WO2015128978A1 - 浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャ - Google Patents

浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャ Download PDF

Info

Publication number
WO2015128978A1
WO2015128978A1 PCT/JP2014/054802 JP2014054802W WO2015128978A1 WO 2015128978 A1 WO2015128978 A1 WO 2015128978A1 JP 2014054802 W JP2014054802 W JP 2014054802W WO 2015128978 A1 WO2015128978 A1 WO 2015128978A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating bush
peripheral surface
circumferential groove
regions
hole
Prior art date
Application number
PCT/JP2014/054802
Other languages
English (en)
French (fr)
Inventor
貴也 二江
西岡 忠相
崇 南部
林 慎之
鈴木 浩
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP14884074.7A priority Critical patent/EP3112707B1/en
Priority to US15/114,156 priority patent/US10330152B2/en
Priority to EP17201107.4A priority patent/EP3321527B1/en
Priority to CN201480074222.6A priority patent/CN105940229B/zh
Priority to PCT/JP2014/054802 priority patent/WO2015128978A1/ja
Priority to JP2016504923A priority patent/JP6250787B2/ja
Publication of WO2015128978A1 publication Critical patent/WO2015128978A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/166Sliding contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/14Lubrication of pumps; Safety measures therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1065Grooves on a bearing surface for distributing or collecting the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1075Wedges, e.g. ramps or lobes, for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1085Channels or passages to recirculate the liquid in the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/98Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a floating bush bearing device and a turbocharger including the bearing device.
  • a turbocharger for an automobile includes a turbine and a compressor, and turbine blades of the turbine and an impeller of the compressor are connected via a rotor shaft.
  • the rotor shaft is rotatably supported by a radial bearing that supports a radial load.
  • the radial bearing described in Patent Document 1 is a floating bush bearing, and the floating bush bearing has a floating bush fitted to the rotor shaft with a gap.
  • the floating bush is disposed in the bearing hole, and an oil passage (oil supply hole) is opened on the inner peripheral surface of the bearing hole.
  • the floating bush has a plurality of communication holes for lubricating oil that pass through the floating bush diagonally in the radial direction, and the lubricating oil supplied into the bearing hole through the oil supply hole passes through the communication hole for lubricating oil in the floating bush. Flows into the inside.
  • the central region of the outer peripheral surface of the floating bush where the lubricating oil communication hole opens is formed as a concave surface, and by this concave surface, a circumferential groove having a constant width over the entire circumference is formed in the outer peripheral surface of the floating bush. Is formed.
  • an object of at least one embodiment of the present invention is to provide a floating bush that suppresses vibration by providing a pressing force against the floating bush by lubricating oil while providing a circumferential groove on the entire outer periphery of the floating bush.
  • a bearing device and a turbocharger including the bearing device are provided.
  • a floating bush bearing device includes: A casing having a bearing hole; A rotating shaft rotatably disposed in the bearing hole; A floating bush disposed rotatably in the bearing hole and surrounding the rotation shaft; An oil supply hole for lubricating oil that opens to the inner peripheral surface of the bearing hole; A plurality of communication holes formed in the floating bush, each extending between an inner peripheral surface and an outer peripheral surface of the floating bush, and arranged at intervals in a circumferential direction of the floating bush; It is formed on the outer peripheral surface of the floating bush or the inner peripheral surface of the bearing hole and passes through the openings of the plurality of communication holes or faces the openings of the plurality of communication holes, A circumferential groove extending over the entire circumference of the inner peripheral surface of the bearing hole, The circumferential groove has a different cross-sectional area depending on the circumferential position.
  • the cross-sectional area of the circumferential groove differs depending on the circumferential position, and the cross-sectional area is relatively small at one or more portions. Since the cross-sectional area of the one or more portions is relatively small, the flow of the lubricating oil in the circumferential groove is suppressed, and the pressure drop of the lubricating oil in the vicinity of the opening of the oil supply hole is suppressed. As a result, the floating bush can be pressed in one direction by the lubricating oil supplied from the oil supply hole. On the other hand, according to this configuration, there is a portion where the cross-sectional area is relatively narrow, while there is a portion where the cross-sectional area is relatively large.
  • the lubricating oil is temporarily stored in the portion where the cross-sectional area is large, so that a sufficient amount of lubricating oil is supplied to the inside of the floating bush through the communication hole even if there is a portion where the cross-sectional area is small. be able to.
  • the circumferential groove is formed on an outer peripheral surface of the floating bush;
  • the circumferential groove includes a plurality of first regions that overlap positions and openings of the plurality of communication holes in a circumferential direction of the floating bush, and a plurality of second regions that respectively extend between the plurality of first regions.
  • Have A cross-sectional area of each of the plurality of first regions is larger than a cross-sectional area of each of the plurality of second regions.
  • the circumferential groove is formed on an inner peripheral surface of the bearing hole,
  • the circumferential groove includes a plurality of first regions provided corresponding to the intervals between the plurality of communication holes in a circumferential direction of the bearing hole, and a plurality of second regions extending between the plurality of first regions, respectively.
  • a cross-sectional area of each of the plurality of first regions is larger than a cross-sectional area of each of the plurality of second regions.
  • the width of each of the plurality of first regions is greater than the width of each of the plurality of second regions. According to this configuration, by making the width of the first region larger than the width of the second region, the cross-sectional area of the first region can be easily made larger than the cross-sectional area of the second region.
  • the width of each of the plurality of first regions is in the range of 0.9 to 1.3 times the width of each of the plurality of communication holes, At least one of the plurality of first regions includes a portion where the circumferential groove has a maximum width, The width of each of the plurality of second regions is in the range of 0.2 to 0.4 times the maximum width of the circumferential groove.
  • the width of the first region is in the range of 0.9 to 1.3 times the width of each communication hole, a sufficient amount of lubricating oil can be stored in the first region.
  • the width of the second region is 0.2 to 0.4 times the maximum width of the circumferential groove, the flow of the lubricating oil in the circumferential direction can be reliably regulated in the second region. .
  • the plurality of first regions are each formed by a plurality of recesses
  • the opening shape of each of the plurality of recesses is any one of a circle, an ellipse, and a rectangle. According to this configuration, since the opening shape of the first region is a circle, an ellipse, or a rectangle, the first region can be easily formed.
  • the cross-sectional area of one portion of the circumferential groove is substantially equal to the cross-sectional area of the other portion 180 ° opposite the one portion. According to this structure, it is prevented that the weight balance of the floating bush is lost due to the formation of the circumferential groove whose width changes according to the circumferential position, and the occurrence of vibration due to the formation of the circumferential groove is prevented. be able to.
  • the depth of each of the plurality of first regions is deeper than the depth of each of the plurality of second regions. According to this configuration, by making the depth of the first region larger than the depth of the second region, the cross-sectional area of the first region can be easily made larger than the cross-sectional area of the second region. Further, according to this configuration, the depth of the first region is relatively deeper than that of the second region, thereby inducing a flow of the lubricating oil toward the communication hole, and more effectively supplying the lubricating oil to the floating bush. Can be fed inside.
  • the circumferential groove width is substantially constant;
  • the maximum depth of the circumferential groove is not more than 50 times the radial clearance between the outer peripheral surface of the floating bush and the inner peripheral surface of the bearing hole,
  • the minimum depth of the circumferential groove is in the range of 2 to 3 times the radial gap.
  • the maximum depth of the circumferential groove is set to 50 times or less of the radial gap, and the minimum depth of the circumferential groove is set to a range of 2 to 3 times the radial gap.
  • the cross-sectional area of the downstream region connected to the downstream side of the communication hole in the rotation direction of the floating bush is closer to the communication hole in the circumferential direction of the floating bush. It is expanding.
  • the cross-sectional area of the downstream region increases as it approaches the communication hole, and when the lubricating oil is supplied from the oil supply hole when the floating bush is stopped, the lubricating oil is communicated from the downstream region to the communication hole.
  • a rotational force is applied to the floating bush by the lubricating oil. Therefore, if the lubricating oil is supplied at the start of rotation of the rotating shaft, the rotation start of the floating bush can be assisted by the rotational force from the lubricating oil.
  • the bottom surface of the downstream region connected to the communication hole is formed by an inclined surface inclined with respect to the outer peripheral surface,
  • the inclined surface is inclined so that the depth of the circumferential groove becomes deeper toward the communication hole in the circumferential direction of the floating bush. According to this configuration, the cross-sectional area of the downstream region can be easily enlarged toward the communication hole by forming the bottom surface of the downstream region connected to the communication hole with the inclined surface.
  • the inner peripheral surface of the floating bush has a Rouleau polygonal shape in a cross section orthogonal to the axis of the floating bush.
  • the vibration stability can be increased compared to the case where the inner peripheral surface of the floating bush has a perfect circular shape in cross section, Bearing loss can be reduced.
  • the inner peripheral surface of the floating bush has a Roule polygonal shape in cross section
  • the inner peripheral surface of the floating bush and the rotating shaft are larger than when the inner peripheral surface of the floating bush has a perfect circular shape in cross section. The gap between the outer peripheral surface of the first and second outer surfaces increases.
  • a turbocharger includes: Any one of the above floating bush bearing devices; A centrifugal compressor having an impeller; A turbine having turbine blades, The turbine blade and the impeller are connected via the rotating shaft.
  • a floating bush bearing device in which a circumferential groove is provided on the outer peripheral surface of the floating bush over the entire circumference, and a pressing force against the floating bush by the lubricating oil is ensured to suppress vibration.
  • a turbocharger including the bearing device.
  • FIG. 1 is a longitudinal sectional view schematically showing a turbocharger according to some embodiments of the present invention.
  • FIG. 2 is an enlarged schematic view of a thrust bearing device and a radial bearing device in FIG. 1.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a perspective view schematically showing a floating bush in FIG. 3. It is a figure which shows schematically the cross section of the floating bush of FIG. It is a figure which expands and shows the outer peripheral surface of the floating bush of FIG. 4 schematically. It is a figure which shows schematically the cross section of the floating bush which concerns on some embodiment. It is a figure which expands and shows an outer peripheral surface of the floating bush of Drawing 7 roughly.
  • FIG. 10 is a diagram schematically showing the outer peripheral surface of the floating bush of FIG. 9 in a developed state. It is a figure which expands and shows roughly the peripheral surface of the floating bush concerning some embodiments. It is a figure which shows roughly the cross section of the floating bush which concerns on some embodiment with a drive shaft. It is a figure which expand
  • FIG. 1 is a longitudinal sectional view schematically showing a turbocharger according to some embodiments of the present invention.
  • the turbocharger is applied to an internal combustion engine such as a vehicle or a ship.
  • the turbocharger has a turbine 10 and a centrifugal compressor 12.
  • the turbine 10 includes a turbine housing 14 and a turbine blade (turbine impeller) 16 rotatably accommodated in the turbine housing 14, and the compressor 12 is rotatably accommodated in the compressor housing 18 and the compressor housing 18.
  • Impeller (compressor impeller) 20 Impeller (compressor impeller) 20.
  • the turbine housing 14 and the compressor housing 18 are fixed to a bearing housing (casing) 22 by a fastening member (not shown), and the turbine blade 16 of the turbine 10 and the impeller 20 of the compressor 12 are driven through a drive shaft (turbine).
  • the rotors 24 are connected to each other. Therefore, the turbine rotor blade 16, the impeller 20, and the drive shaft 24 are disposed on the same axis line 26.
  • the turbine rotor blade 16 of the turbine 10 is rotated by, for example, exhaust gas discharged from the internal combustion engine, and thereby the impeller 20 of the compressor 12 is rotated via the drive shaft 24.
  • the intake air supplied to the internal combustion engine is compressed by the rotation of the impeller 20 of the compressor 12.
  • the turbine housing 14 includes a cylindrical portion (shroud portion) 28 that houses the turbine rotor blade 16 and a scroll portion 30 that surrounds a portion of the cylindrical portion 28 on the bearing housing 22 side.
  • the scroll portion 30 has an exhaust gas inlet (not shown) and communicates with the cylindrical portion 28 via the throat portion 32.
  • the opening of the cylindrical portion 28 on the side opposite to the bearing housing 22 forms an exhaust gas outlet.
  • the end wall 34 of the bearing housing 22 is fitted into the opening of the turbine housing 14 on the bearing housing 22 side.
  • a cylindrical seal portion 36 is integrally and coaxially provided on the end wall 34, and the seal portion 36 forms a seal hole that penetrates the center of the end wall 34.
  • An end of the drive shaft 24 on the turbine blade 16 side is disposed in the seal portion 36, and a seal ring 38 is disposed in a gap between the drive shaft 24 and the seal portion 36.
  • An annular back plate 40 is disposed in an annular recess between the end wall 34 and the rear surface of the turbine rotor blade 16.
  • the outer peripheral portion of the back plate 40 is sandwiched between the turbine housing 14 and the bearing housing 22, and the inner peripheral edge of the back plate 40 surrounds the seal portion 36.
  • a bearing portion 44 is provided integrally with the peripheral wall 42, and a bearing hole 45 is formed in the bearing portion 44.
  • a bearing hole 45 is formed in the bearing portion 44.
  • two floating bushes 46 are arranged in the bearing hole 45 of the bearing portion 44, and the central portion of the drive shaft 24 passes through the floating bush 46, and the inside of the bearing hole 45 of the bearing portion 44 is inside. Placed in.
  • a plate-shaped thrust member 48 orthogonal to the axis 26 is fixed to the end face of the bearing portion 44 on the compressor 12 side, and the drive shaft 24 passes through the through hole of the thrust member 48.
  • a thrust collar 50 and a thrust sleeve 52 are fitted to the drive shaft 24, and the thrust member 48, the thrust collar 50, and the thrust sleeve 52 constitute a thrust bearing device.
  • the peripheral wall 42 of the bearing housing 22 is provided with an oil supply port 54 and an oil discharge port 56, and the bearing portion 44 and the thrust member 48 are used for supplying lubricating oil to the bearing clearances of the radial bearing and the thrust bearing.
  • An oil supply path is formed.
  • an oil deflector 58 is installed so as to cover the surface of the thrust member 48 on the compressor 12 side in order to prevent the lubricating oil from scattering in the direction of the compressor 12.
  • a lid member 60 having a seal hole in the center is fitted into the opening of the bearing housing 22 on the compressor 12 side, and the lid member 60 is fixed to the bearing housing 22 by a fixing ring 62.
  • the thrust sleeve 52 passes through the seal hole of the lid member 60, and a seal ring (not shown) is disposed in the gap between the thrust sleeve 52 and the seal hole.
  • cylinder portion 64 that houses the compressor housing 18 and the impeller 20, and a scroll portion 66 that surrounds a portion of the cylinder portion 64 on the bearing housing 22 side.
  • the scroll portion 66 has an air supply outlet (not shown) and communicates with the cylindrical portion 64 via the diffuser portion 68.
  • the opening of the cylindrical portion 64 opposite to the bearing housing 22 forms an intake inlet.
  • the impeller 20 includes a hub 70 and a plurality of wings 72.
  • the hub 70 has a rotationally symmetric shape about the axis 26. In the direction along the axis 26, one end side of the hub 70 is located on the intake inlet side, and the other end side of the hub 70 is located on the diffuser portion 68 side.
  • the outer peripheral surface 74 of the hub 70 has a trumpet shape that expands toward the other end side, and the hub 70 has a back surface 76 that faces the lid member 60 on the other end side.
  • the plurality of blades 72 are arranged on the outer peripheral surface 74 of the hub 70 at intervals in the circumferential direction.
  • the drive shaft 24 penetrates the hub 70, and a female screw is formed on the distal end side of the drive shaft 24 located on one end side of the hub 70, and a nut as a fastening member 78 is screwed to the female screw.
  • the fastening member 78 abuts on one end side of the hub 70 and applies an axial force toward the turbine 10 in the direction along the axis 26 to the impeller 20.
  • FIG. 2 is an enlarged schematic view of the thrust bearing device and the radial bearing device in FIG.
  • the drive shaft 24 has a large-diameter portion 80 disposed in the bearing hole 45 and a small-diameter portion 82 extending between the bearing hole 45 and the impeller 20, and a step at the boundary between the large-diameter portion 80 and the small-diameter portion 82.
  • a portion 84 is formed.
  • At least one flange 86 is fitted to the small diameter portion 82 of the drive shaft 24.
  • the thrust collar 50 and the thrust sleeve 52 fitted in series with the small diameter portion 82 each have a flange 86 (86a, 86b).
  • the thrust collar 50 and the thrust sleeve 52 each have a sleeve portion 88 (88a, 88b) integrally formed with the flange portion 86 (86a, 86b), and the sleeve portion 88 (88a, 88b) has a small diameter portion 82. Is fitted.
  • the sleeve portion 88a is positioned between the flange portion 86a and the flange portion 86b, and the sleeve portion 88b is disposed between the flange portion 86b and the impeller 20.
  • the thrust collar 50 and the thrust sleeve 52 are sandwiched between the back surface 76 of the impeller 20 and the stepped portion 84 by the axial force of the fastening member 78, and are configured to rotate together with the drive shaft 24.
  • the through hole 90 of the thrust member 48 is penetrated by the small diameter portion 82, and a sleeve portion 88 a is disposed between the inner peripheral surface of the through hole 90 and the outer peripheral surface of the small diameter portion 82.
  • the thrust member 48 has a thrust portion 92 that slidably contacts with the flange portions 86 a and 86 b in the direction along the axis 26 around the through hole 90.
  • the thrust member 48 has thrust portions 92 (92a, 92b) on both sides in the direction along the axis 26.
  • the thrust member 48 is provided with an oil supply hole 94 that forms an oil supply passage, and an outlet of the oil supply hole 94 opens to the inner peripheral surface of the through hole 90.
  • the lubricating oil that has flowed out from the outlet of the oil supply hole 94 passes through the gap between the outer peripheral surface of the sleeve portion 88a and the inner peripheral surface of the through hole 90, and between the thrust portion 92 (92a, 92b) and the flange portion 86 (86a, 86b). It is comprised so that it may be supplied to.
  • the floating bush 46 on the compressor 12 side is sandwiched between the collar portion 86 a of the thrust collar 50 and the annular partition ring 96.
  • a bearing chamber 98 for the floating bush 46 is defined in the bearing hole 45 between the flange portion 86 a and the partition ring 96.
  • a bearing chamber for the floating bush 46 on the turbine 10 side is also defined in the bearing hole 45.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • the floating bush 46 and the large-diameter portion (rotating shaft) 80 of the drive shaft 24 are coaxially disposed in the bearing chamber 98, that is, in the bearing hole 45, so that the floating bush 46 is large.
  • the diameter portion 80 is surrounded.
  • An oil supply hole 102 forming an oil supply passage is opened in the inner peripheral surface 100 of the bearing hole 45, and lubricating oil is supplied into the bearing chamber 98 along the radial direction of the floating bush 46 through the oil supply hole 102. .
  • only one oil supply hole 102 opens on the inner peripheral surface 100 of the bearing hole 45 in the upper part of the bearing hole 45, and is directed downward in the vertical direction. Lubricating oil is supplied.
  • the inner peripheral surface 100 is formed with a concave portion 104 extending in an arc shape along the inner peripheral surface 100, and an oil supply hole 102 is formed on the bottom surface of the concave portion 104. It is open. In other words, the opening of the oil supply hole 102 is expanded in the circumferential direction of the inner peripheral surface 100 due to the presence of the recess 104.
  • FIG. 4 is a perspective view schematically showing the floating bush 46.
  • FIG. 5 is a view schematically showing a cross section of the floating bush 46.
  • FIG. 6 is a diagram schematically showing the outer peripheral surface of the floating bush 46 in a developed state.
  • the floating bush 46 includes a main body portion 106, a plurality of communication holes 108, and a circumferential groove 110.
  • the main body 106 has a cylindrical shape and has an inner peripheral surface 112 and an outer peripheral surface 114.
  • the inner peripheral surface 112 and the outer peripheral surface 114 have a perfect circular shape in cross section. That is, the radial thickness of the main body 106 is constant in the circumferential direction.
  • the plurality of communication holes 108 respectively extend between the inner peripheral surface 112 and the outer peripheral surface 114 of the main body 106 and are arranged at intervals in the circumferential direction of the main body 106. In some embodiments, the plurality of communication holes 108 extend in the radial direction of the main body portion 106, but may be along the radial direction, and may extend while being inclined with respect to the radial direction.
  • the circumferential groove 110 extends over the entire circumference in the circumferential direction of the outer peripheral surface 114, and passes through the openings of the plurality of communication holes 108.
  • the circumferential groove 110 has a different cross-sectional area according to the circumferential position of the main body portion 106. That is, the cross-sectional area of the circumferential groove 110 in a cross section orthogonal to the circumferential direction of the main body portion 106 differs depending on the circumferential position of the main body portion 106.
  • the cross-sectional area of the circumferential groove 110 differs depending on the circumferential position, and the cross-sectional area is relatively small at one or more portions. Since the cross-sectional area of the one or more portions is relatively small, the flow of the lubricating oil in the circumferential groove 110 is suppressed.
  • a plurality of thick arrows P in FIG. 3 schematically represent the distribution of the static pressure of the lubricating oil, and by suppressing the flow of the lubricating oil in the circumferential groove 110, the vicinity of the opening of the oil supply hole 102 The pressure drop of the lubricating oil at is suppressed.
  • the white arrow F in FIG. 3 the floating bush 46 and the drive shaft 24 are pressed in one direction toward the opposite side of the oil supply hole 102 by the lubricating oil supplied from the oil supply hole 102. A force is generated, and unstable vibration of the drive shaft 24 can be prevented.
  • static pressure distribution can be generated more effectively by opening the recess 104 and enlarging the opening of the oil supply hole 102.
  • the circumferential groove 110 has a plurality of first regions 110a that overlap with the openings of the plurality of communication holes 108 in the circumferential direction of the floating bush 46, respectively. And a plurality of second regions 110b extending between the plurality of first regions 110a. And each cross-sectional area of several 1st area
  • the cross-sectional area of the first region 110a whose position overlaps with the opening of the communication hole 108 is made larger than the cross-sectional area of the second region 110b extending between the first regions 110a.
  • a relatively large amount of lubricating oil can be stored. That is, a sufficient amount of lubricating oil can be stored in the vicinity of the communication hole 108. As a result, a sufficient amount of lubricating oil can be effectively supplied into the floating bush 46 through the communication hole 108.
  • the width Wa of each of the plurality of first regions 110a in the axial direction of the floating bush 46 is larger than the width Wb of each of the plurality of second regions 110b. According to this configuration, by making the width of the first region 110a larger than the width of the second region 110b, the cross-sectional area of the first region 110a can be easily made larger than the cross-sectional area of the second region 110b. .
  • the width Wa of each of the plurality of first regions 110 a is in the range of 0.9 times to 1.3 times the width Wc of each of the plurality of communication holes 108.
  • at least one of the plurality of first regions 110a includes a portion where the width of the circumferential groove 110 is the maximum width Wmax in the axial direction of the floating bush 46, and in the axial direction of the floating bush 46,
  • the width Wb of each of the plurality of second regions 110b is in the range of 0.2 to 0.4 times the maximum width Wmax of the circumferential groove 110.
  • the width Wa of the first region 110a is in the range of 0.9 to 1.3 times the width Wc of each communication hole 108, the first region 110a is sufficient for the first region 110a in the vicinity of the communication hole 108.
  • a large amount of lubricating oil can be stored.
  • a sufficient amount of lubricating oil can be effectively supplied into the floating bush 46 through the communication hole 108.
  • the width Wb of the second region 110b is not less than 0.2 times and not more than 0.4 times the maximum width Wmax of the circumferential groove 110, the flow of lubricating oil in the circumferential direction is reliably ensured in the second region 110b. Can be regulated.
  • the width Wa of the first region 110a is about 1.1 times the width Wc of each of the communication holes 108, and the width Wb of the second region 110b is about the maximum width Wmax of the circumferential groove 110. 1/3. According to this configuration, since the width Wa of the first region 110a is approximately 1.1 times the width Wc of each communication hole 108, a sufficient amount of lubricating oil can be stored in the first region 110a. On the other hand, since the width Wb of the second region 110b is about 1/3 of the maximum width of the circumferential groove 110, the flow of the lubricating oil in the circumferential direction can be reliably restricted in the second region 110b.
  • the plurality of first regions 110 a are formed by the plurality of recesses 116 formed in the outer peripheral surface 114, respectively, and the plurality of recesses 116 in the outer peripheral surface 114 are formed.
  • Each of the openings has a circular shape.
  • the opening shape of each of the plurality of recesses 116 may be elliptical or rectangular.
  • the opening shape of the first region 110a is circular, elliptical, or rectangular, the first region 110a can be easily formed.
  • the plurality of recesses 116 can be formed by, for example, shot blasting, laser, or stamping (pressing a steel ball).
  • the cross-sectional area of the circumferential groove 110 in one region in the circumferential direction of the floating bush 46 is different from that of the other region by 180 ° on the other side. It is approximately equal to the cross-sectional area of the circumferential groove 110 in the region.
  • only the circumferential groove 110 is formed on the outer peripheral surface 114 of the main body portion 106, and no axial groove extending from the circumferential groove 110 to the axial end surface of the main body portion 106 is formed.
  • FIG. 7 is a diagram schematically illustrating a cross section of a floating bush 120 according to some embodiments.
  • FIG. 8 is a diagram schematically showing the outer peripheral surface 114 of the floating bush 120 in a developed state.
  • a circumferential groove 122 is formed on the outer circumferential surface 114 of the main body portion 106 of the floating bush 120 instead of the circumferential groove 110.
  • the circumferential groove 122 extends over the entire circumference of the outer peripheral surface 114 through the openings of the plurality of communication holes 108.
  • the depth of the circumferential groove 122 in the radial direction of the floating bush 120 varies depending on the circumferential position.
  • the circumferential groove 122 includes a plurality of first regions 122a that overlap with the openings and positions of the plurality of communication holes 108 in the circumferential direction of the floating bush 122, and a plurality that extends between the plurality of first regions 122a.
  • the depth Da of each of the plurality of first regions 122a is deeper than the depth Db of each of the plurality of second regions 122b.
  • the depth Da of the first region 122a is easily made larger than the cross-sectional area of the second region 122b. can do.
  • the depth Da of the first region 122a is relatively deeper than the depth Db of the second region 122b, so that the communication is performed as indicated by the thick arrow u in FIG. The flow of the lubricating oil toward the hole 108 is induced, and the lubricating oil can be supplied to the inside of the floating bush 120 more effectively.
  • the width Wg of the circumferential groove 122 in the axial direction of the floating bush 120 is substantially constant, and the maximum depth Dmax of the circumferential groove 122 in the radial direction of the floating bush 120 is the floating bush 120. Is less than 50 times the radial gap G between the outer peripheral surface 114 and the inner peripheral surface 100 of the bearing hole 45, and the minimum depth Dmin of the circumferential groove 122 in the radial direction of the floating bush 120 is the radial clearance. It is in the range of 2 to 3 times G.
  • the communication hole 108 is set by setting the maximum depth Dmax to 50 times or less of the radial gap G and setting the minimum depth Dmin to a range of 2 to 3 times the radial gap G.
  • the lubricating oil can be supplied to the inside of the floating bush 120 more effectively.
  • the depth of the circumferential groove 122 in the radial direction of the floating bush 120 changes continuously or in a wave shape depending on the circumferential position of the floating bush 120. According to this configuration, the lubricating oil smoothly flows into the communication hole 108, and the lubricating oil can be supplied to the inside of the floating bush 120 more effectively.
  • FIG. 9 is a diagram schematically illustrating a cross section of a floating bush 130 according to some embodiments.
  • FIG. 10 is a diagram schematically showing the outer peripheral surface 114 of the floating bush 130 in a developed state.
  • a circumferential groove 132 is formed on the outer circumferential surface 114 of the main body portion 106 of the floating bush 130 instead of the circumferential groove 110.
  • the circumferential groove 132 extends over the entire circumference of the outer peripheral surface 114 through the openings of the plurality of communication holes 108.
  • the cross-sectional area of the downstream region 132 c connected to the downstream side of the communication hole 108 in the rotation direction R of the floating bush 130 increases as it approaches the communication hole 108 in the circumferential direction of the floating bush 130.
  • the cross-sectional area of the downstream region 132c increases as it approaches the communication hole 108, and when lubricating oil is supplied from the oil supply hole 102 when the floating bush 130 is stopped, As shown by the thick arrow u, it flows into the communicating hole 108 from the downstream region 132c.
  • lubricating oil is supplied from the downstream region 132c to the communication hole 108, a rotational force is applied to the floating bush 46 by the lubricating oil. Therefore, if the lubricating oil is supplied at the start of the rotation of the drive shaft 24, the rotation start of the floating bush 46 can be assisted by the rotational force from the lubricating oil.
  • the bottom surface of the downstream region 132 c that is continuous with the communication hole 108 in the circumferential groove 132 is formed by an inclined surface 132 d that is inclined with respect to the outer peripheral surface 114.
  • the circumferential groove 132 is inclined so that the depth of the circumferential groove 132 becomes deeper as it approaches the communication hole 108 in the circumferential direction of the floating bush 46.
  • the cross-sectional area of the downstream region 132 c can be easily enlarged toward the communication hole 108.
  • the width of the downstream region 132c becomes narrower as it approaches the communication hole 108 in the circumferential direction.
  • FIG. 11 is a diagram schematically illustrating the outer peripheral surface 114 of the floating bush 140 according to some embodiments.
  • a circumferential groove 142 is formed on the outer circumferential surface 114 of the main body portion 106 in place of the circumferential groove 110.
  • the width of the circumferential groove 142 in the axial direction of the floating bush 140 changes continuously in the circumferential direction, and the width of the first region 142a is larger than the width of the second region 142b.
  • FIG. 12 schematically illustrates a cross-section of a floating bush 150 according to some embodiments, along with a drive shaft 24.
  • the inner peripheral surface 152 of the floating bush 150 has a rouleau polygonal shape in a cross section orthogonal to the axis of the floating bush 150.
  • the vibration stability should be higher than when the inner peripheral surface 152 of the floating bush 150 has a perfect circular shape in cross section. And bearing loss can be reduced.
  • the inner peripheral surface 152 of the floating bush 150 has a Roule polygonal shape in cross section
  • the inner surface of the floating bush 150 has a more inner shape than the case where the inner peripheral surface 152 of the floating bush 150 has a perfect circular shape in cross section.
  • a gap between the peripheral surface 152 and the outer peripheral surface of the drive shaft 24 is increased. For this reason, it is necessary to share more lubricating oil in the gap between the inner peripheral surface 152 of the floating bush 150 and the outer peripheral surface of the drive shaft 24.
  • the circumferential groove 110 having a different cross-sectional area according to the circumferential position is formed on the outer circumferential surface 114 of the floating bush 150, a sufficient amount of lubricating oil is supplied to the inner circumferential surface 152 of the floating bush 150 through the communication hole 108.
  • the gap can be supplied to the outer peripheral surface of the drive shaft 24.
  • the Reuleaux polygon is a kind of monospace figure.
  • the rouleau polygon is a rouleau triangle formed by three envelopes.
  • the communication hole 108 is a region where the radial clearance between the outer peripheral surface of the large diameter portion 80 and the inner peripheral surface 112 of the main body portion 106 is maximized, that is, a Rouleau polygon. Open in the area corresponding to the apex of. In FIG. 12, three communication holes 108 are provided in the main body portion 106.
  • FIG. 13 schematically illustrates the inner peripheral surface 100 of the bearing hole 45 according to some embodiments.
  • a circumferential groove 160 is formed at a position facing the communication hole 108 on the inner peripheral surface 100 of the bearing hole 45. It is formed over the entire circumference.
  • the cross-sectional area of the circumferential groove 160 in a cross section orthogonal to the circumferential direction of the bearing hole 45 differs depending on the circumferential position. Also with this configuration, as in the case of the circumferential groove 110, it is possible to prevent unstable vibration of the drive shaft 24 and to supply a sufficient amount of lubricating oil to the inside of the floating bush.
  • the circumferential groove 160 extends through the opening of the fill hole 102 or the recess 104.
  • the circumferential groove 160 includes a plurality of first regions 160a provided at intervals corresponding to the circumferential interval of the plurality of communication holes 108, and a second region extending between the plurality of first regions 160a. 160b.
  • the plurality of first regions 160a are formed by the plurality of recesses 162, respectively.
  • the opening shape of the plurality of recesses 162 is either a circle, an ellipse, or a rectangle.
  • the present invention is not limited to the above-described embodiments, and includes forms obtained by changing the above-described embodiments and combinations of these forms as appropriate.
  • the possibility of the combination of the embodiments is also disclosed by a combination of claims at the beginning of the application of the present application, or a combination of claims at the beginning of the application in the basic application when the application is accompanied by a priority claim.
  • the circumferential groove 160 in FIG. 13 has a shape corresponding to the circumferential groove 110, but the inner circumferential surface 100 of the bearing hole 45 has a shape corresponding to the circumferential groove 122 and the circumferential groove 142.
  • Circumferential grooves may be formed.
  • the cross-sectional area, width, and depth of the circumferential groove are periodically changed in the circumferential direction, but the cross-sectional area may be different depending on the circumferential position. For example, it may change randomly.
  • the centrifugal compressor may be a variable displacement type.

Abstract

 浮動ブッシュの外周面に全周に渡って周方向溝を設けながら、潤滑油による浮動ブッシュに対する押し付け力が確保されて振動が抑制される浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャを提供することを目的とし、浮動ブッシュ軸受装置は、ケーシングの軸受孔内に回転可能に配置された回転軸と、回転軸を囲む浮動ブッシュと、軸受孔の内周面に開口する潤滑油の給油孔と、浮動ブッシュに形成され、浮動ブッシュの内周面と外周面の間をそれぞれ延び、浮動ブッシュの周方向に間隔を存して配列された複数の連通孔と、浮動ブッシュの外周面又は軸受孔の内周面に形成され、複数の連通孔の開口を通過するか又は複数の連通孔の開口と対向して、浮動ブッシュの外周面又は軸受孔の内周面の全周に渡って延在する周方向溝とを備え、周方向溝は、周方向位置に応じて異なる断面積を有する。

Description

浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャ
 本開示は、浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャに関する。
 例えば自動車用のターボチャージャは、タービンとコンプレッサを備え、タービンのタービン動翼とコンプレッサのインペラがロータ軸を介して連結される。ロータ軸は、径方向の荷重を支持するラジアル軸受によって回転可能に支持される。
 例えば特許文献1に記載されたラジアル軸受は、浮動ブッシュ軸受であり、浮動ブッシュ軸受は、ロータ軸に隙間をもって嵌合される浮動ブッシュを有する。浮動ブッシュは、軸受孔内に配置され、軸受孔の内周面には油路(給油孔)が開口している。
 浮動ブッシュは、該浮動ブッシュを径方向斜めに貫通する複数の潤滑油用連通孔を有し、給油孔を通じて軸受孔内に供給された潤滑油は、浮動ブッシュの潤滑油用連通孔を通じて浮動ブッシュの内側に流入する。なお、潤滑油用連通孔が開口する浮動ブッシュの外周面の中央域は凹面に形成されており、該凹面によって、浮動ブッシュの外周面には、全周に渡って幅が一定の周方向溝が形成されている。
特許第5337227号公報
 特許文献1の浮動ブッシュ軸受では、浮動ブッシュの外周面に全周に渡って周方向溝を設けることで、各潤滑油連通孔に対し潤滑油が円滑に供給されるという効果が得られる。
 ところで、浮動ブッシュ軸受では、軸受孔の内周面に開口した給油孔から潤滑油を浮動ブッシュに向けて供給することにより、浮動ブッシュの周方向にて潤滑油の静圧に分布を生じさせている。この潤滑油の静圧分布により、浮動ブッシュ及びロータ軸が径方向にて軸受孔の内周面に向かって一方向に押され、ロータ軸の不安定振動が抑制される。
 この点に関し、浮動ブッシュの外周面に全周に渡って周方向溝を設けた場合、給油孔から供給された潤滑油が周方向溝を通じて分散され、周方向での潤滑油の静圧分布の差が小さくなり、押し付け力が弱くなってしまう。
 そこで、本発明の少なくとも一実施形態の目的は、浮動ブッシュの外周面に全周に渡って周方向溝を設けながら、潤滑油による浮動ブッシュに対する押し付け力が確保されて振動が抑制される浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャを提供することにある。
 本発明の少なくとも一実施形態に係る浮動ブッシュ軸受装置は、
 軸受孔を有するケーシングと、
 前記軸受孔内に回転可能に配置された回転軸と、
 前記軸受孔内に回転可能に配置され、前記回転軸を囲む浮動ブッシュと、
 前記軸受孔の内周面に開口する潤滑油の給油孔と、
 前記浮動ブッシュに形成され、前記浮動ブッシュの内周面と外周面の間をそれぞれ延び、前記浮動ブッシュの周方向に間隔を存して配列された複数の連通孔と、
 前記浮動ブッシュの外周面又は前記軸受孔の内周面に形成され、前記複数の連通孔の開口を通過するか又は前記複数の連通孔の開口と対向して、前記浮動ブッシュの外周面又は前記軸受孔の内周面の全周に渡って延在する周方向溝とを備え、
 前記周方向溝は、周方向位置に応じて異なる断面積を有する。
 この構成によれば、周方向溝の断面積が、周方向位置に応じて異なっており、一つ以上の部分で断面積が相対的に小さくなっている。該一つ以上の部分の断面積が相対的に小さくなっていることによって、周方向溝内での潤滑油の流れが抑制され、給油孔の開口近傍における潤滑油の圧力低下が抑制される。この結果として、給油孔から供給される潤滑油によって浮動ブッシュを一方向に押し付けることができる。
 一方、この構成によれば、断面積が相対的に狭くなった部分が存在する一方で、断面積が相対的に大きくなっている部分が存在する。この断面積が大きくなっている部分に潤滑油が一時的に蓄えられることで、断面積が小さい部分が存在していても、連通孔を通じて浮動ブッシュの内部に十分な量の潤滑油を供給することができる。
 幾つかの実施形態では、前記周方向溝は、前記浮動ブッシュの外周面に形成され、
 前記周方向溝は、前記浮動ブッシュの周方向にて前記複数の連通孔の開口と位置がそれぞれ重なる複数の第1領域と、前記複数の第1領域間をそれぞれ延びる複数の第2領域とを有し、
 前記複数の第1領域の各々の断面積は、前記複数の第2領域の各々の断面積よりも大きい。
 この構成によれば、連通孔の開口と位置が重なる第1領域の断面積を、第1領域間を延びる第2領域の断面積よりも大きくすることで、第1領域に相対的に多量の潤滑油を蓄えることができる。つまり、連通孔近傍に十分な量の潤滑油を蓄えることができる。この結果として、連通孔を通じて浮動ブッシュの内部に十分な量の潤滑油を供給することができる。
 幾つかの実施形態では、前記周方向溝は、前記軸受孔の内周面に形成され、
 前記周方向溝は、前記軸受孔の周方向にて前記複数の連通孔の間隔に対応して設けられた複数の第1領域と、前記複数の第1領域間をそれぞれ延びる複数の第2領域とを有し、
 前記複数の第1領域の各々の断面積は、前記複数の第2領域の各々の断面積よりも大きい。
 この構成によれば、連通孔の周方向間隔に対応して設けられた第1領域の断面積を、第1領域間を延びる第2領域の断面積よりも大きくすることで、第1領域に相対的に多量の潤滑油を蓄えることができる。つまり、連通孔近傍に十分な量の潤滑油を蓄えることができる。この結果として、連通孔を通じて浮動ブッシュの内部に十分な量の潤滑油を供給することができる。
 幾つかの実施形態では、前記複数の第1領域の各々の幅は前記複数の第2領域の各々の幅よりも大きい。
 この構成によれば、第1領域の幅を第2領域の幅よりも大きくすることで、第1領域の断面積を第2領域の断面積よりも容易に大きくすることができる。
 幾つかの実施形態では、前記複数の第1領域の各々の幅は前記複数の連通孔の各々の幅の0.9倍以上1.3倍以下の範囲に入っており、
 前記複数の第1領域のうち少なくとも一つは、前記周方向溝の幅が最大幅となる部分を含み、
 前記複数の第2領域の各々の幅は前記周方向溝の最大幅の0.2倍以上0.4倍以下の範囲に入っている。
 この構成によれば、第1領域の幅が連通孔の各々の幅の0.9倍以上1.3倍以下の範囲であるため、第1領域に十分な量の潤滑油を蓄えることができる。
 一方、第2領域の幅が周方向溝の最大幅の0.2倍以上0.4倍以下であるため、第2領域において、周方向での潤滑油の流れを確実に規制することができる。
 幾つかの実施形態では、前記複数の第1領域は複数の凹部によってそれぞれ形成され、
 前記複数の凹部の各々の開口形状は、円形、楕円形又は矩形のうちいずれか一つである。
 この構成によれば、第1領域の開口形状が円形、楕円形又は矩形であるため、第1領域を容易に形成することができる。
 幾つかの実施形態では、前記周方向溝の一の部分の断面積は、前記一の部分と180°反対側の他の部分の断面積と略等しい。
 この構成によれば、周方向位置に応じて幅が変化する周方向溝を形成したことにより浮動ブッシュの重量バランスが崩れることが防止され、周方向溝を形成したことによる振動の発生を防止することができる。
 幾つかの実施形態では、前記複数の第1領域の各々の深さは前記複数の第2領域の各々の深さよりも深い。
 この構成によれば、第1領域の深さを第2領域の深さよりも大きくすることで、第1領域の断面積を第2領域の断面積よりも容易に大きくすることができる。
 また、この構成によれば、第1領域の深さを第2領域に比べて相対的に深くすることで、連通孔に向かう潤滑油の流れを誘起し、より効果的に潤滑油を浮動ブッシュの内側に供給することができる。
 幾つかの実施形態では、前記周方向溝の幅は略一定であり、
 前記周方向溝の最大深さは、前記浮動ブッシュの外周面と前記軸受孔の内周面との間の半径方向隙間の50倍以下であり、
 前記周方向溝の最小深さは、前記半径方向隙間の2倍以上3倍以下の範囲に入っている。
 この構成によれば、周方向溝の最大深さを半径方向隙間の50倍以下に設定し、周方向溝の最小深さを半径方向隙間の2倍以上3倍以下の範囲に設定することで、連通孔に向かう潤滑油の流れを誘起し、より効果的に潤滑油を浮動ブッシュの内側に供給することができる。
 幾つかの実施形態では、前記周方向溝において、前記浮動ブッシュの回転方向にて前記連通孔の下流側に連なる下流領域の断面積は、前記浮動ブッシュの周方向にて前記連通孔に近づくほど拡大している。
 この構成によれば、下流領域の断面積が連通孔に近づくほど拡大しており、浮動ブッシュが停止しているときに給油孔から潤滑油が供給されると、潤滑油が下流領域から連通孔に流入し、これにより潤滑油によって浮動ブッシュに回転力が与えられる。従って、回転軸の回転開始時に潤滑油を供給すれば、潤滑油からの回転力によって浮動ブッシュの回転開始を補助することができる。
 幾つかの実施形態では、前記連通孔に連なる下流領域の底面は、前記外周面に対し傾斜した傾斜面によって形成され、
 前記傾斜面は、前記浮動ブッシュの周方向にて前記連通孔に近づくほど前記周方向溝の深さが深くなるように傾斜している。
 この構成によれば、連通孔に連なる下流領域の底面を傾斜面によって形成することで、下流領域の断面積を連通孔に向かって容易に拡大することができる。
 幾つかの実施形態では、前記浮動ブッシュの内周面は、前記浮動ブッシュの軸線と直交する断面にてルーローの多角形形状を有する。
 浮動ブッシュの内周面が断面にてルーローの多角形形状を有する場合、浮動ブッシュの内周面が断面にて真円形状を有する場合に比べて、振動安定性を高くすることができるとともに、軸受損失を少なくすることができる。
 一方、浮動ブッシュの内周面が断面にてルーローの多角形形状を有する場合、浮動ブッシュの内周面が断面にて真円形状を有する場合に比べて、浮動ブッシュの内周面と回転軸の外周面との間の隙間が大きくなる。このため、浮動ブッシュの内周面と回転軸の外周面との隙間に、より多くの潤滑油を共有する必要がある。この点、浮動ブッシュの外周面に周方向位置に応じて断面積が異なる周方向溝を形成すれば、連通孔を通じて十分な量の潤滑油を浮動ブッシュの内周面と回転軸の外周面との隙間に供給することができる。
 本発明の少なくとも一実施形態に係るターボチャージャは、
 上記した何れか一つの浮動ブッシュ軸受装置と、
 インペラを有する遠心式コンプレッサと、
 タービン動翼を有するタービンとを備え、
 前記回転軸を介して前記タービン翼と前記インペラが連結されている。
 この構成によれば、浮動ブッシュ軸受装置の振動が抑制されることから、ターボチャージャは静音性に優れている。
 本発明の少なくとも一実施形態によれば、浮動ブッシュの外周面に全周に渡って周方向溝を設けながら、潤滑油による浮動ブッシュに対する押し付け力が確保されて振動が抑制される浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャが提供される。
本発明の幾つかの実施形態に係るターボチャージャを概略的に示す縦断面図である。 図1中のスラスト軸受装置及びラジアル軸受装置を拡大して概略的に示す図である。 図2中のIII-III線に沿う断面図である。 図3中の浮動ブッシュを概略的に示す斜視図である。 図4の浮動ブッシュの横断面を概略的に示す図である。 図4の浮動ブッシュの外周面を展開して概略的に示す図である。 幾つかの実施形態に係る浮動ブッシュの横断面を概略的に示す図である。 図7の浮動ブッシュの外周面を展開して概略的に示す図である。 幾つかの実施形態に係る浮動ブッシュの横断面を概略的に示す図である。 図9の浮動ブッシュの外周面を展開して概略的に示す図である。 幾つかの実施形態に係る浮動ブッシュの外周面を展開して概略的に示す図である。 幾つかの実施形態に係る浮動ブッシュの横断面を、駆動軸とともに概略的に示す図である。 幾つかの実施形態に係る軸受孔の内周面を展開して概略的に示す図である。
 以下、添付図面を参照して、本発明の幾つかの実施形態について説明する。ただし、これらの実施形態に記載されている又は図面に示されている構成部品の寸法、材質、形状及びその相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。例えば、ある方向に沿っているという表現は、ある方向に対し厳密に平行な状態のみならず、必要に応じて、公差若しくはある程度の角度をもって傾斜している状態も表すものとする。また、略や約という表現は、公差の範囲での誤差、又は、通常行われる程度の変形を含んでいてもよいことを表すものとする。
 図1は、本発明の幾つかの実施形態に係るターボチャージャを概略的に示す縦断面図である。ターボチャージャは、例えば、車両や船舶等の内燃機関に適用される。
 ターボチャージャは、タービン10と、遠心式のコンプレッサ12とを有する。タービン10は、タービンハウジング14と、タービンハウジング14内に回転可能に収容されたタービン動翼(タービンインペラ)16とを有し、コンプレッサ12は、コンプレッサハウジング18と、コンプレッサハウジング18に回転可能に収容されたインペラ(コンプレッサインペラ)20とを有する。
 タービンハウジング14及びコンプレッサハウジング18は、図示しない締結部材によって軸受ハウジング(ケーシング)22に対し固定され、タービン10のタービン動翼16とコンプレッサ12のインペラ20は、軸受ハウジング22内を延びる駆動軸(タービンロータ)24によって相互に連結されている。従って、タービン動翼16、インペラ20及び駆動軸24は、同一の軸線26上に配置されている。タービン10のタービン動翼16は、例えば、内燃機関から排出された排ガスによって回転させられ、これにより駆動軸24を介してコンプレッサ12のインペラ20が回転させられる。コンプレッサ12のインペラ20の回転によって、内燃機関に供給される吸気が圧縮される。
 例えば、タービンハウジング14は、タービン動翼16を収容する筒部(シュラウド部)28と、筒部28の軸受ハウジング22側の部分を囲むスクロール部30とからなる。スクロール部30は、図示しない排ガスの入口を有するとともに、スロート部32を介して筒部28と連通している。軸受ハウジング22と反対側の筒部28の開口は、排ガスの出口を形成している。
 軸受ハウジング22側のタービンハウジング14の開口には、軸受ハウジング22の端壁34が嵌合されている。端壁34には、筒状のシール部36が一体且つ同軸に設けられ、シール部36は、端壁34の中央を貫通するシール孔を形成している。タービン動翼16側の駆動軸24の端部はシール部36内に配置され、駆動軸24とシール部36との間の隙間にはシールリング38が配置されている。
 端壁34とタービン動翼16の背面の間の環状の凹所には、環状のバックプレート40が配置されている。バックプレート40の外周部は、タービンハウジング14と軸受ハウジング22によって挟まれており、バックプレート40の内周縁はシール部36を囲んでいる。
 軸受ハウジング22の内部には、周壁42と一体に軸受部44が設けられ、軸受部44には軸受孔45が形成されている。軸受部44の軸受孔45内には、ラジアル軸受装置として、例えば2つの浮動ブッシュ46が配置され、駆動軸24の中央部は浮動ブッシュ46を貫通した状態で、軸受部44の軸受孔45内に配置される。
 コンプレッサ12側の軸受部44の端面には、軸線26と直交する板形状のスラスト部材48が固定され、スラスト部材48の貫通孔を駆動軸24は貫通している。駆動軸24には、スラストカラー50及びスラストスリーブ52が嵌合されており、スラスト部材48、スラストカラー50及びスラストスリーブ52はスラスト軸受装置を構成している。
 ここで、軸受ハウジング22の周壁42には、給油ポート54及び排油ポート56が設けられ、軸受部44及びスラスト部材48には、ラジアル軸受及びスラスト軸受の軸受隙間に潤滑油を供給するための給油路が形成されている。一方、コンプレッサ12の方向への潤滑油の飛散を防止するために、スラスト部材48のコンプレッサ12側の面を覆うように、オイルデフレクタ58が設置されている。
 コンプレッサ12側の軸受ハウジング22の開口には、中央にシール孔を有する蓋部材60が嵌合され、蓋部材60は、固定リング62によって軸受ハウジングに22に対し固定されている。スラストスリーブ52は、蓋部材60のシール孔を貫通しており、スラストスリーブ52とシール孔との隙間には図示しないシールリングが配置される。
 例えばコンプレッサハウジング18、インペラ20を収容する筒部(シュラウド部)64と、筒部64の軸受ハウジング22側の部分を囲むスクロール部66とからなる。スクロール部66は、図示しない給気の出口を有するとともに、ディフューザ部68を介して筒部64と連通している。軸受ハウジング22と反対側の筒部64の開口は、吸気の入口を形成している。
 インペラ20は、ハブ70と、複数の翼72とからなる。ハブ70は、軸線26の回りに回転対称な形状を有する。軸線26に沿う方向にて、ハブ70の一端側は吸気の入口側に位置し、ハブ70の他端側はディフューザ部68側に位置している。ハブ70の外周面74は他端側に向かって拡大するラッパ形状を有し、ハブ70は他端側に蓋部材60と対向する背面76を有する。複数の翼72は、ハブ70の外周面74上に周方向に間隔をあけて配置されている。
 駆動軸24はハブ70を貫通し、ハブ70の一端側に位置する駆動軸24の先端側には雌ねじが形成され、雌ねじに締結部材78としてのナットが螺合されている。締結部材78は、ハブ70の一端側に当接し、インペラ20に対し、軸線26に沿う方向にてタービン10側に向かって軸力を加える。
 図2は、図1中のスラスト軸受装置及びラジアル軸受装置を拡大して概略的に示す図である。
 駆動軸24は、軸受孔45内に配置された大径部80と、軸受孔45とインペラ20の間を延びる小径部82とを有し、大径部80と小径部82との境界に段差部84が形成されている。
 駆動軸24の小径部82には、少なくとも1つの鍔部86が嵌合している。幾つかの実施形態では、小径部82に直列に嵌合されたスラストカラー50及びスラストスリーブ52がそれぞれ鍔部86(86a,86b)を有する。
 また、スラストカラー50及びスラストスリーブ52は、鍔部86(86a,86b)と一体に形成されたスリーブ部88(88a,88b)をそれぞれ有し、スリーブ部88(88a,88b)は小径部82に嵌合されている。スリーブ部88aは、鍔部86aと鍔部86bの間に位置し、スリーブ部88bは、鍔部86bとインペラ20の間に配置されている。
 スラストカラー50及びスラストスリーブ52は、インペラ20の背面76と段差部84との間にて締結部材78の軸力をもって挟まれており、駆動軸24とともに回転するように構成されている。
 スラスト部材48の貫通孔90は、小径部82によって貫通されており、貫通孔90の内周面と小径部82の外周面の間にはスリーブ部88aが配置されている。スラスト部材48は、貫通孔90の周囲に、軸線26に沿う方向にて鍔部86a,86bと対向して摺接するスラスト部92を有する。幾つかの実施形態では、スラスト部材48は、軸線26に沿う方向にて両側にスラスト部92(92a,92b)を有する。
 また、スラスト部材48には、給油路を形成する給油孔94が設けられており、給油孔94の出口は、貫通孔90の内周面に開口している。給油孔94の出口から流出した潤滑油が、スリーブ部88aの外周面と貫通孔90の内周面との隙間を通じて、スラスト部92(92a,92b)と鍔部86(86a,86b)の間に供給されるように構成されている。
 コンプレッサ12側の浮動ブッシュ46は、スラストカラー50の鍔部86aと、環状の隔壁リング96との間に挟まれている。軸受孔45内には、鍔部86aと隔壁リング96との間に、浮動ブッシュ46のための軸受室98が区画されている。なお、軸受孔45内には、タービン10側の浮動ブッシュ46のための軸受室も区画されている。
 図3は、図2中のIII-III線に沿う断面図である。
 図3に示したように、浮動ブッシュ46及び駆動軸24の大径部(回転軸)80は、軸受室98内、即ち軸受孔45内に回転可能に同軸に配置され、浮動ブッシュ46が大径部80を囲んでいる。軸受孔45の内周面100には、給油路を形成する給油孔102が開口し、軸受室98内には、給油孔102を通じて、浮動ブッシュ46の径方向に沿って潤滑油が供給される。
 幾つかの実施形態では、図3に示したように、軸受孔45の内周面100には、1つの給油孔102のみが軸受孔45の上部に開口しており、鉛直方向下方に向かって潤滑油が供給される。
 また、幾つかの実施形態では、図3に示したように、内周面100には、内周面100に沿って円弧状に延びる凹部104が形成され、凹部104の底面に給油孔102が開口している。換言すれば、給油孔102の開口が、凹部104の存在によって内周面100の周方向に拡大されている。
 図4は、浮動ブッシュ46を概略的に示す斜視図である。図5は浮動ブッシュ46の横断面を概略的に示す図である。図6は、浮動ブッシュ46の外周面を展開して概略的に示す図である。
 浮動ブッシュ46は、本体部106と、複数の連通孔108と、周方向溝110とを有する。
 本体部106は、円筒形状を有し、内周面112及び外周面114を有する。幾つかの実施形態では、内周面112及び外周面114は、横断面でみて真円形状を有する。つまり、本体部106の径方向での厚さは、周方向にて一定である。
 複数の連通孔108は、それぞれ本体部106の内周面112と外周面114の間を延びており、本体部106の周方向に間隔をおいて配列されている。幾つかの実施形態では、複数の連通孔108は、本体部106の半径方向に延びているが、半径方向に沿っていればよく、半径方向に対し傾斜して延びていてもよい。
 周方向溝110は、外周面114の周方向に全周に渡って延びており、複数の連通孔108の開口を通過している。そして、周方向溝110は、本体部106の周方向位置に応じて異なる断面積を有する。即ち、本体部106の周方向と直交する断面での周方向溝110の断面積は、本体部106の周方向位置に応じて異なっている。
 この構成によれば、周方向溝110の断面積が、周方向位置に応じて異なっており、一つ以上の部分で断面積が相対的に小さくなっている。該一つ以上の部分の断面積が相対的に小さくなっていることによって、周方向溝110内での潤滑油の流れが抑制される。
 図3中の複数の太線矢印Pは、潤滑油の静圧の分布を概略的に表しており、周方向溝110内での潤滑油の流れが抑制されることで、給油孔102の開口近傍における潤滑油の圧力低下が抑制される。この結果として、図3中に白抜き矢印Fで示したように、給油孔102から供給される潤滑油によって、浮動ブッシュ46及び駆動軸24を給油孔102と反対側に向かって一方向に押し付ける力が発生し、駆動軸24の不安定振動を防止することができる。
 一方、この構成によれば、断面積が相対的に狭くなった部分が存在する一方で、断面積が相対的に大きくなっている部分が存在する。この断面積が大きくなっている部分に潤滑油が一時的に蓄えられ、油溜まりとして機能することで、断面積が小さい部分が存在していても、連通孔108を通じて浮動ブッシュ46の内部に十分な量の潤滑油を供給することができる。
 そして、上述したターボチャージャは、浮動ブッシュ軸受装置の振動が抑制されていることから、静音性に優れている。
 幾つかの実施形態では、凹部104を儲けて給油孔102の開口を拡大したことにより、より効果的に静圧分布を発生させることができる。
 幾つかの実施形態では、図4~図6に示したように、周方向溝110は、浮動ブッシュ46の周方向にて複数の連通孔108の開口と位置がそれぞれ重なる複数の第1領域110aと、複数の第1領域110a間をそれぞれ延びる複数の第2領域110bとを有する。そして、複数の第1領域110aの各々の断面積は、複数の第2領域110bの各々の断面積よりも大きい。即ち、周方向と直交する断面での各第1領域110aの断面積は、各第2領域110bよりも大きい。
 この構成によれば、連通孔108の開口と位置が重なる第1領域110aの断面積を、第1領域110a間を延びる第2領域110bの断面積よりも大きくすることで、第1領域110aに相対的に多量の潤滑油を蓄えることができる。つまり、連通孔108近傍に十分な量の潤滑油を蓄えることができる。この結果として、連通孔108を通じて浮動ブッシュ46の内部に十分な量の潤滑油を効果的に供給することができる。
 幾つかの実施形態では、図6に示したように、浮動ブッシュ46の軸線方向での複数の第1領域110aの各々の幅Waは複数の第2領域110bの各々の幅Wbよりも大きい。
 この構成によれば、第1領域110aの幅を第2領域110bの幅よりも大きくすることで、第1領域110aの断面積を第2領域110bの断面積よりも容易に大きくすることができる。
 幾つかの実施形態では、図6に示したように、複数の第1領域110aの各々の幅Waは複数の連通孔108の各々の幅Wcの0.9倍以上1.3倍以下の範囲に入っており、複数の第1領域110aのうち少なくとも一つは、浮動ブッシュ46の軸線方向にて周方向溝110の幅が最大幅Wmaxとなる部分を含み、浮動ブッシュ46の軸線方向において、複数の第2領域110bの各々の幅Wbは周方向溝110の最大幅Wmaxの0.2倍以上0.4倍以下の範囲に入っている。
 この構成によれば、第1領域110aの幅Waが連通孔108の各々の幅Wcの0.9倍以上1.3倍以下の範囲であるため、連通孔108近傍の第1領域110aに十分な量の潤滑油を蓄えることができる。この結果として、連通孔108を通じて浮動ブッシュ46の内部に十分な量の潤滑油を効果的に供給することができる。
 一方、第2領域110bの幅Wbが周方向溝110の最大幅Wmaxの0.2倍以上0.4倍以下であるため、第2領域110bにおいて、周方向での潤滑油の流れを確実に規制することができる。
 幾つかの実施形態では、第1領域110aの幅Waは連通孔108の各々の幅Wcの約1.1倍であり、第2領域110bの幅Wbが周方向溝110の最大幅Wmaxの約1/3である。
 この構成によれば、第1領域110aの幅Waが連通孔108の各々の幅Wcの約1.1倍であるため、第1領域110aに十分な量の潤滑油を蓄えることができる。一方、第2領域110bの幅Wbが周方向溝110の最大幅の約1/3であるため、第2領域110bにおいて、周方向での潤滑油の流れを確実に規制することができる。
 幾つかの実施形態では、図4~図6に示したように、複数の第1領域110aは、外周面114に形成された複数の凹部116によってそれぞれ形成され、外周面114における複数の凹部116の各々の開口形状は、円形である。複数の凹部116の各々の開口形状は、楕円形又は矩形であってもよい。
 この構成によれば、第1領域110aの開口形状が円形、楕円形又は矩形であるため、第1領域110aを容易に形成することができる。複数の凹部116は、例えば、ショットブラスト、レーザ又はスタンプ(鋼球の押し付け)によって形成可能である。
 幾つかの実施形態では、図4~図6に示したように、浮動ブッシュ46の周方向にて一の領域における周方向溝110の断面積は、一の領域と180°反対側の他の領域における周方向溝110の断面積と略等しい。
 この構成によれば、周方向位置に応じて幅が変化する周方向溝110を形成したことにより浮動ブッシュ46の重量バランスが崩れることが防止される。この結果、周方向溝110を形成したことによるアンバランスに起因した同期振動の発生を防止することができる。
 幾つかの実施形態では、本体部106の外周面114には、周方向溝110のみが形成され、周方向溝110から本体部106の軸線方向端面まで延びる軸線方向溝は形成されていない。
 図7は、幾つかの実施形態に係る浮動ブッシュ120の横断面を概略的に示す図である。図8は、浮動ブッシュ120の外周面114を展開して概略的に示す図である。
 幾つかの実施形態では、図7及び図8に示したように、浮動ブッシュ120の本体部106の外周面114に、周方向溝110に代えて周方向溝122が形成されている。周方向溝122は、複数の連通孔108の開口を通過して外周面114の全周に渡って延びている。浮動ブッシュ120の半径方向での周方向溝122の深さは、周方向位置に応じて異なっている。
 具体的には、周方向溝122は、浮動ブッシュ122の周方向にて複数の連通孔108の開口と位置がそれぞれ重なる複数の第1領域122aと、複数の第1領域122a間をそれぞれ延びる複数の第2領域122bとを有する。そして、複数の第1領域122aの各々の深さDaは、複数の第2領域122bの各々の深さDbよりも深い。
 この構成によれば、第1領域122aの深さDaを第2領域122bの深さDbよりも深くすることで、第1領域122aの断面積を第2領域122bの断面積よりも容易に大きくすることができる。
 また、この構成によれば、第1領域122aの深さDaを第2領域122bの深さDbに比べて相対的に深くすることで、図7中に太線矢印uで示したように、連通孔108に向かう潤滑油の流れを誘起し、より効果的に潤滑油を浮動ブッシュ120の内側に供給することができる。
 幾つかの実施形態では、浮動ブッシュ120の軸線方向での周方向溝122の幅Wgは略一定であり、浮動ブッシュ120の径方向での周方向溝122の最大深さDmaxは、浮動ブッシュ120の外周面114と軸受孔45の内周面100との間の半径方向隙間Gの50倍以下であり、浮動ブッシュ120の径方向での周方向溝122の最小深さDminは、半径方向隙間Gの2倍以上3倍以下の範囲に入っている。
 この構成によれば、最大深さDmaxを半径方向隙間Gの50倍以下に設定し、最小深さDminを半径方向隙間Gの2倍以上3倍以下の範囲に設定することで、連通孔108に向かう潤滑油の流れを誘起し、より効果的に潤滑油を浮動ブッシュ120の内側に供給することができる。
 幾つかの実施形態では、図7に示したように、浮動ブッシュ120の径方向での周方向溝122の深さは、浮動ブッシュ120の周方向位置に応じて連続的又は波状に変化する。この構成によれば、連通孔108に対し潤滑油が円滑に流入し、より効果的に潤滑油を浮動ブッシュ120の内側に供給することができる。
 図9は、幾つかの実施形態に係る浮動ブッシュ130の横断面を概略的に示す図である。図10は、浮動ブッシュ130の外周面114を展開して概略的に示す図である。
 幾つかの実施形態では、図9及び図10に示したように、浮動ブッシュ130の本体部106の外周面114に、周方向溝110に代えて周方向溝132が形成されている。周方向溝132は、複数の連通孔108の開口を通過して外周面114の全周に渡って延びている。周方向溝132においては、浮動ブッシュ130の回転方向Rにて連通孔108の下流側に連なる下流領域132cの断面積は、浮動ブッシュ130の周方向にて連通孔108に近づくほど拡大している。
 この構成によれば、下流領域132cの断面積が連通孔108に近づくほど拡大しており、浮動ブッシュ130が停止しているときに給油孔102から潤滑油が供給されると、図9中に太線矢印uで示したように、下流領域132cから連通孔108に流入する。下流領域132cから連通孔108に潤滑油が供給されると、潤滑油によって浮動ブッシュ46に回転力が与えられる。従って、駆動軸24の回転開始時に潤滑油を供給すれば、潤滑油からの回転力によって浮動ブッシュ46の回転開始を補助することができる。
 幾つかの実施形態では、図9に示したように、周方向溝132において連通孔108に連なる下流領域132cの底面は、外周面114に対し傾斜した傾斜面132dによって形成され、傾斜面132dは、浮動ブッシュ46の周方向にて連通孔108に近づくほど周方向溝132の深さが深くなるように傾斜している。
 この構成によれば、連通孔108に連なる下流領域132cの底面を傾斜面132dによって形成することで、下流領域132cの断面積を連通孔108に向かって容易に拡大することができる。
 幾つかの実施形態では、下流領域132cの幅は、周方向にて連通孔108に近づくほど狭くなっている。
 図11は、幾つかの実施形態に係る浮動ブッシュ140の外周面114を展開して概略的に示す図である。浮動ブッシュ140では、本体部106の外周面114に、周方向溝110に代えて周方向溝142が形成されている。浮動ブッシュ140の軸線方向での周方向溝142の幅は、周方向に連続的に変化しており、第1領域142aの幅は第2領域142bの幅よりも大きい。
 図12は、幾つかの実施形態に係る浮動ブッシュ150の横断面を、駆動軸24とともに概略的に示している。
 幾つかの実施形態では、図12に示したように、浮動ブッシュ150の内周面152は、浮動ブッシュ150の軸線と直交する断面にてルーローの多角形形状を有する。
 浮動ブッシュ150の内周面152が断面にてルーローの多角形形状を有する場合、浮動ブッシュ150の内周面152が断面にて真円形状を有する場合に比べて、振動安定性を高くすることができるとともに、軸受損失を少なくすることができる。
 一方、浮動ブッシュ150の内周面152が断面にてルーローの多角形形状を有する場合、浮動ブッシュ150の内周面152が断面にて真円形状を有する場合に比べて、浮動ブッシュ150の内周面152と駆動軸24の外周面との間の隙間が大きくなる。このため、浮動ブッシュ150の内周面152と駆動軸24の外周面との隙間に、より多くの潤滑油を共有する必要がある。この点、浮動ブッシュ150の外周面114に周方向位置に応じて断面積が異なる周方向溝110を形成すれば、連通孔108を通じて十分な量の潤滑油を浮動ブッシュ150の内周面152と駆動軸24の外周面との隙間に供給することができる。
 なお、ルーローの多角形は、等幅図形の一種である。幾つかの実施形態では、ルーローの多角形は、3つの包絡線によって形成されたルーローの三角形である。本体部106の内周面112において、連通孔108は、大径部80の外周面と本体部106の内周面112との間の径方向隙間が最大となる領域、すなわち、ルーローの多角形の頂点に相当する領域にて開口している。図12では、3つの連通孔108が本体部106に設けられている。
 図13は、幾つかの実施形態に係る軸受孔45の内周面100を展開して概略的に示している。
 幾つかの実施形態では、浮動ブッシュ46の外周面114に代えて、図13に示したように、軸受孔45の内周面100において、連通孔108と対向する位置に、周方向溝160が全周に渡って形成されている。軸受孔45の周方向と直交する断面での周方向溝160の断面積は、周方向位置に応じて異なっている。
 この構成によっても、周方向溝110の場合と同様に、駆動軸24の不安定振動を防止することができるとともに、浮動ブッシュの内部に十分な量の潤滑油を供給することができる。
 幾つかの実施形態では、周方向溝160は、給油孔102の開口、又は、凹部104を通過して延びている。
 幾つかの実施形態では、周方向溝160は、複数の連通孔108の周方向間隔に対応する間隔で設けられた複数の第1領域160aと、複数の第1領域160a間を延びる第2領域160bとを有する。
 幾つかの実施形態では、複数の第1領域160aは、複数の凹部162によってそれぞれ形成される。複数の凹部162の開口形状は円形、楕円形または矩形のいずれかからなる。
 本発明は、上述した実施形態に限定されることはなく、上述した実施形態に変更を加えた形態や、これらの形態を適宜組み合わせ形態も含む。実施形態の組み合わせの可能性は、本願の出願当初の請求の範囲、又は、本願が優先権主張を伴う場合にはその基礎出願における出願当初の請求の範囲の組み合わせによっても開示される。
 例えば、図13の周方向溝160は、周方向溝110に対応する形状を有していたが、軸受孔45の内周面100に、周方向溝122や周方向溝142に対応する形状の周方向溝を形成してもよい。
 また、上述した幾つかの実施形態では、周方向溝の断面積、幅及び深さが、周方向にて周期的に変化していたが、周方向位置に応じて断面積が異なってさえいれば、ランダムに変化していてもよい。
 更に、遠心式コンプレッサは可変容量タイプであってもよい。
10   タービン
12   コンプレッサ
14   タービンハウジング
16   タービン動翼
18   コンプレッサハウジング
20   インペラ
22   軸受ハウジング(ケーシング)
24   駆動軸
26   軸線
28   筒部
30   スクロール部
32   スロート部
34   端壁
36   シール部
38   シールリング
40   バックプレート
42   周壁
44   軸受部
46   浮動ブッシュ
48   スラスト部材
50   スラストカラー
52   スラストスリーブ
54   給油ポート
56   排油ポート
58   オイルデフレクタ
60   蓋部材
62   固定リング
64   筒部
66   スクロール部
68   ディフューザ部
70   ハブ
72   翼
74   外周面
76   背面
78   締結部材
80   大径部(回転軸)
82   小径部
84   段差部
86(86a,86b)   鍔部
88(88a,88b)   スリーブ部
90   貫通孔
92(92a,92b)   スラスト部
94   給油孔
96   隔壁リング
98   軸受室
100  内周面
102  給油孔
104  凹部
106  本体部
108  連通孔
110  周方向溝
110a 第1領域
110b 第2領域
112  内周面
114  外周面
116  凹部

Claims (13)

  1.  軸受孔を有するケーシングと、
     前記軸受孔内に回転可能に配置された回転軸と、
     前記軸受孔内に回転可能に配置され、前記回転軸を囲む浮動ブッシュと、
     前記軸受孔の内周面に開口する潤滑油の給油孔と、
     前記浮動ブッシュに形成され、前記浮動ブッシュの内周面と外周面の間をそれぞれ延び、前記浮動ブッシュの周方向に間隔を存して配列された複数の連通孔と、
     前記浮動ブッシュの外周面又は前記軸受孔の内周面に形成され、前記複数の連通孔の開口を通過するか又は前記複数の連通孔の開口と対向して、前記浮動ブッシュの外周面又は前記軸受孔の内周面の全周に渡って延在する周方向溝とを備え、
     前記周方向溝は、周方向位置に応じて異なる断面積を有する
    ことを特徴とする浮動ブッシュ軸受装置。
  2.  前記周方向溝は、前記浮動ブッシュの外周面に形成され、
     前記周方向溝は、前記浮動ブッシュの周方向にて前記複数の連通孔の開口と位置がそれぞれ重なる複数の第1領域と、前記複数の第1領域間をそれぞれ延びる複数の第2領域とを有し、
     前記複数の第1領域の各々の断面積は、前記複数の第2領域の各々の断面積よりも大きい
    ことを特徴とする請求項1に記載の浮動ブッシュ軸受装置。
  3.  前記周方向溝は、前記軸受孔の内周面に形成され、
     前記周方向溝は、前記軸受孔の周方向にて前記複数の連通孔の間隔に対応して設けられた複数の第1領域と、前記複数の第1領域間をそれぞれ延びる複数の第2領域とを有し、
     前記複数の第1領域の各々の断面積は、前記複数の第2領域の各々の断面積よりも大きい
    ことを特徴とする請求項1に記載の浮動ブッシュ軸受装置。
  4.  前記複数の第1領域の各々の幅は前記複数の第2領域の各々の幅よりも大きい
    ことを特徴とする請求項2又は3に記載の浮動ブッシュ軸受装置。
  5.  前記複数の第1領域の各々の幅は前記複数の連通孔の各々の幅の0.9倍以上1.3倍以下の範囲に入っており、
     前記複数の第1領域のうち少なくとも一つは、前記周方向溝の幅が最大幅となる部分を含み、
     前記複数の第2領域の各々の幅は前記周方向溝の最大幅の0.2倍以上0.4倍以下の範囲に入っている
    ことを特徴とする請求項4に記載の浮動ブッシュ軸受装置。
  6.  前記複数の第1領域は複数の凹部によってそれぞれ形成され、
     前記複数の凹部の各々の開口形状は、円形、楕円形又は矩形のうちいずれか一つである
    ことを特徴とする請求項2乃至5の何れか一項に記載の浮動ブッシュ軸受装置。
  7.  前記周方向溝の一の部分の断面積は、前記一の部分と180°反対側の他の部分の断面積と略等しい
    ことを特徴とする請求項2乃至6の何れか一項に記載の浮動ブッシュ軸受装置。
  8.  前記複数の第1領域の各々の深さは前記複数の第2領域の各々の深さよりも深い
    ことを特徴とする請求項2乃至7の何れか一項に記載の浮動ブッシュ軸受装置。
  9.  前記周方向溝の幅は略一定であり、
     前記周方向溝の最大深さは、前記浮動ブッシュの外周面と前記軸受孔の内周面との間の半径方向隙間の50倍以下であり、
     前記周方向溝の最小深さは、前記半径方向隙間の2倍以上3倍以下の範囲に入っている
    ことを特徴とする請求項1乃至8の何れか一項に記載の浮動ブッシュ軸受装置。
  10.  前記周方向溝において、前記浮動ブッシュの回転方向にて前記連通孔の下流側に連なる下流領域の断面積は、前記浮動ブッシュの周方向にて前記連通孔に近づくほど拡大していることを特徴とする請求項1乃至9の何れか一項に記載の浮動ブッシュ軸受装置。
  11.  前記連通孔に連なる下流領域の底面は、前記外周面に対し傾斜した傾斜面によって形成され、
     前記傾斜面は、前記浮動ブッシュの周方向にて前記連通孔に近づくほど前記周方向溝の深さが深くなるように傾斜している
    ことを特徴とする請求項10に記載の浮動ブッシュ軸受装置。
  12.  前記浮動ブッシュの内周面は、前記浮動ブッシュの軸線と直交する断面にてルーローの多角形形状を有する
    ことを特徴とする請求項1乃至11の何れか一項に記載の浮動ブッシュ軸受装置。
  13.  請求項1乃至12の何れか一項に記載の浮動ブッシュ軸受装置と、
     インペラを有する遠心式コンプレッサと、
     タービン動翼を有するタービンとを備え、
     前記回転軸を介して前記タービン翼と前記インペラが連結されている
    ことを特徴とするターボチャージャ。
PCT/JP2014/054802 2014-02-27 2014-02-27 浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャ WO2015128978A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14884074.7A EP3112707B1 (en) 2014-02-27 2014-02-27 Floating bush bearing device, and turbocharger provided with said bearing device
US15/114,156 US10330152B2 (en) 2014-02-27 2014-02-27 Floating bush bearing device and turbocharger provided with the bearing device
EP17201107.4A EP3321527B1 (en) 2014-02-27 2014-02-27 Floating bush bearing device, and turbocharger provided with said bearing device
CN201480074222.6A CN105940229B (zh) 2014-02-27 2014-02-27 浮动衬套轴承装置以及具有该轴承装置的涡轮增压器
PCT/JP2014/054802 WO2015128978A1 (ja) 2014-02-27 2014-02-27 浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャ
JP2016504923A JP6250787B2 (ja) 2014-02-27 2014-02-27 浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054802 WO2015128978A1 (ja) 2014-02-27 2014-02-27 浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャ

Publications (1)

Publication Number Publication Date
WO2015128978A1 true WO2015128978A1 (ja) 2015-09-03

Family

ID=54008347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054802 WO2015128978A1 (ja) 2014-02-27 2014-02-27 浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャ

Country Status (5)

Country Link
US (1) US10330152B2 (ja)
EP (2) EP3321527B1 (ja)
JP (1) JP6250787B2 (ja)
CN (1) CN105940229B (ja)
WO (1) WO2015128978A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155827A1 (en) * 2016-03-05 2017-09-14 Eaton Corporation Positive displacement device
CN107208543A (zh) * 2015-09-14 2017-09-26 三菱重工业株式会社 涡轮增压器
US10816036B2 (en) 2016-12-05 2020-10-27 BMTS Technology GmbH & Co. KG Bearing bushing with radial depressions and plateau surfaces
US11493052B2 (en) 2018-04-27 2022-11-08 Ihi Corporation Bearing and turbocharger

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109973528B (zh) * 2014-12-18 2020-09-01 三菱重工发动机和增压器株式会社 推力轴承的排油装置及包括其的涡轮增压器
JP6405473B2 (ja) * 2015-09-10 2018-10-17 三菱重工エンジン&ターボチャージャ株式会社 ターボチャージャの軸受装置、及びターボチャージャ
CA3008841A1 (en) * 2015-12-18 2017-06-22 National Oilwell Varco, L.P. Microfluidic-assisted hydrodynamic lubrication system and method
WO2017136217A1 (en) * 2016-02-02 2017-08-10 Borgwarner Inc. Bearing and process of making and using the same
EP3406959B1 (en) * 2016-03-01 2020-04-22 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Bearing device and exhaust turbine supercharger
CN106545577A (zh) * 2016-12-07 2017-03-29 北京工业大学 一种涡轮增压器浮动轴承
DE102017102420A1 (de) * 2017-02-08 2018-08-09 Abb Turbo Systems Ag Gleitlagerung mit hydrodynamischer axialsicherung
EP3569869B1 (en) * 2017-02-23 2021-03-17 Mitsubishi Heavy Industries Compressor Corporation Gas compressor
MX2019010402A (es) 2017-03-02 2019-10-21 Array Tech Inc Conjuntos de equilibrio de resorte y rastreadores solares que incorporan conjuntos de equilibrio de resorte.
JP6391747B1 (ja) * 2017-03-30 2018-09-19 三菱重工業株式会社 クロスヘッド軸受及びクロスヘッド並びに架構、クロスヘッド式内燃機関
DE102017211046A1 (de) * 2017-06-29 2019-01-03 Robert Bosch Gmbh Verfahren zum Herstellen von Bauteilen eines Kippsegmentlagers und Kippsegmentlager
DE102017213492A1 (de) * 2017-08-03 2019-02-07 Continental Automotive Gmbh Schwimmbuchsenlager für einen Abgasturbolader
DE102017125137A1 (de) * 2017-10-26 2019-05-02 Man Diesel & Turbo Se Lagerbuchse eines Turboladers und Turbolader
JP6294557B1 (ja) * 2017-11-20 2018-03-14 株式会社中村製作所 アルミニウム合金製タービンシャフト用ナット
DE102017127628A1 (de) * 2017-11-22 2019-05-23 Man Energy Solutions Se Turbine und Turbolader
CN107882767B (zh) * 2017-12-11 2024-01-12 重庆通用工业(集团)有限责任公司 压缩机轴承及压缩机
DE102018104967A1 (de) * 2018-03-05 2019-09-05 Ihi Charging Systems International Gmbh Radiallager für einen Abgasturbolader und Abgasturbolader
JP6949200B2 (ja) * 2018-03-30 2021-10-13 三菱重工エンジン&ターボチャージャ株式会社 回転機械、及びターボチャージャー
US20190316489A1 (en) * 2018-04-13 2019-10-17 ESS Performance Products A/S Supercharger
CN209430613U (zh) * 2018-05-18 2019-09-24 博格华纳公司 用于增压装置的支承套和支承壳体以及增压装置
JP7269706B2 (ja) * 2018-07-30 2023-05-09 三菱重工マリンマシナリ株式会社 軸受装置及びターボ過給機
CN108999958A (zh) * 2018-10-09 2018-12-14 广西玉柴机器股份有限公司 双平衡轴的衬套结构
US10557498B1 (en) * 2018-10-12 2020-02-11 Borgwarner Inc. Full-floating bearing and turbocharger including the same
CN109630548A (zh) * 2018-11-22 2019-04-16 嘉善丰盈科技有限公司 一种套座一体的铜套结构
GB2580180B (en) * 2018-12-24 2022-11-09 Cummins Ltd Compressor seal system
CN113330215B (zh) * 2019-01-31 2023-02-17 三菱电机株式会社 滑动轴承构造及涡旋压缩机
WO2020174611A1 (ja) * 2019-02-27 2020-09-03 三菱重工エンジン&ターボチャージャ株式会社 浮動ブッシュ軸受および過給機
US11821364B2 (en) * 2021-08-20 2023-11-21 Pratt & Whitney Canada Corp. Shaped cavity at interface between journal bearing and rotor
US11814975B2 (en) * 2021-08-20 2023-11-14 Pratt & Whitney Canada Corp. Feed circuit with slot(s) at interface between journal bearing and rotor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142014A (ja) * 1982-02-17 1983-08-23 Hitachi Ltd 浮動ブツシユ軸受
JPS61201917A (ja) * 1985-03-05 1986-09-06 Mitsubishi Heavy Ind Ltd 浮動ブシユ軸受
JPH0678489A (ja) * 1992-08-24 1994-03-18 Toshiba Corp 油潤滑ラジアル軸受装置
JPH08219148A (ja) * 1995-02-16 1996-08-27 Mitsubishi Heavy Ind Ltd 浮動ブッシュ軸受
JP2002332864A (ja) * 2001-05-02 2002-11-22 Nippon Soken Inc ターボチャージャの潤滑装置
JP2011236966A (ja) * 2010-05-10 2011-11-24 Ihi Corp 浮動ブッシュ、すべり軸受構造及び過給機
JP2012207584A (ja) * 2011-03-29 2012-10-25 Mitsubishi Heavy Ind Ltd ターボチャージャおよびフローティングブッシュ製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337227B2 (ja) 1974-09-20 1978-10-07
JPS56138423A (en) * 1980-04-01 1981-10-29 Toyota Motor Corp Structure of bearing of turbosupercharger
JPS56143316A (en) 1980-04-08 1981-11-09 Toyota Motor Corp Bearing structure of turbo charger
DE3332357C1 (de) * 1983-09-08 1985-04-04 Klein, Schanzlin & Becker Ag, 6710 Frankenthal Hydrostatisch-hydrodynamisches Hybrid-Mehrgleitflaechenradiallager
JP2002155945A (ja) 2000-11-20 2002-05-31 Daido Metal Co Ltd 軸支承部材
JP2002213450A (ja) 2001-01-23 2002-07-31 Hitachi Ltd 浮動ブッシュ軸受、およびそれを具備したターボチャージャ
JP4969531B2 (ja) * 2008-08-12 2012-07-04 三菱重工業株式会社 浮動ブッシュ軸受
US8075191B2 (en) 2009-09-28 2011-12-13 Honeywell International Inc. Helical inner diameter groove journal bearing
JP2011153668A (ja) * 2010-01-27 2011-08-11 Toyota Motor Corp 軸受装置
JP2013526672A (ja) 2010-05-14 2013-06-24 ボーグワーナー インコーポレーテッド 排気ガスターボチャージャ
JP5522113B2 (ja) 2011-04-13 2014-06-18 株式会社豊田自動織機 ターボチャージャ
JP5705665B2 (ja) * 2011-06-30 2015-04-22 三菱重工業株式会社 ターボチャージャの軸受装置
JP5595346B2 (ja) 2011-06-30 2014-09-24 三菱重工業株式会社 ターボチャージャの軸受装置
JP5337227B2 (ja) 2011-11-15 2013-11-06 三菱重工業株式会社 浮動ブッシュ軸受
WO2014097417A1 (ja) 2012-12-19 2014-06-26 三菱重工業株式会社 浮動ブッシュ軸受装置及びこれを備える過給機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142014A (ja) * 1982-02-17 1983-08-23 Hitachi Ltd 浮動ブツシユ軸受
JPS61201917A (ja) * 1985-03-05 1986-09-06 Mitsubishi Heavy Ind Ltd 浮動ブシユ軸受
JPH0678489A (ja) * 1992-08-24 1994-03-18 Toshiba Corp 油潤滑ラジアル軸受装置
JPH08219148A (ja) * 1995-02-16 1996-08-27 Mitsubishi Heavy Ind Ltd 浮動ブッシュ軸受
JP2002332864A (ja) * 2001-05-02 2002-11-22 Nippon Soken Inc ターボチャージャの潤滑装置
JP2011236966A (ja) * 2010-05-10 2011-11-24 Ihi Corp 浮動ブッシュ、すべり軸受構造及び過給機
JP2012207584A (ja) * 2011-03-29 2012-10-25 Mitsubishi Heavy Ind Ltd ターボチャージャおよびフローティングブッシュ製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3112707A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208543A (zh) * 2015-09-14 2017-09-26 三菱重工业株式会社 涡轮增压器
WO2017155827A1 (en) * 2016-03-05 2017-09-14 Eaton Corporation Positive displacement device
US10816036B2 (en) 2016-12-05 2020-10-27 BMTS Technology GmbH & Co. KG Bearing bushing with radial depressions and plateau surfaces
US11493052B2 (en) 2018-04-27 2022-11-08 Ihi Corporation Bearing and turbocharger

Also Published As

Publication number Publication date
EP3112707A1 (en) 2017-01-04
JPWO2015128978A1 (ja) 2017-03-30
CN105940229B (zh) 2018-09-28
US10330152B2 (en) 2019-06-25
EP3321527A1 (en) 2018-05-16
EP3321527B1 (en) 2019-12-18
JP6250787B2 (ja) 2017-12-20
EP3112707B1 (en) 2019-12-11
US20170009810A1 (en) 2017-01-12
EP3112707A4 (en) 2017-02-15
CN105940229A (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
JP6250787B2 (ja) 浮動ブッシュ軸受装置、及び、該軸受装置を備えるターボチャージャ
JP6250786B2 (ja) テーパランド型スラスト軸受装置、及び、該軸受装置を備えるターボチャージャ
WO2016051531A1 (ja) タービン
US10557377B2 (en) Turbocharger
WO2017010450A1 (ja) 多円弧軸受および過給機
WO2017026270A1 (ja) 軸受構造、および、過給機
WO2017026292A1 (ja) 軸受構造、および、過給機
JPWO2020021908A1 (ja) 軸受構造および過給機
US20150330240A1 (en) Turbocharger outboard purge seal
JP6593516B2 (ja) 軸受構造、および、過給機
WO2016043090A1 (ja) 回転機械
US20190107052A1 (en) Turbocharger
US20220372992A1 (en) Rotating machinery
JP2013224627A (ja) 軸流ファン
EP3705698B1 (en) Turbine and turbocharger
WO2022168897A1 (ja) スラスト軸受装置及びターボチャージャ
WO2017014084A1 (ja) 軸受構造および過給機
JP7476125B2 (ja) 遠心回転機械
JP7435382B2 (ja) ターボ圧縮機
WO2022107524A1 (ja) 軸受および過給機
JP7048431B2 (ja) ターボチャージャ
WO2022118606A1 (ja) 軸受構造、および、過給機
WO2021149244A1 (ja) ターボチャージャ
WO2018029838A1 (ja) ジャーナル軸受及び回転機械
JPWO2019225163A1 (ja) 遠心圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884074

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504923

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014884074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014884074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15114156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE