WO2015119233A1 - (メタ)アクリル樹脂組成物の製造方法 - Google Patents

(メタ)アクリル樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2015119233A1
WO2015119233A1 PCT/JP2015/053341 JP2015053341W WO2015119233A1 WO 2015119233 A1 WO2015119233 A1 WO 2015119233A1 JP 2015053341 W JP2015053341 W JP 2015053341W WO 2015119233 A1 WO2015119233 A1 WO 2015119233A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
material liquid
meth
acrylic resin
resin composition
Prior art date
Application number
PCT/JP2015/053341
Other languages
English (en)
French (fr)
Inventor
康仁 北出
宙 小澤
田中 正二
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020167009708A priority Critical patent/KR102164738B1/ko
Priority to SG11201606349SA priority patent/SG11201606349SA/en
Priority to MYPI2016702843A priority patent/MY182425A/en
Priority to JP2015561046A priority patent/JP6645834B2/ja
Priority to CN201580007698.2A priority patent/CN105980414A/zh
Priority to US15/116,676 priority patent/US9920142B2/en
Priority to EP15745810.0A priority patent/EP3103819B1/en
Publication of WO2015119233A1 publication Critical patent/WO2015119233A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/62Monocarboxylic acids having ten or more carbon atoms; Derivatives thereof
    • C08F20/68Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/10Removal of volatile materials, e.g. solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical

Definitions

  • the present invention relates to a method for producing a (meth) acrylic resin composition. More specifically, in the present invention, in the continuous bulk polymerization method, even when the operation is temporarily stopped, the polymerization conversion rate of the reaction liquid in the reaction tank is hardly changed, and the deterioration of the raw material liquid staying in the pipe does not proceed.
  • the present invention relates to a method for producing a (meth) acrylic resin composition.
  • a molded product made of a (meth) acrylic resin composition has excellent transparency and little optical distortion, it is used for optical lenses, disk substrates, automobile parts, signboards, nameplates, lighting covers, light guide plates, and the like.
  • a raw material liquid containing a polymerizable monomer, a polymerization initiator, etc. is continuously supplied to a tank reactor to perform bulk polymerization and continuously produce a reaction product.
  • This continuous bulk polymerization method is suitable for producing a large amount of a (meth) acrylic resin composition having excellent optical properties.
  • the operation may be stopped for cleaning or replacement of parts.
  • the temperature of the reaction solution in the polymerization tank is lowered in order to prevent oxidation and deterioration of the resin, or all of the reaction solution is withdrawn from the polymerization tank as necessary. For this reason, it takes time and effort to resume operation, and the loss of raw materials and heat is one of the causes of increased manufacturing costs.
  • One countermeasure is to maintain the amount, temperature, and polymerization conversion rate of the reaction liquid in the tank reactor while the supply of the polymerizable monomer and polymerization initiator is stopped using a chain transfer agent.
  • Japanese Patent Application Laid-Open No. H10-228561 proposes a method for performing this.
  • the object of the present invention is to prevent the polymerization conversion rate of the reaction liquid in the reaction vessel from changing substantially even when the operation is temporarily stopped in the continuous bulk polymerization method, and also to prevent deterioration of the raw material liquid staying in the pipe or the like. It is possible to provide a method for producing a (meth) acrylic resin composition.
  • a raw material solution containing methyl methacrylate, alkyl acrylate and chain transfer agent in a mass ratio of alkyl acrylate / methyl methacrylate of 0/100 to 20/80 and having a dissolved oxygen concentration of 50 ppm or less ( A) Prepare Containing a radical polymerization initiator, a polymerization inhibitor and methyl methacrylate, and preparing a raw material liquid (B) maintained at a liquid temperature of 10 ° C.
  • the raw material liquid (A) and the raw material liquid (B) are continuously supplied to the tank reactor, Bulk reaction at a polymerization conversion rate of 40 to 70% by mass in a tank reactor to obtain a reaction product,
  • a method for producing a (meth) acrylic resin composition comprising a step of continuously extracting a reaction product from a tank reactor.
  • a raw material liquid containing a polymerization initiator and a tank reactor The reaction liquid inside can be maintained in a stable state, and the operation can be stabilized immediately even when the operation is resumed.
  • the method for producing a (meth) acrylic resin composition includes preparing a raw material liquid (A), preparing a raw material liquid (B), and preparing a raw material liquid (A) and a raw material liquid (B). Is continuously supplied to the tank reactor, bulk polymerization is performed in the tank reactor to obtain a reaction product, and the reaction product is continuously extracted from the tank reactor.
  • the raw material liquid (A) contains methyl methacrylate, alkyl acrylate and a chain transfer agent.
  • the methyl methacrylate and alkyl acrylate contained in the raw material liquid (A) are preferably in a mass ratio of alkyl acrylate / methyl methacrylate, preferably 0/100 to 20/80, more preferably 0/100 to 10 / 90.
  • the total supply amount of methyl methacrylate and alkyl acrylate contained in the raw material liquid (A) may be contained in the raw material liquid (A) from 100 parts by mass of all polymerizable monomers used for polymerization. It is the amount obtained by subtracting the supply amount of methyl methacrylate contained in the other polymerizable monomer and the raw material liquid (B) described later.
  • alkyl acrylate examples include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate. These alkyl acrylates can be used alone or in combination of two or more. Of these, methyl acrylate is preferred.
  • the raw material liquid (A) can contain other polymerizable monomers.
  • the polymerizable monomer include methacrylic acid alkyl esters other than methyl methacrylate such as ethyl methacrylate, propyl methacrylate, butyl methacrylate and 2-ethylhexyl methacrylate; aryl methacrylates such as phenyl methacrylate; methacrylic acid Methacrylic acid cycloalkyl esters such as cyclohexyl and norbornenyl methacrylate; Acrylic acid aryl esters such as phenyl acrylate; Acrylic acid cycloalkyl esters such as cyclohexyl acrylate and norbornenyl acrylate; Styrene, ⁇ -methylstyrene, etc.
  • Examples include vinyl monomers having only one polymerizable alkenyl group in one molecule such as aromatic vinyl monomer; acrylamide; methacrylamide; acrylonitrile; methacrylonitrile; It is.
  • the amount of the other polymerizable monomer is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, with respect to 100 parts by mass of all the polymerizable monomers subjected to polymerization.
  • the methyl methacrylate, acrylic acid alkyl ester and other polymerizable monomers used in the present invention preferably contain a polymerization inhibitor.
  • the polymerization inhibitor is not particularly limited as long as it exhibits a polymerization inhibition effect in the presence of oxygen, but is preferably one that does not inhibit the polymerization reaction under an inert gas atmosphere.
  • Typical examples of such a polymerization inhibitor include phenol-based polymerization inhibitors such as butylxylenol, methoquinone and hydroquinone; phenothiazine and the like.
  • the content of such a polymerization inhibitor is preferably from 0.1 ppm to 50 ppm, more preferably from 0.5 ppm to 30 ppm, based on the total amount of polymerizable monomers contained in the raw material liquid (A).
  • Examples of the chain transfer agent contained in the raw material liquid (A) include n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiol.
  • chain transfer agents can be used alone or in combination of two or more.
  • the amount of the chain transfer agent is preferably 0.1 to 1 part by weight, more preferably 0.2 to 0.8 part by weight, based on 100 parts by weight of all polymerizable monomers subjected to polymerization.
  • the amount is preferably 0.3 to 0.6 parts by mass.
  • the dissolved oxygen concentration of the raw material liquid (A) is 50 ppm or less, preferably 1 ppm or less. When the dissolved oxygen concentration of the raw material liquid (A) is large, stable polymerization may be hindered.
  • b * is preferably ⁇ 1 to 2, and more preferably ⁇ 0.5 to 1.5.
  • CIE International Commission on Illumination
  • the raw material liquid (A) is not particularly limited by its preparation method.
  • it can be obtained by mixing methyl methacrylate, alkyl acrylate and chain transfer agent at a predetermined ratio, and then contacting with an inert gas such as nitrogen gas to drive out dissolved oxygen.
  • the methyl methacrylate, acrylic acid alkyl ester and chain transfer agent used in the raw material liquid (A) are polymerized as described below, with virgin ones that have been transferred from the raw material tank (not yet subjected to the polymerization reaction). It may include those that have been subjected to the reaction but recovered as unreacted substances.
  • the recovered unreacted material may contain a dimer or trimer in addition to methyl methacrylate, alkyl acrylate and chain transfer agent.
  • b * may be high in the unreacted material due to heat applied during recovery. In such a case, it is purified by a known method to remove the dimer or trimer, and b * is preferably ⁇ 1 to 2, more preferably ⁇ 0.5 to 1.5. can do. When the b * is in this range, when the resulting (meth) acrylic resin composition is molded, it is advantageous for obtaining a molded product with little coloration with high production efficiency.
  • the supply amount (kg / h) of the raw material liquid (A) relative to the supply amount of inert gas (Nm 3 / h) may be less than 0.30. preferable. With such a supply amount ratio, the dissolved oxygen concentration of the raw material liquid (A) can be efficiently reduced.
  • the inert gas can be bubbled in the raw material liquid (A).
  • the raw material liquid (B) contains a radical polymerization initiator, a polymerization inhibitor and methyl methacrylate.
  • the radical polymerization initiator contained in the raw material liquid (B) is not particularly limited as long as it generates reactive radicals. However, the half-life at a temperature in the tank reactor described later is 0.5 to 120 seconds. Preferably 2 to 60 seconds.
  • the polymerization initiator preferably has a hydrogen abstraction ability of 40% or less, and more preferably 30% or less. These polymerization initiators can be used alone or in combination of two or more.
  • radical polymerization initiator examples include t-hexyl peroxyisopropyl monocarbonate, t-hexyl peroxy 2-ethylhexanoate, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate, t-butylperoxypivalate, t-hexylperoxypivalate, t-butylperoxyneodecanoate, t-hexylperoxyneodecanoate, 1,1,3,3-tetramethylbutylperper Oxyneodecanoate, 1,1-bis (t-hexylperoxy) cyclohexane, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide, 2,2'-azobis (2-methyl) Propionitrile), 2,2′-azobis (2-methylbutyronitrile), di And methyl 2,2'-azobis (2-methylpropionate
  • 2,2′-azobis (2-methylpropionitrile), t-hexylperoxy 2-ethylhexanoate, 1,1-bis (t-hexylperoxy) cyclohexane, dimethyl 2,2 ′ -Azobis (2-methylpropionate) is preferred.
  • the hydrogen abstraction ability can be known from technical data (for example, Non-Patent Document 1) of the polymerization initiator manufacturer. Further, it can be measured by a radical trapping method using ⁇ -methylstyrene dimer, that is, ⁇ -methylstyrene dimer trapping method. The measurement is generally performed as follows. First, the polymerization initiator is cleaved in the presence of ⁇ -methylstyrene dimer as a radical trapping agent to generate radical fragments. Among the generated radical fragments, radical fragments having a low hydrogen abstraction ability are added to and trapped by the double bond of ⁇ -methylstyrene dimer.
  • a radical fragment having a high hydrogen abstraction capacity abstracts hydrogen from cyclohexane to generate a cyclohexyl radical, and the cyclohexyl radical is added to and trapped by a double bond of ⁇ -methylstyrene dimer to generate a cyclohexane trapping product. Therefore, the ratio (mole fraction) of radical fragments having a high hydrogen abstraction capacity with respect to the theoretical radical fragment generation amount, which is obtained by quantifying cyclohexane or cyclohexane supplement product, is defined as the hydrogen abstraction capacity.
  • the supply amount of the radical polymerization initiator is smaller than the supply amount of the raw material liquid (A), it is diluted by dissolving the radical polymerization initiator in methyl methacrylate to facilitate the supply of the radical polymerization initiator.
  • the concentration of the radical polymerization initiator in the raw material liquid (B) is preferably 0.01% by mass to less than 4% by mass, more preferably 0.1% by mass to less than 2% by mass. Since the raw material liquid (B) having a radical polymerization initiator concentration that is too low needs to be supplied in a large amount to the reaction vessel, the polymerization tends to become unstable.
  • the raw material liquid (B) having a radical polymerization initiator concentration that is too high has low storage stability, if the operation is stopped for a long period of time, there is a tendency that inconvenience is likely to occur when the operation is resumed.
  • the polymerization inhibitor contained in the raw material liquid (B) is not particularly limited as long as it exhibits a polymerization inhibition effect in the presence of oxygen, but is preferably one that does not inhibit the polymerization in an inert gas atmosphere.
  • Typical examples of such a polymerization inhibitor include phenol-based polymerization inhibitors such as butylxylenol, methoquinone and hydroquinone; phenothiazine and the like.
  • the content of such a polymerization inhibitor is preferably 0.1 ppm to 50 ppm, more preferably 0.5 ppm to 30 ppm with respect to methyl methacrylate contained in the raw material liquid (B).
  • the raw material liquid (B) is maintained at a liquid temperature of 10 ° C. or lower, preferably 5 ° C. or lower, more preferably 2 ° C. or lower, and further preferably 0 ° C. or lower.
  • Oxygen can be present, for example, by blowing air into the raw material liquid (B) preparation tank.
  • the temperature of the raw material liquid (B) is maintained at 10 ° C. or lower, alteration of the raw material liquid (B) is suppressed.
  • the temperature is higher than 10 ° C., radicals are generated by decomposition of the radical polymerization initiator, and the polymerization reaction of methyl methacrylate as a solvent may proceed.
  • a solvent is not used in principle, but when it is necessary to adjust the viscosity, the solvent can be contained in the raw material liquid (A) or the raw material liquid (B).
  • the solvent aromatic hydrocarbons such as benzene, toluene and ethylbenzene are preferable. These solvents can be used alone or in combination of two or more.
  • the amount of the solvent used is preferably 30 parts by mass or less, more preferably 10 parts by mass or less, with respect to 100 parts by mass of all polymerizable monomers to be subjected to polymerization.
  • the tank reactor used in the method of the present invention is usually a reaction tank, a stirring means for stirring the liquid in the reaction tank, a supply port for supplying the raw material liquid to the reaction tank, and a reaction generated from the reaction tank. It has an outlet for extracting objects.
  • the supply port for supplying the raw material liquid to the reaction tank may be installed on the top surface of the reaction tank, or may be installed on the side surface of the reaction tank. However, it may be installed on the bottom of the reaction vessel.
  • the height of the supply port may be higher than the liquid level in the reaction tank, or may be lower than the liquid level in the reaction tank.
  • the shape of the supply port may be the shape of the cut end of the circular tube itself, or may be a shape in which the raw material liquid is widely dispersed on the liquid surface in the reaction tank.
  • the method for supplying the raw material liquid (A) and the raw material liquid (B) to the tank reactor is not particularly limited.
  • the raw material liquid (A) and the raw material liquid (B) may be supplied through the respective supply ports, or a tank type having at least one supply port.
  • the flow of the raw material liquid (A) and the flow of the raw material liquid (B) may be merged in a pipe or mixing tank immediately before the supply port, and then supplied through the supply port.
  • the junction may be equipped with a dynamic stirrer or a static stirrer.
  • the supply amount of the raw material liquid (A) and the raw material liquid (B) to the tank reactor is preferably 10/1 to 1000/1 as the mass ratio of the raw material liquid (A) to the raw material liquid (B).
  • the ratio of the supply amount of the raw material liquid (A) is too large, the radical polymerization initiator concentration of the raw material liquid (B) must be increased in order to start the polymerization reaction. As a result, the storage stability of the raw material liquid (B) tends to decrease.
  • the ratio of the supply amount of the raw material liquid (A) is too small, the dissolved oxygen concentration in the polymerization reaction tank becomes high and the polymerization tends to become unstable.
  • the total amount of the raw material liquid supplied to the reaction tank and the total amount of the reaction product withdrawn from the reaction tank are balanced so that the liquid volume in the reaction tank becomes substantially constant.
  • the amount of liquid in the reaction tank is preferably 1 ⁇ 4 or more, more preferably 1/4 to 3/4, and still more preferably 1/3 to 2/3 with respect to the volume of the reaction tank.
  • the bulk polymerization reaction is preferably carried out in an inert gas atmosphere by introducing an inert gas into the gas phase portion of the reaction vessel.
  • the stirring means include a Max blend type stirring device, a lattice blade type stirring device, a propeller type stirring device, a screw type stirring device, a helical ribbon type stirring device, and a paddle type stirring device.
  • the Max blend type stirring device is preferable from the viewpoint of uniform mixing.
  • the temperature in the tank reactor that is, the temperature of the liquid in the reaction tank is preferably 100 to 170 ° C, more preferably 110 to 160 ° C, and still more preferably 115 to 150 ° C.
  • the liquid temperature can be controlled by an external heat exchange type adjustment method such as a jacket or a heat transfer tube, a self heat exchange type adjustment method in which a raw material liquid or a tube through which a reaction product flows is arranged in the reaction tank.
  • bulk polymerization is preferably carried out until the polymerization conversion becomes 40 to 70% by mass, preferably 42 to 65% by mass.
  • the water content in the reaction liquid in the tank reactor is preferably 1000 ppm or less, more preferably 700 ppm or less, and 280 ppm or less. Is more preferable.
  • the moisture is preferably 1000 ppm or less, it is possible to suppress the generation of resin foreign matter having a size of several ⁇ m to several tens of ⁇ m during the polymerization reaction, and the obtained (meth) acrylic resin composition is formed into a film or sheet by melt molding. Occasionally, the occurrence of a defect with an outer diameter of several tens of ⁇ m with the resin foreign substance as a core can be greatly reduced.
  • the high molecular weight (meth) acrylic resin produced in the gas phase part of the reaction vessel is mixed in as a resin foreign matter, which becomes an unmelted product at the core of the defect during melt molding. Estimated to be.
  • an inert gas is introduced into the gas phase portion of the tank reactor or a method of treating the raw material liquid with an adsorption dehydration tower or the like before supplying it to the tank reactor, Examples include a method in which a part of the vapor is accompanied by an inert gas, condensed by a brine-cooled condenser, and extracted out of the system.
  • Another reactor may be connected to the subsequent stage of the tank reactor.
  • the reactor that can be connected to the subsequent stage may be a tank reactor or a tube reactor.
  • the bulk polymerization can be further advanced to further increase the polymerization conversion rate.
  • the reaction product obtained by the bulk polymerization as described above is withdrawn from a tank reactor (or a downstream reactor when another reactor is connected to the downstream). It is preferable to balance the extraction amount of the reaction product with the supply amount of the raw material liquid so that the liquid amount in the reaction tank is constant.
  • the reaction product contains a (meth) acrylic resin, an unreacted polymerizable monomer (such as methyl methacrylate or an alkyl acrylate ester), and an unreacted chain transfer agent.
  • the content of (meth) acrylic resin in the reaction product is preferably 40 to 70% by mass, more preferably 42 to 65% by mass.
  • a large stirring power tends to be required for increasing the viscosity.
  • the content of the (meth) acrylic resin is too low, the removal of the unreacted product in the step of removing the unreacted product in the reaction product becomes insufficient, and the resulting (meth) acrylic resin composition is molded. , There is a tendency to cause appearance defects such as silver in the molded product.
  • the weight average molecular weight (hereinafter sometimes abbreviated as Mw) of the (meth) acrylic resin is preferably 35,000 to 200,000, more preferably 40,000 to 150,000, and even more preferably 45,000 to 130,000.
  • Mw weight average molecular weight
  • Mw is too small, the impact resistance and toughness of the molded product obtained from the (meth) acrylic resin composition tend to decrease.
  • Mw is too large, the fluidity of the (meth) acrylic resin composition is lowered and the moldability tends to be lowered.
  • the (meth) acrylic resin has a weight average molecular weight / number average molecular weight ratio (hereinafter, this ratio may be referred to as a molecular weight distribution), preferably 1.5 to 2.6, more preferably 1.6. To 2.3, particularly preferably 1.7 to 2.0.
  • a weight average molecular weight and a number average molecular weight are molecular weights of standard polystyrene conversion measured by GPC (gel permeation chromatography).
  • the weight average molecular weight and molecular weight distribution of the (meth) acrylic resin can be controlled by adjusting the types and amounts of the polymerization initiator and the chain transfer agent.
  • Unreacted substances contained in the reaction product can be recovered by known chemical engineering means.
  • a recovery method for example, a method by heat devolatilization is preferable.
  • the heat devolatilization method include an equilibrium flash evaporation method and an adiabatic flash evaporation method, but an adiabatic flash evaporation method is preferable.
  • the temperature at which the adiabatic flash evaporation method is performed is preferably 200 to 300 ° C., more preferably 220 to 270 ° C. If the temperature at which the adiabatic flash evaporation method is performed is less than 200 ° C., it takes time for devolatilization, resulting in insufficient devolatilization, which may cause appearance defects such as silver in the molded product.
  • the (meth) acrylic resin composition tends to be colored due to oxidation, burning, or the like.
  • the adiabatic flash evaporation method may be performed in multiple stages.
  • the reaction product flowing through the heat transfer tube can be heated with the unreacted vapor that has been flash evaporated, and the heated reaction product can be fed into a low pressure flash tank for flash evaporation.
  • the reaction product can be pressurized by a pump or the like.
  • the unreacted material just recovered by the pressure devolatilization method includes a dimer or a trimer in addition to methyl methacrylate, an alkyl acrylate ester, and a chain transfer agent. Since the dimer or trimer may affect the properties of the (meth) acrylic resin, it is preferably removed from the unreacted material. In removing the dimer or trimer, a part of the chain transfer agent and the solvent may be removed. Removal of the dimer or trimer can be carried out by known chemical engineering means. For example, a distillation method is preferable.
  • the distillation column used in the present invention is not particularly limited, but is preferably a multistage distillation column having about 6 to 20 stages and a reflux ratio of about 0.4 to 2.0.
  • the (meth) acrylic resin composition according to the present invention is obtained by recovering the unreacted product from the reaction product.
  • the obtained (meth) acrylic resin composition can be made into pellets or particles according to a known method in order to facilitate handling as a molding material.
  • the amount of the polymerizable monomer remaining in the (meth) acrylic resin composition obtained in the present invention is preferably 1% by mass or less, and more preferably 0.5% by mass or less.
  • additives can be blended in the (meth) acrylic resin composition obtained by the production method of the present invention, if necessary.
  • the amount of the additive is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, based on the (meth) acrylic resin composition. If the amount of the additive is too large, appearance defects such as silver may occur in the molded product.
  • Additives include antioxidants, thermal degradation inhibitors, UV absorbers, light stabilizers, lubricants, mold release agents, polymer processing aids, antistatic agents, flame retardants, dyes and pigments, light diffusing agents, organic dyes , Matting agents, impact resistance modifiers, phosphors and the like.
  • An antioxidant exhibits the effect of preventing oxidative degradation of the resin alone in the presence of oxygen.
  • examples thereof include phosphorus antioxidants, hindered phenol antioxidants, and thioether antioxidants. These antioxidants can be used alone or in combination of two or more.
  • a phosphorus-based antioxidant or a hindered phenol-based antioxidant is preferable, and a combination of a phosphorus-based antioxidant and a hindered phenol-based antioxidant is more preferable. preferable.
  • the ratio is not particularly limited, but is preferably a mass ratio of phosphorus antioxidant / hindered phenol antioxidant, preferably 1/5. ⁇ 2 / 1, more preferably 1 ⁇ 2 to 1/1.
  • Examples of phosphorus antioxidants include 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (Asahi Denka Co., Ltd .; trade name: ADK STAB HP-10), Tris (2,4-dit -Butylphenyl) phosphite (manufactured by Ciba Specialty Chemicals; trade name: IRUGAFOS168), 3,9-bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8,10 -Tetraoxa-3,9-diphosphaspiro [5.5] undecane (manufactured by ADEKA; trade name: ADK STAB PEP-36) is preferred.
  • pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by Ciba Specialty Chemicals; trade name IRGANOX 1010)
  • Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (manufactured by Ciba Specialty Chemicals; trade name IRGANOX 1076) is preferred.
  • the thermal degradation inhibitor can prevent thermal degradation of the resin by scavenging polymer radicals generated when exposed to high heat in a substantially oxygen-free state.
  • the thermal degradation inhibitor include 2-t-butyl-6- (3′-t-butyl-5′-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilizer GM), 2,4-di-t-amyl-6- (3 ′, 5′-di-t-amyl-2′-hydroxy- ⁇ -methylbenzyl) phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumitizer GS) preferable.
  • the ultraviolet absorber is a compound having an ability to absorb ultraviolet rays.
  • the ultraviolet absorber is a compound that is said to have a function of mainly converting light energy into heat energy.
  • Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, formamidines, and the like. These can be used alone or in combination of two or more.
  • benzotriazoles or ultraviolet absorbers having a maximum molar extinction coefficient ⁇ max at a wavelength of 380 to 450 nm of 1200 dm 3 ⁇ mol ⁇ 1 cm ⁇ 1 or less are preferable.
  • an ultraviolet absorber used when a (meth) acrylic resin composition is applied to applications requiring the above properties is applied to applications requiring the above properties. As preferred.
  • benzotriazoles examples include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by Ciba Specialty Chemicals; trade name TINUVIN329), 2 -(2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by Ciba Specialty Chemicals; trade name TINUVIN234), 2,2'-methylenebis [4 -T-octyl-6- (2H-benzotriazol-2-yl) phenol] (manufactured by ADEKA; LA-31), 2- (5-octylthio-2H-benzotriazol-2-yl) -6-tert- Butyl-4-methylphenol and the like are preferable.
  • the ultraviolet absorber having the maximum molar extinction coefficient ⁇ max at wavelengths of 380 to 450 nm of 1200 dm 3 ⁇ mol ⁇ 1 cm ⁇ 1 or less can suppress the yellowness of the obtained molded product.
  • an ultraviolet absorber having a maximum molar extinction coefficient ⁇ max at a wavelength of 380 to 450 nm of 1200 dm 3 ⁇ mol ⁇ 1 cm ⁇ 1 or less, 2-ethyl-2′-ethoxy-oxalanilide (manufactured by Clariant Japan, Inc .; Trade name Sundeyuboa VSU).
  • benzotriazoles are preferably used from the viewpoint of suppressing resin degradation due to ultraviolet irradiation.
  • the light stabilizer is a compound that is said to have a function of capturing radicals generated mainly by oxidation by light.
  • Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.
  • the mold release agent is a compound having a function of facilitating release of the molded product from the mold.
  • the release agent include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride.
  • the ratio is not particularly limited, but the mass ratio of higher alcohols / glycerin fatty acid monoester is preferably 2.5 / 1 to 3.5 / 1. The preferred range is 2.8 / 1 to 3.2 / 1.
  • the polymer processing aid is a compound that exhibits an effect on thickness accuracy and thinning when a (meth) acrylic resin composition is molded.
  • the polymer processing aid is polymer particles having a particle diameter of 0.05 to 0.5 ⁇ m, which can be usually produced by an emulsion polymerization method.
  • the polymer particles may be single layer particles composed of polymers having a single composition ratio and single intrinsic viscosity, or multilayer particles composed of two or more kinds of polymers having different composition ratios or intrinsic viscosities. May be.
  • particles having a two-layer structure having a polymer layer having a low intrinsic viscosity in the inner layer and a polymer layer having a high intrinsic viscosity of 5 dl / g or more in the outer layer are preferable.
  • the polymer processing aid preferably has an intrinsic viscosity of 3 to 6 dl / g. If the intrinsic viscosity is too small, the effect of improving moldability is low. If the intrinsic viscosity is too large, the melt fluidity of the (meth) acrylic resin composition tends to be lowered.
  • An impact modifier may be added to the (meth) acrylic resin composition.
  • the impact modifier include a core-shell type modifier containing acrylic rubber or diene rubber as a core layer component; a modifier containing a plurality of rubber particles, and the like.
  • the organic dye a compound having a function of converting ultraviolet rays that are harmful to the resin into visible light is preferably used.
  • the light diffusing agent and matting agent include glass fine particles, polysiloxane crosslinked fine particles, crosslinked polymer fine particles, talc, calcium carbonate, and barium sulfate.
  • the phosphor include a fluorescent pigment, a fluorescent dye, a fluorescent white dye, a fluorescent brightener, and a fluorescent bleach.
  • additives may be added at the reaction raw material stage, may be added at the reaction product stage, or may be added at the stage of the (meth) acrylic resin composition obtained after devolatilization. Good.
  • molded products can be obtained by molding (melt heat molding) the (meth) acrylic resin composition obtained by the production method of the present invention by a conventionally known molding method such as injection molding, compression molding, extrusion molding, or vacuum molding.
  • molded products made of the (meth) acrylic resin composition include billboard parts such as advertising towers, stand signs, sleeve signs, column signs, and rooftop signs; display parts such as showcases, partition plates, and store displays; Lighting parts such as light covers, mood lighting covers, lamp shades, light ceilings, light walls, and chandeliers; interior parts such as pendants and mirrors; doors, domes, safety window glass, partitions, staircases, balcony waistboards, leisure buildings Building parts such as roofs; aircraft windshields, pilot visors, motorcycles, motorboat windshields, bus shading plates, automotive side visors, rear visors, head wings, headlight covers, and other transportation equipment related parts; Electronics such as stereo covers, TV protective masks, and vending machines Instrument parts; Medical equipment parts such as incubators and
  • the present invention will be described more specifically with reference to examples and comparative examples.
  • this invention is not restrict
  • the present invention includes all aspects that are obtained by arbitrarily combining the above-described items representing technical characteristics such as characteristic values, forms, manufacturing methods, and uses.
  • the polymerization conversion was measured during continuous operation. The supply of the raw material liquid to the tank reactor and the extraction of the reaction product from the tank reactor were stopped. Next, the polymerization conversion was measured when 5 hours had passed since the shutdown. A case where the change in the polymerization conversion rate during continuous operation and 5 hours after the stop of the operation was 5% or more was regarded as defective (x). A case where the change in the polymerization conversion rate during continuous operation and after 5 hours from the stop of the operation was less than 5% was evaluated as good ( ⁇ ).
  • Example 1 In an autoclave equipped with a stirrer and a sampling tube, 98.9 parts by mass of purified methyl methacrylate (MMA), 1.1 parts by mass of methyl acrylate (MA), and 0.257 mass of n-octyl mercaptan (OM) as a chain transfer agent
  • the raw material liquid (A) was obtained by mixing and mixing the parts. Nitrogen gas was blown into the raw material liquid (A) so that the ratio of the supply amount (kg / h) of the raw material liquid (A) to the supply amount of nitrogen gas (Nm 3 / h) was 0.2.
  • the dissolved oxygen concentration of the raw material liquid (A) was adjusted to 0.3 ppm.
  • MMA methyl methacrylate
  • AIBN 2,2′-azobis (2-methylpropionitrile)
  • butylxylenol polymerization inhibitor
  • the raw material liquid (B) was obtained by adjusting the liquid temperature to 0 ° C. in an atmosphere substituted with industrial air.
  • the inside of a continuous flow tank reactor (capacity 0.1 m 3 , tank diameter 500 mm, Max blend blade, blade diameter 260 mm, rotation speed 200 rpm) equipped with a brine cooled condenser was replaced with nitrogen gas.
  • the raw material liquid (A) and the raw material liquid (B) are mixed so that the polymerization initiator concentration is 74 ppm to obtain a reaction liquid, and the above tank-type reaction is performed at a constant flow rate so that the average residence time is 120 minutes.
  • the reaction solution was continuously supplied to the reactor, and the reaction solution temperature was adjusted to 140 ° C. and the pressure in the tank reactor was adjusted to 0.3 MPa, and bulk polymerization was performed. At the same time, the reaction product was continuously extracted from the tank reactor.
  • the pressure in the tank reactor was adjusted by a pressure regulating valve connected to the brine cooling condenser.
  • the polymerization stability and the storage stability of the raw material liquid (B) were evaluated. The results are shown in Table 1.
  • Examples 2 to 3 and Comparative Examples 1 to 3 A continuous bulk polymerization reaction was performed in the same manner as in Example 1 except that the recipe shown in Table 1 was changed.
  • Table 1 shows the evaluation results of the polymerization stability and the storage stability of the raw material liquid (B).
  • the polymerization conversion rate of the reaction liquid in the reaction vessel does not change so much even when the operation is temporarily stopped in the continuous bulk polymerization method. Moreover, since the raw material liquid (B) can also be maintained in a stable state, the state before the stop can be restored immediately after restarting the operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 メタクリル酸メチル、アクリル酸アルキルエステルおよび連鎖移動剤を、アクリル酸アルキルエステル/メタクリル酸メチルの質量比0/100~20/80で含有し、且つ溶存酸素濃度が50ppm以下の原料液(A)を調製し、ラジカル重合開始剤、重合禁止剤およびメタクリル酸メチルを含有し、酸素存在下、液温10℃以下に維持された原料液(B)を調製し、原料液(A)および原料液(B)を槽型反応器に連続的に供給し、槽型反応器内で重合転化率40~70質量%で塊状重合して反応生成物を得る工程を有する方法によって、(メタ)アクリル樹脂組成物を得る。

Description

(メタ)アクリル樹脂組成物の製造方法
 本発明は、(メタ)アクリル樹脂組成物の製造方法に関する。より詳細に、本発明は、連続塊状重合法において、運転を一時停止した場合でも、反応槽内の反応液の重合転化率がほとんど変わらず、また配管などに滞留した原料液の劣化が進まないようにすることができる、(メタ)アクリル樹脂組成物の製造方法に関する。
 (メタ)アクリル樹脂組成物からなる成形品は、透明性に優れ光学歪も少ないことから、光学レンズ、ディスク基板、自動車部品、看板、銘板、照明カバー、導光板などに用いられている。
 (メタ)アクリル樹脂組成物の製造方法の一つとして、重合性単量体、重合開始剤などを含む原料液を槽型反応器に連続的に供給して塊状重合させ反応生成物を連続的に抜き出す方法(以下、連続塊状重合法ということがある。)が知られている。この連続塊状重合法は光学特性に優れた(メタ)アクリル樹脂組成物を大量に製造するのに適している。
 この連続塊状重合法においては、清掃や部品交換等のために、運転を停止させることがある。運転を停止する際には、樹脂の酸化や劣化を防ぐために重合槽内の反応液温度を下げたり、必要に応じて反応液の全てを重合槽から抜き出したりする。そのため、運転再開までに手間と時間を要し、また原料や熱を損失するので、製造コスト増加の要因の一つとなっている。その対策の一つとして、連鎖移動剤を用いて、重合性単量体および重合開始剤の供給を停止している間、槽型反応器内の反応液の量、温度および重合転化率を維持する方法が特許文献1にて提案されている。
特開2010-229318号公報
日本油脂株式会社技術資料「有機過酸化物の水素引抜き能と開始剤効率」(2003年4月作成) 化学工学協会,編:化学工学便覧,改定3版,p1068(1968)
 本発明の目的は、連続塊状重合法において、運転を一時停止した場合でも、反応槽内の反応液の重合転化率がほとんど変わらず、また配管などに滞留した原料液の劣化が進まないようにすることができる、(メタ)アクリル樹脂組成物の製造方法を提供することである。
 特許文献1に記載されている方法は優れた方法であるが、別の観点から検討を試みた。その結果、以下の態様を包含する本発明を完成するに至った。
〔1〕 メタクリル酸メチル、アクリル酸アルキルエステルおよび連鎖移動剤を、アクリル酸アルキルエステル/メタクリル酸メチルの質量比0/100~20/80で含有し、且つ溶存酸素濃度が50ppm以下の原料液(A)を調製し、
 ラジカル重合開始剤、重合禁止剤およびメタクリル酸メチルを含有し、酸素存在下、液温10℃以下に維持された原料液(B)を調製し、
 原料液(A)および原料液(B)を槽型反応器に連続的に供給し、
 槽型反応器内で重合転化率40~70質量%で塊状重合して反応生成物を得、
 反応生成物を槽型反応器から連続的に抜き出す工程を有する、(メタ)アクリル樹脂組成物の製造方法。
〔2〕 原料液(A)の溶存酸素濃度が1ppm以下である、〔1〕に記載の(メタ)アクリル樹脂組成物の製造方法。
〔3〕 原料液(B)のラジカル重合開始剤濃度が0.01質量%以上4質量%未満である、〔1〕または〔2〕に記載の(メタ)アクリル樹脂組成物の製造方法。
〔4〕 原料液(A)の溶存酸素濃度の調節は、不活性ガスの供給量[Nm3/h]に対する原料液(A)の供給量[kg/h]の割合が0.30未満になる条件にて原料液(A)と不活性ガスとを混合することを有する方法によって行われる、〔1〕~〔3〕のいずれかひとつに記載の製造方法。
〔5〕 反応生成物から未反応物を除去する工程をさらに有する、〔1〕~〔4〕のいずれかひとつに記載の(メタ)アクリル樹脂組成物の製造方法。
 本発明の(メタ)アクリル樹脂組成物の製造方法によれば、連続塊状重合法において、修理、点検等のために運転を一時停止した場合でも、重合開始剤を含む原料液及び槽型反応器内の反応液を安定状態で保持でき、かつ、運転を再開した際にも直ぐに運転を安定させることができる。その結果、重合開始剤を含む原料液を新調したり、槽型反応器内の反応液の温度を下げたり、反応液を槽型反応器から抜き出したりする必要が減るので、本発明は製造コストの大幅な削減に貢献できる。
本発明に係る製造方法を実施するための装置の一例を示す図である。
 本発明の一実施形態に係る(メタ)アクリル系樹脂組成物の製造方法は、原料液(A)を調製し、 原料液(B)を調製し、 原料液(A)および原料液(B)を槽型反応器に連続的に供給し、 槽型反応器内で塊状重合して反応生成物を得、反応生成物を槽型反応器から連続的に抜き出す工程を有するものである。
 原料液(A)は、メタクリル酸メチル、アクリル酸アルキルエステルおよび連鎖移動剤を含有するものである。
 原料液(A)に含有されるメタクリル酸メチルとアクリル酸アルキルエステルは、アクリル酸アルキルエステル/メタクリル酸メチルの質量比で、好ましくは0/100~20/80、より好ましくは0/100~10/90である。原料液(A)に含有されるメタクリル酸メチルとアクリル酸アルキルエステルの合計供給量は、重合に供される全ての重合性単量体100質量部から、原料液(A)に含有させることができる他の重合性単量体および後述する原料液(B)に含有されるメタクリル酸メチルの供給量を差し引いた量である。
 アクリル酸アルキルエステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシルなどが挙げられる。これらアクリル酸アルキルエステルは1種単独でまたは2種以上を組み合わせて用いることができる。これらのうち、アクリル酸メチルが好ましい。
 原料液(A)には、他の重合性単量体を含有させることができる。当該重合性単量体としては、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシルなどのメタクリル酸メチル以外のメタクリル酸アルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸シクロへキシル、メタクリル酸ノルボルネニルなどのメタクリル酸シクロアルキルエステル;アクリル酸フェニルなどのアクリル酸アリールエステル;アクリル酸シクロへキシル、アクリル酸ノルボルネニルなどのアクリル酸シクロアルキルエステル;スチレン、α-メチルスチレンなどの芳香族ビニル単量体;アクリルアミド;メタクリルアミド;アクリロニトリル;メタクリロニトリル;などの一分子中に重合性アルケニル基を一つだけ有するビニル単量体が挙げられる。他の重合性単量体の量は、重合に供される全ての重合性単量体100質量部において、好ましくは10質量部以下、より好ましくは5質量部以下である。
 本発明で用いるメタクリル酸メチル、アクリル酸アルキルエステルおよびその他の重合性単量体は、酸素存在下での保管時の重合を防止するために、重合禁止剤を含有することが好ましい。係る重合禁止剤は、酸素存在下で重合禁止効果を発揮するものであれば特に制限はないが、不活性ガス雰囲気下での重合反応を阻害しないものが好ましい。かかる重合禁止剤としては、例えば、ブチルキシレノール、メトキノン、ハイドロキノンなどのフェノール系の重合禁止剤;フェノチアジンなどが代表的なものとして挙げられる。かかる重合禁止剤の含有量は、原料液(A)に含まれる重合性単量体の総量に対して、好ましくは0.1ppm~50ppm、より好ましくは0.5ppm~30ppmである。
 原料液(A)に含有される連鎖移動剤としては、例えば、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、1,4-ブタンジチオール、1,6-ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリス-(β-チオプロピオネート)、ペンタエリスリトールテトラキスチオプロピオネートなどのアルキルメルカプタン類;α-メチルスチレンダイマー;テルピノレンなどが挙げられる。これらのうちn-オクチルメルカプタン、n-ドデシルメルカプタンなどの単官能アルキルメルカプタンが好ましい。これら連鎖移動剤は1種単独でまたは2種以上を組み合わせて用いることができる。連鎖移動剤の量は、重合に供される全ての重合性単量体100質量部に対して、好ましくは0.1~1質量部、より好ましくは0.2~0.8質量部、さらに好ましくは0.3~0.6質量部である。
 原料液(A)の溶存酸素濃度は、50ppm以下、好ましくは1ppm以下である。原料液(A)の溶存酸素濃度が多いと、安定した重合が妨げられることがある。
 さらに、原料液(A)は、b*が-1~2であることが好ましく、-0.5~1.5であることがより好ましい。該b*がこの範囲にあると、得られる(メタ)アクリル樹脂組成物を成形した場合に、着色が殆んどない成形品を、高い生産効率で得る上で有利となる。なお、b*は国際照明委員会(CIE)規格(1976年)またはJIS Z-8722に準拠して測定した値である。
 原料液(A)は、その調製方法によって特に限定されない。例えば、所定割合でメタクリル酸メチルとアクリル酸アルキルエステルと連鎖移動剤とを混ぜ合わせ、次いで窒素ガスなどの不活性ガスと接触させて溶存酸素を追い出すことによって得ることができる。
 原料液(A)に使用されるメタクリル酸メチル、アクリル酸アルキルエステルおよび連鎖移動剤は、原料タンクから移送されるヴァージンのもの(未だ重合反応に供されていないもの)と、後述するように重合反応に供されたが未反応物として回収されたものとを含むものであってもよい。回収された未反応物にはメタクリル酸メチル、アクリル酸アルキルエステルおよび連鎖移動剤に加え二量体や三量体が含まれていることがある。また回収時などに加えられる熱によって、未反応物はb*が高くなっていることがある。そのような場合には、公知の方法で精製して、二量体や三量体を除去し、またb*を好ましくは-1~2に、より好ましくは-0.5~1.5にすることができる。該b*がこの範囲にあると、得られる(メタ)アクリル樹脂組成物を成形した場合に、着色が殆んどない成形品を、高い生産効率で得る上で有利となる。
 原料液(A)と不活性ガスとの接触においては、不活性ガスの供給量(Nm3/h)に対する原料液(A)の供給量(kg/h)を0.30未満にすることが好ましい。このような供給量比にすると、原料液(A)の溶存酸素濃度を効率的に下げることができる。不活性ガスとの接触効率を高めるために、例えば、不活性ガスを原料液(A)中でバブリングすることができる。
 原料液(B)はラジカル重合開始剤、重合禁止剤およびメタクリル酸メチルを含有するものである。
 原料液(B)に含有されるラジカル重合開始剤は、反応性ラジカルを発生するものであれば特に限定されないが、後述する槽型反応器内の温度における半減期が、0.5~120秒のものが好ましく、2~60秒のものがより好ましい。また、該重合開始剤は、水素引抜き能が40%以下のものが好ましく、30%以下のものがより好ましい。これら重合開始剤は1種単独でまたは2種以上を組み合わせて用いることができる。
 ラジカル重合開始剤としては、例えば、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート 、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカノエ-ト、t-ヘキシルパーオキシネオデカノエ-ト、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ベンゾイルパーオキシド 、3,5,5-トリメチルヘキサノイルパーオキシド、ラウロイルパーオキシド、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)などが挙げられる。これらのうち、2,2’-アゾビス(2-メチルプロピオニトリル)、t-ヘキシルパーオキシ2-エチルヘキサノエート、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、ジメチル2,2’-アゾビス(2-メチルプロピオネート)が好ましい。
 なお、水素引抜き能は、重合開始剤製造業者の技術資料(例えば、非特許文献1)などによって知ることができる。また、α-メチルスチレンダイマーを使用したラジカルトラッピング法、即ちα-メチルスチレンダイマートラッピング法によって測定することができる。当該測定は、一般に、次のようにして行われる。まず、ラジカルトラッピング剤としてのα-メチルスチレンダイマーの共存下で重合開始剤を開裂させてラジカル断片を生成させる。生成したラジカル断片のうち、水素引抜き能が低いラジカル断片はα-メチルスチレンダイマーの二重結合に付加して捕捉される。一方、水素引抜き能が高いラジカル断片はシクロヘキサンから水素を引き抜き、シクロヘキシルラジカルを発生させ、該シクロヘキシルラジカルがα-メチルスチレンダイマーの二重結合に付加して捕捉され、シクロヘキサン捕捉生成物を生成する。そこで、シクロヘキサン、またはシクロヘキサン補足生成物を定量することで求められる、理論的なラジカル断片発生量に対する水素引抜き能が高いラジカル断片の割合(モル分率)を水素引抜き能とする。
 ラジカル重合開始剤の供給量は、原料液(A)の供給量に比べて少ないので、ラジカル重合開始剤の供給を円滑にするためにメタクリル酸メチルにラジカル重合開始剤を溶解させて希釈したものを原料液(B)とすることが好ましい。
 原料液(B)のラジカル重合開始剤濃度は、好ましくは0.01質量%以上4質量%未満、より好ましくは0.1質量%以上2質量%未満である。低すぎるラジカル重合開始剤濃度の原料液(B)は反応槽に多量に供給する必要があるので、重合が不安定になる傾向がある。一方、高すぎるラジカル重合開始剤濃度の原料液(B)は、貯蔵安定性が低いので、運転の停止が長期間になると、運転再開時に不都合が生じやすい傾向がある。
 原料液(B)に含有させる重合禁止剤は、酸素存在下で重合禁止効果を発揮するものであれば特に制限はないが、不活性ガス雰囲気下での重合を阻害しないものが好ましい。かかる重合禁止剤としては、例えば、ブチルキシレノール、メトキノン、ハイドロキノンなどのフェノール系の重合禁止剤;フェノチアジンなどが代表的なものとして挙げられる。かかる重合禁止剤の含有量は、原料液(B)に含まれるメタクリル酸メチルに対して、好ましくは0.1ppm~50ppm、より好ましくは0.5ppm~30ppmである。
 また、原料液(B)は、酸素存在下に、液温が10℃以下、好ましくは5℃以下、より好ましくは2℃以下、さらに好ましくは0℃以下に維持される。酸素は、例えば、原料液(B)の調合槽に空気を吹き込むことによって存在させることができる。原料液(B)の温度を10℃以下に維持する場合には原料液(B)の変質が抑制される。10℃より高い温度にするとラジカル重合開始剤の分解によってラジカルが発生し溶媒であるメタクリル酸メチルの重合反応が進んでしまうことがある。
 塊状重合においては溶剤を原則使用しないが、粘度を調整するなどの必要がある場合には、溶剤を原料液(A)または原料液(B)に含有させることができる。溶剤としては、ベンゼン、トルエン、エチルベンゼンなどの芳香族炭化水素が好ましい。これらの溶剤は1種単独でまたは2種以上を組み合わせて用いることができる。かかる溶剤の使用量は、重合に供される全ての重合性単量体100質量部に対して、好ましくは30質量部以下、より好ましくは10質量部以下である。
 本発明の方法に用いられる槽型反応器は、通常、反応槽、反応槽内の液を撹拌するための撹拌手段、原料液を反応槽に供給するための供給口、および反応槽から反応生成物を抜き出すための抜出口を有する。本発明に用いられる槽型反応器は、原料液を反応槽に供給するための供給口が、反応槽の天面に設置されていてもよいし、反応槽の側面に設置されていてもよいし、反応槽の底面に設置されていてもよい。供給口の高さは、反応槽内の液面よりも高い位置にあってもよいし、反応槽内の液面よりも低い位置にあってもよい。供給口の形状は、円管の切り口そのものの形状であってもよいし、原料液が反応槽内の液面に広く散布されるような形状であってもよい。
 原料液(A)と原料液(B)の槽型反応器への供給方法は特に制限されない。例えば、少なくとも2個の供給口を有する槽型反応器において原料液(A)と原料液(B)とをそれぞれの供給口を通して供給してもよいし、少なくとも1個の供給口を有する槽型反応器において、供給口直前の配管または混合槽にて原料液(A)の流れと原料液(B)の流れとを合流させた後に該供給口を通して供給してもよい。合流部には動的撹拌機または静的攪拌機を備えることができる。
 原料液(A)と原料液(B)の槽型反応器への供給量は、原料液(B)に対する原料液(A)の質量割合として、好ましくは10/1~1000/1である。原料液(A)の供給量の割合が多すぎる場合、重合反応を開始させるために原料液(B)のラジカル重合開始剤濃度を高くしなければならなくなる。その結果、原料液(B)の貯蔵安定性が低下する傾向がある。一方、原料液(A)の供給量の割合が少なすぎる場合、重合反応槽中の溶存酸素濃度が高くなり、重合が不安定になる傾向がある。
 本発明においては、反応槽に供給する原料液の総量と反応槽から抜き出す反応生成物の総量とをバランスさせて、反応槽内の液量がほぼ一定になるようにする。反応槽内の液量は、反応槽の容積に対して、好ましくは1/4以上、より好ましくは1/4~3/4、さらに好ましくは1/3~2/3である。本発明においては、反応槽の気相部に不活性ガスを導入するなどして、塊状重合反応を不活性ガス雰囲気下で行うことが好ましい。
 撹拌手段としては、マックスブレンド式撹拌装置、格子翼式撹拌装置、プロペラ式撹拌装置、スクリュー式撹拌装置、ヘリカルリボン式撹拌装置、パドル式撹拌装置などが挙げられる。これらのうちでマックスブレンド式撹拌装置が均一混合性の点から好ましい。
 槽型反応器内の温度、すなわち反応槽内にある液の温度は、好ましくは100~170℃、より好ましくは110~160℃、さらに好ましくは115~150℃である。液温は、ジャケットや伝熱管などの外部熱交換式調節法、原料液または反応生成物の流れる管を反応槽内に配して成る自己熱交換式調節法などで制御することができる。
 槽型反応器においては塊状重合を、重合転化率が40~70質量%となるまで、好ましくは42~65質量%となるまで行うことが好ましい。
 本発明の(メタ)アクリル樹脂組成物の製造方法において、槽型反応器内の反応液中の水分は、1000ppm以下であることが好ましく、700ppm以下であることがより好ましく、280ppm以下であることがさらに好ましい。該水分を1000ppm以下とすることにより、数μm~数十μmの樹脂異物が重合反応中に生成するのを抑制でき、得られた(メタ)アクリル樹脂組成物を溶融成形によってフィルムまたはシートにしたときに該樹脂異物を核とする外径数十μmの欠点の発生を大幅に低減することができる。
 この樹脂異物の生成抑制機構は明確ではないが、反応槽の気相部において生成する高分子量の(メタ)アクリル樹脂が樹脂異物として混入し、それが溶融成形時に未溶融物として欠点の核になると推定している。
 上記反応液中の水分を低減する方法としては、原料液を槽型反応器に供給する前に吸着脱水塔などで処理する方法や槽型反応器の気相部に不活性ガスを導入し、蒸気の一部を不活性ガスに同伴させてブライン冷却の凝縮器によって凝縮させて系外に抜き出す方法等が挙げられる。
 槽型反応器の後段には、別の反応器が繋がっていてもよい。後段に繋ぐことができる反応器は槽型反応器であっても管型反応器であってもよい。後段に繋いだ反応器において、塊状重合をさらに進め、重合転化率をさらに高めることができる。
 上記のような塊状重合によって得られる反応生成物を槽型反応器(後段に別の反応器を繋いでいる場合は、後段の反応器)から抜き出す。反応生成物の抜出量は原料液の供給量とバランスさせ、反応槽内の液量が一定になるようにすることが好ましい。
 反応生成物には、(メタ)アクリル樹脂、未反応の重合性単量体(メタクリル酸メチル、アクリル酸アルキルエステルなど)、および未反応の連鎖移動剤が含まれている。
 反応生成物中の(メタ)アクリル樹脂の含有率は、好ましくは40~70質量%、より好ましくは42~65質量%である。(メタ)アクリル樹脂の含有率が高すぎると粘度上昇のために大きな攪拌動力が必要となる傾向がある。(メタ)アクリル樹脂の含有率が低すぎると、反応生成物中の未反応物を除去する工程における未反応物の除去が不十分となり、得られる(メタ)アクリル樹脂組成物を成形した場合に、成形品にシルバーなどの外観不良を起こす傾向がある。
 (メタ)アクリル樹脂の重量平均分子量(以下、Mwと略称することがある。)は、好ましくは3.5万~20万、より好ましくは4万~15万、さらに好ましくは4.5万~13万である。Mwが小さすぎると(メタ)アクリル樹脂組成物から得られる成形品の耐衝撃性や靭性が低下する傾向になる。Mwが大きすぎると(メタ)アクリル樹脂組成物の流動性が低下し成形加工性が低下する傾向となる。
 (メタ)アクリル樹脂は、重量平均分子量/数平均分子量の比(以下、この比を分子量分布と表記することがある。)が、好ましくは1.5~2.6、より好ましくは1.6~2.3、特に好ましくは1.7~2.0である。分子量分布が小さいと(メタ)アクリル樹脂組成物の成形加工性が低下する傾向がある。分子量分布が大きいと(メタ)アクリル樹脂組成物から得られる成形品の耐衝撃性が低下し、脆くなる傾向がある。
 なお、重量平均分子量および数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィ)で測定した標準ポリスチレン換算の分子量である。(メタ)アクリル樹脂の重量平均分子量や分子量分布は、重合開始剤および連鎖移動剤の種類や量などを調整することによって制御できる。
 反応生成物に含まれている未反応物は公知の化学工学的手段によって回収することができる。回収方法としては、例えば、加熱脱揮による方法が好ましいものとして挙げられる。加熱脱揮法としては、平衡フラッシュ蒸発法や断熱フラッシュ蒸発法が挙げられるが、断熱フラッシュ蒸発法が好ましい。断熱フラッシュ蒸発法を実施する温度は、好ましくは200~300℃、より好ましくは220~270℃である。断熱フラッシュ蒸発法を実施する温度が、200℃未満では、脱揮に時間を要し、脱揮不十分になり、成形品にシルバーなどの外観不良を起こすことがある。一方、断熱フラッシュ蒸発法を実施する温度が、300℃を超えると、酸化、焼けなどによって(メタ)アクリル樹脂組成物が着色する傾向がある。断熱フラッシュ蒸発法を多段で行ってもよい。
 フラッシュ蒸発させられた未反応物の蒸気で伝熱管を流れる反応生成物を加熱し、加熱された反応生成物を低圧のフラッシュタンク内に供給してフラッシュ蒸発させることができる。また、反応生成物はポンプなどによって加圧することができる。
 加圧脱揮法で回収されたばかりの未反応物には、メタクリル酸メチル、アクリル酸アルキルエステル、および連鎖移動剤に加え、二量体または三量体が含まれている。二量体または三量体は、(メタ)アクリル樹脂の特性に影響を与えるおそれがあるので、未反応物から除去することが好ましい。二量体または三量体の除去の際に連鎖移動剤の一部や溶媒も除去されることがある。
 二量体または三量体の除去は、公知の化学工学的手段によって行うことができる。例えば、蒸留による方法が好ましいものとして挙げられる。本発明において用いられる蒸留塔は、特に制限されないが、段数が6~20段程度、還流比が0.4~2.0程度の多段式蒸留塔であることが好ましい。
 反応生成物からの未反応物の回収によって、本発明に係る(メタ)アクリル樹脂組成物が得られる。得られた(メタ)アクリル樹脂組成物は、成形材料としての扱い易さを容易にするために、公知の方法に従って、ペレットや粉粒にすることができる。本発明で得られる(メタ)アクリル樹脂組成物中に残る重合性単量体の量は、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。
 本発明の製造方法で得られる(メタ)アクリル樹脂組成物には、必要に応じて各種の添加剤を配合することができる。該添加剤の配合量は、(メタ)アクリル樹脂組成物に対して、好ましくは0.5質量%以下、より好ましくは0.2質量%以下である。添加剤の配合量が多すぎると、成形品にシルバーなどの外観不良を起こすことがある。
 添加剤としては、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、高分子加工助剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、耐衝撃性改質剤、蛍光体などが挙げられる。
 酸化防止剤は、酸素存在下において単体で樹脂の酸化劣化防止効果を奏するものである。例えば、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤などが挙げられる。これらの酸化防止剤は1種単独でまたは2種以上を組み合わせて用いることができる。これらの中、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤またはヒンダードフェノール系酸化防止剤が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との併用がより好ましい。
 リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを併用する場合、その割合は特に制限されないが、リン系酸化防止剤/ヒンダードフェノール系酸化防止剤の質量比で、好ましくは1/5~2/1、より好ましくは1/2~1/1である。
 リン系酸化防止剤としては、2,2-メチレンビス(4,6-ジt-ブチルフェニル)オクチルホスファイト(旭電化社製;商品名:アデカスタブHP-10)、トリス(2,4-ジt-ブチルフェニル)ホスファイト(チバ・スペシャルティ・ケミカルズ社製;商品名:IRUGAFOS168)、3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサー3,9-ジホスファスピロ[5.5]ウンデカン(ADEKA社製;商品名:アデカスタブPEP-36)などが好ましい。
 ヒンダードフェノール系酸化防止剤としては、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕(チバ・スペシャルティ・ケミカルズ社製;商品名IRGANOX1010)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(チバ・スペシャルティ・ケミカルズ社製;商品名IRGANOX1076)などが好ましい。
 熱劣化防止剤は、実質上無酸素の状態下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止できるものである。
 該熱劣化防止剤としては、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-ヒドロキシベンジル)-4-メチルフェニルアクリレート(住友化学社製;商品名スミライザーGM)、2,4-ジ-t-アミル-6-(3’,5’-ジ-t-アミル-2’-ヒドロキシ-α-メチルベンジル)フェニルアクリレート(住友化学社製;商品名スミライザーGS)などが好ましい。
 紫外線吸収剤は、紫外線を吸収する能力を有する化合物である。紫外線吸収剤は、主に光エネルギーを熱エネルギーに変換する機能を有すると言われる化合物である。
 紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類などが挙げられる。これらは1種単独でまたは2種以上を組み合わせて用いることができる。
 これらの中でも、ベンゾトリアゾール類、または波長380~450nmにおけるモル吸光係数の最大値εmaxが1200dm3・mol-1cm-1以下である紫外線吸収剤が好ましい。
 ベンゾトリアゾール類は、紫外線被照による着色などの光学特性低下を抑制する効果が高いので、(メタ)アクリル樹脂組成物を上記のような特性が要求される用途に適用する場合に用いる紫外線吸収剤として好ましい。
 ベンゾトリアゾール類としては、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(チバ・スペシャルティ・ケミカルズ社製;商品名TINUVIN329)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(チバ・スペシャルティ・ケミカルズ社製;商品名TINUVIN234)、2,2’-メチレンビス[4-t-オクチル-6-(2H-ベンゾトリアゾール-2-イル)フェノール](ADEKA社製;LA-31)、2-(5-オクチルチオ-2H-ベンゾトリアゾール-2-イル)-6-tert-ブチル-4-メチルフェノールなどが好ましい。
 また、波長380~450nmにおけるモル吸光係数の最大値εmaxが1200dm3・mol-1cm-1以下である紫外線吸収剤は、得られる成形品の黄色味を抑制できる。
 なお、紫外線吸収剤のモル吸光係数の最大値εmaxは、次のようにして測定する。シクロヘキサン1Lに紫外線吸収剤10.00mgを添加し、目視による観察で未溶解物がないように溶解させる。この溶液を1cm×1cm×3cmの石英ガラスセルに注入し、日立製作所社製U-3410型分光光度計を用いて、波長380~450nmでの吸光度を測定する。紫外線吸収剤の分子量(Mw)と、測定された吸光度の最大値(Amax)とから次式により計算し、モル吸光係数の最大値εmaxを算出する。
 εmax=[Amax/(10×10-3)]×Mw
 波長380~450nmにおけるモル吸光係数の最大値εmaxが1200dm3・mol-1cm-1以下である紫外線吸収剤としては、2-エチル-2’-エトキシ-オキサルアニリド(クラリアントジャパン社製;商品名サンデユボアVSU)などが挙げられる。
 これら紫外線吸収剤の中、紫外線被照による樹脂劣化が抑えられるという観点からベンゾトリアゾール類が好ましく用いられる。
 光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好適な光安定剤としては、2,2,6,6-テトラアルキルピペリジン骨格を持つ化合物などのヒンダードアミン類が挙げられる。
 離型剤は、成形品の金型からの離型を容易にする機能を有する化合物である。離型剤としては、セチルアルコール、ステアリルアルコールなどの高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライドなどのグリセリン高級脂肪酸エステルなどが挙げられる。本発明においては、離型剤として、高級アルコール類とグリセリン脂肪酸モノエステルとを併用することが好ましい。高級アルコール類とグリセリン脂肪酸モノエステルとを併用する場合、その割合は特に制限されないが、高級アルコール類/グリセリン脂肪酸モノエステルの質量比が、好ましくは2.5/1~3.5/1、より好ましくは2.8/1~3.2/1である。
 高分子加工助剤は、(メタ)アクリル樹脂組成物を成形する際、厚さ精度および薄膜化に効果を発揮する化合物である。高分子加工助剤は、通常、乳化重合法によって製造することができる、0.05~0.5μmの粒子径を有する重合体粒子である。
 該重合体粒子は、単一組成比および単一極限粘度の重合体からなる単層粒子であってもよいし、また組成比または極限粘度の異なる2種以上の重合体からなる多層粒子であってもよい。この中でも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましいものとして挙げられる。
 高分子加工助剤は、極限粘度が3~6dl/gであることが好ましい。
極限粘度が小さすぎると成形性の改善効果が低い。極限粘度が大きすぎると(メタ)アクリル樹脂組成物の溶融流動性の低下を招きやすい。
 (メタ)アクリル樹脂組成物には、耐衝撃性改質剤を配合してもよい。耐衝撃性改質剤としては、アクリルゴムもしくはジエンゴムをコア層成分として含むコアシェル型改質剤;ゴム粒子を複数包含した改質剤などが挙げられる。
 有機色素としては、樹脂に対しては有害とされている紫外線を可視光線に変換する機能を有する化合物が好ましく用いられる。
 光拡散剤や艶消し剤としては、ガラス微粒子、ポリシロキサン架橋微粒子、架橋ポリマー微粒子、タルク、炭酸カルシウム、硫酸バリウムなどが挙げられる。
 蛍光体として、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤などが挙げられる。
 これらの添加剤は、反応原料の段階で添加してもよいし、反応生成物の段階で添加してもよいし、脱揮後に得られる(メタ)アクリル樹脂組成物の段階で添加してもよい。
 本発明の製造方法によって得られる(メタ)アクリル樹脂組成物を、射出成形、圧縮成形、押出成形、真空成形などの従来より知られる成形方法で成形(溶融加熱成形)することによって各種成形品を得ることができる。当該(メタ)アクリル樹脂組成物からなる成形品としては、例えば、広告塔、スタンド看板、袖看板、欄間看板、屋上看板などの看板部品;ショーケース、仕切板、店舗ディスプレイなどのディスプレイ部品;蛍光灯カバー、ムード照明カバー、ランプシェード、光天井、光壁、シャンデリアなどの照明部品;ペンダント、ミラーなどのインテリア部品;ドア、ドーム、安全窓ガラス、間仕切り、階段腰板、バルコニー腰板、レジャー用建築物の屋根などの建築用部品;航空機風防、パイロット用バイザー、オートバイ、モーターボート風防、バス用遮光板、自動車用サイドバイザー、リアバイザー、ヘッドウィング、ヘッドライトカバーなどの輸送機関係部品;音響映像用銘板、ステレオカバー、テレビ保護マスク、自動販売機などの電子機器部品;保育器、レントゲン部品などの医療機器部品;機械カバー、計器カバー、実験装置、定規、文字盤、観察窓などの機器関係部品;液晶保護板、導光板、導光フィルム、フレネルレンズ、レンチキュラーレンズ、各種ディスプレイの前面板、拡散板などの光学関係部品;道路標識、案内板、カーブミラー、防音壁などの交通関係部品;偏光子保護フィルム、偏光板保護フィルム、位相差フィルム、自動車内装用表面材、携帯電話の表面材、マーキングフィルムなどのフィルム部材;洗濯機の天蓋材やコントロールパネル、炊飯ジャーの天面パネルなどの家電製品用部材;その他、温室、大型水槽、箱水槽、時計パネル、バスタブ、サニタリー、デスクマット、遊技部品、玩具、熔接時の顔面保護用マスクなどが挙げられる。
 以下に実施例および比較例を示して本発明をより具体的に説明する。なお、本発明は以下の実施例によって制限されるものではない。また、本発明は、以上までに述べた、特性値、形態、製法、用途などの技術的特徴を表す事項を、任意に組み合わせて成るすべての態様を包含している。
 実施例および比較例における物性値の測定等は以下の方法によって実施した。
(重合転化率)
 ガスクロマトグラフ((株)島津製作所製、GC-14A)に、カラム(GLC-G-230 Sciences Inc.製、INERT CAP 1(df=0.4μm、I.D.0.25mm、長さ60m))を繋ぎ、injection温度180℃、detector温度180℃、カラム温度を昇温速度10℃/分で60℃から200℃に昇温する条件にて分析した。
(重合安定性)
 連続運転時に重合転化率を測定した。槽型反応器への原料液の供給および槽型反応器からの反応生成物の抜き出しを停止させた。次いで、運転停止から5時間経過した時に重合転化率を測定した。
 連続運転時と運転停止から5時間経過時の重合転化率の変化が5%以上であった場合を不良(×)とした。連続運転時と運転停止から5時間経過時の重合転化率の変化が5%未満であった場合を良(○)とした。
(原料液(B)の貯蔵安定性)
 調製された原料液(B)を調合槽内で1日保管した。その後、原料液(B)をサンプリングし、メタノールに添加し、液の状態を観察した。
 目視にて白濁が見られる場合は重合反応が進んでいるので不良(×)とした。目視にて白濁が見られない場合は重合反応が実質的に進んでいないので良(○)とした。
実施例1
 攪拌機および採取管付オートクレーブに、精製されたメタクリル酸メチル(MMA)98.9質量部、アクリル酸メチル(MA)1.1質量部、連鎖移動剤としてn-オクチルメルカプタン(OM)0.257質量部を入れて混ぜ合わせて原料液(A)を得た。窒素ガスの供給量(Nm3/h)に対する原料液(A)の供給量(kg/h)の割合が0.2となるように窒素ガスを原料液(A)に吹き込んだ。原料液(A)の溶存酸素濃度が0.3ppmに調整された。
 2,2’-アゾビス(2-メチルプロピオニトリル)(重合開始剤:AIBN)1.0質量%およびブチルキシレノール(重合禁止剤)1ppmを含有するようにそれらをメタクリル酸メチル(MMA)に溶解させ、産業空気で置換された雰囲気下、液温を0℃に調節して原料液(B)を得た。
 ブライン冷却凝縮器を備えた連続流通式槽型反応器(容量0.1m3、槽径500mm、マックスブレンド翼、翼径260mm、回転数200rpm)内を窒素ガスで置換した。
 原料液(A)と原料液(B)とを重合開始剤濃度が74ppmになるように混ぜ合わせて反応液を得、これを平均滞留時間120分となるように一定流量で前記の槽型反応器に連続的に供給し、反応液温度140℃、槽型反応器内の圧力0.3MPaに調整して塊状重合させ、同時に槽型反応器から反応生成物を連続的に抜き出した。なお、槽型反応器内の圧力は、ブライン冷却凝縮器に接続された圧力調整弁によって調整した。重合安定性および原料液(B)の貯蔵安定性の評価を行った。その結果を表1に示す。
実施例2~3、および比較例1~3
 表1に示すレシピに変更した以外は実施例1と同じ方法で連続塊状重合反応を行った。重合安定性および原料液(B)の貯蔵安定性の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の結果が示すとおり、本発明に係る方法(実施例)によれば、連続塊状重合法において、運転を一時停止した場合でも、反応槽内の反応液の重合転化率があまり変化せず、また、原料液(B)も安定状態で維持できるので、運転を再開して直ぐに停止前の状態に復帰できる。

Claims (5)

  1.  メタクリル酸メチル、アクリル酸アルキルエステルおよび連鎖移動剤を、アクリル酸アルキルエステル/メタクリル酸メチルの質量比0/100~20/80で含有し、且つ溶存酸素濃度が50ppm以下の原料液(A)を調製し、
     ラジカル重合開始剤、重合禁止剤およびメタクリル酸メチルを含有し、酸素存在下、液温10℃以下に維持された原料液(B)を調製し、
     原料液(A)および原料液(B)を槽型反応器に連続的に供給し、
     槽型反応器内で重合転化率40~70質量%で塊状重合して反応生成物を得、
     反応生成物を槽型反応器から連続的に抜き出す工程を有する、(メタ)アクリル樹脂組成物の製造方法。
  2.  原料液(A)の溶存酸素濃度が1ppm以下である、請求項1に記載の(メタ)アクリル樹脂組成物の製造方法。
  3.  原料液(B)のラジカル重合開始剤濃度が0.01質量%以上4質量%未満である、請求項1または2に記載の(メタ)アクリル樹脂組成物の製造方法。
  4.  原料液(A)の溶存酸素濃度の調節は、不活性ガスの供給量[Nm3/h]に対する原料液(A)の供給量[kg/h]の割合が0.30未満になる条件にて原料液(A)と不活性ガスとを混合することを有する方法によって行われる、請求項1~3のいずれかひとつに記載の製造方法。
  5.  反応生成物から未反応物を除去する工程をさらに有する、請求項1~4のいずれかひとつに記載の(メタ)アクリル樹脂組成物の製造方法。
PCT/JP2015/053341 2014-02-06 2015-02-06 (メタ)アクリル樹脂組成物の製造方法 WO2015119233A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167009708A KR102164738B1 (ko) 2014-02-06 2015-02-06 (메트)아크릴 수지 조성물의 제조 방법
SG11201606349SA SG11201606349SA (en) 2014-02-06 2015-02-06 Production method of (meth)acrylic resin composition
MYPI2016702843A MY182425A (en) 2014-02-06 2015-02-06 Production method of (meth)acrylic resin composition
JP2015561046A JP6645834B2 (ja) 2014-02-06 2015-02-06 (メタ)アクリル樹脂組成物の製造方法
CN201580007698.2A CN105980414A (zh) 2014-02-06 2015-02-06 (甲基)丙烯酸类树脂组合物的制造方法
US15/116,676 US9920142B2 (en) 2014-02-06 2015-02-06 Production method of (meth)acrylic resin composition
EP15745810.0A EP3103819B1 (en) 2014-02-06 2015-02-06 Production method of (meth)acrylic resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021667 2014-02-06
JP2014021667 2014-02-06

Publications (1)

Publication Number Publication Date
WO2015119233A1 true WO2015119233A1 (ja) 2015-08-13

Family

ID=53778033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053341 WO2015119233A1 (ja) 2014-02-06 2015-02-06 (メタ)アクリル樹脂組成物の製造方法

Country Status (9)

Country Link
US (1) US9920142B2 (ja)
EP (1) EP3103819B1 (ja)
JP (1) JP6645834B2 (ja)
KR (1) KR102164738B1 (ja)
CN (1) CN105980414A (ja)
MY (1) MY182425A (ja)
SG (1) SG11201606349SA (ja)
TW (1) TWI641623B (ja)
WO (1) WO2015119233A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230913A1 (ja) * 2021-04-28 2022-11-03 三菱ケミカル株式会社 メタクリル酸メチル含有組成物及びメタクリル酸メチル重合体の製造方法
WO2024090576A1 (ja) * 2022-10-28 2024-05-02 三菱ケミカル株式会社 単量体組成物、メタクリル系樹脂組成物及びその製造方法、並びに樹脂成形体
WO2024095957A1 (ja) * 2022-10-31 2024-05-10 三菱ケミカル株式会社 エステル化合物含有組成物及びその製造方法、重合性組成物、(メタ)アクリル系重合体及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151030A1 (ja) * 2017-02-16 2018-08-23 株式会社クラレ アクリル系ブロック共重合体と光拡散剤を含む樹脂組成物
JP7135670B2 (ja) * 2018-09-27 2022-09-13 住友電気工業株式会社 光ファイバ及び紫外線硬化型樹脂組成物
JP7402633B2 (ja) * 2019-07-30 2023-12-21 住友化学株式会社 重合性液晶組成液含有容器および重合性液晶組成液の保管方法
KR20210106092A (ko) 2020-02-20 2021-08-30 에스케이이노베이션 주식회사 에틸렌-카르복실산 공중합체의 제조 방법
EP4237222A1 (en) 2020-11-02 2023-09-06 Röhm GmbH Device for degassing of a two-component multiphase polymer-monomer material and use thereof in a degassing extruder
DE102023115797A1 (de) 2022-06-29 2024-01-04 Röhm Gmbh Verbessertes Verfahren zur Herstellung eines Polymers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136203A (ja) * 1998-08-24 2000-05-16 Nippon Shokubai Co Ltd 吸水性樹脂含水ゲル状物の製造方法
JP2001131210A (ja) * 1999-11-02 2001-05-15 Nippon Shokubai Co Ltd 吸水性重合体の製造方法、及び該重合体の製造装置
JP2008519137A (ja) * 2005-06-01 2008-06-05 エルジー・ケム・リミテッド 粘着剤用アクリル系エステルポリマーシロップの製造方法
JP2009256493A (ja) * 2008-04-18 2009-11-05 Kuraray Co Ltd メタクリル系重合体およびその製造方法
WO2011125980A1 (ja) * 2010-04-06 2011-10-13 三菱レイヨン株式会社 メタクリル系重合体を製造する装置および製造方法
JP2013194177A (ja) * 2012-03-21 2013-09-30 Sumitomo Chemical Co Ltd 連続重合の停止方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395291B2 (ja) 1993-11-05 2003-04-07 住友化学工業株式会社 メタクリル系重合体の製造方法
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
JP3628518B2 (ja) * 1998-07-14 2005-03-16 三菱レイヨン株式会社 メタクリル系重合体およびその製造方法
JP4270480B2 (ja) * 1999-04-30 2009-06-03 綜研化学株式会社 アクリル系重合体の製造法
US7964690B2 (en) * 2005-11-24 2011-06-21 Asahi Kasei Chemicals Corporation Methacrylic resin and process for producing thererof
KR100988975B1 (ko) * 2007-08-24 2010-10-20 주식회사 엘지화학 광확산성 열가소성 수지 조성물의 제조방법
JP5160491B2 (ja) 2009-03-27 2013-03-13 株式会社クラレ メタクリル樹脂連続重合の一時停止方法
JP5395027B2 (ja) * 2009-10-22 2014-01-22 旭化成ケミカルズ株式会社 メタクリル系樹脂及びその成形体
CN102101898B (zh) * 2009-12-16 2012-10-17 中国石油天然气股份有限公司 一种连续制备聚合物的方法及其装置
CN102933610B (zh) * 2010-05-13 2016-03-30 三菱丽阳株式会社 甲基丙烯酸系聚合物的制造方法
KR101425252B1 (ko) * 2010-12-23 2014-08-04 주식회사 엘지화학 열가소성 투명 수지 및 그 제조방법
SG11201408760SA (en) * 2012-06-29 2015-01-29 Kuraray Co Manufacturing method for (meth)acrylic resin composition
JP2014012781A (ja) * 2012-07-05 2014-01-23 Sumitomo Chemical Co Ltd メタクリル系重合体組成物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136203A (ja) * 1998-08-24 2000-05-16 Nippon Shokubai Co Ltd 吸水性樹脂含水ゲル状物の製造方法
JP2001131210A (ja) * 1999-11-02 2001-05-15 Nippon Shokubai Co Ltd 吸水性重合体の製造方法、及び該重合体の製造装置
JP2008519137A (ja) * 2005-06-01 2008-06-05 エルジー・ケム・リミテッド 粘着剤用アクリル系エステルポリマーシロップの製造方法
JP2009256493A (ja) * 2008-04-18 2009-11-05 Kuraray Co Ltd メタクリル系重合体およびその製造方法
WO2011125980A1 (ja) * 2010-04-06 2011-10-13 三菱レイヨン株式会社 メタクリル系重合体を製造する装置および製造方法
JP2013194177A (ja) * 2012-03-21 2013-09-30 Sumitomo Chemical Co Ltd 連続重合の停止方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3103819A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230913A1 (ja) * 2021-04-28 2022-11-03 三菱ケミカル株式会社 メタクリル酸メチル含有組成物及びメタクリル酸メチル重合体の製造方法
WO2024090576A1 (ja) * 2022-10-28 2024-05-02 三菱ケミカル株式会社 単量体組成物、メタクリル系樹脂組成物及びその製造方法、並びに樹脂成形体
WO2024095957A1 (ja) * 2022-10-31 2024-05-10 三菱ケミカル株式会社 エステル化合物含有組成物及びその製造方法、重合性組成物、(メタ)アクリル系重合体及びその製造方法

Also Published As

Publication number Publication date
CN105980414A (zh) 2016-09-28
EP3103819B1 (en) 2019-10-09
MY182425A (en) 2021-01-25
JP6645834B2 (ja) 2020-02-14
US20160347879A1 (en) 2016-12-01
JPWO2015119233A1 (ja) 2017-03-30
TWI641623B (zh) 2018-11-21
US9920142B2 (en) 2018-03-20
KR20160118206A (ko) 2016-10-11
TW201538535A (zh) 2015-10-16
EP3103819A4 (en) 2017-10-04
EP3103819A1 (en) 2016-12-14
KR102164738B1 (ko) 2020-10-13
SG11201606349SA (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP6645834B2 (ja) (メタ)アクリル樹脂組成物の製造方法
US10017587B2 (en) Process for producing (meth)acrylic resin composition
JP6014668B2 (ja) (メタ)アクリル樹脂組成物の製造方法
JP6357488B2 (ja) (メタ)アクリル樹脂組成物の製造方法
JP6093352B2 (ja) (メタ)アクリル樹脂組成物の製造方法
JP6258195B2 (ja) (メタ)アクリル樹脂組成物の製造方法
JP6097741B2 (ja) (メタ)アクリル樹脂組成物からなる成形品の製造方法
JP6640828B2 (ja) (メタ)アクリル樹脂組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561046

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167009708

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15116676

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015745810

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015745810

Country of ref document: EP