WO2024090576A1 - 単量体組成物、メタクリル系樹脂組成物及びその製造方法、並びに樹脂成形体 - Google Patents

単量体組成物、メタクリル系樹脂組成物及びその製造方法、並びに樹脂成形体 Download PDF

Info

Publication number
WO2024090576A1
WO2024090576A1 PCT/JP2023/038977 JP2023038977W WO2024090576A1 WO 2024090576 A1 WO2024090576 A1 WO 2024090576A1 JP 2023038977 W JP2023038977 W JP 2023038977W WO 2024090576 A1 WO2024090576 A1 WO 2024090576A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mass
group
ppm
methacrylic resin
Prior art date
Application number
PCT/JP2023/038977
Other languages
English (en)
French (fr)
Inventor
達也 鈴木
志保 藤田
悠 栗原
学 磯村
裕樹 加藤
紘一 兼森
航 鳴好
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2024090576A1 publication Critical patent/WO2024090576A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3462Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to a monomer composition, a methacrylic resin composition and a production method thereof, and a resin molded article.
  • This application claims priority based on Japanese Patent Application No. 2022-172929 and Japanese Patent Application No. 2022-172930 filed in Japan on October 28, 2022, and Japanese Patent Application No. 2023-085752 filed in Japan on May 24, 2023, the contents of which are incorporated herein by reference.
  • Methyl methacrylate (hereinafter, also referred to as "MMA") is known to be an extremely useful substance used as a raw material for various types of polymers in various applications.
  • methacrylic resins obtained by polymerization of MMA have excellent transparency, heat resistance, and weather resistance, and also have well-balanced performance in terms of resin properties such as mechanical strength, thermal properties, and moldability. Due to such excellent properties, it is used in many applications such as vehicle parts, medical parts, toys, liquid containers, optical materials, signs, displays, decorative parts, architectural parts, and face plates of electronic devices, and is particularly used in translucent parts.
  • UV refers to light that mainly includes light in the wavelength range of 295 to 430 nm.
  • Patent Document 1 discloses a methacrylic resin obtained by polymerizing a monomer such as methyl methacrylate in the presence of a hindered amine compound with a specific structure, which is a type of light stabilizer.
  • Patent Document 2 discloses a methacrylic resin that includes a polymer having a triazine compound as a structural unit.
  • Patent Document 3 describes the use of methyl ether of hydroquinone as a polymerization inhibitor.
  • Patent Document 4 describes the use of N,N'-dialkyl-p-phenylenediamine or N-oxyl as a polymerization inhibitor.
  • Patent Document 5 describes the distillation of MMA in the presence of a phenol-based polymerization inhibitor.
  • Patent Document 6 discloses a stabilizer containing a phosphite ester compound and an antioxidant.
  • Patent Document 7 discloses a stabilizer composition that contains a phosphite ester and at least one stabilizer selected from a phenol-based stabilizer, a sulfur-based stabilizer, a phosphorus-based stabilizer, and a hindered amine stabilizer.
  • the methacrylic resin compositions containing the additives described in Patent Documents 6 and 7 have a problem in that, although the long-term thermal stability of the methacrylic resin composition improves with an increase in the amount of the additive, coloring due to the additive occurs.
  • the methacrylic resin compositions using MMA as a raw material described in Patent Documents 3 to 5 also contain additives, and therefore coloring may occur even if the long-term thermal stability is improved. For these reasons, the methacrylic resin compositions of Patent Documents 1 to 7 have the problem that they cannot be used when a specific color tone and transparency are required at the same time. Even when a polymerization inhibitor is added to maintain the quality of MMA, the quality of MMA sometimes deteriorates during storage.
  • one object of the present invention is to provide a monomer composition for obtaining a methacrylic resin composition having excellent light stability while maintaining the inherent transparency and heat resistance of methacrylic resins, a methacrylic resin composition, a method for producing the same, and a resin molded article containing the methacrylic resin composition.
  • Another object of the present invention is to provide a monomer composition for obtaining a methacrylic resin composition having excellent long-term thermal stability while maintaining the inherent transparency and heat resistance of methacrylic resins, a methacrylic resin composition, a method for producing the same, and a resin molded article containing the methacrylic resin composition.
  • the present inventors have conducted intensive research to achieve the above-mentioned object. As a result, they have found that in MMA whose quality has deteriorated during storage, the MMA concentration has decreased and MMA dimers and methyl pyruvate have been produced. If MMA dimers are contained in MMA, this adversely affects the physical properties of the methacrylic resin composition obtained by polymerization. Furthermore, if methyl pyruvate is contained in MMA, this causes an increase in coloration of the methacrylic resin composition obtained by polymerization.
  • the inventors have also found that when a monomer composition containing MMA contains a specific amount of an ⁇ , ⁇ -unsaturated carbonyl compound of a specific structural formula, the quality stability during storage is improved and the production of MMA dimers and methyl pyruvate is suppressed. They have also found that by polymerizing a polymerizable composition containing such a monomer composition, a methacrylic resin composition that maintains the inherent transparency and heat resistance of methacrylic resins and has excellent light stability can be obtained, thus completing the present invention.
  • the inventors have also found that when a monomer composition containing MMA contains a specific amount of a pyrazine compound of a specific structural formula, the quality stability during storage is improved and the production of MMA dimers and methyl pyruvate is suppressed. They have also found that by polymerizing a polymerizable composition containing such a monomer composition, a methacrylic resin composition that maintains the inherent transparency and heat resistance of methacrylic resins and has excellent long-term thermal stability can be obtained, thus completing the present invention.
  • a monomer composition comprising methyl methacrylate and one compound (component A) selected from an ester compound having an ⁇ -hydrogen represented by the following formula (1-1) (component A1), an ⁇ , ⁇ -unsaturated carbonyl compound represented by the following formula (2-1) (component A21), an ⁇ , ⁇ -unsaturated carboxylic acid ester represented by the following formula (2-2) (component A22), and a pyrazine compound represented by the following formula (3-1) (component A3),
  • the monomer composition contains the component A1, and when the concentration of the component A1 relative to the total mass of the monomer composition is defined as XA1 (ppm by mass), the XA1 is 5 to 10,000 ppm by mass,
  • the monomer composition contains the component A21, and when the concentration of the component A21 relative to the total mass of the monomer composition is defined as XA21 (ppm by mass), the XA21 is 1 to 10,000 pp
  • R 11 and R 12 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 13 is an alkyl group having 1 to 5 carbon atoms. In addition, at least one of R 11 to R 13 is an alkyl group having 2 to 5 carbon atoms.
  • R 21 , R 22 and R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 24 represents an alkyl group having 1 to 5 carbon atoms or an amino group.
  • R 25 , R 26 and R 27 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 28 is an alkyl group having 1 to 10 carbon atoms.
  • R 25 and R 26 is an alkyl group having 1 to 10 carbon atoms.
  • R 31 , R 32 , R 33 , and R 34 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • R 25 , R 26 and R 27 each independently represent a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an isopropyl group
  • R 28 represents a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, or an isopentyl group.
  • R 31 , R 32 , R 33 , and R 34 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 31 , R 32 , R 33 , and R 34 each independently represent a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an isopropyl group.
  • component B1 a polymerization inhibitor
  • the component B1 is at least one polymerization inhibitor selected from the group consisting of a phenol-based compound, a quinone-based compound, a nitrobenzene-based compound, an N-oxyl-based compound, an amine-based compound, a phosphorus-containing compound, a sulfur-containing compound, an iron-containing compound, a copper-containing compound, and a manganese-containing compound.
  • the concentration of the methyl methacrylate relative to the total mass of the monomer composition is XM (mass%), the XM is 85 mass% or more.
  • a method for producing a methacrylic resin composition comprising a step of radically polymerizing a polymerizable composition containing the monomer composition according to any one of [1] to [42].
  • a methacrylic resin composition comprising a polymer of the monomer composition according to any one of [1] to [42].
  • a methacrylic resin composition comprising a methacrylic polymer and one compound (component A) selected from an ester compound having ⁇ -hydrogen represented by the following formula (1-1) (component A1), an ⁇ , ⁇ -unsaturated carbonyl compound represented by the following formula (2-1) (component A21), an ⁇ , ⁇ -unsaturated carboxylic acid ester represented by the following formula (2-2) (component A22), and a pyrazine compound represented by the following formula (3-1) (component A3),
  • the methacrylic resin composition contains the component A1, and when a concentration of the component A1 relative to a total mass of the methacrylic resin composition is defined as YA1 (ppm by mass), the YA1 is 5 to 10,000 ppm by mass,
  • the methacrylic resin composition contains the component A21, and when the concentration of the component A21 relative to the total mass of the methacrylic resin composition is defined as YA21 (ppm by mass), the YA21 is 0.1 to 4
  • R 11 and R 12 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 13 is an alkyl group having 1 to 5 carbon atoms. In addition, at least one of R 11 to R 13 is an alkyl group having 2 to 5 carbon atoms.
  • R 21 , R 22 and R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R 24 represents an alkyl group having 1 to 5 carbon atoms or an amino group.
  • R 25 , R 26 and R 27 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 28 is an alkyl group having 1 to 10 carbon atoms.
  • R 25 and R 26 is an alkyl group having 1 to 10 carbon atoms.
  • R 31 , R 32 , R 33 , and R 34 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • R 25 , R 26 and R 27 each independently represent a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an isopropyl group
  • R 28 represents a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, or an isopentyl group.
  • Component A3 is at least one selected from the group consisting of 2,3,5,6-tetramethylpyrazine and 2,3,5-trimethylpyrazine.
  • component B1 a polymerization inhibitor
  • the methacrylic resin composition according to [65] wherein the concentration of the component B1 relative to the total mass of the methacrylic resin composition is defined as YB1 (ppm by mass), and the YB1 is 1 to 2000 ppm by mass.
  • the methacrylic resin composition according to any one of [65] to [68], wherein the component B1 is at least one polymerization inhibitor selected from the group consisting of a phenolic compound, an N-oxyl compound, an amine compound, and a sulfur-containing compound.
  • the component B1 is at least one polymerization inhibitor selected from the group consisting of a phenolic compound, an N-oxyl compound, an amine compound, and a sulfur-containing compound.
  • a resin molded product comprising the methacrylic resin composition according to any one of [45] to [79].
  • methacrylic resin composition that has excellent light stability while maintaining the inherent transparency and heat resistance of methacrylic resins, and a monomer composition with high quality stability for obtaining the methacrylic resin composition.
  • component A3 it is possible to provide a methacrylic resin composition that has excellent long-term thermal stability while maintaining the inherent transparency and heat resistance of methacrylic resins, and a monomer composition with high quality stability for obtaining the methacrylic resin composition.
  • a numerical range expressed using “to” means a range including the numerical values before and after “to” as the lower and upper limits, and "A to B” means A or more and B or less.
  • the monomer composition and the methacrylic resin composition according to the embodiment contain a specific amount of one kind of component A selected from component A1, component A21, component A22, and component A3, as described below.
  • component A1 component A21, component A22, and component A3
  • embodiments containing each of the components will be described.
  • the monomer composition according to the first embodiment contains MMA and an ester compound (component A1) having an ⁇ -hydrogen atom represented by the following formula (1-1).
  • R 11 and R 12 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 13 is an alkyl group having 1 to 5 carbon atoms.
  • at least one of R 11 to R 13 is an alkyl group having 2 to 5 carbon atoms.
  • XA1 concentration of component A1 relative to the total mass of the monomer composition according to the first embodiment
  • XA1 concentration of component A1 relative to the total mass of the monomer composition according to the first embodiment
  • XA1 concentration of component A1 relative to the total mass of the monomer composition according to the first embodiment
  • XA1 concentration of component A1 relative to the total mass of the monomer composition according to the first embodiment
  • XA1 concentration of component A1 relative to the total mass of the monomer composition according to the first embodiment
  • the monomer composition according to the first embodiment preferably further contains a polymerization inhibitor (component B1).
  • the monomer composition may contain monomers other than MMA, other compounds (component C), and water within a range that does not impair the effects of the present invention. Each item will be explained in detail below.
  • the monomer composition according to the first embodiment contains MMA.
  • MMA can be produced by, for example, the acetone cyanohydrin process, the new acetone cyanohydrin process, the C4 direct oxidation process, the direct meta process, the ethylene process, the new ethylene process, or the like.
  • the MMA contained in the monomer composition is preferably produced by the C4 direct oxidation process, and more preferably produced by the C4 direct oxidation process using biomass-derived isobutanol as a starting material.
  • the monomer composition according to the first embodiment contains an ester compound (component A1) having an ⁇ -hydrogen represented by the above formula (1-1).
  • component A1 the term “ ⁇ -hydrogen” refers to a hydrogen atom bonded to a carbon atom adjacent to a carbonyl group carbon atom.
  • the monomer composition contains component A1, and thus it is possible to suppress the production of MMA dimers and methyl pyruvate. The reason for this is presumed to be as follows.
  • Ester compounds with ⁇ -hydrogen have a weak acidity and can trap anions, so component A1 can suppress the dimerization reaction of MMA caused by the anion mechanism. Also, methyl pyruvate is produced when MMA is oxidized by hydroxyl radicals and oxygen molecules. Component A1 can trap the radical intermediates produced by the reaction of hydroxyl radicals with MMA, and convert the intermediates back to MMA. It is therefore presumed that the production of MMA dimers and methyl pyruvate is suppressed.
  • the molecular weight of component A1 is preferably 200 or less. By having a molecular weight of 200 or less, the number of alpha hydrogens per unit mass in component A1 can be increased, and the effects of the present invention can be obtained with a smaller mass.
  • the molecular weight of component A1 is more preferably 190 or less, even more preferably 180 or less, and particularly preferably 170 or less.
  • R 11 and R 12 in the formula (1-1) each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 11 and R 12 may be the same or different.
  • R 13 in the formula (1-1) represents an alkyl group having 1 to 5 carbon atoms.
  • R 13 and R 11 , and R 13 and R 12 may be the same or different.
  • At least one of R 11 to R 13 is an alkyl group having 2 to 5 carbon atoms.
  • the ⁇ hydrogen of an ester compound has a property of reacting with anions and radicals, but the reactivity may decrease depending on the type of the substituent.
  • R 11 , R 12 and R 13 satisfy the above conditions, the reactivity of the ⁇ hydrogen of component A1 with anions and radicals is maintained, and the effects of the present invention can be obtained.
  • R 11 and R 12 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and preferably the total number of carbon atoms of R 11 and R 12 is 1 to 10, more preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, an n-butyl group, a 1-methylpropyl group or a 2-methylpropyl group, and more preferably the total number of carbon atoms of R 11 and R 12 is 1 to 8, and even more preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, and more preferably the total number of carbon atoms of R 11 and R 12 is 1 to 6.
  • R 13 is preferably a methyl group, an ethyl group, an n-propyl group or an isopropyl group, a 1-methylpropyl group or a 2-methylpropyl group, an n-pentyl group, a 1-methylbutyl group, a 2-methylbutyl group, a 3-methylbutyl group, a 1-ethylpropyl group, a 2-ethylpropyl group, or a 1,2-dimethylpropyl group, more preferably an ethyl group, an n-propyl group, an isopropyl group, a 1-methylpropyl group, a 2-methylpropyl group, an n-pentyl group, a 1-methylbutyl group, a 2-methylbutyl group, a 3-methylbutyl group, a 1-ethylpropyl group, a 2-ethylpropyl group, or a 1,2-dimethylpropyl group, More preferably, e
  • component A1 be at least one selected from the group consisting of isobutyl isobutyrate, methyl isovalerate, and isoamyl isobutyrate, and more preferably at least one selected from the group consisting of isobutyl isobutyrate and isoamyl isobutyrate.
  • the component A1 may be one type or two or more types.
  • the monomer composition according to the first embodiment preferably contains a polymerization inhibitor (component B1).
  • a polymerization inhibitor refers to a compound having a function of suppressing the polymerization reaction of MMA.
  • the polymerization inhibitor include phenol compounds, quinone compounds, nitrobenzene compounds, N-oxyl compounds, amine compounds, phosphorus-containing compounds, sulfur-containing compounds, iron-containing compounds, copper-containing compounds, and manganese compounds.
  • Containing compounds include: By including component B1, it is possible to suppress the dimerization reaction of MMA caused by a radical mechanism during storage of MMA. In addition, component B can trap the above-mentioned hydroxyl radicals generated during storage of MMA.
  • the monomer composition contains component B1 in addition to component A1, the hydroxyl radical generated by component B1 is removed, and the radical intermediate generated by the reaction of the hydroxyl radical with MMA by component A1 is removed.
  • This allows the production of methyl pyruvate to be reduced by two different mechanisms: trapping the intermediate and converting it back to MMA. This allows the production of MMA dimers and methyl pyruvate to be efficiently suppressed. it is conceivable that.
  • polymerization inhibitors that are phenolic compounds include alkylphenols, hydroxyphenols, aminophenols, nitrophenols, nitrosophenols, alkoxyphenols, and tocopherols.
  • alkylphenols examples include o-cresol, m-cresol, p-cresol, 2-t-butyl-4-methylphenol, 2,4-dimethyl-6-t-butylphenol, 2,6-di-t-butyl-4-methylphenol, 2-t-butylphenol, 4-t-butylphenol, 2,4-di-t-butylphenol, 2-methyl-4-t-butylphenol, 4-t-butyl-2,6-dimethylphenol, 2,2'-methylene-bis(6-t-butyl-4-methylphenol), 2,2'-methylenebis(4-ethyl-6-t-butylphenol), 4,4'-thiobis(3-methyl-6-t-butylphenol), and 3,5-di-t-butyl-4-hydroxytoluene.
  • Hydroxyphenols include, for example, hydroquinone, 2-methylhydroquinone, 2-t-butylhydroquinone, 2,5-di-t-butylhydroquinone, 2,6-di-t-butylhydroquinone, 2,5-di-t-amylhydroquinone, 2-t-butylmethoxyhydroquinone, 2,3,5-trimethylhydroquinone, 2,5-dichlorohydroquinone, 1,2-dihydroxybenzene, 2-acetylhydroquinone, 4-methylcatechol, 4-t-butylcatechol, 2-methylresorcinol, 4-methylresorcinol, and 2,3-dihydroxyacetophenone.
  • aminophenols examples include o-aminophenol, m-aminophenol, p-aminophenol, 2-(N,N-dimethylamino)phenol, and 4-(ethylamino)phenol.
  • Nitrophenols include, for example, o-nitrophenol, m-nitrophenol, p-nitrophenol, and 2,4-dinitrophenol.
  • Nitrosophenols include, for example, o-nitrosophenol, m-nitrosophenol, p-nitrosophenol, ⁇ -nitroso- ⁇ -naphthol, etc.
  • alkoxyphenols examples include 2-methoxyphenol, 2-ethoxyphenol, 2-isopropoxyphenol, 2-t-butoxyphenol, 4-methoxyphenol, 4-ethoxyphenol, 4-propoxyphenol, 4-butoxyphenol, 4-t-butoxyphenol, 4-heptoxyphenol, hydroquinone monobenzyl ether, t-butyl-4-methoxyphenol, di-t-butyl-4-methoxyphenol, pyrogallol-1,2-dimethyl ether, and hydroquinone monobenzoate.
  • tocopherols examples include ⁇ -tocopherol and 2,3-dihydro-2,2-dimethyl-7-hydroxybenzofuran.
  • polymerization inhibitors that are quinone compounds include p-benzoquinone, chloro-p-benzoquinone, 2,5-dichloro-p-benzoquinone, 2,6-dichloro-p-benzoquinone, tetrachloro-p-benzoquinone, tetrabromo-p-benzoquinone, 2,3-dimethyl-p-benzoquinone, 2,5-dimethyl-p-benzoquinone, methoxy-p-benzoquinone, and methyl-p-benzoquinone.
  • polymerization inhibitors that are nitrobenzene-based compounds include nitrobenzene, o-dinitrobenzene, m-dinitrobenzene, p-dinitrobenzene, 2,4-dinitrotoluene, dinitrodurene, and 2,2-diphenyl-1-picrylhydrazyl.
  • polymerization inhibitors that are N-oxyl compounds include 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl, 4-oxo-2,2,6,6-tetramethyl-piperidine-N-oxyl, 4-acetoxy-2,2,6,6-tetramethyl-piperidine-N-oxyl, 2,2,6,6-tetramethyl-piperidine-N-oxyl, piperidine-1-oxyl, 4-(dimethylamino)-2,2,6,6-tetramethyl-piperidine-N-oxyl, 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl, 4-ethanoloxy-2,2,6,6-tetramethyl-piperidine-N-oxyl, and 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl.
  • polymerization inhibitors that are amine compounds include N,N-diphenylamine, alkylated diphenylamine, 4,4'-dicumyl-diphenylamine, 4,4'-dioctyldiphenylamine, 4-aminodiphenylamine, p-nitrosodiphenylamine, N-nitrosodinaphthylamine, N-nitrosodiphenylamine, N-nitrosophenylnaphthylamine, N-nitrosophenylhydroxylamine, N,N'-dialkyl-p-phenylenediamine (wherein the alkyl groups may be the same or different, each independently comprise 1 to 4 carbon atoms, and may be linear or branched), N,N'-diphenyl-p-phenylenediamine, N-phenyl-N'-isopropyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N'-pheny
  • polymerization inhibitors that are phosphorus-containing compounds include triphenylphosphine, triphenyl phosphite, triethyl phosphite, tris(isodecyl)phosphite, tris(tridecyl)phosphite, phenyl diisooctyl phosphite, phenyl diisodecyl phosphite, phenyl di(tridecyl)phosphite, diphenyl isooctyl phosphite, diphenyl isodecyl phosphite, diphenyl tridecyl phosphite, phosphonic acid [1,1-diphenyl-4,4'-diylbistetrakis-2,4-bis(1,1-dimethylethyl)phenyl] ester, tris(nonylphenyl)phosphite, 4,4
  • phosphates examples include tetra(tridecyl)-4,4'-butylidenebis(3-methyl-6-tert-butylphenol)diphosphite, hexa(tridecyl)-1,1,3-tris(2-methyl-4-hydroxy-5-tert-butylphenyl)butanetriphosphite, 3,5-di-tert-butyl-4-hydroxybenzyl phosphate diethyl ester, sodium bis(4-tert-butylphenyl)phosphate, sodium 2,2'-methylene-bis(4,6-di-tert-butylphenyl)phosphate, and 1,3-bis(diphenoxyphosphonyloxy)benzene.
  • polymerization inhibitors that are sulfur-containing compounds include diphenyl sulfide, phenothiazine, 3-oxophenothiazine, 5-oxophenothiazine, phenothiazine dimer, 1,4-dimercaptobenzene, 1,2-dimercaptobenzene, 2-mercaptophenol, 4-mercaptophenol, 2-(methylthio)phenol, 3,7-bis(dimethylamino)phenothiazinium chloride, and sulfur (element).
  • An example of a polymerization inhibitor that is an iron-containing compound is iron(III) chloride.
  • polymerization inhibitors that are copper-containing compounds include copper dimethyldithiocarbamate, copper diethyldithiocarbamate, copper dibutyldithiocarbamate, copper salicylate, copper acetate, copper thiocyanate, copper nitrate, copper chloride, copper carbonate, copper hydroxide, copper acrylate, and copper methacrylate.
  • Polymerization inhibitors that are manganese-containing compounds include manganese dialkyldithiocarbamate (wherein the alkyl groups are methyl, ethyl, propyl, or butyl groups and may be the same or different), manganese diphenyldithiocarbamate, manganese formate, manganese acetate, manganese octanoate, manganese naphthenate, manganese permanganate, and manganese salts of ethylenediaminetetraacetic acid.
  • manganese dialkyldithiocarbamate wherein the alkyl groups are methyl, ethyl, propyl, or butyl groups and may be the same or different
  • manganese diphenyldithiocarbamate manganese formate
  • manganese acetate manganese octanoate
  • manganese naphthenate manganese permanganate
  • component B1 is at least one polymerization inhibitor selected from the group consisting of phenolic compounds, N-oxyl compounds, amine compounds, and sulfur-containing compounds, and it is more preferable that component B1 is at least one polymerization inhibitor selected from the group consisting of hydroquinone, 4-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, 2,6-di-t-butyl-4-methylphenol, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, N,N-diphenylamine, N-nitrosodiphenylamine, and phenothiazine ...
  • the polymerization inhibitor is at least one selected from the group consisting of phenol, 2,6-di-t-butyl-4-methylphenol, N,N-diphenylamine, N-nitrosodiphenylamine, and phenothiazine, and more preferable that the polymerization inhibitor is hydroquinone, 4-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, N,N-diphenylamine, N-nitrosodiphenylamine, and phenothiazine, and particularly preferable that the polymerization inhibitor is hydroquinone, 4-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, N-nitrosodiphenylamine, and phenothiazine, and particularly preferable that the polymerization inhibitor is hydroquinone, 4-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, and phenothiazine.
  • Component B1 may be one type or two or more types.
  • a monomer composition contains a compound corresponding to both component A1 and component B1
  • the compound is regarded as component A1.
  • component A1 and component B1 it means that the monomer composition contains a component B1 other than the compound.
  • component A1 and component B1 two or more compounds corresponding to both component A1 and component B1 are contained, the compound having the highest molar concentration in the monomer composition is regarded as component A1, and the other compounds are regarded as component B1.
  • the monomer composition according to the first embodiment may contain a monomer other than MMA.
  • “monomer” means an unpolymerized compound having a polymerizable functional group.
  • Examples of the monomer other than MMA include the monomers shown in (1) to (16) below.
  • the monomers shown in (1) to (16) below can be used alone or in any ratio and combination of two or more kinds.
  • Methacrylic acid ester For example, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, phenyl methacrylate, or benzyl methacrylate.
  • Acrylic acid ester For example, methyl acrylate, ethyl acrylate, n-butyl acrylate, iso-butyl acrylate, tert-butyl acrylate, or 2-ethylhexyl acrylate.
  • Unsaturated carboxylic acid For example, acrylic acid, methacrylic acid, maleic acid, or itaconic acid.
  • Unsaturated carboxylic acid anhydride For example, maleic anhydride, or itaconic anhydride.
  • Maleimide For example, N-phenylmaleimide, or N-cyclohexylmaleimide.
  • Hydroxy group-containing vinyl monomer For example, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, or 2-hydroxypropyl methacrylate.
  • Vinyl esters For example, vinyl acetate, or vinyl benzoate.
  • Nitrogen-containing vinyl monomers For example, methacrylamide, or acrylonitrile.
  • Epoxy group-containing monomer For example, glycidyl acrylate, or glycidyl methacrylate.
  • Aromatic vinyl monomers For example, styrene, or alpha-methylstyrene.
  • Alkanediol di(meth)acrylate For example, ethylene glycol di(meth)acrylate, 1,2-propylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, or 1,6-hexanediol di(meth)acrylate.
  • Polyoxyalkylene glycol di(meth)acrylate For example, diethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, triethylene glycol (meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, or neopentyl glycol di(meth)acrylate.
  • (meth)acrylate means at least one selected from “acrylate” and "methacrylate”.
  • Vinyl monomers having two or more ethylenically unsaturated bonds in the molecule For example, divinylbenzene.
  • Unsaturated polyester prepolymers obtained from at least one polyvalent carboxylic acid including an ethylenically unsaturated polycarboxylic acid and at least one diol.
  • Vinyl ester prepolymers obtained by modifying the terminals of epoxy groups with acrylics.
  • the methacrylic polymer contained in the methacrylic resin composition according to the first embodiment described below is preferably a copolymer containing repeating units derived from MMA and repeating units derived from a vinyl monomer copolymerizable with MMA, and the vinyl monomer is preferably an acrylic ester or styrene. Therefore, the monomer composition according to the first embodiment preferably further contains an acrylic ester or styrene as a monomer other than MMA.
  • the monomer composition according to the first embodiment may contain other compounds (component C).
  • component C include known additives such as mold release agents, heat stabilizers, lubricants, plasticizers, antioxidants, antistatic agents, light stabilizers other than component A1, ultraviolet absorbers, flame retardants, flame retardant assistants, fillers, pigments, dyes, silane coupling agents, leveling agents, defoamers, and fluorescent agents.
  • the additives may be used alone or in combination of any two or more.
  • component C examples include impurities such as diacetyl produced during the production of MMA. From the viewpoint of reducing coloration of the monomer composition, the concentration of diacetyl is preferably 55 ( ⁇ mol/L) or less, more preferably 20 ( ⁇ mol/L) or less, even more preferably 10 ( ⁇ mol/L) or less, and particularly preferably 1 ⁇ mol/L or less.
  • the component C may be one type or two or more types.
  • XM concentration of each component in the monomer composition
  • XM is preferably 85 mass% or more.
  • the lower limit of XM is more preferably 90 mass% or more, even more preferably 95 mass% or more, particularly preferably 97 mass% or more, particularly preferably 97.5 mass% or more, and most preferably 98.0 mass% or more.
  • the upper limit of XM is usually 99.99 mass% or less, and may be 99.98 mass% or less or 99.97 mass% or less.
  • XM may be in the range of, for example, 85 to 99.99 mass%, 90 to 99.98 mass%, 95 to 99.97 mass%, 97 to 99.97 mass%, 97 to 99.97 mass%, 97.5 to 99.97 mass%, and 98.0 to 99.75 mass%.
  • XA1 when the concentration of component A1 relative to the total mass of the monomer composition is XA1 (ppm by mass), XA1 is 5 to 10,000 ppm by mass.
  • XA1 5 ppm by mass or more the effect of improving the quality stability of the monomer composition can be sufficiently obtained.
  • XA1 10,000 ppm by mass or less the amount of impurities when the methacrylic resin composition is produced by polymerization of the monomer composition can be reduced, and adverse effects on the physical properties of the methacrylic resin composition can be prevented.
  • the lower limit of XA1 is preferably 10 ppm by mass or more, more preferably 50 ppm by mass or more, and even more preferably 100 ppm by mass or more. Furthermore, the upper limit of XA1 is preferably 5,000 ppm by mass or less, and more preferably 1,000 ppm by mass or less.
  • XB1 when the concentration of component B1 relative to the total mass of the monomer composition is XB1 (ppm by mass), XB1 is preferably 1 to 1000 ppm by mass. By having XB1 be 1 ppm by mass or more, the effect of improving the quality stability of the monomer composition can be sufficiently obtained. Furthermore, by having XB1 be 1000 ppm by mass or less, the amount of impurities when the methacrylic resin composition is produced by polymerization of the monomer composition can be reduced, and adverse effects on the physical properties of the methacrylic resin composition can be prevented.
  • the lower limit of XB1 is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more.
  • the upper limit of XB1 is more preferably 500 ppm by mass or less, even more preferably 400 ppm by mass or less, particularly preferably 300 ppm by mass or less, particularly preferably 200 ppm by mass or less, and most preferably 100 ppm by mass or less.
  • XB1/XA1 is 0.005 to 7. It is more preferable that the lower limit of XB1/XA1 is 0.05 or more and the upper limit is 5 or less.
  • the concentration of the monomer relative to the total mass of the monomer composition is preferably 0 to 15% by mass.
  • the lower limit of the monomer concentration is more preferably 1% by mass or more and the upper limit is more preferably 10% by mass or less.
  • the above-mentioned preferable upper and lower limits can be combined in any desired manner.
  • the monomer composition contains component A1, component B1, monomers other than MMA, component C, and water. If the GC-MS chart of the monomer composition has a peak at the same retention time as a standard specimen of component A1, and the m/z value detected in the mass spectrum of the peak matches the exact mass of component A1, it can be determined that the monomer composition contains component A1. When a standard specimen of component A1 is not available, it can be determined that the peak is a peak of component A1 when the mass spectrum pattern of the peak appearing in the GC-MS chart of the monomer composition matches the mass spectrum pattern of component A1 recorded in the mass spectrum database.
  • the monomer composition contains component A1.
  • Examples of mass spectrum databases include NIST20, NIST17, NIST14, and NIST14s.
  • the volatility is low and detection by GC-MS measurement is not possible, it can be detected using LC-MS.
  • the presence of component B1, monomers other than MMA, component C, and water can also be confirmed by the same method.
  • the concentration of MMA and monomers other than MMA can be calculated, for example, by performing GC-FID measurement of the monomer composition, quantifying using the area percentage method, and correcting using the moisture concentration quantified by a Karl Fischer moisture meter.
  • the concentration of component A1 can be calculated, for example, by performing GC measurement of the monomer composition, and quantifying using the internal standard method. If a standard specimen of component A1 cannot be obtained and quantification using the internal standard method cannot be performed, GC-FID measurement can be performed on any organic compound with a known concentration under the same conditions as the monomer composition, and the concentration of component A1 ( ⁇ mol/L) can be calculated using the following formula.
  • the concentration of component A1 in mass ppm can be calculated from the concentration of component A1 calculated in ⁇ mol/L, the molecular weight of component A1, and the density (kg/L) of the monomer composition.
  • N is the number of carbon atoms contained in one molecule of the organic compound of known concentration
  • N is the number of carbon atoms contained in one molecule of component A1
  • S is the peak area of component A1
  • S is the peak area of the organic compound of known concentration
  • M is the concentration ( ⁇ mol/L) of the organic compound of known concentration.
  • the monomer composition according to the first embodiment can be produced, for example, by a method of adding component A1 to MMA, and optionally further adding component B1, a monomer other than MMA, and component C.
  • the MMA may be a commercially available product, or may be MMA produced by the method described in ⁇ 1-1. Methyl methacrylate>.
  • the monomer composition is preferably produced using MMA produced by a C4 direct oxidation method, and more preferably produced using MMA produced by a C4 direct oxidation method using biomass-derived isobutanol as a starting material.
  • Components A1 and B1 may be commercially available products or may be synthesized by known methods.
  • component A1 and, optionally, component B1, a monomer other than MMA, and component C may be added as raw materials or during the manufacturing process to produce a monomer composition.
  • component A1 or component B1 is produced as a by-product in the MMA manufacturing process, a portion of the produced component A1 or component B1 may be left to produce a monomer composition.
  • the methacrylic resin composition according to the first embodiment contains a methacrylic polymer and an ester compound (component A1) having an ⁇ -hydrogen atom represented by the following formula (1-1).
  • R 11 and R 12 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 13 is an alkyl group having 1 to 5 carbon atoms.
  • at least one of R 11 to R 13 is an alkyl group having 2 to 5 carbon atoms.
  • YA1 concentration of component A1 relative to the total mass of the methacrylic resin composition
  • YA1 concentration of component A1 relative to the total mass of the methacrylic resin composition
  • the methacrylic resin composition preferably further contains a polymerization inhibitor (component B1). It may also contain other compounds (component C) within the range not impairing the effects of the present invention.
  • the form of the methacrylic resin composition is not particularly limited, but is usually a solid. Each item will be explained in detail below.
  • the methacrylic resin composition according to the first embodiment contains a methacrylic polymer, and thus exhibits good transparency. In addition, decomposition due to heat or light is suppressed, and the composition exhibits good thermoformability, heat resistance, and mechanical strength.
  • a methacrylic polymer is a polymer containing a repeating unit derived from MMA (hereinafter also referred to as "MMA unit”).
  • the methacrylic polymer is preferably a copolymer containing an MMA unit and a repeating unit derived from a vinyl monomer copolymerizable with MMA (hereinafter also simply referred to as "vinyl monomer”).
  • “repeating unit” means a unit derived from a monomer formed by polymerization of the monomer.
  • the repeating unit may be a unit formed directly by a polymerization reaction, or may be a unit in which a part of the unit is converted into a different structure by treating the polymer.
  • the content of MMA units is 50 to 100% by mass, and the content of repeating units derived from vinyl monomers is 0 to 50% by mass, based on the total mass of the methacrylic polymer.
  • the lower limit of the content of MMA units is more preferably 60% by mass or more, even more preferably 70% by mass or more, particularly preferably 80% by mass or more, and most preferably 90% by mass or more.
  • the upper limit of the content of repeating units derived from vinyl monomers is more preferably 40% by mass or less, even more preferably 30% by mass or less, particularly preferably 20% by mass or less, and most preferably 10% by mass or less.
  • the sequence of the copolymer is not particularly limited and may be, for example, a random copolymer, a block copolymer, an alternating copolymer, or the like, with a random copolymer being preferred.
  • the form of MMA is the same as that described in ⁇ 1-1. Methyl methacrylate>.
  • the vinyl monomer is preferably an acrylic ester or styrene. This improves the light stability of the methacrylic resin composition.
  • the methacrylic polymer When the vinyl monomer is an acrylic ester, the methacrylic polymer preferably contains 70 to 100% by mass of MMA units and 0 to 30% by mass of repeating units derived from acrylic ester. When the vinyl monomer is styrene, the methacrylic polymer preferably contains 50 to 100% by mass of MMA units and 0 to 50% by mass of repeating units derived from styrene.
  • the acrylic acid ester is preferably an acrylic acid ester having an alkyl group having 1 to 6 carbon atoms on the side chain, such as methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, t-butyl acrylate, etc. These may be used alone or in any ratio and combination of two or more. Among these, from the viewpoint of the light stability of the methacrylic resin composition, at least one selected from the group consisting of methyl acrylate, ethyl acrylate, and n-butyl acrylate is preferred, and methyl acrylate and ethyl acrylate are more preferred.
  • the vinyl monomers can be used alone or in any combination of two or more kinds in any ratio.
  • the methacrylic polymer may contain repeating units derived from a polyfunctional monomer containing two or more radically polymerizable functional groups in one molecule, to the extent that the effects of the invention can be obtained. This can improve solvent resistance, chemical resistance, etc.
  • the radically polymerizable functional group is not particularly limited as long as it has a carbon-carbon double bond and is radically polymerizable. Specific examples include vinyl groups, allyl groups, (meth)acryloyl groups, and (meth)acryloyloxy groups. In particular, (meth)acryloyl groups are preferred from the viewpoint of excellent storage stability of compounds having radically polymerizable functional groups and ease of controlling the polymerizability of the compounds.
  • “(meth)acryloyl” means at least one type selected from “acryloyl” and "methacryloyl”.
  • the radically polymerizable functional groups in a monomer having two radically polymerizable functional groups may be the same or different.
  • the polyfunctional monomer may be, but is not limited to, allyl methacrylate, allyl acrylate, ethylene glycol di(meth)acrylate, ethylene glycol tri(meth)acrylate, neopentyl glycol di(meth)acrylate, and trimethylolpropane tri(meth)acrylate.
  • One of these may be used alone, or two or more may be used in any ratio and combination.
  • the polyfunctional monomer is selected from ethylene glycol di(meth)acrylate and neopentyl glycol di(meth)acrylate, and even more preferable that it is ethylene glycol di(meth)acrylate.
  • the methacrylic resin composition according to the first embodiment contains an ester compound (component A1) having an ⁇ -hydrogen represented by the formula (1-1). This allows the methacrylic resin composition to exhibit excellent light stability. The reason for this is presumed to be as follows.
  • the main chain or side chain is cleaved by light to generate radical species.
  • the generated radical species causes a decrease in the transparency of the methacrylic resin composition.
  • component A1 functions as a radical scavenger, suppressing the decrease in transparency.
  • the methacrylic resin composition exhibits excellent light stability.
  • the embodiment of Component A1 is the same as that described in ⁇ 1-2. Component A1>.
  • the component A1 may be one type or two or more types.
  • the methacrylic resin composition according to the first embodiment preferably contains a polymerization inhibitor (component B1), which makes it possible to more efficiently obtain the effect of improving the light stability of the methacrylic resin composition.
  • the embodiment of Component B is the same as that described in ⁇ 1-3.
  • the component B1 may be one type or two or more types.
  • the methacrylic resin composition according to the first embodiment may contain another compound (component C).
  • the aspect of component C is the same as that described in ⁇ 1-5.
  • the component C may be one type or two or more types.
  • YM concentration of each component in the methacrylic resin composition
  • YM is not particularly limited, but from the viewpoint of good heat resistance, it is usually 95 mass% or more, preferably 97.5 mass% or more, more preferably 98 mass% or more, and even more preferably 99 mass% or more.
  • YM may be in the range of 95 to 99.99 mass%, 95 to 99.985 mass%, 97.5 to 99.98 mass%, 97.5 to 99.975 mass%, 98 to 99.97 mass%, 98 to 99.95 mass%, or 99 to 99.9 mass%.
  • YM is the total concentration of the two or more types of methacrylic polymers.
  • YA1 When the concentration of component A1 relative to the total mass of the methacrylic resin composition is YA1, YA1 is 5 to 10,000 ppm by mass. When the lower limit of YA1 is 5 ppm by mass or more, the methacrylic resin composition exhibits excellent light stability. When the upper limit of YA1 is 10,000 ppm by mass or less, the deterioration of the heat resistance of the methacrylic resin composition is suppressed.
  • the lower limit of YA1 is preferably 10 ppm by mass or more, more preferably 50 ppm by mass or more, and even more preferably 100 ppm by mass or more. Furthermore, the upper limit of YA1 is preferably 5,000 ppm by mass or less, and more preferably 1,000 ppm by mass or less.
  • YB1 when the concentration of component B1 relative to the total mass of the methacrylic resin composition is defined as YB1 (ppm by mass), YB1 is preferably 1 to 1000 ppm by mass. By having YB1 at 1 ppm by mass or more, the light stability improving effect of the methacrylic resin composition can be sufficiently obtained. Furthermore, by having YB1 at 1000 ppm by mass or less, it is possible to prevent adverse effects on the physical properties of the methacrylic resin composition.
  • the lower limit of YB1 is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more.
  • the upper limit of YB1 is more preferably 500 ppm by mass or less, and even more preferably 100 ppm by mass or less.
  • YB1/YA1 is preferably 0.005 to 7. It is more preferable that the lower limit of YB1/YA1 is 0.05 or more and the upper limit is 5 or less.
  • the above-mentioned preferable upper and lower limits can be combined in any desired manner.
  • the concentrations of component A1, component B1, and component C present in the methacrylic resin composition can be measured, for example, by the following method.
  • the methacrylic resin composition is finely crushed, and 0.2 g of the crushed methacrylic resin composition is dissolved in 10 mL of acetone for residual pesticide testing (hereinafter, also simply referred to as "acetone").
  • acetone for residual pesticide testing
  • 1 mL of the internal standard solution is added to the obtained solution with a whole pipette.
  • the internal standard solution is a 0.1 volume % methyl salicylate/acetone solution.
  • the standard reagent of component A1 is diluted with acetone to prepare three test solutions with different concentrations of component A1, and the internal standard solution is added to create a three-point calibration curve by GC-MS measurement. Using this, the concentration of each component in the methacrylic resin composition is quantified.
  • the methacrylic resin composition according to the first embodiment can be produced by a method including a step of radically polymerizing a polymerizable composition containing MMA.
  • the polymerizable composition is, for example, a polymerizable composition (M11) containing a raw material composition, component A1, and a radical polymerization initiator; or a polymerizable composition (M12) containing the monomer composition according to the first embodiment and a radical polymerization initiator; and the polymerizable composition (M12) is preferable. That is, the methacrylic resin composition according to the first embodiment preferably contains a polymer of the monomer composition according to the first embodiment. Each item will be explained in detail below.
  • Polymerizable composition (M11) contains a raw material composition, a component A1, and a radical polymerization initiator.
  • the polymerizable composition (M11) preferably further contains a polymerization inhibitor (component B1).
  • Other compounds (component C) may be contained within the range that does not impair the effects of the present invention.
  • the raw material composition is also a raw material component of the methacrylic polymer contained in the methacrylic resin composition according to the first embodiment.
  • the raw material composition include a composition containing only MMA, and a composition containing MMA and a vinyl monomer.
  • the vinyl monomer the same vinyl monomer as described in ⁇ 2-1. Methacrylic polymer> can be used.
  • the raw material composition contains an acrylic acid ester or styrene as the vinyl monomer, the light stability of the resulting methacrylic resin composition is improved.
  • the vinyl monomer can be used alone or in any ratio and combination of two or more kinds.
  • the content of MMA is preferably 50-100% by mass, and the content of vinyl monomer is preferably 0-50% by mass, based on the total mass of the raw material composition.
  • the lower limit of the content of MMA is more preferably 70% by mass or more, and the upper limit of the content of vinyl monomer is more preferably 30% by mass or less.
  • the raw material composition may also contain a polymer containing MMA units in advance.
  • a polymer containing MMA units When the raw material composition contains a polymer, it becomes a viscous liquid (hereinafter also referred to as "syrup"), which can shorten the polymerization time and improve productivity.
  • polymers containing MMA units include polymers that contain 50% by mass or more of MMA units and 50% by mass or less of structural units derived from vinyl monomers relative to the total mass of the polymer, or polymers consisting of 100% by mass of MMA units.
  • Examples of the method for obtaining the syrup include a method for dissolving a polymer containing MMA units in a raw material composition, and a method for adding a known radical polymerization initiator to a raw material composition and polymerizing a part of it.
  • the concentration of the raw material composition relative to the total mass of the polymerizable composition (M11) can be in the range of 97.5 to 99.99 mass %.
  • Component A1 The embodiment of Component A1 is the same as that described in ⁇ 1-2. Component A1>.
  • the component A1 may be one type or two or more types.
  • the concentration of component A1 relative to the total mass of the polymerizable composition (M11) is preferably 5 to 10,000 ppm by mass.
  • the resulting methacrylic resin composition exhibits excellent light stability.
  • the upper limit of the concentration of component A1 is 10,000 ppm by mass or less, the resulting methacrylic resin composition exhibits excellent heat resistance.
  • the lower limit of the concentration of component A1 is preferably 10 ppm by mass or more, more preferably 50 ppm by mass or more, and even more preferably 100 ppm by mass or more.
  • the upper limit of the concentration of component A1 is preferably 5,000 ppm by mass or less, and more preferably 1,000 ppm by mass or less.
  • radical polymerization initiators can be used.
  • the radical polymerization initiator include known azo compounds such as 2,2'-azobis(isobutyronitrile) and 2,2'-azobis(2,4-dimethylvaleronitrile); known organic peroxides such as t-hexyl peroxypivalate, benzoyl peroxide, and lauroyl peroxide; and the like. These can be used alone or in any combination of two or more kinds in any ratio.
  • known polymerization accelerators such as amines and mercaptans can be used in combination with the radical polymerization initiator.
  • concentration of the radical polymerization initiator relative to the total mass of the polymerizable composition (M11) is not particularly limited, and can be, for example, 0.005 to 5 mass %, or may be 0.01 to 1 mass %.
  • Component B1 The embodiment of Component B1 is the same as that described in ⁇ 1-3. Component B1>.
  • the component B1 may be one type or two or more types.
  • the concentration of component B relative to the total mass of the polymerizable composition (M11) is preferably 1 to 1000 ppm by mass.
  • concentration of component B of 1 ppm by mass or more the effect of improving the light stability of the resulting methacrylic resin composition can be sufficiently obtained.
  • concentration of component B of 1000 ppm by mass or less it is possible to prevent adverse effects on the physical properties of the resulting methacrylic resin composition.
  • the lower limit of the concentration of component B is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more.
  • the upper limit of the concentration of component B is more preferably 500 ppm by mass or less, and even more preferably 100 ppm by mass or less.
  • Component C The aspect of Component C is the same as that described in ⁇ 1-5. Component C>.
  • the component C may be one type or two or more types.
  • the polymerizable composition (M12) contains the monomer composition according to the first embodiment and a known radical polymerization initiator.
  • the polymerizable composition (M12) may further contain a vinyl monomer.
  • other compounds (component C) may be contained within the range that does not impair the effects of the present invention.
  • the monomer composition is the monomer composition according to the first embodiment, and is a composition containing raw material components of the methacrylic polymer contained in the methacrylic resin composition according to the first embodiment.
  • the concentration of the monomer composition relative to the total mass of the polymerizable composition (M12) can be 60% by mass or more and less than 100% by mass.
  • radical polymerization initiator is the same as that described in ⁇ 3-1.
  • the polymerizable composition (M12) contains a vinyl monomer
  • the same vinyl monomer as described in ⁇ 2-1. Methacrylic polymer> can be used as the vinyl monomer.
  • the polymerizable composition (M12) contains an acrylic acid ester or styrene as a vinyl monomer, the light stability of the resulting methacrylic resin composition is improved.
  • the vinyl monomer can be used alone or in any ratio and combination of two or more kinds.
  • the concentration of the vinyl monomer relative to the total mass of the polymerizable composition (M12) may be more than 0 mass% and less than 40 mass%.
  • Component C The aspect of Component C is the same as that described in ⁇ 1-5. Component C>.
  • the component C may be one type or two or more types.
  • the radical polymerization step of the polymerizable composition may include a syrup preparation step of preparing a syrup by polymerizing a part of the polymerizable composition, and a polymerization step of polymerizing a polymerizable component in the obtained syrup.
  • “polymerizing a part of the polymerizable composition” in the syrup preparation step means polymerization so that the concentration of the polymer is 10 to 80 mass%, preferably 10 to 60 mass%, more preferably 10 to 40 mass%, based on the total mass of the obtained syrup.
  • the polymerization temperature when polymerizing the polymerizable composition is not particularly limited, and can be appropriately determined by a person skilled in the art according to well-known techniques. Usually, it is appropriately set in the range of preferably 40 to 180°C, more preferably 50 to 150°C, depending on the type of radical polymerization initiator used. In addition, the polymerizable composition can be polymerized under multiple temperature conditions as necessary. The polymerization time can be appropriately determined depending on the progress of polymerization and hardening.
  • the method for obtaining a methacrylic resin composition by polymerizing the above-mentioned polymerizable composition and producing a resin molded article containing the methacrylic resin composition there is no particular limitation on the method for obtaining a methacrylic resin composition by polymerizing the above-mentioned polymerizable composition and producing a resin molded article containing the methacrylic resin composition.
  • the polymerization method for the polymerizable composition include bulk polymerization, suspension polymerization, emulsion polymerization, and dispersion polymerization, etc. Among these, bulk polymerization is preferred from the viewpoint of productivity.
  • the bulk polymerization method include a method of obtaining a resin molded product by bulk polymerization using a known cast polymerization method, or a method of obtaining a resin molded product by molding a composition produced by bulk polymerization, etc. It is preferable to use a method utilizing cast polymerization from the viewpoint of further improving the heat resistance of the resin molded product by increasing the molecular weight or introducing a crosslinked structure.
  • the cast polymerization method include a cell cast method and a continuous cast method.
  • a resin molded product having a plate-like form when a resin molded product having a plate-like form is obtained, a space formed by two opposing glass or metal plates (SUS plates) and a gasket such as a soft resin tube disposed at the edge of the two plates is used as a mold, and a polymerizable composition or a syrup obtained by polymerizing a part of the polymerizable composition is injected into the mold. Then, the polymerization is completed by a heat polymerization treatment, and the resin molded product is removed from the mold.
  • SUS plates glass or metal plates
  • a gasket such as a soft resin tube disposed at the edge of the two plates
  • a space formed by two stainless steel endless belts running in the same direction at the same speed and facing each other with a certain distance between them and gaskets such as soft resin tubes arranged on both sides of the belts is used as a mold, and a polymerizable composition or a syrup obtained by polymerizing a part of the polymerizable composition is continuously injected into the mold from one end of the endless belts.
  • the polymerization is then completed by a heat polymerization treatment, and a resin molded product is continuously taken out from the other end of the endless belts.
  • the gap between the mold voids can be appropriately adjusted by the thickness (diameter) of the gasket to obtain a resin molded product of a desired thickness.
  • the resin molded body according to the first embodiment includes the methacrylic resin composition according to the first embodiment.
  • a resin molded body having excellent light stability while maintaining transparency and heat resistance can be obtained.
  • molding methods include press molding, injection molding, gas-assisted injection molding, welding molding, extrusion molding, blow molding, film molding, blow molding, multi-layer molding, and melt spinning.
  • the term "resin molded body” is not particularly limited as long as it is a molded body containing the methacrylic resin composition, and may be a molded body consisting of only the methacrylic resin composition.
  • the methacrylic resin composition substantially corresponds to both the methacrylic resin composition and the resin molded body.
  • the shape of the resin molded body is not particularly limited, but examples include a plate-shaped resin molded body (resin plate) or a sheet-shaped resin molded body (resin sheet).
  • the thickness of the resin molded body can be adjusted to any thickness as needed, from a thick plate to a thin film, and can be, for example, 1 to 30 mm.
  • a first aspect of the monomer composition according to the second embodiment contains MMA and an ⁇ , ⁇ -unsaturated carbonyl compound (component A21) represented by the following formula (2-1).
  • R 21 , R 22 and R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 24 represents an alkyl group having 1 to 5 carbon atoms or an amino group.
  • the amino group referred to here means an amino group (-NH 2 ) having no substituent on the nitrogen atom.
  • XA21 concentration of component A21 relative to the total mass of the monomer composition
  • XA21 concentration of component A21 relative to the total mass of the monomer composition
  • the monomer composition according to the second embodiment preferably further contains a polymerization inhibitor (component B).
  • the monomer composition may contain monomers other than MMA, other compounds (component C), and water within a range that does not impair the effects of the present invention. Each item will be explained in detail below.
  • a first aspect of the monomer composition according to the second embodiment includes MMA.
  • Examples and preferred aspects of the method for producing MMA are the same as those of the first embodiment.
  • a first aspect of the monomer composition according to the first embodiment includes an ⁇ , ⁇ -unsaturated carbonyl compound (component A21) represented by the above formula (2-1).
  • component A21 represents an ⁇ , ⁇ -unsaturated carbonyl compound represented by the above formula (2-1).
  • component A21 makes it possible to suppress the production of MMA dimers and methyl pyruvate. The reason for this is presumed to be as follows.
  • MMA dimers are produced by radicals that are generated during storage of MMA.
  • An example of such radicals is the hydroxyl radical, which is produced when oxygen molecules absorb ultraviolet light derived from sunlight. Hydroxyl radicals are also responsible for the production of methyl pyruvate through the oxidation of MMA.
  • ⁇ , ⁇ -unsaturated carbonyl compounds absorb ultraviolet light due to their conjugated double bonds, and the absorption wavelength varies depending on the type of substituent.
  • ⁇ , ⁇ -unsaturated carbonyl compounds having the structure represented by formula (2-1) can absorb ultraviolet light over a wide range of wavelengths. Therefore, when the monomer composition contains component A21, ultraviolet light over a wide range of wavelengths is absorbed, suppressing the production of hydroxyl radicals. It is therefore presumed that the production of MMA dimers and methyl pyruvate is suppressed.
  • the molecular weight of component A21 is preferably 200 or less. By having a molecular weight of 200 or less, the number of alpha hydrogens per unit mass in component A21 can be increased, so that the effects of the present invention can be obtained with a smaller mass.
  • the molecular weight of component A21 is more preferably 190 or less, even more preferably 180 or less, and particularly preferably 170 or less.
  • R 21 , R 22 and R 23 in the formula (2-1) each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 24 in the formula (2-1) represents an alkyl group having 1 to 5 carbon atoms or an amino group.
  • R 21 , R 22 , R 23 and R 24 may be the same or different.
  • R 21 , R 22 and R 23 are each preferably independently a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a 1-methylpropyl group or a 2-methylpropyl group, more preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, even more preferably a hydrogen atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom or a methyl group.
  • R 24 is preferably a methyl group or an amino group, and more preferably a methyl group.
  • component A21 be at least one selected from the group consisting of isopropenyl methyl ketone and methacrylamide.
  • the component A21 may be one type or two or more types.
  • the first aspect of the monomer composition according to the second embodiment preferably contains a polymerization inhibitor (component B1).
  • component B1 a polymerization inhibitor
  • the dimerization of MMA by a radical mechanism during storage of MMA can be prevented.
  • component B can trap the hydroxyl radicals that are generated during storage of MMA. That is, the monomer composition contains component B1 in addition to component A21.
  • the amount of hydroxyl radicals can be reduced by two different mechanisms: the component A21 suppresses the generation of hydroxyl radicals, and the component B1 removes the generated hydroxyl radicals. It is believed that this can efficiently suppress the production of methyl pyruvate and cytotoxicity.
  • Component B1 is the same as that described in ⁇ 1-3. Component B1> in the first embodiment.
  • Component B1 may be one type or two or more types.
  • a monomer composition contains a compound corresponding to both component A21 and component B1
  • the compound is regarded as component A21.
  • component A21 and component B1 it means that the monomer composition contains a component B other than the compound.
  • the compound having the highest molar concentration in the monomer composition is regarded as component A21, and the other compounds are regarded as component B1.
  • the first aspect of the monomer composition according to the second embodiment may contain a monomer other than MMA.
  • the aspect of the monomer other than MMA is the same as that described in ⁇ 1-4.
  • the methacrylic polymer contained in the methacrylic resin composition according to the second embodiment described below is preferably a copolymer containing repeating units derived from MMA and repeating units derived from a vinyl monomer copolymerizable with MMA, and the vinyl monomer is preferably an acrylic ester or styrene. Therefore, the monomer composition according to the second embodiment preferably further contains an acrylic ester or styrene as a monomer other than MMA.
  • Component C> The first aspect of the monomer composition according to the second embodiment may contain another compound (component C). The aspect of component C is the same as that described in ⁇ 1-5. Component C> in the first embodiment. Component C may be one type or two or more types.
  • XM Concentration of each component in monomer composition 1>
  • XM is preferably 85 mass% or more.
  • the lower limit of XM is more preferably 90 mass% or more, even more preferably 95 mass% or more, particularly preferably 97 mass% or more, particularly preferably 97.5 mass% or more, and most preferably 98.0 mass% or more.
  • the upper limit of XM is usually 99.99 mass% or less, and may be 99.98 mass% or less or 99.97 mass% or less.
  • XM may be in the range of, for example, 85 to 99.99 mass%, 90 to 99.98 mass%, 95 to 99.97 mass%, 97 to 99.97 mass%, 97 to 99.97 mass%, 97.5 to 99.97 mass%, or 98.0 to 99.97 mass%.
  • XA21 when the concentration of component A21 relative to the total mass of the monomer composition is XA21 (ppm by mass), XA21 is 1 to 10,000 ppm by mass.
  • XA21 at 1 ppm by mass or more, the effect of improving the quality stability of the monomer composition can be sufficiently obtained.
  • XA21 at 10,000 ppm by mass or less the amount of impurities when the methacrylic resin composition is produced by polymerization of the monomer composition can be reduced, and adverse effects on the physical properties of the methacrylic resin composition can be prevented.
  • the lower limit of XA21 is preferably 10 ppm by mass or more, more preferably 50 ppm by mass or more, and even more preferably 100 ppm by mass or more. Furthermore, the upper limit of XA21 is preferably 5,000 ppm by mass or less, and more preferably 1,000 ppm by mass or less.
  • XB1 when the concentration of component B1 relative to the total mass of the monomer composition is XB1 (ppm by mass), XB1 is preferably 1 to 1000 ppm by mass.
  • XB1 be 1 ppm by mass or more, the effect of improving the quality stability of the monomer composition can be sufficiently obtained.
  • XB1 be 1000 ppm by mass or less, the amount of impurities when the methacrylic resin composition is produced by polymerization of the monomer composition can be reduced, and adverse effects on the physical properties of the methacrylic resin composition can be prevented.
  • the lower limit of XB1 is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more. Furthermore, the upper limit of XB1 is more preferably 500 ppm by mass or less, and even more preferably 100 ppm by mass or less.
  • XB1/XA21 is 0.005 to 7. It is more preferable that the lower limit of XB1/XA21 is 0.05 or more and the upper limit is 5 or less.
  • the concentration of the monomer relative to the total mass of the monomer composition is preferably 0 to 15% by mass.
  • the lower limit of the concentration of the monomer is more preferably 1% by mass or more, and the upper limit is more preferably 10% by mass or less.
  • the above-mentioned preferable upper and lower limits can be combined in any desired manner.
  • the first aspect of the monomer composition according to the second embodiment can be produced, for example, by a method of adding component A21 to MMA, and optionally further adding component B1, a monomer other than MMA, and component C.
  • the production method of the monomer composition 1 is the same as the method described in the first embodiment, except that component A21 is used.
  • Component A21 may be a commercially available product or may be synthesized by a known method.
  • a second aspect of the monomer composition according to the second embodiment contains MMA and an ⁇ , ⁇ -unsaturated carboxylic acid ester (component A22) represented by the following formula (2-2).
  • component A22 ⁇ , ⁇ -unsaturated carboxylic acid ester
  • components A21 and A22 may be collectively referred to as “component A2.”
  • R 25 , R 26 and R 27 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 28 is an alkyl group having 1 to 10 carbon atoms. In addition, at least one of R 25 and R 26 is an alkyl group having 1 to 10 carbon atoms.
  • XA22 concentration of component A22 relative to the total mass of the monomer composition
  • XA22 concentration of component A22 relative to the total mass of the monomer composition
  • the monomer composition preferably further contains a polymerization inhibitor (component B1).
  • the monomer composition may contain monomers other than MMA, other compounds (component C), and water, within the range not impairing the effects of the present invention. Each item will be explained in detail below.
  • a second aspect of the monomer composition according to the second embodiment includes MMA.
  • Examples and preferred aspects of the method for producing MMA are the same as those of the first embodiment.
  • a second aspect of the monomer composition according to the second embodiment includes an ⁇ , ⁇ -unsaturated carboxylic acid ester (component A22) represented by the above formula (2-2).
  • component A22 represented by the above formula (2-2).
  • the inclusion of component A22 in the composition makes it possible to suppress the production of MMA dimers and methyl pyruvate. The reason for this is presumed to be as follows.
  • MMA dimers are produced by radicals that are generated during storage of MMA.
  • An example of such radicals is the hydroxyl radical that is produced when oxygen molecules absorb ultraviolet light derived from sunlight. Hydroxyl radicals are also responsible for the production of methyl pyruvate through the oxidation of MMA.
  • ⁇ , ⁇ -unsaturated carboxylic acid esters absorb ultraviolet light due to their conjugated double bonds, and the absorption wavelength varies depending on the type of substituent.
  • ⁇ , ⁇ -unsaturated carboxylic acid esters having the structure represented by formula (2-2) can absorb ultraviolet light over a wide range of wavelengths. Therefore, when the monomer composition contains component A22, ultraviolet light over a wide range of wavelengths is absorbed, suppressing the production of hydroxyl radicals. It is therefore presumed that the production of MMA dimers and methyl pyruvate is suppressed.
  • the molecular weight of component A22 is preferably 200 or less. By having a molecular weight of 200 or less, the number of alpha hydrogens per unit mass in component A22 can be increased, and the effects of the present invention can be obtained with a smaller mass.
  • the molecular weight of component A22 is more preferably 190 or less, even more preferably 180 or less, and particularly preferably 170 or less.
  • R 25 , R 26 and R 27 in the formula (2-2) each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 28 in the formula (2-2) represents an alkyl group having 1 to 10 carbon atoms.
  • R 25 , R 26 , R 27 and R 28 may be the same or different.
  • At least one of R 25 and R 26 represents an alkyl group having 1 to 10 carbon atoms.
  • R 25 , R 26 and R 27 are each preferably independently a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a 1-methylpropyl group or a 2-methylpropyl group, more preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group, further preferably a hydrogen atom, a methyl group or an ethyl group, and particularly preferably a hydrogen atom or a methyl group.
  • R 28 is preferably a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a 1-methylpropyl group, a 2-methylpropyl group, an n-pentyl group, a 1-methylbutyl group, a 2-methylbutyl group, a 3-methylbutyl group, a 1-ethylpropyl group, a 2-ethylpropyl group, or a 1,2-dimethylpropyl group, more preferably a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a 1-methylpropyl group, or a 2-methylpropyl group, further preferably a methyl group, an ethyl group, an n-propyl group, or an isopropyl group, and particularly preferably a methyl group or an ethyl group.
  • component A22 is at least one selected from the group consisting of methyl crotonate and methyl 3,3-dimethylacrylate.
  • the component A22 may be one type or two or more types.
  • component B1 The embodiment of component B1 is the same as the first embodiment of the second embodiment.
  • component C The embodiment of component C is the same as the first embodiment of the second embodiment.
  • a first aspect of the methacrylic resin composition according to the second embodiment contains a methacrylic polymer and an ⁇ , ⁇ -unsaturated carbonyl compound (component A21) represented by the following formula (2-1).
  • R 21 , R 22 and R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 24 represents an alkyl group having 1 to 5 carbon atoms or an amino group.
  • the amino group referred to here means an amino group (-NH 2 ) having no substituent on the nitrogen atom.
  • YA21 concentration of component A21 relative to the total mass of the methacrylic resin composition
  • YA21 concentration of component A21 relative to the total mass of the methacrylic resin composition
  • YA21 concentration of component A21 relative to the total mass of the methacrylic resin composition
  • the methacrylic resin composition preferably further contains a polymerization inhibitor (component B1). It may also contain other compounds (component C) within the range not impairing the effects of the present invention.
  • the form of the methacrylic resin composition is not particularly limited, but is usually a solid. Each item will be explained in detail below.
  • the first aspect of the methacrylic resin composition according to the second embodiment contains a methacrylic polymer, and thus exhibits good transparency. In addition, decomposition due to heat or light is suppressed, and the composition exhibits good thermoformability, heat resistance, and mechanical strength.
  • the state of the methacrylic polymer is the same as that described for the methacrylic polymer in the first embodiment.
  • the first aspect of the methacrylic resin composition according to the second embodiment contains an ⁇ , ⁇ -unsaturated carbonyl compound (component A21) represented by the above formula (1-1).
  • component A21 represented by the above formula (1-1).
  • the composition exhibits excellent light stability, and the reason for this is presumed to be as follows.
  • the main chain or side chain is cleaved by light to generate radical species.
  • the generated radical species cause a decrease in the transparency of the methacrylic resin composition.
  • component A21 functions as a radical scavenger, suppressing the decrease in transparency.
  • the methacrylic resin composition exhibits excellent light stability.
  • the embodiment of Component A21 is the same as that described in ⁇ 1-2. Component A21>.
  • the component A21 may be one type or two or more types.
  • Component B1> The first aspect of the methacrylic resin composition according to the second embodiment preferably contains a polymerization inhibitor (component B1). This makes it possible to more efficiently improve the light stability of the methacrylic resin composition. Obtainable.
  • the embodiment of Component B1 is the same as that described in ⁇ 1-3. Component B1>.
  • the component B1 may be one type or two or more types.
  • the first aspect of the methacrylic resin composition according to the second embodiment may contain another compound (component C).
  • the aspect of component C is the same as that described in ⁇ 1-5.
  • the component C may be one type or two or more types.
  • YM concentration of each component in the methacrylic resin composition
  • YM is not particularly limited, but from the viewpoint of good heat resistance, it is usually 95 mass% or more, preferably 97.5 mass% or more, more preferably 98 mass% or more, and even more preferably 99 mass% or more.
  • YM may be in the range of 95 to 99.99 mass%, 95 to 99.985 mass%, 97.5 to 99.98 mass%, 97.5 to 99.975 mass%, 98 to 99.97 mass%, 98 to 99.95 mass%, or 99 to 99.9 mass%.
  • YM is the total concentration of the two or more types of methacrylic polymers.
  • YA21 When the concentration of component A21 relative to the total mass of the methacrylic resin composition is YA21, YA21 is 0.1 to 4000 ppm by mass. When the lower limit of YA21 is 0.1 ppm by mass or more, the methacrylic resin composition exhibits excellent light stability. When the upper limit of YA21 is 4000 ppm by mass or less, the deterioration of the heat resistance of the methacrylic resin composition is suppressed.
  • the lower limit of YA21 is preferably 1 ppm by mass or more, more preferably 10 ppm by mass or more, more preferably 50 ppm by mass or more, and even more preferably 100 ppm by mass or more.
  • the upper limit of YA21 is preferably 3000 ppm by mass or less, more preferably 1000 ppm by mass or less. Furthermore, even when Component A21 is copolymerized with MMA, so long as the content of YA21 in the methacrylic resin composition is 0.1 to 4000 ppm, the same effect of improving light stability can be obtained.
  • YB1 when the concentration of component B1 relative to the total mass of the methacrylic resin composition is defined as YB1 (ppm by mass), YB1 is preferably 1 to 1000 ppm by mass. By having YB1 at 1 ppm by mass or more, the light stability improving effect of the methacrylic resin composition can be sufficiently obtained. Furthermore, by having YB1 at 1000 ppm by mass or less, it is possible to prevent adverse effects on the physical properties of the methacrylic resin composition.
  • the lower limit of YB1 is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more.
  • the upper limit of YB1 is more preferably 500 ppm by mass or less, and even more preferably 100 ppm by mass or less.
  • YB1/YA21 is preferably 0.005 to 7. It is more preferable that the lower limit of YB1/YA21 is 0.05 or more and the upper limit is 5 or less.
  • the above-mentioned preferable upper and lower limits can be combined in any desired manner.
  • Methacrylic resin composition 2 A second aspect of the methacrylic resin composition according to the second embodiment contains a methacrylic polymer and an ⁇ , ⁇ -unsaturated carboxylic acid ester (component A22) represented by the following formula (2-2).
  • R 25 , R 26 and R 27 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 28 is an alkyl group having 1 to 10 carbon atoms. In addition, at least one of R 25 and R 26 is an alkyl group having 1 to 10 carbon atoms.
  • YA22 concentration of component A22 relative to the total mass of the methacrylic resin composition
  • YA22 concentration of component A22 relative to the total mass of the methacrylic resin composition
  • YA22 is 1 to 10,000 ppm by mass. This allows the methacrylic resin composition to exhibit excellent light stability while maintaining transparency and heat resistance.
  • the methacrylic resin composition preferably further contains a polymerization inhibitor (component B1). It may also contain other compounds (component C) within the range not impairing the effects of the present invention.
  • the form of the methacrylic resin composition is not particularly limited, but is usually a solid.
  • Methacrylic polymer The state of the methacrylic polymer is the same as that described for the methacrylic polymer in the first embodiment.
  • the second aspect of the methacrylic resin composition according to the second embodiment includes an ⁇ , ⁇ -unsaturated carboxylic acid ester (component A22) represented by the formula (2-2).
  • the resin composition exhibits excellent light stability, and the reason for this is presumed to be as follows.
  • the main chain or side chain is cleaved by light to generate radical species.
  • the generated radical species cause a decrease in the transparency of the methacrylic resin composition.
  • component A22 functions as a radical scavenger, suppressing the decrease in transparency.
  • the methacrylic resin composition exhibits excellent light stability.
  • the embodiment of Component A22 is the same as that described in ⁇ 2-2. Component A22>.
  • the component A22 may be one type or two or more types.
  • Component B1> The second aspect of the methacrylic resin composition according to the second embodiment preferably contains a polymerization inhibitor (component B1). This makes it possible to more efficiently improve the light stability of the methacrylic resin composition. Obtainable.
  • the embodiment of Component B1 is the same as that described in ⁇ 1-3. Component B1>.
  • the component B1 may be one type or two or more types.
  • the second aspect of the methacrylic resin composition according to the second embodiment may contain another compound (component C).
  • the aspect of component C is the same as that described in ⁇ 1-5.
  • the component C may be one type or two or more types.
  • the methacrylic resin composition according to the second embodiment can be produced by a method including a step of radically polymerizing a polymerizable composition containing MMA.
  • the polymerizable composition is, for example, a polymerizable composition (M21) containing a raw material composition, component A21 or component A22, and a radical polymerization initiator; or a polymerizable composition (M22) containing a monomer composition according to the second embodiment and a radical polymerization initiator; and the polymerizable composition (M22) is preferable. That is, the methacrylic resin composition according to the second embodiment preferably contains a polymer of the monomer composition according to the second embodiment. Each item will be explained in detail below.
  • the polymerizable composition (M21) may further contain a polymerization inhibitor (component B1). It is preferable.
  • other compounds (component C) may be contained within the range that does not impair the effects of the present invention.
  • the raw material composition is also a raw material component of the methacrylic polymer contained in the methacrylic resin composition according to the second embodiment.
  • the raw material composition include a composition containing only MMA, and a composition containing MMA and a vinyl monomer.
  • the vinyl monomer the same vinyl monomer as described in ⁇ 2-1. Methacrylic polymer> of the first embodiment can be used.
  • the raw material composition contains an acrylic acid ester or styrene as the vinyl monomer, the light stability of the resulting methacrylic resin composition is improved.
  • the vinyl monomer can be used alone or in any ratio and combination of two or more kinds.
  • the content of MMA is preferably 50-100% by mass, and the content of vinyl monomer is preferably 0-50% by mass, based on the total mass of the raw material composition.
  • the lower limit of the content of MMA is more preferably 70% by mass or more, and the upper limit of the content of vinyl monomer is more preferably 30% by mass or less.
  • the raw material composition may also contain a polymer containing MMA units in advance.
  • the raw material composition containing the polymer becomes a syrup, which can shorten the polymerization time and improve productivity.
  • Specific examples of polymers containing MMA units include polymers that contain 50% by mass or more of MMA units and 50% by mass or less of structural units derived from vinyl monomers relative to the total mass of the polymer, or polymers consisting of 100% by mass of MMA units.
  • Examples of the method for obtaining the syrup include a method for dissolving a polymer containing MMA units in a raw material composition, and a method for adding a known radical polymerization initiator to a raw material composition and polymerizing a part of it.
  • the concentration of the raw material composition relative to the total mass of the polymerizable composition (M21) can be in the range of 97.5 to 99.99 mass %.
  • Component A21 and Component A22 The aspects of Component A21 are the same as those described in ⁇ 1-2. Component A22>, and the aspects of Component A22 are the same as those described in ⁇ 2-2. Component A22>. Each of Component A21 and Component A22 may be one type or two or more types.
  • the concentration of the component A21 relative to the total mass of the polymerizable composition (M21) is preferably 0.1 to 4000 ppm by mass.
  • the concentration of the component A21 relative to the total mass of the polymerizable composition (M21) is preferably 0.1 to 4000 ppm by mass.
  • the lower limit of the concentration of the component A21 is 0.1 ppm by mass or more, the obtained methacrylic resin composition exhibits excellent light stability.
  • the upper limit of the concentration of the component A21 is 4000 ppm by mass or less, the obtained methacrylic resin composition exhibits excellent heat resistance.
  • the lower limit of the concentration of the component A21 is preferably 1 ppm by mass or more, more preferably 10 ppm by mass or more, more preferably 50 ppm by mass or more, and even more preferably 100 ppm by mass or more.
  • the upper limit of the concentration of the component A21 is preferably 3000 ppm by mass or less, more preferably 1000 ppm by mass or less.
  • the aspect of the concentration of the component A22 relative to the total mass of the polymerizable composition (M21) is similar to the aspect of the concentration of the component A21.
  • radical polymerization initiator As the radical polymerization initiator, a known one can be used, and examples thereof include the same ones as those exemplified in the first embodiment.
  • the radical polymerization initiator can be used alone or in any ratio and combination of two or more kinds. If necessary, a known polymerization accelerator such as an amine or mercaptan can be used in combination with the radical polymerization initiator.
  • concentration of the radical polymerization initiator relative to the total mass of the polymerizable composition (M21) is not particularly limited, and can be, for example, 0.005 to 5 mass %, or may be 0.01 to 1 mass %.
  • Component B1 The embodiment of Component B1 is the same as that described in ⁇ 1-3. Component B1>.
  • the component B1 may be one type or two or more types.
  • the concentration of component B1 relative to the total mass in the polymerizable composition (M21) is preferably 1 to 1000 ppm by mass.
  • concentration of component B1 of 1 ppm by mass or more the effect of improving the light stability of the resulting methacrylic resin composition can be sufficiently obtained.
  • concentration of component B1 of 1000 ppm by mass or less it is possible to prevent adverse effects on the physical properties of the resulting methacrylic resin composition.
  • the lower limit of the concentration of component B1 is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more.
  • the upper limit of the concentration of component B1 is more preferably 500 ppm by mass or less, and even more preferably 100 ppm by mass or less.
  • Component C The aspect of Component C is the same as that described in ⁇ 1-5. Component C>.
  • the component C may be one type or two or more types.
  • the polymerizable composition (M22) contains the monomer composition according to the second embodiment and a known radical polymerization initiator.
  • the polymerizable composition (M22) may further contain a vinyl monomer.
  • other compounds (component C) may be contained within the range that does not impair the effects of the present invention.
  • the monomer composition is the monomer composition according to the second embodiment, and is a composition containing raw material components of the methacrylic polymer contained in the methacrylic resin composition according to the second embodiment.
  • the concentration of the monomer composition relative to the total mass of the polymerizable composition (M22) can be 60 mass % or more and less than 100 mass %.
  • radical polymerization initiator is the same as that described in ⁇ 5-1.
  • the polymerizable composition (M22) contains a vinyl monomer
  • Methacrylic polymer> of the first embodiment can be used as the vinyl monomer.
  • the polymerizable composition (M22) contains an acrylic acid ester or styrene as a vinyl monomer, the light stability of the resulting methacrylic resin composition is improved.
  • the vinyl monomer can be used alone or in any ratio and combination of two or more kinds.
  • the concentration of the vinyl monomer relative to the total mass of the polymerizable composition (M22) may be more than 0 mass% and less than 40 mass%.
  • Component C The aspect of Component C is the same as that described in ⁇ 1-5. Component C>.
  • the component C may be one type or two or more types.
  • Radical polymerization process of polymerizable composition> The mode of the radical polymerization step of the polymerizable composition is the same as that described in ⁇ 3-3. Radical polymerization step of the polymerizable composition> in the first embodiment.
  • the resin molded product according to the second embodiment includes the methacrylic resin composition according to the second embodiment.
  • the form of the resin molded product is the same as that described in [4. Resin molded product] of the first embodiment.
  • the monomer composition according to the third embodiment contains MMA and a pyrazine compound (component A3) represented by the following formula (3-1).
  • R 31 , R 32 , R 33 and R 34 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 6 carbon atoms.
  • the monomer composition preferably further contains a polymerization inhibitor (component B1), an ester compound having ⁇ -hydrogen represented by the following formula (3-2) (component B2), or an ⁇ , ⁇ -unsaturated carbonyl compound represented by the following formula (3-3) (component B3).
  • component B1 polymerization inhibitor
  • component B2 an ester compound having ⁇ -hydrogen represented by the following formula (3-2)
  • component B3 an ⁇ , ⁇ -unsaturated carbonyl compound represented by the following formula (3-3)
  • component B3 ⁇ , ⁇ -unsaturated carbonyl compound represented by the following formula (3-3)
  • the monomer composition may contain one or more of components B1, B2, and B3.
  • the monomer composition may contain monomers other than MMA, other compounds (component C), and water within a range that does not impair the effects of the present invention.
  • R 35 and R 36 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 37 represents an alkyl group having 1 to 5 carbon atoms.
  • R 38 , R 39 and R 40 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 41 represents an alkyl group having 1 to 10 carbon atoms.
  • the monomer composition according to the third embodiment contains MMA.
  • the form of MMA is the same as that described in ⁇ 1-1.
  • the monomer composition according to the third embodiment contains a pyrazine compound (component A3) represented by the formula (3-1).
  • component A3 represented by the formula (3-1).
  • component A3 is presumed to be as follows.
  • MMA dimers are produced by radicals that are generated during storage of MMA.
  • An example of such radicals is a hydroxyl radical that is produced when oxygen molecules absorb ultraviolet light derived from sunlight. Hydroxyl radicals are also responsible for the production of methyl pyruvate through the oxidation of MMA.
  • Pyrazine compounds are ⁇ -conjugated compounds with aromatic rings, and therefore absorb ultraviolet light, with the absorption wavelength varying depending on the type of substituent.
  • the pyrazine compound (component A3) represented by the formula (3-1) above can absorb ultraviolet light of a wide range of wavelengths. Therefore, by including component A3 in the monomer composition, a wide range of ultraviolet light is absorbed, and the production of hydroxyl radicals is suppressed. As a result, it is believed that the production of MMA dimers and methyl pyruvate can be efficiently suppressed.
  • the molecular weight of component A3 is preferably 200 or less. This increases the number of pyrazine rings per unit mass of component A3, making it easier to obtain the effects of the present invention with a smaller amount of component A3.
  • the molecular weight of component A3 is more preferably 180 or less, even more preferably 160 or less, and particularly preferably 140 or less.
  • the molecular weight of component A3 is preferably 80 or more, more preferably 100 or more, and even more preferably 120 or more.
  • the above upper and lower limits of the molecular weight of component A3 can be combined in any combination.
  • the molecular weight of component A3 is preferably 80 to 200, more preferably 80 to 180, even more preferably 100 to 160, and particularly preferably 120 to 140.
  • R 31 , R 32 , R 33 and R 34 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 6 carbon atoms.
  • R 31 , R 32 , R 33 , and R 34 may be the same or different, but the total number of carbon atoms of the alkyl groups of R 31 , R 32 , R 33 , and R 34 is preferably 1 or more, more preferably 2 or more, and even more preferably 3 or more.
  • the alkyl group of R 31 , R 32 , R 33 and R 34 may be linear, branched or have a ring.
  • the alkyl group preferably has 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, and even more preferably 1 carbon atom.
  • Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentyl group, an isopentyl group, a cyclopentyl group, etc.
  • a methyl group, an ethyl group, an n-propyl group, or an isopropyl group is preferred, and a methyl group, an ethyl group, or an isopropyl group is more preferred.
  • the alkoxy group of R 31 , R 32 , R 33 and R 34 preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, and even more preferably 1 carbon atom.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, an s-butoxy group, a t-butoxy group, an n-pentoxy group, an isopentoxy group, and a phenoxy group.
  • R 31 , R 32 , R 33 and R 34 are each independently a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group.
  • Component A3 is preferably 2,3,5,6-tetramethylpyrazine, pyrazine, 2,3,5-trimethylpyrazine, 2-methoxypyrazine, 2-isopropyl-3-methoxypyrazine, 2,5-dimethylpyrazine, 2,5-diisopropylpyrazine, 2-ethyl-3,5-dimethylpyrazine, 2,5-dimethyl-3-isobutylpyrazine, or 2-isopropyl-3-methoxy-5-isobutylpyrazine, more preferably 2,3,5,6-tetramethylpyrazine, pyrazine, 2,3,5-trimethylpyrazine, 2-methoxypyrazine, 2-isopropyl-3-methoxypyrazine, or 2,5-dimethylpyrazine, and even more preferably 2,3,5,6-tetramethylpyrazine or 2,3,5-trimethylpyrazine, and even more preferably
  • the monomer composition according to the third embodiment preferably contains a polymerization inhibitor (component B1).
  • component B1 By including component B1, it is possible to suppress the dimerization reaction of MMA caused by a radical mechanism during storage of MMA.
  • component B1 can trap the above-mentioned hydroxyl radicals generated during storage of MMA. That is, when the monomer composition contains component B1 in addition to component A3, the generation of hydroxyl radicals is suppressed by component A3, and the generated hydroxyl radicals are removed by component B1, and the two different mechanisms are the same. It is possible to reduce the amount of methyl pyruvate produced, and therefore it is believed that the production of MMA dimers and methyl pyruvate can be more efficiently inhibited.
  • Component B1 is the same as that of Component B1 described in ⁇ 1-3.
  • Component B1 may be one type or two or more types.
  • a monomer composition contains a compound corresponding to both component A3 and component B1
  • the compound is regarded as component A3.
  • component A and component B1 it means that the monomer composition contains a component B1 other than the compound.
  • the compound having the highest molar concentration in the monomer composition is regarded as component A3, and the other compounds are regarded as component B1.
  • the monomer composition according to the third embodiment preferably contains an ester compound (component B2) having an ⁇ -hydrogen represented by the following formula (3-2): " ⁇ -hydrogen” represents a hydrogen atom bonded to a carbon atom adjacent to the carbon atom of a carbonyl group.
  • R 35 and R 36 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 37 represents an alkyl group having 1 to 5 carbon atoms.
  • MMA dimers are mainly generated by hydroxyl radicals generated during storage of MMA, and component A3 suppresses the generation of hydroxyl radicals, so that it can suppress the generation of MMA dimers.
  • the dimerization reaction of MMA also proceeds by an anionic mechanism under basic conditions. Since ester compounds having ⁇ -hydrogen have weak acidity and can trap anions, component B2 can suppress the dimerization reaction of MMA by the anionic mechanism.
  • components A3 and B2 can efficiently suppress the dimerization reaction of MMA by different mechanisms.
  • methyl pyruvate is produced by the oxidation of MMA by hydroxyl radicals and oxygen molecules as described above.
  • Component A3 can suppress the production of hydroxyl radicals
  • component B2 can trap the radical intermediate produced by the reaction of hydroxyl radicals with MMA and convert the intermediate back to MMA. Therefore, it is believed that the coexistence of components A3 and B2 can efficiently suppress the production of methyl pyruvate.
  • the molecular weight of component B2 is preferably 200 or less. This increases the number of ⁇ -hydrogens per unit mass of component B2, making it easier to obtain the effects of the present invention with a small amount of component B2.
  • the molecular weight of component B2 is more preferably 180 or less, even more preferably 160 or less, and particularly preferably 140 or less.
  • the molecular weight of component B2 is preferably 60 or more, more preferably 80 or more, and even more preferably 100 or more.
  • the above upper and lower limits of the molecular weight of component B2 can be combined in any combination.
  • the molecular weight of component B2 is preferably 60 to 200, more preferably 60 to 180, even more preferably 80 to 160, and particularly preferably 100 to 140.
  • R 35 and R 36 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 37 is an alkyl group having 1 to 5 carbon atoms.
  • R 35 , R 36 and R 37 may be the same or different.
  • the ⁇ hydrogen of an ester compound has the property of reacting with anions and radicals, but the reactivity may decrease depending on the type of substituent it has.
  • R 35 , R 36 and R 37 satisfy the above conditions, the reactivity of the ⁇ hydrogen of component B2 with anions and radicals is maintained, and the effects of the present invention can be obtained.
  • the alkyl group of R 35 , R 36 and R 37 may be linear, branched or have a ring.
  • the alkyl group preferably has 1 to 3 carbon atoms, more preferably 1 or 2 carbon atoms, and even more preferably 1 carbon atom.
  • Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentyl group, an isopentyl group, a cyclopentyl group, etc.
  • a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are preferred, and a methyl group, an ethyl group, and an isopropyl group are more preferred.
  • component B2 methyl isobutyrate, methyl propionate, isobutyl isobutyrate, methyl isovalerate, or methyl 2-methylbutyrate is preferred as component B2, and methyl isobutyrate or methyl propionate is more preferred.
  • Component B2 may be used alone or in combination of two or more kinds.
  • the monomer composition according to the third embodiment preferably contains an ⁇ , ⁇ -unsaturated carbonyl compound (component B3) represented by the following formula (3-3).
  • R 38 , R 39 and R 40 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 41 represents an alkyl group having 1 to 10 carbon atoms.
  • component B3 By including component B3 in the monomer composition in addition to component A3, the production of MMA dimers and methyl pyruvate can be more efficiently suppressed.
  • the reason for this is presumed to be as follows.
  • MMA dimers and methyl pyruvate are produced by hydroxyl radicals generated during storage of MMA, and component A3 absorbs ultraviolet light and suppresses the production of hydroxyl radicals, thereby suppressing the production of MMA dimers.
  • the ⁇ , ⁇ -unsaturated carbonyl compound (component B3) represented by the above formula (3-3) also absorbs ultraviolet light because it has a conjugated double bond, but the absorption wavelength is different from that of component A3. Therefore, it is considered that the coexistence of components A3 and B3 makes it possible to absorb ultraviolet light over a wide range of wavelengths, thereby efficiently suppressing the production of hydroxyl radicals.
  • the molecular weight of component B3 is preferably 400 or less. This increases the number of conjugated double bonds per unit mass of component B3, making it easier to obtain the effects of the present invention with a small amount of component B3.
  • the molecular weight of component B3 is more preferably 200 or less, even more preferably 160 or less, and particularly preferably 120 or less.
  • the molecular weight of component B3 is preferably 80 or more, and more preferably 100 or more.
  • the above upper and lower limits of the molecular weight of component B3 can be combined in any combination.
  • the molecular weight of component B3 is preferably 80 to 400, more preferably 80 to 200, even more preferably 80 to 160, and particularly preferably 80 to 120.
  • R 38 , R 39 and R 40 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 41 is an alkyl group having 1 to 10 carbon atoms.
  • R 38 , R 39 , R 40 and R 41 may be the same or different.
  • the alkyl group of R 8 , R 9 , R 40 and R 41 may be linear or branched, or may have a ring.
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, and even more preferably 1 or 2 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, an n-pentyl group, an isopentyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, etc.
  • a methyl group, an ethyl group, an n-propyl group, or an isopropyl group is preferable, and a methyl group, an ethyl group, or an isopropyl group is more preferable.
  • Component B3 is preferably methyl acrylate, butyl acrylate, ethyl methacrylate, methyl crotonate, cis-methyl crotonate, isobutyl methacrylate, butyl methacrylate, propyl methacrylate, isopentyl methacrylate, methyl 2-methylene-3-butenoate, methyl 3,3-dimethylacrylate, methyl 2-ethylacrylate, or methyl 2-pentenoate, more preferably methyl acrylate, butyl acrylate, ethyl methacrylate, or methyl crotonate, and even more preferably methyl acrylate or ethyl methacrylate.
  • Component B3 may be used alone or in combination of two or more kinds.
  • the monomer composition according to the third embodiment may contain a monomer other than MMA.
  • the mode of the monomer other than MMA is the same as that described in ⁇ 1-4.
  • the methacrylic polymer contained in the methacrylic resin composition according to the third embodiment described later is preferably a copolymer containing a repeating unit derived from MMA and a repeating unit derived from a vinyl monomer copolymerizable with MMA, and the vinyl monomer is preferably an acrylic ester or styrene. Therefore, the monomer composition according to the third embodiment preferably further contains an acrylic ester or styrene as a monomer other than MMA.
  • the monomer copolymerizable with MMA may be one type or two or more types.
  • component B3 is a monomer copolymerizable with MMA
  • component B3 may be used as a monomer copolymerizable with MMA, or a monomer copolymerizable with MMA may be used separately from component B3.
  • Component C> The monomer composition according to the third embodiment may contain another compound (component C).
  • the aspect of component C is the same as that described in ⁇ 1-5.
  • Component C may be one type or two or more types.
  • XM Concentration of each component in the monomer composition>
  • XM is preferably 85 mass% or more.
  • the lower limit of XM is more preferably 90 mass% or more, even more preferably 95 mass% or more, and particularly preferably 97 mass% or more.
  • the upper limit of XM is usually 99.99 mass% or less, and may be 99.98 mass% or less or 99.97 mass% or less. Therefore, XM may be in the range of, for example, 85 to 99.99 mass%, 90 to 99.98 mass%, 95 to 99.97 mass%, 97 to 99.97 mass%, and 97 to 99.97 mass%.
  • XA3 when the concentration of component A3 relative to the total mass of the monomer composition is XA3 (ppm by mass), XA3 is 1 ppm by mass or more. By having XA3 1 ppm by mass or more, the effect of improving the quality stability of the monomer composition can be sufficiently obtained. Furthermore, XA3 is preferably 1 to 10,000 ppm by mass. By having XA3 10,000 ppm by mass or less, the amount of impurities when the methacrylic resin composition is produced by polymerization of the monomer composition can be reduced, and adverse effects on the physical properties of the methacrylic resin composition can be prevented.
  • the lower limit of XA3 is preferably 5 ppm by mass or more, more preferably 10 ppm by mass or more. Furthermore, the upper limit of XA3 is more preferably 5,000 ppm by mass or less, even more preferably 1,000 ppm by mass or less, and particularly preferably 100 ppm by mass or less.
  • ZA concentration of component A3 relative to the mass of MMA in the monomer composition
  • ZA concentration of component A3 relative to the mass of MMA in the monomer composition
  • ZA is preferably 1 to 10,000 ppm by mass.
  • ZA can be calculated using the following formula.
  • the effect of improving the quality stability of the monomer composition can be sufficiently obtained. Furthermore, by having ZA of 10,000 ppm by mass or less, the amount of impurities when the methacrylic resin composition is produced by polymerization of the monomer composition can be reduced, and adverse effects on the physical properties of the methacrylic resin composition can be prevented.
  • the lower limit of ZA is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more.
  • the upper limit of ZA is more preferably 5,000 ppm by mass or less, even more preferably 1,000 ppm by mass or less, and particularly preferably 100 ppm by mass or less.
  • XB1 is preferably 1 to 2000 ppm by mass.
  • XB1 concentration of component B1 relative to the total mass of the monomer composition
  • the lower limit of XB1 is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more.
  • the upper limit of XB1 is more preferably 1000 ppm by mass or less, even more preferably 500 ppm by mass or less, and particularly preferably 100 ppm by mass or less.
  • ZB1 when the concentration of component B1 relative to the mass of MMA in the monomer composition is ZB1 (ppm by mass), ZB1 is preferably 1 to 2000 ppm by mass. ZB1 can be calculated using the following formula.
  • ZB1 When ZB1 is 1 ppm by mass or more, the effect of improving the quality stability of the monomer composition can be sufficiently obtained. Furthermore, when ZB1 is 2000 ppm by mass or less, the amount of impurities when the methacrylic resin composition is produced by polymerization of the monomer composition can be reduced, and adverse effects on the physical properties of the methacrylic resin composition can be prevented.
  • the lower limit of ZB1 is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more.
  • the upper limit of ZB1 is more preferably 1000 ppm by mass or less, even more preferably 500 ppm by mass or less, and particularly preferably 100 ppm by mass or less.
  • XB1/XA3 is preferably 0.005 to 1000.
  • the lower limit of XB1/XA3 is more preferably 0.05 or more, and even more preferably 0.5 or more.
  • the upper limit is more preferably 100 or less, even more preferably 50 or less, and particularly preferably 5 or less.
  • XB2 is preferably 5 to 10,000 ppm by mass.
  • the lower limit of XB2 is more preferably 8 ppm by mass or more.
  • the upper limit of XB2 is more preferably 1,000 ppm by mass or less, even more preferably 100 ppm by mass or less, and particularly preferably 20 ppm by mass or less.
  • ZB2 when the concentration of component B2 relative to the mass of MMA in the monomer composition is ZB2 (ppm by mass), ZB2 is preferably 5 to 10,000 ppm by mass. ZB2 can be calculated using the following formula.
  • ZB2 By having ZB2 be 5 ppm by mass or more, the effect of improving the quality stability of the monomer composition can be sufficiently obtained. Furthermore, by having ZB2 be 10,000 ppm by mass or less, the amount of impurities when the methacrylic resin composition is produced by polymerizing the monomer composition can be reduced, and adverse effects on the physical properties of the methacrylic resin composition can be prevented.
  • the lower limit of ZB2 is more preferably 8 ppm by mass or more.
  • the upper limit of ZB2 is more preferably 1,000 ppm by mass or less, even more preferably 100 ppm by mass or less, and particularly preferably 20 ppm by mass or less.
  • XB2/XA3 is preferably 0.005 to 1000.
  • the lower limit of XB2/XA3 is more preferably 0.05 or more, and even more preferably 0.5 or more.
  • the upper limit is more preferably 100 or less, even more preferably 50 or less, and particularly preferably 5 or less.
  • XB3 is preferably 5 to 10,000 ppm by mass.
  • XB3 be 5 ppm by mass or more, the effect of improving the quality stability of the monomer composition can be sufficiently obtained.
  • XB3 be 10,000 ppm by mass or less, the amount of impurities when the methacrylic resin composition is produced by polymerization of the monomer composition can be reduced, and adverse effects on the physical properties of the methacrylic resin composition can be prevented.
  • the lower limit of XB3 is more preferably 8 ppm by mass or more.
  • the upper limit of XB3 is more preferably 1,000 ppm by mass or less, even more preferably 100 ppm by mass or less, and particularly preferably 20 ppm by mass or less.
  • ZB3 when the concentration of component B3 relative to the mass of MMA in the monomer composition is ZB3 (ppm by mass), ZB3 is preferably 5 to 10,000 ppm by mass. ZB3 can be calculated using the following formula.
  • ZB3 By having ZB3 be 5 ppm by mass or more, the effect of improving the quality stability of the monomer composition can be sufficiently obtained. Furthermore, by having ZB3 be 10,000 ppm by mass or less, the amount of impurities when the methacrylic resin composition is produced by polymerizing the monomer composition can be reduced, and adverse effects on the physical properties of the methacrylic resin composition can be prevented.
  • the lower limit of ZB3 is more preferably 8 ppm by mass or more.
  • the upper limit of ZB3 is more preferably 1,000 ppm by mass or less, even more preferably 100 ppm by mass or less, and particularly preferably 20 ppm by mass or less.
  • XB3/XA3 is preferably 0.005 to 1000.
  • the lower limit of XB3/XA3 is more preferably 0.05 or more, and even more preferably 0.5 or more.
  • the upper limit is more preferably 100 or less, even more preferably 50 or less, and particularly preferably 5 or less.
  • the concentration of the monomer relative to the total mass of the monomer composition is preferably 0 to 15% by mass.
  • the lower limit of the monomer concentration is more preferably 1% by mass or more, and the upper limit is more preferably 10% by mass or less. The above-mentioned preferred upper and lower limits can be combined in any desired manner.
  • the monomer composition according to the third embodiment can be produced, for example, by a method of adding component A3 to MMA, and may further include optionally added components B1, B2 or B3, a monomer other than MMA, and component C.
  • components B1, B2, and B3 may be collectively referred to as "component B.”
  • the method for producing the monomer composition is the same as the method described in the first embodiment, except that Component A3 and Component B are used.
  • Components A3 and B may be commercially available products or may be synthesized by known methods.
  • component A3 and, optionally, component B, a monomer other than MMA, and component C may be added as raw materials or during the manufacturing process to produce a monomer composition.
  • component A3 or component B is produced as a by-product in the MMA manufacturing process, a portion of the produced component A3 or component B may be left to produce a monomer composition.
  • the methacrylic resin composition according to the third embodiment contains a methacrylic polymer and a pyrazine compound (component A3) represented by the following formula (3-1).
  • R 31 , R 32 , R 33 and R 34 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 6 carbon atoms.
  • YA3 concentration of component A3 relative to the total mass of the methacrylic resin composition
  • YA3 concentration of component A3 relative to the total mass of the methacrylic resin composition
  • YA3 concentration of component A3 relative to the total mass of the methacrylic resin composition
  • YA3 is 1 to 10,000 ppm by mass. This allows the methacrylic resin composition to exhibit excellent long-term thermal stability while maintaining transparency and heat resistance.
  • the methacrylic resin composition preferably further contains a polymerization inhibitor (component B1), an ester compound having an ⁇ -hydrogen represented by the following formula (3-2) (component B2), or an ⁇ , ⁇ -unsaturated carbonyl compound represented by the following formula (3-3) (component B3). It may also contain other compounds (component C) to the extent that the effects of the present invention are not impaired.
  • a polymerization inhibitor component B1
  • component B2 an ester compound having an ⁇ -hydrogen represented by the following formula (3-2)
  • component B3 ⁇ , ⁇ -unsaturated carbonyl compound represented by the following formula (3-3)
  • R 35 and R 36 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 37 represents an alkyl group having 1 to 5 carbon atoms.
  • R 38 , R 39 and R 40 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 41 represents an alkyl group having 1 to 10 carbon atoms.
  • the form of the methacrylic resin composition is not particularly limited, but it is usually a solid. Each item will be explained in detail below.
  • the methacrylic resin composition according to the third embodiment contains a methacrylic polymer, and thus exhibits good transparency. In addition, decomposition due to heat or light is suppressed, and the composition exhibits good thermoformability, heat resistance, and mechanical strength.
  • the content of MMA units is 50 to 100% by mass, and the content of repeating units derived from vinyl monomers is 0 to 50% by mass, based on the total mass of the methacrylic polymer.
  • the lower limit of the content of MMA units is more preferably 60% by mass or more, even more preferably 70% by mass or more, particularly preferably 80% by mass or more, and most preferably 90% by mass or more.
  • the upper limit of the content of repeating units derived from vinyl monomers is more preferably 40% by mass or less, even more preferably 30% by mass or less, particularly preferably 20% by mass or less, and most preferably 10% by mass or less.
  • the sequence of the copolymer is not particularly limited and may be, for example, a random copolymer, a block copolymer, an alternating copolymer, or the like, with a random copolymer being preferred.
  • the form of MMA is the same as that described in ⁇ 1-1. Methyl methacrylate> in the first embodiment.
  • the vinyl monomer is preferably an acrylic ester or styrene. This improves the thermal stability of the methacrylic resin composition.
  • the methacrylic polymer When the vinyl monomer is an acrylic ester, the methacrylic polymer preferably contains 70 to 100% by mass of MMA units and 0 to 30% by mass of repeating units derived from acrylic ester. When the vinyl monomer is styrene, the methacrylic polymer preferably contains 50 to 100% by mass of MMA units and 0 to 50% by mass of repeating units derived from styrene.
  • the acrylic acid ester is preferably an acrylic acid ester having an alkyl group having 1 to 6 carbon atoms on the side chain, such as methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, t-butyl acrylate, etc. These may be used alone or in any ratio and combination of two or more. Among these, from the viewpoint of the thermal stability of the methacrylic resin composition, at least one selected from the group consisting of methyl acrylate, ethyl acrylate, and n-butyl acrylate is preferred, and at least one selected from the group consisting of methyl acrylate and ethyl acrylate is more preferred.
  • the vinyl monomers can be used alone or in any combination of two or more kinds in any ratio.
  • the methacrylic polymer may contain repeating units derived from a polyfunctional monomer containing two or more radically polymerizable functional groups in one molecule, to the extent that the effects of the invention can be obtained. This can improve solvent resistance, chemical resistance, etc.
  • the radically polymerizable functional group is not particularly limited as long as it has a carbon-carbon double bond and is radically polymerizable. Specific examples include vinyl groups, allyl groups, (meth)acryloyl groups, and (meth)acryloyloxy groups. In particular, (meth)acryloyl groups are preferred from the viewpoint of excellent storage stability of compounds having radically polymerizable functional groups and ease of controlling the polymerizability of the compounds.
  • “(meth)acryloyl” means at least one type selected from “acryloyl” and "methacryloyl”.
  • the radically polymerizable functional groups in a monomer having two radically polymerizable functional groups may be the same or different.
  • the polyfunctional monomer may be, but is not limited to, allyl methacrylate, allyl acrylate, ethylene glycol di(meth)acrylate, ethylene glycol tri(meth)acrylate, neopentyl glycol di(meth)acrylate, and trimethylolpropane tri(meth)acrylate.
  • One of these may be used alone, or two or more may be used in any ratio and combination.
  • the polyfunctional monomer is at least one selected from the group consisting of ethylene glycol di(meth)acrylate and neopentyl glycol di(meth)acrylate, and even more preferable that it is ethylene glycol di(meth)acrylate.
  • the methacrylic resin composition according to the third embodiment contains a pyrazine compound (component A3) represented by the formula (3-1), which allows the methacrylic resin composition to exhibit excellent thermal stability.
  • component A3 represented by the formula (3-1)
  • the main chain or side chain is cleaved by heat to generate radical species.
  • the generated radical species causes a decrease in the transparency of the methacrylic resin composition.
  • Component A functions as a radical scavenger, suppressing the decrease in transparency.
  • the methacrylic resin composition exhibits excellent thermal stability.
  • the embodiment of Component A3 is the same as that described in ⁇ 1-2. Component A3>.
  • the component A3 may be one type or two or more types.
  • the methacrylic resin composition according to the third embodiment preferably contains a polymerization inhibitor (component B1), which makes it possible to more efficiently obtain the effect of improving the thermal stability of the methacrylic resin composition.
  • the embodiment of Component B1 is the same as that described in ⁇ 1-3. Component B1>.
  • the component B1 may be one type or two or more types.
  • the methacrylic resin composition according to the third embodiment preferably contains an ester compound (component B2) having an ⁇ hydrogen atom represented by the following formula (3-2). This makes it possible to more efficiently obtain the effect of improving the thermal stability of the methacrylic resin composition.
  • the reason for this is presumed to be as follows.
  • the methacrylic polymer containing MMA units generates radical species by cleaving the main chain or side chain due to heat. Usually, the generated radical species cause the transparency of the methacrylic resin composition to decrease.
  • component B2 functions as a radical scavenger in addition to component A3. Since the radical species that can be captured are different between component A3 and component B2, the coexistence of component A3 and component B2 can efficiently capture radicals and suppress the decrease in transparency. As a result, the methacrylic resin composition exhibits excellent thermal stability.
  • R 35 and R 36 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R 37 represents an alkyl group having 1 to 5 carbon atoms.
  • the embodiment of Component B2 is the same as that described in ⁇ 1-4. Component B2>.
  • the component B2 may be one type or two or more types.
  • the monomer composition according to the third embodiment preferably contains an ⁇ , ⁇ -unsaturated carbonyl compound (component B3) represented by the following formula (3-3).
  • component B3 represented by the following formula (3-3).
  • the thermal stability improving effect can be obtained more efficiently. The reason for this is presumed to be as follows. As described above, in the methacrylic polymer containing MMA units, the main chain or side chain is cleaved by heat to generate radical species. Usually, the generated radical species causes a decrease in the transparency of the methacrylic resin composition. However, by the presence of component B3 in the methacrylic resin composition, component B3 functions as a radical scavenger in addition to component A3. Since the components A3 and B3 are different from each other, the coexistence of the components A3 and B3 can efficiently scavenge radicals and suppress a decrease in transparency, thereby allowing the methacrylic resin composition to exhibit excellent thermal stability.
  • R 38 , R 39 and R 40 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 41 represents an alkyl group having 1 to 10 carbon atoms.
  • the embodiment of Component B3 is the same as that described in ⁇ 1-5. Component B3>.
  • the component B3 may be one type or two or more types.
  • the methacrylic resin composition according to the third embodiment may contain another compound (component C).
  • the aspect of component C is the same as that described in ⁇ 1-7.
  • the component C may be one type or two or more types.
  • YM concentration of each component in the methacrylic resin composition
  • YM is not particularly limited, but from the viewpoint of good heat resistance, it is usually 95 mass% or more, preferably 97.5 mass% or more, more preferably 98 mass% or more, and even more preferably 99 mass% or more.
  • YM may be in the range of 95 to 99.99 mass%, 95 to 99.985 mass%, 97.5 to 99.98 mass%, 97.5 to 99.975 mass%, 98 to 99.97 mass%, 98 to 99.95 mass%, or 99 to 99.9 mass%.
  • YM is the total concentration of the two or more types of methacrylic polymers.
  • YA3 When the concentration of component A3 relative to the total mass of the methacrylic resin composition according to the third embodiment is YA3, YA3 is 1 ppm by mass or more.
  • the lower limit of YA3 is 1 ppm by mass or more, the methacrylic resin composition exhibits excellent thermal stability.
  • YA is preferably 1 to 10,000 ppm by mass.
  • the upper limit of YA3 is 10,000 ppm by mass or less, it is possible to prevent adverse effects on the physical properties of the methacrylic resin composition.
  • the lower limit of YA3 is preferably 5 ppm by mass or more, and more preferably 10 ppm by mass or more.
  • the upper limit of YA3 is more preferably 5,000 ppm by mass or less, even more preferably 1,000 ppm by mass or less, and particularly preferably 100 ppm by mass or less.
  • WA concentration of component A3 relative to the mass of the methacrylic polymer in the methacrylic resin composition
  • WA is preferably 1 to 10,000 ppm by mass.
  • WA can be calculated using the following formula.
  • the methacrylic resin composition exhibits excellent thermal stability. Furthermore, when the upper limit of WA is 10,000 ppm by mass or less, adverse effects on the physical properties of the methacrylic resin composition can be prevented.
  • the lower limit of WA is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more.
  • the upper limit of WA is more preferably 5,000 ppm by mass or less, even more preferably 1,000 ppm by mass or less, and particularly preferably 100 ppm by mass or less.
  • YB1 when the concentration of component B1 relative to the total mass of the methacrylic resin composition is defined as YB1 (ppm by mass), YB1 is preferably 1 to 2000 ppm by mass. By having YB1 at 1 ppm by mass or more, the effect of improving the thermal stability of the methacrylic resin composition can be sufficiently obtained. Furthermore, by having YB1 at 2000 ppm by mass or less, it is possible to prevent adverse effects on the physical properties of the methacrylic resin composition.
  • the lower limit of YB1 is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more.
  • the upper limit of YB1 is more preferably 1000 ppm by mass or less, even more preferably 500 ppm by mass or less, and particularly preferably 100 ppm by mass or less.
  • WB1 when the concentration of component B1 relative to the mass of the methacrylic polymer in the methacrylic resin composition is WB1 (ppm by mass), WB1 is preferably 1 to 2000 ppm by mass. WB1 can be calculated using the following formula.
  • the methacrylic resin composition exhibits excellent thermal stability. Furthermore, by setting the upper limit of WB1 to 2000 ppm by mass or less, adverse effects on the physical properties of the methacrylic resin composition can be prevented.
  • the lower limit of WB1 is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more.
  • the upper limit of WB1 is more preferably 1000 ppm by mass or less, even more preferably 500 ppm by mass or less, and particularly preferably 100 ppm by mass or less.
  • YB1/YA3 is preferably 0.005 to 1000.
  • the lower limit of YB1/YA3 is more preferably 0.05 or more, and even more preferably 0.5 or more.
  • the upper limit is more preferably 100 or less, even more preferably 50 or less, and particularly preferably 5 or less.
  • YB2 when the concentration of component B2 relative to the total mass of the methacrylic resin composition is YB2 (ppm by mass), YB2 is preferably 5 to 10,000 ppm by mass. By having YB2 at 5 ppm by mass or more, the effect of improving the thermal stability of the methacrylic resin composition can be sufficiently obtained. Furthermore, by having YB2 at 10,000 ppm by mass or less, it is possible to prevent adverse effects on the physical properties of the methacrylic resin composition.
  • the lower limit of YB2 is more preferably 8 ppm by mass or more.
  • the upper limit of YB2 is more preferably 1,000 ppm by mass or less, even more preferably 100 ppm by mass or less, and particularly preferably 20 ppm by mass or less.
  • WB2 when the concentration of component B2 relative to the mass of the methacrylic polymer in the methacrylic resin composition is WB2 (ppm by mass), WB2 is preferably 5 to 10,000 ppm by mass. WB2 can be calculated using the following formula.
  • the methacrylic resin composition exhibits excellent thermal stability. Furthermore, by setting the upper limit of WB2 to 10,000 ppm by mass or less, it is possible to prevent adverse effects on the physical properties of the methacrylic resin composition.
  • the lower limit of WB2 is more preferably 8 ppm by mass or more.
  • the upper limit of WB2 is more preferably 1,000 ppm by mass or less, even more preferably 100 ppm by mass or less, and particularly preferably 20 ppm by mass or less.
  • YB2/YA3 is preferably 0.005 to 1000.
  • the lower limit of YB2/YA3 is more preferably 0.05 or more, and even more preferably 0.5 or more.
  • the upper limit is more preferably 100 or less, even more preferably 50 or less, and particularly preferably 5 or less.
  • YB3 is preferably 5 to 10,000 ppm by mass.
  • the lower limit of YB3 is more preferably 8 ppm by mass or more.
  • the upper limit of YB3 is more preferably 1,000 ppm by mass or less, even more preferably 100 ppm by mass or less, and particularly preferably 20 ppm by mass or less.
  • WB3 when the concentration of component B3 relative to the mass of the methacrylic polymer in the methacrylic resin composition is WB3 (ppm by mass), WB3 is preferably 5 to 10,000 ppm by mass. WB3 can be calculated using the following formula.
  • the methacrylic resin composition exhibits excellent thermal stability. Furthermore, by setting the upper limit of WB3 to 10,000 ppm by mass or less, it is possible to prevent adverse effects on the physical properties of the methacrylic resin composition.
  • the lower limit of WB3 is more preferably 8 ppm by mass or more.
  • the upper limit of WB3 is more preferably 1,000 ppm by mass or less, even more preferably 100 ppm by mass or less, and particularly preferably 20 ppm by mass or less.
  • YB3/YA3 is preferably 0.005 to 1000.
  • the lower limit of YB3/YA3 is more preferably 0.05 or more, and even more preferably 0.5 or more.
  • the upper limit is more preferably 100 or less, even more preferably 50 or less, and particularly preferably 5 or less. The above-mentioned preferred upper and lower limits can be combined in any desired manner.
  • the methacrylic resin composition according to the third embodiment can be produced by a method including a step of radically polymerizing a polymerizable composition containing MMA.
  • the polymerizable composition is, for example, a polymerizable composition (M31) containing a raw material composition, component A3, and a radical polymerization initiator; or a polymerizable composition (M32) containing a monomer composition according to the third embodiment and a radical polymerization initiator; and the polymerizable composition (M32) is preferable. That is, the methacrylic resin composition according to the third embodiment preferably contains a polymer of the monomer composition according to the third embodiment.
  • the monomer composition according to the third embodiment has low contents of MMA dimer and methyl pyruvate even after long-term storage.
  • a methacrylic resin composition is produced using a monomer composition with a low content of MMA dimer as a raw material, a polymer with fewer branches is obtained, and the thermal stability of the methacrylic resin composition is improved.
  • a methacrylic resin composition is produced using a monomer composition with a low content of methyl pyruvate as a raw material, the generation of radicals is suppressed, and the generation of colored substances can be suppressed.
  • the polymerizable composition (M31) contains a raw material composition, component A3, and a radical polymerization initiator.
  • the polymerizable composition (M31) further contains a polymerization inhibitor (component B1), It is preferable that the composition contains an ester compound having an ⁇ -hydrogen represented by the formula (Component B2) or an ⁇ , ⁇ -unsaturated carbonyl compound represented by the formula (3-3) (Component B3).
  • Other compounds (component C) may be contained within the range that does not impair the effect.
  • the raw material composition is also a raw material component of the methacrylic polymer contained in the methacrylic resin composition according to the third embodiment.
  • the raw material composition include a composition containing only MMA, and a composition containing MMA and a vinyl monomer.
  • the vinyl monomer the same vinyl monomer as described in ⁇ 2-1. Methacrylic polymer> can be used.
  • the raw material composition contains an acrylic acid ester or styrene as the vinyl monomer, the thermal stability of the resulting methacrylic resin composition is improved.
  • the vinyl monomer can be used alone or in any ratio and combination of two or more kinds.
  • the content of MMA is preferably 50-100% by mass, and the content of vinyl monomer is preferably 0-50% by mass, based on the total mass of the raw material composition.
  • the lower limit of the content of MMA is more preferably 70% by mass or more, and the upper limit of the content of vinyl monomer is more preferably 30% by mass or less.
  • the raw material composition may also contain a polymer containing MMA units in advance.
  • the raw material composition containing the polymer becomes a syrup, which can shorten the polymerization time and improve productivity.
  • Specific examples of polymers containing MMA units include polymers that contain 50% by mass or more of MMA units and 50% by mass or less of structural units derived from vinyl monomers relative to the total mass of the polymer, or polymers consisting of 100% by mass of MMA units.
  • Examples of the method for obtaining the syrup include a method for dissolving a polymer containing MMA units in a raw material composition, and a method for adding a known radical polymerization initiator to a raw material composition and polymerizing a part of it.
  • the concentration of the raw material composition relative to the total mass of the polymerizable composition (M31) can be in the range of 97.5 to 99.99 mass %.
  • Component A3 The embodiment of Component A3 is the same as that described in ⁇ 1-2. Component A3>.
  • the component A3 may be one type or two or more types.
  • the concentration of component A3 relative to the total mass of the polymerizable composition (M31) is preferably 1 to 10,000 ppm by mass.
  • the lower limit of the concentration of component A3 is 1 ppm by mass or more, the resulting methacrylic resin composition exhibits excellent thermal stability.
  • the upper limit of the concentration of component A3 is 10,000 ppm by mass or less, it is possible to prevent adverse effects on the physical properties of the resulting methacrylic resin composition.
  • the lower limit of the concentration of component A3 is preferably 5 ppm by mass or more, and more preferably 10 ppm by mass or more.
  • the upper limit of the concentration of component A3 is preferably 5,000 ppm by mass or less, more preferably 1,000 ppm by mass or less, and even more preferably 100 ppm by mass or less.
  • radical polymerization initiator As the radical polymerization initiator, a known one can be used, and examples thereof include the same ones as those exemplified in the first embodiment.
  • the radical polymerization initiator can be used alone or in any ratio and combination of two or more kinds. If necessary, a known polymerization accelerator such as an amine or a mercaptan can be used in combination with the radical polymerization initiator.
  • concentration of the radical polymerization initiator relative to the total mass of the polymerizable composition (M31) is not particularly limited, and can be, for example, 0.005 to 5 mass %, or may be 0.01 to 1 mass %.
  • Component B1 The embodiment of Component B1 is the same as that described in ⁇ 1-3. Component B1>.
  • the component B1 may be one type or two or more types.
  • the concentration of component B1 relative to the total mass in the polymerizable composition (M31) is preferably 1 to 1000 ppm by mass.
  • concentration of component B1 of 1 ppm by mass or more the effect of improving the thermal stability of the resulting methacrylic resin composition can be sufficiently obtained.
  • concentration of component B1 of 1000 ppm by mass or less it is possible to prevent adverse effects on the physical properties of the resulting methacrylic resin composition.
  • the lower limit of the concentration of component B1 is more preferably 5 ppm by mass or more, and even more preferably 10 ppm by mass or more.
  • the upper limit of the concentration of component B1 is more preferably 500 ppm by mass or less, and even more preferably 100 ppm by mass or less.
  • Component B2 The embodiment of Component B2 is the same as that described in ⁇ 1-4. Component B2>.
  • the component B2 may be one type or two or more types.
  • the concentration of component B2 relative to the total mass in the polymerizable composition (M31) is preferably 5 to 1000 ppm by mass.
  • the concentration of component B2 is 5 ppm by mass or more, the effect of improving the thermal stability of the resulting methacrylic resin composition can be sufficiently obtained.
  • concentration of component B2 is 10,000 ppm by mass or less, it is possible to prevent adverse effects on the physical properties of the resulting methacrylic resin composition.
  • the lower limit of the concentration of component B2 is more preferably 8 ppm by mass or more.
  • the upper limit of the concentration of component B2 is more preferably 1,000 ppm by mass or less, even more preferably 100 ppm by mass or less, and particularly preferably 20 ppm by mass or less.
  • Component B3 The embodiment of Component B3 is the same as that described in ⁇ 1-5. Component B3>.
  • the component B3 may be one type or two or more types.
  • the concentration of component B3 relative to the total mass in the polymerizable composition (M31) is preferably 5 to 1000 ppm by mass.
  • the concentration of component B3 is 5 ppm by mass or more, the effect of improving the thermal stability of the resulting methacrylic resin composition can be sufficiently obtained.
  • concentration of component B3 is 10,000 ppm by mass or less, it is possible to prevent adverse effects on the physical properties of the resulting methacrylic resin composition.
  • the lower limit of the concentration of component B3 is more preferably 8 ppm by mass or more.
  • the upper limit of the concentration of component B3 is more preferably 1,000 ppm by mass or less, even more preferably 100 ppm by mass or less, and particularly preferably 20 ppm by mass or less.
  • component C The aspect of component C is the same as that described in ⁇ 1-7. Component C>.
  • the component C may be one type or two or more types.
  • the polymerizable composition (M32) contains the monomer composition according to the third embodiment and a known radical polymerization initiator.
  • the polymerizable composition (M32) may further contain a vinyl monomer.
  • other compounds (component C) may be contained within the range that does not impair the effects of the present invention.
  • the monomer composition is the monomer composition according to the third embodiment, and is a composition containing raw material components of the methacrylic polymer contained in the methacrylic resin composition according to the third embodiment.
  • the concentration of the monomer composition relative to the total mass of the polymerizable composition (M32) can be 60 mass % or more and less than 100 mass %.
  • radical polymerization initiator is the same as that described in ⁇ 3-1.
  • the polymerizable composition (M32) contains a vinyl monomer
  • the same vinyl monomer as described in ⁇ 2-1. Methacrylic polymer> can be used as the vinyl monomer.
  • the polymerizable composition (M32) contains an acrylic acid ester or styrene as a vinyl monomer, the thermal stability of the resulting methacrylic resin composition is improved.
  • the vinyl monomer can be used alone or in any ratio and combination of two or more kinds.
  • the concentration of the vinyl monomer relative to the total mass of the polymerizable composition (M32) may be more than 0 mass% and less than 40 mass%.
  • component C The aspect of component C is the same as that described in ⁇ 1-7. Component C>.
  • the component C may be one type or two or more types.
  • Radical polymerization step of polymerizable composition The mode of the radical polymerization step of the polymerizable composition is the same as that described in ⁇ 3-3. Radical polymerization step of the polymerizable composition> in the first embodiment.
  • the resin molded product according to the third embodiment includes the methacrylic resin composition according to the third embodiment.
  • the form of the resin molded product is the same as that described in [4. Resin molded product] of the first embodiment.
  • ⁇ GC-MS measurement conditions Equipment: GC-MS measuring device (product name: QP-2010SE, manufactured by Shimadzu Corporation) Carrier gas: Helium Ionization method: EI (Electron Ionization) method Column: DB-WAX 60 m x 320 ⁇ m x 1.0 ⁇ m (Agilent) Temperature rise conditions: hold at 35°C for 10 minutes, rise from 35°C to 150°C at 5°C/min, hold at 150°C for 17 minutes, rise from 150°C to 220°C at 5°C/min, hold at 220°C for 6 minutes. Inlet temperature: 210°C Interface temperature: 250°C Ion source temperature: 250° C.
  • Injection mode Split Split ratio: 50:1 Flow rate: 0.97 mL/min Total flow rate: 52.5 mL/min Purge flow rate: 3.0 mL/min Control mode: constant linear velocity Pressure: 26.1 KPa Average linear velocity: 25.0 cm/sec Injection volume: 1 ⁇ L Measurement mode: Scan mode m/z detection range: 10 to 300 Detection time: 70 minutes
  • HDT deflection temperature under load
  • the haze of the methacrylic resin composition was measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model name: NDH4000) in accordance with JIS K 7136.
  • a test piece square shape of 50 mm length ⁇ 50 mm width, thickness 3 mm made of the methacrylic resin composition was used.
  • the yellowness index (YI) of the methacrylic resin composition was measured in accordance with ASTM D1925 using a spectrophotometer (manufactured by Nippon Denshoku Industries Co., Ltd., model name: SE-7700). For the measurement, a test piece (square shape of 50 mm length ⁇ 50 mm width, thickness 3 mm) made of the methacrylic resin composition was used.
  • the light stability test was carried out using a metal weather ultra-accelerated light stability tester (manufactured by Daipla Wintes Co., Ltd., model: DW-R8PL-A) equipped with a metal halide lamp (manufactured by Daipla Wintes Co., Ltd., model: MW-60W) and a light cut filter (manufactured by Daipla Wintes Co., Ltd., model: KF-1).
  • a test piece (50 mm long x 50 mm wide square, 3 mm thick) made of a methacrylic resin composition was placed in the evaluation chamber of the metal weather ultra-accelerated light stability tester, and the test piece was irradiated with light from a metal halide lamp for 300 hours.
  • the UV irradiation intensity was corrected so that the irradiation intensity at a wavelength of 300 to 400 nm measured with an ultraviolet illuminometer (manufactured by Ushio Denki Co., Ltd., model: UVP-365-03) was 130 mW/cm 2.
  • the test piece was irradiated with visible light and UV from a metal halide lamp.
  • the evaluation room of the Metal Weather ultra-accelerated light stability tester was set to an environment of 63° C. temperature and 50 RH %.
  • Tt total light transmittance
  • the total light transmittance (Tt) of the methacrylic resin composition was measured in accordance with JIS K 7361-1 using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model name: NDH4000).
  • a test piece square shape of 50 mm length ⁇ 50 mm width, thickness 3 mm
  • One test piece before the light stability test and one test piece after the light exposure test were each measured once, and the change in the measured value before and after the light stability test was taken as the change in total light transmittance ( ⁇ Tt).
  • Example A1-1 Isobutyl isobutyrate was used as component A1, and 0.0400 g of component A1 was added to 39.96 g of reagent MMA (water concentration 240 ppm) to prepare an MMA solution (A-1 solution). The concentration of component A1 in the A-1 solution is shown in Table 1. Next, 0.2000 g of A-1 solution was added to 19.80 g of MMA (water concentration 240 ppm) as a reagent to prepare a monomer composition. The concentrations of each component in the monomer composition are shown in Table 2. The obtained monomer composition was stored for 14 days at 25° C. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 2.
  • Example A1-2 Solution A-1 was prepared in the same manner as in Example A1-1.
  • a monomer composition was prepared in the same manner as in Example A1-1, except that the amounts of the reagents MMA and A-1 solution were changed as shown in Table 2.
  • the concentrations of each component in the monomer composition are shown in Table 2.
  • the resulting monomer composition was stored in the same manner as in Example A1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 2.
  • Example A1-3 Using isobutyl isobutyrate as component A1, 0.0400 g of component A1 was added to 39.96 g of reagent MMA (water concentration 240 ppm) to prepare a monomer composition. The concentrations of each component in the monomer composition are shown in Table 2. The resulting monomer composition was stored in the same manner as in Example A1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 2.
  • Example A1-4 A monomer composition was prepared in the same manner as in Example A1-3, except that the amounts of the reagents MMA and component A1 were changed as shown in Table 2. The concentrations of each component in the monomer composition are shown in Table 2. The resulting monomer composition was stored in the same manner as in Example A1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 2.
  • Examples A1-5 and A1-6 A-1 solution was prepared in the same manner as in Example A1-1, except that the compound shown in Table 1 was used as Component A1 and the amounts of MMA and Component A1 in the reagents were changed as shown in Table 1.
  • a monomer composition was prepared in the same manner as in Example A1-1, except that the amounts of the reagents MMA and A-1 solution were changed as shown in Table 2.
  • the concentrations of each component in the monomer composition are shown in Table 2.
  • the resulting monomer composition was stored in the same manner as in Example A1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 2.
  • Examples A1-7 and A1-8 A monomer composition was prepared in the same manner as in Example A1-3, except that the compound shown in Table 2 was used as component A1 and the amounts of MMA and component A1 in the reagents were changed as shown in Table 2. The concentrations of each component in the monomer composition are shown in Table 2. The resulting monomer composition was stored in the same manner as in Example A1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 2.
  • Example A1-9 Isobutyl isobutyrate was used as component A1, and 0.0210 g of component A1 was added to 10.00 g of reagent MMA (water concentration 240 ppm) to prepare an MMA solution (A-1 solution).
  • the concentration of component A1 in the A-1 solution is shown in Table 1.
  • 2,4-dimethyl-6-t-butylphenol was used as component B, and 0.0228 g of component B was added to 10.00 g of MMA (water concentration 240 ppm) as a reagent to prepare an MMA solution (B-1 solution).
  • the concentration of component B in the B-1 solution is shown in Table 1.
  • Example A1-10 A-1 solution was prepared in the same manner as in Example A1-9, except that the compound shown in Table 1 was used as Component A and the amounts of MMA and Component A1 in the reagents were changed as shown in Table 1.
  • Solution B-1 was prepared in the same manner as in Example A1-9.
  • a monomer composition was prepared in the same manner as in Example A1-9, except that the amounts of the reagents MMA, A-1 solution, and B-1 solution were changed as shown in Table 2. The concentrations of each component in the monomer composition are shown in Table 2.
  • the resulting monomer composition was stored in the same manner as in Example A1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 2.
  • Example A1-1 40.00 g of the reagent MMA (water concentration 240 ppm) was used as a monomer composition and stored in the same manner as in Example A1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 2.
  • Example A1-2 Methyl isobutyrate was used as component A1, and 0.0293 g of component A1 was added to 10.08 g of reagent MMA (water concentration 240 ppm) to prepare an MMA solution (A-1 solution). The concentration of component A1 in the A-1 solution is shown in Table 1. Next, 0.2123 g of A-1 solution was added to 40.06 g of MMA (water concentration 240 ppm) as a reagent to prepare a monomer composition. The concentrations of each component in the monomer composition are shown in Table 2. The resulting monomer composition was stored in the same manner as in Example A1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 2.
  • Example A2-1 100 parts of MMA was supplied to a reactor (polymerization kettle) equipped with a cooling tube, a thermometer, and a stirrer, and nitrogen gas was bubbled into the mixture while stirring, and then heating was started.
  • a reactor polymerization kettle
  • 0.12 parts of 2,2'-azobis(2,4-dimethylvaleronitrile) was added as a radical polymerization initiator, and the reactor was further heated until the internal temperature reached 100°C and then maintained for 9 minutes.
  • the reactor was then cooled until the internal temperature reached room temperature, and a syrup was obtained.
  • the concentration of the polymer in the syrup was 20% by mass relative to the total mass of the syrup.
  • Methyl isovalerate was used as component A1, and 0.01 part of component A1 and 0.3 part of t-hexylperoxypivalate as a radical polymerization initiator were added to 100 parts of the obtained syrup to obtain a polymerizable composition.
  • concentrations of MMA and component A1 in the polymerizable composition are shown in Table 3.
  • the obtained polymerizable composition was poured into a space having a gap of 4.1 mm, which was formed by placing a soft resin gasket at the end of each of two opposing SUS plates, and cured by heating at 80°C for 45 minutes and then at 130°C for 30 minutes to obtain a methacrylic resin composition.
  • the obtained methacrylic resin composition was cooled together with the SUS plate, and the SUS plate was removed to obtain a plate-shaped resin molded product having a thickness of 3 mm.
  • the resin molded product was a molded product consisting only of the methacrylic resin composition, and corresponds to both the methacrylic resin composition and the resin molded product.
  • the evaluation results of the properties of the obtained resin molded product are shown in Table 3. In Table 3, "-" means that component A was not added.
  • Examples A2-2 to A2-3 A polymerizable composition was obtained in the same manner as in Example A2-1, except that the amount of Component A1 added was changed as shown in Table 1. The concentrations of MMA and Component A in the polymerizable composition are shown in Table 3. Using the obtained polymerizable composition, a methacrylic resin composition and a resin molded article were produced in the same manner as in Example A2-1. The evaluation results of the resin molded article are shown in Table 3.
  • Examples A2-4 to A2-11 A polymerizable composition was obtained in the same manner as in Example A2-1, except that a compound shown in Table 1 was used as Component A1 and the amount of Component A1 added was changed as shown in Table 1. The concentrations of MMA and Component A1 in the polymerizable composition are shown in Table 3. Using the obtained polymerizable composition, a methacrylic resin composition and a resin molded article were produced in the same manner as in Example A2-1. The evaluation results of the resin molded article are shown in Table 3.
  • Example A2-1 A polymerizable composition was obtained in the same manner as in Example A2-1, except that Component A1 was not used.
  • the concentration of MMA in the polymerizable composition is shown in Table 3.
  • a methacrylic resin composition and a resin molded article were produced in the same manner as in Example A2-1.
  • the evaluation results of the resin molded article are shown in Table 3.
  • the methacrylic resin compositions containing a specific amount of component A1 produced in Examples A2-1 to A2-11 maintained transparency and heat resistance while exhibiting superior light stability compared to Comparative Example A2-1.
  • the methacrylic resin compositions can also be produced by polymerizing the polymerizable compositions containing the monomer compositions obtained in Examples A1-1 to A1-10.
  • the methods for the analysis of the monomer composition, the quality stability evaluation of the monomer composition, the analysis of the methacrylic resin composition, the heat resistance evaluation of the methacrylic resin composition, the measurement of haze and yellowness index (YI), the light stability evaluation of the methacrylic resin composition, the light stability test, and the measurement of the total light transmittance (Tt) are the same as those for the tests in the first embodiment.
  • Example B1-1 Methyl crotonate was used as component A2, and 0.0400 g of component A2 was added to 39.96 g of reagent MMA (water concentration 240 ppm) to prepare an MMA solution (A-1 solution).
  • the concentration of component A2 in the A-1 solution is shown in Table 4.
  • 0.2000 g of A-1 solution was added to 19.80 g of MMA (water concentration 240 ppm) as a reagent to prepare a monomer composition.
  • the concentrations of each component in the monomer composition are shown in Table 5.
  • the obtained monomer composition was stored for 14 days at 25° C.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 5.
  • Example B1-2 Solution A-1 was prepared in the same manner as in Example B1-1.
  • a monomer composition was prepared in the same manner as in Example B1-1, except that the amounts of the reagents MMA and A-1 solution were changed as shown in Table 5.
  • the concentrations of each component in the monomer composition are shown in Table 5.
  • the resulting monomer composition was stored in the same manner as in Example B1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 5.
  • Example B1-3 Methyl crotonate was used as component A2, and 0.0400 g of component A2 was added to 39.96 g of reagent MMA (water concentration 240 ppm) to prepare a monomer composition.
  • concentrations of each component in the monomer composition are shown in Table 5.
  • the resulting monomer composition was stored in the same manner as in Example B1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 5.
  • Example B1-4 A monomer composition was prepared in the same manner as in Example B1-3, except that the amounts of the reagents MMA and component A2 were changed as shown in Table 5. The concentrations of each component in the monomer composition are shown in Table 5. The resulting monomer composition was stored in the same manner as in Example B1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 5.
  • Examples B1-5, B1-6, B1-9, B1-10, and B1-13 A solution A-1 was prepared in the same manner as in Example B1-1, except that the compound shown in Table 4 was used as component A2 and the amounts of MMA and component A2 in the reagents were changed as shown in Table 4.
  • a monomer composition was prepared in the same manner as in Example B1-1, except that the amounts of the reagents MMA and A-1 solution were changed as shown in Table 5.
  • the concentrations of each component in the monomer composition are shown in Table 5.
  • the resulting monomer composition was stored in the same manner as in Example B1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 5.
  • Examples B1-7, B1-8, B1-11, and B1-12 A monomer composition was prepared in the same manner as in Example B1-3, except that the compound shown in Table 5 was used as component A2 and the amounts of MMA and component A2 in the reagents were changed as shown in Table 5. The concentrations of each component in the monomer composition are shown in Table 5. The resulting monomer composition was stored in the same manner as in Example B1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 2.
  • Example B1-14 Methyl crotonate was used as component A2, and 0.0207 g of component A2 was added to 10.02 g of reagent MMA (water concentration 240 ppm) to prepare an MMA solution (A-1 solution).
  • the concentration of component A2 in the A-1 solution is shown in Table 4.
  • 2,4-dimethyl-6-t-butylphenol was used as component B, and 0.0228 g of component B was added to 10.00 g of MMA (water concentration 240 ppm) as a reagent to prepare an MMA solution (B-1 solution).
  • the concentration of component B in the B-1 solution is shown in Table 4.
  • Examples B1-15 to B1-16 A solution A-1 was prepared in the same manner as in Example B1-14, except that the compound shown in Table 4 was used as component A2 and the amounts of MMA and component A2 in the reagents were changed as shown in Table 4.
  • a B-1 solution was prepared in the same manner as in Example B1-14, except that the amounts of the reagents MMA and component B were changed as shown in Table 4.
  • a monomer composition was prepared in the same manner as in Example B1-14, except that the amounts of the reagents MMA, A-1 solution, and B-1 solution were changed as shown in Table 5.
  • the concentrations of each component in the monomer composition are shown in Table 5.
  • the resulting monomer composition was stored in the same manner as in Example B1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 5.
  • Example B1-1 40.00 g of the reagent MMA (water concentration 240 ppm) was used as a monomer composition and stored in the same manner as in Example B1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 5.
  • Example B1-2 Solution B-1 was prepared in the same manner as in Example B1-14. Next, 0.2213 g of B-1 solution was added to 40.03 g of MMA (water concentration 240 ppm) as a reagent to prepare a monomer composition. The concentrations of each component in the monomer composition are shown in Table 5. The resulting monomer composition was stored in the same manner as in Example B1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 5.
  • Example B2-1 100 parts of MMA was supplied to a reactor (polymerization kettle) equipped with a cooling tube, a thermometer, and a stirrer, and nitrogen gas was bubbled into the mixture while stirring, and then heating was started.
  • a reactor polymerization kettle
  • 0.12 parts of 2,2'-azobis(2,4-dimethylvaleronitrile) was added as a radical polymerization initiator, and the reactor was further heated until the internal temperature reached 100°C and then maintained for 9 minutes.
  • the reactor was then cooled until the internal temperature reached room temperature, and a syrup was obtained.
  • the concentration of the polymer in the syrup was 20% by mass relative to the total mass of the syrup.
  • Methyl crotonate was used as component A2, and 0.001 part of component A2 and 0.3 part of t-hexyl peroxypivalate as a radical polymerization initiator were added to 100 parts of the obtained syrup to obtain a polymerizable composition.
  • concentrations of MMA and component A2 in the polymerizable composition are shown in Table 6.
  • the obtained polymerizable composition was poured into a space having a gap of 4.1 mm, which was formed by placing a soft resin gasket at the end of each of two opposing SUS plates, and cured by heating at 80°C for 45 minutes and then at 130°C for 30 minutes to obtain a methacrylic resin composition.
  • the obtained methacrylic resin composition was cooled together with the SUS plate, and the SUS plate was removed to obtain a plate-shaped resin molded product having a thickness of 3 mm.
  • the resin molded product was a molded product consisting only of the methacrylic resin composition, and corresponds to both the methacrylic resin composition and the resin molded product.
  • the evaluation results of the properties of the obtained resin molded product are shown in Table 6. In Table 6, "-" means that component A2 was not added.
  • Examples B2-2 to B2-4 A polymerizable composition was obtained in the same manner as in Example B2-1, except that the amount of Component A2 added was changed as shown in Table 6. The concentrations of MMA and Component A2 in the polymerizable composition are shown in Table 6. Using the obtained polymerizable composition, a methacrylic resin composition and a resin molded article were produced in the same manner as in Example B2-1. The evaluation results of the resin molded article are shown in Table 6.
  • Examples B2-5 to B2-13 A polymerizable composition was obtained in the same manner as in Example B2-1, except that a compound shown in Table 6 was used as Component A2 and the amount of Component A2 added was changed as shown in Table 6. The concentrations of MMA and Component A2 in the polymerizable composition are shown in Table 6. Using the obtained polymerizable composition, a methacrylic resin composition and a resin molded article were produced in the same manner as in Example B2-1. The evaluation results of the resin molded article are shown in Table 6.
  • Example B2-1 A polymerizable composition was obtained in the same manner as in Example B2-1, except that Component A2 was not used.
  • the concentration of MMA in the polymerizable composition is shown in Table 6.
  • a methacrylic resin composition and a resin molded article were produced in the same manner as in Example B2-1.
  • the evaluation results of the resin molded article are shown in Table 6.
  • the methacrylic resin compositions containing a specific amount of component A2 produced in Examples B2-1 to B2-13 maintained transparency and heat resistance while exhibiting superior light stability compared to Comparative Example B2-1.
  • the methacrylic resin compositions can also be produced by polymerizing the polymerizable compositions containing the monomer compositions obtained in Examples B1-1 to B1-21.
  • the methods for analyzing the monomer composition, evaluating the quality stability of the monomer composition, and analyzing the methacrylic resin composition are the same as those used in the tests for the first embodiment.
  • the long-term thermal stability test was carried out by placing a test piece (rectangular shape of 50 mm length x 100 mm width, thickness 3 mm) made of a methacrylic resin composition in a gear oven and heating it at 100°C for 504 hours.
  • Tt total light transmittance
  • the total light transmittance (Tt) of the methacrylic resin composition was measured in accordance with JIS K 7361-1 using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model name: NDH4000).
  • a test piece square shape of 50 mm length ⁇ 100 mm width, thickness 3 mm
  • One test piece before the long-term thermal stability test and one test piece after the test were each measured once, and the change in the measured value before and after the long-term thermal stability test was taken as the change in total light transmittance ( ⁇ Tt).
  • the yellowness index (YI) of the methacrylic resin composition was measured in accordance with ASTM D1925 using a spectrophotometer (manufactured by Nippon Denshoku Industries Co., Ltd., model name: SE-7700). For the measurement, a test piece (square shape of 50 mm length ⁇ 100 mm width, thickness 3 mm) made of the methacrylic resin composition was used. One test piece before the long-term thermal stability test and one test piece after the test were each measured once, and the change in the measured value before and after the long-term thermal stability test was taken as the change in yellowness index ( ⁇ YI).
  • Example C1-1 2,3,5,6-tetramethylpyrazine (Me 4 Py) was used as component A3, and 0.0214 g of component A3 was added to 10.02 g of MMA (water concentration 240 ppm) as a reagent to prepare an MMA solution (A-1 solution).
  • the concentration of component A3 in the A-1 solution is shown in Table 7.
  • 0.1025 g of A-1 solution was added to 20.0016 g of MMA (water concentration 240 ppm) as a reagent to prepare a monomer composition.
  • the concentrations of each component in the monomer composition are shown in Table 9.
  • the obtained monomer composition was stored for 14 days at 25° C.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 8.
  • Example C1-2 Using 2,3,5,6-tetramethylpyrazine (Me 4 Py) as component A3, 0.0400 g of component A3 was added to 39.9600 g of reagent MMA (water concentration 240 ppm) to prepare a monomer composition. The concentrations of each component in the monomer composition are shown in Table 8. The resulting monomer composition was stored in the same manner as in Example C1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 8.
  • Example C1-3 A monomer composition was prepared in the same manner as in Example C1-2, except that the amounts of the reagents MMA and component A3 were changed as shown in Table 8. The concentrations of each component in the monomer composition are shown in Table 8. The resulting monomer composition was stored in the same manner as in Example C1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after the storage are shown in Table 8.
  • Examples C1-4, C1-5, C1-6, and C1-9 A solution A-1 was prepared in the same manner as in Example C1-1, except that the compound shown in Table 7 was used as Component A3 and the amounts of MMA and Component A3 in the reagents were changed as shown in Table 7.
  • a monomer composition was prepared in the same manner as in Example C1-1, except that the amounts of the reagents MMA and A-1 solution were changed as shown in Table 8.
  • the concentrations of each component in the monomer composition are shown in Table 8.
  • the resulting monomer composition was stored in the same manner as in Example C1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 8.
  • Examples C1-7 and C1-8 A monomer composition was prepared in the same manner as in Example C1-2, except that the compound shown in Table 8 was used as component A3 and the amounts of MMA and component A3 in the reagents were changed as shown in Table 8. The concentrations of each component in the monomer composition are shown in Table 8. The resulting monomer composition was stored in the same manner as in Example C1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 8.
  • Example C1-10 Solution A-1 was prepared in the same manner as in Example C1-1. 2,4-dimethyl-6-t-butylphenol (DBPL) was used as component B3, and 0.0829 g of component B3 was added to 40.0221 g of reagent MMA (water concentration 240 ppm) to prepare an MMA solution (B-1 solution). The concentration of component B3 in the B-1 solution is shown in Table 7. Next, 0.1017 g of A-1 solution and 0.1016 g of B-1 solution were added to 20.0861 g of MMA (water concentration 240 ppm) as a reagent to prepare a monomer composition. The concentrations of each component in the monomer composition are shown in Table 8. The resulting monomer composition was stored in the same manner as in Example C1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 8.
  • Examples C1-11 to C1-15 A solution A-1 was prepared in the same manner as in Example C1-1, except that the compound shown in Table 7 was used as Component A3 and the amounts of MMA and Component A3 in the reagents were changed as shown in Table 7.
  • Solution B-1 was prepared in the same manner as in Example C1-10.
  • a monomer composition was prepared in the same manner as in Example C1-10, except that the amounts of the reagents MMA, A-1 solution, and B-1 solution were changed as shown in Table 8. The concentrations of each component in the monomer composition are shown in Table 8.
  • the resulting monomer composition was stored in the same manner as in Example C1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 8.
  • Examples C1-16 to C1-18 Solution A-1 was prepared in the same manner as in Example C1-1.
  • a B-1 solution was prepared in the same manner as in Example C1-10, except that the compound shown in Table 7 was used as Component B3 and the amounts of MMA and Component B3 in the reagents were changed as shown in Table 7.
  • a monomer composition was prepared in the same manner as in Example C1-10, except that the amounts of the reagents MMA, A-1 solution, and B-1 solution were changed as shown in Table 8.
  • the concentrations of each component in the monomer composition are shown in Table 8.
  • the resulting monomer composition was stored in the same manner as in Example C1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 8.
  • Examples C1-19 and C1-22 Solution A-1 was prepared in the same manner as in Example C1-1.
  • Solution B-1 was prepared in the same manner as in Example C1-10.
  • monomer compositions were prepared in the same manner as in Example C1-10, except that the amounts of the reagents MMA, A-1 solution, and B-1 solution were changed as shown in Tables 8 and 10. The concentrations of each component in the monomer compositions are shown in Tables 8 and 10.
  • the resulting monomer composition was stored in the same manner as in Example C1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Tables 8 and 10.
  • Example C1-20 Solution B-1 was prepared in the same manner as in Example C1-10. Next, 2,3,5,6-tetramethylpyrazine (Me 4 Py) was used as component A3, and 0.0210 g of component A3 and 0.1021 g of B-1 solution were added to 20.0176 g of reagent MMA (water concentration 240 ppm) to prepare a monomer composition. The concentrations of each component in the monomer composition are shown in Table 10. The resulting monomer composition was stored in the same manner as in Example C1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 10.
  • Example C1-21 Solution B-1 was prepared in the same manner as in Example C1-10.
  • a monomer composition was prepared in the same manner as in Example C1-20, except that the amounts of the reagents MMA, component A3, and B-1 solution were changed as shown in Table 10. The concentrations of each component in the monomer composition are shown in Table 10.
  • the resulting monomer composition was stored in the same manner as in Example C1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 10.
  • Examples C1-23 and C1-24 Solution A-1 was prepared in the same manner as in Example C1-1.
  • a B-1 solution was prepared in the same manner as in Example C1-10, except that the amounts of the reagents MMA and component B3 were changed as shown in Table 9.
  • a monomer composition was prepared in the same manner as in Example C1-10, except that the amounts of the reagents MMA, A-1 solution, and B-1 solution were changed as shown in Table 10.
  • the concentrations of each component in the monomer composition are shown in Table 10.
  • the resulting monomer composition was stored in the same manner as in Example C1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 10.
  • Example C1-25 Solution A-1 was prepared in the same manner as in Example C1-1.
  • Solution B-1 was prepared in the same manner as in Example C1-10.
  • 0.0980 g of A-1 solution, 0.1014 g of B-1 solution, and 0.2940 g of pure water were added to 20.0017 g of MMA (water concentration 240 ppm) as a reagent to prepare a monomer composition.
  • the concentrations of each component in the monomer composition are shown in Table 10.
  • the resulting monomer composition was stored in the same manner as in Example C1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 10.
  • Examples C1-26 to C1-29 Solution A-1 was prepared in the same manner as in Example C1-1.
  • a B-1 solution was prepared in the same manner as in Example C1-10, except that the compound shown in Table 9 was used as Component B3 and the amounts of MMA and Component B3 in the reagents were changed as shown in Table 9.
  • a monomer composition was prepared in the same manner as in Example C1-10, except that the amounts of the reagents MMA, A-1 solution, and B-1 solution were changed as shown in Table 10. The concentrations of each component in the monomer composition are shown in Table 10.
  • the resulting monomer composition was stored in the same manner as in Example C1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 10.
  • Examples C1-30 to C1-36 A solution A-1 was prepared in the same manner as in Example C1-1, except that the compound shown in Table 9 was used as component A3 and the amounts of MMA and component A3 in the reagents were changed as shown in Table 10.
  • a B-1 solution was prepared in the same manner as in Example C1-10, except that the compound shown in Table 9 was used as Component B3 and the amounts of MMA and Component B3 in the reagents were changed as shown in Table 9.
  • a monomer composition was prepared in the same manner as in Example C1-10, except that the amounts of the reagents MMA, A-1 solution, and B-1 solution were changed as shown in Table 10. The concentrations of each component in the monomer composition are shown in Table 10.
  • the resulting monomer composition was stored in the same manner as in Example C1-1.
  • the amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 10.
  • Example C1-2 A B-1 solution was prepared in the same manner as in Example C1-10, except that the amounts of the reagents MMA and component B3 were changed as shown in Table 8. Next, 0.2213 g of B-1 solution was added to 40.0273 g of MMA (water concentration 240 ppm) as a reagent to prepare a monomer composition. The concentrations of each component in the monomer composition are shown in Table 10. The resulting monomer composition was stored in the same manner as in Example C1-1. The amounts of MMA dimer and methyl pyruvate produced in the monomer composition after storage are shown in Table 10.
  • Example C2-1 100 parts of MMA was supplied to a reactor (polymerization kettle) equipped with a cooling tube, a thermometer, and a stirrer, and nitrogen gas was bubbled into the mixture while stirring, and then heating was started.
  • a reactor polymerization kettle
  • 0.12 parts of 2,2'-azobis(2,4-dimethylvaleronitrile) was added as a radical polymerization initiator, and the reactor was further heated until the internal temperature reached 100°C and then maintained for 9 minutes.
  • the reactor was then cooled until the internal temperature reached room temperature, and a syrup was obtained.
  • the concentration of the polymer in the syrup was 20% by mass relative to the total mass of the syrup.
  • a radical polymerization initiator Using 2,3,5,6-tetramethylpyrazine (Me 4 Py) as component A3, 0.001 part of component A3 and 0.3 part of t-hexylperoxypivalate as a radical polymerization initiator were added to 100 parts of the obtained syrup to obtain a polymerizable composition.
  • concentrations of MMA and component A3 in the polymerizable composition are shown in Table 11.
  • the obtained polymerizable composition was poured into a space having a gap of 4.1 mm, which was formed by placing a soft resin gasket at the end of each of two opposing SUS plates, and cured by heating at 80°C for 45 minutes and then at 130°C for 30 minutes to obtain a methacrylic resin composition.
  • the obtained methacrylic resin composition was cooled together with the SUS plate, and the SUS plate was removed to obtain a plate-shaped resin molded body having a thickness of 3 mm.
  • the resin molded body was a molded body consisting only of the methacrylic resin composition, and corresponds to both the methacrylic resin composition and the resin molded body.
  • the evaluation results of the properties of the obtained resin molded body are shown in Table 12. In Table 11, "-" means that component A3 and component B3 described below were not added.
  • Examples C2-2 to C2-4 A polymerizable composition was obtained in the same manner as in Example C2-1, except that a compound shown in Table 11 was used as Component A3 and the amount of Component A3 added was changed as shown in Table 11. The concentrations of MMA and Component A3 in the polymerizable composition are shown in Table 11. Using the obtained polymerizable composition, a methacrylic resin composition and a resin molded article were produced in the same manner as in Example C2-1. The evaluation results of the resin molded article are shown in Table 12.
  • Example C2-5 A syrup was obtained in the same manner as in Example C2-1. 2,3,5,6-tetramethylpyrazine (Me 4 Py) was used as component A3, and methyl isobutyrate (MIB) was used as component B3. 0.001 part of component A3 was added to 100 parts of the obtained syrup, and then 0.005 part of component B3 was added. 0.3 part of t-hexyl peroxypivalate was added as a radical polymerization initiator to obtain a polymerizable composition. The concentrations of MMA and component A3 in the polymerizable composition are shown in Table 11. Using the obtained polymerizable composition, a methacrylic resin composition and a resin molded article were produced in the same manner as in Example C2-1. The evaluation results of the resin molded article are shown in Table 12.
  • Example C2-6 A syrup was obtained in the same manner as in Example C2-5. 2,3,5,6-tetramethylpyrazine (Me 4 Py) was used as component A3, and methyl propionate (MPr) was used as component B3. 0.001 part of component A3 was added to 100 parts of the obtained syrup, and then 0.0015 parts of component B3 were added. 0.3 parts of t-hexyl peroxypivalate was further added as a radical polymerization initiator to obtain a polymerizable composition. The concentrations of MMA and component A3 in the polymerizable composition are shown in Table 11. Using the obtained polymerizable composition, a methacrylic resin composition and a resin molded article were produced in the same manner as in Example C2-1. The evaluation results of the resin molded article are shown in Table 12.
  • Example C2-7 A syrup was obtained in the same manner as in Example C2-5. 2,3,5,6-tetramethylpyrazine (Me 4 Py) was used as component A3, and methyl acrylate (MA) was used as component B3. 0.001 part of component A3 was added to 100 parts of the obtained syrup, and then 0.009 part of component B3 was added. 0.3 part of t-hexyl peroxypivalate was further added as a radical polymerization initiator to obtain a polymerizable composition. The concentrations of MMA and component A3 in the polymerizable composition are shown in Table 11. Using the obtained polymerizable composition, a methacrylic resin composition and a resin molded article were produced in the same manner as in Example C2-1. The evaluation results of the resin molded article are shown in Table 12.
  • Example C2-1 A polymerizable composition was obtained in the same manner as in Example C2-1, except that Component A3 was not used.
  • the concentration of MMA in the polymerizable composition is shown in Table 11.
  • a methacrylic resin composition and a resin molded article were produced in the same manner as in Example C2-1.
  • the evaluation results of the resin molded article are shown in Table 12.
  • the methacrylic resin compositions containing a specific amount of component A3 produced in Examples C2-1 to C2-7 maintained transparency and heat resistance while exhibiting superior long-term thermal stability compared to Comparative Example C2-1.
  • the methacrylic resin compositions can also be produced by polymerizing the polymerizable compositions containing the monomer compositions obtained in Examples C1-1 to C1-36.
  • a monomer composition that can be used as a raw material for a methacrylic resin having excellent light stability can be stably stored for a long period of time, and further, a methacrylic resin composition and a resin composition can be obtained, which are industrially useful.
  • a monomer composition that can be used as a raw material for a methacrylic resin having excellent long-term thermal stability can be stably stored for a long period of time, and further, a methacrylic resin composition and a resin composition can be obtained, which are industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

メタクリル系樹脂が本来有する透明性及び耐熱性を維持しつつ、光安定性又は長期熱安定性に優れたメタクリル系樹脂組成物を得るための単量体組成物、メタクリル系樹脂組成物、その製造方法及びメタクリル系樹脂組成物を含む樹脂成形体を提供することを課題とする。メタクリル酸メチルと、特定のα水素を有するエステル化合物(成分A1)、α,β-不飽和カルボニル化合物(成分A21)、α,β-不飽和カルボン酸エステル(成分A22)、又はピラジン化合物(成分A3)を1~10000質量ppm含む単量体組成物により、前記課題を解決する。また、前記単量体組成物を用いたメタクリル系樹脂組成物及びその製造方法、並びに前記メタクリル系樹脂組成物を含む樹脂成形体により、前記課題を解決する。

Description

単量体組成物、メタクリル系樹脂組成物及びその製造方法、並びに樹脂成形体
 本発明は、単量体組成物、メタクリル系樹脂組成物及びその製造方法、並びに樹脂成形体に関する。
 本願は、2022年10月28日に日本に出願された特願2022-172929号、特願2022―172930、及び2023年5月24日に日本に出願された特願2023-085752号に基づき優先権を主張し、その内容をここに援用する。
 メタクリル酸メチル(以下、「MMA」とも記す。)は様々な用途、種類のポリマーの原料として使用される極めて有用な物質であることが知られている。例えばMMAの重合により得られるメタクリル系樹脂は、透明性、耐熱性及び耐侯性に優れ、且つ、機械的強度、熱的性質、成形加工性等の樹脂物性においてバランスのとれた性能を有している。このような優れた特性から、車両用部材、医療用部材、玩具、液体容器、光学材料、看板、ディスプレイ、装飾部材、建築部材、電子機器の面板等の多くの用途に使用され、特に、透光性を有する部材に使用されている。
 前記用途において、直射日光やUVランプ等の光に曝される環境下にメタクリル系樹脂が使用された部材が設置された場合、メタクリル系樹脂の透明性が大きく低下するという問題点があった。そのため、光に長時間曝露されても透明性が維持されるメタクリル系樹脂、すなわち光安定性に優れるメタクリル系樹脂が要求されていた。なお、本明細書において、「UV」とは、波長範囲として295~430nmの光を主として含む光を意味する。
 メタクリル系樹脂の光安定性を向上させる技術として、例えば特許文献1には、光安定剤の一つである特定の構造を有するヒンダードアミン系化合物の存在下でメチルメタクリレート等のモノマーを重合させたメタクリル系樹脂が開示されている。特許文献2には、トリアジン系化合物を構造単位として有する重合体を含むメタクリル系樹脂が開示されている。
 また、メタクリル系樹脂の原料であるMMAの品質を保つため、例えば特許文献3には、ヒドロキノンのメチルエーテルを重合禁止剤として用いることが記載されている。特許文献4には、N,N’-ジアルキル-p-フェニレンジアミン又はN-オキシルを重合禁止剤として用いることが記載されている。特許文献5には、フェノール系の重合禁止剤の存在下でMMAを蒸留することが記載されている。
 また、前記用途において、高温環境下にメタクリル系樹脂が使用された部材が長期間設置された場合、メタクリル系樹脂に黄帯色(黄ばみ)が発生し、透明性が大きく低下するという問題点があった。そのため、高温下で長期間保存されても透明性が維持されるメタクリル系樹脂、すなわち長期熱安定性に優れるメタクリル系樹脂が要求されていた。
 メタクリル系樹脂の長期熱安定性を向上させる技術として、メタクリル系樹脂に対して酸化防止剤を添加する方法が知られている。例えば特許文献6には、亜リン酸エステル化合物と酸化防止剤を含む安定剤が開示されている。また、特許文献7には、亜リン酸エステル類と、フェノール系安定剤、硫黄系安定剤、リン系安定剤、ヒンダードアミン安定剤から選ばれる少なくとも1種の安定剤を含有することを特徴とする安定剤組成物が開示されている。
特開昭55-139404号公報 特開2012-72333号公報 特開2004-155757号公報 特表2005-502695号公報 特表平10-504553号公報 特開平5-86084号公報 特開平11-222493号公報
 特許文献1及び2に記載のメタクリル系樹脂組成物や、特許文献3~5に記載のMMAを原料としたメタクリル系樹脂組成物は、いずれも添加剤を含むものである。そのため、添加剤の増加に伴い、メタクリル系樹脂組成物の光安定性は向上する一方で、添加剤に由来する着色が発生してしまうという問題があった。
 また、特許文献6及び7に記載の添加剤を含むメタクリル系樹脂組成物は、添加剤の増加に伴い、メタクリル系樹脂組成物の長期熱安定性が向上する一方で、添加剤に由来する着色が発生してしまうという問題があった。特許文献3~5に記載のMMAを原料としたメタクリル系樹脂組成物も添加剤を含有するために、長期熱安定性が向上したとしても着色が発生することがあった。
 これらのことから、特許文献1~7のメタクリル系樹脂組成物は、特定の色調と透明性が同時に求められる場合には用いることができないという問題があった。また、MMAの品質を保つために重合禁止剤を添加した場合でも、MMAは保管中に品質が悪化することがあった。
 以上の状況から、本発明の一つの目的は、メタクリル系樹脂が本来有する透明性及び耐熱性を維持しつつ、光安定性に優れたメタクリル系樹脂組成物を得るための単量体組成物、メタクリル系樹脂組成物、その製造方法及びメタクリル系樹脂組成物を含む樹脂成形体を提供することにある。
 また、本発明の別の目的は、メタクリル系樹脂が本来有する透明性及び耐熱性を維持しつつ、長期熱安定性に優れたメタクリル系樹脂組成物を得るための単量体組成物、メタクリル系樹脂組成物、その製造方法及びメタクリル系樹脂組成物を含む樹脂成形体を提供することにある。
 本発明者らは前述の目的を達成するために鋭意検討を進めた。その結果、保管中に品質が悪化したMMAでは、MMA濃度が減少し、MMA二量体及びピルビン酸メチルが生成していることを見出した。MMA中にMMA二量体が含まれると、重合により得られるメタクリル系樹脂組成物の物性に悪影響を与える。またMMA中にピルビン酸メチルが含まれると、重合により得られるメタクリル系樹脂組成物の着色が増加する原因となる。そしてMMAを含む単量体組成物が、特定の構造式のα水素を有するエステル化合物を特定量含むことで、保管中の品質安定性が向上し、MMA二量体及びピルビン酸メチルの生成が抑制されることを見出した。またこのような単量体組成物を含む重合性組成物を重合することで、メタクリル系樹脂が本来有する透明性、耐熱性を維持し、光安定性に優れたメタクリル系樹脂組成物が得られることを見出し、本発明を完成させた。
 また、本発明者らは、MMAを含む単量体組成物が、特定の構造式のα,β-不飽和カルボニル化合物を特定量含むことで、保管中の品質安定性が向上し、MMA二量体及びピルビン酸メチルの生成が抑制されることを見出した。またこのような単量体組成物を含む重合性組成物を重合することで、メタクリル系樹脂が本来有する透明性、耐熱性を維持し、光安定性に優れたメタクリル系樹脂組成物が得られることを見出し、本発明を完成させた。
 また、本発明者らは、MMAを含む単量体組成物が、特定の構造式のピラジン化合物を特定量含むことで、保管中の品質安定性が向上し、MMA二量体及びピルビン酸メチルの生成が抑制されることを見出した。またこのような単量体組成物を含む重合性組成物を重合することで、メタクリル系樹脂が本来有する透明性、耐熱性を維持し、長期熱安定性に優れたメタクリル系樹脂組成物が得られることを見出し、本発明を完成させた。
 すなわち本発明の要旨は、以下の通りである。
[1]メタクリル酸メチルと、下記式(1-1)で表されるα水素を有するエステル化合物(成分A1)、下記式(2-1)で表されるα,β-不飽和カルボニル化合物(成分A21)、下記式(2-2)で表されるα,β-不飽和カルボン酸エステル(成分A22)、及び下記式(3-1)で表されるピラジン化合物(成分A3)から選ばれる1種の化合物(成分A)と、を含む、単量体組成物であって、
 前記成分A1を含み、前記単量体組成物の総質量に対する前記成分A1の濃度をXA1(質量ppm)としたとき、前記XA1は5~10000質量ppmであり、
 前記成分A21を含み、前記単量体組成物の総質量に対する前記成分A21の濃度をXA21(質量ppm)としたとき、前記XA21が1~10000質量ppmであり、
 前記成分A22を含み、前記単量体組成物の総質量に対する前記成分A22の濃度をXA22(質量ppm)としたとき、前記XA22が1~10000質量ppmであり、
 前記成分A3を含み、前記単量体組成物の総質量に対する前記成分A3の濃度をXA3(質量ppm)としたとき、前記XA3が1質量ppm以上である、単量体組成物。
Figure JPOXMLDOC01-appb-C000013
(前記式(1-1)中、R11及びR12はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R13は炭素原子数1~5のアルキル基である。また、R11~R13のいずれか1つ以上は、炭素原子数2~5のアルキル基である。)
Figure JPOXMLDOC01-appb-C000014
(前記式(2-1)中、R21、R22及びR23はそれぞれ独立して水素原子又は炭素原子数1~5のアルキル基であり、R24は炭素原子数1~5のアルキル基又はアミノ基である。)
Figure JPOXMLDOC01-appb-C000015
(前記式(2-2)中、R25、R26及びR27はそれぞれ独立して水素原子又は炭素原子数1~10のアルキル基であり、R28は炭素原子数1~10のアルキル基である。また、R25及びR26のいずれか1つ以上は、炭素原子数1~10のアルキル基である。)
Figure JPOXMLDOC01-appb-C000016
(前記式(3-1)中、R31、R32、R33、及びR34はそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~6のアルコキシ基である。)
[2]前記成分Aが前記成分A1である、[1]に記載の単量体組成物。
[3]前記XA1が10~5000質量ppmである、[2]に記載の単量体組成物。
[4]前記成分A1の分子量が200以下である、[2]又は[3]に記載の単量体組成物。
[5]前記式(1-1)中、R11及びR12がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R13がメチル基、イソブチル基又はイソアミル基である、[2]~[4]のいずれかに記載の単量体組成物。
[6]前記成分A1がイソ酪酸イソブチル、イソ吉草酸メチル及びイソ酪酸イソアミルからなる群から選択される少なくとも1種である、[2]~[5]のいずれかに記載の単量体組成物。
[7]前記成分Aが前記成分A21である、[1]に記載の単量体組成物。
[8]前記XA21が10~5000質量ppmである、[7]に記載の単量体組成物。
[9]前記成分A21の分子量が200以下である、[7]又は[8]に記載の単量体組成物。
[10]前記式(2-1)中、R21、R22及びR23がそれぞれ独立して水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基であり、R24がメチル基又はアミノ基である、[7]~[9]のいずれかに記載の単量体組成物。
[11]前記成分A21がイソプロペニルメチルケトン及びメタクリルアミドからなる群から選択される少なくとも1種である、[7]~[10]のいずれかに記載の単量体組成物。
[12]前記成分Aが前記成分A22である、[1]に記載の単量体組成物。
[13]前記XA22が10~5000質量ppmである、[12]に記載の単量体組成物。
[14]前記成分A22の分子量が200以下である、[12]又は[13]に記載の単量体組成物。
[15]前記式(2-2)中、R25、R26及びR27がそれぞれ独立して水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基であり、R28がメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、又はイソペンチル基である、[12]~[14]のいずれかに記載の単量体組成物。
[16]前記成分A22がクロトン酸メチル及び3,3-ジメチルアクリル酸メチルからなる群から選択される少なくとも1種である、[12]~[15]のいずれかに記載の単量体組成物。
[17]前記成分Aが前記成分A3である、[1]に記載の単量体組成物。
[18]前記XA3が1~10000質量ppmである、[17]に記載の単量体組成物。
[19]前記XA3が1~1000質量ppmである、[17]又は[18]に記載の単量体組成物。
[20]前記成分A3の分子量が200以下である、[17]~[19]のいずれかに記載の単量体組成物。
[21]前記式(3-1)中、R31、R32、R33、及びR34がそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基である、[17]~[20]のいずれかに記載の単量体組成物。
[22]前記式(3-1)中、R31、R32、R33、及びR34がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基である、[17]~[21]のいずれかに記載の単量体組成物。
[23]前記成分A3が2,3,5,6-テトラメチルピラジン、2,3,5-トリメチルピラジンからなる群から選択される少なくとも1種である、[17]~[22]のいずれかに記載の単量体組成物。
[24]さらに重合禁止剤(成分B1)を含む、[1]に記載の単量体組成物。
[25]前記単量体組成物の総質量に対する前記成分B1の濃度をXB1(質量ppm)としたとき、前記XB1が1~1000質量ppmである、[24]に記載の単量体組成物。
[26]前記単量体組成物の総質量に対する前記成分A1の濃度をXA1(質量ppm)、前記単量体組成物の総質量に対する前記成分B1の濃度をXB1(質量ppm)としたとき、XB1/XA1が0.005~7である、[24]又は[25]に記載の単量体組成物。
[27]前記単量体組成物の総質量に対する前記成分B1の濃度をXB1(質量ppm)としたとき、前記XB1が1~2000質量ppmである、[24]に記載の単量体組成物。
[28]前記単量体組成物の総質量に対する前記成分A3の濃度をXA3(質量ppm)、前記単量体組成物の総質量に対する前記成分B1の濃度をXB1(質量ppm)としたとき、XB1/XA3が0.005~1000である、[24]又は[27]に記載の単量体組成物。
[29]前記成分B1が、フェノール系化合物、キノン系化合物、ニトロベンゼン系化合物、N-オキシル系化合物、アミン系化合物、リン含有化合物、硫黄含有化合物、鉄含有化合物、銅含有化合物及びマンガン含有化合物からなる群から選択される少なくとも1種の重合禁止剤である、[24]~[28]のいずれかに記載の単量体組成物。
[30]前記成分B1が、フェノール系化合物、N-オキシル系化合物、アミン系化合物及び硫黄含有化合物からなる群から選択される少なくとも1種の重合禁止剤である、[24]~[29]のいずれかに記載の単量体組成物。
[31]さらに下記式(3-2)で表されるα水素を有するエステル化合物(成分B2)を含む、[17]に記載の単量体組成物。
Figure JPOXMLDOC01-appb-C000017
(前記式(3-2)中、R35及びR36はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R37は炭素原子数1~5のアルキル基である。)
[32]前記単量体組成物の総質量に対する前記成分B2の濃度をXB2(質量ppm)としたとき、XB2が5~10000質量ppmである、[31]に記載の単量体組成物。
[33]前記単量体組成物の総質量に対する前記成分B2の濃度をXB2(質量ppm)としたとき、XB2/XA3が0.005~1000である[31]又は[32]に記載の単量体組成物。
[34]前記式(3-2)中、R35及びR36がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R37がメチル基、エチル基、n-プロピル基又はイソプロピル基である、[31]~[33]のいずれかに記載の単量体組成物。
[35]さらに下記式(3-3)で表されるα,β-不飽和カルボニル化合物(成分B3)を含む、[17]に記載の単量体組成物。
Figure JPOXMLDOC01-appb-C000018
(前記式(3-3)中、R38、R39及びR40はそれぞれ独立して、水素原子又は炭素原子数1~10のアルキル基であり、R41は炭素原子数1~10のアルキル基である。)
[36]前記成分B3の濃度をXB3(質量ppm)としたとき、XB3が5~10000質量ppmである、[35]に記載の単量体組成物。
[37]前記成分B3の濃度をXB3(質量ppm)としたとき、XB3/XA3が0.005~1000である、[35]又は[36]に記載の単量体組成物。
[38]前記式(3-3)中、R38、R39及びR40がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R41がメチル基、エチル基、n-プロピル基又はイソプロピル基である、[35]~[37]のいずれかに記載の単量体組成物。
[39]前記単量体組成物の総質量に対する前記メタクリル酸メチルの濃度をXM(質量%)としたとき、前記XMが85質量%以上である、[1]~[38]のいずれかに記載の単量体組成物。
[40]アクリル酸エステルをさらに含有する、[1]~[39]のいずれかに記載の単量体組成物。
[41]前記アクリル酸エステルが、アクリル酸メチル、アクリル酸エチル、及びアクリル酸n-ブチルからなる群より選択される少なくとも1種である、[40]に記載の単量体組成物。
[42]スチレンをさらに含有する、[1]~[41]のいずれかに記載の単量体組成物。
[43][1]~[42]のいずれかに記載の単量体組成物を含む重合性組成物をラジカル重合する工程を含む、メタクリル系樹脂組成物の製造方法。
[44][1]~[42]のいずれかに記載の単量体組成物の重合体を含む、メタクリル系樹脂組成物。
[45]メタクリル系重合体と、下記式(1-1)で表されるα水素を有するエステル化合物(成分A1)、下記式(2-1)で表されるα,β-不飽和カルボニル化合物(成分A21)、下記式(2-2)で表されるα,β-不飽和カルボン酸エステル(成分A22)、及び下記式(3-1)で表されるピラジン化合物(成分A3)から選ばれる1種の化合物(成分A)と、を含む、メタクリル系樹脂組成物であって、
 前記成分A1を含み、前記メタクリル系樹脂組成物の総質量に対する前記成分A1の濃度をYA1(質量ppm)としたとき、前記YA1が5~10000質量ppmであり、
 前記成分A21を含み、前記メタクリル系樹脂組成物の総質量に対する前記成分A21の濃度をYA21(質量ppm)としたとき、前記YA21が0.1~4000質量ppmであり、
 前記成分A22を含み、前記メタクリル系樹脂組成物の総質量に対する前記成分A22の濃度をYA22(質量ppm)としたとき、前記YA22が1~10000質量ppmであり、
 前記成分A3を含み、前記メタクリル系樹脂組成物の総質量に対する前記成分A3の濃度をYA3(質量ppm)としたとき、前記XA3が1質量ppm以上である、メタクリル系樹脂組成物。
Figure JPOXMLDOC01-appb-C000019
(前記式(1-1)中、R11及びR12はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R13は炭素原子数1~5のアルキル基である。また、R11~R13のいずれか1つ以上は、炭素原子数2~5のアルキル基である。)
Figure JPOXMLDOC01-appb-C000020
(前記式(2-1)中、R21、R22及びR23はそれぞれ独立して水素原子又は炭素原子数1~5のアルキル基であり、R24は炭素原子数1~5のアルキル基又はアミノ基である。)
Figure JPOXMLDOC01-appb-C000021
(前記式(2-2)中、R25、R26及びR27はそれぞれ独立して水素原子又は炭素原子数1~10のアルキル基であり、R28は炭素原子数1~10のアルキル基である。また、R25およびR26のいずれか1つ以上は、炭素原子数1~10のアルキル基である。)
Figure JPOXMLDOC01-appb-C000022
(前記式(3-1)中、R31、R32、R33、及びR34はそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~6のアルコキシ基である。)
[46]前記成分Aが前記成分A1である、[45]に記載のメタクリル系樹脂組成物。
[47]前記YA1が10~5000質量ppmである、[46]に記載のメタクリル系樹脂組成物。
[48]前記式(1-1)中、R11及びR12がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R13がメチル基、イソブチル基又はイソアミル基である、[46]又は[47]のいずれかに記載のメタクリル系樹脂組成物。
[49]前記成分A1がイソ酪酸イソブチル、イソ吉草酸メチル及びイソ酪酸イソアミルからなる群から選択される少なくとも1種である、[46]~[48]のいずれかに記載のメタクリル系樹脂組成物。
[50]前記成分Aが前記成分A21である、[45]に記載のメタクリル系樹脂組成物。
[51]前記YA21が1~4000質量ppmである、[50]に記載のメタクリル系樹脂組成物。
[52]前記YA21が10~1000質量ppmである、[50]に記載のメタクリル系樹脂組成物。
[53]前記式(2-1)中、R21、R22及びR23がそれぞれ独立して水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基であり、R24がメチル基又はアミノ基である、[50]又は[51]に記載のメタクリル系樹脂組成物。
[54]前記成分A21がイソプロペニルメチルケトン及びメタクリルアミドからなる群から選択される少なくとも1種である、[50]~[53]のいずれかに記載のメタクリル系樹脂組成物。
[55]前記成分Aが前記成分A22である、[45]に記載のメタクリル系樹脂組成物。
[56]前記YA22が10~5000質量ppmである、[55]に記載のメタクリル系樹脂組成物。
[57]前記式(2-2)中、R25、R26及びR27がそれぞれ独立して水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基であり、R28がメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、又はイソペンチル基である、[55]又は[56]に記載のメタクリル系樹脂組成物。
[58]前記成分A22がクロトン酸メチル及び3,3-ジメチルアクリル酸メチルからなる群から選択される少なくとも1種である、[55]~[57]のいずれかに記載のメタクリル系樹脂組成物。
[59]前記成分Aが前記成分A3である、[45]に記載のメタクリル系樹脂組成物。
[60]前記YA3が1~10000質量ppmである、[59]に記載のメタクリル系樹脂組成物。
[61]前記YA3が1~1000質量ppmである、[59]に記載のメタクリル系樹脂組成物。
[62]前記式(3-1)中、R31、R32、R33、及びR34がそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基である、[59]~[61]のいずれかに記載のメタクリル系樹脂組成物。
[63]前記式(3-1)中、R31、R32、R33、及びR34がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基である、[59]~[62]のいずれかに記載のメタクリル系樹脂組成物。
[64]前記成分A3が2,3,5,6-テトラメチルピラジン、2,3,5-トリメチルピラジンからなる群から選択される少なくとも1種である、[59]~[63]のいずれかに記載のメタクリル系樹脂組成物。
[65]さらに重合禁止剤(成分B1)を含む、[45]~[64]のいずれかに記載のメタクリル系樹脂組成物。
[66]前記メタクリル系樹脂組成物の総質量に対する前記成分B1の濃度をYB1(質量ppm)としたとき、前記YB1が1~2000質量ppmである、[65]に記載のメタクリル系樹脂組成物。
[67]前記メタクリル系樹脂組成物の総質量に対する前記成分B3の濃度をYB1(質量ppm)としたとき、YB1/YA3が0.005~1000である、[65]又は[66]に記載のメタクリル系樹脂組成物。
[68]前記成分B1が、フェノール系化合物、キノン系化合物、ニトロベンゼン系化合物、N-オキシル系化合物、アミン系化合物、リン含有化合物、硫黄含有化合物、鉄含有化合物、銅含有化合物及びマンガン含有化合物からなる群から選択される少なくとも1種の重合禁止剤である、[65]~[67]のいずれかに記載のメタクリル系樹脂組成物。
[69]前記成分B1が、フェノール系化合物、N-オキシル系化合物、アミン系化合物及び硫黄含有化合物からなる群から選択される少なくとも1種の重合禁止剤である、[65]~[68]のいずれかに記載のメタクリル系樹脂組成物。
[70]さらに下記式(3-2)で表されるα水素を有するエステル化合物(成分B2)を含む、[59]に記載のメタクリル系樹脂組成物。
Figure JPOXMLDOC01-appb-C000023
(前記式(3-2)中、R35及びR36はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R37は炭素原子数1~5のアルキル基である。)
[71]前記メタクリル系樹脂組成物の総質量に対する前記成分B2の濃度をYB2(質量ppm)としたとき、YB2が5~10000質量ppmである、[70]に記載のメタクリル系樹脂組成物。
[72]前記メタクリル系樹脂組成物の総質量に対する前記成分B2の濃度をYB2(質量ppm)としたとき、YB2/YA3が0.005~1000である[70]又は[71]に記載のメタクリル系樹脂組成物。
[73]前記式(3-2)中、R35及びR36がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R37がメチル基、エチル基、n-プロピル基又はイソプロピル基である、[70]~[72]のいずれかに記載のメタクリル系樹脂組成物。
[74]さらに下記式(3-3)で表されるα,β-不飽和カルボニル化合物(成分B3)を含む、[59]に記載のメタクリル系樹脂組成物。
Figure JPOXMLDOC01-appb-C000024
(前記式(3-3)中、R38、R39及びR40はそれぞれ独立して、水素原子又は炭素原子数1~10のアルキル基であり、R41は炭素原子数1~10のアルキル基である。)
[75]前記メタクリル系樹脂組成物の総質量に対する前記成分B3の濃度をYB3(質量ppm)としたとき、YB3が5~10000質量ppmである、[74]に記載のメタクリル系樹脂組成物。
[76]前記メタクリル系樹脂組成物の総質量に対する前記成分B3の濃度をYB3(質量ppm)としたとき、YB3/YA3が0.005~1000である、[74]又は[75]に記載のメタクリル系樹脂組成物。
[77]前記式(3-3)中、R38、R39及びR40がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R41がメチル基、エチル基、n-プロピル基又はイソプロピル基である、[74]~[76]のいずれかに記載のメタクリル系樹脂組成物。
[78]前記メタクリル系重合体が、前記メタクリル系重合体の総質量に対して、メタクリル酸メチル由来の繰り返し単位を70~100質量%、及びアクリル酸エステル由来の繰り返し単位を0~30質量%含む、[45]~[77]のいずれかに記載のメタクリル系樹脂組成物。
[79]前記メタクリル系重合体が、前記メタクリル系重合体の総質量に対して、メタクリル酸メチル由来の繰り返し単位を50~100質量%、及びスチレン由来の繰り返し単位を0~50質量%含む、[45]~[77]のいずれかに記載のメタクリル系樹脂組成物。
[80][45]~[79]のいずれかに記載のメタクリル系樹脂組成物を含む、樹脂成形体。
 成分A1、成分A21、成分A22を用いる実施形態によれば、メタクリル系樹脂が本来有する透明性及び耐熱性を維持しつつ、光安定性に優れたメタクリル系樹脂組成物、及び前記メタクリル系樹脂組成物を得るための、品質安定性の高い単量体組成物を提供することができる。
 成分A3を用いる実施形態によれば、メタクリル系樹脂が本来有する透明性及び耐熱性を維持しつつ、長期熱安定性に優れたメタクリル系樹脂組成物、及び前記メタクリル系樹脂組成物を得るための、品質安定性の高い単量体組成物を提供することができる。
 以下、本発明に係る実施形態について説明するが、本発明は以下に限定されるものではない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載された数値を下限値及び上限値として含む範囲を意味し、「A~B」は、A以上B以下であることを意味する。
 実施形態に係る単量体組成物及びメタクリル系樹脂組成物は、後述するように、成分A1、成分A21、成分A22及び成分A3から選ばれる1種の成分Aを特定量含む。
 以下、それぞれの成分を含む実施形態について説明する。
《第1実施形態》
[1.単量体組成物]
 第1実施形態に係る単量体組成物は、MMAと、下記式(1-1)で表されるα水素を有するエステル化合物(成分A1)と、を含む。
Figure JPOXMLDOC01-appb-C000025
 前記式(1-1)中、R11及びR12はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R13は炭素原子数1~5のアルキル基である。また、R11~R13のいずれか1つ以上は、炭素原子数2~5のアルキル基である。
 第1実施形態に係る単量体組成物の総質量に対する成分A1の濃度をXA1(質量ppm)としたとき、XA1は5~10000質量ppmである。
 第1実施形態に係る単量体組成物は、さらに重合禁止剤(成分B1)を含有することが好ましい。また本発明の効果を損ねない範囲で、MMA以外の単量体やその他の化合物(成分C)や水を含有してもよい。
 以下各項目について詳細に説明する。
<1-1.メタクリル酸メチル>
 第1実施形態に係る単量体組成物は、MMAを含む。MMAは、例えばアセトンシアノヒドリン法、新アセトンシアノヒドリン法、C4直接酸化法、直メタ法、エチレン法、新エチレン法等の方法により製造することができる。単量体組成物に含まれるMMAは、C4直接酸化法により製造されたものであることが好ましく、バイオマス由来のイソブタノールを出発原料としてC4直接酸化法により製造されたものであることがより好ましい。
<1-2.成分A1>
 第1実施形態に係る単量体組成物は、前記式(1-1)で表されるα水素を有するエステル化合物(成分A1)を含む。なお本明細書において、「α水素」とは、カルボニル基の炭素原子の隣の炭素原子に結合した水素原子を表す。単量体組成物が成分A1を含むことにより、MMA二量体及びピルビン酸メチルの生成を抑制することができる。この理由としては、以下のように推定される。
 α水素を有するエステル化合物は弱酸性を有し、アニオンをトラップすることができるため、成分A1はアニオン機構によるMMAの二量化反応を抑制することができる。またピルビン酸メチルは、ヒドロキシラジカル及び酸素分子によりMMAが酸化されることによって生成する。成分A1はヒドロキシラジカルとMMAが反応して生成したラジカル中間体をトラップして、中間体からMMAに戻すことができる。よってMMA二量体及びピルビン酸メチルの生成が抑制されると推定される。
 成分A1の分子量は200以下であることが好ましい。分子量が200以下であることにより、成分A1における単位質量あたりのα水素の個数を増やすことができるため、より少ない質量で本発明の効果を得ることができる。成分A1の分子量は190以下がより好ましく、180以下がさらに好ましく、170以下が特に好ましい。
 前記式(1-1)中のR11及びR12はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表す。R11及びR12は同一でも異なっていてもよい。また前記式(1-1)中のR13は炭素原子数1~5のアルキル基を表す。R13とR11、及びR13とR12は同一でも異なっていてもよい。また、R11~R13のいずれか1つ以上は、炭素原子数2~5のアルキル基である。
 一般にエステル化合物のα水素は、アニオンやラジカルと反応する性質を有するが、有する置換基の種類によりその反応性が低下することがある。R11、R12及びR13が前記条件を満たす場合、成分A1のα水素のアニオンやラジカルとの反応性が維持されるため、本発明の効果を得ることができる。R11及びR12はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R11、R12の炭素原子数の合計が1~10であることが好ましく、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基、n-ブチル基、1-メチルプロピル基又は2-メチルプロピル基であり、R11、R12の炭素原子数の合計が1~8であることがより好ましく、、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R11、R12の炭素原子数の合計が1~6であることさらに好ましい。また、R13はメチル基、エチル基、n-プロピル基又はイソプロピル基、1-メチルプロピル基又は2-メチルプロピル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、2-エチルプロピル基、1,2-ジメチルプロピル基であることが好ましく、エチル基、n-プロピル基、イソプロピル基、1-メチルプロピル基、2-メチルプロピル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、2-エチルプロピル基、1,2-ジメチルプロピル基であることがより好ましく、n-プロピル基又はイソプロピル基、1-メチルプロピル基又は2-メチルプロピル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、2-エチルプロピル基、1,2-ジメチルプロピル基であることがさらに好ましく、1-メチルプロピル基又は2-メチルプロピル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、2-エチルプロピル基、1,2-ジメチルプロピル基であることが特に好ましく、2-メチルプロピル基、3-メチルブチル基であることが最も好ましい。これらは安定性の高い置換基であるため、成分A1が保管中に他の化合物に変化するのを防ぐことができる。
 上記の条件を満たす化合物の中でも、単量体組成物の保管中の品質安定性、及び単量体組成物を重合して得られるメタクリル系樹脂組成物の品質の観点から、成分A1としてはイソ酪酸イソブチル、イソ吉草酸メチル及びイソ酪酸イソアミルからなる群から選択される少なくとも1種であることがより好ましく、イソ酪酸イソブチル、イソ酪酸イソアミルからなる群から選択される少なくとも1種であることがより好ましい。
 なお、成分A1は1種類であっても2種類以上であってもよい。
<1-3.成分B1>
 第1実施形態に係る単量体組成物は、重合禁止剤(成分B1)を含むことが好ましい。なお本明細書において「重合禁止剤」とは、MMAの重合反応を抑制する機能を有する化合物を意味する。重合禁止剤としては、例えばフェノール系化合物、キノン系化合物、ニトロベンゼン系化合物、N-オキシル系化合物、アミン系化合物、リン含有化合物、硫黄含有化合物、鉄含有化合物、銅含有化合物及びマンガン含有化合物が挙げられる。
 成分B1を含むことにより、MMAの保管中に、ラジカル機構によるMMAの二量化反応が進行することを抑制できる。また、成分BはMMAの保管中に発生する前述のヒドロキシラジカルをトラップすることができる。すなわち、単量体組成物が成分A1に加えて成分B1を含有する場合、成分B1により生成したヒドロキシラジカルを除去し、成分A1によりヒドロキシラジカルとMMAが反応して生成したラジカル中間体をトラップして、中間体からMMAに戻すことができるという、2つの異なる機構でピルビン酸メチルの生成量を減少させることができる。よって、MMA二量体とピルビン酸メチルの生成を効率良く抑制できると考えられる。
 フェノール系化合物である重合禁止剤としては、例えばアルキルフェノール、ヒドロキシフェノール、アミノフェノール、ニトロフェノール、ニトロソフェノール、アルコキシフェノール、トコフェロール等が挙げられる。
 アルキルフェノールとしては、例えばo-クレゾール、m-クレゾール、p-クレゾール、2-t-ブチル-4-メチルフェノール、2,4-ジメチル-6-t-ブチルフェノール、2,6-ジ-t-ブチル-4-メチルフェノール、2-t-ブチルフェノール、4-t-ブチルフェノール、2,4-ジ-t-ブチルフェノール、2-メチル-4-t-ブチルフェノール、4-t-ブチル-2,6-ジメチルフェノール、2,2’-メチレン-ビス(6-t-ブチル-4-メチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、3,5-ジ-t-ブチル-4-ヒドロキシトルエン等が挙げられる。
 ヒドロキシフェノールとしては、例えばヒドロキノン、2-メチルヒドロキノン、2-t-ブチルヒドロキノン、2,5-ジ-t-ブチルヒドロキノン、2,6-ジ-t-ブチルヒドロキノン、2,5-ジ-t-アミルヒドロキノン、2-t-ブチルメトキシヒドロキノン、2,3,5-トリメチルヒドロキノン、2,5-ジクロロヒドロキノン、1,2-ジヒドロキシベンゼン、2-アセチルヒドロキノン、4-メチルカテコール、4-t-ブチルカテコール、2-メチルレゾルシノール、4-メチルレゾルシノール、2,3-ジヒドロキシアセトフェノン等が挙げられる。
 アミノフェノールとしては、例えばo-アミノフェノール、m-アミノフェノール、p-アミノフェノール、2-(N,N-ジメチルアミノ)フェノール、4-(エチルアミノ)フェノール等が挙げられる。
 ニトロフェノールとしては、例えばo-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール、2,4-ジニトロフェノール等が挙げられる。
 ニトロソフェノールとしては、例えばo-ニトロソフェノール、m-ニトロソフェノール、p-ニトロソフェノール、α-ニトロソ-β-ナフトール等が挙げられる。
 アルコキシフェノールとしては、例えば2-メトキシフェノール、2-エトキシフェノール、2-イソプロポキシフェノール、2-t-ブトキシフェノール、4-メトキシフェノール、4-エトキシフェノール、4-プロポキシフェノール、4-ブトキシフェノール、4-t-ブトキシフェノール、4-へプトキシフェノール、ヒドロキノンモノベンジルエーテル、t-ブチル-4-メトキシフェノール、ジ-t-ブチル-4-メトキシフェノール、ピロガロール-1,2-ジメチルエーテル、ヒドロキノンモノベンゾエート等が挙げられる。
 トコフェロールとしては、例えばα-トコフェロール、2,3-ジヒドロ-2,2-ジメチル-7-ヒドロキシベンゾフラン等が挙げられる。
 キノン系化合物である重合禁止剤としては、例えばp-ベンゾキノン、クロロ-p-ベンゾキノン、2,5-ジクロロ-p-ベンゾキノン、2,6-ジクロロ-p-ベンゾキノン、テトラクロロ-p-ベンゾキノン、テトラブロモ-p-ベンゾキノン、2,3-ジメチル-p-ベンゾキノン、2,5-ジメチル-p-ベンゾキノン、メトキシ-p-ベンゾキノン、メチル-p-ベンゾキノン等が挙げられる。
 ニトロベンゼン系化合物である重合禁止剤としては、例えばニトロベンゼン、o-ジニトロベンゼン、m-ジニトロベンゼン、p-ジニトロベンゼン、2,4-ジニトロトルエン、ジニトロジュレン、2,2-ジフェニル-1-ピクリルヒドラジル等が挙げられる。
 N-オキシル系化合物である重合禁止剤としては、例えば4-ヒドロキシ-2,2,6,6-テトラメチル-ピペリジン-N-オキシル、4-オキソ-2,2,6,6-テトラメチル-ピペリジン-N-オキシル、4-アセトキシ-2,2,6,6-テトラメチル-ピペリジン-N-オキシル、2,2,6,6-テトラメチル-ピペリジン-N-オキシル、ピペリジン-1-オキシル、4-(ジメチルアミノ)-2,2,6,6-テトラメチル-ピペリジン-N-オキシル、4-アミノ-2,2,6,6-テトラメチル-ピペリジン-N-オキシル、4-エタノールオキシ-2,2,6,6-テトラメチル-ピペリジン-N-オキシル、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル、2,2,5,5-テトラメチル-ピペリジン-N-オキシル、3-アミノ-2,2,5,5-テトラメチル-ピペリジン-N-オキシル、4,4’,4’’-トリス(2,2,6,6-テトラメチル-ピペリジン-N-オキシル)ホスファイト、3-オキソ-2,2,5,5-テトラメチルピロリジン-N-オキシル、ピロリジン-1-オキシル、2,2,5,5-テトラメチル-1-オキサ-3-アザシクロペンチル-3-オキシ、2,2,5,5-テトラメチル-3-ピロリニル-1-オキシ-3-カルボン酸、2,2,3,3,5,5,6,6-オクタメチル-1,4-ジアザシクロヘキシル-1,4-ジオキシ、ジ-tert-ブチルニトロキシド、ジ-tert-アミルニトロキシド等が挙げられる。
 アミン系化合物である重合禁止剤としては、例えばN,N-ジフェニルアミン、アルキル化ジフェニルアミン、4,4’-ジクミル-ジフェニルアミン、4,4’-ジオクチルジフェニルアミン、4-アミノジフェニルアミン、p-ニトロソジフェニルアミン、N-ニトロソジナフチルアミン、N-ニトロソジフェニルアミン、N-ニトロソフェニルナフチルアミン、N-ニトロソフェニルヒドロキシルアミン、N,N’-ジアルキル-p-フェニレンジアミン(アルキル基は同一又は異なってよく、かつそれぞれ互いに無関係に1~4個の炭素原子からなり、かつ直鎖状又は分枝鎖状であってよい)、N,N’-ジフェニル-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-1,4-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、N,N-ジエチルヒドロキシルアミン、1,4-ベンゼンジアミン、N-(1,4-ジメチルペンチル)-N’-フェニル-1,4-ベンゼンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-1,4-ベンゼンジアミン、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン、2,2,4-トリメチル-1,2-ジヒドロキノリンポリマー、アルドール-α-ナフチルアミン、N-フェニル-β-ナフチルアミン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1,4-ジヒドロキシ-2,2,6,6-テトラメチルピペリジン、1-ヒドロキシ-4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン等が挙げられる。
 リン含有化合物である重合禁止剤としては、例えばトリフェニルホスフィン、トリフェニルホスファイト、トリエチルホスファイト、トリス(イソデシル)フォスファイト、トリス(トリデシル)フォスファイト、フェニルジイソオクチルフォスファイト、フェニルジイソデシルフォスファイト、フェニルジ(トリデシル)フォスファイト、ジフェニルイソオクチルフォスファイト、ジフェニルイソデシルフォスファイト、ジフェニルトリデシルフォスファイト、フォスフォン酸[1,1-ジフェニル-4,4’-ジイルビステトラキス-2,4-ビス(1,1-ジメチルエチル)フェニル]エステル、トリス(ノニルフェニル)フォスファイト、4,4’-イソプロピリデンジフェノールアルキルフォスファイト、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、トリス(ビフェニル)フォスファイト、ジステアリルペンタエリスリトールジフォスファイト、ジ(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジフォスファイト、ジ(ノニルフェニル)ペンタエリスリトールジフォスファイト、フェニルビスフェノールAペンタエリスリトールジフォスファイト、テトラ(トリデシル)-4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)ジフォスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタントリフォスファイト、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルフォスフェートジエチルエステル、ソディウム-ビス(4-tert-ブチルフェニル)フォスフェート、ソディウム-2,2’-メチレン-ビス(4,6-ジ-tert-ブチルフェニル)フォスフェート、1,3-ビス(ジフェノキシフォスフォニルオキシ)ベンゼン等が挙げられる。
 硫黄含有化合物である重合禁止剤としては、例えば硫化ジフェニル、フェノチアジン、3-オキソフェノチアジン、5-オキソフェノチアジン、フェノチアジン二量体、1,4-ジメルカプトベンゼン、1,2-ジメルカプトベンゼン、2-メルカプトフェノール、4-メルカプトフェノール、2-(メチルチオ)フェノール、3,7-ビス(ジメチルアミノ)フェノチアジニウムクロリド、硫黄(単体)等が挙げられる。
 鉄含有化合物である重合禁止剤としては、例えば塩化鉄(III)等が挙げられる。
 銅含有化合物である重合禁止剤としては、例えばジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅、サリチル酸銅、酢酸銅、チオシアン酸銅、硝酸銅、塩化銅、炭酸銅、水酸化銅、アクリル酸銅、メタクリル酸銅等が挙げられる。
 マンガン含有化合物である重合禁止剤としては、ジアルキルジチオカルバミン酸マンガン(アルキル基は、メチル基、エチル基、プロピル基、ブチル基のいずれかであり、同一であっても、異なっていてもよい)、ジフェニルジチオカルバミン酸マンガン、蟻酸マンガン、酢酸マンガン、オクタン酸マンガン、ナフテン酸マンガン、過マンガン酸マンガン、エチレンジアミン四酢酸のマンガン塩等が挙げられる。
 上記の中でも、単量体組成物の保管中の品質安定性の観点から、成分B1はフェノール系化合物、N-オキシル系化合物、アミン系化合物及び硫黄含有化合物からなる群から選択される少なくとも1種の重合禁止剤であることが好ましく、ヒドロキノン、4-メトキシフェノール、2,4-ジメチル-6-t-ブチルフェノール、2,6-ジ-t-ブチル-4-メチルフェノール、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル、N,N-ジフェニルアミン、N-ニトロソジフェニルアミン及びフェノチアジンからなる群から選択される少なくとも1種の重合禁止剤であることがより好ましく、ヒドロキノン、4-メトキシフェノール、2,4-ジメチル-6-t-ブチルフェノール、2,6-ジ-t-ブチル-4-メチルフェノール、N,N-ジフェニルアミン、N-ニトロソジフェニルアミン及びフェノチアジンからなる群から選択される少なくとも1種の重合禁止剤であることがさらに好ましく、ヒドロキノン、4-メトキシフェノール、2,4-ジメチル-6-t-ブチルフェノール、N,N-ジフェニルアミン、N-ニトロソジフェニルアミン及びフェノチアジンであることかさらに好ましく、ヒドロキノン、4-メトキシフェノール、2,4-ジメチル-6-t-ブチルフェノール、N-ニトロソジフェニルアミン及びフェノチアジンが特に好ましく、ヒドロキノン、4-メトキシフェノール、2,4-ジメチル-6-t-ブチルフェノール、フェノチアジンが殊更好ましい。
 成分B1は1種類であっても2種類以上であってもよい。
 なお、単量体組成物に、成分A1と成分B1の両方に該当する化合物が含まれている場合、前記化合物は成分A1と見なす。すなわち、単量体組成物が成分A1及び成分B1を含む場合は、前記化合物とは別の成分B1を含むことを意味する。なお成分A1と成分B1の両方に該当する化合物が2種類以上含まれている場合は、単量体組成物中のモル濃度が最も高い化合物を成分A1と見なし、それ以外の化合物を成分B1と見なす。
<1-4.メタクリル酸メチル以外の単量体>
 第1実施形態に係る単量体組成物は、MMA以外の単量体を含有してもよい。なお本明細書において、「単量体」は重合可能な官能基を有する未重合の化合物を意味する。MMA以外の単量体としては、例えば、下記(1)~(16)に示す単量体が挙げられる。下記(1)~(16)に示す単量体は、1種を単独で又は2種以上を任意の比率及び組み合わせで使用することができる。
 (1)メタクリル酸エステル:
例えば、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸iso-ブチル、メタクリル酸tert-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸フェニル、又はメタクリル酸ベンジル。
 (2)アクリル酸エステル:
例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸iso-ブチル、アクリル酸tert-ブチル、又はアクリル酸2-エチルヘキシル。
 (3)不飽和カルボン酸:
例えば、アクリル酸、メタクリル酸、マレイン酸、又はイタコン酸。
 (4)不飽和カルボン酸無水物:
例えば、無水マレイン酸、又は無水イタコン酸。
 (5)マレイミド:
例えば、N-フェニルマレイミド、又はN-シクロヘキシルマレイミド。
 (6)ヒドロキシ基含有ビニル単量体:
例えば、アクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチル、又はメタクリル酸2-ヒドロキシプロピル。
 (7)ビニルエステル:
例えば、酢酸ビニル、又は安息香酸ビニル。
 (8)塩化ビニル、塩化ビニリデン、又はそれらの誘導体。
 (9)窒素含有ビニル単量体:
例えば、メタクリルアミド、又はアクリロニトリル。
 (10)エポキシ基含有単量体:
例えば、アクリル酸グリシジル、又はメタクリル酸グリシジル。
 (11)芳香族ビニル単量体:
例えば、スチレン、又はα-メチルスチレン。
 (12)アルカンジオールジ(メタ)アクリレート:
例えば、エチレングリコールジ(メタ)アクリレート、1,2-プロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、又は1,6-ヘキサンジオールジ(メタ)アクリレート。
 (13)ポリオキシアルキレングリコールジ(メタ)アクリレート:
例えば、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリエチレングリコール(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、又はネオペンチルグリコールジ(メタ)アクリレート。ここで、「(メタ)アクリレート」は「アクリレート」及び「メタクリレート」から選ばれる少なくとも1種を意味する。
 (14)分子中に2個以上のエチレン性不飽和結合を有するビニル単量体:
例えば、ジビニルベンゼン。
 (15)エチレン性不飽和ポリカルボン酸を含む少なくとも1種の多価カルボン酸と少なくとも1種のジオールから得られる不飽和ポリエステルプレポリマー。
 (16)エポキシ基の末端をアクリル変性することにより得られるビニルエステルプレポリマー。
 なお後述する第1実施形態に係るメタクリル系樹脂組成物に含まれるメタクリル系重合体は、MMA由来の繰り返し単位と、MMAと共重合可能なビニル単量体由来の繰り返し単位を含む共重合体であることが好ましく、前記ビニル単量体としてはアクリル酸エステル又はスチレンが好ましい。したがって第1実施形態に係る単量体組成物は、MMA以外の単量体としてアクリル酸エステル又はスチレンをさらに含有することが好ましい。
<1-5.成分C>
 第1実施形態に係る単量体組成物は、その他の化合物(成分C)を含有してもよい。成分Cとしては、離型剤、熱安定化剤、滑剤、可塑剤、酸化防止剤、帯電防止剤、成分A1以外の光安定剤、紫外線吸収剤、難燃剤、難燃助剤、充填剤、顔料、染料、シランカップリング剤、レベリング剤、消泡剤及び蛍光剤等の公知の添加剤が挙げられる。前記添加剤は、1種を単独で又は任意の2種以上を組み合わせて使用することができる。
 また成分Cとしては、MMAの製造の過程で生成したジアセチル等の不純物等が挙げられる。単量体組成物の着色を低減する観点から、ジアセチルの濃度は55(μmol/L)以下であることが好ましく、20(μmol/L)以下がより好ましく、10(μmol/L)以下がさらに好ましく、1μmol/L以下が特に好ましい。
 なお、成分Cは1種類であっても2種類以上であってもよい。
<1-6.単量体組成物における各成分の濃度>
 第1実施形態に係る単量体組成物において、単量体組成物の総質量に対するMMAの濃度をXM(質量%)としたとき、XMは85質量%以上であることが好ましい。XMの下限は90質量%以上がより好ましく、95質量%以上がさらに好ましく、97質量%以上が特に好ましく、97.5質量%以上が殊更好ましく、98.0質量%以上が最も好ましい。また、XMの上限は通常99.99質量%以下であり、99.98質量%以下又は99.97質量%以下であってもよい。したがって、XMとしては、例えば85~99.99質量%、90~99.98質量%、95~99.97質量%、97~99.97質量%、及び97~99.97質量%、97.5~99.97質量%、98.0~99,75質量%の範囲が挙げられる。
 第1実施形態に係る単量体組成物において、単量体組成物の総質量に対する成分A1の濃度をXA1(質量ppm)としたとき、XA1は5~10000質量ppmである。XA1が5質量ppm以上であることにより、単量体組成物の品質安定性が向上する効果を十分に得ることができる。またXA1が10000質量ppm以下であることにより、単量体組成物の重合によりメタクリル系樹脂組成物を製造した際の不純物量を少なくし、前記メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。XA1の下限は10質量ppm以上が好ましく、50質量ppm以上がより好ましく、100質量ppm以上がさらに好ましい。またXA1の上限は5000質量ppm以下が好ましく、1000質量ppm以下がより好ましい。
 第1実施形態に係る単量体組成物が成分B1を含む場合、単量体組成物の総質量に対する成分B1の濃度をXB1(質量ppm)としたとき、XB1は1~1000質量ppmであることが好ましい。XB1が1質量ppm以上であることにより、単量体組成物の品質安定性向上効果を十分に得ることができる。またXB1が1000質量ppm以下であることにより、単量体組成物の重合によりメタクリル系樹脂組成物を製造した際の不純物量を少なくし、前記メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。XB1の下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。またXB1の上限は500質量ppm以下がより好ましく、400質量ppm以下がさらに好ましく、300質量ppm以下が特に好ましく、200質量ppm以下が殊更好ましく、100質量ppm以下が最も好ましい。
 また、単量体組成物の品質安定性向上効果の観点から、XB1/XA1は0.005~7であることが好ましい。XB1/XA1の下限は0.05以上、上限は5以下がより好ましい。
 第1実施形態に係る単量体組成物がMMA以外の単量体を含有する場合、単量体組成物の総質量に対する前記単量体の濃度は0~15質量%であることが好ましい。また前記単量体の濃度の下限は1質量%以上、上限は10質量%以下がより好ましい。
 なお、上記の好ましい上限値と下限値は任意に組み合わせることができる。
<1-7.単量体組成物の分析>
 単量体組成物における成分A1、成分B1、MMA以外の単量体、成分C及び水の濃度は、例えば単量体組成物を調製する際の仕込み量から算出することができる。
 仕込み量が不明の場合、単量体組成物が成分A1、成分B1、MMA以外の単量体、成分C及び水を含有することは、例えばGC-MS測定により確認することができる。単量体組成物のGC-MSチャートにおいて、成分A1の標品と同一の保持時間にピークを有し、前記ピークの質量スペクトルで検出されるm/z値が成分A1のexact massと一致すれば、前記単量体組成物は成分A1を含有すると判断することができる。成分A1の標品を入手できない場合は、単量体組成物のGC-MSチャートに現れるピークの質量スペクトルのパターンと、質量スペクトルデータベースに収録された成分A1の質量スペクトルのパターンが一致する場合に、前記ピークは成分A1のピークであると判断することができる。すなわち、前記単量体組成物が成分A1を含むと判断することができる。質量スペクトルデータベースとしては、NIST20、NIST17、NIST14、NIST14s等が挙げられる。また、揮発性が低くGC-MS測定による検出ができない場合は、LC-MSを用いて検出することができる。成分B1、MMA以外の単量体、成分C及び水を含有することも同様の方法により確認することができる。
 また、MMAやMMA以外の単量体の濃度は、例えば単量体組成物のGC-FID測定を行って面積百分率法を用いて定量し、カールフィッシャー水分計で定量した水分濃度を用いて補正することによって算出することができる。成分A1の濃度は、例えば単量体組成物のGC測定を行い、内部標準法を用いて定量することができる。成分A1の標品を入手することができず、内部標準法によって定量することができない場合は、任意の濃度既知の有機化合物について単量体組成物と同一条件でGC-FID測定を行い、下記式を用いて成分A1の濃度(μmol/L)を算出することができる。また、μmol/Lの単位で算出した成分A1の濃度と、成分A1の分子量、単量体組成物の密度(kg/L)の値から、質量ppmの単位の成分A1の濃度を算出することができる。
Figure JPOXMLDOC01-appb-M000026
 ここで、Nは濃度既知の有機化合物が1分子中に含む炭素原子の個数、Nは成分A1が1分子中に含む炭素原子の個数、Sは成分A1のピーク面積、Sは濃度既知の有機化合物のピーク面積、Mは濃度既知の有機化合物の濃度(μmol/L)である。
 また、揮発性が低く(沸点が500℃以上)、GC測定による定量ができない場合は、LC等のクロマトグラフィー法を用いて定量することができる。
 成分B1及び成分Cの濃度も、上記の成分A1と同様の方法により算出することできる。
 また単量体組成物が水を含有すること、及びその濃度はカールフィッシャー法により確認できる。
<1-8.単量体組成物の製造方法>
 第1実施形態に係る単量体組成物は、例えば、MMAに成分A1を添加する方法により製造することができ、任意にさらに成分B1、MMA以外の単量体及び成分Cを添加してもよい。
 MMAは市販品を用いてもよく、<1-1.メタクリル酸メチル>に記載の方法で製造したMMAを用いてもよい。単量体組成物は、C4直接酸化法により製造されたMMAを用いて製造することが好ましく、バイオマス由来のイソブタノールを出発原料としてC4直接酸化法により製造されたMMAを用いて製造することがより好ましい。
 成分A1及び成分B1は市販品を用いてもよく、公知の方法で合成したものを用いてもよい。<1-1.メタクリル酸メチル>に記載の方法で製造したMMAを用いる場合、成分A1と、任意にさらに成分B1、MMA以外の単量体及び成分Cとを原料若しくは製造工程のプロセスの途中で添加して、単量体組成物を製造してもよい。また、MMA製造プロセスで成分A1又は成分B1が副生成物として生成する場合、生成する成分A1又は成分B1の一部を残して単量体組成物を製造してもよい。
[2.メタクリル系樹脂組成物]
 第1実施形態に係るメタクリル系樹脂組成物は、メタクリル系重合体と、下記式(1-1)で表されるα水素を有するエステル化合物(成分A1)と、を含む。
Figure JPOXMLDOC01-appb-C000027
 前記式(1-1)中、R11及びR12はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R13は炭素原子数1~5のアルキル基である。また、R11~R13のいずれか1つ以上は、炭素原子数2~5のアルキル基である。
 メタクリル系樹脂組成物の総質量に対する成分A1の濃度をYA1(質量ppm)としたとき、YA1は5~10000質量ppmである。これにより、メタクリル系樹脂組成物が透明性及び耐熱性を維持しつつ、優れた光安定性を示す。
 メタクリル系樹脂組成物は、さらに重合禁止剤(成分B1)を含有することが好ましい。また本発明の効果を損ねない範囲で、その他の化合物(成分C)を含有してもよい。
 また、メタクリル系樹脂組成物の形態は特段制限されないが、通常、固体である。
 以下各項目について詳細に説明する。
<2-1.メタクリル系重合体>
 第1実施形態に係るメタクリル系樹脂組成物は、メタクリル系重合体を含むことで、良好な透明性を示す。また熱や光による分解が抑制され、良好な加熱成形性、耐熱性、及び機械的強度を示す。
(メタクリル系重合体の組成)
 本明細書において、メタクリル系重合体とは、MMA由来の繰り返し単位(以下、「MMA単位」とも記す。)を含む重合体である。またメタクリル系重合体は、MMA単位と、MMAと共重合可能なビニル単量体(以下、単に「ビニル単量体」とも記す。)由来の繰り返し単位を含む共重合体であることが好ましい。なお本明細書において、「繰り返し単位」は、単量体が重合することによって形成された前記単量体に由来する単位を意味する。繰り返し単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって前記単位の一部が別の構造に変換された単位であってもよい。
 メタクリル系樹脂組成物の耐熱性及び光安定性の観点から、メタクリル系重合体の総質量に対して、MMA単位は50~100質量%、ビニル単量体由来の繰り返し単位の含有割合は0~50質量%であることが好ましい。MMA単位の含有割合の下限は60質量%以上がより好ましく、70質量%以上がさらに好ましく、80質量%以上が特に好ましく、90質量%以上が最も好ましい。またビニル単量体由来の繰り返し単位の含有割合の上限は40質量%以下がより好ましく、30質量%以下がさらに好ましく、20質量%以下が特に好ましく、10質量%以下が最も好ましい。
 メタクリル系重合体が共重合体である場合、共重合体の配列は特段制限されず、例えば、ランダム共重合体、ブロック共重合体、又は交互共重合体等であってよいが、ランダム共重合体が好ましい。
 MMAの様態は、<1-1.メタクリル酸メチル>の記載と同様である。
 メタクリル系重合体が、ビニル単量体由来の繰り返し単位を含む共重合体である場合、前記ビニル単量体としては、アクリル酸エステル又はスチレンが好ましい。これにより、メタクリル系樹脂組成物の光安定性が向上する。
 前記ビニル単量体がアクリル酸エステルである場合、メタクリル系重合体は、MMA単位を70~100質量%、及びアクリル酸エステル由来の繰り返し単位を0~30質量%含むことが好ましい。前記ビニル単量体がスチレンである場合、メタクリル系重合体は、MMA単位を50~100質量%、及びスチレン由来の繰り返し単位を0~50質量%含むことが好ましい。
 アクリル酸エステルとしては、炭素数1~6のアルキル基を側鎖に有するアクリル酸エステルが好ましく、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸t-ブチル等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで使用することができる。これらの中でも、メタクリル系樹脂組成物の光安定性の観点から、アクリル酸メチル、アクリル酸エチル、及びアクリル酸n-ブチルからなる群より選択される少なくとも1つであることが好ましく、アクリル酸メチル、アクリル酸エチルであることがより好ましい。
 なおビニル単量体は、1種を単独で又は2種以上を任意の比率及び組み合わせで使用することができる。
 またメタクリル系重合体は、発明の効果が得られる範囲で、一分子中にラジカル重合性官能基を2個以上含む多官能性単量体由来の繰り返し単位を含むことができる。これにより、耐溶剤性又は耐薬品性等を向上させることができる。
 ラジカル重合性官能基は、炭素-炭素二重結合を有し、ラジカル重合可能な基であれば特に制限されない。具体的には、ビニル基、アリル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基などが挙げられる。特に(メタ)アクリロイル基は、ラジカル重合性官能基を有する化合物の貯蔵安定性が優れている観点や、当該化合物の重合性を制御することが容易である観点から好ましい。ここで、「(メタ)アクリロイル」は、「アクリロイル」及び「メタクリロイル」から選ばれる少なくとも1種を意味する。なお、ラジカル重合性官能基を2個有する単量体中の各ラジカル重合性官能基は、同一であっても異なっていてもよい。
 多官能性単量体としては、メタクリル酸アリル、アクリル酸アリル、エチレングリコールジ(メタ)アクリレート、エチレングリコールトリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、及びトリメチロールプロパントリ(メタ)アクリレート等が挙げられるが、特にこれらに限定されるものではない。これらは1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで併用してもよい。これらのうち、多官能性単量体は、耐溶剤性及び耐薬品性がより良好となる観点から、エチレングリコールジ(メタ)アクリレート及びネオペンチルグリコールジ(メタ)アクリレートから選択されるものであることがより好ましく、エチレングリコールジ(メタ)アクリレートであることがさらに好ましい。
<2-2.成分A1>
 第1実施形態に係るメタクリル系樹脂組成物は、前記式(1-1)で表されるα水素を有するエステル化合物(成分A1)を含む。これにより、メタクリル系樹脂組成物が優れた光安定性を示す。この理由としては、以下のように推定される。
 MMA単位を含むメタクリル系重合体は、光により主鎖又は側鎖が開裂し、ラジカル種を生成する。通常は、この生成したラジカル種が、メタクリル系樹脂組成物の透明性低下の原因となる。しかし、メタクリル系樹脂組成物中に成分A1が存在することにより、成分A1がラジカル捕捉剤として機能し、透明性低下が抑制される。これにより、メタクリル系樹脂組成物が優れた光安定性を示す。
 成分A1の様態は、<1-2.成分A1>の記載と同様である。
 なお、成分A1は1種類であっても2種類以上であってもよい。
<2-3.成分B1>
 第1実施形態に係るメタクリル系樹脂組成物は、重合禁止剤(成分B1)を含むことが好ましい。これにより、メタクリル系樹脂組成物の光安定性向上効果をより効率的に得ることができる。
 成分Bの様態は、<1-3.成分B1>の記載と同様である。
 なお、成分B1は1種類であっても2種類以上であってもよい。
<2-3.成分C>
 第1実施形態に係るメタクリル系樹脂組成物は、その他の化合物(成分C)を含有してもよい。成分Cの様態は、<1-5.成分C>の記載と同様である。
 なお、成分Cは1種類であっても2種類以上であってもよい。
<2-4.メタクリル系樹脂組成物における各成分の濃度>
 メタクリル系樹脂組成物の総質量に対するメタクリル系重合体の濃度をYM(質量%)としたとき、YMは特に制限されるものではないが、耐熱性が良好となる観点から、通常95質量%以上であり、97.5質量%以上であることが好ましく、98質量%以上であることがより好ましく、99質量%以上であることがさらに好ましい。一方、優れた光安定性を得る観点から、通常99.99質量%以下であり、99.985質量%以下であることが好ましく、99.98質量%以下であることがより好ましく、99.975質量%以下であることがさらに好ましく、99.97質量%以下であることが殊更に好ましく、99.95質量%以下であることが特に好ましく、99.9質量%以下であることが最も好ましい。上記の上限値及び下限値は任意に組み合わせることができる。例えば、YMとしては、95~99.99質量%、95~99.985質量%、97.5~99.98質量%、97.5~99.975質量%、98~99.97質量%、98~99.95質量%、及び99~99.9質量%の範囲が挙げられる。なお、メタクリル系樹脂組成物がメタクリル系重合体を2種以上含有する場合は、YMは2種以上のメタクリル系重合体の合計濃度である。
 メタクリル系樹脂組成物の総質量に対する成分A1の濃度をYA1としたとき、YA1は5~10000質量ppmである。YA1の下限が5質量ppm以上であることにより、メタクリル系樹脂組成物が優れた光安定性を示す。またYA1の上限が10000質量ppm以下であることにより、メタクリル系樹脂組成物の耐熱性低下が抑制される。YA1の下限は10質量ppm以上が好ましく、50質量ppm以上がより好ましく、100質量ppm以上がさらに好ましい。またYA1の上限は5000質量ppm以下が好ましく、1000質量ppm以下がより好ましい。
 第1実施形態に係るメタクリル系樹脂組成物が成分B1を含む場合、メタクリル系樹脂組成物の総質量に対する成分B1の濃度をYB1(質量ppm)としたとき、YB1は1~1000質量ppmであることが好ましい。YB1が1質量ppm以上であることにより、メタクリル系樹脂組成物の光安定性向上効果を十分に得ることができる。またYB1が1000質量ppm以下であることにより、メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。YB1の下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。またYB1の上限は500質量ppm以下がより好ましく、100質量ppm以下がさらに好ましい。
 また、メタクリル系樹脂組成物の光安定性向上効果の観点から、YB1/YA1は0.005~7であることが好ましい。YB1/YA1の下限は0.05以上、上限は5以下がより好ましい。
 なお、上記の好ましい上限値と下限値は任意に組み合わせることができる。
<2-5.メタクリル系樹脂組成物の分析>
 メタクリル系樹脂組成物中に存在する成分A1、成分B1及び成分Cの濃度は、例えば下記の方法により測定することができる。メタクリル系樹脂組成物を細かく破砕し、破砕したメタクリル系樹脂組成物0.2gを10mLの残留農薬試験用アセトン(以下、単に「アセトン」とも記す。)に溶解させる。次いで、得られた溶液に内部標準液をホールピペットで1mL添加する。ここで、内部標準液は0.1体積%サリチル酸メチル/アセトン溶液を用いるものとする。成分A1の標準試薬をアセトンで希釈し、成分A1の濃度が異なる3種類の検液を調製し、内部標準液を添加してGC-MS測定により3点検量線を作成する。これを用いて、メタクリル系樹脂組成物中の各成分の濃度を定量する。
[3.メタクリル系樹脂組成物の製造方法]
 第1実施形態に係るメタクリル系樹脂組成物は、MMAを含む重合性組成物をラジカル重合する工程を含む方法により製造することができる。重合性組成物は、例えば、原料組成物、成分A1、及びラジカル重合開始剤を含有する重合性組成物(M11);又は第1実施形態に係る単量体組成物及びラジカル重合開始剤を含有する重合性組成物(M12);であり、重合性組成物(M12)であることが好ましい。すなわち、第1実施形態に係るメタクリル系樹脂組成物は、第1実施形態に係る単量体組成物の重合体を含むことが好ましい。
 以下各項目について詳細に説明する。
<3-1.重合性組成物(M11)>
 重合性組成物(M11)は、原料組成物、成分A1、及びラジカル重合開始剤を含有する。重合性組成物(M11)は、さらに重合禁止剤(成分B1)を含有することが好ましい。また本発明の効果を損ねない範囲で、その他の化合物(成分C)を含有してもよい。
(原料組成物)
 原料組成物は、第1実施形態に係るメタクリル系樹脂組成物に含まれるメタクリル系重合体の原料成分でもある。
 原料組成物としては、MMAのみを含む組成物、及びMMA及びビニル単量体を含む組成物が挙げられる。ビニル単量体としては、<2-1.メタクリル系重合体>の記載と同様のビニル単量体を用いることができる。原料組成物が、ビニル単量体としてアクリル酸エステル又はスチレンを含むことにより、得られるメタクリル系樹脂組成物の光安定性が向上する。なおビニル単量体は、1種を単独で又は2種以上を任意の比率及び組み合わせで使用することができる。
 原料組成物の総質量に対して、MMAの含有割合は50~100質量%、ビニル単量体の含有割合は0~50質量%であることが好ましい。またMMAの含有割合の下限は70質量%以上がより好ましく、ビニル単量体の含有割合の上限は30質量%以下がより好ましい。
 また原料組成物は、MMA単位を含む重合体を予め含んでいてもよい。原料組成物が重合体を含むことにより、粘性を有する液体(以下、「シラップ」とも記す。)となるため、重合時間を短縮でき、生産性を向上することができる。MMA単位を含む重合体としては、具体的には、重合体の総質量に対して、MMA単位50質量%以上及びビニル単量体に由来する構成単位50質量%以下を含む重合体、又はMMA単位100質量%からなる重合体等が挙げられる。
 前記シラップを得る方法としては、例えば、原料組成物にMMA単位を含む重合体を溶解させる方法、又は原料組成物に公知のラジカル重合開始剤を添加して、その一部を重合させる方法等が挙げられる。
 重合性組成物(M11)の総質量に対する原料組成物の濃度は、97.5~99.99質量%の範囲とすることができる。
(成分A1)
 成分A1の様態は、<1-2.成分A1>の記載と同様である。
 なお、成分A1は1種類であっても2種類以上であってもよい。
 重合性組成物(M11)の総質量に対する成分A1の濃度は、5~10000質量ppmであることが好ましい。成分A1の濃度の下限が5質量ppm以上であることにより、得られるメタクリル系樹脂組成物が優れた光安定性を示す。また成分A1の濃度の上限が10000質量ppm以下であることにより、得られるメタクリル系樹脂組成物が優れた耐熱性を示す。成分A1の濃度の下限は10質量ppm以上が好ましく、50質量ppm以上がより好ましく、100質量ppm以上がさらに好ましい。また成分A1の濃度の上限は5000質量ppm以下が好ましく、1000質量ppm以下がより好ましい。
(ラジカル重合開始剤)
 ラジカル重合開始剤としては公知のものを使用することができる。ラジカル重合開始剤としては、例えば、2,2’-アゾビス(イソブチロニトリル)及び2,2’-アゾビス(2,4-ジメチルバレロニトリル)等の公知のアゾ化合物;t-ヘキシルペルオキシピバレート、ベンゾイルパーオキサイド及びラウロイルパーオキサイド等の公知の有機過酸化物;等が挙げられる。これらは単独で又は2種以上を任意の比率及び組み合わせで使用することができる。また、必要に応じて、ラジカル重合開始剤と共にアミン、及びメルカプタン等の公知の重合促進剤を併用することができる。
 重合性組成物(M11)の総質量に対するラジカル重合開始剤の濃度は、特に限定されず、例えば0.005~5質量%とすることができ、0.01~1質量%としてもよい。
(成分B1)
 成分B1の様態は、<1-3.成分B1>の記載と同様である。
 なお、成分B1は1種類であっても2種類以上であってもよい。
 重合性組成物(M11)が成分Bを含む場合、重合性組成物(M11)中の総質量に対する成分Bの濃度は1~1000質量ppmであることが好ましい。成分Bの濃度が1質量ppm以上であることにより、得られるメタクリル系樹脂組成物の光安定性向上効果を十分に得ることができる。また成分Bの濃度が1000質量ppm以下であることにより、得られるメタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。成分Bの濃度の下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。また成分Bの濃度の上限は500質量ppm以下がより好ましく、100質量ppm以下がさらに好ましい。
(成分C)
 成分Cの様態は、<1-5.成分C>の記載と同様である。
 なお、成分Cは1種類であっても2種類以上であってもよい。
<3-2.重合性組成物(M12)>
 重合性組成物(M12)は、第1実施形態に係る単量体組成物及び公知のラジカル重合開始剤を含有する。重合性組成物(M12)は、さらにビニル単量体を含んでいてもよい。また本発明の効果を損ねない範囲で、その他の化合物(成分C)を含有してもよい。
(単量体組成物)
 単量体組成物は、第1実施形態に係る単量体組成物であり、第1実施形態に係るメタクリル系樹脂組成物に含まれるメタクリル系重合体の原料成分を含む組成物である。
 重合性組成物(M12)の総質量に対する単量体組成物の濃度は、60質量%以上100質量%未満とすることができる。
(ラジカル重合開始剤)
 ラジカル重合開始剤の様態は、<3-1.重合性組成物(M11)>の記載と同様である。
(ビニル単量体)
 重合性組成物(M12)がビニル単量体を含む場合、ビニル単量体としては、<2-1.メタクリル系重合体>の記載と同様のビニル単量体を用いることができる。重合性組成物(M12)が、ビニル単量体としてアクリル酸エステル又はスチレンを含むことにより、得られるメタクリル系樹脂組成物の光安定性が向上する。なおビニル単量体は、1種を単独で又は2種以上を任意の比率及び組み合わせで使用することができる。
 ビニル単量体は、単量体組成物中にビニル単量体が含まれている場合はこれをそのまま使用してもよく、必要に応じて新たにビニル単量体を追加してもよい。重合性組成物(M12)の総質量に対するビニル単量体の濃度は、0質量%超40質量%未満とすることができる。
(成分C)
 成分Cの様態は、<1-5.成分C>の記載と同様である。
 なお、成分Cは1種類であっても2種類以上であってもよい。
<3-3.重合性組成物のラジカル重合工程>
 重合性組成物のラジカル重合工程は、重合性組成物の一部を重合してシラップを調製するシラップ調製工程、及び得られたシラップ中の重合性成分を重合する重合工程を含んでいてもよい。なお、シラップ調製工程における「重合性組成物の一部を重合」とは、得られるシラップの総質量に対し、重合体の濃度が10~80質量%、好ましくは10~60質量%、より好ましくは10~40質量%となるよう重合することを意味する。
 重合性組成物を重合する際の重合温度は、特に限定されるものでなく、当業者が周知技術に従い適宜決めることができる。通常、使用するラジカル重合開始剤の種類に応じて、好ましくは40~180℃、より好ましくは50~150℃の範囲で適宜設定される。また、重合性組成は必要に応じて多段階の温度条件で重合を行うことができる。重合時間は、重合硬化の進行に応じて適宜決定すればよい。
 上述した重合性組成物を重合することで、メタクリル系樹脂組成物を得て、前記メタクリル系樹脂組成物を含む樹脂成形体を製造する方法は、特段制限されない。
 重合性組成物の重合方法としては、例えば、塊状重合法、懸濁重合法、乳化重合法及び分散重合法等が挙げられる。これらの中で、生産性の観点から塊状重合法が好ましい。
 塊状重合法の具体的な手法として、例えば、公知のキャスト重合法を用いて塊状重合法により樹脂成形体を得る方法、或いは、塊状重合法で製造した組成物を成形して樹脂成形体を得る方法等が挙げられる。高分子量化や架橋構造の導入により、樹脂成形体の耐熱性のさらなる向上を図ることができる観点から、キャスト重合法を利用した方法を用いることが好ましい。
 キャスト重合法としては、例えばセルキャスト法及び連続キャスト法が挙げられる。
 セルキャスト法は、板状の形態を有する樹脂成形体等を得る場合、対向する2枚のガラス板又は金属板(SUS板)と、その縁部に配置された軟質樹脂チューブ等のガスケットとから形成された空間を鋳型として、重合性組成物、又は重合性組成物の一部を重合したシラップを前記鋳型に注入する。次いで、加熱重合処理することによって重合を完結させ、鋳型から樹脂成形体を取り出す。
 連続キャスト法は、同一方向に同一速度で所定の間隔をもって対向して走行する2枚のステンレス製エンドレスベルトと、その両側辺部に配置された軟質樹脂チューブ等のガスケットとで形成された空間を鋳型として、前記エンドレスベルトの一端から連続的に重合性組成物、又は重合性組成物の一部を重合したシラップを前記鋳型に注入する。次いで、加熱重合処理することによって重合を完結させ、エンドレスベルトの他端から連続的に樹脂成形体を取り出す。
 キャスト重合法では、鋳型の空隙の間隔をガスケットの太さ(直径)で適宜調整して、所望の厚さの樹脂成形体を得ることができる。
[4.樹脂成形体]
 第1実施形態に係る樹脂成形体は、第1実施形態に係るメタクリル系樹脂組成物を含む。前記メタクリル系樹脂組成物を成形することにより、透明性及び耐熱性を維持しつつ、優れた光安定性を有する樹脂成形体を得ることができる。成形方法としては、例えば、プレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形、溶融紡糸等の成形法が挙げられる。本明細書において、「樹脂成形体」とは、前記メタクリル系樹脂組成物を含む成形体であれば特段制限されず、メタクリル系樹脂組成物のみからなる成形体であってもよい。樹脂成形体がメタクリル系樹脂組成物のみからなる成形体である場合、メタクリル系樹脂組成物は、実質的にメタクリル系樹脂組成物及び樹脂成形体のいずれにも該当する。
 樹脂成形体の形状としては、特に限定されないが、例えば板状の樹脂成形体(樹脂板)又はシート状の樹脂成形体(樹脂シート)が挙げられる。樹脂成形体の厚みとしては、厚い板状から薄いフィルム状まで必要に応じて任意の厚さに調整することができ、例えば1~30mmとすることができる。
 樹脂成形体の用途は特段制限されないが、車両用部材、医療用部材、玩具、液体容器、光学材料、看板、ディスプレイ、装飾部材、建築部材、電子機器の面板等の多くの用途に使用され、特に、透光性を有する部材に好ましく用いられる。
《第2実施形態》
[1.単量体組成物1]
 第2実施形態に係る単量体組成物の第一の様態は、MMAと、下記式(2-1)で表されるα,β-不飽和カルボニル化合物(成分A21)と、を含む。
Figure JPOXMLDOC01-appb-C000028
 前記式(2-1)中、R21、R22及びR23はそれぞれ独立して水素原子又は炭素原子数1~5のアルキル基であり、R24は炭素原子数1~5のアルキル基又はアミノ基である。
 ここでアミノ基は、窒素原子上に置換基のないアミノ基(-NH)を意味する。
 単量体組成物の総質量に対する成分A21の濃度をXA21(質量ppm)としたとき、XA21は1~10000質量ppmである。
 第2実施形態に係る単量体組成物は、さらに重合禁止剤(成分B)を含有することが好ましい。また本発明の効果を損ねない範囲で、MMA以外の単量体やその他の化合物(成分C)や水を含有してもよい。
 以下各項目について詳細に説明する。
<1-1.メタクリル酸メチル>
 第2実施形態に係る単量体組成物の第一の様態は、MMAを含む。MMAの製造方法の例及び好ましい様態は、第1実施形態と同様である。
<1-2.成分A21>
 第1実施形態に係る単量体組成物の第一の様態は、前記式(2-1)で表されるα,β-不飽和カルボニル化合物(成分A21)を含む。単量体組成物が成分A21を含むことにより、MMA二量体及びピルビン酸メチルの生成を抑制することができる。この理由としては、以下のように推定される。
 MMA二量体は、MMAの保管中に発生するラジカルによって生成する。前記ラジカルの例として、酸素分子が太陽光由来の紫外光を吸収して生成するヒドロキシラジカルが挙げられる。またヒドロキシラジカルは、MMAの酸化によるピルビン酸メチル生成の原因にもなる。α,β-不飽和カルボニル化合物は、共役二重結合を有するため紫外光を吸収し、その吸収波長は置換基の種類によって変化する。そして前記式(2-1)で表される構造を有するα,β-不飽和カルボニル化合物は、幅広い波長の紫外光を吸収することができる。よって単量体組成物が成分A21を含む場合、幅広い波長の紫外光が吸収され、ヒドロキシラジカルの生成が抑制される。よってMMA二量体及びピルビン酸メチルの生成が抑制されると推定される。
 成分A21の分子量は200以下であることが好ましい。分子量が200以下であることにより、成分A21における単位質量あたりのα水素の個数を増やすことができるため、より少ない質量で本発明の効果を得ることができる。成分A21の分子量は190以下がより好ましく、180以下がさらに好ましく、170以下が特に好ましい。
 前記式(2-1)中のR21、R22及びR23はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表す。また前記式(2-1)中のR24は、炭素原子数1~5のアルキル基又はアミノ基を表す。R21、R22、R23及びR24は、それぞれ同一でも異なっていてもよい。
 R21、R22、R23及びR24が前記条件を満たす場合、成分A21のπ共役系が維持されるため、幅広い波長の紫外光を吸収する性質を有し、本発明の効果を得ることができる。R21、R22及びR23はそれぞれ独立して水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、1-メチルプロピル基又は2-メチルプロピル基であることが好ましく、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であることがより好ましく、水素原子、メチル基、エチル基であることがさらに好ましく、水素原子、メチル基であることが特に好ましい。また、R24はメチル基又はアミノ基であることが好ましく、メチル基であることがより好ましい。これらは安定性の高い置換基であるため、成分A21が保管中に他の化合物に変化するのを防ぐことができる。
 上記の条件を満たす化合物の中でも、単量体組成物の保管中の品質安定性、及び単量体組成物を重合して得られるメタクリル系樹脂組成物の品質の観点から、成分A21としてはイソプロペニルメチルケトン及びメタクリルアミドからなる群から選択される少なくとも1種であることがより好ましい。
 なお、成分A21は1種類であっても2種類以上であってもよい。
<1-3.成分B1>
 第2実施形態に係る単量体組成物の第一の様態は、重合禁止剤(成分B1)を含むことが好ましい。成分B1を含むことにより、MMAの保管中に、ラジカル機構によるMMAの二量化反応が進行することを抑制できる。また、成分BはMMAの保管中に発生する前述のヒドロキシラジカルをトラップすることができる。すなわち、単量体組成物が成分A21に加えて成分B1を含有する場合、成分A21によりヒドロキシラジカルの生成を抑制し、成分B1により生成したヒドロキシラジカルを除去することができるという、2つの異なる機構でヒドロキシラジカルの量を減少させることができる。よって、MMA二量体とピルビン酸メチルの生成を効率良く抑制できると考えられる。
 成分B1の様態は、第1実施形態において説明した<1-3.成分B1>の記載と同様である。
 成分B1は1種類であっても2種類以上であってもよい。
 なお、単量体組成物に、成分A21と成分B1の両方に該当する化合物が含まれている場合、前記化合物は成分A21と見なす。すなわち、単量体組成物が成分A21及び成分B1を含む場合は、前記化合物とは別の成分Bを含むことを意味する。なお成分A21と成分B1の両方に該当する化合物が2種類以上含まれている場合は、単量体組成物中のモル濃度が最も高い化合物を成分A21と見なし、それ以外の化合物を成分B1と見なす。
<1-4.メタクリル酸メチル以外の単量体>
 第2実施形態に係る単量体組成物の第一の様態は、MMA以外の単量体を含有してもよい。MMA以外の単量体の様態は、第1実施形態において説明した<1-4.メタクリル酸メチル以外の単量体>の記載と同様である。
 なお後述する第2実施形態に係るメタクリル系樹脂組成物に含まれるメタクリル系重合体は、MMA由来の繰り返し単位と、MMAと共重合可能なビニル単量体由来の繰り返し単位を含む共重合体であることが好ましく、前記ビニル単量体としてはアクリル酸エステル又はスチレンが好ましい。したがって第2実施形態に係る単量体組成物は、MMA以外の単量体としてアクリル酸エステル又はスチレンをさらに含有することが好ましい。
<1-5.成分C>
 第2実施形態に係る単量体組成物の第一の様態は、その他の化合物(成分C)を含有してもよい。成分Cの様態は、第1実施形態において説明した<1-5.成分C>の記載と同様である。
 成分Cは1種類であっても2種類以上であってもよい。
<1-6.単量体組成物1における各成分の濃度>
 第2実施形態に係る単量体組成物の第一の様態において、単量体組成物の総質量に対するMMAの濃度をXM(質量%)としたとき、XMは85質量%以上であることが好ましい。XMの下限は90質量%以上がより好ましく、95質量%以上がさらに好ましく、97質量%以上が特に好ましく、97.5質量%以上が殊更好ましく、98.0質量%以上が最も好ましい。また、XMの上限は通常99.99質量%以下であり、99.98質量%以下又は99.97質量%以下であってもよい。したがって、XMとしては、例えば85~99.99質量%、90~99.98質量%、95~99.97質量%、97~99.97質量%、97~99.97質量%、97.5~99.97質量%、98.0~99.97質量%の範囲が挙げられる。
 第2実施形態に係る単量体組成物の第一の様態において、単量体組成物の総質量に対する成分A21の濃度をXA21(質量ppm)としたとき、XA21は1~10000質量ppmである。XA21が1質量ppm以上であることにより、単量体組成物の品質安定性が向上する効果を十分に得ることができる。またXA21が10000質量ppm以下であることにより、単量体組成物の重合によりメタクリル系樹脂組成物を製造した際の不純物量を少なくし、前記メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。XA21の下限は10質量ppm以上が好ましく、50質量ppm以上がより好ましく、100質量ppm以上がさらに好ましい。またXA21の上限は5000質量ppm以下が好ましく、1000質量ppm以下がより好ましい。
 第2実施形態に係る単量体組成物の第一の様態が成分B1を含む場合、単量体組成物の総質量に対する成分B1の濃度をXB1(質量ppm)としたとき、XB1は1~1000質量ppmであることが好ましい。XB1が1質量ppm以上であることにより、単量体組成物の品質安定性向上効果を十分に得ることができる。またXB1が1000質量ppm以下であることにより単量体組成物の重合によりメタクリル系樹脂組成物を製造した際の不純物量を少なくし、前記メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。XB1の下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。またXB1の上限は500質量ppm以下がより好ましく、100質量ppm以下がさらに好ましい。
 また、単量体組成物の品質安定性向上効果の観点から、XB1/XA21は0.005~7であることが好ましい。XB1/XA21の下限は0.05以上、上限は5以下がより好ましい。
 第2実施形態に係る単量体組成物の第一の様態がMMA以外の単量体を含有する場合、単量体組成物の総質量に対する前記単量体の濃度は0~15質量%であることが好ましい。また前記単量体の濃度の下限は1質量%以上、上限は10質量%以下がより好ましい。
 なお、上記の好ましい上限値と下限値は任意に組み合わせることができる。
<1-7.単量体組成物1の分析>
 単量体組成物が成分A21、成分B1、MMA以外の単量体、成分C及び水を含有することを確認する方法、並びに単量体組成物における成分A21、成分B1、MMA以外の単量体、成分C及び水の濃度の算出方法は、第1実施形態において説明した方法と同様である。
<1-8.単量体組成物1の製造方法>
 第2実施形態に係る単量体組成物の第一の様態は、例えば、MMAに成分A21を添加する方法により製造することができ、任意にさらに成分B1、MMA以外の単量体及び成分Cを添加してもよい。単量体組成物1の製造方法は、成分A21を用いる以外は、第1実施形態において説明した方法と同様である。
 成分A21は市販品を用いてもよく、公知の方法で合成したものを用いてもよい。
[2.単量体組成物2]
 第2実施形態に係る単量体組成物の第二の様態は、MMAと、下記式(2-2)で表されるα,β-不飽和カルボン酸エステル(成分A22)と、を含む。
 なお、以下の記載においては、成分A21と成分A22とをまとめて「成分A2」と総称することもある。
Figure JPOXMLDOC01-appb-C000029
 前記式(2-2)中、R25、R26及びR27はそれぞれ独立して水素原子又は炭素原子数1~10のアルキル基であり、R28は炭素原子数1~10のアルキル基である。また、R25及びR26のいずれか1つ以上は、炭素原子数1~10のアルキル基である。
 単量体組成物の総質量に対する成分A22の濃度をXA22(質量ppm)としたとき、XA22は1~10000質量ppmである。
 単量体組成物は、さらに重合禁止剤(成分B1)を含有することが好ましい。また本発明の効果を損ねない範囲で、MMA以外の単量体やその他の化合物(成分C)や水を含有してもよい。
 以下各項目について詳細に説明する。
<2-1.メタクリル酸メチル>
 第2実施形態に係る単量体組成物の第二の様態は、MMAを含む。MMAの製造方法の例及び好ましい様態は、第1実施形態と同様である。
<2-2.成分A22>
 第2実施形態に係る単量体組成物の第二の様態は、前記式(2-2)で表されるα,β-不飽和カルボン酸エステル(成分A22)を含む。単量体組成物が成分A22を含むことにより、MMA二量体及びピルビン酸メチルの生成を抑制することができる。この理由としては、以下のように推定される。
 MMA二量体は、MMAの保管中に発生するラジカルによって生成する。前記ラジカルの例として、酸素分子が太陽光由来の紫外光を吸収して生成するヒドロキシラジカルが挙げられる。またヒドロキシラジカルは、MMAの酸化によるピルビン酸メチル生成の原因にもなる。α,β-不飽和カルボン酸エステルは、共役二重結合を有するため紫外光を吸収し、その吸収波長は置換基の種類によって変化する。そして前記式(2-2)で表される構造を有するα,β-不飽和カルボン酸エステルは、幅広い波長の紫外光を吸収することができる。よって単量体組成物が成分A22を含む場合、幅広い波長の紫外光が吸収され、ヒドロキシラジカルの生成が抑制される。よってMMA二量体及びピルビン酸メチルの生成が抑制されると推定される。
 成分A22の分子量は200以下であることが好ましい。分子量が200以下であることにより、成分A22における単位質量あたりのα水素の個数を増やすことができるため、より少ない質量で本発明の効果を得ることができる。成分A22の分子量は190以下がより好ましく、180以下がさらに好ましく、170以下が特に好ましい。
 前記式(2-2)中のR25、R26及びR27はそれぞれ独立して、水素原子又は炭素原子数1~10のアルキル基を表す。また前記式(2-2)中のR28は、炭素原子数1~10のアルキル基を表す。R25、R26、R27及びR28は、それぞれ同一でも異なっていてもよい。また、R25及びR26のいずれか1つ以上は、炭素原子数1~10のアルキル基である。
 R25、R26、R27及びR28が前記条件を満たす場合、成分A22のπ共役系が維持されるため、幅広い波長の紫外光を吸収する性質を有し、本発明の効果を得ることができる。R25、R26及びR27はそれぞれ独立して水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、1-メチルプロピル基又は2-メチルプロピル基であることが好ましく、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であることがより好ましく、水素原子、メチル基、エチル基であることがさらに好ましく、水素原子、メチル基であることが特に好ましい。また、R28はメチル基、エチル基、n-プロピル基、イソプロピル基、1-メチルプロピル基、2-メチルプロピル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、2-エチルプロピル基、1,2-ジメチルプロピル基であることが好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、1-メチルプロピル基、2-メチルプロピル基がより好ましく、メチル基、エチル基、n-プロピル基又はイソプロピル基がさらに好ましく、メチル基、エチル基が特に好ましい。これらは安定性の高い置換基であるため、成分A21が保管中に他の化合物に変化するのを防ぐことができる。
 上記の条件を満たす化合物の中でも、単量体組成物の保管中の品質安定性、及び単量体組成物を重合して得られるメタクリル系樹脂組成物の品質の観点から、成分A22としてはクロトン酸メチル及び3,3-ジメチルアクリル酸メチルからなる群から選択される少なくとも1種であることがより好ましい。
 なお、成分A22は1種類であっても2種類以上であってもよい。
<2-3.成分B1>
 成分B1の様態は、第2実施形態の第一の様態と同様である。
<2-4.メタクリル酸メチル以外の単量体>
 MMA以外の単量体の様態は、第2実施形態の第一の様態と同様である。
<2-5.成分C>
 成分Cの様態は、第2実施形態の第一の様態と同様である。
<2-6.単量体組成物2における各成分の濃度>
 XA22の様態は、第一の様態におけるXA21の様態と同様である。成分A22以外の各成分の濃度の様態は、第2実施形態の第一の様態と同様である。
<2-7.単量体組成物2の分析>
 単量体組成物がMMA、成分A2、成分B1、MMA以外の単量体、成分C及び水を含有することを確認する方法、並びにMMA、成分A2、成分B、MMA以外の単量体、成分C及び水の濃度の測定方法は、第2実施形態の第一の様態と同様である。
<2-8.単量体組成物2の製造方法>
 単量体組成物の製造方法の例及び好ましい様態は、第2実施形態の第一の様態と同様である。
[3.メタクリル系樹脂組成物1]
 第2実施形態に係るメタクリル系樹脂組成物の第一の様態は、メタクリル系重合体と、下記式(2-1)で表されるα,β-不飽和カルボニル化合物(成分A21)と、を含む。
Figure JPOXMLDOC01-appb-C000030
 前記式(1)中、R21、R22及びR23はそれぞれ独立して水素原子又は炭素原子数1~5のアルキル基であり、R24は炭素原子数1~5のアルキル基又はアミノ基である。
 ここでアミノ基は、窒素原子上に置換基のないアミノ基(-NH)を意味する。
 またメタクリル系樹脂組成物の総質量に対する成分A21の濃度をYA21(質量ppm)としたとき、YA21が0.1~4000質量ppmである。これにより、メタクリル系樹脂組成物が透明性及び耐熱性を維持しつつ、優れた光安定性を示す。
 メタクリル系樹脂組成物は、さらに重合禁止剤(成分B1)を含有することが好ましい。また本発明の効果を損ねない範囲で、その他の化合物(成分C)を含有してもよい。
 また、メタクリル系樹脂組成物の形態は特段制限されないが、通常、固体である。
 以下各項目について詳細に説明する。
<3-1.メタクリル系重合体>
 第2実施形態に係るメタクリル系樹脂組成物の第一の様態は、メタクリル系重合体を含むことで、良好な透明性を示す。また熱や光による分解が抑制され、良好な加熱成形性、耐熱性、及び機械的強度を示す。
 メタクリル系重合体の様態は、第1実施形態におけるメタクリル系重合体についての記載と同様である。
<3-2.成分A21>
 第2実施形態に係るメタクリル系樹脂組成物の第一の様態は、前記式(1-1)で表されるα,β-不飽和カルボニル化合物(成分A21)を含む。これにより、メタクリル系樹脂組成物が優れた光安定性を示す。この理由としては、以下のように推定される。
 MMA単位を含むメタクリル系重合体は、光により主鎖又は側鎖が開裂し、ラジカル種を生成する。通常は、この生成したラジカル種が、メタクリル系樹脂組成物の透明性低下の原因となる。しかし、メタクリル系樹脂組成物中に成分A21が存在することにより、成分A21がラジカル捕捉剤として機能し、透明性低下が抑制される。これにより、メタクリル系樹脂組成物が優れた光安定性を示す。
 成分A21の様態は、<1-2.成分A21>の記載と同様である。
 なお、成分A21は1種類であっても2種類以上であってもよい。
<3-3.成分B1>
 第2実施形態に係るメタクリル系樹脂組成物の第一の様態は、重合禁止剤(成分B1)を含むことが好ましい。これにより、メタクリル系樹脂組成物の光安定性向上効果をより効率的に得ることができる。
 成分B1の様態は、<1-3.成分B1>の記載と同様である。
 なお、成分B1は1種類であっても2種類以上であってもよい。
<3-4.成分C>
 第2実施形態に係るメタクリル系樹脂組成物の第一の様態は、その他の化合物(成分C)を含有してもよい。成分Cの様態は、<1-5.成分C>の記載と同様である。
 なお、成分Cは1種類であっても2種類以上であってもよい。
<3-5.メタクリル系樹脂組成物における各成分の濃度>
 メタクリル系樹脂組成物の総質量に対するメタクリル系重合体の濃度をYM(質量%)としたとき、YMは特に制限されるものではないが、耐熱性が良好となる観点から、通常95質量%以上であり、97.5質量%以上であることが好ましく、98質量%以上であることがより好ましく、99質量%以上であることがさらに好ましい。一方、優れた光安定性を得る観点から、通常99.99質量%以下であり、99.985質量%以下であることが好ましく、99.98質量%以下であることがより好ましく、99.975質量%以下であることがさらに好ましく、99.97質量%以下であることが殊更に好ましく、99.95質量%以下であることが特に好ましく、99.9質量%以下であることが最も好ましい。上記の上限値及び下限値は任意に組み合わせることができる。例えば、YMとしては、95~99.99質量%、95~99.985質量%、97.5~99.98質量%、97.5~99.975質量%、98~99.97質量%、98~99.95質量%、及び99~99.9質量%の範囲が挙げられる。なお、メタクリル系樹脂組成物がメタクリル系重合体を2種以上含有する場合は、YMは2種以上のメタクリル系重合体の合計濃度である。
 メタクリル系樹脂組成物の総質量に対する成分A21の濃度をYA21としたとき、YA21は0.1~4000質量ppmである。YA21の下限が0.1質量ppm以上であることにより、メタクリル系樹脂組成物が優れた光安定性を示す。またYA21の上限が4000質量ppm以下であることにより、メタクリル系樹脂組成物の耐熱性低下が抑制される。YA21の下限は1質量ppm以上が好ましく、10質量ppm以上が好ましく、50質量ppm以上がより好ましく、100質量ppm以上がさらに好ましい。またYA21の上限は3000質量ppm以下が好ましく、1000質量ppm以下がより好ましい。
 また、成分A21がMMAと共重合する場合においても、メタクリル系樹脂組成物中のYA21が0.1~4000ppmであれば、同様に光安定性向上効果を得ることができる。
 第2実施形態に係るメタクリル系樹脂組成物が成分B1を含む場合、メタクリル系樹脂組成物の総質量に対する成分B1の濃度をYB1(質量ppm)としたとき、YB1は1~1000質量ppmであることが好ましい。YB1が1質量ppm以上であることにより、メタクリル系樹脂組成物の光安定性向上効果を十分に得ることができる。またYB1が1000質量ppm以下であることにより、メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。YB1の下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。またYB1の上限は500質量ppm以下がより好ましく、100質量ppm以下がさらに好ましい。
 また、メタクリル系樹脂組成物の光安定性向上効果の観点から、YB1/YA21は0.005~7であることが好ましい。YB1/YA21の下限は0.05以上、上限は5以下がより好ましい。
 なお、上記の好ましい上限値と下限値は任意に組み合わせることができる。
<3-6.メタクリル系樹脂組成物の分析>
 メタクリル系樹脂組成物中に存在する成分A21、成分B1及び成分Cの濃度の測定方法は、第1実施形態の<2-5.メタクリル系樹脂組成物の分析>において説明した方法と同様である。
[4.メタクリル系樹脂組成物2]
 第2実施形態に係るメタクリル系樹脂組成物の第二の様態は、メタクリル系重合体と、下記式(2-2)で表されるα,β-不飽和カルボン酸エステル(成分A22)と、を含む。
Figure JPOXMLDOC01-appb-C000031
 前記式(2-2)中、R25、R26及びR27はそれぞれ独立して水素原子又は炭素原子数1~10のアルキル基であり、R28は炭素原子数1~10のアルキル基である。また、R25及びR26のいずれか1つ以上は、炭素原子数1~10のアルキル基である。
 メタクリル系樹脂組成物の総質量に対する成分A22の濃度をYA22(質量ppm)としたとき、YA22は1~10000質量ppmである。これにより、メタクリル系樹脂組成物が透明性及び耐熱性を維持しつつ、優れた光安定性を示す。
 メタクリル系樹脂組成物は、さらに重合禁止剤(成分B1)を含有することが好ましい。また本発明の効果を損ねない範囲で、その他の化合物(成分C)を含有してもよい。
 また、メタクリル系樹脂組成物の形態は特段制限されないが、通常、固体である。
 <4-1.メタクリル系重合体>
 メタクリル系重合体の様態は、第1実施形態におけるメタクリル系重合体についての記載と同様である。
 <4-2.成分A22>
 第2実施形態に係るメタクリル系樹脂組成物の第二の様態は、前記式(2-2)で表されるα,β-不飽和カルボン酸エステル(成分A22)を含む。これにより、メタクリル系樹脂組成物が優れた光安定性を示す。この理由としては、以下のように推定される。
 MMA単位を含むメタクリル系重合体は、光により主鎖又は側鎖が開裂し、ラジカル種を生成する。通常は、この生成したラジカル種が、メタクリル系樹脂組成物の透明性低下の原因となる。しかし、メタクリル系樹脂組成物中に成分A22が存在することにより、成分A22がラジカル捕捉剤として機能し、透明性低下が抑制される。これにより、メタクリル系樹脂組成物が優れた光安定性を示す。
 成分A22の様態は、<2-2.成分A22>の記載と同様である。
 なお、成分A22は1種類であっても2種類以上であってもよい。
<4-3.成分B1>
 第2実施形態に係るメタクリル系樹脂組成物の第二の様態は、重合禁止剤(成分B1)を含むことが好ましい。これにより、メタクリル系樹脂組成物の光安定性向上効果をより効率的に得ることができる。
 成分B1の様態は、<1-3.成分B1>の記載と同様である。
 なお、成分B1は1種類であっても2種類以上であってもよい。
<4-4.成分C>
 第2実施形態に係るメタクリル系樹脂組成物の第二の様態は、その他の化合物(成分C)を含有してもよい。成分Cの様態は、<1-5.成分C>の記載と同様である。
 なお、成分Cは1種類であっても2種類以上であってもよい。
<4-5.メタクリル系樹脂組成物における各成分の濃度>
 メタクリル系樹脂組成物の総質量に対する成分A22の濃度をYA22としたとき、YA22の様態は、第一の様態におけるYA21の様態と同様である。成分A22以外の各成分の濃度の様態は、第一の様態と同様である。
<4-6.メタクリル系樹脂組成物の分析>
 メタクリル系樹脂組成物中に存在する成分A22及び成分B1の濃度は、第一の様態と同様の方法により測定することができる。
[5.メタクリル系樹脂組成物の製造方法]
 第2実施形態に係るメタクリル系樹脂組成物は、MMAを含む重合性組成物をラジカル重合する工程を含む方法により製造することができる。重合性組成物は、例えば、原料組成物、成分A21又は成分A22、及びラジカル重合開始剤を含有する重合性組成物(M21);又は第2実施形態に係る単量体組成物及びラジカル重合開始剤を含有する重合性組成物(M22);であり、重合性組成物(M22)であることが好ましい。すなわち、第2実施形態に係るメタクリル系樹脂組成物は、第2実施形態に係る単量体組成物の重合体を含むことが好ましい。
 以下各項目について詳細に説明する。
<5-1.重合性組成物(M21)>
 重合性組成物(M21)は、原料組成物、成分A21又は成分A22、及びラジカル重合開始剤を含有する。重合性組成物(M21)は、さらに重合禁止剤(成分B1)を含有することが好ましい。また本発明の効果を損ねない範囲で、その他の化合物(成分C)を含有してもよい。
(原料組成物)
 原料組成物は、第2実施形態に係るメタクリル系樹脂組成物に含まれるメタクリル系重合体の原料成分でもある。
 原料組成物としては、MMAのみを含む組成物、及びMMA及びビニル単量体を含む組成物が挙げられる。ビニル単量体としては、第1実施形態の<2-1.メタクリル系重合体>の記載と同様のビニル単量体を用いることができる。原料組成物が、ビニル単量体としてアクリル酸エステル又はスチレンを含むことにより、得られるメタクリル系樹脂組成物の光安定性が向上する。なおビニル単量体は、1種を単独で又は2種以上を任意の比率及び組み合わせで使用することができる。
 原料組成物の総質量に対して、MMAの含有割合は50~100質量%、ビニル単量体の含有割合は0~50質量%であることが好ましい。またMMAの含有割合の下限は70質量%以上がより好ましく、ビニル単量体の含有割合の上限は30質量%以下がより好ましい。
 また原料組成物は、MMA単位を含む重合体を予め含んでいてもよい。原料組成物が重合体を含むことによりシラップとなるため、重合時間を短縮でき、生産性を向上することができる。MMA単位を含む重合体としては、具体的には、重合体の総質量に対して、MMA単位50質量%以上及びビニル単量体に由来する構成単位50質量%以下を含む重合体、又はMMA単位100質量%からなる重合体等が挙げられる。
 前記シラップを得る方法としては、例えば、原料組成物にMMA単位を含む重合体を溶解させる方法、又は原料組成物に公知のラジカル重合開始剤を添加して、その一部を重合させる方法等が挙げられる。
 重合性組成物(M21)の総質量に対する原料組成物の濃度は、97.5~99.99質量%の範囲とすることができる。
(成分A21及び成分A22)
 成分A21の様態は、<1-2.成分A22>の記載と同様であり、成分A22の様態は、<2-2.成分A22>の記載と同様である。
 なお、成分A21及び成分A22は、それぞれ1種類であっても2種類以上であってもよい。
 重合性組成物(M21)が成分A21を含む場合は、重合性組成物(M21)の総質量に対する成分A21の濃度は、0.1~4000質量ppmであることが好ましい。成分A21の濃度の下限が0.1質量ppm以上であることにより、得られるメタクリル系樹脂組成物が優れた光安定性を示す。また成分A21の濃度の上限が4000質量ppm以下であることにより、得られるメタクリル系樹脂組成物が優れた耐熱性を示す。成分A21の濃度の下限は1質量ppm以上が好ましく、10質量ppm以上が好ましく、50質量ppm以上がより好ましく、100質量ppm以上がさらに好ましい。また成分A21の濃度の上限は3000質量ppm以下が好ましく、1000質量ppm以下がより好ましい。
 重合性組成物(M21)が成分A22を含む場合は、重合性組成物(M21)の総質量に対する成分A22の濃度の様態は、成分A21の濃度の様態と同様である。
(ラジカル重合開始剤)
 ラジカル重合開始剤としては公知のものを使用することができ、第1実施形態で例示したものと同じものを例示できる。ラジカル重合開始剤は単独で又は2種以上を任意の比率及び組み合わせで使用することができる。また、必要に応じて、ラジカル重合開始剤と共にアミン、及びメルカプタン等の公知の重合促進剤を併用することができる。
 重合性組成物(M21)の総質量に対するラジカル重合開始剤の濃度は、特に限定されず、例えば0.005~5質量%とすることができ、0.01~1質量%としてもよい。
(成分B1)
 成分B1の様態は、<1-3.成分B1>の記載と同様である。
 なお、成分B1は1種類であっても2種類以上であってもよい。
 重合性組成物(M21)が成分B1を含む場合、重合性組成物(M21)中の総質量に対する成分B1の濃度は1~1000質量ppmであることが好ましい。成分B1の濃度が1質量ppm以上であることにより、得られるメタクリル系樹脂組成物の光安定性向上効果を十分に得ることができる。また成分B1の濃度が1000質量ppm以下であることにより、得られるメタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。成分B1の濃度の下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。また成分B1の濃度の上限は500質量ppm以下がより好ましく、100質量ppm以下がさらに好ましい。
(成分C)
 成分Cの様態は、<1-5.成分C>の記載と同様である。
 なお、成分Cは1種類であっても2種類以上であってもよい。
<5-2.重合性組成物(M22)>
 重合性組成物(M22)は、第2実施形態に係る単量体組成物及び公知のラジカル重合開始剤を含有する。重合性組成物(M22)は、さらにビニル単量体を含んでいてもよい。また本発明の効果を損ねない範囲で、その他の化合物(成分C)を含有してもよい。
(単量体組成物)
 単量体組成物は、第2実施形態に係る単量体組成物であり、第2実施形態に係るメタクリル系樹脂組成物に含まれるメタクリル系重合体の原料成分を含む組成物である。
 重合性組成物(M22)の総質量に対する単量体組成物の濃度は、60質量%以上100質量%未満とすることができる。
(ラジカル重合開始剤)
 ラジカル重合開始剤の様態は、<5-1.重合性組成物(M21)>の記載と同様である。
(ビニル単量体)
 重合性組成物(M22)がビニル単量体を含む場合、ビニル単量体としては、第1実施形態の<2-1.メタクリル系重合体>の記載と同様のビニル単量体を用いることができる。重合性組成物(M22)が、ビニル単量体としてアクリル酸エステル又はスチレンを含むことにより、得られるメタクリル系樹脂組成物の光安定性が向上する。なおビニル単量体は、1種を単独で又は2種以上を任意の比率及び組み合わせで使用することができる。
 ビニル単量体は、単量体組成物中にビニル単量体が含まれている場合はこれをそのまま使用してもよく、必要に応じて新たにビニル単量体を追加してもよい。重合性組成物(M22)の総質量に対するビニル単量体の濃度は、0質量%超40質量%未満とすることができる。
(成分C)
 成分Cの様態は、<1-5.成分C>の記載と同様である。
 なお、成分Cは1種類であっても2種類以上であってもよい。
<5-3.重合性組成物のラジカル重合工程>
 重合性組成物のラジカル重合工程の様態は、第1実施形態の<3-3.重合性組成物のラジカル重合工程>の記載と同様である。
[6.樹脂成形体]
 第2実施形態に係る樹脂成形体は、第2実施形態に係るメタクリル系樹脂組成物を含む。樹脂成形体の様態は、第1実施形態の[4.樹脂成形体]の記載と同様である。
《第3実施形態》
[1.単量体組成物]
 第3実施形態に係る単量体組成物は、MMAと、下記式(3-1)で表されるピラジン化合物(成分A3)と、を含む。
Figure JPOXMLDOC01-appb-C000032
 前記式(3-1)中、R31、R32、R33、及びR34はそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~6のアルコキシ基である。
 単量体組成物の総質量に対する成分A3の濃度をXA3(質量ppm)としたとき、XA3は1~10000質量ppmである。
 単量体組成物は、さらに重合禁止剤(成分B1)、下記式(3-2)で表されるα水素を有するエステル化合物(成分B2)、又は下記式(3-3)で表されるα,β-不飽和カルボニル化合物(成分B3)を含有することが好ましい。単量体組成物は、成分B1、成分B2、成分B3のうち、1種類を含有してもよく、2種類以上を含有してもよい。単量体組成物は、本発明の効果を損ねない範囲で、MMA以外の単量体やその他の化合物(成分C)や水を含有してもよい。
Figure JPOXMLDOC01-appb-C000033
 前記式(3-2)中、R35及びR36はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R37は炭素原子数1~5のアルキル基である。
Figure JPOXMLDOC01-appb-C000034
 前記式(3-3)中、R38、R39及びR40はそれぞれ独立して、水素原子又は炭素原子数1~10のアルキル基であり、R41は炭素原子数1~10のアルキル基である。
 以下、各項目について詳細に説明する。
<1-1.メタクリル酸メチル>
 第3実施形態に係る単量体組成物は、MMAを含む。
 MMAの様態は、第1実施形態において説明した<1-1.メタクリル酸メチル>の記載と同様である。
<1-2.成分A3>
 第3実施形態に係る単量体組成物は、前記式(3-1)で表されるピラジン化合物(成分A3)を含む。
 単量体組成物が成分A3を含むことにより、MMA二量体及びピルビン酸メチルの生成を抑制することができる。この理由としては、以下のように推定される。
 MMA二量体は、MMAの保管中に発生するラジカルによって生成する。前記ラジカルの例として、酸素分子が太陽光由来の紫外光を吸収して生成するヒドロキシラジカルが挙げられる。ヒドロキシラジカルは、MMAの酸化によるピルビン酸メチル生成の原因にもなる。ピラジン化合物は、芳香環を有するπ共役系化合物であるため紫外光を吸収し、その吸収波長は置換基の種類によって変化する。前記式(3-1)で表されるピラジン化合物(成分A3)は、幅広い波長の紫外光を吸収することができる。そのため、単量体組成物に成分A3が含まれることで、幅広い紫外光が吸収され、ヒドロキシラジカルの生成が抑制される。その結果、MMA二量体及びピルビン酸メチルの生成を効率良く抑制できると考えられる。
 成分A3の分子量は、200以下が好ましい。これにより、成分A3の単位質量あたりのピラジン環の数が多くなるため、より少量の成分A3で本発明の効果を得ることが容易になる。成分A3の分子量は、180以下がより好ましく、160以下がさらに好ましく、140以下が特に好ましい。
 成分A3の分子量は80以上が好ましく、100以上がより好ましく、120以上がさらに好ましい。
 成分A3の分子量の前記の上限及び下限は任意に組み合わせることができる。例えば、成分A3の分子量は80~200が好ましく、80~180がより好ましく、100~160がさらに好ましく、120~140が特に好ましい。
 前記式(3-1)中、R31、R32、R33、及びR34はそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~6のアルコキシ基である。
 R31、R32、R33、及びR34は、同一でも異なっていてもよいが、R31、R32、R33、及びR34のアルキル基の炭素原子数の合計が1以上であることが好ましく、2以上であることがより好ましく、3以上であることがより好ましい。
 R31、R32、R33及びR34のアルキル基は、直鎖状であってもよく、分岐鎖状であってもよく、環を有していてもよい。
 アルキル基の炭素原子数は1~3が好ましく、1~2がより好ましく、1がさらに好ましい。
 アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、シクロペンチル基等が挙げられる。これらの中でも、メチル基、エチル基、n-プロピル基、又はイソプロピル基が好ましく、メチル基、エチル基、又はイソプロピル基がより好ましい。
 R31、R32、R33及びR34のアルコキシ基の炭素数は1~5が好ましく、1~3がより好ましく、1がさらに好ましい。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペントキシ基、イソペントキシ基、フェノキシ基等が挙げられる。
 紫外光の吸光度を上昇させてヒドロキシラジカルの生成を抑制する観点から、R31、R32、R33、及びR34は、それぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基であることがさらに好ましい。
 入手及び合成が簡便であるという観点から、成分A3としては、2,3,5,6-テトラメチルピラジン、ピラジン、2,3,5-トリメチルピラジン、2-メトキシピラジン、2-イソプロピル-3-メトキシピラジン、2,5-ジメチルピラジン、2,5-ジイソプロピルピラジン、2-エチル-3,5-ジメチルピラジン、2,5-ジメチル-3-イソブチルピラジン、又は2-イソプロピル-3-メトキシ-5-イソブチルピラジンが好ましく、2,3,5,6-テトラメチルピラジン、ピラジン、2,3,5-トリメチルピラジン、2-メトキシピラジン、2-イソプロピル-3-メトキシピラジン、又は2,5-ジメチルピラジンがより好ましく、2,3,5,6-テトラメチルピラジン、又は2,3,5-トリメチルピラジンがさらに好ましい。
 成分A3は、1種を単独で用いてもよく、2種以上を併用してもよい。
<1-3.成分B1>
 第3実施形態に係る単量体組成物は、重合禁止剤(成分B1)を含むことが好ましい。
 成分B1を含むことにより、MMAの保管中に、ラジカル機構によるMMAの二量化反応が進行することを抑制できる。また、成分B1はMMAの保管中に発生する前述のヒドロキシラジカルをトラップすることができる。すなわち、単量体組成物が成分A3に加えて成分B1を含有する場合、成分A3によりヒドロキシラジカルの生成を抑制し、成分B1により生成したヒドロキシラジカルを除去するという、2つの異なる機構でピルビン酸メチルの生成量を減少させることができる。よって、MMA二量体とピルビン酸メチルの生成をより効率良く抑制できると考えられる。
 成分B1の様態は、第1実施形態の<1-3.成分B>において説明した成分B1についての記載と同様である。
 成分B1は1種類であっても2種類以上であってもよい。
 なお、単量体組成物に、成分A3と成分B1の両方に該当する化合物が含まれている場合、当該化合物は成分A3と見なす。すなわち、単量体組成物が成分A及び成分B1を含む場合は、当該化合物とは別の成分B1を含むことを意味する。なお成分A3と成分B1の両方に該当する化合物が2種類以上含まれている場合は、単量体組成物中のモル濃度が最も高い化合物を成分A3と見なし、それ以外の化合物を成分B1と見なす。
<1-4.成分B2>
 第3実施形態に係る単量体組成物は、下記式(3-2)で表されるα水素を有するエステル化合物(成分B2)を含むことが好ましい。「α水素」とは、カルボニル基の炭素原子の隣の炭素原子に結合した水素原子を表す。
Figure JPOXMLDOC01-appb-C000035
 前記式(3-2)中、R35及びR36はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R37は炭素原子数1~5のアルキル基である。
 単量体組成物が成分A3に加えて、成分B2を含むことにより、MMA二量体及びピルビン酸メチルの生成をさらに効率良く抑制することができる。この理由としては、以下のように推定される。
 前述の通り、MMA二量体は、主にMMAの保管中に発生するヒドロキシラジカルによって生成し、成分A3はヒドロキシラジカルの生成を抑制するため、MMA二量体の生成を抑制することができる。しかしながら、MMAの二量化反応は塩基性条件下、アニオン機構によっても進行する。α水素を有するエステル化合物は弱酸性を有し、アニオンをトラップすることができるため、成分B2はアニオン機構によるMMAの二量化反応を抑制することができる。よって、成分A3と成分B2が共存することで、異なる機構により効率的にMMAの二量化反応を抑制することができると考えられる。
 一方ピルビン酸メチルは、前述の通りヒドロキシラジカル及び酸素分子によりMMAが酸化されることによって生成する。成分A3はヒドロキシラジカルの生成を抑制することができ、成分B2はヒドロキシラジカルとMMAが反応して生成したラジカル中間体をトラップして、中間体からMMAに戻すことができる。よって成分A3と成分B2が共存することで、ピルビン酸メチルの生成を効率よく抑制できると考えられる。
 成分B2の分子量は、200以下が好ましい。これにより、成分B2の単位質量あたりのα水素の数が多くなるため、少量の成分B2で本発明の効果を得ることが容易になる。成分B2の分子量は、180以下がより好ましく、160以下がさらに好ましく、140以下が特に好ましい。
 成分B2の分子量は60以上が好ましく、80以上がより好ましく、100以上がさらに好ましい。
 成分B2の分子量の前記の上限及び下限は任意に組み合わせることができる。例えば、成分B2の分子量は60~200が好ましく、60~180がより好ましく、80~160がさらに好ましく、100~140が特に好ましい。
 前記式(3-2)中、R35及びR36はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R37は炭素原子数1~5のアルキル基である。R35、R36及びR37は、同一でも異なっていてもよい。
 一般にエステル化合物のα水素は、アニオンやラジカルと反応する性質を有するが、有する置換基の種類によりその反応性が低下することがある。R35、R36及びR37が前記条件を満たす場合、成分B2のα水素のアニオンやラジカルとの反応性が維持されるため、本発明の効果を得ることができる。
 R35、R36及びR37のアルキル基は、直鎖状であってもよく、分岐鎖状であってもよく、環を有していてもよい。
 アルキル基の炭素原子数は1~3が好ましく、1~2がより好ましく、1がさらに好ましい。
 アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、シクロペンチル基等が挙げられる。これらの中でも、メチル基、エチル基、n-プロピル基、イソプロピル基が好ましく、メチル基、エチル基、又はイソプロピル基がより好ましい。
 前記の条件を満たす化合物の中でも、単量体組成物の保管中の品質安定性の観点から、成分B2としてはイソ酪酸メチル、プロピオン酸メチル、イソ酪酸イソブチル、イソ吉草酸メチル、又は2-メチル酪酸メチルが好ましく、イソ酪酸メチル、又はプロピオン酸メチルがより好ましい。
 成分B2は、1種を単独で用いてもよく、2種以上を併用してもよい。
<1-5.成分B3>
 第3実施形態に係る単量体組成物は、下記式(3-3)で表されるα,β-不飽和カルボニル化合物(成分B3)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000036
 前記式(3-3)中、R38、R39及びR40はそれぞれ独立して、水素原子又は炭素原子数1~10のアルキル基であり、R41は炭素原子数1~10のアルキル基である。
 単量体組成物が成分A3に加えて、成分B3を含むことにより、MMA二量体及びピルビン酸メチルの生成をさらに効率良く抑制することができる。この理由としては、以下のように推定される。
 前述の通り、MMA二量体及ピルビン酸メチルは、MMAの保管中に発生するヒドロキシラジカルによって生成し、成分A3は紫外光を吸収してヒドロキシラジカルの生成を抑制するため、MMA二量体の生成を抑制することができる。一方、前記式(3-3)で表されるα,β-不飽和カルボニル化合物(成分B3)も、共役二重結合を有するため紫外光を吸収するが、その吸収波長は成分A3とは異なる。よって、成分A3と成分B3が共存することにより、幅広い波長の紫外光を吸収することができ、ヒドロキシラジカルの生成を効率よく抑制できると考えられる。
 成分B3の分子量は、400以下が好ましい。これにより、成分B3の単位質量あたりの共役二重結合の数が多くなるため、少量の成分B3で本発明の効果を得ることが容易になる。成分B3の分子量は、200以下がより好ましく、160以下がさらに好ましく、120以下が特に好ましい。
 成分B3の分子量は80以上が好ましく、100以上がより好ましい。
 成分B3の分子量の前記の上限及び下限は任意に組み合わせることができる。例えば、成分B3の分子量は80~400が好ましく、80~200がより好ましく、80~160がさらに好ましく、80~120が特に好ましい。
 前記式(3-3)中、R38、R39及びR40はそれぞれ独立して、水素原子又は炭素原子数1~10のアルキル基であり、R41は炭素原子数1~10のアルキル基である。R38、R39、R40及びR41は同一でも異なっていてもよい。
 R38、R39、R40及びR41が前記条件を満たす場合、成分B3のπ共役系が維持されるため、幅広い波長の紫外光を吸収する性質を有し、本発明の効果をより効率良く得ることができる。
 R、R、R40及びR41のアルキル基は、直鎖状であってもよく、分岐鎖状であってもよく、環を有していてもよい。
 アルキル基の炭素原子数は1~5が好ましく、1~3がより好ましく、1~2がさらに好ましい。
 アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、へキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。これらの中でも、メチル基、エチル基、n-プロピル基、又はイソプロピル基が好ましく、メチル基、エチル基、又はイソプロピル基がより好ましい。
 前記の条件を満たす化合物の中でも、単量体組成物の保管中の品質安定性の観点から、成分B3としては、アクリル酸メチル、アクリル酸ブチル、メタクリル酸エチル、クロトン酸メチル、cis-クロトン酸メチル、メタクリル酸イソブチル、メタクリル酸ブチル、メタクリル酸プロピル、メタクリル酸イソペンチル、2-メチレン-3-ブテン酸メチル、3,3-ジメチルアクリル酸メチル、2-エチルアクリル酸メチル、又は2-ペンテン酸メチルが好ましく、アクリル酸メチル、アクリル酸ブチル、メタクリル酸エチル、又はクロトン酸メチルがより好ましく、アクリル酸メチル、又はメタクリル酸エチルがさらに好ましい。
 成分B3は、1種を単独で用いてもよく、2種以上を併用してもよい。
<1-6.メタクリル酸メチル以外の単量体>
 第3実施形態に係る単量体組成物は、MMA以外の単量体を含有してもよい。
 MMA以外の単量体の様態は、第1実施形態において説明した<1-4.メタクリル酸メチル以外の単量体>の記載と同様である。
 なお後述する第3実施形態に係るメタクリル系樹脂組成物に含まれるメタクリル系重合体は、MMA由来の繰り返し単位と、MMAと共重合可能なビニル単量体由来の繰り返し単位を含む共重合体であることが好ましく、前記ビニル単量体としてはアクリル酸エステル又はスチレンが好ましい。したがって第3実施形態に係る単量体組成物は、MMA以外の単量体としてアクリル酸エステル又はスチレンをさらに含有することが好ましい。
 なおMMAと共重合可能な単量体は、1種類であっても2種類以上であってもよい。また成分B3がMMAと共重合可能な単量体である場合、成分B3をMMAと共重合可能な単量体として用いてもよく、成分B3とは別にMMAと共重合可能な単量体を用いてもよい。
<1-7.成分C>
 第3実施形態に係る単量体組成物は、その他の化合物(成分C)を含有してもよい。成分Cの様態は、第1実施形態において説明した<1-5.成分C>の記載と同様である。
 成分Cは1種類であっても2種類以上であってもよい。
<1-8.単量体組成物における各成分の濃度>
 第3実施形態に係る単量体組成物において、単量体組成物の総質量に対するMMAの濃度をXM(質量%)としたとき、XMは85質量%以上であることが好ましい。XMの下限は90質量%以上がより好ましく、95質量%以上がさらに好ましく、97質量%以上が特に好ましい。また、XMの上限は通常99.99質量%以下であり、99.98質量%以下又は99.97質量%以下であってもよい。したがって、XMとしては、例えば85~99.99質量%、90~99.98質量%、95~99.97質量%、97~99.97質量%、及び97~99.97質量%の範囲が挙げられる。
 第3実施形態に係る単量体組成物において、単量体組成物の総質量に対する成分A3の濃度をXA3(質量ppm)としたとき、XA3は1質量ppm以上である。XA3が1質量ppm以上であることにより、単量体組成物の品質安定性が向上する効果を十分に得ることができる。また、XA3は1~10000質量ppmであることが好ましい。XA3が10000質量ppm以下であることにより、単量体組成物の重合によりメタクリル系樹脂組成物を製造した際の不純物量を少なくし、前記メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。XA3の下限は5質量ppm以上が好ましく、10質量ppm以上がより好ましい。またXA3の上限は5000質量ppm以下がより好ましく、1000質量ppm以下がさらに好ましく、100質量ppm以下が特に好ましい。
 第3実施形態に係る単量体組成物において、単量体組成物中のMMAの質量に対する成分A3の濃度をZA(質量ppm)としたとき、ZAは1~10000質量ppmであることが好ましい。ZAは下記式を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000037
 ZAが1質量ppm以上であることにより、単量体組成物の品質安定性が向上する効果を十分に得ることができる。またZAが10000質量ppm以下であることにより、単量体組成物の重合によりメタクリル系樹脂組成物を製造した際の不純物量を少なくし、前記メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。ZAの下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。またZAの上限は5000質量ppm以下がより好ましく、1000質量ppm以下がさらに好ましく、100質量ppm以下が特に好ましい。
 第3実施形態に係る単量体組成物が成分B1を含む場合、単量体組成物の総質量に対する成分B1の濃度をXB1(質量ppm)としたとき、XB1は1~2000質量ppmであることが好ましい。XB1が1質量ppm以上であることにより、単量体組成物の品質安定性向上効果を十分に得ることができる。またXB1が2000質量ppm以下であることにより単量体組成物の重合によりメタクリル系樹脂組成物を製造した際の不純物量を少なくし、前記メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。XB1の下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。またXB1の上限は1000質量ppm以下がより好ましく、500質量ppm以下がさらに好ましく、100質量ppm以下が特に好ましい。
 第3実施形態に係る単量体組成物において、単量体組成物中のMMAの質量に対する成分B1の濃度をZB1(質量ppm)としたとき、ZB1は1~2000質量ppmであることが好ましい。ZB1は下記式を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000038
 ZB1が1質量ppm以上であることにより、単量体組成物の品質安定性が向上する効果を十分に得ることができる。またZB1が2000質量ppm以下であることにより、単量体組成物の重合によりメタクリル系樹脂組成物を製造した際の不純物量を少なくし、前記メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。ZB1の下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。またZB1の上限は1000質量ppm以下がより好ましく、500質量ppm以下がさらに好ましく、100質量ppm以下が特に好ましい。
 また、単量体組成物の品質安定性向上効果の観点から、XB1/XA3は0.005~1000であることが好ましい。XB1/XA3の下限は0.05以上がより好ましく、0.5以上がさらに好ましい。上限は100以下がより好ましく、50以下がさらに好ましく、5以下が特に好ましい。
 第3実施形態に係る単量体組成物が成分B2を含む場合、単量体組成物の総質量に対する成分B2の濃度をXB2(質量ppm)としたとき、XB2は5~10000質量ppmであることが好ましい。XB2が5質量ppm以上であることにより、単量体組成物の品質安定性向上効果を十分に得ることができる。またXB2が10000質量ppm以下であることにより単量体組成物の重合によりメタクリル系樹脂組成物を製造した際の不純物量を少なくし、前記メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。XB2の下限は8質量ppm以上がより好ましい。またXB2の上限は1000質量ppm以下がより好ましく、100質量ppm以下がさらに好ましく、20質量ppm以下が特に好ましい。
 第3実施形態に係る単量体組成物において、単量体組成物中のMMAの質量に対する成分B2の濃度をZB2(質量ppm)としたとき、ZB2は5~10000質量ppmであることが好ましい。ZB2は下記式を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000039
 ZB2が5質量ppm以上であることにより、単量体組成物の品質安定性が向上する効果を十分に得ることができる。またZB2が10000質量ppm以下であることにより、単量体組成物の重合によりメタクリル系樹脂組成物を製造した際の不純物量を少なくし、前記メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。ZB2の下限は8質量ppm以上がより好ましい。またZB2の上限は1000質量ppm以下がより好ましく、100質量ppm以下がさらに好ましく、20質量ppm以下が特に好ましい。
 また、単量体組成物の品質安定性向上効果の観点から、XB2/XA3は0.005~1000であることが好ましい。XB2/XA3の下限は0.05以上がより好ましく、0.5以上がさらにこのましい。上限は100以下がより好ましく、50以下がさらに好ましく、5以下が特に好ましい。
 第3実施形態に係る単量体組成物が成分B3を含む場合、単量体組成物の総質量に対する成分B3の濃度をXB3(質量ppm)としたとき、XB3は5~10000質量ppmであることが好ましい。XB3が5質量ppm以上であることにより、単量体組成物の品質安定性向上効果を十分に得ることができる。またXB3が10000質量ppm以下であることにより単量体組成物の重合によりメタクリル系樹脂組成物を製造した際の不純物量を少なくし、前記メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。XB3の下限は8質量ppm以上がより好ましい。またXB3の上限は1000質量ppm以下がより好ましく、100質量ppm以下がさらに好ましく、20質量ppm以下が特に好ましい。
 第3実施形態に係る単量体組成物において、単量体組成物中のMMAの質量に対する成分B3の濃度をZB3(質量ppm)としたとき、ZB3は5~10000質量ppmであることが好ましい。ZB3は下記式を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000040
 ZB3が5質量ppm以上であることにより、単量体組成物の品質安定性が向上する効果を十分に得ることができる。またZB3が10000質量ppm以下であることにより、単量体組成物の重合によりメタクリル系樹脂組成物を製造した際の不純物量を少なくし、前記メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。ZB3の下限は8質量ppm以上がより好ましい。またZB3の上限は1000質量ppm以下がより好ましく、100質量ppm以下がさらに好ましく、20質量ppm以下が特に好ましい。
 また、単量体組成物の品質安定性向上効果の観点から、XB3/XA3は0.005~1000であることが好ましい。XB3/XA3の下限は0.05以上がより好ましく、0.5以上がさらにこのましい。上限は100以下がより好ましく、50以下がさらに好ましく、5以下が特に好ましい。
 第3実施形態に係る単量体組成物がMMA以外の単量体を含有する場合、単量体組成物の総質量に対する前記単量体の濃度は0~15質量%であることが好ましい。また前記単量体の濃度の下限は1質量%以上、上限は10質量%以下がより好ましい。
 なお、前記の好ましい上限値と下限値は任意に組み合わせることができる。
<1-9.単量体組成物の分析>
 単量体組成物が成分A3、成分B1、成分B2、成分B3、MMA以外の単量体、成分C及び水を含有することを確認する方法、並びに単量体組成物における成分A3、成分B1、成分B2、成分B3、MMA以外の単量体、成分C及び水の濃度の算出方法は、第1実施形態において説明した方法と同様である。
<1-10.単量体組成物の製造方法>
 第3実施形態に係る単量体組成物は、例えば、MMAに成分A3を添加する方法により製造することができ、任意にさらに成分B1、成分B2又は成分B3、MMA以外の単量体及び成分Cを添加してもよい。なお、以下の記載において、成分B1、成分B2、成分B3を併せて「成分B」と総称することもある。
 単量体組成物の製造方法は、成分A3及び成分Bを用いる以外は、第1実施形態において説明した方法と同様である。
 成分A3及び成分Bは市販品を用いてもよく、公知の方法で合成したものを用いてもよい。第1実施形態の<1-1.メタクリル酸メチル>に記載の方法で製造したMMAを用いる場合、成分A3と、任意にさらに成分B、MMA以外の単量体及び成分Cとを原料若しくは製造工程のプロセスの途中で添加して、単量体組成物を製造してもよい。また、MMA製造プロセスで成分A3又は成分Bが副生成物として生成する場合、生成する成分A3又は成分Bの一部を残して単量体組成物を製造してもよい。
[2.メタクリル系樹脂組成物]
 第3実施形態に係るメタクリル系樹脂組成物は、メタクリル系重合体と、下記式(3-1)で表されるピラジン化合物(成分A3)と、を含む。
Figure JPOXMLDOC01-appb-C000041
 前記式(3-1)中、R31、R32、R33、及びR34はそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~6のアルコキシ基である。
 またメタクリル系樹脂組成物の総質量に対する成分A3の濃度をYA3(質量ppm)としたとき、YA3は1~10000質量ppmである。これにより、メタクリル系樹脂組成物が透明性及び耐熱性を維持しつつ、優れた長期熱安定性を示す。
 メタクリル系樹脂組成物は、さらに重合禁止剤(成分B1)、下記式(3-2)で表されるα水素を有するエステル化合物(成分B2)、又は下記式(3-3)で表されるα,β-不飽和カルボニル化合物(成分B3)を含有することが好ましい。また本発明の効果を損ねない範囲で、その他の化合物(成分C)を含有してもよい。
Figure JPOXMLDOC01-appb-C000042
 前記式(3-2)中、R35及びR36はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R37は炭素原子数1~5のアルキル基である。
Figure JPOXMLDOC01-appb-C000043
 前記式(3-3)中、R38、R39及びR40はそれぞれ独立して、水素原子又は炭素原子数1~10のアルキル基であり、R41は炭素原子数1~10のアルキル基である。
 メタクリル系樹脂組成物の形態は特段制限されないが、通常、固体である。
 以下各項目について詳細に説明する。
<2-1.メタクリル系重合体>
 第3実施形態に係るメタクリル系樹脂組成物は、メタクリル系重合体を含むことで、良好な透明性を示す。また熱や光による分解が抑制され、良好な加熱成形性、耐熱性、及び機械的強度を示す。
(メタクリル系重合体の組成)
 メタクリル系樹脂組成物の耐熱性及び熱安定性の観点から、メタクリル系重合体の総質量に対して、MMA単位は50~100質量%、ビニル単量体由来の繰り返し単位の含有割合は0~50質量%であることが好ましい。MMA単位の含有割合の下限は60質量%以上がより好ましく、70質量%以上がさらに好ましく、80質量%以上が特に好ましく、90質量%以上が最も好ましい。またビニル単量体由来の繰り返し単位の含有割合の上限は40質量%以下がより好ましく、30質量%以下がさらに好ましく、20質量%以下が特に好ましく、10質量%以下が最も好ましい。
 メタクリル系重合体が共重合体である場合、共重合体の配列は特段制限されず、例えば、ランダム共重合体、ブロック共重合体、又は交互共重合体等であってよいが、ランダム共重合体が好ましい。
 MMAの様態は、第1実施形態の<1-1.メタクリル酸メチル>の記載と同様である。
 メタクリル系重合体が、ビニル単量体由来の繰り返し単位を含む共重合体である場合、前記ビニル単量体としては、アクリル酸エステル又はスチレンが好ましい。これにより、メタクリル系樹脂組成物の熱安定性が向上する。
 前記ビニル単量体がアクリル酸エステルである場合、メタクリル系重合体は、MMA単位を70~100質量%、及びアクリル酸エステル由来の繰り返し単位を0~30質量%含むことが好ましい。前記ビニル単量体がスチレンである場合、メタクリル系重合体は、MMA単位を50~100質量%、及びスチレン由来の繰り返し単位を0~50質量%含むことが好ましい。
 アクリル酸エステルとしては、炭素数1~6のアルキル基を側鎖に有するアクリル酸エステルが好ましく、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸t-ブチル等が挙げられる。これらは1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで使用することができる。これらの中でも、メタクリル系樹脂組成物の熱安定性の観点から、アクリル酸メチル、アクリル酸エチル、及びアクリル酸n-ブチルからなる群より選択される少なくとも1つであることが好ましく、アクリル酸メチル、およびアクリル酸エチルからなる群より選択される少なくとも1つであることがより好ましい。
 なおビニル単量体は、1種を単独で又は2種以上を任意の比率及び組み合わせで使用することができる。
 またメタクリル系重合体は、発明の効果が得られる範囲で、一分子中にラジカル重合性官能基を2個以上含む多官能性単量体由来の繰り返し単位を含むことができる。これにより、耐溶剤性又は耐薬品性等を向上させることができる。
 ラジカル重合性官能基は、炭素-炭素二重結合を有し、ラジカル重合可能な基であれば特に制限されない。具体的には、ビニル基、アリル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基等が挙げられる。特に(メタ)アクリロイル基は、ラジカル重合性官能基を有する化合物の貯蔵安定性が優れている観点や、当該化合物の重合性を制御することが容易である観点から好ましい。ここで、「(メタ)アクリロイル」は「アクリロイル」及び「メタクリロイル」から選ばれる少なくとも1種を意味する。なお、ラジカル重合性官能基を2個有する単量体中の各ラジカル重合性官能基は、同一であっても異なっていてもよい。
 多官能性単量体としては、メタクリル酸アリル、アクリル酸アリル、エチレングリコールジ(メタ)アクリレート、エチレングリコールトリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、及びトリメチロールプロパントリ(メタ)アクリレート等が挙げられるが、特にこれらに限定されるものではない。これらは1種を単独で用いてもよく、2種以上を任意の比率及び組み合わせで併用してもよい。これらのうち、多官能性単量体は、耐溶剤性及び耐薬品性がより良好となる観点から、エチレングリコールジ(メタ)アクリレート及びネオペンチルグリコールジ(メタ)アクリレートからなる群より選択される少なくとも1つであることがより好ましく、エチレングリコールジ(メタ)アクリレートであることがさらに好ましい。
<2-2.成分A3>
 第3実施形態に係るメタクリル系樹脂組成物は、前記式(3-1)で表されるピラジン化合物(成分A3)を含む。これにより、メタクリル系樹脂組成物が優れた熱安定性を示す。この理由としては、以下のように推定される。
 MMA単位を含むメタクリル系重合体は、熱により主鎖又は側鎖が開裂し、ラジカル種を生成する。通常は、この生成したラジカル種が、メタクリル系樹脂組成物の透明性低下の原因となる。しかし、メタクリル系樹脂組成物中に成分Aが存在することにより、成分Aがラジカル捕捉剤として機能し、透明性低下が抑制される。これにより、メタクリル系樹脂組成物が優れた熱安定性を示す。
 成分A3の様態は、<1-2.成分A3>の記載と同様である。
 なお、成分A3は1種類であっても2種類以上であってもよい。
<2-3.成分B1>
 第3実施形態に係るメタクリル系樹脂組成物は、重合禁止剤(成分B1)を含むことが好ましい。これにより、メタクリル系樹脂組成物の熱安定性向上効果をより効率的に得ることができる。
 成分B1の様態は、<1-3.成分B1>の記載と同様である。
 なお、成分B1は1種類であっても2種類以上であってもよい。
<2-4.成分B2>
 第3実施形態に係るメタクリル系樹脂組成物は、下記式(3-2)で表されるα水素を有するエステル化合物(成分B2)を含むことが好ましい。これにより、メタクリル系樹脂組成物の熱安定性向上効果をより効率的に得ることができる。この理由としては、以下のように推定される。
 前述したようにMMA単位を含むメタクリル系重合体は、熱により主鎖又は側鎖が開裂し、ラジカル種を生成する。通常は、この生成したラジカル種が、メタクリル系樹脂組成物の透明性低下の原因となる。しかし、メタクリル系樹脂組成物中に成分B2が存在することにより、成分A3に加えて成分B2もラジカル捕捉剤として機能する。成分A3と成分B2では補捉可能なラジカル種が異なるため、成分A3と成分B2が共存することにより、効率良くラジカルを補捉し、透明性低下を抑制することができる。これにより、メタクリル系樹脂組成物が優れた熱安定性を示す。
Figure JPOXMLDOC01-appb-C000044
 前記式(3-2)中、R35及びR36はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R37は炭素原子数1~5のアルキル基である。
 成分B2の様態は、<1-4.成分B2>の記載と同様である。
 なお、成分B2は1種類であっても2種類以上であってもよい。
<2-5.成分B3>
 第3実施形態に係る単量体組成物は、下記式(3-3)で表されるα,β-不飽和カルボニル化合物(成分B3)を含むことが好ましい。これにより、メタクリル系樹脂組成物の熱安定性向上効果をより効率的に得ることができる。この理由としては、以下のように推定される。
 前述したようにMMA単位を含むメタクリル系重合体は、熱により主鎖又は側鎖が開裂し、ラジカル種を生成する。通常は、この生成したラジカル種が、メタクリル系樹脂組成物の透明性低下の原因となる。しかし、メタクリル系樹脂組成物中に成分B3が存在することにより、成分A3に加えて成分B3もラジカル捕捉剤として機能する。成分A3と成分B3では補捉可能なラジカル種が異なるため、成分A3と成分B3が共存することにより、効率良くラジカルを補捉し、透明性低下を抑制することができる。これにより、メタクリル系樹脂組成物が優れた熱安定性を示す。
Figure JPOXMLDOC01-appb-C000045
 前記式(3-3)中、R38、R39及びR40はそれぞれ独立して、水素原子又は炭素原子数1~10のアルキル基であり、R41は炭素原子数1~10のアルキル基である。
 成分B3の様態は、<1-5.成分B3>の記載と同様である。
 なお、成分B3は1種類であっても2種類以上であってもよい。
<2-6.成分C>
 第3実施形態に係るメタクリル系樹脂組成物は、その他の化合物(成分C)を含有してもよい。成分Cの様態は、<1-7.成分C>の記載と同様である。
 なお、成分Cは1種類であっても2種類以上であってもよい。
<2-7.メタクリル系樹脂組成物における各成分の濃度>
 メタクリル系樹脂組成物の総質量に対するメタクリル系重合体の濃度をYM(質量%)としたとき、YMは特に制限されるものではないが、耐熱性が良好となる観点から、通常95質量%以上であり、97.5質量%以上であることが好ましく、98質量%以上であることがより好ましく、99質量%以上であることがさらに好ましい。一方、優れた熱安定性を得る観点から、通常99.99質量%以下であり、99.985質量%以下であることが好ましく、99.98質量%以下であることがより好ましく、99.975質量%以下であることがさらに好ましく、99.97質量%以下であることが殊更に好ましく、99.95質量%以下であることが特に好ましく、99.9質量%以下であることが最も好ましい。前記の上限値及び下限値は任意に組み合わせることができる。例えば、YMとしては、95~99.99質量%、95~99.985質量%、97.5~99.98質量%、97.5~99.975質量%、98~99.97質量%、98~99.95質量%、及び99~99.9質量%の範囲が挙げられる。なお、メタクリル系樹脂組成物がメタクリル系重合体を2種以上含有する場合は、YMは2種以上のメタクリル系重合体の合計濃度である。
 第3実施形態に係るメタクリル系樹脂組成物の総質量に対する成分A3の濃度をYA3としたとき、YA3は1質量ppm以上である。YA3の下限が1質量ppm以上であることにより、メタクリル系樹脂組成物が優れた熱安定性を示す。また、YAは1~10000質量ppmであることが好ましい。YA3の上限が10000質量ppm以下であることにより、メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。YA3の下限は5質量ppm以上が好ましく、10質量ppm以上がより好ましい。またYA3の上限は5000質量ppm以下がより好ましく、1000質量ppm以下がさらに好ましく、100質量ppm以下が特に好ましい。
 第3実施形態に係るメタクリル系樹脂組成物において、メタクリル系樹脂組成物中のメタクリル系重合体の質量に対する成分A3の濃度をWA(質量ppm)としたとき、WAは1~10000質量ppmであることが好ましい。WAは下記式を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000046
 WAの下限が1質量ppm以上であることにより、メタクリル系樹脂組成物が優れた熱安定性を示す。またWAの上限が10000質量ppm以下であることにより、メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。WAの下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。またWAの上限は5000質量ppm以下がより好ましく、1000質量ppm以下がさらに好ましく、100質量ppm以下が特に好ましい。
 第3実施形態に係るメタクリル系樹脂組成物が成分B1を含む場合、メタクリル系樹脂組成物の総質量に対する成分B1の濃度をYB1(質量ppm)としたとき、YB1は1~2000質量ppmであることが好ましい。YB1が1質量ppm以上であることにより、メタクリル系樹脂組成物の熱安定性向上効果を十分に得ることができる。またYB1が2000質量ppm以下であることにより、メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。YB1の下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。またYB1の上限は1000質量ppm以下がより好ましく、500質量ppm以下がさらに好ましく、100質量ppm以下が特に好ましい。
 第3実施形態に係るメタクリル系樹脂組成物において、メタクリル系樹脂組成物中のメタクリル系重合体の質量に対する成分B1の濃度をWB1(質量ppm)としたとき、WB1は1~2000質量ppmであることが好ましい。WB1は下記式を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000047
 WB1の下限が1質量ppm以上であることにより、メタクリル系樹脂組成物が優れた熱安定性を示す。またWB1の上限が2000質量ppm以下であることにより、メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。WB1の下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。またWB1の上限は1000質量ppm以下がより好ましく、500質量ppm以下がさらに好ましく、100質量ppm以下が特に好ましい。
 また、メタクリル系樹脂組成物の熱安定性向上効果の観点から、YB1/YA3は0.005~1000であることが好ましい。YB1/YA3の下限は0.05以上がより好ましく、0.5以上がさらに好ましい。上限は100以下がより好ましく、50以下がさらに好ましく、5以下が特に好ましい。
 第3実施形態に係るメタクリル系樹脂組成物が成分B2を含む場合、メタクリル系樹脂組成物の総質量に対する成分B2の濃度をYB2(質量ppm)としたとき、YB2は5~10000質量ppmであることが好ましい。YB2が5質量ppm以上であることにより、メタクリル系樹脂組成物の熱安定性向上効果を十分に得ることができる。またYB2が10000質量ppm以下であることにより、メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。YB2の下限は8質量ppm以上がより好ましい。またYB2の上限は1000質量ppm以下がより好ましく、100質量ppm以下がさらに好ましく、20質量ppm以下が特に好ましい。
 第3実施形態に係るメタクリル系樹脂組成物において、メタクリル系樹脂組成物中のメタクリル系重合体の質量に対する成分B2の濃度をWB2(質量ppm)としたとき、WB2は5~10000質量ppmであることが好ましい。WB2は下記式を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000048
 WB2の下限が5質量ppm以上であることにより、メタクリル系樹脂組成物が優れた熱安定性を示す。またWB2の上限が10000質量ppm以下であることにより、メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。WB2の下限は8質量ppm以上がより好ましい。またWB2の上限は1000質量ppm以下がより好ましく、100質量ppm以下がさらに好ましく、20質量ppm以下が特に好ましい。
 また、メタクリル系樹脂組成物の品質安定性向上効果の観点から、YB2/YA3は0.005~1000であることが好ましい。YB2/YA3の下限は0.05以上がより好ましく、0.5以上がさらにこのましい。上限は100以下がより好ましく、50以下がさらに好ましく、5以下が特に好ましい。
 第3実施形態に係るメタクリル系樹脂組成物が成分B3を含む場合、メタクリル系樹脂組成物の総質量に対する成分B3の濃度をYB3(質量ppm)としたとき、YB3は5~10000質量ppmであることが好ましい。YB3が5質量ppm以上であることにより、メタクリル系樹脂組成物の熱安定性向上効果を十分に得ることができる。またYB3が10000質量ppm以下であることにより、メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。YB3の下限は8質量ppm以上がより好ましい。またYB3の上限は1000質量ppm以下がより好ましく、100質量ppm以下がさらに好ましく、20質量ppm以下が特に好ましい。
 第3実施形態に係るメタクリル系樹脂組成物において、メタクリル系樹脂組成物中のメタクリル系重合体の質量に対する成分B3の濃度をWB3(質量ppm)としたとき、WB3は5~10000質量ppmであることが好ましい。WB3は下記式を用いて算出することができる。
Figure JPOXMLDOC01-appb-M000049
 WB3の下限が5質量ppm以上であることにより、メタクリル系樹脂組成物が優れた熱安定性を示す。またWB3の上限が10000質量ppm以下であることにより、メタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。WB3の下限は8質量ppm以上がより好ましい。またWB3の上限は1000質量ppm以下がより好ましく、100質量ppm以下がさらに好ましく、20質量ppm以下が特に好ましい。
 また、メタクリル系樹脂組成物の品質安定性向上効果の観点から、YB3/YA3は0.005~1000であることが好ましい。YB3/YA3の下限は0.05以上がより好ましく、0.5以上がさらに好ましい。上限は100以下がより好ましく、50以下がさらに好ましく、5以下が特に好ましい。
 なお、前記の好ましい上限値と下限値は任意に組み合わせることができる。
<2-8.メタクリル系樹脂組成物の分析>
 メタクリル系樹脂組成物中に存在する成分A3、成分B1、成分B2、成分B3及び成分Cの濃度の測定方法は、第1実施形態の<2-5.メタクリル系樹脂組成物の分析>において説明した方法と同様である。
[3.メタクリル系樹脂組成物の製造方法]
 第3実施形態に係るメタクリル系樹脂組成物は、MMAを含む重合性組成物をラジカル重合する工程を含む方法により製造することができる。重合性組成物は、例えば、原料組成物、成分A3、及びラジカル重合開始剤を含有する重合性組成物(M31);又は第3実施形態に係る単量体組成物及びラジカル重合開始剤を含有する重合性組成物(M32);であり、重合性組成物(M32)であることが好ましい。すなわち、第3実施形態に係るメタクリル系樹脂組成物は、第3実施形態に係る単量体組成物の重合体を含むことが好ましい。
 第3実施形態に係る単量体組成物は、長期保管後もMMA二量体及びピルビン酸メチルの含有量が少ない。MMA二量体の含有量が少ない単量体組成物を原料に用いて、メタクリル系樹脂組成物を製造した場合、分岐の少ない重合体が得られるため、メタクリル系樹脂組成物の熱安定性が向上する。また、ピルビン酸メチルの含有量が少ない単量体組成物を原料に用いて、メタクリル系樹脂組成物を製造した場合、ラジカルの発生が抑制され、着色物質の生成を抑制することができる。
 以下各項目について詳細に説明する。
<3-1.重合性組成物(M31)>
 重合性組成物(M31)は、原料組成物、成分A3、及びラジカル重合開始剤を含有する。重合性組成物(M31)は、さらに重合禁止剤(成分B1)、前記式(3-2)で表されるα水素を有するエステル化合物(成分B2)、又は前記式(3-3)で表されるα,β-不飽和カルボニル化合物(成分B3)を含有することが好ましい。また本発明の効果を損ねない範囲で、その他の化合物(成分C)を含有してもよい。
(原料組成物)
 原料組成物は、第3実施形態に係るメタクリル系樹脂組成物に含まれるメタクリル系重合体の原料成分でもある。
 原料組成物としては、MMAのみを含む組成物、及びMMA及びビニル単量体を含む組成物が挙げられる。ビニル単量体としては、<2-1.メタクリル系重合体>の記載と同様のビニル単量体を用いることができる。原料組成物が、ビニル単量体としてアクリル酸エステル又はスチレンを含むことにより、得られるメタクリル系樹脂組成物の熱安定性が向上する。なおビニル単量体は、1種を単独で又は2種以上を任意の比率及び組み合わせで使用することができる。
 原料組成物の総質量に対して、MMAの含有割合は50~100質量%、ビニル単量体の含有割合は0~50質量%であることが好ましい。またMMAの含有割合の下限は70質量%以上がより好ましく、ビニル単量体の含有割合の上限は30質量%以下がより好ましい。
 また原料組成物は、MMA単位を含む重合体を予め含んでいてもよい。原料組成物が重合体を含むことによりシラップとなるため、重合時間を短縮でき、生産性を向上することができる。MMA単位を含む重合体としては、具体的には、重合体の総質量に対して、MMA単位50質量%以上及びビニル単量体に由来する構成単位50質量%以下を含む重合体、又はMMA単位100質量%からなる重合体等が挙げられる。
 前記シラップを得る方法としては、例えば、原料組成物にMMA単位を含む重合体を溶解させる方法、又は原料組成物に公知のラジカル重合開始剤を添加して、その一部を重合させる方法等が挙げられる。
 重合性組成物(M31)の総質量に対する原料組成物の濃度は、97.5~99.99質量%の範囲とすることができる。
(成分A3)
 成分A3の様態は、<1-2.成分A3>の記載と同様である。
 なお、成分A3は1種類であっても2種類以上であってもよい。
 重合性組成物(M31)の総質量に対する成分A3の濃度は、1~10000質量ppmであることが好ましい。成分A3の濃度の下限が1質量ppm以上であることにより、得られるメタクリル系樹脂組成物が優れた熱安定性を示す。また成分A3の濃度の上限が10000質量ppm以下であることにより、得られるメタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。成分A3の濃度の下限は5質量ppm以上が好ましく、10質量ppm以上がより好ましい。また成分A3の濃度の上限は5000質量ppm以下が好ましく、1000質量ppm以下がより好ましく、100質量ppm以下がさらに好ましい。
(ラジカル重合開始剤)
 ラジカル重合開始剤としては公知のものを使用することができ、第1実施形態で例示したものと同じものを例示できる。ラジカル重合開始剤は単独で又は2種以上を任意の比率及び組み合わせで使用することができる。また、必要に応じて、ラジカル重合開始剤と共にアミン、及びメルカプタン等の公知の重合促進剤を併用することができる。
 重合性組成物(M31)の総質量に対するラジカル重合開始剤の濃度は、特に限定されず、例えば0.005~5質量%とすることができ、0.01~1質量%としてもよい。
(成分B1)
 成分B1の様態は、<1-3.成分B1>の記載と同様である。
 なお、成分B1は1種類であっても2種類以上であってもよい。
 重合性組成物(M31)が成分B1を含む場合、重合性組成物(M31)中の総質量に対する成分B1の濃度は1~1000質量ppmであることが好ましい。成分B1の濃度が1質量ppm以上であることにより、得られるメタクリル系樹脂組成物の熱安定性向上効果を十分に得ることができる。また成分B1の濃度が1000質量ppm以下であることにより、得られるメタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。成分B1の濃度の下限は5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。また成分B1の濃度の上限は500質量ppm以下がより好ましく、100質量ppm以下がさらに好ましい。
(成分B2)
 成分B2の様態は、<1-4.成分B2>の記載と同様である。
 なお、成分B2は1種類であっても2種類以上であってもよい。
 重合性組成物(M31)が成分B2を含む場合、重合性組成物(M31)中の総質量に対する成分B2の濃度は5~1000質量ppmであることが好ましい。成分B2の濃度が5質量ppm以上であることにより、得られるメタクリル系樹脂組成物の熱安定性向上効果を十分に得ることができる。また成分B2の濃度が10000質量ppm以下であることにより、得られるメタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。成分B2の濃度の下限は8質量ppm以上がより好ましい。また成分B2の濃度の上限は1000質量ppm以下がより好ましく、100質量ppm以下がさらに好ましく、20質量ppm以下が特に好ましい。
(成分B3)
 成分B3の様態は、<1-5.成分B3>の記載と同様である。
 なお、成分B3は1種類であっても2種類以上であってもよい。
 重合性組成物(M31)が成分B3を含む場合、重合性組成物(M31)中の総質量に対する成分B3の濃度は5~1000質量ppmであることが好ましい。成分B3の濃度が5質量ppm以上であることにより、得られるメタクリル系樹脂組成物の熱安定性向上効果を十分に得ることができる。また成分B3の濃度が10000質量ppm以下であることにより、得られるメタクリル系樹脂組成物の物性に悪影響を与えることを防ぐことができる。成分B3の濃度の下限は8質量ppm以上がより好ましい。また成分B3の濃度の上限は1000質量ppm以下がより好ましく、100質量ppm以下がさらに好ましく、20質量ppm以下が特に好ましい。
(成分C)
 成分Cの様態は、<1-7.成分C>の記載と同様である。
 なお、成分Cは1種類であっても2種類以上であってもよい。
<3-2.重合性組成物(M32)>
 重合性組成物(M32)は、第3実施形態に係る単量体組成物及び公知のラジカル重合開始剤を含有する。重合性組成物(M32)は、さらにビニル単量体を含んでいてもよい。また本発明の効果を損ねない範囲で、その他の化合物(成分C)を含有してもよい。
(単量体組成物)
 単量体組成物は、第3実施形態に係る単量体組成物であり、第3実施形態に係るメタクリル系樹脂組成物に含まれるメタクリル系重合体の原料成分を含む組成物である。
 重合性組成物(M32)の総質量に対する単量体組成物の濃度は、60質量%以上100質量%未満とすることができる。
(ラジカル重合開始剤)
 ラジカル重合開始剤の様態は、<3-1.重合性組成物(M31)>の記載と同様である。
(ビニル単量体)
 重合性組成物(M32)がビニル単量体を含む場合、ビニル単量体としては、<2-1.メタクリル系重合体>の記載と同様のビニル単量体を用いることができる。重合性組成物(M32)が、ビニル単量体としてアクリル酸エステル又はスチレンを含むことにより、得られるメタクリル系樹脂組成物の熱安定性が向上する。なおビニル単量体は、1種を単独で又は2種以上を任意の比率及び組み合わせで使用することができる。
 ビニル単量体は、単量体組成物中にビニル単量体が含まれている場合はこれをそのまま使用してもよく、必要に応じて新たにビニル単量体を追加してもよい。重合性組成物(M32)の総質量に対するビニル単量体の濃度は、0質量%超40質量%未満とすることができる。
(成分C)
 成分Cの様態は、<1-7.成分C>の記載と同様である。
 なお、成分Cは1種類であっても2種類以上であってもよい。
<3-3.重合性組成物のラジカル重合工程>
 重合性組成物のラジカル重合工程の様態は、第1実施形態の<3-3.重合性組成物のラジカル重合工程>の記載と同様である。
[4.樹脂成形体]
 第3実施形態に係る樹脂成形体は、第3実施形態に係るメタクリル系樹脂組成物を含む。樹脂成形体の様態は、第1実施形態の[4.樹脂成形体]の記載と同様である。
 以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例及び比較例中の「%」及び「ppm」は断りのない限り「質量%」及び「質量ppm」を意味する。また、「部」は「質量部」を示す。また、成分B1~B3を「成分B」と総称し、XB1、XB2及びXB3を「XB」と総称することもある。
《第1実施形態についての試験》
[化合物の名称]
 実施例及び比較例で使用した化合物の名称は、以下の通りである。
・イソ吉草酸メチル(東京化成工業(株)製)
・イソ酪酸イソブチル(東京化成工業(株)製)
・イソ酪酸イソアミル(東京化成工業(株)製)
[単量体組成物の分析]
 実施例及び比較例において製造した単量体組成物の構成成分の含有量は、各原料の添加量から算出した。また、後述する品質安定性評価における、保管後の単量体組成物のMMA二量体及びピルビン酸メチルは、GC-MSを用いて絶対検量線法により定量した。GC-MSの測定条件を以下に示す。
<GC-MS測定条件>
 装置:GC-MS測定装置(製品名:QP-2010SE、島津製作所製)
 キャリアガス:ヘリウム
 イオン化法:EI(電子イオン化、Electron Ionization)法
 カラム:DB-WAX 60m×320μm×1.0μm(アジレント社製)
 昇温条件:35℃で10分保持、35℃から150℃まで5℃/分で昇温、150℃で17分保持、150℃から220℃に5℃/分で昇温、220℃で6分保持。
 注入口温度:210℃
 インターフェイス温度:250℃
 イオン源温度:250℃
 注入モード:スプリット
 スプリット比:50:1
 流量:0.97mL/min
 全流量:52.5mL/分
 パージ流量:3.0mL/分
 制御モード:線速度一定
 圧力:26.1KPa
 平均線速度:25.0cm/sec
 注入量:1μL
 測定モード:スキャンモード m/z検出範囲:10~300
 検出時間:70分
[単量体組成物の品質安定性評価]
 実施例及び比較例において製造した単量体組成物の保管中の品質安定性は、単量体組成物を25℃で14日間保管した際のMMA二量体及びピルビン酸メチルの生成量により評価した。
[メタクリル系樹脂組成物の分析]
 実施例及び比較例において製造したメタクリル系樹脂組成物の構成成分の濃度は、下記の通り算出した。得られたメタクリル系樹脂組成物を細かく破砕し、破砕したメタクリル系樹脂組成物0.2gを10mLのアセトンに溶解させた。次いで、得られた溶液に内部標準液をホールピペットで1mL添加した。内部標準液には0.1体積%サリチル酸メチル/アセトン溶液を用いた。対象の標準試薬をアセトンで希釈することで濃度の異なる3種類の検液を調製し、内部標準液を添加してGC-MS測定により3点検量線を作成した。これを用いて、メタクリル系樹脂組成物中の各成分の濃度を定量した。GC-MSの測定条件を以下に示す。
<GC-MS測定条件>
装置:GC HP6890/MS HP5973(アジレント社製)
イオン化法:EI(電子イオン化、Electron Ionization)法
カラム:DB-WAX 60m×250μm×0.5μm(アジレント社製)
昇温条件:70℃(5min)→200℃(5min) Rate=10℃/min
注入口温度:220℃
AUX温度:230℃
イオン源温度:230℃
スプリット比:10:1
流量:2.0mL/min
平均線速度:37cm/sec
注入量:1μL
測定モード:SIM
[メタクリル系樹脂組成物の耐熱性評価]
 実施例及び比較例において製造したメタクリル系樹脂組成物の耐熱性の指標として、荷重たわみ温度(以下、「HDT」とも記す。)を用いた。HDTは、メタクリル系樹脂組成物の試験片(長さ120mm×幅12.7mm×厚さ3mm)について、JIS K 7191に準拠して測定した。
[HAZEの測定]
 メタクリル系樹脂組成物のHAZEは、ヘーズメーター(日本電色工業社製、機種名:NDH4000)を用い、JIS K 7136に準拠して測定した。なお測定には、メタクリル系樹脂組成物からなる試験片(縦50mm×横50mmの正方形状、厚さ3mm)を用いた。
[黄色度(YI)の測定]
 メタクリル系樹脂組成物の黄色度(YI)は、分光式色差計(日本電色工業(株)製、機種名:SE-7700)を用い、ASTM D1925に準拠して測定した。なお測定には、メタクリル系樹脂組成物からなる試験片(縦50mm×横50mmの正方形状、厚さ3mm)を用いた。
[メタクリル系樹脂組成物の光安定性評価]
 実施例及び比較例において製造したメタクリル系樹脂組成物の光安定性の指標として、光暴露試験前後の全光線透過率の変化(ΔTt)を用いた。
<光安定性試験>
 光安定性試験は、メタルハライドランプ(ダイプラ・ウィンテス(株)製、型式:MW-60W)及び光カットフィルタ(ダイプラ・ウィンテス(株)製、型式:KF-1)を備えたメタルウェザー超促進光安定性試験機(ダイプラ・ウィンテス(株)製、機種名:DW-R8PL-A)を用いて行った。具体的には、メタルウェザー超促進光安定性試験機の評価室内に、メタクリル系樹脂組成物からなる試験片(縦50mm×横50mmの正方形状、厚さ3mm)を設置し、メタルハライドランプから試験片に光を300時間照射した。UVの照射強度は、紫外線照度計(ウシオ電機(株)製、機種名:UVP-365-03)で測定した波長300~400nmにおける照射強度が、130mW/cmとなるように補正した。試験片には、メタルハライドランプによる可視光及びUVが照射される。メタルウェザー超促進光安定性試験機の評価室内は、温度63℃湿度50RH%の環境下となるように設定した。
<全光線透過率(Tt)の測定>
 メタクリル系樹脂組成物の全光線透過率(Tt)は、ヘーズメーター(日本電色工業社製、機種名:NDH4000)を用い、JIS K 7361-1に準拠して測定した。なお測定には、メタクリル系樹脂組成物からなる試験片(縦50mm×横50mmの正方形状、厚さ3mm)を用いた。光安定性試験前の試験片1点と、光暴露試験後の試験片1点について、それぞれ1回ずつ測定を行い、光安定性試験前後の測定値の変化を全光線透過率の変化(ΔTt)とした。
[実施例A1-1]
 成分A1としてイソ酪酸イソブチルを用い、試薬のMMA(水分濃度240ppm)39.96gに成分A1の0.0400gを添加してMMA溶液(A-1液)を調製した。前記A-1液における成分A1の濃度を表1に示す。
 次いで、試薬のMMA(水分濃度240ppm)19.80gにA-1液0.2000gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表2に示す。
 得られた単量体組成物を、25℃で14日間保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表2に示す。
[実施例A1-2]
 実施例A1-1と同様の方法でA-1液を調製した。
 次いで、試薬のMMA及びA-1液の量を表2に示す通り変更した以外は、実施例A1-1と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表2に示す。
 得られた単量体組成物を、実施例A1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表2に示す。
[実施例A1-3]
 成分A1としてイソ酪酸イソブチルを用い、試薬のMMA(水分濃度240ppm)39.96gに成分A1の0.0400gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表2に示す。
 得られた単量体組成物を、実施例A1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表2に示す。
[実施例A1-4]
 試薬のMMA及び成分A1の量を表2に示す通り変更した以外は、実施例A1-3と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表2に示す。
 得られた単量体組成物を、実施例A1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表2に示す。
[実施例A1-5、A1-6]
 成分A1として表1に示す化合物を用い、試薬のMMA及び成分A1の量を表1に示す通り変更した以外は、実施例A1-1と同様にしてA-1液を調製した。
 次いで、試薬のMMA及びA-1液の量を表2に示す通り変更した以外は、実施例A1-1と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表2に示す。
 得られた単量体組成物を、実施例A1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表2に示す。
[実施例A1-7、A1-8]
 成分A1として表2に示す化合物を用い、試薬のMMA及び成分A1の量を表2に示す通り変更した以外は、実施例A1-3と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表2に示す。
 得られた単量体組成物を、実施例A1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表2に示す。
[実施例A1-9]
 成分A1としてイソ酪酸イソブチルを用い、試薬のMMA(水分濃度240ppm)10.00gに成分A1の0.0210gを添加してMMA溶液(A-1液)を調製した。前記A-1液における成分A1の濃度を表1に示す。
 成分Bとして2,4-ジメチル-6-t-ブチルフェノールを用い、試薬のMMA(水分濃度240ppm)10.00gに成分Bの0.0228gを添加し、MMA溶液(B-1液)を調製した。前記B-1液における成分Bの濃度を表1に示す。
 次いで、試薬のMMA(水分濃度240ppm)40.02gにA-1液0.2019g及びB-1液0.1993gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表2に示す。
 得られた単量体組成物を、実施例A1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表2に示す。
[実施例A1-10]
 成分Aとして表1に示す化合物を用い、試薬のMMA及び成分A1の量を表1に示す通り変更した以外は、実施例A1-9と同様にしてA-1液を調製した。
 実施例A1-9と同様の方法でB-1液を調製した。
 次いで、試薬のMMA、A-1液及びB-1液の量を表2に示す通り変更した以外は、実施例A1-9と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表2に示す。
 得られた単量体組成物を、実施例A1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表2に示す。
[比較例A1-1]
 試薬のMMA(水分濃度240ppm)40.00gを、単量体組成物とし、実施例A1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表2に示す。
[比較例A1-2]
 成分A1としてイソ酪酸メチルを用い、試薬のMMA(水分濃度240ppm)10.08gに成分A1の0.0293gを添加してMMA溶液(A-1液)を調製した。前記A-1液における成分A1の濃度を表1に示す。
 次いで、試薬のMMA(水分濃度240ppm)40.06gにA-1液0.2123gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表2に示す。
 得られた単量体組成物を、実施例A1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表2に示す。
[比較例A1-3]
 実施例A1-13と同様の方法でB-1液を調製した。
 次いで、試薬のMMA(水分濃度240ppm)40.03gにB-1液0.2213gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表2に示す。
 得られた単量体組成物を、実施例A1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表2に示す。
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
 表2に示すように、単量体組成物が規定の成分A1を含む実施例A1-1~A1-15は、保管後の単量体組成物においてMMA二量体及びピルビン酸メチルの両方の生成が抑制されており、保管中の品質安定性が高いと言える。
[実施例A2-1]
 冷却管、温度計及び撹拌機を備えた反応器(重合釜)にMMA100部を供給し、撹拌しながら窒素ガスでバブリングした後、加熱を開始した。反応器の内温が80℃になった時点で、ラジカル重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)を0.12部添加し、さらに反応器の内温が100℃になるまで加熱した後、9分間保持した。次いで、反応器の内温が室温になるまで冷却してシラップを得た。シラップの総質量に対し、シラップ中の重合体の濃度は20質量%であった。
 成分A1としてイソ吉草酸メチルを用い、得られたシラップ100部に対して、成分A1の0.01部、ラジカル重合開始剤としてt-ヘキシルペルオキシピバレート0.3部を添加して、重合性組成物を得た。前記重合性組成物におけるMMA及び成分A1の濃度を表3に示す。
 得られた重合性組成物を、対向する2枚のSUS板の間のSUS板端部に軟質樹脂製ガスケットを配置して設けられた、空隙間隔4.1mmの空間に流し込み、80℃で45分、次いで130℃で30分加熱して硬化させ、メタクリル系樹脂組成物を得た。
 次いで、得られたメタクリル系樹脂組成物をSUS板ごと冷却した後に、SUS板を取り除き、厚さ3mmの板状の樹脂成形体を得た。前記樹脂成形体はメタクリル系樹脂組成物のみからなる成形体であり、メタクリル系樹脂組成物及び樹脂成形体のいずれにも該当する。得られた樹脂成形体の特性の評価結果を表3に示す。なお、表3中、「-」は成分Aを添加しなかったことを意味する。
[実施例A2-2~A2-3]
 成分A1の添加量を表1に記載の通り変更した以外は、実施例A2-1と同様の方法で重合性組成物を得た。前記重合性組成物におけるMMA及び成分Aの濃度を表3に示す。
 得られた重合性組成物を用い、実施例A2-1と同様の方法でメタクリル系樹脂組成物及び樹脂成形体を製造した。前記樹脂成形体の評価結果を表3に示す。
[実施例A2-4~A2-11]
 成分A1として表1に示す化合物を用い、成分A1の添加量を表1に記載の通り変更した以外は、実施例A2-1と同様の方法で重合性組成物を得た。前記重合性組成物におけるMMA及び成分A1の濃度を表3に示す。
 得られた重合性組成物を用い、実施例A2-1と同様の方法でメタクリル系樹脂組成物及び樹脂成形体を製造した。前記樹脂成形体の評価結果を表3に示す。
[比較例A2-1]
 成分A1を用いなかった以外は、実施例A2-1と同様の方法で重合性組成物を得た。前記重合性組成物におけるMMAの濃度を表3に示す。
 得られた重合性組成物を用い、実施例A2-1と同様の方法でメタクリル系樹脂組成物及び樹脂成形体を製造した。前記樹脂成形体の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000052
 表3に示すように、実施例A2-1~A2-11において製造された、特定量の成分A1を含有するメタクリル系樹脂組成物は、透明性及び耐熱性を維持しつつ、比較例A2-1に対して優れた光安定性を示した。ΔTtの値から、全光線透過率の光安定性が優れることが示された。なおメタクリル系樹脂組成物は、実施例A1-1~A1-10において得られた単量体組成物を含む重合性組成物を重合して製造することもできる。
《第2実施形態についての試験》
[化合物の名称]
 実施例及び比較例で使用した化合物の名称は、以下の通りである。
・クロトン酸メチル(東京化成工業(株)製)
・イソプロペニルメチルケトン(東京化成工業(株)製)
・3,3-ジメチルアクリル酸メチル(東京化成工業(株)製)
・メタクリルアミド(東京化成工業(株)製)
 単量体組成物の分析、単量体組成物の品質安定性評価、メタクリル系樹脂組成物の分析、メタクリル系樹脂組成物の耐熱性評価、HAZEの測定、及び黄色度(YI)の測定、メタクリル系樹脂組成物の光安定性評価、光安定性試験、全光線透過率(Tt)の測定の方法については、第1実施形態についての試験と同様である。
[実施例B1-1]
 成分A2としてクロトン酸メチルを用い、試薬のMMA(水分濃度240ppm)39.96gに成分A2の0.0400gを添加してMMA溶液(A-1液)を調製した。前記A-1液における成分A2の濃度を表4に示す。
 次いで、試薬のMMA(水分濃度240ppm)19.80gにA-1液0.2000gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表5に示す。
 得られた単量体組成物を、25℃で14日間保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表5に示す。
[実施例B1-2]
 実施例B1-1と同様の方法でA-1液を調製した。
 次いで、試薬のMMA及びA-1液の量を表5に示す通り変更した以外は、実施例B1-1と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表5に示す。
 得られた単量体組成物を、実施例B1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表5に示す。
[実施例B1-3]
 成分A2としてクロトン酸メチルを用い、試薬のMMA(水分濃度240ppm)39.96gに成分A2の0.0400gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表5に示す。
 得られた単量体組成物を、実施例B1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表5に示す。
[実施例B1-4]
 試薬のMMA及び成分A2の量を表5に示す通り変更した以外は、実施例B1-3と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表5に示す。
 得られた単量体組成物を、実施例B1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表5に示す。
[実施例B1-5、B1-6、B1-9、B1-10、B1-13]
 成分A2として表4に示す化合物を用い、試薬のMMA及び成分A2の量を表4に示す通り変更した以外は、実施例B1-1と同様にしてA-1液を調製した。
 次いで、試薬のMMA及びA-1液の量を表5に示す通り変更した以外は、実施例B1-1と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表5に示す。
 得られた単量体組成物を、実施例B1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表5に示す。
[実施例B1-7、B1-8、B1-11、B1-12]
 成分A2として表5に示す化合物を用い、試薬のMMA及び成分A2の量を表5に示す通り変更した以外は、実施例B1-3と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表5に示す。
 得られた単量体組成物を、実施例B1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表2に示す。
[実施例B1-14]
 成分A2としてクロトン酸メチルを用い、試薬のMMA(水分濃度240ppm)10.02gに成分A2の0.0207gを添加してMMA溶液(A-1液)を調製した。前記A-1液における成分A2の濃度を表4に示す。
 成分Bとして2,4-ジメチル-6-t-ブチルフェノールを用い、試薬のMMA(水分濃度240ppm)10.00gに成分Bの0.0228gを添加し、MMA溶液(B-1液)を調製した。前記B-1液における成分Bの濃度を表4に示す。
 次いで、試薬のMMA(水分濃度240ppm)20.00gにA-1液0.1050g及びB-1液0.1031gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表5に示す。
 得られた単量体組成物を、実施例B1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表5に示す。
[実施例B1-15~B1-16]
 成分A2として表4に示す化合物を用い、試薬のMMA及び成分A2の量を表4に示す通り変更した以外は、実施例B1-14と同様にしてA-1液を調製した。
 次いで、試薬のMMA及び成分Bの量を表4に示す通り変更した以外は、実施例B1-14と同様の方法でB-1液を調製した。
 次いで、試薬のMMA、A-1液及びB-1液の量を表5に示す通り変更した以外は、実施例B1-14と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表5に示す。
 得られた単量体組成物を、実施例B1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表5に示す。
[比較例B1-1]
 試薬のMMA(水分濃度240ppm)40.00gを、単量体組成物とし、実施例B1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表5に示す。
[比較例B1-2]
 実施例B1-14と同様の方法でB-1液を調製した。
 次いで、試薬のMMA(水分濃度240ppm)40.03gにB-1液0.2213gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表5に示す。
 得られた単量体組成物を、実施例B1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表5に示す。
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
 表5に示すように、単量体組成物が規定の成分A2を含む実施例B1-1~B1-16は、保管後の単量体組成物においてMMA二量体及びピルビン酸メチルの両方の生成が抑制されており、保管中の品質安定性が高いと言える。
[実施例B2-1]
 冷却管、温度計及び撹拌機を備えた反応器(重合釜)にMMA100部を供給し、撹拌しながら窒素ガスでバブリングした後、加熱を開始した。反応器の内温が80℃になった時点で、ラジカル重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)を0.12部添加し、さらに反応器の内温が100℃になるまで加熱した後、9分間保持した。次いで、反応器の内温が室温になるまで冷却してシラップを得た。シラップの総質量に対し、シラップ中の重合体の濃度は20質量%であった。
 成分A2としてクロトン酸メチルを用い、得られたシラップ100部に対して、成分A2の0.001部、ラジカル重合開始剤としてt-ヘキシルペルオキシピバレート0.3部を添加して、重合性組成物を得た。前記重合性組成物におけるMMA及び成分A2の濃度を表6に示す。
 得られた重合性組成物を、対向する2枚のSUS板の間のSUS板端部に軟質樹脂製ガスケットを配置して設けられた、空隙間隔4.1mmの空間に流し込み、80℃で45分、次いで130℃で30分加熱して硬化させ、メタクリル系樹脂組成物を得た。
 次いで、得られたメタクリル系樹脂組成物をSUS板ごと冷却した後に、SUS板を取り除き、厚さ3mmの板状の樹脂成形体を得た。前記樹脂成形体はメタクリル系樹脂組成物のみからなる成形体であり、メタクリル系樹脂組成物及び樹脂成形体のいずれにも該当する。得られた樹脂成形体の特性の評価結果を表6に示す。なお、表6中、「-」は成分A2を添加しなかったことを意味する。
[実施例B2-2~B2-4]
 成分A2の添加量を表6に記載の通り変更した以外は、実施例B2-1と同様の方法で重合性組成物を得た。前記重合性組成物におけるMMA及び成分A2の濃度を表6に示す。
 得られた重合性組成物を用い、実施例B2-1と同様の方法でメタクリル系樹脂組成物及び樹脂成形体を製造した。前記樹脂成形体の評価結果を表6に示す。
[実施例B2-5~B2-13]
 成分A2として表6に示す化合物を用い、成分A2の添加量を表6に記載の通り変更した以外は、実施例B2-1と同様の方法で重合性組成物を得た。前記重合性組成物におけるMMA及び成分A2の濃度を表6に示す。
 得られた重合性組成物を用い、実施例B2-1と同様の方法でメタクリル系樹脂組成物及び樹脂成形体を製造した。前記樹脂成形体の評価結果を表6に示す。
[比較例B2-1]
 成分A2を用いなかった以外は、実施例B2-1と同様の方法で重合性組成物を得た。前記重合性組成物におけるMMAの濃度を表6に示す。
 得られた重合性組成物を用い、実施例B2-1と同様の方法でメタクリル系樹脂組成物及び樹脂成形体を製造した。前記樹脂成形体の評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000055
 表6に示すように、実施例B2-1~B2-13において製造された、特定量の成分A2を含有するメタクリル系樹脂組成物は、透明性及び耐熱性を維持しつつ、比較例B2-1に対して優れた光安定性を示した。なおメタクリル系樹脂組成物は、実施例B1-1~B1-21において得られた単量体組成物を含む重合性組成物を重合して製造することもできる。
《第3実施形態についての試験》
[化合物の略号]
 実施例及び比較例で使用した化合物の略号は、以下の通りである。
・MePy:2,3,5,6-テトラメチルピラジン(東京化成工業(株)製)
・MePy:2,3,5-トリメチルピラジン(東京化成工業(株)製)
・IMeOPy:2-イソプロピル-3-メトキシピラジン(東京化成工業(株)製)
・Py:ピラジン(東京化成工業(株)製)
・MeOPy:2-メトキシピラジン(東京化成工業(株)製)
・DMePy:2,5-ジメチルピラジン(東京化成工業(株)製)
・DBPL:2,4-ジメチル-6-t-ブチルフェノール(東京化成工業(株)製)
・MePL:4-メトキシフェノール(富士フイルム和光純薬(株)製)
・HQ:ヒドロキノン(富士フイルム和光純薬(株)製)
・PT:フェノチアジン(東京化成工業(株)製)
・HTMPO:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル(東京化成工業(株)製)
・DPA:N,N-ジフェニルアミン(東京化成工業(株)製)
・NDPA:N-ニトロソジフェニルアミン(東京化成工業(株)製)
・PhP:トリフェニルフォスファイト(東京化成工業(株)製)
・MIB:イソ酪酸メチル(東京化成工業(株)製)
・MPr:プロピオン酸メチル(富士フイルム和光純薬(株)製)
・MA:アクリル酸メチル(東京化成工業(株)製)
・EMA:メタクリル酸エチル(東京化成工業(株)製)
 単量体組成物の分析、量体組成物の品質安定性評価、及びメタクリル系樹脂組成物の分析の方法は、第1実施形態についての試験と同様である。
[メタクリル系樹脂組成物の長期熱安定性評価]
 実施例及び比較例において製造したメタクリル系樹脂組成物の長期熱安定性の指標として、長期熱安定試験前後の全光線透過率の変化(ΔTt)及び黄色度の変化(ΔYI)を用いた。長期熱安定試験には、各実施例及び比較例で作製した板状の樹脂成形体から切り出した、メタクリル系樹脂組成物からなる試験片を用いた。
<長期熱安定試験>
 長期熱安定試験は、メタクリル系樹脂組成物からなる試験片(縦50mm×横100mmの長方形状、厚さ3mm)をギアオーブン内に設置し、100℃、504時間の条件で加熱処理することにより実施した。
<全光線透過率(Tt)の測定>
 メタクリル系樹脂組成物の全光線透過率(Tt)は、ヘーズメーター(日本電色工業社製、機種名:NDH4000)を用い、JIS K 7361-1に準拠して測定した。なお測定には、メタクリル系樹脂組成物からなる試験片(縦50mm×横100mmの正方形状、厚さ3mm)を用いた。長期熱安定性試験前の試験片1点と、試験後の試験片1点について、それぞれ1回ずつ測定を行い、長期熱安定性試験前後の測定値の変化を全光線透過率の変化(ΔTt)とした。
<黄色度(YI)の測定>
 メタクリル系樹脂組成物の黄色度(YI)は、分光式色差計(日本電色工業(株)製、機種名:SE-7700)を用い、ASTM D1925に準拠して測定した。なお測定には、メタクリル系樹脂組成物からなる試験片(縦50mm×横100mmの正方形状、厚さ3mm)を用いた。長期熱安定性試験前の試験片1点と、試験後の試験片1点について、それぞれ1回ずつ測定を行い、長期熱安定性試験前後の測定値の変化を黄色度の変化(ΔYI)とした。
[実施例C1-1]
 成分A3として2,3,5,6-テトラメチルピラジン(MePy)を用い、試薬のMMA(水分濃度240ppm)10.02gに成分A3の0.0214gを添加してMMA溶液(A-1液)を調製した。前記A-1液における成分A3の濃度を表7に示す。
 次いで、試薬のMMA(水分濃度240ppm)20.0016gにA-1液0.1025gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表9に示す。
 得られた単量体組成物を、25℃で14日間保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表8に示す。
[実施例C1-2]
 成分A3として2,3,5,6-テトラメチルピラジン(MePy)を用い、試薬のMMA(水分濃度240ppm)39.9600gに成分A3の0.0400gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表8に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表8に示す。
[実施例C1-3]
 試薬のMMA及び成分A3の量を表8に示す通り変更した以外は、実施例C1-2と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表8に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。前記保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表8に示す。
[実施例C1-4、C1-5、C1-6、C1-9]
 成分A3として表7に示す化合物を用い、試薬のMMA及び成分A3の量を表7に示す通り変更した以外は、実施例C1-1と同様にしてA-1液を調製した。
 次いで、試薬のMMA及びA-1液の量を表8に示す通り変更した以外は、実施例C1-1と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表8に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表8に示す。
[実施例C1-7、C1-8]
 成分A3として表8に示す化合物を用い、試薬のMMA及び成分A3の量を表8に示す通り変更した以外は、実施例C1-2と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表8に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表8に示す。
[実施例C1-10]
 実施例C1-1と同様の方法でA-1液を調製した。
 成分B3として2,4-ジメチル-6-t-ブチルフェノール(DBPL)を用い、試薬のMMA(水分濃度240ppm)40.0221gに成分B3の0.0829gを添加し、MMA溶液(B-1液)を調製した。前記B-1液における成分B3の濃度を表7に示す。
 次いで、試薬のMMA(水分濃度240ppm)20.0861gにA-1液0.1017g及びB-1液0.1016gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表8に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表8に示す。
[実施例C1-11~C1-15]
 成分A3として表7に示す化合物を用い、試薬のMMA及び成分A3の量を表7に示す通り変更した以外は、実施例C1-1と同様にしてA-1液を調製した。
 実施例C1-10と同様の方法でB-1液を調製した。
 次いで、試薬のMMA、A-1液及びB-1液の量を表8に示す通り変更した以外は、実施例C1-10と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表8に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表8に示す。
[実施例C1-16~C1-18]
 実施例C1-1と同様の方法でA-1液を調製した。
 成分B3として表7に示す化合物を用い、試薬のMMA及び成分B3の量を表7に示す通り変更した以外は、実施例C1-10と同様にしてB-1液を調製した。
 次いで、試薬のMMA、A-1液及びB-1液の量を表8に示す通り変更した以外は、実施例C1-10と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表8に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表8に示す。
[実施例C1-19、C1-22]
 実施例C1-1と同様の方法でA-1液を調製した。
 実施例C1-10と同様の方法でB-1液を調製した。
 次いで、試薬のMMA、A-1液及びB-1液の量を表8及び表10に示す通り変更した以外は、実施例C1-10と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表8及び表10に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表8及び表10に示す。
[実施例C1-20]
 実施例C1-10と同様の方法でB-1液を調製した。
 次いで、成分A3として2,3,5,6-テトラメチルピラジン(MePy)を用い、試薬のMMA(水分濃度240ppm)20.0176gに成分A3の0.0210g、B-1液0.1021gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表10に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表10に示す。
[実施例C1-21]
 実施例C1-10と同様の方法でB-1液を調製した。
 次いで、試薬のMMA、成分A3及びB-1液の量を表10に示す通り変更した以外は、実施例C1-20と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表10に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表10に示す。
[実施例C1-23、C1-24]
 実施例C1-1と同様の方法でA-1液を調製した。
 試薬のMMA及び成分B3の量を表9に示す通り変更した以外は、実施例C1-10と同様にしてB-1液を調製した。
 次いで、試薬のMMA、A-1液及びB-1液の量を表10に示す通り変更した以外は、実施例C1-10と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表10に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表10に示す。
[実施例C1-25]
 実施例C1-1と同様の方法でA-1液を調製した。
 実施例C1-10と同様の方法でB-1液を調製した。
 次いで、試薬のMMA(水分濃度240ppm)20.0017gにA-1液0.0980g、B-1液0.1014g、純水0.2940gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表10に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表10に示す。
[実施例C1-26~C1-29]
 実施例C1-1と同様の方法でA-1液を調製した。
 成分B3として表9に示す化合物を用い、試薬のMMA及び成分B3の量を表9に示す通り変更した以外は、実施例C1-10と同様にしてB-1液を調製した。
 次いで、試薬のMMA、A-1液及びB-1液の量を表10に示す通り変更した以外は、実施例C1-10と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表10に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表10に示す。
[実施例C1-30~C1-36]
 成分A3として表9に示す化合物を用い、試薬のMMA及び成分A3の量を表10に示す通り変更した以外は、実施例C1-1と同様にしてA-1液を調製した。
 成分B3として表9に示す化合物を用い、試薬のMMA及び成分B3の量を表9に示す通り変更した以外は、実施例C1-10と同様にしてB-1液を調製した。
 次いで、試薬のMMA、A-1液及びB-1液の量を表10に示す通り変更した以外は、実施例C1-10と同様にして単量体組成物を調製した。前記単量体組成物における各成分の濃度を表10に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表10に示す。
[比較例C1-1]
 試薬のMMA(水分濃度240ppm)40.00gを、単量体組成物とし、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表10に示す。
[比較例C1-2]
 試薬のMMA及び成分B3の量を表8に示す通り変更した以外は、実施例C1-10と同様にしてB-1液を調製した。
 次いで、試薬のMMA(水分濃度240ppm)40.0273gにB-1液0.2213gを添加し、単量体組成物を調製した。前記単量体組成物における各成分の濃度を表10に示す。
 得られた単量体組成物を、実施例C1-1と同様に保管した。保管後の単量体組成物におけるMMA二量体及びピルビン酸メチルの生成量を表10に示す。
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
 表9及び表10に示すように、単量体組成物が成分A3を含む実施例C1-1~C1-36は、比較例C1-1~C1-2と保管後の単量体組成物においてMMA二量体の生成が抑制されており、保管中の品質安定性が高いと言える。単量体組成物が成分A3を含む実施例C1-1~C1-36はピルビン酸メチルの生成も抑制される傾向にある。
[実施例C2-1]
 冷却管、温度計及び撹拌機を備えた反応器(重合釜)にMMA100部を供給し、撹拌しながら窒素ガスでバブリングした後、加熱を開始した。反応器の内温が80℃になった時点で、ラジカル重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)を0.12部添加し、さらに反応器の内温が100℃になるまで加熱した後、9分間保持した。次いで、反応器の内温が室温になるまで冷却してシラップを得た。シラップの総質量に対し、シラップ中の重合体の濃度は20質量%であった。
 成分A3として2,3,5,6-テトラメチルピラジン(MePy)を用い、得られたシラップ100部に対して、成分A3の0.001部、ラジカル重合開始剤としてt-ヘキシルペルオキシピバレート0.3部を添加して、重合性組成物を得た。前記重合性組成物におけるMMA及び成分A3の濃度を表11に示す。
 得られた重合性組成物を、対向する2枚のSUS板の間のSUS板端部に軟質樹脂製ガスケットを配置して設けられた、空隙間隔4.1mmの空間に流し込み、80℃で45分、次いで130℃で30分加熱して硬化させ、メタクリル系樹脂組成物を得た。
 次いで、得られたメタクリル系樹脂組成物をSUS板ごと冷却した後に、SUS板を取り除き、厚さ3mmの板状の樹脂成形体を得た。前記樹脂成形体はメタクリル系樹脂組成物のみからなる成形体であり、メタクリル系樹脂組成物及び樹脂成形体のいずれにも該当する。得られた樹脂成形体の特性の評価結果を表12に示す。
 なお、表11中、「-」は成分A3及び後述の成分B3を添加しなかったことを意味する。
[実施例C2-2~C2-4]
 成分A3として表11に示す化合物を用い、成分A3の添加量を表11に記載の通り変更した以外は、実施例C2-1と同様の方法で重合性組成物を得た。前記重合性組成物におけるMMA及び成分A3の濃度を表11に示す。
 得られた重合性組成物を用い、実施例C2-1と同様の方法でメタクリル系樹脂組成物及び樹脂成形体を製造した。前記樹脂成形体の評価結果を表12に示す。
[実施例C2-5]
 実施例C2-1と同様の方法でシラップを得た。
 成分A3として2,3,5,6-テトラメチルピラジン(MePy)、成分B3としてイソ酪酸メチル(MIB)を用い、得られたシラップ100部に対して、成分A3の0.001部を添加したのち成分B3が0.005部となるように調製した。さらにラジカル重合開始剤としてt-ヘキシルペルオキシピバレート0.3部を添加して、重合性組成物を得た。前記重合性組成物におけるMMA及び成分A3の濃度を表11に示す。
 得られた重合性組成物を用い、実施例C2-1と同様の方法でメタクリル系樹脂組成物及び樹脂成形体を製造した。前記樹脂成形体の評価結果を表12に示す。
[実施例C2-6]
 実施例C2-5と同様の方法でシラップを得た。
 成分A3として2,3,5,6-テトラメチルピラジン(MePy)、成分B3としてプロピオン酸メチル(MPr)を用い、得られたシラップ100部に対して、成分A3の0.001部を添加したのち、成分B3が0.0015部となるように調製した。さらにラジカル重合開始剤としてt-ヘキシルペルオキシピバレート0.3部を添加して、重合性組成物を得た。前記重合性組成物におけるMMA及び成分A3の濃度を表11に示す。
 得られた重合性組成物を用い、実施例C2-1と同様の方法でメタクリル系樹脂組成物及び樹脂成形体を製造した。前記樹脂成形体の評価結果を表12に示す。
[実施例C2-7]
 実施例C2-5と同様の方法でシラップを得た。
 成分A3として2,3,5,6-テトラメチルピラジン(MePy)、成分B3としてアクリル酸メチル(MA)を用い、得られたシラップ100部に対して、成分A3の0.001部を添加したのち、成分B3が0.009部となるように調製した。さらにラジカル重合開始剤としてt-ヘキシルペルオキシピバレート0.3部を添加して、重合性組成物を得た。前記重合性組成物におけるMMA及び成分A3の濃度を表11に示す。
 得られた重合性組成物を用い、実施例C2-1と同様の方法でメタクリル系樹脂組成物及び樹脂成形体を製造した。前記樹脂成形体の評価結果を表12に示す。
[比較例C2-1]
 成分A3を用いなかった以外は、実施例C2-1と同様の方法で重合性組成物を得た。前記重合性組成物におけるMMAの濃度を表11に示す。
 得られた重合性組成物を用い、実施例C2-1と同様の方法でメタクリル系樹脂組成物及び樹脂成形体を製造した。前記樹脂成形体の評価結果を表12に示す。
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
 表12に示すように、実施例C2-1~C2-7において製造された、特定量の成分A3を含有するメタクリル系樹脂組成物は、透明性及び耐熱性を維持しつつ、比較例C2-1に対して優れた長期熱安定性を示した。なおメタクリル系樹脂組成物は、実施例C1-1~C1-36において得られた単量体組成物を含む重合性組成物を重合して製造することもできる。
 第1実施形態及び第2実施形態に係る発明によれば、光安定性に優れたメタクリル系樹脂の原料等に用いることができる単量体組成物を長期間安定に保管することができ、さらにメタクリル系樹脂組成物及び樹脂組成物を得ることができ、工業的に有用である。
 第3実施形態に係る発明によれば、長期熱安定性に優れたメタクリル系樹脂の原料等に用いることができる単量体組成物を長期間安定に保管することができ、さらにメタクリル系樹脂組成物及び樹脂組成物を得ることができ、工業的に有用である。

Claims (80)

  1.  メタクリル酸メチルと、下記式(1-1)で表されるα水素を有するエステル化合物(成分A1)、下記式(2-1)で表されるα,β-不飽和カルボニル化合物(成分A21)、下記式(2-2)で表されるα,β-不飽和カルボン酸エステル(成分A22)、及び下記式(3-1)で表されるピラジン化合物(成分A3)から選ばれる1種の化合物(成分A)と、を含む、単量体組成物であって、
     前記成分A1を含み、前記単量体組成物の総質量に対する前記成分A1の濃度をXA1(質量ppm)としたとき、前記XA1は5~10000質量ppmであり、
     前記成分A21を含み、前記単量体組成物の総質量に対する前記成分A21の濃度をXA21(質量ppm)としたとき、前記XA21が1~10000質量ppmであり、
     前記成分A22を含み、前記単量体組成物の総質量に対する前記成分A22の濃度をXA22(質量ppm)としたとき、前記XA22が1~10000質量ppmであり、
     前記成分A3を含み、前記単量体組成物の総質量に対する前記成分A3の濃度をXA3(質量ppm)としたとき、前記XA3が1質量ppm以上である、単量体組成物。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1-1)中、R11及びR12はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R13は炭素原子数1~5のアルキル基である。また、R11~R13のいずれか1つ以上は、炭素原子数2~5のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (前記式(2-1)中、R21、R22及びR23はそれぞれ独立して水素原子又は炭素原子数1~5のアルキル基であり、R24は炭素原子数1~5のアルキル基又はアミノ基である。)
    Figure JPOXMLDOC01-appb-C000003
    (前記式(2-2)中、R25、R26及びR27はそれぞれ独立して水素原子又は炭素原子数1~10のアルキル基であり、R28は炭素原子数1~10のアルキル基である。また、R25及びR26のいずれか1つ以上は、炭素原子数1~10のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000004
    (前記式(3-1)中、R31、R32、R33、及びR34はそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~6のアルコキシ基である。)
  2.  前記成分Aが前記成分A1である、請求項1に記載の単量体組成物。
  3.  前記XA1が10~5000質量ppmである、請求項2に記載の単量体組成物。
  4.  前記成分A1の分子量が200以下である、請求項2に記載の単量体組成物。
  5.  前記式(1-1)中、R11及びR12がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R13がメチル基、イソブチル基又はイソアミル基である、請求項2に記載の単量体組成物。
  6.  前記成分A1がイソ酪酸イソブチル、イソ吉草酸メチル及びイソ酪酸イソアミルからなる群から選択される少なくとも1種である、請求項2に記載の単量体組成物。
  7.  前記成分Aが前記成分A21である、請求項1に記載の単量体組成物。
  8.  前記XA21が10~5000質量ppmである、請求項7に記載の単量体組成物。
  9.  前記成分A21の分子量が200以下である、請求項7に記載の単量体組成物。
  10.  前記式(2-1)中、R21、R22及びR23がそれぞれ独立して水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基であり、R24がメチル基又はアミノ基である、請求項7に記載の単量体組成物。
  11.  前記成分A21がイソプロペニルメチルケトン及びメタクリルアミドからなる群から選択される少なくとも1種である、請求項7に記載の単量体組成物。
  12.  前記成分Aが前記成分A22である、請求項1に記載の単量体組成物。
  13.  前記XA22が10~5000質量ppmである、請求項12に記載の単量体組成物。
  14.  前記成分A22の分子量が200以下である、請求項12に記載の単量体組成物。
  15.  前記式(2-2)中、R25、R26及びR27がそれぞれ独立して水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基であり、R28がメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、又はイソペンチル基である、請求項12に記載の単量体組成物。
  16.  前記成分A22がクロトン酸メチル及び3,3-ジメチルアクリル酸メチルからなる群から選択される少なくとも1種である、請求項12に記載の単量体組成物。
  17.  前記成分Aが前記成分A3である、請求項1に記載の単量体組成物。
  18.  前記XA3が1~10000質量ppmである、請求項17に記載の単量体組成物。
  19.  前記XA3が1~1000質量ppmである、請求項17に記載の単量体組成物。
  20.  前記成分A3の分子量が200以下である、請求項17に記載の単量体組成物。
  21.  前記式(3-1)中、R31、R32、R33、及びR34がそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基である、請求項17に記載の単量体組成物。
  22.  前記式(3-1)中、R31、R32、R33、及びR34がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基である、請求項17に記載の単量体組成物。
  23.  前記成分A3が2,3,5,6-テトラメチルピラジン、2,3,5-トリメチルピラジンからなる群から選択される少なくとも1種である、請求項17に記載の単量体組成物。
  24.  さらに重合禁止剤(成分B1)を含む、請求項1に記載の単量体組成物。
  25.  前記単量体組成物の総質量に対する前記成分B1の濃度をXB1(質量ppm)としたとき、前記XB1が1~1000質量ppmである、請求項24に記載の単量体組成物。
  26.  前記単量体組成物の総質量に対する前記成分A1の濃度をXA1(質量ppm)、前記単量体組成物の総質量に対する前記成分B1の濃度をXB1(質量ppm)としたとき、XB1/XA1が0.005~7である、請求項24に記載の単量体組成物。
  27.  前記単量体組成物の総質量に対する前記成分B1の濃度をXB1(質量ppm)としたとき、前記XB1が1~2000質量ppmである、請求項24に記載の単量体組成物。
  28.  前記単量体組成物の総質量に対する前記成分A3の濃度をXA3(質量ppm)、前記単量体組成物の総質量に対する前記成分B1の濃度をXB1(質量ppm)としたとき、XB1/XA3が0.005~1000である、請求項24に記載の単量体組成物。
  29.  前記成分B1が、フェノール系化合物、キノン系化合物、ニトロベンゼン系化合物、N-オキシル系化合物、アミン系化合物、リン含有化合物、硫黄含有化合物、鉄含有化合物、銅含有化合物及びマンガン含有化合物からなる群から選択される少なくとも1種の重合禁止剤である、請求項24に記載の単量体組成物。
  30.  前記成分B1が、フェノール系化合物、N-オキシル系化合物、アミン系化合物及び硫黄含有化合物からなる群から選択される少なくとも1種の重合禁止剤である、請求項24に記載の単量体組成物。
  31.  さらに下記式(3-2)で表されるα水素を有するエステル化合物(成分B2)を含む、請求項17に記載の単量体組成物。
    Figure JPOXMLDOC01-appb-C000005
    (前記式(3-2)中、R35及びR36はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R37は炭素原子数1~5のアルキル基である。)
  32.  前記単量体組成物の総質量に対する前記成分B2の濃度をXB2(質量ppm)としたとき、XB2が5~10000質量ppmである、請求項31に記載の単量体組成物。
  33.  前記単量体組成物の総質量に対する前記成分B2の濃度をXB2(質量ppm)としたとき、XB2/XA3が0.005~1000である請求項31に記載の単量体組成物。
  34.  前記式(3-2)中、R35及びR36がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R37がメチル基、エチル基、n-プロピル基又はイソプロピル基である、請求項31に記載の単量体組成物。
  35.  さらに下記式(3-3)で表されるα,β-不飽和カルボニル化合物(成分B3)を含む、請求項17に記載の単量体組成物。
    Figure JPOXMLDOC01-appb-C000006
    (前記式(3-3)中、R38、R39及びR40はそれぞれ独立して、水素原子又は炭素原子数1~10のアルキル基であり、R41は炭素原子数1~10のアルキル基である。)
  36.  前記成分B3の濃度をXB3(質量ppm)としたとき、XB3が5~10000質量ppmである、請求項35に記載の単量体組成物。
  37.  前記成分B3の濃度をXB3(質量ppm)としたとき、XB3/XA3が0.005~1000である、請求項35に記載の単量体組成物。
  38.  前記式(3-3)中、R38、R39及びR40がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R41がメチル基、エチル基、n-プロピル基又はイソプロピル基である、請求項35に記載の単量体組成物。
  39.  前記単量体組成物の総質量に対する前記メタクリル酸メチルの濃度をXM(質量%)としたとき、前記XMが85質量%以上である、請求項1に記載の単量体組成物。
  40.  アクリル酸エステルをさらに含有する、請求項1に記載の単量体組成物。
  41.  前記アクリル酸エステルが、アクリル酸メチル、アクリル酸エチル、及びアクリル酸n-ブチルからなる群より選択される少なくとも1種である、請求項40に記載の単量体組成物。
  42.  スチレンをさらに含有する、請求項1に記載の単量体組成物。
  43.  請求項1に記載の単量体組成物を含む重合性組成物をラジカル重合する工程を含む、メタクリル系樹脂組成物の製造方法。
  44.  請求項1に記載の単量体組成物の重合体を含む、メタクリル系樹脂組成物。
  45.  メタクリル系重合体と、下記式(1-1)で表されるα水素を有するエステル化合物(成分A1)、下記式(2-1)で表されるα,β-不飽和カルボニル化合物(成分A21)、下記式(2-2)で表されるα,β-不飽和カルボン酸エステル(成分A22)、及び下記式(3-1)で表されるピラジン化合物(成分A3)から選ばれる1種の化合物(成分A)と、を含む、メタクリル系樹脂組成物であって、
     前記成分A1を含み、前記メタクリル系樹脂組成物の総質量に対する前記成分A1の濃度をYA1(質量ppm)としたとき、前記YA1が5~10000質量ppmであり、
     前記成分A21を含み、前記メタクリル系樹脂組成物の総質量に対する前記成分A21の濃度をYA21(質量ppm)としたとき、前記YA21が0.1~4000質量ppmであり、
     前記成分A22を含み、前記メタクリル系樹脂組成物の総質量に対する前記成分A22の濃度をYA22(質量ppm)としたとき、前記YA22が1~10000質量ppmであり、
     前記成分A3を含み、前記メタクリル系樹脂組成物の総質量に対する前記成分A3の濃度をYA3(質量ppm)としたとき、前記XA3が1質量ppm以上である、メタクリル系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007
    (前記式(1-1)中、R11及びR12はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R13は炭素原子数1~5のアルキル基である。また、R11~R13のいずれか1つ以上は、炭素原子数2~5のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000008
    (前記式(2-1)中、R21、R22及びR23はそれぞれ独立して水素原子又は炭素原子数1~5のアルキル基であり、R24は炭素原子数1~5のアルキル基又はアミノ基である。)
    Figure JPOXMLDOC01-appb-C000009
    (前記式(2-2)中、R25、R26及びR27はそれぞれ独立して水素原子又は炭素原子数1~10のアルキル基であり、R28は炭素原子数1~10のアルキル基である。また、R25およびR26のいずれか1つ以上は、炭素原子数1~10のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000010
    (前記式(3-1)中、R31、R32、R33、及びR34はそれぞれ独立して、水素原子、炭素原子数1~5のアルキル基又は炭素原子数1~6のアルコキシ基である。)
  46.  前記成分Aが前記成分A1である、請求項45に記載のメタクリル系樹脂組成物。
  47.  前記YA1が10~5000質量ppmである、請求項46に記載のメタクリル系樹脂組成物。
  48.  前記式(1-1)中、R11及びR12がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R13がメチル基、イソブチル基又はイソアミル基である、請求項46に記載のメタクリル系樹脂組成物。
  49.  前記成分A1がイソ酪酸イソブチル、イソ吉草酸メチル及びイソ酪酸イソアミルからなる群から選択される少なくとも1種である、請求項46に記載のメタクリル系樹脂組成物。
  50.  前記成分Aが前記成分A21である、請求項45に記載のメタクリル系樹脂組成物。
  51.  前記YA21が1~4000質量ppmである、請求項50に記載のメタクリル系樹脂組成物。
  52.  前記YA21が10~1000質量ppmである、請求項50に記載のメタクリル系樹脂組成物。
  53.  前記式(2-1)中、R21、R22及びR23がそれぞれ独立して水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基であり、R24がメチル基又はアミノ基である、請求項50に記載のメタクリル系樹脂組成物。
  54.  前記成分A21がイソプロペニルメチルケトン及びメタクリルアミドからなる群から選択される少なくとも1種である、請求項50に記載のメタクリル系樹脂組成物。
  55.  前記成分Aが前記成分A22である、請求項45に記載のメタクリル系樹脂組成物。
  56.  前記YA22が10~5000質量ppmである、請求項55に記載のメタクリル系樹脂組成物。
  57.  前記式(2-2)中、R25、R26及びR27がそれぞれ独立して水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基であり、R28がメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、又はイソペンチル基である、請求項55に記載のメタクリル系樹脂組成物。
  58.  前記成分A22がクロトン酸メチル及び3,3-ジメチルアクリル酸メチルからなる群から選択される少なくとも1種である、請求項55に記載のメタクリル系樹脂組成物。
  59.  前記成分Aが前記成分A3である、請求項45に記載のメタクリル系樹脂組成物。
  60.  前記YA3が1~10000質量ppmである、請求項59に記載のメタクリル系樹脂組成物。
  61.  前記YA3が1~1000質量ppmである、請求項59に記載のメタクリル系樹脂組成物。
  62.  前記式(3-1)中、R31、R32、R33、及びR34がそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基である、請求項59に記載のメタクリル系樹脂組成物。
  63.  前記式(3-1)中、R31、R32、R33、及びR34がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基である、請求項59に記載のメタクリル系樹脂組成物。
  64.  前記成分A3が2,3,5,6-テトラメチルピラジン、2,3,5-トリメチルピラジンからなる群から選択される少なくとも1種である、請求項59に記載のメタクリル系樹脂組成物。
  65.  さらに重合禁止剤(成分B1)を含む、請求項45に記載のメタクリル系樹脂組成物。
  66.  前記メタクリル系樹脂組成物の総質量に対する前記成分B1の濃度をYB1(質量ppm)としたとき、前記YB1が1~2000質量ppmである、請求項65に記載のメタクリル系樹脂組成物。
  67.  前記メタクリル系樹脂組成物の総質量に対する前記成分B3の濃度をYB1(質量ppm)としたとき、YB1/YA3が0.005~1000である、請求項65に記載のメタクリル系樹脂組成物。
  68.  前記成分B1が、フェノール系化合物、キノン系化合物、ニトロベンゼン系化合物、N-オキシル系化合物、アミン系化合物、リン含有化合物、硫黄含有化合物、鉄含有化合物、銅含有化合物及びマンガン含有化合物からなる群から選択される少なくとも1種の重合禁止剤である、請求項65に記載のメタクリル系樹脂組成物。
  69.  前記成分B1が、フェノール系化合物、N-オキシル系化合物、アミン系化合物及び硫黄含有化合物からなる群から選択される少なくとも1種の重合禁止剤である、請求項65に記載のメタクリル系樹脂組成物。
  70.  さらに下記式(3-2)で表されるα水素を有するエステル化合物(成分B2)を含む、請求項59に記載のメタクリル系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000011
    (前記式(3-2)中、R35及びR36はそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基であり、R37は炭素原子数1~5のアルキル基である。)
  71.  前記メタクリル系樹脂組成物の総質量に対する前記成分B2の濃度をYB2(質量ppm)としたとき、YB2が5~10000質量ppmである、請求項70に記載のメタクリル系樹脂組成物。
  72.  前記メタクリル系樹脂組成物の総質量に対する前記成分B2の濃度をYB2(質量ppm)としたとき、YB2/YA3が0.005~1000である請求項70に記載のメタクリル系樹脂組成物。
  73.  前記式(3-2)中、R35及びR36がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R37がメチル基、エチル基、n-プロピル基又はイソプロピル基である、請求項70に記載のメタクリル系樹脂組成物。
  74.  さらに下記式(3-3)で表されるα,β-不飽和カルボニル化合物(成分B3)を含む、請求項59に記載のメタクリル系樹脂組成物。
    Figure JPOXMLDOC01-appb-C000012
    (前記式(3-3)中、R38、R39及びR40はそれぞれ独立して、水素原子又は炭素原子数1~10のアルキル基であり、R41は炭素原子数1~10のアルキル基である。)
  75.  前記メタクリル系樹脂組成物の総質量に対する前記成分B3の濃度をYB3(質量ppm)としたとき、YB3が5~10000質量ppmである、請求項74に記載のメタクリル系樹脂組成物。
  76.  前記メタクリル系樹脂組成物の総質量に対する前記成分B3の濃度をYB3(質量ppm)としたとき、YB3/YA3が0.005~1000である、請求項74に記載のメタクリル系樹脂組成物。
  77.  前記式(3-3)中、R38、R39及びR40がそれぞれ独立して、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基であり、R41がメチル基、エチル基、n-プロピル基又はイソプロピル基である、請求項74に記載のメタクリル系樹脂組成物。
  78.  前記メタクリル系重合体が、前記メタクリル系重合体の総質量に対して、メタクリル酸メチル由来の繰り返し単位を70~100質量%、及びアクリル酸エステル由来の繰り返し単位を0~30質量%含む、請求項45に記載のメタクリル系樹脂組成物。
  79.  前記メタクリル系重合体が、前記メタクリル系重合体の総質量に対して、メタクリル酸メチル由来の繰り返し単位を50~100質量%、及びスチレン由来の繰り返し単位を0~50質量%含む、請求項45に記載のメタクリル系樹脂組成物。
  80.  請求項45に記載のメタクリル系樹脂組成物を含む、樹脂成形体。
PCT/JP2023/038977 2022-10-28 2023-10-27 単量体組成物、メタクリル系樹脂組成物及びその製造方法、並びに樹脂成形体 WO2024090576A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022172930 2022-10-28
JP2022-172929 2022-10-28
JP2022-172930 2022-10-28
JP2022172929 2022-10-28
JP2023-085752 2023-05-24
JP2023085752 2023-05-24

Publications (1)

Publication Number Publication Date
WO2024090576A1 true WO2024090576A1 (ja) 2024-05-02

Family

ID=90831077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038977 WO2024090576A1 (ja) 2022-10-28 2023-10-27 単量体組成物、メタクリル系樹脂組成物及びその製造方法、並びに樹脂成形体

Country Status (1)

Country Link
WO (1) WO2024090576A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123150A (ja) * 1985-11-25 1987-06-04 Mitsui Toatsu Chem Inc メタクリル酸メチルの精製法
JPH08169862A (ja) * 1994-06-30 1996-07-02 Elf Atochem Sa ジアセチルを含まないメチルメタクリレートの製造法
JP2001072639A (ja) * 1999-09-01 2001-03-21 Mitsubishi Rayon Co Ltd メタクリル酸の精製法
JP2007045803A (ja) * 2005-08-12 2007-02-22 Asahi Kasei Chemicals Corp 精製されたメタクリル酸メチルを得る方法
WO2015119233A1 (ja) * 2014-02-06 2015-08-13 株式会社クラレ (メタ)アクリル樹脂組成物の製造方法
WO2019059179A1 (ja) * 2017-09-20 2019-03-28 株式会社クラレ 車両用表示装置の導光板
JP2022056754A (ja) * 2020-09-30 2022-04-11 住友化学株式会社 組成物
WO2022230913A1 (ja) * 2021-04-28 2022-11-03 三菱ケミカル株式会社 メタクリル酸メチル含有組成物及びメタクリル酸メチル重合体の製造方法
WO2023100867A1 (ja) * 2021-11-30 2023-06-08 三菱ケミカル株式会社 メタクリル酸メチル含有組成物、メタクリル酸メチル含有組成物の保存方法及びメタクリル酸メチル重合体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123150A (ja) * 1985-11-25 1987-06-04 Mitsui Toatsu Chem Inc メタクリル酸メチルの精製法
JPH08169862A (ja) * 1994-06-30 1996-07-02 Elf Atochem Sa ジアセチルを含まないメチルメタクリレートの製造法
JP2001072639A (ja) * 1999-09-01 2001-03-21 Mitsubishi Rayon Co Ltd メタクリル酸の精製法
JP2007045803A (ja) * 2005-08-12 2007-02-22 Asahi Kasei Chemicals Corp 精製されたメタクリル酸メチルを得る方法
WO2015119233A1 (ja) * 2014-02-06 2015-08-13 株式会社クラレ (メタ)アクリル樹脂組成物の製造方法
WO2019059179A1 (ja) * 2017-09-20 2019-03-28 株式会社クラレ 車両用表示装置の導光板
JP2022056754A (ja) * 2020-09-30 2022-04-11 住友化学株式会社 組成物
WO2022230913A1 (ja) * 2021-04-28 2022-11-03 三菱ケミカル株式会社 メタクリル酸メチル含有組成物及びメタクリル酸メチル重合体の製造方法
WO2023100867A1 (ja) * 2021-11-30 2023-06-08 三菱ケミカル株式会社 メタクリル酸メチル含有組成物、メタクリル酸メチル含有組成物の保存方法及びメタクリル酸メチル重合体の製造方法

Similar Documents

Publication Publication Date Title
WO2022230913A1 (ja) メタクリル酸メチル含有組成物及びメタクリル酸メチル重合体の製造方法
EP4332080A1 (en) Methyl methacrylate-containing composition
WO2023100867A1 (ja) メタクリル酸メチル含有組成物、メタクリル酸メチル含有組成物の保存方法及びメタクリル酸メチル重合体の製造方法
US20240059642A1 (en) Methyl methacrylate-containing composition and method for producing methyl methacrylate polymer
US20240059643A1 (en) Methyl methacrylate-containing composition and methyl methacrylate polymer production method
JP7318828B2 (ja) 単量体組成物、メタクリル系樹脂組成物及び樹脂成形体
US20240052076A1 (en) Methyl-methacrylate-containing composition and method for producing methyl methacrylate polymer
US20050101689A1 (en) Multi-functional alpha-alkoxyalkyl acrylate and methacrylate ester compositions and reworkable polymers formed therefrom
WO2024090576A1 (ja) 単量体組成物、メタクリル系樹脂組成物及びその製造方法、並びに樹脂成形体
WO2020025429A1 (en) Anaerobically curable compositions containing alpha-methylene-lactones
WO2024095995A1 (ja) エステル化合物含有組成物及びその製造方法、重合性組成物、(メタ)アクリル系重合体及びその製造方法
WO2024095957A1 (ja) エステル化合物含有組成物及びその製造方法、重合性組成物、(メタ)アクリル系重合体及びその製造方法
WO2024090544A1 (ja) メタクリル酸含有組成物、メタクリル酸エステルの製造方法、重合性組成物及びメタクリル酸重合体の製造方法
TW202419438A (zh) 含有酯化合物的組成物及其製造方法、聚合性組成物及(甲基)丙烯酸類聚合物的製造方法
JP2001261738A (ja) 無色透明性及び耐候性に優れたメタクリル系樹脂とその製法
JP2018028034A (ja) (メタ)アクリル酸エステル重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882777

Country of ref document: EP

Kind code of ref document: A1