives such as acid halides, acid anhydrides, or lower alkyl esters.
  • ester-forming derivatives such as acid halides, acid anhydrides, or lower alkyl esters.
  • lower alkyl means an alkyl group having 1 to 6 carbon atoms.
  • the softening point (Tm) of the binder resin is preferably 85 ° C. or higher and 95 ° C. or lower.
  • the glass transition point (Tg) of the binder resin is preferably 50 ° C. or higher and 65 ° C. or lower, and more preferably 50 ° C. or higher and 60 ° C. or lower.
  • the toner core may contain a release agent as necessary.
  • the release agent is generally used for the purpose of improving the low-temperature fixability and offset resistance of the toner.
  • the type of the release agent is not particularly limited as long as it is a release agent used as a known release agent for toner.
  • Suitable release agents include, for example, aliphatic hydrocarbon waxes (eg, low molecular weight polyethylene, low molecular weight polypropylene, polyolefin copolymer, polyolefin wax, microcrystalline wax, paraffin wax, or Fischer-Tropsch wax), aliphatic Oxides of hydrocarbon wax (eg, oxidized polyethylene wax or block copolymer of oxidized polyethylene wax), plant wax (eg, candelilla wax, carnauba wax, wood wax, jojoba wax, or rice wax), animal Waxes (eg, beeswax, lanolin, or whale wax), mineral waxes (eg, ozokerite, ceresin, or petrolatum), waxes based on fatty acid esters (eg, montanate ester wax) Box, or castor wax), or wax deoxidizing a part or the whole of fatty esters (e.g., deoxidized carnauba wax) and the like.
  • hydrocarbon waxes
  • the amount of the release agent used is preferably 1 part by mass or more and 30 parts by mass or less, and more preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the binder resin.
  • the toner core may contain a colorant as necessary.
  • a colorant known pigments and dyes can be used according to the color of the toner particles.
  • suitable colorants include the following colorants.
  • black colorants include carbon black.
  • a colorant that is toned to black using a colorant such as a yellow colorant, a magenta colorant, and a cyan colorant, which will be described later, can also be used.
  • examples of the colorant blended in the toner core include a yellow colorant, a magenta colorant, and a cyan colorant.
  • yellow colorant examples include condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, and arylamide compounds.
  • C.I. I. Pigment Yellow (3, 12, 13, 14, 15, 17, 62, 74, 83, 93, 94, 95, 97, 109, 110, 111, 120, 127, 128, 129, 147, 151, 154, 155 168, 174, 175, 176, 180, 181, 191 or 194)
  • Neftol Yellow S Hansa Yellow G
  • C.I. I. Bat yellow is mentioned.
  • magenta colorant examples include condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinone compounds, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, and perylene compounds.
  • cyan colorant examples include copper phthalocyanine compounds, copper phthalocyanine derivatives, anthraquinone compounds, and basic dye lake compounds. Specifically, C.I. I. Pigment blue (1, 7, 15, 15: 1, 15: 2, 15: 3, 15: 4, 60, 62, or 66), phthalocyanine blue, C.I. I. Bat Blue, or C.I. I. Acid blue.
  • the amount of the colorant used is preferably 1 part by mass or more and 20 parts by mass or less, and more preferably 3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the binder resin.
  • the toner core may contain a negatively chargeable charge control agent.
  • a charge control agent is used for the purpose of improving the charge stability or charge rising property of the toner and obtaining a toner having excellent durability or stability.
  • the charge rising characteristic of the toner is an index as to whether or not the toner can be charged to a predetermined charge level in a short time.
  • the toner core may contain magnetic powder as necessary.
  • Suitable magnetic powders include, for example, ferrite, magnetite, iron, ferromagnetic metals (cobalt and nickel), alloys (iron and / or alloys containing ferromagnetic metals), compounds (iron and / or ferromagnetic metals) Compound), a ferromagnetic alloy (a ferromagnetic alloy subjected to ferromagnetization treatment such as heat treatment), or chromium dioxide.
  • the average particle size of the magnetic powder is preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less. When the average particle diameter of the magnetic powder is within such a range, it is easy to uniformly disperse the magnetic powder in the binder resin.
  • the amount of magnetic powder used is preferably 35 parts by weight or more and 60 parts by weight or less, and 40 parts by weight or more and 60 parts by weight or less with respect to 100 parts by weight of the total amount of toner when the electrostatic image developing toner is used as a one-component developer. It is more preferable that the amount is not more than part by mass.
  • the shell layer covers the surface of the toner core. Below, the component contained in a shell layer is demonstrated.
  • the resin constituting the shell layer contains a thermosetting resin in order to improve the strength. It is preferable that the resin constituting the shell layer has a sufficient cationic property (positive chargeability).
  • thermosetting resin examples include a thermosetting resin having a cationic property (positive charging property) or a thermosetting resin having a nitrogen atom in a molecular skeleton.
  • thermosetting resin having a cationic property (positive charging property) examples include a thermosetting resin having an amino group (—NH 2 ).
  • thermosetting resins having an amino group include melamine resins, melamine resin derivatives, guanamine resins, guanamine resin derivatives (for example, benzoguanamine resins, acetoguanamine resins, or spiroguanamine resins), sulfonamide resins, urea resins.
  • derivatives of urea resin eg, glyoxal resin
  • aniline resin examples include a thermosetting resin having a cationic property (positive charging property) or a thermosetting resin having a nitrogen atom in a molecular skeleton.
  • thermosetting resin having a cationic property (positive charging property) examples include a thermosetting resin having an
  • thermosetting resin having a nitrogen atom in the molecular skeleton a thermosetting polyimide resin (for example, a maleimide polymer, a bismaleimide polymer, an amino bismaleimide polymer, or a bismaleimide triazine copolymer) is used. ).
  • a thermosetting resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • thermosetting resin melamine resin or urea resin is preferable.
  • Melamine resin is a polycondensate of melamine and formaldehyde.
  • the monomer used to form the melamine resin is melamine.
  • Urea resin is a polycondensate of urea and formaldehyde.
  • the monomer used to form the urea resin is urea.
  • Glyoxal resin which is a derivative of urea resin, is a polycondensate of a reaction product of glyoxal and urea with formaldehyde.
  • the monomer used to form the glioxal resin is the reaction product of glyoxal and urea.
  • the urea that reacts with melamine, urea, and glyoxal may undergo known modification.
  • the monomer of the thermosetting resin can be used by being transformed into a derivative by methylolation with formaldehyde before reacting with the thermoplastic resin.
  • melamine can be transformed into methylolmelamine by use of formaldehyde to form methylol.
  • the monomer of the thermosetting resin (for example, a reaction product of melamine, urea, or glyoxal and urea) may be used in the form of a prepolymer.
  • the prepolymer of the thermosetting resin is a state before the polymer in which the degree of polymerization of the monomer of the thermosetting resin is increased to some extent.
  • the prepolymer of the thermosetting resin is also referred to as an initial polymer or an initial condensate.
  • the shell layer preferably contains nitrogen atoms derived from melamine resin or urea resin. Materials containing nitrogen atoms are easily positively charged. Therefore, the content of nitrogen atoms in the shell layer is preferably 10% by mass or more with respect to the mass of the shell layer.
  • the film thickness of the shell layer is preferably 1 nm or more and 20 nm or less, and more preferably 1 nm or more and 10 nm or less.
  • the shell layer is easily broken by heating and pressurization when fixing the toner to the recording medium.
  • the binder resin contained in the toner core softens and melts rapidly, and the toner can be fixed on the recording medium in a low temperature range.
  • the charge amount of the toner particles does not become too high, an image is properly formed.
  • the thickness of the shell layer is 1 nm or more, the shell layer has sufficient strength, and the shell layer is prevented from being broken by an impact during transportation.
  • the component of the release agent easily oozes out on the surface of the toner particles through the portion where the shell layer is broken under a high temperature condition. For this reason, when the toner is stored under high temperature conditions, the toner particles tend to aggregate. Furthermore, since the charge amount of the toner particles does not become too low when the thickness of the shell layer is 1 nm or more, it is possible to suppress the occurrence of image defects in the formed image.
  • the film thickness of the shell layer can be measured by analyzing a TEM image of the cross section of the toner particles using commercially available image analysis software (for example, “WinROOF” manufactured by Mitani Corporation).
  • the toner particles may have a structure in which a plurality of shell layers are formed on the surface of the toner core.
  • the shell layer formed on the outermost part of the toner core is preferably cationic.
  • the shell layer has a cationic property (positive charging property). Therefore, a positively chargeable charge control agent may be included in the shell layer.
  • the toner particles may contain an external additive.
  • an external additive can be attached to the surface of the toner base particles.
  • the surface of the shell layer may be externally treated with, for example, an external additive in order to improve the fluidity and handleability of the toner particles.
  • an external additive for example, a known external addition method is used.
  • the toner base particles are adjusted by adjusting the external addition conditions so that the external additive is not buried in the shell layer, and using a mixer (for example, FM mixer or Nauter mixer (registered trademark)) Externally added.
  • a mixer for example, FM mixer or Nauter mixer (registered trademark)
  • the type of external additive can be appropriately selected from external additives for toner.
  • the external additive include silica or metal oxide (alumina, titanium oxide, magnesium oxide, zinc oxide, strontium titanate, or barium titanate). These external additives may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the external additive can be hydrophobized using an aminosilane coupling agent or a hydrophobizing agent such as silicone oil.
  • a hydrophobized external additive it is possible to suppress a decrease in the charge amount of the toner under high temperature and high humidity, and to improve the fluidity of the toner.
  • the addition amount of the external additive is preferably 0.1 parts by mass or more and 10 parts by mass or less, and more preferably 0.2 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the toner base particles. .
  • the average particle diameter of the external additive is preferably 0.01 ⁇ m or more and 1.0 ⁇ m or less. When the added amount of the external additive and the average particle diameter are within such ranges, the fluidity and handling properties of the toner particles can be improved.
  • thermosetting resin contained in the shell layer As an index of the degree of cross-linking of the thermosetting resin contained in the shell layer, there is a content ratio of insoluble content of toner particles in tetrahydrofuran. When the degree of crosslinking of the thermosetting resin contained in the shell layer is sufficient, the toner particles are hardly dissolved in tetrahydrofuran. A method for measuring the content ratio of the toner insoluble matter in the toner will be described below.
  • An electrostatic charge image developing toner (mass: W 1 ) is added to tetrahydrofuran (THF).
  • THF tetrahydrofuran
  • the slurry is stirred to dissolve a THF-soluble component (resin mass: W 2 ) in THF. Thereafter, components dissolved in THF are extracted from the slurry.
  • the content ratio of the toner insoluble matter in the toner was calculated.
  • Content of THF-insoluble matter (mass%) (W 1 ⁇ W 2 ) / W 1 ⁇ 100
  • the content ratio of the toner insoluble matter in the toner is preferably 90% by mass or more with respect to the mass of the toner.
  • melt viscosity of the electrostatic image developing toner is measured using a Koka flow tester. Specifically, the melt viscosity of the toner is measured as follows. Mold the toner into pellets. The pellet is set in a Koka type flow tester, heated to 200 ° C. while applying a load with a plunger, the pellet-like toner is extruded from a nozzle, and the melt viscosity of the toner at 75 ° C. is measured. .
  • the melt viscosity at 75 ° C. of the toner is 1.0 ⁇ 10 4 Pa ⁇ s or more and 1.0 ⁇ 10 5 Pa ⁇ s or less.
  • the melt viscosity of the toner is within such a range, the low-temperature fixability of the toner can be improved.
  • the method for producing a toner for developing an electrostatic charge image can include, for example, a toner core preparation step and a shell layer formation step.
  • a toner core preparation step a toner core is prepared.
  • a shell layer is formed on the surface of the toner core.
  • the toner core preparation process includes an aggregation process and a coalescence process.
  • the aggregation step one or more kinds of fine particles containing one or more components selected from a binder resin, a colorant, and a release agent are aggregated in an aqueous medium to form aggregated particles.
  • the coalescence process the components contained in the aggregated particles obtained in the aggregation process are heat-processed and coalesced.
  • an external additive is attached to the surface of the toner base particles.
  • Toner core preparation process In order to execute the toner core preparation step, an optional component (for example, a release agent, a colorant, a charge control agent, and / or a magnetic powder) can be satisfactorily dispersed in the binder resin as necessary. Is used.
  • a release agent for example, a release agent, a colorant, a charge control agent, and / or a magnetic powder
  • a method for executing the toner core preparation step an aggregation method is exemplified.
  • the coagulation process and the coalescence process are performed.
  • a toner core is prepared using an agglomeration method, toner particles having a uniform shape and uniform particle diameter can be obtained.
  • the aggregating step fine particles containing the components constituting the toner core are aggregated in an aqueous medium to form aggregated particles.
  • the components contained in the aggregated particles obtained in the aggregation step are united in an aqueous medium to obtain a toner core.
  • aggregated particles are prepared.
  • fine particles containing a component constituting the toner core are obtained by finely forming a binder resin or a composition containing the binder resin in an aqueous medium into a desired particle size, thereby including fine particles containing the binder resin (binder resin fine particles).
  • binder resin fine particles Is prepared as a binder resin fine particle dispersion in which is dispersed in an aqueous medium.
  • the dispersion of the binder resin fine particles includes an aqueous dispersion (for example, a colorant fine particle dispersion or a release agent fine particle dispersion) of fine particles of an optional component (for example, a release agent or a colorant) other than the binder resin. But you can.
  • the particles are aggregated in such a binder resin particle dispersion to obtain aggregated particles.
  • Preparation method 1 a preparation method of the binder resin fine particle dispersion
  • preparation method 2 a preparation method of the release agent fine particle dispersion
  • preparation method 3 a preparation method of the colorant fine particle dispersion
  • the binder resin is pulverized using a pulverizer (for example, a turbo mill) to obtain a pulverized product.
  • the obtained pulverized product is dispersed in an aqueous medium such as ion-exchanged water, heated, and then subjected to a high shearing force using a high-speed shearing emulsifier (for example, “Cleamix (registered trademark)” manufactured by M Technique Co., Ltd.).
  • a dispersion containing binder resin fine particles can be obtained.
  • the heating temperature is preferably a temperature that is 10 ° C. higher than the softening point (Tm) of the binder resin (a temperature up to about 200 ° C. at the highest).
  • the average particle diameter of the binder resin fine particles is preferably 1 ⁇ m or less, and more preferably 0.05 ⁇ m or more and 0.50 ⁇ m or less. When the average particle size of the binder resin fine particles is within such a range, the particle size distribution of the toner core is sharp and the shape of the toner core is uniform.
  • the average particle size of the binder resin fine particles can be measured using a laser diffraction particle size distribution measuring device (for example, “SALD-2200” manufactured by Shimadzu Corporation).
  • the dispersion containing the binder resin fine particles may contain a surfactant.
  • the surfactant is used, the binder resin fine particles are stably and uniformly dispersed in the aqueous medium.
  • the specific surface area of the binder resin increases if the binder resin is directly atomized in an aqueous medium. Therefore, when the acidic groups exposed on the surface of the binder resin fine particles increase, the pH of the aqueous medium may be lowered from about 3 to about pH 4. When the pH of the aqueous medium is lowered from about 3 to about pH 4, the binder resin may be hydrolyzed, or the particle diameter of the binder resin fine particles may not be reduced to a desired particle diameter.
  • a basic substance may be added to the aqueous medium.
  • any basic substance may be added as long as it is a basic substance capable of suppressing the above-mentioned problems.
  • the basic substance include alkali metal hydroxide (sodium hydroxide, potassium hydroxide, or lithium hydroxide), alkali metal carbonate (sodium carbonate or potassium carbonate), alkali metal hydrogen carbonate (sodium bicarbonate).
  • nitrogen-containing basic organic compound N, N-dimethylethanolamine, N, N-diethylethanolamine, triethanolamine, tripropanolamine, tributanolamine, triethylamine, n-propylamine, n-butylamine, isopropylamine, monomethanolamine, morpholine, methoxypropylamine, pyridine, or vinylpyridine).
  • the surfactant examples include an anionic surfactant, a cationic surfactant, and a nonionic surfactant.
  • examples of the anionic surfactant include sulfate ester type surfactants, sulfonate type surfactants, phosphate ester type surfactants, and soaps.
  • Examples of the cationic surfactant include amine salt type surfactants and quaternary ammonium salt type surfactants.
  • Nonionic surfactants include, for example, polyethylene glycol type surfactants, alkylphenol ethylene oxide adduct type surfactants, or polyhydric alcohol type surfactants (polyhydric alcohol derivatives such as glycerin, sorbitol, or sorbitan). ).
  • anionic surfactants are preferable. These surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the surfactant used is preferably 0.01% by mass or more and 10% by mass or less based on the mass of the binder resin. When the amount of the surfactant used is within such a range, the dispersibility of the binder resin fine particles in the aqueous dispersion can be improved.
  • the preparation method 2 will be described below.
  • the release agent is pulverized in advance to an average particle size of 100 ⁇ m or less to obtain a release agent powder.
  • the obtained release agent powder is added to an aqueous medium to prepare a slurry.
  • the aqueous medium contains a surfactant in advance.
  • the amount of the surfactant used is preferably 0.01% by mass or more and 10% by mass or less with respect to the mass of the release agent. When the amount of the surfactant used is within such a range, the dispersibility of the release agent fine particles in the aqueous dispersion can be improved.
  • the slurry is heated to a temperature equal to or higher than the melting point of the release agent.
  • a disperser such as a homogenizer (for example, “Ultra Turrax T50” manufactured by IKA Co., Ltd.) or a pressure discharge type disperser to the heated slurry.
  • a disperser such as a homogenizer (for example, “Ultra Turrax T50” manufactured by IKA Co., Ltd.) or a pressure discharge type disperser to the heated slurry.
  • a disperser such as a homogenizer (for example, “Ultra Turrax T50” manufactured by IKA Co., Ltd.) or a pressure discharge type disperser to the heated slurry.
  • a disperser such as a homogenizer (for example, “Ultra Turrax T50” manufactured by IKA Co., Ltd.) or a pressure discharge type disperser to the heated slurry.
  • a disperser such as a homogenizer (for example, “
  • Examples of the device that gives a strong shearing force to the dispersion include NANO3000 (manufactured by Miki Co., Ltd.), Nanomizer (manufactured by Yoshida Kikai Kogyo Co., Ltd.), Microfullizer (registered trademark) (manufactured by Microfluidics), Gorin type A homogenizer (manufactured by SPX) or Claremix (registered trademark) W motion (manufactured by M Technique Co., Ltd.) may be mentioned.
  • NANO3000 manufactured by Miki Co., Ltd.
  • Nanomizer manufactured by Yoshida Kikai Kogyo Co., Ltd.
  • Microfullizer registered trademark
  • Gorin type A homogenizer manufactured by SPX
  • Claremix registered trademark
  • W motion manufactured by M Technique Co., Ltd.
  • the average particle diameter of the release agent fine particles contained in the release agent fine particle dispersion is preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or more and 0.7 ⁇ m or less, and 0.28 ⁇ m or more and 0.55 ⁇ m. It is particularly preferred that When the average particle diameter of the release agent fine particles is within such a range, the release agent is uniformly dispersed in the binder resin.
  • the average particle size of the release agent fine particles can be measured by the same method as the average particle size of the binder resin fine particles.
  • a colorant and components such as a dispersant containing a colorant are dispersed by using a known disperser.
  • a aqueous dispersion containing colorant fine particles (dispersion of colorant fine particles) is prepared.
  • the surfactant as the dispersant the surfactant used in the preparation of the binder resin fine particles can be used.
  • the amount of the surfactant used is preferably 0.01 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the colorant. When the amount of the surfactant used is within such a range, the dispersibility of the colorant fine particles in the aqueous dispersion can be improved.
  • Examples of the disperser used for the dispersion treatment include a pressure disperser and a medium disperser.
  • Examples of the pressure disperser include a mechanical homogenizer, a gorin homogenizer, a pressure homogenizer, and a high-pressure homogenizer (manufactured by Yoshida Kikai Kogyo Co., Ltd.).
  • Examples of the medium type disperser include a sand grinder, a horizontal or vertical bead mill, an ultra apex mill (manufactured by Kotobuki Industries Co., Ltd.), a dyno (registered trademark) mill (manufactured by WAB Co., Ltd.), or an MSC mill (Nippon Coke Kogyo Co., Ltd.). Manufactured).
  • Examples of the disperser other than the above include an ultrasonic disperser.
  • the average particle diameter of the colorant fine particles is preferably 0.01 ⁇ m or more and 0.2 ⁇ m or less. When the average particle diameter of the colorant fine particles is within such a range, the colorant is uniformly dispersed in the binder resin.
  • the average particle size of the colorant fine particles can be measured by the same method as the average particle size of the binder resin fine particles.
  • the prepared binder resin fine particle dispersion is appropriately combined with the release agent fine particle dispersion and / or the colorant fine particle dispersion so that the predetermined component is contained in the toner core. And mix. Subsequently, these fine particles are aggregated in the mixed dispersion to obtain an aqueous dispersion containing aggregated particles containing the binder resin.
  • Examples of the flocculant include inorganic metal salts, inorganic ammonium salts, and bivalent or higher-valent metal complexes.
  • examples of inorganic metal salts include metal salts (sodium sulfate, sodium chloride, calcium chloride, calcium nitrate, barium chloride, magnesium chloride, zinc chloride, aluminum chloride, or aluminum sulfate), or inorganic metal salt polymers (polyaluminum chloride). Or polyaluminum hydroxide).
  • Examples of the inorganic ammonium salt include ammonium sulfate, ammonium chloride, and ammonium nitrate.
  • a quaternary ammonium salt type cationic surfactant or a nitrogen-containing compound for example, polyethyleneimine
  • a nitrogen-containing compound for example, polyethyleneimine
  • a divalent metal salt or a monovalent metal salt can be used as the flocculant.
  • These flocculants may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the pH of the aqueous dispersion when adding the aggregating agent is adjusted to be 8 or more alkaline.
  • the flocculant may be added at once or sequentially.
  • the amount of the flocculant added is preferably 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the solid content of the aqueous dispersion.
  • the addition amount of the flocculant can be appropriately adjusted according to the type and amount of the dispersant contained in the fine particle dispersion.
  • the temperature of the aqueous dispersion when the fine particles are aggregated is preferably in the temperature range of the glass transition point (Tg) of the binder resin or more and less than 10 ° C. of the binder resin.
  • Tg glass transition point
  • the temperature of the aqueous dispersion is within such a range, aggregation of fine particles contained in the aqueous dispersion can be favorably progressed.
  • An aggregation stopper may be added after the aggregation has progressed until the aggregated particles have a desired average particle size.
  • Examples of the aggregation terminator include sodium chloride, potassium chloride, or magnesium chloride. These aggregation terminators may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the components contained in the aggregated particles obtained in the aggregation process are integrated in an aqueous medium to form a toner core.
  • the aqueous dispersion containing the aggregated particles obtained by the aggregation process may be heated. Thereby, an aqueous dispersion containing a toner core can be obtained.
  • the heating temperature of the aqueous dispersion containing aggregated particles is preferably within the temperature range of the glass transition point (Tg) of the binder resin + 10 ° C. or higher and the melting point of the binder resin or lower.
  • Tg glass transition point
  • the heating temperature of the aqueous dispersion containing aggregated particles is within such a temperature range, the coalescence of the components contained in the aggregated particles can be favorably advanced.
  • the aqueous dispersion containing the toner core after the coalescence process may be subjected to a washing process and a drying process as necessary.
  • the toner core obtained by the aggregation method is washed with water.
  • the washing method include a method of recovering a wet cake containing a toner core from a dispersion containing a toner core by solid-liquid separation, and washing the collected wet cake with water.
  • the toner core in the aqueous dispersion containing the toner core is precipitated, the supernatant liquid is replaced with water, and the toner core is redispersed in water after the replacement.
  • the toner core that has undergone the cleaning process is dried.
  • the dryer used in the drying step include a spray dryer, a fluidized bed dryer, a vacuum freeze dryer, and a vacuum dryer.
  • the shell layer forming step includes a supply step and a resinification step.
  • a shell layer forming solution containing a monomer and / or a prepolymer of a thermosetting resin is supplied to the surface of the toner core.
  • the resinification step is a step of polymerizing or condensing a thermosetting resin monomer and / or prepolymer contained in the shell layer forming solution.
  • Examples of the method of supplying the shell layer forming solution to the toner core include a method of spraying the shell layer forming solution on the surface of the toner core, or a method of immersing the toner core in the shell layer forming solution.
  • a dispersant may be added to the shell layer forming solution.
  • dispersant examples include sodium polyacrylate, polyparavinylphenol, partially saponified polyvinyl acetate, isoprene sulfonic acid, polyether, isobutylene / maleic anhydride copolymer, sodium polyaspartate, starch, gum arabic, Examples include polyvinyl pyrrolidone or sodium lignin sulfonate. These dispersing agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a solvent for example, a solvent, a thermosetting resin monomer and / or prepolymer, and other additives (for example, a dispersant described later) are mixed by stirring. do it.
  • the solvent include toluene, acetone, methyl ethyl ketone, tetrahydrofuran, methanol, ethanol, or water.
  • the solution for forming the shell layer may contain a known dispersant in order to improve the dispersibility of the thermosetting resin monomer and / or prepolymer in the solvent.
  • the content of the dispersant in the shell layer forming solution is preferably 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the shell layer forming solution.
  • the content of the dispersant in the shell layer forming solution is 0.1 parts by mass or more with respect to 100 parts by mass of the shell layer forming solution, the dispersibility of the toner particles can be improved.
  • the content of the dispersant in the shell layer forming solution is 15 parts by mass or less with respect to 100 parts by mass of the shell layer forming solution, the environmental load due to the amount of the dispersant used can be reduced.
  • the dispersant remaining in the toner can be removed by a cleaning process.
  • thermosetting resin monomer and / or prepolymer have a sufficiently high degree of polymerization, but also the degree of polymerization of the thermosetting resin monomer and / or prepolymer is moderate. This includes partial resinization.
  • thermosetting resin in the resinification step examples include an in-situ polymerization method, a submerged curing coating method, and a coacervation method. From the viewpoint of the reactivity of the thermosetting resin, a uniformly coated shell layer can be obtained by the in-situ polymerization method.
  • the in-situ polymerization method there is a resin raw material that forms a shell layer only in an aqueous medium, and this raw material reacts on the surface of the toner core to form a resin, thereby forming a shell layer.
  • the temperature at the time of forming the shell layer is preferably 60 ° C. or higher and 70 ° C. or lower.
  • the temperature at the time of forming the shell layer is preferably 60 ° C. or higher and 70 ° C. or lower.
  • the temperature rising rate for raising the temperature to the temperature at which the shell layer is formed is 1 ° C./min to 3 ° C./min. If the heating rate is too high, polymerization or condensation of the thermosetting resin contained in the shell layer starts before the toner core is spheroidized by surface tension, and it may be difficult to obtain spherical toner particles. If the rate of temperature increase is too slow, the toner core may soften and the toner cores may aggregate before the thermosetting resin contained in the shell layer is polymerized or condensed.
  • one or more steps selected from a washing step, a drying step, and an external addition step may be performed as necessary.
  • the toner base particles obtained by executing the shell layer forming step are washed with water.
  • the washing method include a method of collecting a wet cake containing toner mother particles from a dispersion containing toner mother particles by solid-liquid separation, and washing the collected wet cake with water.
  • a toner is dried using a dryer (for example, a spray dryer, a fluidized bed dryer, a vacuum freeze dryer, or a vacuum dryer).
  • a spray dryer for example, a spray dryer, a fluidized bed dryer, a vacuum freeze dryer, or a vacuum dryer.
  • an external addition step described later can be performed simultaneously.
  • external addition conditions are prepared so that the external additive is not embedded in the shell layer, and a mixer (for example, FM mixer or Nauter mixer (registered trademark)) is used. Then, the toner base particles and the external additive are mixed, and the external additive is adhered to the surface of the shell layer.
  • a mixer for example, FM mixer or Nauter mixer (registered trademark)
  • a mechanical pulverizer (“Turbo Mill” manufactured by Freund Turbo, Inc.)
  • a coarsely pulverized product was obtained by pulverizing to an average particle size of 30 ⁇ m. 200 g of the coarsely pulverized product obtained, 30 g of 1N sodium hydroxide aqueous solution, and 770 g of ion
  • the obtained slurry was put into a 2 L round bottom stainless steel container equipped with a condenser, and stirred at a liquid temperature of 95 ° C. and a rotation speed of 200 rpm for 30 minutes. Then, it cooled to room temperature and solid-liquid-separated using the 300 mesh filter, and obtained the solid substance. The obtained solid was washed with water and dried to obtain an alkali-treated product of polyester resin A. In the same manner as above, the polyester resin A was alkali-treated to obtain a total of 1000 g of an alkali-treated product of polyester resin A.
  • the binder resin fine particles in the dispersion had a solid content concentration of 25% by mass and a volume median diameter (D 50 ) of 115 nm.
  • a release agent (“WEP-3” manufactured by NOF Corporation, melting point: 73 ° C.), 20 g of sodium lauryl sulfate, and 780 g of ion-exchanged water were mixed and heated to 90 ° C., and then a homogenizer (manufactured by IKA) "Ultra Turrax T50") and mixed for 5 minutes. Further, using a high-pressure homogenizer (“NV-200” manufactured by Yoshida Kikai Kogyo Co., Ltd.), the mixture was heated and mixed at a discharge pressure of 100 MPa and 100 ° C. to obtain a dispersion of release agent fine particles.
  • the release agent fine particles in the dispersion had a solid content concentration of 10% by mass and a volume median diameter (D 50 ) of 120 nm.
  • a colorant (CI Pigment Blue 15: 3), 20 g of a polyoxyethylene lauryl ether sodium sulfate aqueous solution (“Emar E-27C” manufactured by Kao Corporation) having a concentration of 27% by mass, and 380 g of ion-exchanged water
  • a wet fine dispersion treatment was performed using a bead mill ("Dyno (registered trademark) mill” manufactured by WAB) to obtain a dispersion of colorant fine particles.
  • the colorant fine particles in the dispersion had a solid content concentration of 20% by mass, a total solid content concentration of 21% by mass, and a volume median diameter (D 50 ) of 113 nm.
  • ⁇ Shell layer formation process> A 1 L three-necked flask equipped with a thermometer, a stirrer, and a condenser was set in a 30 ° C. water bath. Into the flask, 300 mL of ion-exchanged water was added, and hydrochloric acid was further added to adjust the pH to 4. Hexamethylol melamine precursor as a melamine resin precursor (an aqueous solution of hexamethylol melamine initial polymer, “Milben (registered trademark) Resin SM-607” manufactured by Showa Denko KK, solid concentration 80 mass% ) 2 mL was added and mixed and dissolved.
  • “Milben (registered trademark) Resin SM-607” manufactured by Showa Denko KK, solid concentration 80 mass%
  • the flask contents were then cooled to 25 ° C. and then neutralized with sodium hydroxide. Thereafter, suction filtration was performed using a Buchner funnel, and a wet cake containing toner mother particles was collected by filtration. Furthermore, the toner base particles were washed by dispersing the wet cake containing the toner base particles after filtration using ion-exchanged water. The same washing of the toner base particles with ion exchange water was repeated 6 times. The wet cake containing the toner base particles after washing is dispersed in an aqueous ethanol solution having a concentration of 50% by mass, and hot air is used using a fine particle surface modification device (“Coat Mizer (registered trademark)” manufactured by Freund Turbo). The film was dried at a temperature of 45 ° C. and a blower air volume of 2 m 3 / min. Table 1 shows the volume median diameter (D 50 ) and sphericity of the toner particles obtained.
  • the electrostatic charge image developing toner of Example 2 was obtained in the same manner as in Example 1 except for the above.
  • the electrostatic charge image developing toner of Example 3 was obtained in the same manner as in Example 1 except for the above.
  • Example 4 An electrostatic image developing toner of Example 4 was obtained in the same manner as in Example 1 except that the temperature at the time of forming the shell layer was changed from 60 ° C. to 62 ° C.
  • Example 5 An electrostatic charge image developing toner of Example 5 was obtained in the same manner as in Example 1 except that the temperature at the time of forming the shell layer was changed from 60 ° C. to 64 ° C.
  • Example 6 An electrostatic charge image developing toner of Example 6 was obtained in the same manner as in Example 1 except that the temperature at the time of forming the shell layer was changed from 60 ° C. to 66 ° C.
  • Example 7 An electrostatic charge image developing toner of Example 7 was obtained in the same manner as in Example 1 except that the temperature at the time of forming the shell layer was changed from 60 ° C. to 68 ° C.
  • Example 8 To a 2 L flask equipped with a stirrer, thermometer, condenser, and nitrogen inlet tube, 250 g of isobutanol was added and 155 g of styrene, 75 g of butyl acrylate, and t-butylperoxy 2-ethylhexano were introduced while introducing nitrogen. Eate (manufactured by Arkema Yoshitomi Co., Ltd.) 36 g was added, the temperature was raised to 100 ° C, and the mixture was stirred at that temperature for 3 hours. Further, 12 g of t-butylperoxy 2-ethylhexanoate was added and stirred for 3 hours.
  • Eate manufactured by Arkema Yoshitomi Co., Ltd.
  • the obtained slurry was put into a pressure-resistant round bottom stainless steel container, and a high-speed shear emulsification apparatus (“CLEARMIX (registered trademark) CLM-2.2S” manufactured by M Technique Co., Ltd.) was used.
  • the slurry was shear-dispersed for 30 minutes at 0.5 MPa, 140 ° C., and a rotor rotational speed of 20000 rpm. Thereafter, the mixture was cooled to 50 ° C. while stirring at a rotational speed of 15000 rpm, and the temperature was lowered at a rate of 5 ° C./min to obtain a dispersion of styrene-acrylic resin A fine particles.
  • An electrostatic charge image developing toner of Example 8 was obtained in the same manner as in Example 1 except that the polyester resin A was replaced with styrene-acrylic resin A.
  • An electrostatic charge image developing toner of Comparative Example 2 was obtained in the same manner as in Example 1 except that the toner was replaced.
  • Comparative Example 3 An electrostatic charge image developing toner of Comparative Example 3 was obtained in the same manner as in Example 1 except that the temperature at the time of forming the shell layer was changed from 60 ° C. to 59 ° C.
  • the obtained slurry was put into a pressure-resistant round bottom stainless steel container, and a high-speed shear emulsification apparatus (“CLEARMIX (registered trademark) CLM-2.2S” manufactured by M Technique Co., Ltd.) was used.
  • the slurry was shear-dispersed for 30 minutes at 0.5 MPa, 140 ° C., and a rotor rotational speed of 20000 rpm. Thereafter, the mixture was cooled to 50 ° C. at a rotation speed of 15,000 rpm and cooled at a temperature drop rate of 5 ° C./min to obtain a dispersion of fine particles of styrene-acrylic resin fine B.
  • the electrostatic charge image developing toner of Comparative Example 4 was prepared in the same manner as in Example 1 except that 2 mL of the hexamethylolmelamine precursor used for forming the shell layer was replaced with 190 g of styrene-acrylic resin B. Got.
  • the content ratio of THF-insoluble matter was calculated using the following formula.
  • the mass of the toner is W 1 and the mass of the resin soluble in THF is W 2 .
  • Content of THF-insoluble matter (mass%) (W 1 ⁇ W 2 ) / W 1 ⁇ 100
  • Table 1 shows the measurement results of the content ratio of the THF-insoluble matter.
  • melt viscosity of toner 1.4 g of the electrostatic charge image developing toners of Examples 1 to 8 and Comparative Examples 1 to 4 were molded into cylindrical pellets of about 1.9 cm 3 .
  • the obtained pellet was set in a flow tester (manufactured by Shimadzu Corporation). While heating from 35 ° C. to 200 ° C. at a rate of temperature increase of 2 ° C./min, a load of 30 kg / cm 2 is applied by a plunger to extrude the pelletized toner from the nozzle, and the melt viscosity of the toner at 75 ° C. is adjusted. It was measured. A die having a height of 1.0 mm and a diameter of 1.0 mm was used. Table 1 shows the measurement results of the melt viscosity of the toner at 75 ° C.
  • the volume median diameters (D 50 ) of the toners obtained in Examples 1 to 8 and Comparative Examples 1 to 4 were measured using a particle size distribution measuring apparatus (“Multisizer 3” manufactured by Beckman Coulter, Inc.). Table 1 shows the measurement results of the volume median diameter (D 50 ) of the toner.
  • the average particle diameter of the manganese-based ferrite particles was 35 ⁇ m, and the saturation magnetization when the applied magnetic field was 3000 (1000 / 4 ⁇ ⁇ A / m) was 70 A ⁇ m 2 / kg.
  • a polyamideimide resin which is a copolymer of trimellitic anhydride and 4,4'-diaminodiphenylmethane was diluted with methyl ethyl ketone to prepare a resin solution.
  • a copolymer (FEP) of tetrafluoroethylene and propylene hexafluoride is dispersed, and further 2% by mass of silicon oxide is dispersed with respect to the total amount of the resin, thereby obtaining 150 g of a carrier coating solution in terms of solid content. It was.
  • the weight composition ratio of the polyamideimide resin and FEP is 2: 8, and the solid content concentration in the carrier coat liquid is 10% by mass.
  • a two-component developer was filled in a black developing device of a color printer (“TASKalfa 5550ci” manufactured by Kyocera Document Solutions Inc.).
  • the toner obtained in Examples 1 to 8 and Comparative Examples 1 to 4 was filled in a black toner container.
  • a toner image (patch sample) of 2 cm ⁇ 3 cm was output as an unfixed image on an evaluation paper (“Color Copy (registered trademark) 90” manufactured by Mondi) so that the toner loading amount was 1.67 mg / cm 2 .
  • an evaluation paper (“Color Copy (registered trademark) 90” manufactured by Mondi)
  • the fixing jig is a jig modified so that the fixing temperature and linear velocity of the fixing device of the color printer (“TASKalfa 5550ci” manufactured by Kyocera Document Solutions Co., Ltd.) can be varied.
  • the surface material of the heating roll was PFA
  • the thickness of the heating roll was 30 ⁇ m ⁇ 10 ⁇ m
  • the surface roughness (Ra) was 5 ⁇ m.
  • the evaluation sheet on which the fixed image was fixed was visually observed to measure the minimum fixable temperature. When the minimum fixable temperature of the toner exceeded 100 ° C., the toner fixability was insufficient. When the minimum fixable temperature of the toner is 100 ° C. or lower, the toner has good fixability. Table 1 shows the measurement results of the minimum fixable temperature of the toner.
  • a sieve having an opening of 45 ⁇ m was placed at the bottom, and a sieve having an opening of 63 ⁇ m and an opening of 105 ⁇ m was sequentially stacked.
  • the overlapped sieve was attached to a powder tester (“TYPE PT-E” manufactured by Hosokawa Micron Corporation). Then, the toner was wiped for 30 seconds under the condition of 5 memories of a powder tester. Next, the weight of the toner remaining on the sieve was measured, and the degree of aggregation of the toner was determined by the following formula.
  • Aggregation degree (mass%) (a) + (b) + (c) (A): (Weight of toner remaining on sieve having aperture of 105 ⁇ m) / 3 ⁇ 100 (B): (Weight of toner remaining on sieve having aperture of 63 ⁇ m) / 3 ⁇ 3/5 ⁇ 100 (C): (Weight of toner remaining on sieve having aperture of 45 ⁇ m) / 3 ⁇ 1/5 ⁇ 100
  • the aggregation degree of the toner is 15% by mass or more, the blocking property of the toner is insufficient. However, when the aggregation degree of the toner is less than 15% by mass, the blocking property of the toner is good. Table 1 shows the measurement results of the degree of aggregation of the toner.
  • Table 1 shows the measurement results and evaluation results of the toners obtained in Examples 1 to 8 and Comparative Examples 1 to 4.
  • the melt viscosity at 75 ° C. of the toner is as low as 9500 Pa ⁇ s, 1.0 ⁇ 10 4 Pa ⁇ s or more and 1.0 ⁇ 10 5 Pa ⁇ s. It was not within the following range. Therefore, the degree of aggregation of the toner is increased, and the toner blocking property is insufficient.
  • the temperature at the time of forming the shell layer was as low as 59 ° C.
  • the thermosetting resin contained in the shell layer has a low degree of cross-linking, and the toner insoluble content of the toner is less than 90% by mass. Therefore, the degree of aggregation of the toner is increased, and the toner blocking property is insufficient.
  • the toner for developing an electrostatic charge image of this embodiment can be suitably used in an image forming apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

 静電荷像現像用トナーは、複数のトナー粒子を含む。複数のトナー粒子の各々は、トナーコアと、トナーコアを被覆するシェル層とを含む。シェル層は、熱硬化性樹脂を含む。トナーのテトラヒドロフラン不溶分の含有割合が、トナーの質量に対して90質量%以上である。トナーの75℃での溶融粘度が1.0×104Pa・s以上1.0×105Pa・s以下である。熱硬化性樹脂は、メラミン樹脂又は尿素樹脂であることが好ましい。トナーコアは、結着樹脂を含み、結着樹脂の軟化点(Tm)は、85℃以上95℃以下であることが好ましい。

Description

静電荷像現像用トナー
 本発明は、静電荷像現像用トナーに関する。
 電子写真方式を用いて画像を形成する技術領域において、定着ローラーを用いた加熱及び加圧により、紙のような記録媒体に静電荷像現像用トナーを定着させることが行われている。定着時の省エネルギー化及び装置の小型化を達成するために、より低い温度で定着可能な低温定着性に優れる静電荷像現像用トナーが求められている。低温定着性に優れる静電荷像現像用トナーにおいては、軟化点(Tm)及びガラス転移点(Tg)が低い結着樹脂及び軟化点が低い離型剤が使用されている。このため、静電荷像現像用トナーを高温下で保存する場合に、静電荷像現像用トナーに含まれるトナー粒子同士が凝集しやすいという問題が発生することがある。そして、凝集しているトナーの帯電量は、凝集していないトナーの帯電量と比較して低下しやすいため、凝集したトナーは不必要に現像されやすい。その結果、画像欠陥が発生することがある。
 静電荷像現像用トナーは、複数のトナー粒子を含む。各々のトナー粒子は、一般的に、離型剤、着色剤、電荷制御剤、及び磁性粉のような成分を結着樹脂に混合する混合工程、混練工程、粉砕工程、及び分級工程を経て得られる。
 結着樹脂を含むモノマーを重合させて得られる粒子同士を凝集させる工程と凝集粒子の表面にシェル層を形成させる工程とを含む静電荷現像用トナーの製造方法が提案されている(例えば、特許文献1)。
特開2004-294467号公報
 しかしながら、特許文献1に記載の静電荷像現像用トナーは、低温定着性及びトナーブロッキング性の両方が不十分であったため、画像品質が劣る。
 本発明は、上記課題に鑑みてなされたものであり、低温定着性及びトナーブロッキング性の両方に優れた静電荷像現像用トナーを提供する。
 本発明の静電荷像現像用トナーは、複数のトナー粒子を含む。前記複数のトナー粒子の各々は、トナーコアと、前記トナーコアを被覆するシェル層とを含む。前記シェル層は、熱硬化性樹脂を含む。前記トナーのテトラヒドロフラン不溶分の含有割合が、前記トナーの質量に対して90質量%以上である。前記トナーの75℃での溶融粘度が1.0×104Pa・s以上1.0×105Pa・s以下である。
 本発明によれば、低温定着性及びトナーブロッキング性の両方に優れた静電荷像現像用トナーを提供することができる。
 以下、本発明の実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内で適宜変更を加えて実施することができる。なお、説明が重複する箇所については適宜説明を省略する場合があるが、発明の要旨を限定するものではない。
 以下、本実施形態に係る静電荷像現像用トナー(以下、単にトナーと記載する場合がある)の構成について説明する。本実施形態に係る静電荷像現像用トナーは、複数のトナー粒子を含む。複数のトナー粒子の各々は、トナー母粒子と任意の外添剤とから構成される。トナー母粒子は、トナーコアとシェル層とから構成される。トナーコアの表面をシェル層で被覆する。
〈トナーコア〉
 トナーコアは、例えば、結着樹脂を含むことができる。トナーコアは、必要に応じて結着樹脂以外に任意成分(例えば、離型剤、着色剤、電荷制御剤、及び/又は磁性粉)を含んでもよい。以下にトナーコアに含まれる成分について説明する。
[結着樹脂]
 トナーコアに含まれる結着樹脂は、トナー用の結着樹脂である限り、特に限定されない。結着樹脂としては、例えば、スチレン系樹脂、アクリル系樹脂、スチレン-(メタ)アクリル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、塩化ビニル系樹脂、ポリエステル樹脂、ポリアミド樹脂、ウレタン樹脂、ポリビニルアルコール系樹脂、ビニルエーテル系樹脂、N-ビニル系樹脂、又はスチレン-ブタジエン樹脂のような熱可塑性樹脂が挙げられる。これらの熱可塑性樹脂の中でも、トナー中での着色剤の分散性、トナーの帯電性、又はトナーの記録媒体に対する定着性を良好にするという観点から、スチレン-(メタ)アクリル系樹脂、又はポリエステル樹脂が好ましい。以下、スチレン-(メタ)アクリル系樹脂、又はポリエステル樹脂について説明する。
 なお、アクリル及びメタクリルを包括的に「(メタ)アクリル」と総称する場合がある。
 スチレン-(メタ)アクリル系樹脂は、スチレン系モノマーと(メタ)アクリル系モノマーとの共重合体である。スチレン系モノマーとしては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、α-クロロスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、又はp-エチルスチレンが挙げられる。(メタ)アクリル系モノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸iso-プロピル、アクリル酸n-ブチル、アクリル酸iso-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、又はメタクリル酸iso-ブチルのような(メタ)アクリル酸アルキルエステルが挙げられる。
 ポリエステル樹脂は、例えば、2価若しくは3価以上のアルコール成分と2価若しくは3価以上のカルボン酸成分との縮重合又は共縮重合によって得ることができる。ポリエステル樹脂を合成する際に用いられる成分としては、例えば、以下の2価若しくは3価以上のアルコール成分と2価若しくは3価以上のカルボン酸成分とが挙げられる。
 2価のアルコール成分としては、例えば、ジオール類、又はビスフェノール類が挙げられる。ジオール類としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,4-ブテンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、又はポリテトラメチレングリコールが挙げられる。ビスフェノール類としては、例えば、ビスフェノールA、水素添加ビスフェノールA、ポリオキシエチレン化ビスフェノールA、又はポリオキシプロピレン化ビスフェノールAが挙げられる。3価以上のアルコール成分としては、例えば、ソルビトール、1,2,3,6-ヘキサンテトロール、1,4-ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4-ブタントリオール、1,2,5-ペンタントリオール、グリセロール、ジグリセロール、2-メチルプロパントリオール、2-メチル-1,2,4-ブタントリオール、トリメチロールエタン、トリメチロールプロパン、又は1,3,5-トリヒドロキシメチルベンゼンが挙げられる。
 2価のカルボン酸成分としては、例えば、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、フタル酸、イソフタル酸、テレフタル酸、シクロヘキサンジカルボン酸、コハク酸、アルキルコハク酸、アルケニルコハク酸、アジピン酸、セバシン酸、アゼライン酸、又はマロン酸が挙げられる。アルキルコハク酸としては、例えば、n-ブチルコハク酸、イソブチルコハク酸、n-オクチルコハク酸、n-ドデシルコハク酸、又はイソドデシルコハク酸が挙げられる。アルケニルコハク酸としては、例えば、n-ブテニルコハク酸、イソブテニルコハク酸、n-オクテニルコハク酸、n-ドデセニルコハク酸、又はイソドデセニルコハク酸が挙げられる。3価以上のカルボン酸成分としては、例えば、1,2,4-ベンゼントリカルボン酸(例えば、トリメリット酸)、1,2,5-ベンゼントリカルボン酸、2,5,7-ナフタレントリカルボン酸、1,2,4-ナフタレントリカルボン酸、1,2,4-ブタントリカルボン酸、1,2,5-ヘキサントリカルボン酸、1,3-ジカルボキシル-2-メチル-2-メチレンカルボキシプロパン、1,2,4-シクロヘキサントリカルボン酸、テトラ(メチレンカルボキシル)メタン、1,2,7,8-オクタンテトラカルボン酸、ピロメリット酸、又はエンポール三量体酸が挙げられる。これらの2価若しくは3価以上のカルボン酸成分は、酸ハライド、酸無水物、又は低級アルキルエステルのようなエステル形成性の誘導体に変形して用いてもよい。ここで、「低級アルキル」とは、炭素原子数1以上6以下のアルキル基を意味する。
 結着樹脂の軟化点(Tm)は、85℃以上95℃以下であることが好ましい。
 結着樹脂のガラス転移点(Tg)は50℃以上65℃以下であることが好ましく、50℃以上60℃以下であることがより好ましい。
[離型剤]
 トナーコアは、必要に応じて離型剤を含んでもよい。離型剤は、一般的に、トナーの低温定着性及び耐オフセット性を向上させる目的で使用される。離型剤の種類は、公知のトナー用の離型剤として使用される離型剤である限り、特に限定されない。
 好適な離型剤としては、例えば、脂肪族炭化水素系ワックス(例えば、低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィン共重合物、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、又はフィッシャートロプシュワックス)、脂肪族炭化水素系ワックスの酸化物(例えば、酸化ポリエチレンワックス、又は酸化ポリエチレンワックスのブロック共重合体)、植物系ワックス(例えば、キャンデリラワックス、カルナバワックス、木ろう、ホホバろう、又はライスワックス)、動物系ワックス(例えば、みつろう、ラノリン、又は鯨ろう)、鉱物系ワックス(例えば、オゾケライト、セレシン、又はペトロラタム)、脂肪酸エステルを主成分とするワックス類(例えば、モンタン酸エステルワックス、又はカスターワックス)、又は脂肪酸エステルの一部又は全部を脱酸化したワックス(例えば、脱酸カルナバワックス)が挙げられる。
 離型剤の使用量は、結着樹脂100質量部に対して1質量部以上30質量部以下であることが好ましく、5質量部以上20質量部以下であることがより好ましい。
[着色剤]
 トナーコアは、必要に応じて着色剤を含んでもよい。トナーコアに含有させる着色剤としては、トナー粒子の色に合わせて、公知の顔料や染料を用いることができる。トナーコアに含有させることができる好適な着色剤の具体例としては、以下の着色剤が挙げられる。
 黒色着色剤としては、カーボンブラックが挙げられる。また、黒色着色剤としては後述するイエロー着色剤、マゼンタ着色剤、及びシアン着色剤のような着色剤を用いて黒色に調色された着色剤も利用することができる。トナー粒子がカラートナーである場合に、トナーコアに配合される着色剤としては、例えば、イエロー着色剤、マゼンタ着色剤、及びシアン着色剤が挙げられる。
 イエロー着色剤としては、例えば、縮合アゾ化合物、イソインドリノン化合物、アントラキノン化合物、アゾ金属錯体、メチン化合物、又はアリールアミド化合物が挙げられる。具体的には、C.I.ピグメントイエロー(3、12、13、14、15、17、62、74、83、93、94、95、97、109、110、111、120、127、128、129、147、151、154、155、168、174、175、176、180、181、191、又は194)、ネフトールイエローS、ハンザイエローG、又はC.I.バットイエローが挙げられる。
 マゼンタ着色剤としては、例えば、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン化合物、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、又はペリレン化合物が挙げられる。具体的には、C.I.ピグメントレッド(2、3、5、6、7、19、23、48:2、48:3、48:4、57:1、81:1、122、144、146、150、166、169、177、184、185、202、206、220、221、又は254)が挙げられる。
 シアン着色剤としては、例えば、銅フタロシアニン化合物、銅フタロシアニン誘導体、アントラキノン化合物、又は塩基染料レーキ化合物が挙げられる。具体的には、C.I.ピグメントブルー(1、7、15、15:1、15:2、15:3、15:4、60、62、又は66)、フタロシアニンブルー、C.I.バットブルー、又はC.I.アシッドブルーが挙げられる。
 着色剤の使用量は、結着樹脂100質量部に対して1質量部以上20質量部以下であることが好ましく、3質量部以上10質量部以下であることがより好ましい。
[電荷制御剤]
 以下、トナーコアに含まれる電荷制御剤について説明する。
 本実施形態では、トナーコアが負帯電性を有するため、トナーコアは負帯電性の電荷制御剤を含んでもよい。このような電荷制御剤は、トナーの帯電安定性又は帯電立ち上がり特性を向上させ、耐久性又は安定性に優れたトナーを得る目的で使用される。トナーの帯電立ち上がり特性は、トナーを所定の帯電レベルに短時間で帯電可能か否かの指標になる。
[磁性粉]
 トナーコアは、必要に応じて磁性粉を含んでもよい。好適な磁性粉としては、例えば、フェライト、マグネタイト、鉄、強磁性金属(コバルト、及びニッケル)、合金(鉄、及び/又は強磁性金属を含む合金)、化合物(鉄、及び/又は強磁性金属を含む化合物)、強磁性合金(熱処理のような強磁性化処理を行った強磁性合金)、又は二酸化クロムが挙げられる。
 磁性粉の平均粒子径は、0.1μm以上1.0μm以下であることが好ましく、0.1μm以上0.5μm以下であることがより好ましい。磁性粉の平均粒子径が、このような範囲内であると、結着樹脂中に磁性粉を均一に分散させやすい。
 磁性粉の使用量は、静電荷像現像用トナーを1成分現像剤として使用する場合、トナー全量100質量部に対して35質量部以上60質量部以下であることが好ましく、40質量部以上60質量部以下であることがより好ましい。
〈シェル層〉
 本実施形態の静電荷像現像用トナーにおいて、シェル層がトナーコアの表面を被覆する。以下に、シェル層に含まれる成分について説明する。
 シェル層を構成する樹脂は、強度を向上させるために、熱硬化性樹脂を含む。シェル層を構成する樹脂は、十分なカチオン性(正帯電性)を有することが好ましい。
 熱硬化性樹脂としては、例えば、カチオン性(正帯電性)を有する熱硬化性樹脂、又は窒素原子を分子骨格に有する熱硬化性樹脂が挙げられる。カチオン性(正帯電性)を有する熱硬化性樹脂としては、アミノ基(-NH2)を有する熱硬化性樹脂が挙げられる。アミノ基を有する熱硬化性樹脂としては、例えば、メラミン樹脂、メラミン樹脂の誘導体、グアナミン樹脂、グアナミン樹脂の誘導体(例えば、ベンゾグアナミン樹脂、アセトグアナミン樹脂、又はスピログアナミン樹脂)、スルホンアミド樹脂、尿素樹脂、尿素樹脂の誘導体(例:グリオキザール樹脂)、又はアニリン樹脂が挙げられる。また、窒素原子を分子骨格に有する熱硬化性樹脂としては、熱硬化性ポリイミド樹脂(例えば、マレイミド系重合体、ビスマレイミド系重合体、アミノビスマレイミド系重合体、又はビスマレイミドトリアジン系共重合体)が挙げられる。このような熱硬化性樹脂は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 熱硬化性樹脂として好ましくは、メラミン樹脂又は尿素樹脂である。
 メラミン樹脂は、メラミンとホルムアルデヒドとの重縮合物である。メラミン樹脂の形成に使用されるモノマーはメラミンである。尿素樹脂は、尿素とホルムアルデヒドとの重縮合物である。尿素樹脂の形成に使用されるモノマーは尿素である。尿素樹脂の誘導体であるグリオキザール樹脂は、グリオキサールと尿素との反応生成物と、ホルムアルデヒドとの重縮合物である。グリオキザール樹脂の形成に使用されるモノマーは、グリオキサールと尿素との反応生成物である。
 メラミン、尿素、及びグリオキサールと反応させる尿素は、公知の変性を受けてもよい。例えば、熱硬化性樹脂のモノマーは、熱可塑性樹脂と反応させる前に、ホルムアルデヒドを用いてメチロール化することにより、誘導体に変形して使用できる。例えば、メラミンをホルムアルデヒドを用いてメチロール化することにより、メチロールメラミンに変形して使用できる。
 熱硬化性樹脂のモノマー(例えば、メラミン、尿素、又はグリオキサールと尿素との反応生成物)は、プレポリマーの形態で使用されてもよい。熱硬化性樹脂のプレポリマーは、熱硬化性樹脂のモノマーの重合度をある程度まで上げたポリマーの前段階の状態である。熱硬化性樹脂のプレポリマーは、初期重合体又は初期縮合体とも称される。
 シェル層は、メラミン樹脂、又は尿素樹脂に由来する窒素原子を含むことが好ましい。窒素原子を含む材料は正帯電されやすい。そのため、シェル層中の窒素原子の含有量は、シェル層の質量に対して、10質量%以上であることが好ましい。
 シェル層の膜厚は1nm以上20nm以下であることが好ましく、1nm以上10nm以下であることがより好ましい。シェル層の膜厚が20nm以下であると、トナーを記録媒体へ定着させる時に、加熱及び加圧によりシェル層が容易に破壊される。その結果、トナーコアに含まれる結着樹脂の軟化及び溶融が速やかに進行し、低温域でトナーを記録媒体に定着できる。更に、トナー粒子の帯電量が高くなり過ぎないため、画像が適正に形成される。一方、シェル層の膜厚が1nm以上であると、シェル層は十分な強度を有するものとなり、輸送時の衝撃によって、シェル層が破壊されることが抑制される。ここで、シェル層の少なくとも一部が破壊されたトナー粒子においては、高温条件下でシェル層が破壊された箇所を通じて、離型剤の成分がトナー粒子の表面に染み出しやすくなる。このため、高温条件下でトナーを保存する場合において、トナー粒子が凝集しやすくなる。更に、シェル層の膜厚が1nm以上であるとトナー粒子の帯電量が低くなりすぎないため、形成された画像に画像の欠陥が発生することを抑制することができる。
 市販の画像解析ソフトウェア(例えば、三谷商事株式会社製「WinROOF」)を用いてトナー粒子の断面のTEM撮影像を解析することによって、シェル層の膜厚を測定できる。
 なお、トナー粒子は、トナーコアの表面に複数層のシェル層が形成された構成を有してもよい。この場合は、トナーコアの最外に形成されたシェル層がカチオン性を有することが好ましい。
[電荷制御剤]
 本実施形態では、シェル層がカチオン性(正帯電性)を有することが好ましい。そのため、シェル層に、正帯電性の電荷制御剤を含んでもよい。
〈外添剤〉
 トナー粒子は、外添剤を含んでもよい。本実施形態の静電荷像現像用トナーにおいて、外添剤を、トナー母粒子の表面に付着させることができる。
 シェル層の表面は、トナー粒子の流動性及び取扱性を向上させるために、例えば、外添剤により外添処理されてもよい。そのために、公知の外添処理方法が用いられる。具体的には、トナー母粒子は、外添剤がシェル層中に埋没しないように外添条件を調整し、混合機(例えば、FMミキサー、又はナウターミキサー(登録商標))を用いて、外添処理される。
 外添剤の種類は、トナー用の外添剤から適宜選択できる。外添剤としては、例えば、シリカ、又は金属酸化物(アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、チタン酸ストロンチウム、又はチタン酸バリウム)が挙げられる。これらの外添剤は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 外添剤は、アミノシランカップリング剤、又はシリコーンオイルのような疎水化剤を用いて疎水化して使用することもできる。疎水化された外添剤を用いる場合、高温高湿下でのトナーの帯電量の低下を抑制し、また、トナーの流動性を良好にすることができる。
 外添剤の添加量は、トナー母粒子の100質量部に対して0.1質量部以上10質量部以下であることが好ましく、0.2質量部以上5質量部以下であることがより好ましい。また、外添剤の平均粒子径は、0.01μm以上1.0μm以下であることが好ましい。外添剤の添加量及び平均粒子径が、このような範囲であると、トナー粒子の流動性及び取扱性を向上させることができる。
 シェル層に含まれる熱硬化性樹脂の架橋度の指標として、トナー粒子のテトラヒドロフランへの不溶分の含有割合がある。シェル層に含まれる熱硬化性樹脂の架橋度が十分であると、トナー粒子はテトラヒドロフランにほとんど溶解しない。トナーのTHF不溶分の含有割合の測定方法について以下に説明する。
 静電荷像現像用トナー(質量:W1)を、テトラヒドロフラン(THF)に添加する。そのスラリーを攪拌して、THFに可溶な成分(樹脂の質量:W2)をTHFに溶解させる。その後、スラリーからTHFに溶解した成分を抽出する。以下の式を用いて、トナーのTHF不溶分の含有割合を算出した。
 THF不溶分の含有割合(質量%)=(W1-W2)/W1×100
 トナーのTHF不溶分の含有割合は、トナーの質量に対して90質量%以上であることが好ましい。
 また、高化式フローテスターを用いて、静電荷像現像用トナーの溶融粘度を測定する。具体的には、以下の様にしてトナーの溶融粘度を測定する。トナーをペレットに成形する。そのペレットを高化式フローテスターにセットして、プランジャーで荷重を加えながら、200℃まで昇温させて、ノズルからペレット状のトナーを押し出して、75℃でのトナーの溶融粘度を測定する。
 トナーの75℃での溶融粘度は、1.0×104Pa・s以上1.0×105Pa・s以下である。トナーの溶融粘度が、このような範囲内であると、トナーの低温定着性を向上させることができる。
≪静電荷像現像用トナーの製造方法≫
 静電荷像現像用トナーの製造方法は、例えば、トナーコア調製工程とシェル層形成工程とを含むことができる。トナーコア調製工程において、トナーコアを調製する。シェル層形成工程において、トナーコアの表面にシェル層を形成する。
 トナーコア調製工程は、凝集工程と合一化工程とを含む。凝集工程において、結着樹脂、着色剤、及び離型剤から選択される1種以上の成分を含む1種以上の微粒子を水性媒体中で凝集させて凝集粒子を形成させる。合一化工程において、凝集工程で得られる凝集粒子に含まれる成分を加熱処理して合一化させる。
 なお、シェル層形成工程後に外添工程を含んでもよい。外添工程において、トナー母粒子の表面に外添剤を付着させる。
〈トナーコア調製工程〉
 トナーコア調製工程を実行するために、結着樹脂中に、必要に応じて任意成分(例えば、離型剤、着色剤、電荷制御剤、及び/又は磁性粉)を良好に分散させることができる方法を用いる。トナーコア調製工程を実行する方法としては、凝集法が挙げられる。
 凝集法では、凝集工程と合一化工程とを実施することによって実行される。凝集法を用いて、トナーコアを調製すると、形状が均一で粒子径の揃ったトナー粒子を得ることができる。
 凝集工程では、トナーコアを構成する成分を含む微粒子を水性媒体中で凝集させて凝集粒子を形成させる。そして、合一化工程では、凝集工程によって得られた凝集粒子に含まれる成分を水性媒体中で合一化させてトナーコアが得られる。
[凝集工程]
 以下に凝集工程について説明する。凝集工程では、凝集粒子を調製する。一般にトナーコアを構成する成分を含む微粒子は、水性媒体中で結着樹脂又は結着樹脂を含む組成物を所望の粒子径に微粒子化することで、結着樹脂を含む微粒子(結着樹脂微粒子)を水性媒体中で分散させる結着樹脂微粒子分散液として調製される。結着樹脂微粒子の分散液は、結着樹脂以外の任意成分(例えば、離型剤又は着色剤)の微粒子の水性分散液(例えば、着色剤微粒子分散液又は離型剤微粒子分散液)を含んでもよい。凝集工程では、このような結着樹脂微粒子分散液中で微粒子を凝集させて凝集粒子を得る。
 以下、結着樹脂微粒子分散液の調製方法(調製方法1)、離型剤微粒子分散液の調製方法(調製方法2)、及び着色剤微粒子分散液の調製方法(調製方法3)について説明する。調製方法1~3で用いられる成分(結着樹脂、着色剤、及び離型剤)以外の成分を含む微粒子を調製するには、調製方法1~3における操作を適宜選択すればよい。
 以下に調製方法1について説明する。粉砕装置(例えば、ターボミル)を用いて結着樹脂を粉砕して粉砕物を得る。得られた粉砕物をイオン交換水のような水性媒体に分散し、加熱した後、高速剪断乳化装置(例えば、エム・テクニック株式会社製「クレアミックス(登録商標)」)を用いて強い剪断力を与えることにより、結着樹脂微粒子を含む分散液が得られる。なお、加熱温度は、結着樹脂の軟化点(Tm)より10℃以上高い温度(最高でも200℃程度までの温度)が好ましい。
 結着樹脂微粒子の平均粒子径は、1μm以下であることが好ましく、0.05μm以上0.50μm以下であることがより好ましい。結着樹脂微粒子の平均粒子径がこのような範囲内であると、トナーコアの粒度分布がシャープであり、トナーコアの形状が均一となる。結着樹脂微粒子の平均粒子径は、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製「SALD-2200」)を用いて測定することができる。
 結着樹脂微粒子を含む分散液は界面活性剤を含んでもよい。界面活性剤を用いると、結着樹脂微粒子が水性媒体中で安定して均一に分散する。
 結着樹脂として酸性基を有する樹脂を用いる場合は、結着樹脂をそのまま水性媒体中で微粒子化させると結着樹脂の比表面積が増大する。そのため、結着樹脂微粒子の表面に露出した酸性基が増加すると、水性媒体のpHが3からpH4程度まで低下することがある。水性媒体のpHが3からpH4程度まで低下すると、結着樹脂の加水分解が生じたり、結着樹脂微粒子の粒子径を所望の粒子径まで微粒子化できなかったりすることがある。
 上記の問題を抑制するために、調製方法1においては、水性媒体中に塩基性物質を添加してもよい。塩基性物質としては、上記の問題を抑制できる塩基性物質である限り、いずれの塩基性物質を添加してもよい。塩基性物質としては、例えば、アルカリ金属水酸化物(水酸化ナトリウム、水酸化カリウム、又は水酸化リチウム)、アルカリ金属炭酸塩(炭酸ナトリウム、又は炭酸カリウム)、アルカリ金属炭酸水素塩(炭酸水素ナトリウム、又は炭酸水素カリウム)、又は含窒素塩基性有機化合物(N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエタノールアミン、トリプロパノールアミン、トリブタノールアミン、トリエチルアミン、n-プロピルアミン、n-ブチルアミン、イソプロピルアミン、モノメタノールアミン、モルホリン、メトキシプロピルアミン、ピリジン、又はビニルピリジン)が挙げられる。
 界面活性剤としては、例えば、アニオン系界面活性剤、カチオン系界面活性剤、又はノニオン系界面活性剤が挙げられる。アニオン系界面活性剤としては、例えば、硫酸エステル塩型界面活性剤、スルホン酸塩型界面活性剤、リン酸エステル塩型界面活性剤、又は石鹸が挙げられる。カチオン系界面活性剤としては、例えば、アミン塩型界面活性剤、又は4級アンモニウム塩型界面活性剤が挙げられる。ノニオン系界面活性剤としては、例えば、ポリエチレングリコール型界面活性剤、アルキルフェノールエチレンオキサイド付加物型界面活性剤、又は多価アルコール型界面活性剤(グリセリン、ソルビトール、又はソルビタンのような多価アルコールの誘導体)が挙げられる。これらの界面活性剤の中でも、アニオン系界面活性剤が好ましい。これらの界面活性剤は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 界面活性剤の使用量は、結着樹脂の質量に対して0.01質量%以上10質量%以下であることが好ましい。界面活性剤の使用量がこのような範囲内であると、水性分散液中の結着樹脂微粒子の分散性を向上させることができる。
 以下に調製方法2について説明する。離型剤を予め平均粒子径100μm以下に粉砕し、離型剤の粉体を得る。得られた離型剤の粉体を水性媒体中に添加し、スラリーを調製する。なお、上記の水性媒体には、予め界面活性剤が含まれる。
 界面活性剤の使用量は、離型剤の質量に対して0.01質量%以上10質量%以下であることが好ましい。界面活性剤の使用量がこのような範囲内であると、水性分散液中の離型剤微粒子の分散性を向上させることができる。
 次いで、スラリーを離型剤の融点以上の温度に加熱する。加熱したスラリーに対してホモジナイザー(例えば、IKA社製「ウルトラタラックスT50」)、又は圧力吐出型分散機のような分散機を用いて、強い剪断力を付与し、離型剤微粒子を含む水性分散液(離型剤微粒子分散液)を得る。分散液に強い剪断力を与える装置としては、例えば、NANO3000(株式会社美粒製)、ナノマイザー(吉田機械興業株式会社製)、マイクロフルダイザー(登録商標)(マイクロフルーイディクス社製)、ゴーリン式ホモジナイザー(SPX社製)、又はクレアミックス(登録商標)Wモーション(エム・テクニック社製)が挙げられる。
 離型剤微粒子の分散液に含まれる離型剤微粒子の平均粒子径は、1μm以下であることが好ましく、0.1μm以上0.7μm以下であることがより好ましく、0.28μm以上0.55μm以下であることが特に好ましい。離型剤微粒子の平均粒子径がこのような範囲内であると、離型剤が結着樹脂中に均一に分散される。なお、離型剤微粒子の平均粒子径は、結着樹脂微粒子の平均粒子径と同様の方法で測定できる。
 以下に調製方法3について説明する。界面活性剤を含む水性媒体中で、公知の分散機を用いて、着色剤と、必要に応じて着色剤を含む分散剤のような成分とを分散処理する。これにより、着色剤微粒子を含む水性分散液(着色剤微粒子の分散液)を調製する。なお、分散剤としての界面活性剤としては、上記の結着樹脂微粒子の調製に用いた界面活性剤を用いることができる。
 界面活性剤の使用量は、着色剤100質量部に対して0.01質量部以上10質量部以下であることが好ましい。界面活性剤の使用量がこのような範囲内であると、水性分散液中の着色剤微粒子の分散性を向上させることができる。
 分散処理に使用する分散機としては、例えば、加圧式分散機、又は媒体型分散機が挙げられる。加圧式分散機としては、例えば、機械式ホモジナイザー、ゴーリン式ホモジナイザー、圧力式ホモジナイザー、又は高圧式ホモジナイザー(吉田機械興業株式会社製)が挙げられる。媒体型分散機としては、例えば、サンドグラインダー、横型若しくは縦型ビーズミル、ウルトラアペックスミル(寿工業株式会社製)、ダイノ(登録商標)ミル(WAB社製)、又はMSCミル(日本コークス工業株式会社製)が挙げられる。上記以外の分散機としては、超音波分散機が挙げられる。
 着色剤微粒子の平均粒子径は、0.01μm以上0.2μm以下であることが好ましい。着色剤微粒子の平均粒子径がこのような範囲内であると、着色剤が結着樹脂中に均一に分散される。なお、着色剤微粒子の平均粒子径は、結着樹脂微粒子の平均粒子径と同様の方法で測定できる。
 そして、トナーコアに所定の成分が含まれるように、調製された結着樹脂微粒子の分散液に、必要に応じて離型剤微粒子の分散液、及び/又は着色剤微粒子の分散液を、適宜組み合わせて混合する。次いで、混合分散液中でこれらの微粒子を凝集させることで、結着樹脂を含む凝集粒子を含む水性分散液が得られる。
 凝集工程において、微粒子を凝集させる方法としては、以下のような方法がある。つまり、結着樹脂微粒子を含む水性分散液のpHを調整した後、水性分散液に凝集剤を添加し、次いで水性分散液の温度を所定の温度に調整して微粒子を凝集させる方法である。
 凝集剤としては、例えば、無機金属塩、無機アンモニウム塩、又は2価以上の金属錯体が挙げられる。無機金属塩としては、例えば、金属塩(硫酸ナトリウム、塩化ナトリウム、塩化カルシウム、硝酸カルシウム、塩化バリウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウム、又は硫酸アルミニウム)、又は無機金属塩重合体(ポリ塩化アルミニウム、又はポリ水酸化アルミニウム)が挙げられる。無機アンモニウム塩としては、例えば、硫酸アンモニウム、塩化アンモニウム、又は硝酸アンモニウムが挙げられる。また、4級アンモニウム塩型のカチオン系界面活性剤、又は含窒素化合物(例えば、ポリエチレンイミン)を凝集剤として使用してもよい。
 凝集剤としては、2価の金属の塩、又は1価の金属の塩を用いることができる。これらの凝集剤は1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。2種以上の凝集剤を組み合わせて用いる場合は、2価の金属の塩と1価の金属の塩とを併用することが好ましい。なぜなら、2価の金属の塩の微粒子の凝集速度と1価の金属の塩の微粒子の凝集速度とが異なるため、2価の金属の塩と1価の金属の塩とを併用することで、得られる凝集粒子の平均粒子径を制御することができる。そのため、凝集粒子の粒度分布をシャープにすることができる。凝集工程において、凝集剤を添加する際の水性分散液のpHを8以上のアルカリ性に調整されることが好ましい。凝集剤は一度に添加してもよく、逐次的に添加してもよい。
 凝集剤の添加量は、水性分散液の固形分100質量部に対して1質量部以上50質量部以下であることが好ましい。凝集剤の添加量がこのような範囲内であると、良好に微粒子同士の凝集を進行させることができる。凝集剤の添加量は、微粒子分散液中に含まれる分散剤の種類及び量に応じて適宜調整することができる。
 凝集工程において、微粒子を凝集させる際の水性分散液の温度は、結着樹脂のガラス転移点(Tg)以上結着樹脂のガラス転移点(Tg)+10℃未満の温度範囲であることが好ましい。水性分散液の温度がこのような範囲内であると、水性分散液に含まれる微粒子の凝集を良好に進行させることができる。
 凝集粒子が所望の平均粒子径となるまで凝集が進行した後に、凝集停止剤を添加してもよい。凝集停止剤としては、例えば、塩化ナトリウム、塩化カリウム、又は塩化マグネシウムが挙げられる。これらの凝集停止剤は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
[合一化工程]
 次いで、合一化工程では、凝集工程によって得られた凝集粒子に含まれる成分を水性媒体中で合一化させて、トナーコアを形成させる。凝集粒子に含まれる成分を合一化させるためには、凝集工程によって得られる凝集粒子を含む水性分散液を加熱すればよい。これによりトナーコアを含む水性分散液を得ることができる。
 合一化工程において、凝集粒子を含む水性分散液の加熱温度は、結着樹脂のガラス転移点(Tg)+10℃以上結着樹脂の融点以下の温度範囲内であることが好ましい。凝集粒子を含む水性分散液の加熱温度がこのような温度範囲内であると、凝集粒子に含まれる成分の合一化を良好に進行させることができる。
 合一化工程を経た後のトナーコアを含む水性分散液は、必要に応じて洗浄工程及び乾燥工程を経てもよい。
 洗浄工程では、凝集法で得られたトナーコアを水で洗浄する。洗浄方法としては、例えば、トナーコアを含む分散液から、固液分離により、トナーコアを含むウェットケーキとして回収し、回収されたウェットケーキを水で洗浄する方法が挙げられる。又は、トナーコアを含む水性分散液中のトナーコアを沈降させ、上澄み液を水と置換し、置換後にトナーコアを水に再分散させる方法が挙げられる。
 乾燥工程では、洗浄工程を経たトナーコアを乾燥する。乾燥工程に用いられる乾燥機としては、例えば、スプレードライヤー、流動層乾燥機、真空凍結乾燥器、又は減圧乾燥機が挙げられる。
〈シェル層形成工程〉
 シェル層形成工程は、供給工程と樹脂化工程とを含む。供給工程では、トナーコアの表面に熱硬化性樹脂のモノマー及び/又はプレポリマーを含むシェル層の形成溶液を供給する。樹脂化工程では、シェル層の形成溶液に含まれる熱硬化性樹脂のモノマー及び/又はプレポリマーを重合又は縮合することにより樹脂化する工程である。
 以下に供給工程について説明する。シェル層の形成溶液をトナーコアに供給する方法としては、例えば、トナーコアの表面にシェル層の形成溶液を噴霧する方法、又はシェル層の形成溶液中にトナーコアを浸漬する方法が挙げられる。
 シェル層の形成溶液中のトナーコアの分散性を向上させるために、シェル層の形成溶液に分散剤を添加してもよい。
 分散剤としては、例えば、ポリアクリル酸ナトリウム、ポリパラビニルフェノール、部分ケン化ポリ酢酸ビニル、イソプレンスルホン酸、ポリエーテル、イソブチレン/無水マレイン酸共重合体、ポリアスパラギン酸ナトリウム、デンプン、アラビアゴム、ポリビニルピロリドン、又はリグニンスルホン酸ナトリウムが挙げられる。これらの分散剤は、1種単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 シェル層の形成溶液を調製するためには、例えば、溶剤、熱硬化性樹脂のモノマー及び/又はプレポリマー、並びに必要に応じてその他の添加剤(例えば、後述の分散剤)を、攪拌により混合すればよい。溶剤としては、例えば、トルエン、アセトン、メチルエチルケトン、テトラヒドロフラン、メタノール、エタノール又は水が挙げられる。
 シェル層の形成溶液は、溶剤に対する熱硬化性樹脂のモノマー及び/又はプレポリマーの分散性を向上させるために、公知の分散剤を含んでもよい。シェル層の形成溶液中の分散剤の含有量は、シェル層の形成溶液100質量部に対して、0.1質量部以上15質量部以下であることが好ましい。シェル層の形成溶液中の分散剤の含有量が、シェル層の形成溶液100質量部に対して0.1質量部以上であると、トナー粒子の分散性を良好にすることができる。一方、シェル層の形成溶液中の分散剤の含有量が、シェル層の形成溶液100質量部に対して15質量部以下であると、分散剤の使用量による環境負荷を低減させることができる。なお、本実施形態の静電荷像現像用トナーが製造された後、トナー中に残存している分散剤を洗浄処理により除去することができる。
 以下に樹脂化工程について説明する。これにより、トナーコアの表面にシェル層が形成される。なお、樹脂化には、熱硬化性樹脂のモノマー及び/又はプレポリマーの重合度が十分に高い完全な樹脂化のみならず、熱硬化性樹脂のモノマー及び/又はプレポリマーの重合度が中程度の部分的な樹脂化も含まれる。
 樹脂化工程における熱硬化性樹脂の重合方法としては、例えば、in-situ重合法、液中硬化被覆法、又はコアセルベーション法が挙げられる。熱硬化性樹脂の反応性の観点から、in-situ重合法によれば均一に被覆されたシェル層を得ることができる。in-situ重合法において、水性媒体にのみシェル層を形成する樹脂原料が存在しており、この原料がトナーコアの表面で反応して樹脂化し、シェル層が形成される。
 シェル層形成時の温度は、60℃以上70℃以下であることが好ましい。シェル層形成時の温度を60℃以上に維持することにより、シェル層の硬度を十分に高くすることができる。一方、シェル層形成時の温度を70℃以下に維持することにより、シェル層の硬度が過度に高くなることを抑制でき、トナーの定着時の加熱及び加圧によって、シェル層を容易に破壊できる。
 また、シェル層形成時の温度まで昇温する昇温速度が、1℃/分以上3℃/分以下であることが好ましい。昇温速度が速すぎると、トナーコアが表面張力で球形化する前に、シェル層に含まれる熱硬化性樹脂の重合又は縮合が始まり、球状のトナー粒子が得られにくいことがある。また、昇温速度が遅すぎると、シェル層に含まれる熱硬化性樹脂が重合又は縮合する前にトナーコアが軟化してトナーコア同士が凝集してしまうことがある。
 本実施形態のトナーの製造方法では、シェル層形成工程を経た後に、必要に応じて洗浄工程、乾燥工程及び外添工程から選択される1以上の工程を経てもよい。
 洗浄工程では、シェル層形成工程を実行することによって得られたトナー母粒子を、水で洗浄する。洗浄方法としては、例えば、トナー母粒子を含む分散液から、固液分離により、トナー母粒子を含むウェットケーキとして回収し、回収されたウェットケーキを水で洗浄する方法が挙げられる。又は、トナー母粒子を含む水性分散液中のトナー母粒子を沈降させ、上澄み液を水と置換し、置換後にトナー母粒子を水に再分散させる方法が挙げられる。
 乾燥工程としては、例えば、乾燥機(例えば、スプレードライヤー、流動層乾燥機、真空凍結乾燥機、又は減圧乾燥機)を用いてトナーを乾燥する。このような乾燥機の中でも、乾燥中のトナー粒子(トナー母粒子)の凝集を抑制しやすいため、スプレードライヤーを用いることが好ましい。スプレードライヤーを用いる場合は、例えば、乾燥とともに外添剤(例えば、シリカ微粒子)が分散された分散液を噴霧できるため、後述の外添工程を同時に行うことができる。
〈外添工程〉
 シェル層の表面に外添剤を付着させることで、トナー粒子が得られる。以下、本実施形態に係る外添方法について説明する。
 好適な外添方法としては、例えば、シェル層に外添剤が埋め込まれないように外添条件を調製して、混合機(例えば、FMミキサー、又はナウターミキサー(登録商標))を用いて、トナー母粒子と外添剤とを混合し、シェル層の表面に外添剤を付着させる。
 以下、実施例を用いて、本発明を更に具体的に説明する。なお、本発明はこの実施例の範囲に何ら限定されるものではない。
(実施例1)
〈トナーコア調製工程〉
 機械式粉砕機(フロイント・ターボ株式会社製「ターボミル」)を用いて、ポリエステル樹脂A(Mn=2500、Mw=5000、Mw/Mn=2.0、Tm=85℃、Tg=43℃)を、平均粒子径30μmに粉砕して粗粉砕物を得た。得られた粗粉砕物200gと、1N-水酸化ナトリウム水溶液30gと、イオン交換水770gとを混合して、全量1000gのスラリーを調整した。次いで、得られたスラリーをコンデンサーを装着した容量2Lの丸底ステンレス容器に投入し、液温95℃、回転数200rpmで30分間攪拌した。その後、室温まで冷却して、300メッシュのフィルターを用いて固液分離して固形物を得た。得られた固形物を水洗浄、乾燥して、ポリエステル樹脂Aのアルカリ処理品を得た。上記と同様にポリエステル樹脂Aをアルカリ処理して合計1000gのポリエステル樹脂Aのアルカリ処理品を得た。
 得られたポリエステル樹脂Aのアルカリ処理品1000gを、ジャケットを備えた混練装置(プライミクス株式会社製「TK ハイビスディスパーミックスHM-3D-5型」)に投入して、120℃まで加熱して、溶融させた。得られた溶融物にトリエタノールアミン80gを添加して、更に、濃度25質量%のラウリル硫酸ナトリウム水溶液(花王株式会社製「エマール0」)80gを添加して、プラネタリー回転数50rpmの条件で15分間、混練した。その後、98℃のイオン交換水2870gを供給速度50g/分で混練装置に添加した。その後、降温速度5℃/分で50℃まで冷却して、結着樹脂微粒子の分散液を得た。分散液中の結着樹脂微粒子は、固形分濃度25質量%、体積中位径(D50)115nmであった。
 離型剤(日油株式会社製「WEP-3」、融点73℃)200gと、ラウリル硫酸ナトリウム20gと、イオン交換水780gとを配合して、90℃に加熱した後、ホモジナイザー(IKA社製「ウルトラタラックスT50」)を用いて5分間混合した。更に、高圧ホモジナイザー(吉田機械興業株式会社製「NV-200」)を用いて、吐出圧力100MPa、100℃で加熱、及び混合を行って離型剤微粒子の分散液を得た。分散液中の離型剤微粒子は、固形分濃度10質量%、体積中位径(D50)120nmであった。
 着色剤(C.I.Pigment Blue 15:3)100gと、濃度27質量%のポリオキシエチレンラウリルエーテル硫酸ナトリウム水溶液(花王株式会社製「エマールE-27C」)20gと、イオン交換水380gとを配合して、ビーズミル(WAB社製「ダイノ(登録商標)ミル」)を用いて、湿式微分散処理を行って、着色剤微粒子の分散液を得た。分散液中の着色剤微粒子は、固形分濃度20質量%、総固形分濃度21質量%、体積中位径(D50)113nmであった。
[凝集工程]
 容量2Lのステンレス製丸底フラスコ容器に、上記の結着樹脂微粒子の分散液340gと、上記の離型剤微粒子の分散液50gと、上記の着色剤微粒子の分散液25gと、イオン交換水500gとを投入した。その分散液を、攪拌羽根を用いて回転数200rpmで攪拌した。その後、水酸化ナトリウム水溶液を添加してpHを10に調整して、25℃で10分間攪拌した。その後、濃度50質量%の塩化マグネシウム六水和物水溶液10gを5分かけて滴下した。その分散液を昇温速度0.2℃/分で50℃まで昇温した後、その温度で30分間攪拌しながら、微粒子同士を凝集させた。濃度20質量%の塩化ナトリウム水溶液50gを一度に添加して、微粒子同士の凝集を停止させた。
[合一化工程]
 次いで、濃度5質量%のラウリル硫酸ナトリウム水溶液100gを添加した。得られた分散液を昇温速度0.2℃/分で65℃まで昇温した後、その温度で1時間攪拌した。その後、降温速度10℃/分の速度で25℃まで冷却して、トナーコアを得た。トナーコアは、体積中位径(D50)6.0μm、球形化度0.941であった。
〈シェル層形成工程〉
 温度計と攪拌機と冷却器とを備えた容量1Lの三つ口フラスコを30℃のウォーターバス中にセットした。フラスコ内にイオン交換水300mLを投入して、更に、塩酸を添加して、pHを4に調整した。得られた酸性水溶液にメラミン樹脂前駆体としてのヘキサメチロールメラミン前駆体(ヘキサメチロールメラミン初期重合体の水溶液、昭和電工株式会社製「ミルベン(登録商標)レジンSM-607」、固形分濃度80質量%)2mLを添加して、混合、溶解させた。得られた混合溶液を、シェル層の膜厚が6nmとなるように上記トナーコア300gを添加して、攪拌した。更に、イオン交換水300mLを添加して、攪拌しながら昇温速度5℃/分で60℃まで昇温した後、その温度で2時間攪拌して、トナーコアの表面にシェル層を形成した。
 次いで、フラスコ内容物を25℃まで冷却した後、水酸化ナトリウムを添加して、中和した。その後、ブフナーロートを用いて吸引ろ過を行い、トナー母粒子を含むウェットケーキをろ取した。更に、ろ取後のトナー母粒子を含むウェットケーキをイオン交換水を用いて分散させて、トナー母粒子を洗浄した。そして、トナー母粒子のイオン交換水による同様の洗浄を6回繰り返した。洗浄後のトナー母粒子を含むウェットケーキを、濃度50質量%のエタノール水溶液に分散させて、微粒子表面改質装置(フロイント・ターボ株式会社製「コートマイザー(登録商標)」)を用いて、熱風温度45℃、ブロア風量2m3/分の条件で乾燥させた。得られたトナー粒子の体積中位径(D50)及び球形化度を表1に示す。
 得られたトナー粒子100質量部に対して、正帯電性シリカ(日本アエロジル株式会社製「AEROSIL(登録商標)90G」、一次平均粒子径20nm)0.4gを添加して、容量5LのFMミキサー(日本コークス工業株式会社製)を用いて5分間混合処理した。その後、得られたトナー粒子を300メッシュ(目開き48μm)で篩分けを行って、実施例1の静電荷像現像用トナーを得た。
(実施例2)
 ポリエステル樹脂Aをポリエステル樹脂B(Mn=3200、Mw=6400、Mw/Mn=2.0、Tm=95℃、Tg=48℃)に代え、シェル層形成時の温度を60℃から70℃に代えた以外は、実施例1と同様の操作を行って、実施例2の静電荷像現像用トナーを得た。
(実施例3)
 ポリエステル樹脂Aをポリエステル樹脂C(Mn=2800、Mw=5600、Mw/Mn=2.0、Tm=90℃、Tg=45℃)に代え、シェル層形成時の温度を60℃から65℃に代えた以外は、実施例1と同様の操作を行って、実施例3の静電荷像現像用トナーを得た。
(実施例4)
 シェル層形成時の温度を60℃から62℃に代えた以外は、実施例1と同様の操作を行って、実施例4の静電荷像現像用トナーを得た。
(実施例5)
 シェル層形成時の温度を60℃から64℃に代えた以外は、実施例1と同様の操作を行って、実施例5の静電荷像現像用トナーを得た。
(実施例6)
 シェル層形成時の温度を60℃から66℃に代えた以外は、実施例1と同様の操作を行って、実施例6の静電荷像現像用トナーを得た。
(実施例7)
 シェル層形成時の温度を60℃から68℃に代えた以外は、実施例1と同様の操作を行って、実施例7の静電荷像現像用トナーを得た。
(実施例8)
 攪拌機と温度計とコンデンサーと窒素導入管とを備えた容量2Lのフラスコにイソブタノール250gを投入して、窒素を導入しながら、スチレン155gとブチルアクリレート75gとt-ブチルパーオキシ2-エチルヘキサノエート(アルケマ吉富株式会社製)36gとを添加して、100℃まで昇温して、その温度で3時間攪拌した。更に、t-ブチルパーオキシ2-エチルヘキサノエート12gを添加して、3時間攪拌した。その後、10kPa、140℃で減圧乾燥してイソブタノールを留去して乾燥物を得た。得られた乾燥物を解砕して平均粒子径10μm以下の粉砕物を得た。得られた粉砕物100gとアニオン系界面活性剤(花王株式会社製「エマール0」)1gと0.1N-水酸化ナトリウム水溶液25gとを配合した。そして、溶液の全量400gとなるようにイオン交換水を添加してスラリーを得た。次いで、得られたスラリーを耐圧丸底ステンレス製容器に投入して、高速せん断乳化装置(エム・テクニック株式会社製「クレアミックス(登録商標)CLM-2.2S」)を用いて、容器内のスラリーを、0.5MPa、140℃、ローター回転数20000rpmで30分間せん断分散した。その後、50℃まで回転数15000rpmで攪拌しながら降温速度5℃/分で冷却を行って、スチレン-アクリル樹脂Aの微粒子の分散液を得た。分散液中のスチレン-アクリル樹脂Aは、体積中位径(D50)120nm、固形分濃度29.8質量%、Mn=7000、Mw=16000、Mw/Mn=2.29、Tm=90.0℃、Tg=45.2℃であった。
 ポリエステル樹脂Aをスチレン-アクリル樹脂Aに代えた以外は、実施例1と同様の操作を行って、実施例8の静電荷像現像用トナーを得た。
(比較例1)
 ポリエステル樹脂Aをポリエステル樹脂D(Mn=2400、Mw=4800、Mw/Mn=2.0、Tm=83℃、Tg=42℃)に代えた以外は、実施例1と同様の操作を行って、比較例1の静電荷像現像用トナーを得た。
(比較例2)
 ポリエステル樹脂Aをポリエステル樹脂E(Mn=3400、Mw=6800、Mw/Mn=2.0、Tm=97℃、Tg=49℃)に代え、シェル層形成時の温度を60℃から70℃に代えた以外は、実施例1と同様の操作を行って、比較例2の静電荷像現像用トナーを得た。
(比較例3)
 シェル層形成時の温度を60℃から59℃に代えた以外は、実施例1と同様の操作を行って、比較例3の静電荷像現像用トナーを得た。
(比較例4)
 攪拌機と温度計とコンデンサーと窒素導入管とを備えた容量2Lのフラスコにn-プロピルアルコール240gを投入して、窒素を導入しながら、スチレン67.5gとブチルメタクリレート22.5gとを添加して、65℃まで加熱した。更に、t-ヘキシルパーオキシピバレートの炭化水素希釈品(日油株式会社製「パーヘキシルPV」)1gをn-プロピルアルコール40gに溶解させた溶液を、65℃で3時間かけて滴下して、その後5時間攪拌した。更に、80℃まで昇温して、80℃で1時間攪拌した。その後、10kPa、140℃で減圧乾燥してn-プロピルアルコールを留去して乾燥物を得た。得られた乾燥物を解砕して平均粒子径10μm以下の粉砕物を得た。得られた粉砕物100gとカチオン系界面活性剤(花王株式会社製「コータミン24P」)1gと0.1N-水酸化ナトリウム水溶液25gとを配合した。そして、溶液の全量が400gとなるようにイオン交換水を添加してスラリーを得た。次いで、得られたスラリーを耐圧丸底ステンレス製容器に投入して、高速せん断乳化装置(エム・テクニック株式会社製「クレアミックス(登録商標)CLM-2.2S」)を用いて、容器内のスラリーを、0.5MPa、140℃、ローター回転数20000rpmで30分間せん断分散した。その後、50℃まで回転数15000rpmで攪拌しながら降温速度5℃/分で冷却を行って、スチレン-アクリル樹脂微Bの微粒子の分散液を得た。分散液中のスチレン-アクリル樹脂Bは、体積中位径(D50)130nm、固形分濃度20.3質量%、Mn=50000、Mw=100000、Mw/Mn=2.0、Tm=150℃、Tg=73℃であった。
 シェル層形成時に用いたヘキサメチロールメラミン前駆体の2mL添加をスチレン-アクリル樹脂Bの190g添加に代えた以外は、実施例1と同様の操作を行って、比較例4の静電荷像現像用トナーを得た。
<測定方法及び評価方法>
 実施例1~8及び比較例1~4の静電荷像現像用トナーの測定方法及び評価方法は以下の通りである。
(トナー中のTHF不溶分の含有割合の測定方法)
 実施例1~8及び比較例1~4の静電荷像現像用トナー1.0g(W1)を、テトラヒドロフラン(THF)200mL中に添加した。そのスラリーを12時間攪拌して、THFに可溶な樹脂(W2)を溶解した。その後、スラリーを円筒ろ紙(アドバンテック株式会社製「No.86R」)を備えたソックスレー抽出器に投入して、THFに溶解した樹脂を、6時間抽出した。抽出されたTHFに可溶な樹脂をエバポレートした後、100℃で1時間、減圧乾燥して、THFに可溶な樹脂を得た。以下の式を用いてTHF不溶分の含有割合を算出した。トナーの質量をW1として、THFに可溶な樹脂の質量をW2とした。
THF不溶分の含有割合(質量%)=(W1-W2)/W1×100
 表1にTHF不溶分の含有割合の測定結果を示す。
(トナーの溶融粘度の測定方法)
 実施例1~8及び比較例1~4の静電荷像現像用トナー1.4gを、約1.9cm3の円柱状のペレットに成形した。得られたペレットをフローテスター(株式会社島津製作所製)にセットした。昇温速度2℃/分で35℃から200℃まで加熱しながら、プランジャーによる30kg/cm2の荷重を加えて、ノズルからペレット状のトナーを押し出して、75℃でのトナーの溶融粘度を測定した。高さが1.0mmで直径1.0mmのダイを使用した。表1に75℃でのトナーの溶融粘度の測定結果を示す。
(トナーの粒子径の測定方法)
 実施例1~8及び比較例1~4にて得られたトナーの体積中位径(D50)を粒度分布測定装置(ベックマン・コールター株式会社製「Multisizer3」)を用いて測定した。表1にトナーの体積中位径(D50)の測定結果を示す。
(トナーの球形化度の測定方法)
 実施例1~8及び比較例1~4にて得られたトナーの球形化度を湿式フロ-式粒子径/形状分析装置(シスメックス株式会社製「FPIA(登録商標)-3000」)を用いて測定した。表1にトナーの球形化度の測定結果を示す。
(シェル層の膜厚の測定方法)
 常温硬化性のエポキシ樹脂中にシェル化した乾式シリカとトナーとを十分に分散させた後、40℃の雰囲気下で2日間硬化させた。得られた硬化物を四酸化オスミウムで染色した後、ダイヤモンドナイフをセットしたミクロトームで薄片状のサンプルを切り出し、透過型電子顕微鏡(TEM)を用いてトナーの断面形態を観察して、シェル層の膜厚を測定した。表1にシェル層の膜厚の測定結果を示す。
(トナーのDSC吸熱ピークの測定方法)
 実施例1~8及び比較例1~4にて得られたトナーの吸熱ピークを示差走査熱量計(セイコーインスツル株式会社製「DSC-6220」)を用いて測定した。60℃以上80℃以下の温度範囲での吸熱ピークを、測定試料と基準物質との間の熱量差から求めた。実施例1~8及び比較例1~4にて得られたトナーの吸熱ピークが一定である場合は、トナーに含まれる離型剤の含有量が一定とした。表1にトナーのDSC吸熱ピークの測定結果を示す。
(評価用の2成分現像剤作製)
 MnO換算で39.7mol%、MgO換算で9.9mol%、Fe23換算で49.6mol%、SrO換算で0.8mol%となるように配合した粉体にイオン交換水を添加して、湿式ボールミルを用いて10時間、粉砕し、混合し、乾燥させて、950℃で4時間保持した。その後、湿式ボールミルを用いて24時間粉砕を行って粉砕品を得た。得られた粉砕品を造粒乾燥して、酸素濃度2vol%の雰囲気下1270℃で6時間保持した。その後、解砕して、粒度調整を行い、マンガン系フェライト粒子を得た。マンガン系フェライト粒子の平均粒子径は35μmであり、印加磁場が3000(1000/4π・A/m)の時の飽和磁化が70A・m2/kgであった。
 次いで、無水トリメリット酸と4、4’-ジアミノジフェニルメタンとの共重合体であるポリアミドイミド樹脂をメチルエチルケトンで希釈して、樹脂溶液を調製した。次いで、4フッ化エチレンと6フッ化プロピレンとの共重合体(FEP)を分散させ、更に樹脂全量に対して酸化ケイ素2質量%を分散させて、固形分換算で150gのキャリアコート液を得た。ポリアミドイミド樹脂とFEPとの重量組成比は2:8であり、キャリアコート液中の固形分濃度は10質量%とする。次に、流動層被覆装置(岡田精工株式会社製「スピラコータSP-25」)を用いて、マンガン系フェライト粒子10kgにキャリアコート液を被覆させた。その後、220℃で1時間焼成し、樹脂被覆比率3質量%の樹脂被覆マンガン系フェライトキャリアを得た。
(最低定着可能温度の測定方法)
 カラープリンター(京セラドキュメントソリューションズ株式会社製「TASKalfa5550ci」)の黒色用の現像装置に、2成分現像剤を充填した。そして、実施例1~8及び比較例1~4にて得られたトナーを黒色用のトナーコンテナに充填した。評価用紙(モンディ社製「Color Copy(登録商標) 90」)に、トナー載せ量1.67mg/cm2となるように、2cm×3cmのトナー画像(パッチサンプル)を未定着画像として出力した。次に、定着治具を用いて、25℃、50%RHの環境下で、定着温度80℃以上200℃以下の温度範囲で5℃毎にパッチサンプルの未定着画像を、線速300mm/秒で60枚の評価用紙を定着させた。なお、定着治具は、カラープリンター(京セラドキュメントソリューションズ株式会社製「TASKalfa5550ci」)の定着装置の定着温度と線速とを可変できるように改造した治具である。また、加熱ロールの表面材質はPFAであり、加熱ロールの膜厚は30μm±10μmであり、面粗度(Ra)は5μmであった。次に、定着後の画像が定着された評価用紙を目視で観察して、最低定着可能温度を測定した。トナーの最低定着可能温度が100℃を超えると、トナーの定着性が不十分であった。トナーの最低定着可能温度が100℃以下であると、トナーの定着性が良好であった。表1にトナーの最低定着可能温度の測定結果を示す。
(トナーブロッキング性の評価方法)
 実施例1~8及び比較例1~4にて得られたトナー3gを容量20mLのポリ容器に投入した。トナーが投入されたポリ容器を恒温槽(三洋電機株式会社製「CONVECTION OVEN」)を用いて60℃で3時間及び48時間の2段加熱を行った。その後、25℃、65%RHでの環境下で30分間静置した。恒温槽から取り出されたポリ容器に入っているトナーを質量既知のメッシュ目開き105μmの篩に投入し、篩前の篩の質量を測定することで、篩上のトナーの重量を測定した。次に、目開き45μmの篩を一番下にして、目開き63μm及び目開き105μmの篩を順に重ねた。次に重ねた篩をパウダーテスター(ホソカワミクロン株式会社製「TYPE PT-E」)に取り付けた。そして、パウダーテスターの5メモリーの条件で30秒間、トナーをふるった。次いで、篩上に残存したトナーの重量を測定し、以下の式によりトナーの凝集度を求めた。
 凝集度(質量%)=(a)+(b)+(c)
 (a):(目開き105μmの篩上に残存したトナーの重量)/3×100
 (b):(目開き63μmの篩上に残存したトナーの重量)/3×3/5×100
 (c):(目開き45μmの篩上に残存したトナーの重量)/3×1/5×100
 トナーの凝集度が15質量%以上であると、トナーのブロッキング性は不十分であったが、トナーの凝集度が15質量%未満であると、トナーのブロッキング性は良好であった。表1にトナーの凝集度の測定結果を示す。
 表1に、実施例1~8及び比較例1~4にて得られたトナーの測定結果及び評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように実施例1~8にて得られた静電荷像現像用トナーは、トナーブロッキング性及び低温定着性の両方に優れていた。
 比較例1にて得られた静電荷像現像用トナーにおいて、トナーの75℃での溶融粘度が9500Pa・sと低く、1.0×104Pa・s以上1.0×105Pa・s以下の範囲内ではなかった。そのため、トナーの凝集度が高くなり、トナーのブロッキング性が不十分であった。
 比較例2にて得られた静電荷像現像用トナーにおいて、トナーの75℃での溶融粘度が1.0×105Paより大きかった。そのため、トナーの最低定着可能温度が高くなり、トナーの低温定着性が不十分であった。
 比較例3にて得られた静電荷像現像用トナーにおいて、シェル層形成時の温度が59℃と低かった。そのため、シェル層に含まれる熱硬化性樹脂の架橋度が低く、トナーのTHF不溶分の含有割合が90質量%未満となったと考えられる。そのため、トナーの凝集度が高くなり、トナーのブロッキング性が不十分であった。
 比較例4にて得られた静電荷像現像用トナーにおいて、シェル層に熱可塑性樹脂を用いたため、トナーブロッキング性が不十分であった。
 本実施形態の静電荷像現像用トナーを、画像形成装置において好適に利用することができる。

Claims (3)

  1.  複数のトナー粒子を含む静電荷像現像用トナーであって、
     前記複数のトナー粒子の各々は、トナーコアと、前記トナーコアを被覆するシェル層とを含み、
     前記シェル層は、熱硬化性樹脂を含み、
     前記トナーのテトラヒドロフラン不溶分の含有割合が、前記トナーの質量に対して90質量%以上であり、
     前記トナーの75℃での溶融粘度が1.0×104Pa・s以上1.0×105Pa・s以下である、静電荷像現像用トナー。
  2.  前記熱硬化性樹脂は、メラミン樹脂又は尿素樹脂である、請求項1に記載の静電荷像現像用トナー。
  3.  前記トナーコアは、結着樹脂を含み、
     前記結着樹脂の軟化点(Tm)は、85℃以上95℃以下である、請求項1に記載の静電荷像現像用トナー。
PCT/JP2015/053621 2014-02-25 2015-02-10 静電荷像現像用トナー WO2015129448A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016505133A JP6256589B2 (ja) 2014-02-25 2015-02-10 静電荷像現像用トナー
CN201580009944.8A CN106030419B (zh) 2014-02-25 2015-02-10 静电荷像显影用调色剂
US15/120,715 US9964885B2 (en) 2014-02-25 2015-02-10 Electrostatic charge image developing toner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-034247 2014-02-25
JP2014034247 2014-02-25

Publications (1)

Publication Number Publication Date
WO2015129448A1 true WO2015129448A1 (ja) 2015-09-03

Family

ID=54008772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053621 WO2015129448A1 (ja) 2014-02-25 2015-02-10 静電荷像現像用トナー

Country Status (4)

Country Link
US (1) US9964885B2 (ja)
JP (1) JP6256589B2 (ja)
CN (1) CN106030419B (ja)
WO (1) WO2015129448A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107153332B (zh) * 2017-06-29 2021-01-26 邯郸汉光办公自动化耗材有限公司 一种核壳结构的墨粉制备方法
JP2022022128A (ja) * 2020-07-22 2022-02-03 キヤノン株式会社 トナー
JP2022022127A (ja) 2020-07-22 2022-02-03 キヤノン株式会社 トナー

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162355A (ja) * 1988-12-16 1990-06-21 Canon Inc 加熱定着方法及び該方法に使用される加熱定着用カプセルトナー
JP2004294469A (ja) * 2003-03-25 2004-10-21 Toppan Forms Co Ltd 薄膜被覆トナー、薄膜被覆トナーの製造方法
JP2008261948A (ja) * 2007-04-10 2008-10-30 Fuji Xerox Co Ltd 静電荷像現像用トナー、静電荷像現像用トナーの製造方法、静電荷像現像用現像剤及び画像形成装置
JP2009237110A (ja) * 2008-03-26 2009-10-15 Toppan Forms Co Ltd 低温定着性トナーおよびその製造方法
JP2013228556A (ja) * 2012-04-25 2013-11-07 Kyocera Document Solutions Inc 静電荷像現像用トナー

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258480A (ja) * 1996-03-21 1997-10-03 Fuji Xerox Co Ltd 静電荷現像用トナー及びその製造方法と画像形成方法
EP1091258B1 (en) * 1998-05-12 2006-10-25 Nippon Zeon Co., Ltd. Polymerization toner and process for producing the same
US6686112B2 (en) * 2000-03-10 2004-02-03 Seiko Epson Corporation Electrophotographing dry-type toner and production method therefor
US20050271964A1 (en) 2002-08-23 2005-12-08 Toppan Forms Co., Ltd. Toner coated with thin film
JP4326245B2 (ja) 2003-03-25 2009-09-02 トッパン・フォームズ株式会社 薄膜被覆重合トナー、薄膜被覆重合トナーの製造方法
JP4732241B2 (ja) 2006-05-30 2011-07-27 キヤノン株式会社 トナー
JP2009139933A (ja) * 2007-11-14 2009-06-25 Konica Minolta Business Technologies Inc 静電潜像現像用トナーと画像形成方法
JP2010113112A (ja) 2008-11-06 2010-05-20 Panasonic Corp トナー及びトナーの製造方法
JP5919693B2 (ja) 2011-09-09 2016-05-18 コニカミノルタ株式会社 静電荷像現像用トナー
US8951708B2 (en) * 2013-06-05 2015-02-10 Xerox Corporation Method of making toners

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162355A (ja) * 1988-12-16 1990-06-21 Canon Inc 加熱定着方法及び該方法に使用される加熱定着用カプセルトナー
JP2004294469A (ja) * 2003-03-25 2004-10-21 Toppan Forms Co Ltd 薄膜被覆トナー、薄膜被覆トナーの製造方法
JP2008261948A (ja) * 2007-04-10 2008-10-30 Fuji Xerox Co Ltd 静電荷像現像用トナー、静電荷像現像用トナーの製造方法、静電荷像現像用現像剤及び画像形成装置
JP2009237110A (ja) * 2008-03-26 2009-10-15 Toppan Forms Co Ltd 低温定着性トナーおよびその製造方法
JP2013228556A (ja) * 2012-04-25 2013-11-07 Kyocera Document Solutions Inc 静電荷像現像用トナー

Also Published As

Publication number Publication date
CN106030419B (zh) 2019-08-27
US9964885B2 (en) 2018-05-08
JPWO2015129448A1 (ja) 2017-03-30
CN106030419A (zh) 2016-10-12
JP6256589B2 (ja) 2018-01-10
US20170010552A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5858954B2 (ja) 静電潜像現像用トナー
US9304426B2 (en) Electrostatic latent image developing toner
JP5903423B2 (ja) 静電荷像現像用トナー
KR101425489B1 (ko) 정전하상 현상용 토너, 정전하상 현상제, 토너 카트리지, 프로세스 카트리지 및 화상 형성 장치
US9341972B2 (en) Method for producing toner
JP2014164274A (ja) 静電荷像現像用トナー
US9335648B2 (en) Electrostatic latent image developing toner
JP6447488B2 (ja) 静電潜像現像用トナー及びその製造方法
JP6256589B2 (ja) 静電荷像現像用トナー
JP6465045B2 (ja) 静電潜像現像用トナー
US9500974B2 (en) Toner
JP6237677B2 (ja) 静電潜像現像用トナー
WO2016148013A1 (ja) トナー及びその製造方法
JP6189782B2 (ja) カプセルトナーの製造方法
JP5911416B2 (ja) 静電荷像現像用トナー
JP6493031B2 (ja) 正帯電性トナー
JP6192748B2 (ja) トナー
JP5593294B2 (ja) 静電潜像現像用トナーの製造方法、及び静電潜像現像用トナー
JP5800782B2 (ja) 静電潜像現像用トナー
JP2017116644A (ja) 正帯電性トナー
JP6332127B2 (ja) 静電潜像現像用トナー及びその製造方法
JP6050743B2 (ja) 静電荷像現像用トナー及び静電荷像現像用トナーの製造方法
JP6046690B2 (ja) 静電潜像現像用トナー及びその製造方法
WO2015060046A1 (ja) 静電潜像現像用トナー、及び静電潜像現像用トナーの製造方法
JP2019061100A (ja) トナー及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505133

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15120715

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755766

Country of ref document: EP

Kind code of ref document: A1