WO2015111652A1 - 表面の導電性を有するチタン材又はチタン合金材、これを用いた燃料電池セパレータと燃料電池 - Google Patents

表面の導電性を有するチタン材又はチタン合金材、これを用いた燃料電池セパレータと燃料電池 Download PDF

Info

Publication number
WO2015111652A1
WO2015111652A1 PCT/JP2015/051665 JP2015051665W WO2015111652A1 WO 2015111652 A1 WO2015111652 A1 WO 2015111652A1 JP 2015051665 W JP2015051665 W JP 2015051665W WO 2015111652 A1 WO2015111652 A1 WO 2015111652A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
fuel cell
mass
aqueous solution
titanium alloy
Prior art date
Application number
PCT/JP2015/051665
Other languages
English (en)
French (fr)
Inventor
一浩 ▲高▼橋
琢 香川
雅也 木本
淳子 今村
徳野 清則
黒田 篤彦
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/100,890 priority Critical patent/US10033052B2/en
Priority to JP2015524541A priority patent/JP5790906B1/ja
Priority to EP15740971.5A priority patent/EP3098885B1/en
Priority to RU2016128720A priority patent/RU2643736C2/ru
Priority to KR1020167018869A priority patent/KR101861032B1/ko
Priority to CN201580004815.XA priority patent/CN105934842B/zh
Priority to CA2935525A priority patent/CA2935525C/en
Publication of WO2015111652A1 publication Critical patent/WO2015111652A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/54Treatment of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/106Other heavy metals refractory metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/12Electrolytic coating other than with metals with inorganic materials by cathodic processes on light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a titanium material or a titanium alloy material having a conductive surface and excellent corrosion resistance, and particularly a low contact resistance solid high material used for an automobile using a power source or a power generation system.
  • Titanium material or titanium alloy material used for molecular fuel cell separator that is, titanium material or titanium alloy material for fuel cell separator excellent in contact with carbon and durability, fuel cell separator using the same, and fuel cell Is preferred.
  • a fuel cell separator will be described as an example.
  • the polymer electrolyte fuel cell is a fuel cell that uses hydrogen and oxygen and uses a hydrogen ion selective permeation organic membrane (composite with an inorganic material is being developed) as an electrolyte.
  • hydrogen for the fuel hydrogen gas obtained by reforming alcohols is used in addition to pure hydrogen.
  • the current fuel cell system has a high unit price of components and components, and it is indispensable to significantly reduce the cost of components and components to be applied to consumer use. Further, in application to automobiles, not only cost reduction but also a compact stack that is the heart of a fuel cell is required.
  • a polymer electrolyte fuel cell has a structure in which a separator is pressed on both sides of a solid polymer membrane, an electrode, and a gas diffusion layer, which are called a membrane-electrode assembly (hereinafter sometimes referred to as “MEA”). A large number of these are stacked to form a stack.
  • MEA membrane-electrode assembly
  • the characteristics required of the separator are electronic conductivity, separation between oxygen gas and hydrogen gas of both electrodes, low contact resistance with MEA, and good durability in the environment in the fuel cell.
  • the gas diffusion layer Gas Diffusion Layer, GDL
  • GDL gas diffusion Layer
  • Stainless steel, titanium materials, etc. as separator materials generally have low conductivity with respect to carbon as they are, and many proposals have been made to increase this.
  • the presence of a passive film having a low conductivity is an obstacle to increasing the contact conductivity with carbon.
  • Patent Document 1 from the viewpoint of thinness, weight reduction, and the like, the contact resistance of stainless steel is reduced by using special stainless steel in which a compound having conductivity is precipitated in the steel material. Techniques that can be effectively reduced are disclosed.
  • Patent Document 2 discloses a technique in which TiB-based precipitates are dispersed in titanium to reduce contact resistance with MEA.
  • Patent Document 3 is made of a titanium alloy containing Ta: 0.5 to 15% by mass and restricting the amount of Fe and O as required, and having a depth of 0.5 ⁇ m from the outermost surface.
  • a titanium alloy for a separator is disclosed, wherein the average nitrogen concentration in the range is 6 atomic% or more, and tantalum nitride and titanium nitride are present in the region.
  • Patent Document 3 discloses a method for producing a titanium alloy for a separator in a nitrogen atmosphere and at 600 to 1000 ° C. It is disclosed to heat for 3 seconds or more in the temperature range.
  • Patent Documents 4, 5, and 6 disclose a technique in which a conductive material is pushed into a surface layer portion by a blast method or a roll processing method in a manufacturing process of a titanium or stainless steel metal separator.
  • both electrical conductivity to carbon and durability are achieved by a surface microstructure in which a conductive material is disposed so as to penetrate a passive film on a metal surface.
  • Patent Document 7 discloses a method of manufacturing a fuel cell separator in which an impurity containing titanium carbide or titanium nitride formed on a titanium surface is converted into an oxide by an anodic oxidation treatment, and then plated. Titanium carbide or titanium nitride formed on the titanium surface dissolves during exposure to a corrosive environment and re-deposits as an oxide that inhibits contact conductivity, thereby reducing contact conductivity.
  • the above method suppresses the oxidation of impurities during power generation (during use) and improves durability.
  • an expensive plating film is essential.
  • Patent Document 8 a titanium alloy obtained by alloying Group 3 elements of the periodic table is used as a base material, BN powder is applied to the surface, heat treatment is performed to form an oxide film, and a corrosion-resistant conductive film is formed. A forming technique is disclosed.
  • This technique is to improve conductivity by doping impurity atoms at the position of titanium atoms in the oxide film crystal lattice which is a passive film of titanium alloy.
  • Patent Documents 9 and 10 when a titanium fuel cell separator is rolled, it is rolled using a carbon-containing rolling oil to form a deteriorated layer containing titanium carbide on the surface layer, and a film density is high thereon.
  • a technique for forming a carbon film to ensure conductivity and durability is disclosed.
  • Patent Documents 11, 12, 13, 14, and 15 are similar to the structure described in Patent Document 9, but have a carbon layer / titanium carbide intermediate layer / titanium base material as the main structure.
  • a battery separator is disclosed.
  • the manufacturing procedure of forming the carbon layer in advance and then forming the titanium carbide intermediate layer is different from the manufacturing procedure described in Patent Document 9, but the mechanism for increasing the durability by the carbon layer is the same.
  • Patent Document 16 discloses a technique for applying graphite powder, rolling and annealing for mass production. This technique realizes the function of a conventional carbon separator by adding a carbon layer and a titanium carbide intermediate layer to the surface of a base material titanium that does not break. However, since the titanium carbide intermediate layer is not durable, if the carbon layer is defective, the corrosion of the titanium carbide intermediate layer and the base material cannot be prevented, and a corrosion product that inhibits contact conductivity can be generated. There are concerns about the structure.
  • Patent Document 17 discloses a technique in which titanium carbide or titanium nitride, which is a conductive material, is arranged on a titanium surface, and not only titanium but also these conductive materials are covered with a titanium oxide having a passivating action. Is disclosed. This technique not only ensures contact conductivity but also improves durability. However, in order to further extend the life of the fuel cell, it is necessary to further improve the environmental degradation resistance of the titanium oxide film covering the conductive material.
  • Patent Document 18 applied titanium to titanium or titanium based on improving the durability by subjecting the titanium oxide film to a passivating treatment immersed in an aqueous solution containing an oxidizing agent such as chromic nitrate.
  • a titanium or titanium alloy material for a fuel cell separator has been proposed in which titanium compound particles containing carbon and nitrogen, which are finely conductive substances, are dispersed in an oxide film on the surface of the alloy material to improve the contact property with respect to carbon.
  • carbide, nitride, carbonitride, or boride of tantalum, titanium, vanadium, zirconium, or chromium is applied as the fine conductive material, and the stabilization treatment is performed after the passivation treatment in an aqueous solution.
  • This stabilization treatment includes a rice-based flour, a wheat flour, which is a natural-derived product or an artificially synthesized product containing any one or more of amine compounds, aminocarboxylic acid compounds, phospholipids, starch, calcium ions, and polyethylene glycol.
  • An aqueous solution containing starch, corn flour, soybean flour, pickling corrosion inhibitor and the like is used.
  • Patent Documents 20, 21, 22, 23, and 24 disclose that when a fluorine-based solid polymer is used for an electrolyte membrane, a trace amount of fluorine is eluted to generate a hydrogen fluoride environment. In the case of using a hydrocarbon polymer, it is considered that there is no fluorine elution from the electrolyte membrane.
  • Patent Document 24 discloses that the pH of the effluent is experimentally set to about 3.
  • Patent Document 10 employs a constant-potential corrosion test in which a potential of 1 V is applied in a sulfuric acid aqueous solution at pH 4 and 50 ° C.
  • Patent Documents 11, 12, 13, and 14 employ sulfuric acid at 80 ° C. at a pH of about 2.
  • a durability evaluation test in which a potential of 0.6 V is applied in an aqueous solution is employed.
  • Patent Document 25 discloses that the operating temperature is 80 to 100 ° C.
  • 80 degreeC is employ
  • the evaluation conditions for simulating a solid polymer fuel cell are (1) an aqueous solution in which fluorine is dissolved by the solid polymer of the electrolyte membrane at pH 2 to 4, (2) a temperature of 50 to 100 ° C., ( 3) It is easily assumed that the cell voltage change is 0 to 1 V (voltage 0 when power is not generated).
  • Non-Patent Document 1 discloses that the addition of about 2 ppm or about 20 ppm of fluorine to a pH 3 sulfuric acid aqueous solution promotes the discoloration of titanium.
  • Patent Document 26 a titanium alloy containing one or more elements of platinum group elements (Pd, Pt, Ir, Ru, Rh, Os), Au, and Ag is immersed in a non-oxidizing acid.
  • a method for forming a total layer of 40 to 100 atomic% on the surface is disclosed.
  • Patent Document 27 a titanium alloy containing 0.005 to 0.15% by mass of a platinum group element and 0.002 to 0.10% by mass of a rare earth element is pickled with a non-oxidizing acid, and a platinum group element is formed on the surface.
  • a titanium material for a separator in which is concentrated is disclosed.
  • Patent Document 28 discloses a titanium material having a layer containing titanium hydride on the surface of the titanium material.
  • the discoloration phenomenon described in Patent Document 25 is a phenomenon in which interference color is produced as a result of growth of an oxide film by dissolving titanium and reprecipitating as an oxide on the surface.
  • the re-deposited oxide is a substance that inhibits contact conductivity
  • the environment in which fluorine is eluted in the fuel cell is a harsher environment for titanium and is durable so as not to increase contact resistance. Need to be further increased.
  • the present invention provides a titanium material or titanium alloy material for a fuel cell separator having a high contact conductivity with respect to carbon, further improving the contact property with respect to carbon (low contact resistance) and durability, and further extending the life of the fuel cell. Let it be an issue. Specifically, the durability is (1) corrosion resistance against F ions (fluorine ions) and (2) durability against applied voltage in an acidic environment.
  • a technique for reducing contact resistance between titanium and a titanium alloy and carbon is a technique for coating the surface of titanium and a titanium alloy with a carbon (conductive material) layer, or titanium or tantalum in an oxide film on the surface.
  • the mainstream is a technology for finely dispersing carbides, nitrides, carbonitrides and / or borides, and a technology for concentrating platinum group elements, Au, and Ag on the surface.
  • the carbon layer (conductive material), the carbide, nitride, carbonitride, and / or boride, platinum group element, Au, and Ag are used. It was found that the above problem can be solved if the titanium hydride of the required form is formed on the surface of titanium and titanium alloy, and a titanium oxide film is formed on the outermost surface, which is fundamentally different from the prior art. . It has also been found that the effects of the present invention are exhibited regardless of whether platinum group elements, Au, or Ag are contained on the surface.
  • the increase in contact resistance before and after the test Is a titanium material or a titanium alloy material characterized by being 10 m ⁇ cm 2 or less.
  • Deterioration test 1 immersed in sulfuric acid solution at pH 3 containing 2 ppm of F ions for 4 days.
  • Degradation test 2 A potential of 1.0 V (vs SHE) was applied for 24 hours in a sulfuric acid solution at 80 ° C. and pH 3.
  • a fuel cell separator comprising the titanium material or titanium alloy material of [1].
  • a solid polymer fuel cell comprising the fuel cell separator of [2].
  • the present invention it is possible to provide a titanium material or a titanium alloy material excellent in carbon contact conductivity and durability, and a fuel cell separator excellent in carbon contact conductivity and durability. If this fuel cell separator is used, the life of the fuel cell can be greatly extended.
  • XRD X-ray-diffraction profile
  • A shows the XRD of the surface of a conventional material for comparison (surface after general fluoric acid pickling), and
  • b) and (c) are the titanium material or titanium alloy material of the present invention (this material).
  • the XRD of the surface of the invention materials 1 and 2) is shown.
  • XPS X-ray photoelectron spectroscopy
  • (A) shows the result of X-ray photoelectron spectroscopy (XPS) of the surface of one titanium material or titanium alloy material
  • (b) shows the X-ray photoelectron spectroscopy of the surface of the other titanium material or titanium alloy material.
  • the result of analysis (XPS) is shown. It is a figure which shows the transmission electron microscope image of the cross section right under the surface of the titanium material or titanium alloy material of this invention.
  • the titanium material or titanium alloy material (hereinafter, also referred to as “the present invention material”) suitable for a fuel cell separator having excellent electrical conductivity and durability against carbon contact of the present invention has an X-ray diffraction peak on its surface.
  • the strength satisfies the following formula (1), and a titanium oxide film is formed on the outermost surface.
  • the composition ratio [I Ti-H / (I Ti + I Ti-H )] ⁇ 100 of the hydride is 60% or more. If the hydride composition ratio [I Ti-H / (I Ti + I Ti-H )] ⁇ 100 is 60% or more, the increase in contact resistance before and after the test in the deterioration test 1 and the deterioration test 2 described later.
  • ITi-H Maximum intensity of X-ray diffraction peak of titanium hydride (TiH, TiH1.5, TiH2, etc.)
  • ITi Maximum intensity of X-ray diffraction peak of metallic Ti
  • ITi-H / (ITi + ITi-H) is an index representing the composition ratio of titanium metal and titanium hydride on the surface of titanium material or titanium alloy material, and the larger one is a phase structure containing more titanium hydride. Means.
  • X-ray diffraction is performed by obliquely incident on the surface of a titanium material or a titanium alloy material with the X-ray incident angle fixed at a low angle, for example, 0.3 °. With this X-ray diffraction, the structure directly under the surface can be identified.
  • the present invention material is further characterized in that a titanium oxide film is formed on the outermost surface.
  • a peak is detected at a position of a binding energy of about 459.2 eV of TiO2 which is titanium oxide in the Ti2p spectrum. By this detection, formation of the titanium oxide film can be confirmed.
  • the thickness of titanium oxide is preferably 3 to 10 nm.
  • the thickness of the titanium oxide film can be measured by, for example, observing with a transmission electron microscope of the surface immediately under and the cross section.
  • the manufacturing method for manufacturing the material of the present invention includes a titanium material or a titanium alloy material, (I) forming a titanium hydride on the surface of the titanium material or titanium alloy material; (Ii) It is carried out by applying a passivation treatment and a stabilization treatment in a predetermined aqueous solution.
  • the treatment for forming titanium hydride on the surface layer of titanium material or titanium alloy material is not particularly limited to a specific method. Examples include (x) a method of immersing a titanium material or a titanium alloy material in hydrochloric acid or sulfuric acid that is a non-oxidizing acid, (y) a method of cathodic electrolysis, and (z) a method of heat-treating in a hydrogen-containing atmosphere. It is done. In any of these methods, titanium hydride can be formed on the surface layer of the titanium material or titanium alloy material.
  • the aqueous solution used for the passivation treatment is an aqueous solution to which an oxidizing agent such as nitric acid or chromic acid is added.
  • the predetermined aqueous solution used for the stabilization treatment is an amine compound, an aminocarboxylic acid compound, a phospholipid, starch, calcium ion, or a natural product or artificial product containing one or more of polyethylene glycol, It is an aqueous solution containing rice flour, wheat flour, potato starch, corn flour, soy flour, pickling corrosion inhibitor and the like, and the aqueous solution used for the passivation treatment is also a normal aqueous solution.
  • the cost is also considered in the range in which titanium carbide, nitride, carbonitride, and / or boride can be practically used as a separator in and immediately below the outermost titanium oxide film. It is built to reduce.
  • titanium carbide, nitride, carbonitride, and / or boride is formed during the heat treatment.
  • the total content of C, N, and B in the titanium substrate should be 0.1% by mass or less. Is preferred. More preferably, it is 0.05 mass% or less.
  • a titanium compound containing at least one of C, N, and B is not present in the titanium oxide film, but since it causes a significant cost increase, it is practically used as a separator. It is preferable to reduce within the usable range.
  • the surface was sputtered with argon at 5 nm, the surface was analyzed using X-ray photoelectron spectroscopy (XPS). As a result, if C was 10 atomic% or less, N was 1 atomic% or less, and B was 1 atomic% or less The effects of the present invention can be obtained.
  • the argon sputtering depth is a value converted from the sputtering rate when SiO2 is sputtered. From the surface after 5 nm sputtering, a peak is detected at a position where the binding energy of TiO2 which is titanium oxide is about 459.2 eV in the Ti2p spectrum, which is the analysis result in the titanium oxide film.
  • the material of the present invention is formed, for example, by forming a titanium hydride near the surface of the titanium base material by a hydride forming treatment, and then performing a passivation treatment in an aqueous solution to which an oxidizing agent such as nitric acid or chromic acid is added. Further, it can be obtained by performing a stabilization treatment with a predetermined aqueous solution.
  • FIG. 1 shows an X-ray diffraction profile (XRD) of the surface of a titanium material or a titanium alloy material for a fuel cell separator.
  • FIG. 1 (a) shows the XRD of the surface of a conventional material for comparison (surface after general fluoric acid pickling), and FIGS. 1 (b) and (c) show the fuel cell separator of the present invention.
  • XRD of the surface of a titanium material or a titanium alloy material (this invention material) is shown.
  • Example 1 of the present invention shown in (b) is a composition ratio [I Ti-H / (I Ti + I Ti-H )] ⁇ 100 of titanium hydride of 63%
  • Example 1 of the present invention shown in (c) is titanium.
  • the composition ratio [I Ti-H / (I Ti + I Ti-H )] ⁇ 100 of the hydride is 55%.
  • the X-ray diffraction peak As for the X-ray diffraction peak, (a) in the conventional material, only the diffraction peak of metallic titanium ( ⁇ in the figure) is detected, but in the present invention materials in (b) and (c), titanium hydride (in the figure) )) Very strong peaks are detected. This titanium hydride is TiH1.5 from the position of the diffraction peak. In addition, the element concentration distribution from the surface to the depth direction was measured by glow discharge emission analysis, and it was confirmed that hydrogen was concentrated in the surface layer portion.
  • the X-ray diffraction profile was measured at oblique incidence with the X-ray incident angle fixed at 0.3 ° with respect to the surface of the titanium material or titanium alloy material, and the diffraction peak was identified.
  • the K ⁇ removal method uses a W / Si multilayer mirror (incident side) )It was used.
  • the X-ray source load power (tube voltage / tube current) is 9.0 kW (45 kV / 200 mA).
  • the analysis software used is Spectris Expert High Score Plus.
  • the measured X-ray diffraction profile is assigned to the ICDD card No.
  • the diffraction peaks can be identified by comparing with a database using titanium hydrides such as 01-078-2216, 98-002-1097, 01-072-6252, 98-006-9970 as standard materials.
  • the X-ray penetration depth under the above measurement conditions is about 0.18 ⁇ m for titanium metal and about 0.28 ⁇ m for titanium hydride, so that the X-ray diffraction peak is about 0.2 to 0.3 ⁇ m from the surface. It is an X-ray diffraction peak reflecting the depth structure.
  • FIG. 2 shows a photoelectron spectrum of Ti2p measured by XPS on the outermost surface of the material of the present invention.
  • FIG. 3 the transmission electron microscope image of the cross section right under the surface of this invention material is shown.
  • a very strong peak is detected from the outermost surface at a position where the binding energy of TiO 2 that is titanium oxide is about 459.2 eV.
  • a bright (whitish) film-like portion 2 covering Ti1 is a titanium oxide film. From this part, it is understood that Ti and O are detected by energy dispersive spectroscopy (EDS), and a titanium oxide film is formed at this part.
  • EDS energy dispersive spectroscopy
  • the contact resistance with carbon paper increases to about 100 m ⁇ ⁇ cm 2 or more in the conventional material when the fluorine ion concentration is 2 ppm or more, and the increase is about 90 m ⁇ ⁇ cm 2 or more. Even at an ion concentration of 2 to 5 ppm, it is as low as 10 to 20 m ⁇ ⁇ cm 2, and the increase amount can be suppressed to 10 m ⁇ cm 2 or less at best, and 4 m ⁇ cm 2 or less when preferred, and shows high resistance to fluorine.
  • the surface pressure is 10 m ⁇ cm 2 or less at a surface pressure of 10 kgf / cm 2 .
  • it is 4 m ⁇ cm 2 or less.
  • the value of the contact resistance after the deterioration test 1 is 20 m ⁇ ⁇ cm 2 or less, preferably 10 m ⁇ ⁇ cm 2 or less.
  • the increase after the degradation test of the contact resistance with carbon paper was 10 kgf / cm 2 in surface pressure. And 10 m ⁇ cm 2 or less. Preferably, it is 4 m ⁇ cm 2 or less.
  • the value of contact resistance after the deterioration test 2 in the present invention material 20 m [Omega ⁇ cm 2 or less, preferably 10 m [Omega ⁇ cm 2 or less as low as possible to maintain a high resistance even by applying a potential.
  • the value of the contact resistance is about 30 m ⁇ ⁇ cm 2 and the increase amount is about 20 m ⁇ ⁇ cm 2 .
  • the deterioration tests 1 and 2 can measure the resistance (stability) to fluorine and applied voltage, respectively, by the increase in contact resistance.
  • 4 days and 24 hours are selected as test times for sufficiently distinguishing significant differences, respectively.
  • the contact resistance increases almost linearly with the test time, and when the value becomes about 30 m ⁇ ⁇ cm 2 or more, there is a tendency to increase rapidly thereafter.
  • contact resistance changes depending on the carbon paper to be used, in the deterioration test, contact resistance measured using TGP-H-120 manufactured by Toray Industries, Inc. was used as a standard.
  • the present inventors have conceived that the reason why the contact resistance of the material of the present invention is low and stable compared to the conventional contact resistance is the titanium hydride formed on the surface layer. Focusing on the X-ray diffraction peak from titanium hydride shown in FIG. 1, the inventors examined the correlation between the X-ray diffraction intensity of titanium metal (Ti) and the X-ray diffraction intensity from titanium hydride (Ti—H).
  • [ITi-H / (ITi + ITi-H)] ⁇ 100 is an index of the composition ratio of titanium metal and titanium hydride on the surface of titanium or titanium alloy material, and a larger value indicates a phase containing more titanium hydride. It expresses quantitatively that it is a configuration.
  • the vertical axis represents the contact resistance measured by performing the degradation tests 1 and 2 and the amount of increase. In all cases, the stabilization treatment was performed after the passivation treatment in a predetermined aqueous solution. Thereafter, the above-described degradation test 1 (immersion in sulfuric acid aqueous solution at pH 3 with a fluorine ion concentration of 2 ppm at 80 ° C. for 4 days) and degradation test 2 (potential 1.0 V (vsSHE) applied in sulfuric acid aqueous solution at pH 3 for 24 hours) Carried out. (VsSHE) indicates a value relative to a standard hydrogen electrode (SHE).
  • [ITi-H / (ITi + ITi-H)] ⁇ 100 is set to 55% or more.
  • the contact resistance after the deterioration promotion test (after the deterioration tests 1 and 2) is set to 60% or more at which the contact resistance is stabilized at a low level.
  • the upper limit is naturally 100% or less. Since there is a concern about embrittlement due to titanium hydride, even if it is bent back with 85% of [ITi-H / (ITi + ITi-H)] ⁇ 100 subjected to hydride formation treatment with hydrochloric acid, The intended contact resistance of the material of the present invention is obtained.
  • titanium hydride As the action of titanium hydride, when the outermost titanium oxide film is attacked by fluorine ions in the pickling environment, the hydrogen in the titanium is easily diffused, thus promoting the repair of the broken oxide film.
  • the material of the present invention is subjected to passivation treatment and stabilization treatment in a predetermined aqueous solution.
  • passivation treatment and stabilization treatment in a predetermined aqueous solution.
  • a titanium oxide film is formed on the outermost surface.
  • the thickness of the titanium oxide film is preferably 3 to 10 nm from the viewpoint of keeping the initial contact resistance low and ensuring the durability to fluorine and voltage application in the exposed environment.
  • the contact resistance after the deterioration test with fluorine addition or voltage application exceeds 20 m ⁇ ⁇ cm 2, and the increase amount exceeds 10 m ⁇ ⁇ cm 2, and the durability is insufficient. It becomes.
  • the thickness of the titanium oxide film exceeds 10 nm, the initial contact resistance may exceed 10 m ⁇ ⁇ cm 2.
  • the thickness of the outermost titanium oxide film can be measured by observing the surface directly below / cross section with a transmission electron microscope.
  • the bright (whiter) film-like portion 2 is a titanium oxide film.
  • the conditions for the passivation treatment performed in a predetermined aqueous solution and the conditions for the subsequent stabilization treatment are as follows.
  • the aqueous solution used for the passivation treatment is an aqueous solution containing an oxidizing agent such as nitric acid or chromic acid. It is considered that the titanium oxide film is densified by the oxidizing power.
  • the aqueous solution used for the stabilization treatment is a naturally derived product or an artificially synthesized product containing one or more of amine compounds, aminocarboxylic acid compounds, phospholipids, starch, calcium ions, and polyethylene glycol.
  • the conventional material even if it is a titanium oxide film formed by performing passivation treatment or stabilization treatment in an aqueous solution, titanium carbide, nitride, and / or The carbonitride is eluted in a corrosive environment or an electric potential containing fluorine and is used in an environment where it is used, and is reprecipitated as an oxide that inhibits contact conductivity.
  • cold rolling oil containing C or the like which forms carbides is removed by cold pickling after cold rolling, or pickling or hydride formation with nitric hydrofluoric acid after bright annealing.
  • titanium carbide, nitride, and / or carbonitride generated on the surface by bright annealing can be substantially removed.
  • C is 10 atomic% or less
  • N is 1 atomic% or less
  • B If is 1 atomic% or less, the effect of the present invention is obtained.
  • passivation treatment and stabilization treatment are carried out in a prescribed aqueous solution, and the cost is considered in the range where titanium carbide, nitride, and / or carbonitride, which are easily eluted, can be used practically as a separator.
  • a surface structure that can be reduced is formed. This surface structure significantly improves the durability in a corrosive environment containing fluorine or in a use environment where a potential is applied.
  • the contact resistance after the deterioration promotion test is 20 m ⁇ ⁇ cm 2 or less.
  • it is 10 m ⁇ ⁇ cm 2 or less. More preferably, it is 8 m ⁇ ⁇ cm 2 or less.
  • the above-described component design is performed so that titanium carbide, nitride, and / or carbonitride is not easily formed on the surface, and cold rolling is performed. , Cleaning (including pickling) and annealing (atmosphere, temperature, time, etc.). If necessary, after the annealing, pickling and washing with an aqueous solution of nitric hydrofluoric acid (for example, 3.5% by mass of hydrogen fluoride + 4.5% by mass of nitric acid).
  • nitric hydrofluoric acid for example, 3.5% by mass of hydrogen fluoride + 4.5% by mass of nitric acid.
  • titanium base material is subjected to any of the following treatments: (x) immersion in hydrochloric acid or sulfuric acid, which is a non-oxidizing acid, (y) cathodic electrolysis, and (z) heat treatment in a hydrogen-containing atmosphere. Titanium hydride (TiH, TiH1.5, TiH2) is formed on the surface layer of titanium or titanium alloy material.
  • a passivation treatment is applied to the surface layer on which the titanium hydride is formed.
  • the passivation treatment is performed by, for example, treating the titanium base material with a mixed aqueous solution containing nitric acid or chromic anhydride at a predetermined temperature, for example, an aqueous solution containing 30% by mass of nitric acid, or 25% by mass of chromic anhydride and 50% sulfuric acid. It is performed by immersing in a mixed aqueous solution containing mass% for a predetermined time.
  • a stable passivated titanium oxide film is formed on the outermost surface of the titanium base material, and corrosion is suppressed.
  • the temperature of the aqueous solution is preferably 50 ° C. or higher in order to improve productivity. More preferably, it is 60 degreeC or more, More preferably, it is 85 degreeC or more.
  • the upper limit of the temperature is preferably 120 ° C.
  • the immersion time depends on the temperature of the aqueous solution, it is generally 0.5 to 1 minute or more. Preferably it is 1 minute or more.
  • the upper limit of the immersion time is preferably 45 minutes, more preferably about 30 minutes.
  • the stabilization treatment is performed for a predetermined time using a stabilization treatment liquid at a predetermined temperature in order to stabilize the titanium oxide film.
  • the stabilization treatment liquid is a rice flour, which is a natural-derived product or an artificially synthesized product, containing any one or more of amine compounds, aminocarboxylic acid compounds, phospholipids, starch, calcium ions, and polyethylene glycol, An aqueous solution containing wheat flour, potato starch, corn flour, soy flour, pickling corrosion inhibitor and the like.
  • an aqueous solution containing a pickling / corrosion inhibitor [HIBIRON (registered trademark No. 4787376) AS-25C manufactured by Sugimura Chemical Co., Ltd.] can be used.
  • the stabilization treatment is preferably performed for 1 to 10 minutes using a stabilization treatment solution at 45 to 100 ° C.
  • the material of the present invention has excellent conductivity and durability, and is extremely useful as a base material for a fuel cell separator.
  • the fuel cell separator based on the material of the present invention is, of course, used by utilizing the surface of the material of the present invention as it is.
  • a noble metal metal such as gold, carbon or a carbon-containing conductive film is further formed on the surface of the material of the present invention.
  • a noble metal-based metal such as gold, a carbon film or a carbon-containing film
  • the contact conductivity and corrosion resistance of the material of the present invention are directly below. Therefore, the corrosion of the titanium base material is suppressed more than before.
  • the fuel cell separator based on the material of the present invention has the same level of contact conductivity and durability as a conventional carbon separator, and is hard to break, thus ensuring the quality and life of the fuel cell for a long time. be able to.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 1 In order to confirm the surface properties and contact characteristics of the intermediate material of the present invention and the alloy material of the present invention, titanium or a titanium alloy material (hereinafter referred to as “titanium substrate”), pretreatment, hydrogen treatment (hydride formation treatment), Various conditions of the passivation treatment and the stabilization treatment were changed to produce a test material, and the surface properties of the titanium substrate were investigated by X-ray diffraction, and the contact conductivity was measured by a deterioration promotion test. The X-ray diffraction results are as shown in FIG. The measurement results are shown in Tables 1 to 7 together with various conditions.
  • titanium substrate The titanium substrate (material) is as follows.
  • M01 Titanium (JIS H 4600 Type 1 TP270C) Industrial Pure Titanium 1 M02: Titanium (JIS H 4600 Type 3 TP480C) Industrial Pure Titanium M03: Titanium Alloy (JIS H 4600 61 Type) 2.5-3 .5 mass% Al-2 to 3 mass% V-Ti M04: Titanium alloy (JIS H 4600, 16 types) 4-6 mass% Ta-Ti M05: Titanium alloy (JIS H4600 17 types) 0.04 to 0.08 mass% Pd—Ti M06: Titanium alloy (JIS H4600 19 types) 0.04 to 0.08 mass% Pd-0.2 to 0.8 mass% Co-Ti M07: Titanium alloy (JIS H4600 21 types) 0.04 to 0.06 mass% Ru-0.4 to 0.6 mass% Ni-Ti M08: Titanium alloy 0.02 mass% Pd-0.002 mass% Mm-Ti
  • Mm is a mixed rare earth element (Misch metal) before separation and purification, and the composition of Mm used is 55 mass%
  • M09 Titanium alloy 0.03% by mass Pd-0.002% by mass Y-Ti
  • M10 Titanium alloy (JIS H4600, 11 types) 0.12 to 0.25 mass% Pd—Ti Note)
  • M08 and M09 which are titanium alloys other than JIS standards, are base materials obtained by melting in the laboratory, hot rolling and cold rolling.
  • the pretreatment of the titanium substrate is as follows.
  • P01 Cold-rolled to a thickness of 0.1 mm, washed with alkali, then subjected to bright annealing at 800 ° C. for 20 seconds in an Ar atmosphere, and then cleaned with nitric hydrofluoric acid pickling.
  • P02 Thickness 0 Cold rolled to 1 mm, washed with nitric hydrofluoric acid, removed the rolling oil, bright annealed at 800 ° C. for 20 seconds in Ar atmosphere
  • P03 Cold rolled to a thickness of 0.1 mm, alkali After cleaning, bright annealing at 800 ° C. for 20 seconds in Ar atmosphere
  • the surface cleaning with nitric hydrofluoric acid of P01 and P02 was immersed in an aqueous solution containing 3.5% by mass of hydrogen fluoride (HF) and 4.5% by mass of nitric acid (HNO 3 ) at 45 ° C. for 1 minute. About 5 ⁇ m depth was melted from the surface.
  • HF hydrogen fluoride
  • HNO 3 nitric acid
  • A01 Aqueous solution containing 30% by mass of nitric acid
  • A02 Aqueous solution containing 20% by mass of nitric acid
  • A03 Aqueous solution containing 10% by mass of nitric acid
  • A04 Aqueous solution containing 5% by mass of nitric acid
  • A05 25% by mass of chromic anhydride and 50% by mass of sulfuric acid
  • A06 Mixed aqueous solution containing 15% by mass of chromic anhydride and 50% by mass of sulfuric acid
  • A07 Mixed aqueous solution containing 15% by mass of chromic anhydride and 70% by mass of sulfuric acid
  • A08 5% by mass of chromic anhydride and 50% by mass of sulfuric acid
  • A09 A mixed aqueous solution containing 5% by mass of chromic anhydride and 70% by mass of sulfuric acid.
  • B01 Rice flour 0.25% by mass, remaining ion-exchanged water
  • B02 Wheat flour 0.25% by mass, remaining ion-exchanged water
  • B03 potato starch 0.25% by mass
  • B04 Corn flour 0.25% by mass
  • B05 Soy flour 0.25% by mass
  • B06 Polyethylene glycol 0.02% by mass, rice flour 0.05% by mass, calcium carbonate 0.0001% by mass, calcium hydroxide 0.0001% by mass , Calcium oxide 0.0001% by mass, remaining distilled water
  • B07 acid wash corrosion inhibitor [HIBIRON (registered trademark No.
  • Degradation test 1 Performed by dipping in 80 ° C. pH 3 sulfuric acid solution containing 2 ppm of F ions for 4 days.
  • Degradation test 2 A potential of 1.0 V (vs SHE) is applied for 24 hours in a sulfuric acid solution having a pH of 3 at 80 ° C.
  • is 4Emuomegacm 2 or less, ⁇ is 10Emuomegacm 2 or less 4Emuomegacm 2 greater, ⁇ is the 10Emuomegacm 2 greater.
  • the value of the contact resistance measured by the above-described conditions, 10Emuomegacm 2 or less in the case of ⁇ , 20m ⁇ cm 2 or less in 10 than in the case of ⁇ , in the case of ⁇ was 20Emuomegacm 2 greater.
  • a test piece of a required size was sampled from the test material produced by changing the above conditions, the surface characteristics were measured, and deterioration tests 1 and 2 were performed to measure contact conductivity.
  • the measurement results are shown in Tables 1 to 7 together with various conditions.
  • the C, N, and B concentrations (results of XPS) were analyzed by X-ray photoelectron spectroscopy (XPS) after sputtering the surface with argon for 5 nm. This is a case in which C is 10 atomic% or less, N is 1 atomic% or less, B is 1 atomic% or less, and x exceeds any of the above concentrations.
  • Table 1 shows the results when the titanium substrate and pretreatment conditions were changed.
  • Table 2 shows the results when the treatment method, treatment time, and treatment temperature were changed in the hydride formation treatment.
  • Table 3 shows the results when the treatment time and treatment temperature were changed in the passivation treatment.
  • Table 4 shows the results when the treatment solution was changed in the passivation treatment.
  • Table 5 shows the results when the treatment solution was changed in the stabilization treatment.
  • Table 6 shows the results when the treatment temperature was changed in the stabilization treatment.
  • Table 7 shows the results when various conditions were changed.
  • a titanium or titanium alloy material for a fuel cell separator excellent in contact with carbon and durability and a fuel cell separator excellent in contact with carbon and durability. be able to. If this fuel cell separator is used, the life of the fuel cell can be greatly extended. Therefore, the present invention has high applicability in the battery manufacturing industry.

Abstract

 チタン又はチタン合金の表面において、表面への入射角0.3°で測定したX線回折ピークにて金属チタンの最大強度(ITi)とチタン水素化物の最大強度(ITi-H)から求めたチタン水素化物の構成率[ITi-H/(ITi+ITi-H)]×100が55%以上であり、その最表面に酸化チタン皮膜が形成されており、かつ、表面をアルゴンで5nmスパッタした位置でCが10原子%以下、Nが1原子%以下、Bが1原子%以下にする。さらに、前記酸化チタン皮膜が、所定の水溶液中で、不動態化処理を施した後に安定化処理して形成された厚さ3~10nmである。

Description

表面の導電性を有するチタン材又はチタン合金材、これを用いた燃料電池セパレータと燃料電池
 本発明は、表面が導電性を有し且つ耐食性に優れたチタン材又はチタン合金材に関する発明であり、特に電力を駆動源とする自動車、又は、発電システムなどに用いる低接触抵抗性の固体高分子型燃料電池セパレータに用いるチタン材又はチタン合金材、即ち、対カーボン接触導電性と耐久性に優れた燃料電池セパレータ用チタン材又はチタン合金材、これを用いた燃料電池セパレータ、及び、燃料電池好適である。以下、燃料電池セパレータを例に説明する。
 近年、自動車用燃料電池として、固体高分子型燃料電池の開発が急速に進展し始めている。固体高分子型燃料電池は、水素と酸素を用い、水素イオン選択透過型の有機物膜(無機物との複合化の開発も進められている)を電解質として用いる燃料電池である。燃料の水素としては、純水素の他、アルコール類の改質で得た水素ガスなどが用いられる。
 しかし、現状の燃料電池システムは、構成部品や部材の単価が高く、民生用へ適用するには、構成部品や部材の大幅な低コスト化が不可欠となる。また、自動車用途への適用では、低コスト化とともに、燃料電池の心臓部となるスタックのコンパクト化も求められている。
 固体高分子型燃料電池は、Membrane Electrode Assembly(以下「MEA」と記載することがある。)と呼ばれる固体高分子膜と電極及びガス拡散層が一体となったものの両側をセパレータが押し付ける構造をとり、これを多数積層してスタックを構成する。
 セパレータに求められる特性は、電子伝導性、両極の酸素ガスと水素ガスの分離性、MEAとの接触抵抗が低いこと、さらには、燃料電池内の環境で良好な耐久性を有することなどである。ここで、MEAのうち、ガス拡散層(Gas Diffusion Layer, GDL)は、一般に、炭素繊維を集積したカーボンペーパーでできているので、セパレータには、対カーボン接触導電性が良好であることが求められる。
 セパレータ用材料としてのステンレス鋼やチタン材料などは、そのままでは、一般に、対カーボン接触導電性が低いので、これを高めるために多くの提案がなされている。対カーボン接触導電性を高めるうえで、導電性の低い不動態皮膜の存在が障害になる。耐久性を犠牲にすれば解決できる課題とも言えるが、燃料電池内は厳しい腐食環境となるので、セパレータには非常に高い耐久性が要求される。
 このため、満足の行くセパレータ用の金属材料の開発は困難を極めているのが実情である。これまでは、カーボンセパレータが主流であったが、メタルセパレータが実用化されると、燃料電池自体をコンパクト化でき、さらには、燃料電池生産工程で割れが発生しないことを保障できるので、量産化と普及には、セパレータのメタル化が必須である。
 このような背景において、例えば、特許文献1には、薄肉、軽量化等の観点から、鋼材中に導電性を有する化合物を析出させた特殊なステンレス鋼を用いることで、ステンレス鋼の接触抵抗を有効に低減することのできる技術が開示されている。
 耐久性に優れたチタンをセパレータに適用する検討も行われている。チタンの場合も、ステンレス鋼と同様に、チタン最外表面の不動態皮膜の存在により、MEAとの接触抵抗が高い。それ故、例えば、特許文献2には、チタン中にTiB系析出物を分散させ、MEAとの接触抵抗を低減する技術が開示されている。
 特許文献3には、質量%で、Ta:0.5~15%を含有し、必要に応じて、Fe及びO量を制限したチタン合金からなり、最外表面から深さ0.5μmまでの範囲の平均窒素濃度が6原子%以上であり、かつ、その領域に窒化タンタル及び窒化チタンが存在することを特徴とするセパレータ用チタン合金が開示されている。
 また、特許文献3には、セパレータ用チタン合金の製造方法において、窒素雰囲気中で、かつ、600~1000℃
の温度範囲で3秒以上加熱することが開示されている。
 特許文献4、5、及び、6には、チタン又はステンレス製メタルセパレータの製作工程において、導電物質を、ブラスト法又はロール加工法で表層部に押しこむ技術が開示されている。この技術においては、金属表面の不動態皮膜を貫通する形で導電物質を配置する表面微細構造により、対カーボン導電性と耐久性を両立させる。
 特許文献7には、チタン表面に形成される炭化チタン又は窒化チタンを含む不純物を陽極酸化処理で酸化物に転換し、その後、メッキ処理を施す燃料電池セパレータの製造方法が開示されている。チタン表面に形成される炭化チタン又は窒化チタンは、腐食環境に曝されている間に溶解し、接触導電性を阻害する酸化物として再析出して、接触導電性を低下させる。
 上記方法は、発電時(使用時)における不純物の酸化を抑制し、耐久性を高めるものである。ただし、導電性と耐久性を確保するためには、高価なメッキ膜が必須となる。
 特許文献8には、周期律表の3族元素を合金化したチタン系合金を母材とし、その表面にBN粉末を塗布し、加熱処理を施して酸化皮膜を形成し、耐食導電性皮膜を形成する技術が開示されている。
 この技術は、チタン合金の不動態皮膜となる酸化物皮膜結晶格子におけるチタン原子の位置に不純物原子をドープして導電性を高めるものである。
 特許文献9及び10には、チタン製燃料電池セパレータを圧延加工する際、炭素含有圧延油を用いて圧延して、表層に炭化チタンを含む変質層を形成し、その上に、膜密度の高い炭素膜を形成して、導電性と耐久性を確保する技術が開示されている。
 この技術においては、対カーボンペーパー導電性は高まるが、耐久性は、炭素膜で維持することになるので、緻密な炭素膜を形成する必要がある。単純な炭素とチタンの界面では接触抵抗が高まるので、両者の間に、導電性を高める炭化チタンを配置している。しかし、炭素膜に欠陥があると、変質層(炭化チタンを含む)及び母材の腐食を防止できず、接触導電性を阻害する腐食生成物が生じ得る。
 特許文献11、12、13、14、及び、15には、特許文献9に記載の構造と類似するが、炭素層/炭化チタン中間層/チタン母材を主要な構造とするチタン及びチタン製燃料電池セパレータが開示されている。炭素層をあらかじめ形成し、その後に、炭化チタン中間層を形成するという製造手順は、特許文献9に記載の製造手順と異なるが、炭素層により耐久性を高める機構は同様である。
 特許文献16には、量産化のため、黒鉛粉を塗布して圧延し、焼鈍する技術が開示されている。この技術は、従来のカーボンセパレータの機能を、割れない母材チタン表面へ炭素層と炭化チタン中間層を付与することにより実現したものである。ただし、炭化チタン中間層には耐久性がないので、炭素層に欠陥があると、炭化チタン中間層及び母材の腐食を防止できず、接触導電性を阻害する腐食生成物が生成し得る表面構造になっている懸念がある。
 このような実情の中、導電性物質である炭化チタンや窒化チタンをチタン表面に配置し、チタンのみならず、これら導電物質をも不動態化作用のあるチタン酸化物で覆う技術が特許文献17に開示されている。この技術により、接触導電性の確保のみならず、耐久性も向上したが、燃料電池寿命をさらに伸ばすためには、導電物質を覆うチタン酸化膜の耐環境劣化性をさらに高める必要がある。
 そこで、本出願人は、特許文献18で、チタン酸化皮膜に、硝酸クロム酸等の酸化剤を含む水溶液中に浸漬する不動態化処理を施して耐久性を高めることを基軸にし、チタン又はチタン合金材の表面の酸化皮膜中に微細導電性物質である炭素や窒素を含むチタン化合物粒子を分散させて、対カーボン接触導電性を高めた燃料電池セパレータ用のチタン又はチタン合金材を提案した。
 特許文献19では、微細導電性物質としてタンタル、チタン、バナジウム、ジルコニウム又はクロムの炭化物、窒化物、炭窒化物、硼化物を適用し、かつ、水溶液中で不動態化処理後に安定化処理を施すことを提案した。この安定化処理は、アミン系化合物、アミノカルボン酸系化合物、リン脂質、澱粉、カルシウムイオン、ポリエチレングリコールのいずれか1種または2種以上含む天然由来物や人工合成物である、米粉、小麦粉、片栗粉、とうもろこし粉、大豆粉、酸洗腐蝕抑制剤などを含む水溶液を用いる。
 固体高分子型燃料電池の内部環境やその模擬評価条件について説明する。
 特許文献20、21、22、23、及び、24には、電解質膜にふっ素系固体高分子を用いると、微量のふっ素が溶出してふっ化水素環境が生じることが開示されている。炭化水素高分子を使用する場合は、電解質膜からのふっ素溶出はないと考えられる。
 また、特許文献24には、実験的に排出液のpHを約3とすることが開示されている。なお、特許文献10では、pH4で50℃の硫酸水溶液中で電位1Vを印加する定電位腐食試験を採用し、特許文献11、12、13、及び、14では、pH約2で80℃の硫酸水溶液中で電位0.6Vを印加する耐久性評価試験を採用している。
 特許文献25には、運転温度が80~100℃であることが開示されている。特許文献21及び24では、評価条件として80℃を採用している。以上のことから、固体高分子型燃料電池を模擬する評価条件は、(1)pH2~4で電解質膜の固体高分子によってふっ素が溶解している水溶液、(2)温度50~100℃、(3)セル電圧変化0~1V(未発電時には電圧0)であることが容易に想定される。
 一方、チタンの耐環境性の観点でみると、チタンがふっ化水素水溶液(ふっ酸)で溶けることが知られている。非特許文献1には、pH3の硫酸水溶液にふっ素を約2ppm又は約20ppm添加すると、チタンの変色が促進されることが開示されている。
 特許文献26には、白金族系元素(Pd,Pt,Ir,Ru,Rh,Os)、Au,Agの1種または2種以上の元素を含有するチタン合金を、非酸化性の酸に浸漬して表面にこれら合計で40~100原子%の層を形成する方法が開示されている。特許文献27には、白金族元素を0.005~0.15質量%および希土類元素を0.002~0.10質量%含有したチタン合金を非酸化性酸で酸洗し表面に白金族元素を濃化させたセパレータ用チタン材が開示されている。特許文献28には、チタン材表面にチタン水素化物を含む層を有するチタン材が開示されている。
 特許文献25に記載された変色現象は、チタンが溶解して酸化物として表面に再析出することで酸化膜が成長した結果、干渉色を生じる現象である。上述のように、この再析出した酸化物は接触導電性を阻害する物質であるので、燃料電池でふっ素が溶出した環境は、チタンにとってより厳しい環境であり、接触抵抗を増大させないように耐久性をさらに高める必要がある。
特開2000-328200号公報 特開2004-273370号公報 特開2007-131947号公報 特開2007-005084号公報 特開2006-140095号公報 特開2007-234244号公報 特開2010-097840号公報 特開2010-129458号公報 特開2010-248570号公報 特開2010-248572号公報 特開2012-028045号公報 特開2012-028046号公報 特開2012-043775号公報 特開2012-043776号公報 特開2012-028047号公報 特開2011-077018号公報 国際公開第2010/038544号 国際公開第2011/016465号 特願2012-170363号 特開2005-209399号公報 特開2005-056776号公報 特開2005-038823号公報 特開2010-108673号公報 特開2009-238560号公報 特開2006-156288号公報 特開2006-190643号公報 特開2013-109891号公報 特許第4361834号公報
Ti-2003 Science and Technology, G.LutjeringとJAlbrecht, Wiley-VCH Verlag GmbH & Co., Hamburg, 2004年、3117~3124ページ
 本発明は、対カーボン接触導電性の高い燃料電池セパレータ用のチタン材又はチタン合金材において、対カーボン接触導電性(低い接触抵抗)及び耐久性を高めて、燃料電池の寿命をさらに伸ばすことを課題とする。耐久性は、具体的には、酸性環境中における、(1)Fイオン(ふっ素イオン)に対する耐食性と、(2)印加電圧に対する耐久性である。
 従来、チタン及びチタン合金とカーボンとの接触抵抗を低減する技術は、炭素(導電性物質)層でチタン及びチタン合金の表面を被覆する技術、又は、該表面の酸化皮膜中にチタンやタンタル等の炭化物、窒化物、炭窒化物、及び/又は、硼化物を微細分散させる技術、白金族元素やAu,Agを表面に濃化させる技術が主流である。
 しかし、本発明者らは、従来技術に拘らず、上記課題を解決する手法について鋭意研究した。その結果、チタン材又はチタン合金材の表面構造が、対カーボン接触導電性及び耐久性に大きく影響することが判明した。
 そして、本発明者らがさらに鋭意研究した結果、炭素層(導電性物質)や、上記炭化物、窒化物、炭窒化物、及び/又は、硼化物、或いは白金族元素やAu,Agを活用する従来技術とは基本的に異なり、チタン及びチタン合金の表面に所要の形態のチタン水素化物が形成されており、かつ、最表面に酸化チタン皮膜を形成すれば、上記課題を解決できることを見いだした。なお、白金族系元素やAu、Agがその表面に含有されるか否かにかかわらず、本発明の効果が発揮されることも見いだした。
 本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。
[1]
 チタン又はチタン合金の表面において、表面への入射角0.3°で測定したX線回折ピークにて金属チタンの最大強度(ITi)とチタン水素化物の最大強度(ITi-H)から求めたチタン水素化物の構成率[ITi-H/(ITi+ITi-H)]×100が55%以上であり、その最表面に酸化チタン皮膜が形成されており、かつ、表面をアルゴンで5nmスパッタした位置でCが10原子%以下、Nが1原子%以下、Bが1原子%以下であり、以下の劣化試験1および劣化試験2にてその試験前後の接触抵抗の増加量がいずれも10mΩcm2以下であることを特徴とするチタン材又はチタン合金材。
劣化試験1:2ppmのFイオンを含んだ80℃のpH3の硫酸溶液中にて4日間浸漬。
劣化試験2:80℃のpH3の硫酸溶液中にて、電位1.0V(vs SHE)を24時間印加。
[2]
 前記[1]のチタン材又はチタン合金材で構成したことを特徴とする燃料電池セパレータ。
[3]
 前記[2]の燃料電池セパレータを備えることを特徴とする固体高分子型燃料電池。
 本発明によれば、対カーボン接触導電性と耐久性に優れたチタン材又はチタン合金材と、対カーボン接触導電性と耐久性に優れた燃料電池セパレータを提供することができる。この燃料電池セパレータを用いれば、燃料電池の寿命を大幅に伸ばすことができる。
チタン材又はチタン合金材の表面のX線回折プロファイル(XRD)を示す図である。(a)は、比較となる従来材の表面(一般的な硝ふっ酸酸洗後の表面)のXRDを示し、(b)と(c)は、本発明のチタン材又はチタン合金材(本発明材その1、その2)の表面のXRDを示す。 本発明の二つのチタン材又はチタン合金材の表面のX線光電子分光分析(XPS)の結果を示す図である。(a)は、一方のチタン材又はチタン合金材の表面のX線光電子分光分析(XPS)の結果を示し、(b)は、もう一方のチタン材又はチタン合金材の表面のX線光電子分光分析(XPS)の結果を示す。 本発明のチタン材又はチタン合金材の表面直下の断面の透過電子顕微鏡像を示す図である。 チタン材又はチタン合金材の表面にて測定したX線回折結果から求めた[ITi-H/(ITi+ITi-H)]×100((1)式)の値と、その劣化試験後のカーボンペーパーとの接触抵抗、及び劣化試験前後の接触抵抗増加量との関係を示す図である。なお、上述の劣化試験1,2とも図示する。
 本発明の対カーボン接触導電性と耐久性に優れた燃料電池セパレータ用に好適なチタン材又はチタン合金材(以下「本発明材」ということがある。)は、その表面のX線回折ピークの強度が下記(1)式を満たし、かつ、その最表面に酸化チタン皮膜が形成されていることを特徴とする。水素化物の構成率[ITi-H/(ITi+ITi-H)]×100は、60%以上であることが好ましい。水素化物の構成率[ITi-H/(ITi+ITi-H)]×100が60%以上であれば、後述の劣化試験1および劣化試験2にてその試験前後の接触抵抗の増加量がいずれも4mΩcm2以下となる。
 [ITi-H/(ITi+ITi-H)]×100≧55%         ・・・(1)
 ITi-H:チタン水素化物(TiH、TiH1.5、TiH2など)のX線回折ピークの最大強度
 ITi:金属TiのX線回折ピークの最大強度
 ITi-H/(ITi+ITi-H)は、チタン材又はチタン合金材の表面における金属チタンとチタン水素化物の構成率を表す指標であり、大きい方が、チタン水素化物を多く含む相構成であることを意味する。
 X線回折は、チタン材又はチタン合金材の表面に対して、X線の入射角を低角に、例えば、0.3°に固定して斜入射して行う。このX線回折で、表面直下の構造を同定することができる。
 本発明材においては、さらに、その最表面に酸化チタン皮膜が形成されていることを特徴とする。チタン材又はチタン合金材の表面をX線光電子分光分析を行うことによって、Ti2pスペクトルにてチタン酸化物であるTiO2の結合エネルギー約459.2eVの位置にピークが検出される。この検出で、酸化チタン皮膜の形成を確認することができる。
 酸化チタンの厚さは3~10nmが好ましい。酸化チタン皮膜の厚みは、例えば、表面直下・断面の透過電子顕微鏡にて観察して測定することができる。
 本発明材を製造する製造方法(以下「本発明材製造方法」ということがある。)は、チタン材又はチタン合金材を、
(i)チタン材又はチタン合金材の表層にチタン水素化物を形成し、その後、
(ii)所定の水溶液中で、不動態化処理と安定化処理を施す
ことによって行われる。
 チタン材又はチタン合金材の表層にチタン水素化物を形成する処理(以下「水素化物形成処理」ということがある。)は、特に、特定の方法に限定されるものではない。例えば、チタン材又はチタン合金材を、(x)非酸化性の酸である塩酸や硫酸に浸漬する方法、(y)カソード電解する方法、及び、(z)水素含有雰囲気で熱処理する方法があげられる。これらのいずれの方法でも、チタン材又はチタン合金材の表層にチタン水素化物を形成することができる。
 不動態化処理に用いる水溶液は、硝酸やクロム酸等の酸化剤が添加された水溶液である。安定化処理に用いる所定の水溶液は、アミン系化合物、アミノカルボン酸系化合物、リン脂質、澱粉、カルシウムイオン、ポリエチレングリコールのいずれか1種又は2種以上含む天然由来物や人工合成物である、米粉、小麦粉、片栗粉、とうもろこし粉、大豆粉、酸洗腐蝕抑制剤などを含む水溶液であり、不働態化処理に用いる水溶液も、通常の水溶液である。
 本発明材においては、最表面の酸化チタン皮膜中及びその直下に、チタンの炭化物、窒化物、炭窒化物、及び/又は、硼化物がセパレータとして実用的に使用可能な範囲でコストも考慮して低減するように造り込まれている。
 C、N、及び、Bの少なくとも1種が、チタン基材中に不可避的混入元素として存在すると、熱処理過程で、チタンの炭化物、窒化物、炭窒化物、及び/又は、硼化物が形成される可能性がある。チタンの炭化物、窒化物、炭窒化物、及び/又は、硼化物の形成を極力抑制するために、チタン基材中のC、N、Bの合計含有量を0.1質量%以下にすることが好ましい。より好ましくは0.05質量%以下である。
 また、本発明材においては、酸化チタン皮膜中に、C、N、及び、Bの少なくとも1種を含むチタン化合物が存在しないことが好ましいが、大幅なコスト上昇を招くことからセパレータとして実用的に使用可能な範囲で低減することが好ましい。表面をアルゴンにて5nmスパッタした後、X線光電子分法(XPS)を用いて表面を分析した結果、Cが10原子%以下,Nが1原子%以下,Bが1原子%以下であれば、本発明の効果が得られる。
 ここで、アルゴンスパッタ深さは、SiO2をスパッタした際のスパッタレートから換算した値である。5nmスパッタした後の表面からも、Ti2pスペクトルにてチタン酸化物であるTiO2の結合エネルギー約459.2eVの位置にピークが検出されていることから、酸化チタン皮膜中の分析結果である。
 なお、データ解析にはUlvac-phi社製解析ソフトであるMutiPak V.8.0を用いた。
 従来、冷間圧延の油分が残存した状態や、窒素ガス雰囲気で加熱されて表面に導電性物質であるチタンの炭化物、窒化物、及び/又は、炭窒化物が分散した状態であると、その接触抵抗は比較的小さい値となることが知られている。しかし、そのままでは、実使用の酸性腐食環境に曝されている間に、これらのチタン化合物が溶解し、接触導電性を阻害する酸化物として再析出し、接触導電性を低下させる。
 以下、図面を参照しながら、本発明についてさらに詳細に説明する。
 本発明材は、例えば、チタン基材の表面近傍に、水素化物形成処理によりチタン水素化物を形成し、その後、硝酸やクロム酸等の酸化剤が添加された水溶液中で不働態化処理を施し、さらに、所定の水溶液で安定化処理を施して得ることができる。
 図1に、燃料電池セパレータ用チタン材又はチタン合金材の表面のX線回折プロファイル(XRD)を示す。図1(a)に、比較となる従来材の表面(一般的な硝ふっ酸酸洗後の表面)のXRDを示し、図1(b)と(c)に、本発明の燃料電池セパレータ用チタン材又はチタン合金材(本発明材)の表面のXRDを示す。(b)に示す本発明例その1はチタン水素化物の構成率[ITi-H/(ITi+ITi-H)]×100が63%、(c)に示す本発明例その1はチタン水素化物の構成率[ITi-H/(ITi+ITi-H)]×100が55%である。
 X線回折ピークは、(a)従来材では、金属チタン(図中の●)の回折ピークのみが検出されるが、(b)と(c)の本発明材では、チタン水素化物(図中の▼)の非常に強いピークが検出される。このチタン水素化物は、回折ピークの位置からTiH1.5である。なお、グロー放電発光分析にて表面から深さ方向への元素濃度分布を測定し、水素が表層部に濃化していることを確認している。
 ここで、X線回折の測定方法と回折ピークの同定方法について説明する。チタン材又はチタン合金材の表面に対してX線の入射角を0.3°に固定する斜入射にて、X線回折プロファイルを測定し、その回折ピークを同定した。
 リガク製X線回折装置SmartLabを用いて、入射角0.3°で、ターゲットにCo-Kα(波長λ=1.7902Å)を使用し、Kβ除去法は、W/Si多層膜ミラー(入射側)を使用した。X線源負荷電力(管電圧/管電流)は、9.0kW(45kV/200mA)である。使用した解析ソフトは、
スペクトリス製 エキスパート・ハイスコア・プラスである。
 測定したX線回折プロファイルを、ICDDカードのNo.01-078-2216、98-002-1097、01-072-6452、98-006-9970などのチタン水素化物を標準物質としたデータベースと対比することによって、回折ピークを同定することができる。
 なお、上記測定条件でのX線浸入深さは、金属チタンで約0.18μm、チタン水素化物で約0.28μmであるので、X線回折ピークは、表面から約0.2~0.3μm深さの構造を反映したX線回折ピークである。
 図2に、本発明材の最表面のXPSで測定したTi2pの光電子スペクトルを示す。図3に、本発明材の表面直下の断面の透過電子顕微鏡像を示す。図2に示すように、最表面から、チタン酸化物であるTiO2の結合エネルギー約459.2eVの位置に、非常に強いピークが検出されている。
 図3において、Ti1を覆っている明るい(白っぽい)膜状の部位2が酸化チタン皮膜である。この部位から、エネルギー分散分光分析(EDS)にてTiとOが検出され、この部位に酸化チタン皮膜が形成されていることが解る。
 従来材でも、酸化チタン皮膜に、所定の不動態化処理と安定化処理を施すと、単純な酸性環境への耐久性は高まるものの、ふっ素を含む腐食環境や電位が印加される使用環境においては、耐久性を維持できない場合がある。白金族元素やAu,Agが添加されたチタン合金においても同様である。なお、白金族元素の不純物レベルは0.005質量%未満であり、白金族元素やAu,Agの合計の含有量が0.005質量%未満である場合は、白金族元素やAu,Agが添加されたチタン合金(チタン)と見なす。
 カーボンペーパーとの接触抵抗は、ふっ素イオン濃度が2ppm以上になると、従来材では、約100mΩ・cm2以上へ増加しその増加量は約90mΩ・cm2以上にもなるが、本発明材では、ふっ素イオン濃度2~5ppmでも10~20mΩ・cm2以下と低く、その増加量は大きくとも10mΩcmm2以下、好適な場合には4mΩcm2以下に抑えることができ、ふっ素に対し高い耐性を示す。
 したがって、本発明材においては、pH3に調整した2ppmのFイオンを含んだ硫酸水溶液中に80℃で4日間浸漬する劣化試験1にて、カーボンペーパーとの接触抵抗の劣化試験後の増加量が、面圧10kgf/cm2にて、10mΩcm2以下である。好ましくは4mΩcm2以下である。参考までに、劣化試験1の後の接触抵抗の値は、20mΩ・cm2以下、好ましくは10mΩ・cm2以下である。
 また、80℃のpH3の硫酸水溶液中で電位1.0V(vsSHE)を24時間印加する劣化試験2にて、カーボンペーパーとの接触抵抗の劣化試験後の増加量が、面圧10kgf/cm2にて、10mΩcm2以下である。好ましくは4mΩcm2以下である。参考までに、劣化試験2の後の接触抵抗の値は、本発明材では20mΩ・cm2以下、好ましくは10mΩ・cm2以下と低く、電位を印加しても高い耐性を維持できる。一方、従来材では接触抵抗の値は約30mΩ・cm2とその増加量は約20mΩ・cm2にもなってしまう。
 劣化試験1,2は、その接触抵抗の増加量で、各々、ふっ素と印加電圧への耐性(安定度)を測ることができる。なお、十分に有意差を判別できる試験時間として、各々4日と24時間を選んでいる。一般的に、接触抵抗は試験時間とともにほぼ直線的に増加し、その値が約30mΩ・cm2以上になると、それ以降は急増して行く傾向が見受けられる。
 なお、接触抵抗は、使用するカーボンペーパーに依存して変化するので、劣化試験では、東レ株式会社製のTGP-H-120を用いて測定した接触抵抗を標準とした。
 本発明者らは、本発明材の接触抵抗が従来の接触抵抗に比べて低く安定な原因は、表層に形成されているチタン水素化物にあると発想した。図1に示すチタン水素化物からのX線回折ピークに着目し、金属チタン(Ti)のX線回折強度とチタン水素化物(Ti-H)からのX線回折強度の相関について鋭意検討した。
 その結果を図4に示す。横軸の[ITi-H/(ITi+ITi-H)]×100は、チタン又はチタン合金材の表面に対してX線の入射角を0.3°に固定する斜入射にて、X線回折プロファイルを測定し、その回折ピークを同定した結果から求めた。
 [ITi-H/(ITi+ITi-H)]×100は、チタン又はチタン合金材の表面における金属チタンとチタン水素化物の構成率の指標であり、値が大きい方が、チタン水素化物を多く含む相構成であることを定量的に表している。縦軸は、劣化試験1、2を行い測定した接触抵抗とその増加量である。なお、いずれも所定の水溶液中で、不動態化処理を施した後に安定化処理を施した。その後、上述の劣化試験1(pH3でふっ素イオン濃度2ppmの硫酸水溶液中に、80℃で4日間浸漬)と劣化試験2(pH3の硫酸水溶液中で電位1.0V(vsSHE)を24時間印加)を実施した。(vsSHE)は、標準水素電極(standard hydrogen electrode:SHE)に対する値を示す。
 図4に示すように、[ITi-H/(ITi+ITi-H)]×100が55%以上で劣化試験1、2後の接触抵抗が極めて低くなっている。そして、本発明者らは、本発明材においては、金属チタン(Ti)のX線回折強度とチタン水素化物(Ti-H)からのX線回折強度の間に、上記(1)式の相関関係があることを見いだした。
 したがって、本発明材においては、[ITi-H/(ITi+ITi-H)]×100を55%以上とする。好ましくは、図4に示すように、劣化促進試験後(劣化試験1、2の後)の接触抵抗が低位安定する60%以上とする。その上限は、当然100%以下となる。チタン水素化物による脆化が懸念されることから、塩酸にて水素化物形成処理を施した[ITi-H/(ITi+ITi-H)]×100が85%の材料にて曲げ戻し加工しても、本発明材の目的とする接触抵抗が得られている。
 チタン水素化物の作用としては、酸洗環境中のふっ素イオンによって最表面の酸化チタン皮膜がアタックされた際に、チタン中の水素は拡散が容易であることから壊された酸化皮膜の補修を促す作用、最表面の酸化チタン皮膜がチタン水素化物と接触することによって貴化される作用、溶け出したチタンイオンはチタン酸化物として表面に析出し通常は接触抵抗を高めてしまうがチタン水素化物の水素の働きによって酸化が進行せずに、導電性を有する析出物を形成する作用などが推測される。このような作用から、白金族元素やAu,Agが含有されているかどうかにかかわりなく、本願で規定する被膜構造を有していれば、十分に効果が得られると考えられる。
 いずれの作用であっても、その効果を発揮するためには、図4に示すように、所定量以上のチタン水素化物の存在が必要である。
 水素化物形成処理の後、所定の水溶液中で、本発明材に不動態化処理と安定化処理を施す。この処理によって、図2及び図3に示したように、最表面に酸化チタン皮膜が形成される。この酸化チタン皮膜の厚さは、初期の接触抵抗を低く抑え、かつ、晒される環境中のふっ素や電圧印加への耐久性を確保する点から、3~10nmが好ましい。
 酸化チタン皮膜の厚さが3nm未満であると、ふっ素添加又は電圧印加した劣化試験後の接触抵抗が20mΩ・cm2を超えて、その増加量も10mΩ・cm2を超えてしまい、耐久性が不十分となる。一方、酸化チタン皮膜の厚さが10nmを超えると、初期の接触抵抗が10mΩ・cm2を超えてしまう場合がある。
 なお、最表面の酸化チタン皮膜の厚みは、表面直下・断面を透過電子顕微鏡にて観察して測定することができる。図3において、明るい(白っぽい)膜状の部位2が酸化チタン皮膜である。
 所定の水溶液中で実施する不動態化処理の条件と、その後の安定化処理の条件は下記の通りである。
 不動態化処理に用いる水溶液は、硝酸やクロム酸等の酸化剤を含む水溶液である。その酸化力によって、酸化チタン皮膜が緻密化されると考えられる。
 安定化処理に用いる水溶液は、アミン系化合物、アミノカルボン酸系化合物、リン脂質、澱粉、カルシウムイオン、ポリエチレングリコールのいずれか1種又は2種以上を含む、天然由来物や人工合成物である、米粉、小麦粉、片栗粉、とうもろこし粉、大豆粉、酸洗腐蝕抑制剤などを含む水溶液であり、曝露環境に存在する酸成分やハロゲンイオン(塩素、ふっ素など)などからのアタックを抑制する効果を奏する。
 従来材では、水溶液中で不動態化処理や安定化処理を施して形成した酸化チタン皮膜であっても、酸化チタン皮膜の中や、直下に多く存在するチタンの炭化物、窒化物、及び/又は、炭窒化物が、ふっ素が含まれる腐食環境や電位が印加され使用環境において溶出して、接触導電性を阻害する酸化物として再析出してしまう。
 一方、本発明材では、前処理として、冷間圧延後に酸洗によって炭化物形成の元になるC等を含む冷間圧延油分を除去するか、光輝焼鈍後に硝ふっ酸による酸洗や水素化物形成処理によって、光輝焼鈍にて表面に生成したチタンの炭化物、窒化物、及び/又は、炭窒化物を概ね除去できる。
 なお、上述したように、X線光電子分法(XPS)を用いて、表面をアルゴンにて5nmスパッタした後の表面を分析した結果、Cが10原子%以下,Nが1原子%以下,Bが1原子%以下であれば、本発明の効果が得られている。
 その後に所定の水溶液中で不動態化処理と安定化処理を行い、溶出し易いチタンの炭化物、窒化物、及び/又は、炭窒化物が、セパレータとして実用的に使用可能な範囲でコストも考慮して低減するような表面構造を形成する。この表面構造によって、ふっ素を含む腐食環境や電位が印加される使用環境における耐久性が著しく向上する。
 なお、所要の水溶液中で不動態化処理と安定化処理の双方を施さない場合には、初期の接触抵抗は低いが、劣化促進試験の後に、摂政抵抗が約30mΩ・cm2以上へと増加してしまう。
 それ故、本発明材において、劣化促進試験後の接触抵抗は20mΩ・cm2以下である。好ましくは10mΩ・cm2以下である。より好ましくは8mΩ・cm2以下である。
 次に、本発明材の製造方法の一例について説明する。
 チタン基材となる箔を製造する際には、その表面に、チタンの炭化物、窒化物、及び/又は、炭窒化物が生成し難いように、上述した成分設計を実施するとともに、冷間圧延、洗浄(酸洗も含む)、焼鈍(雰囲気、温度、時間など)の各条件を選択して行う。必要に応じて、焼鈍に次いで、硝ふっ酸水溶液(例えば、3.5質量%のふっ化水素+4.5質量%の硝酸)で酸洗洗浄する。
 その後、チタン基材に、(x)非酸化性の酸である塩酸や硫酸に浸漬する、(y)カソード電
解する、及び、(z)水素含有雰囲気で熱処理する、のいずれかの処理を施し、チタン又はチタン合金材の表層にチタン水素化物(TiH、TiH1.5、TiH2)を形成する。
 チタン基材の内部まで多量な水素化物が形成されると基材全体が脆化してしまう可能性があるので、比較的表面近傍のみに水素を濃化させることができる(x)非酸化性の酸である塩酸や硫酸に浸漬する方法が好ましい。
 次いで、チタン水素化物が形成された表層に不動態化処理を施す。不動態化処理は、例えば、チタン基材を、所定温度の硝酸、又は、無水クロム酸を含む混合水溶液で、例えば、硝酸30質量%を含む水溶液、又は、無水クロム酸25質量%と硫酸50質量%を含む混合水溶液に所定時間浸漬して行う。この不動態処理により、チタン基材の最表面に安定な不動態化した酸化チタン皮膜が形成されて、腐食が抑制される。
 上記水溶液の温度は、生産性の向上のため50℃以上が好ましい。より好ましくは60℃以上、さらに好ましくは85℃以上である。温度の上限は120℃が好ましい。浸漬時間は、水溶液の温度にもよるが、一般に0.5~1分以上である。好ましくは1分以上である。浸漬時間の上限は45分が好ましく、より好ましくは30分程度である。
 さらに、不動態化処理を施した後、酸化チタン皮膜を安定化するため、所定温度の安定化処理液を用い、所定時間、安定化処理を行う。
 安定化処理液は、アミン系化合物、アミノカルボン酸系化合物、リン脂質、澱粉、カルシウムイオン、ポリエチレングリコールのいずれか1種又は2種以上を含む、天然由来物や人工合成物である、米粉、小麦粉、片栗粉、とうもろこし粉、大豆粉、酸洗腐蝕抑制剤などを含む水溶液である。
 例えば、酸洗腐蝕抑制剤[スギムラ化学工業株式会社製ヒビロン(登録商標第4787376号)AS-25C]を含む水溶液を用いることができる。安定化処理は、45~100℃の安定化処理液を用いて、1~10分行うのが好ましい。
 本発明材は、以上説明したように、優れた導電性と耐久性を備えており、燃料電池用セパレータ用の基材として極めて有用である。
 本発明材を基材とする燃料電池セパレータは、当然ながら、本発明材の表面をそのまま活かして使ったものである。
 本発明材の表面に、さらに、金などの貴金属系金属、炭素又は炭素含有導電性被膜を形成する場合も想定される。その場合、本発明材を基材とする燃料電池セパレータにおいては、金などの貴金属系金属や炭素膜又は炭素含有被膜に欠陥があっても、その直下に、本発明材の接触導電性と耐食性に優れた表面が存在するので、チタン基材の腐食が従来以上に抑制される。
 本発明材を基材とする燃料電池セパレータは、表面が従来のカーボンセパレータと同水準の接触導電性と耐久性を有し、さらに、割れ難いので、燃料電池の品質と寿命を長期にわたって保障することができる。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (実施例1)
 本発明中間材と本発明合金材の表面性状、及び、接触特性を確認するため、チタン又はチタン合金材(以下「チタン基材」という。)、前処理、水素処理(水素化物形成処理)、不動態化処理、及び、安定化処理の諸条件を変化させて、試験材を作製し、チタン基材の表面性状をX線回折で調査するとともに、劣化促進試験で接触導電性を測定した。X線回折結果は図3に示すとおりである。測定結果を諸条件とともに、表1~7に示す。
 [チタン基材]
 チタン基材(素材)は以下のとおりである。
 M01:チタン(JIS H 4600 1種TP270C)工業用純チタン1種
 M02:チタン(JIS H 4600 3種TP480C)工業用純チタン2種
 M03:チタン合金(JIS H 4600 61種) 2.5~3.5質量%Al-2~3質量%V-Ti
 M04:チタン合金(JIS H 4600 16種) 4~6質量%Ta-Ti
 M05:チタン合金(JIS H4600 17種) 0.04~0.08質量%Pd-Ti
 M06:チタン合金(JIS H4600 19種) 0.04~0.08質量%Pd-0.2~0.8質量%Co-Ti
 M07:チタン合金(JIS H4600 21種) 0.04~0.06質量%Ru-0.4~0.6質量%Ni-Ti
 M08:チタン合金 0.02質量%Pd-0.002質量%Mm-Ti
 ここで、Mmは分離精製前の混合希土類元素(ミッシュメタル)であり、使用したMmの組成は、55質量%Ce、31質量%La、10質量%Nd、4質量%Prである。
 M09:チタン合金 0.03質量%Pd-0.002質量%Y-Ti
 M10:チタン合金(JIS H4600 11種) 0.12~0.25質量%Pd-Ti
 注)JIS規格以外のチタン合金であるM08,M09は、実験室的に溶製し、熱延及び冷延して得た基材であることを意味する。
 [前処理]
 チタン基材の前処理は以下のとおりである。
 P01:厚さ0.1mmまで冷間圧延し、アルカリ洗浄した後、Ar雰囲気にて800℃で20秒の光輝焼鈍を施し、その後、硝ふっ酸酸洗にて表面を洗浄
 P02: 厚さ0.1mmまで冷間圧延し、硝ふっ酸酸洗にて洗浄し圧延油を除去した後、Ar雰囲気にて800℃で20秒の光輝焼鈍
 P03:厚さ0.1mmまで冷間圧延し、アルカリ洗浄した後、Ar雰囲気にて800℃で20秒の光輝焼鈍
 なお、P01,P02の硝ふっ酸による表面洗浄は、ふっ化水素(HF)が3.5質量%、硝酸(HNO)が4.5質量%の水溶液に、45℃で1分間浸漬した。表面から約5μm深さを溶かした。
 [水素化物形成処理]
 (x)酸洗
  H01:濃度30質量%の塩酸水溶液
  H02:濃度30質量%の硫酸水溶液
 (y)カソード電解処理
  H03:pH1の硫酸水溶液、電流密度1mA/cm2
 (z)水素含有雰囲気中での熱処理
  H04:20%水素+80%Arガスの雰囲気(450℃)
 [不動態化処理]
 不働態化処理に使用した水溶液は以下のとおりである。
 A01:硝酸30質量%を含む水溶液
 A02:硝酸20質量%を含む水溶液
 A03:硝酸10質量%を含む水溶液
 A04:硝酸5質量%を含む水溶液
 A05:無水クロム酸25質量%と硫酸50質量%を含む混合水溶液
 A06:無水クロム酸15質量%と硫酸50質量%を含む混合水溶液
 A07:無水クロム酸15質量%と硫酸70質量%を含む混合水溶液
 A08:無水クロム酸5質量%と硫酸50質量%を含む混合水溶液
 A09:無水クロム酸5質量%と硫酸70質量%を含む混合水溶液。
 注)いずれも固形分が生じた場合には、液中に分散した状態のまま使用した。
 注)水溶液の温度は、40~120℃、浸漬処理時間は、0.5~25分の範囲で変化させた。
 [安定化処理]
 安定化処理に使用した水溶液は以下のとおりである。
 B01:米粉0.25質量%、残部イオン交換水
 B02:小麦粉0.25質量%、残部イオン交換水
 B03:片栗粉0.25質量%、残部イオン交換水
 B04:とうもろこし粉0.25質量%、残部イオン交換水
 B05:大豆粉0.25質量%、残部イオン交換水
 B06:ポリエチレングリコール0.02質量%、米粉0.05質量%、炭酸カルシウム0.0001質量%、水酸化カルシウム0.0001質量%、酸化カルシウム0.0001質量%、残部蒸留水
 B07:酸洗腐蝕抑制剤[スギムラ化学工業株式会社製ヒビロン(登録商標第4787376号) AS-20K] 0.10質量%、残部イオン交換水
 B08:酸洗腐蝕抑制剤[スギムラ化学工業株式会社製ヒビロン(登録商標第4787376号)AS-35N]0.05質量%、残部イオン交換水
 B09:酸洗腐蝕抑制剤[スギムラ化学工業株式会社製ヒビロン(登録商標第4787376号)AS-25C]0.08質量%、残部水道水
 B10:酸洗腐蝕抑制剤[スギムラ化学工業株式会社製ヒビロン(登録商標第4787376号)AS-561]0.10質量%、残部水道水
 B11:酸洗腐蝕抑制剤[スギムラ化学工業株式会社製ヒビロン(登録商標第4787376号)AS-561]0.30質量%、残部水道水
 B12:酸洗腐蝕抑制剤[キレスト株式会社製キレスビット(登録商標第4305166号)17C-2]0.01質量%、残部井戸水
 B13:酸洗腐蝕抑制剤(朝日化学工業株式会社製イビット(登録商標第2686586号) ニューハイパーDS-1)0.04質量%、残部工業用水
 注)いずれも固形分が生じた場合には、液中に分散した状態のまま使用した。
 注)水溶液の温度は、45~100℃、浸漬処理時間は、1~10分の範囲で変化させた。
 [劣化試験]
 劣化試験1:2ppmのFイオンを含んだ80℃のpH3の硫酸溶液中にて4日間浸漬して行う。
 劣化試験2:80℃のpH3の硫酸溶液中にて、電位1.0V(vs SHE)を24時間印加して行う。
 [評価判定]
 接触抵抗の増加量において、◎は4mΩcm2以下、○は4mΩcm2超で10mΩcm2以下、×は10mΩcm2超とする。なお、上述の条件で測定した接触抵抗の値は、◎の場合には10mΩcm2以下、○の場合には10超で20mΩcm2以下、×の場合には20mΩcm2超であった。
 上記条件を変えて作製した試験材から、所要の大きさの試験片を採取し、表面の特徴を計測するとともに、劣化試験1,2を行って接触導電性を測定した。測定結果を、諸条件とともに、表1~7に示す。なお、表中の表面の特徴のうち、C,N,Bの濃度(XPSの結果)は、表面をアルゴンにて5nmスパッタした後のX線光電子分法(XPS)で分析した結果、○がCが10原子%以下かつNが1原子%以下かつBが1原子%以下、×がこれら元素のいずれか上記濃度を超えている場合である。
 チタン基材と前処理の条件を変化えた場合の結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
  
 水素化物形成処理において、処理方法、処理時間および処理温度を変えた場合の結果を
、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 不動態化処理において、処理時間と処理温度を変えた場合の結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 不動態化処理において、処理液を変えた場合の結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 安定化処理において、処理液を変えた場合の結果を、表5に示す。
Figure JPOXMLDOC01-appb-T000005
 安定化処理において、処理温度を変えた場合の結果を、表6に示す。
Figure JPOXMLDOC01-appb-T000006
 各種条件を変えた場合の結果を、表7に示す。
Figure JPOXMLDOC01-appb-T000007
 
 表1~7から、発明例の接触導電性は、比較例(従来材)の接触導電性に比べ、格段に優れていることが解る。
 前述したように、本発明によれば、対カーボン接触導電性と耐久性に優れた燃料電池セパレータ用チタン又はチタン合金材と、対カーボン接触導電性と耐久性に優れた燃料電池セパレータを提供することができる。この燃料電池セパレータを用いれば、燃料電池の寿命を大幅に伸ばすことができる。よって、本発明は、電池製造産業において利用可能性が高いものである。
  1  Ti(チタン又はチタン合金材)
  2  酸化チタン皮膜

Claims (3)

  1.  チタン又はチタン合金の表面において、表面への入射角0.3°で測定したX線回折ピークにて金属チタンの最大強度(ITi)とチタン水素化物の最大強度(ITi-H)から求めたチタン水素化物の構成率[ITi-H/(ITi+ITi-H)]×100が55%以上であり、その最表面に酸化チタン皮膜が形成されており、かつ、表面をアルゴンで5nmスパッタした位置でCが10原子%以下、Nが1原子%以下、Bが1原子%以下であり、以下の劣化試験1および劣化試験2にてその試験前後の接触抵抗の増加量がいずれも10mΩcm2以下であることを特徴とするチタン材又はチタン合金材。
    劣化試験1:2ppmのFイオンを含んだ80℃のpH3の硫酸溶液中にて4日間浸漬。
    劣化試験2:80℃のpH3の硫酸溶液中にて、電位1.0V(vs SHE)を24時間印加。
  2.  請求項1に記載のチタン材又はチタン合金材で構成したことを特徴とする燃料電池セパレータ。
  3.  請求項2に記載の燃料電池セパレータを備えることを特徴とする固体高分子型燃料電池。
PCT/JP2015/051665 2014-01-22 2015-01-22 表面の導電性を有するチタン材又はチタン合金材、これを用いた燃料電池セパレータと燃料電池 WO2015111652A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/100,890 US10033052B2 (en) 2014-01-22 2015-01-22 Titanium material or titanium alloy material having surface electrical conductivity, and fuel cell separator and fuel cell using the same
JP2015524541A JP5790906B1 (ja) 2014-01-22 2015-01-22 表面の導電性を有するチタン材又はチタン合金材、これを用いた燃料電池セパレータと燃料電池
EP15740971.5A EP3098885B1 (en) 2014-01-22 2015-01-22 Titanium material or titanium alloy material that have surface conductivity, fuel cell separator using same, and fuel cell
RU2016128720A RU2643736C2 (ru) 2014-01-22 2015-01-22 Титановый материал или материал из титанового сплава, имеющий поверхностную электропроводность, а также использующие его сепаратор топливной ячейки и топливная ячейка
KR1020167018869A KR101861032B1 (ko) 2014-01-22 2015-01-22 표면의 도전성을 갖는 티타늄재 또는 티타늄 합금재, 이것을 사용한 연료 전지 세퍼레이터와 연료 전지
CN201580004815.XA CN105934842B (zh) 2014-01-22 2015-01-22 表面具有导电性的钛材料或者钛合金材料、使用其的燃料电池分隔件和燃料电池
CA2935525A CA2935525C (en) 2014-01-22 2015-01-22 Titanium material or titanium alloy material having surface electrical conductivity, and fuel cell separator and fuel cell using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-009352 2014-01-22
JP2014009352 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015111652A1 true WO2015111652A1 (ja) 2015-07-30

Family

ID=53681453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051665 WO2015111652A1 (ja) 2014-01-22 2015-01-22 表面の導電性を有するチタン材又はチタン合金材、これを用いた燃料電池セパレータと燃料電池

Country Status (8)

Country Link
US (1) US10033052B2 (ja)
EP (1) EP3098885B1 (ja)
JP (1) JP5790906B1 (ja)
KR (1) KR101861032B1 (ja)
CN (1) CN105934842B (ja)
CA (1) CA2935525C (ja)
RU (1) RU2643736C2 (ja)
WO (1) WO2015111652A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305119B2 (en) 2014-01-22 2019-05-28 Nippon Steel & Sumitomo Metal Corporation Titanium material or titanium alloy material having surface electrical conductivity and method for producing the same, and fuel cell separator and fuel cell using the same
WO2019163851A1 (ja) * 2018-02-21 2019-08-29 日本製鉄株式会社 チタン材、セパレータ、セル、および燃料電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435782B2 (en) 2015-04-15 2019-10-08 Treadstone Technologies, Inc. Method of metallic component surface modification for electrochemical applications
RU2657365C1 (ru) * 2017-09-13 2018-06-13 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ определения содержания водорода в порошке нестехиометрического гидрида титана
CN107640744B (zh) * 2017-09-15 2020-02-18 四川大学 一种高成型性的不饱和氢化钛粉及其制备方法
JP6927418B2 (ja) * 2018-04-10 2021-08-25 日本製鉄株式会社 チタン合金およびその製造方法
JP7035794B2 (ja) * 2018-05-18 2022-03-15 トヨタ自動車株式会社 燃料電池用セパレーターの製造方法及び製造装置
CN113661143B (zh) * 2019-07-23 2024-03-08 松下知识产权经营株式会社 薄膜的制造方法以及层叠体

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328200A (ja) 1999-05-13 2000-11-28 Sumitomo Metal Ind Ltd 通電電気部品用オーステナイト系ステンレス鋼および燃料電池
JP2004273370A (ja) 2003-03-11 2004-09-30 Sumitomo Metal Ind Ltd 燃料電池セパレータ用チタン系材料とその製造方法
JP2005036314A (ja) * 2003-06-24 2005-02-10 Kobe Steel Ltd チタン材
JP2005038823A (ja) 2003-07-02 2005-02-10 Toyota Motor Corp 固体高分子型燃料電池システム
JP2005056776A (ja) 2003-08-07 2005-03-03 Toyota Central Res & Dev Lab Inc 固体高分子電解質及び燃料電池電極並びに固体高分子型燃料電池
JP2005209399A (ja) 2004-01-20 2005-08-04 Toyota Motor Corp 燃料電池システム
JP2006140095A (ja) 2004-11-15 2006-06-01 Nippon Steel Corp 燃料電池用金属製セパレータ及びその加工方法
JP2006156288A (ja) 2004-12-01 2006-06-15 Toyota Motor Corp 燃料電池及び燃料電池の製造方法
JP2006190643A (ja) 2004-12-09 2006-07-20 Kobe Steel Ltd 電極用チタン材およびその製造方法
JP2007005084A (ja) 2005-06-22 2007-01-11 Nippon Steel Corp ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法
JP2007131947A (ja) 2005-10-14 2007-05-31 Nippon Steel Corp 低接触抵抗性の固体高分子型燃料電池セパレーター用チタン合金材およびその製造方法ならびに本チタン合金材を用いてなる固体高分子型燃料電池セパレーター
JP2007234244A (ja) 2006-02-27 2007-09-13 Nippon Steel Corp 固体高分子型燃料電池用セパレータおよびその製造方法
JP2009238560A (ja) 2008-03-27 2009-10-15 Toyota Central R&D Labs Inc 固体高分子型燃料電池
WO2010038544A1 (ja) 2008-09-30 2010-04-08 新日本製鐵株式会社 低い接触抵抗を有する固体高分子型燃料電池セパレータ用チタン材およびその製造方法
JP2010097840A (ja) 2008-10-17 2010-04-30 Toyota Motor Corp 燃料電池用セパレータ及び燃料電池用セパレータの製造方法
JP2010108673A (ja) 2008-10-29 2010-05-13 Toyota Motor Corp 固体高分子電解質型燃料電池運転法及び固体高分子電解質型燃料電池
JP2010129458A (ja) 2008-11-28 2010-06-10 Toyota Central R&D Labs Inc 耐食導電材およびその製造方法並びに固体高分子型燃料電池および固体高分子型燃料電池用セパレータ
JP2010236083A (ja) * 2009-03-11 2010-10-21 Kobe Steel Ltd 電極用チタン材および電極用チタン材の表面処理方法
JP2010248572A (ja) 2009-04-15 2010-11-04 Toyota Motor Corp チタン系材料、その製造方法及び燃料電池用セパレータ
JP2010248570A (ja) 2009-04-15 2010-11-04 Toyota Motor Corp チタン系材料及び燃料電池用セパレータ
WO2011016465A1 (ja) 2009-08-03 2011-02-10 新日本製鐵株式会社 固体高分子型燃料電池セパレータ用チタン材およびその製造方法
JP2011077018A (ja) 2009-09-02 2011-04-14 Kobe Steel Ltd 燃料電池セパレータの製造方法
JP2012028045A (ja) 2010-07-20 2012-02-09 Kobe Steel Ltd チタン製燃料電池セパレータおよびその製造方法
JP2012028047A (ja) 2010-07-20 2012-02-09 Kobe Steel Ltd チタン製燃料電池セパレータの製造方法
JP2012028046A (ja) 2010-07-20 2012-02-09 Kobe Steel Ltd チタン製燃料電池セパレータ
JP2012043775A (ja) 2010-07-20 2012-03-01 Kobe Steel Ltd チタン製燃料電池セパレータの製造方法
JP2012043776A (ja) 2010-07-20 2012-03-01 Kobe Steel Ltd 燃料電池セパレータの製造方法
JP2012170363A (ja) 2011-02-18 2012-09-10 Sanyo Shokuhin Kk 即席麺の製造方法
JP2013109891A (ja) 2011-11-18 2013-06-06 Nippon Steel & Sumitomo Metal 固体高分子型燃料電池セパレータ用チタン材並びにその製造方法およびそれを用いた固体高分子型燃料電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127709A (en) * 1977-08-24 1978-11-28 Samuel Ruben Process for electro-plating nickel on titanium
JPH04361834A (ja) 1991-06-10 1992-12-15 Matsushita Electric Ind Co Ltd 絞り金型装置
US6261710B1 (en) 1998-11-25 2001-07-17 Institute Of Gas Technology Sheet metal bipolar plate design for polymer electrolyte membrane fuel cells
JP2006156258A (ja) 2004-11-30 2006-06-15 Seiko Epson Corp 有機エレクトロルミネッセンス装置の製造方法、有機エレクトロルミネッセンス装置
DE112007000680B8 (de) * 2006-04-14 2013-10-31 Toyota Jidosha Kabushiki Kaisha Edelmetallplattierung von Titankomponenten
WO2007145377A1 (ja) 2006-06-15 2007-12-21 Nippon Steel Corporation 純チタンまたはチタン合金製固体高分子型燃料電池用セパレータおよびその製造方法
US8920712B2 (en) * 2007-06-11 2014-12-30 Advanced Materials Products, Inc. Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen
JP5192908B2 (ja) 2008-05-28 2013-05-08 株式会社神戸製鋼所 燃料電池セパレータ用チタン基材、および、燃料電池セパレータ、ならびに燃料電池セパレータの製造方法
CN104508885B (zh) 2012-07-31 2017-07-18 新日铁住金株式会社 提高了对碳的接触导电性和耐久性的燃料电池分隔件用钛或者钛合金材料以及使用其的燃料电池分隔件以及它们的制造方法
JP5831670B1 (ja) * 2014-01-22 2015-12-09 新日鐵住金株式会社 表面の導電性を有するチタン材又はチタン合金材とその製造方法、及び、これを用いた燃料電池セパレータと燃料電池

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328200A (ja) 1999-05-13 2000-11-28 Sumitomo Metal Ind Ltd 通電電気部品用オーステナイト系ステンレス鋼および燃料電池
JP2004273370A (ja) 2003-03-11 2004-09-30 Sumitomo Metal Ind Ltd 燃料電池セパレータ用チタン系材料とその製造方法
JP4361834B2 (ja) 2003-06-24 2009-11-11 株式会社神戸製鋼所 チタン材
JP2005036314A (ja) * 2003-06-24 2005-02-10 Kobe Steel Ltd チタン材
JP2005038823A (ja) 2003-07-02 2005-02-10 Toyota Motor Corp 固体高分子型燃料電池システム
JP2005056776A (ja) 2003-08-07 2005-03-03 Toyota Central Res & Dev Lab Inc 固体高分子電解質及び燃料電池電極並びに固体高分子型燃料電池
JP2005209399A (ja) 2004-01-20 2005-08-04 Toyota Motor Corp 燃料電池システム
JP2006140095A (ja) 2004-11-15 2006-06-01 Nippon Steel Corp 燃料電池用金属製セパレータ及びその加工方法
JP2006156288A (ja) 2004-12-01 2006-06-15 Toyota Motor Corp 燃料電池及び燃料電池の製造方法
JP2006190643A (ja) 2004-12-09 2006-07-20 Kobe Steel Ltd 電極用チタン材およびその製造方法
JP2007005084A (ja) 2005-06-22 2007-01-11 Nippon Steel Corp ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法
JP2007131947A (ja) 2005-10-14 2007-05-31 Nippon Steel Corp 低接触抵抗性の固体高分子型燃料電池セパレーター用チタン合金材およびその製造方法ならびに本チタン合金材を用いてなる固体高分子型燃料電池セパレーター
JP2007234244A (ja) 2006-02-27 2007-09-13 Nippon Steel Corp 固体高分子型燃料電池用セパレータおよびその製造方法
JP2009238560A (ja) 2008-03-27 2009-10-15 Toyota Central R&D Labs Inc 固体高分子型燃料電池
WO2010038544A1 (ja) 2008-09-30 2010-04-08 新日本製鐵株式会社 低い接触抵抗を有する固体高分子型燃料電池セパレータ用チタン材およびその製造方法
JP2010097840A (ja) 2008-10-17 2010-04-30 Toyota Motor Corp 燃料電池用セパレータ及び燃料電池用セパレータの製造方法
JP2010108673A (ja) 2008-10-29 2010-05-13 Toyota Motor Corp 固体高分子電解質型燃料電池運転法及び固体高分子電解質型燃料電池
JP2010129458A (ja) 2008-11-28 2010-06-10 Toyota Central R&D Labs Inc 耐食導電材およびその製造方法並びに固体高分子型燃料電池および固体高分子型燃料電池用セパレータ
JP2010236083A (ja) * 2009-03-11 2010-10-21 Kobe Steel Ltd 電極用チタン材および電極用チタン材の表面処理方法
JP2010248572A (ja) 2009-04-15 2010-11-04 Toyota Motor Corp チタン系材料、その製造方法及び燃料電池用セパレータ
JP2010248570A (ja) 2009-04-15 2010-11-04 Toyota Motor Corp チタン系材料及び燃料電池用セパレータ
WO2011016465A1 (ja) 2009-08-03 2011-02-10 新日本製鐵株式会社 固体高分子型燃料電池セパレータ用チタン材およびその製造方法
JP2011077018A (ja) 2009-09-02 2011-04-14 Kobe Steel Ltd 燃料電池セパレータの製造方法
JP2012028045A (ja) 2010-07-20 2012-02-09 Kobe Steel Ltd チタン製燃料電池セパレータおよびその製造方法
JP2012028047A (ja) 2010-07-20 2012-02-09 Kobe Steel Ltd チタン製燃料電池セパレータの製造方法
JP2012028046A (ja) 2010-07-20 2012-02-09 Kobe Steel Ltd チタン製燃料電池セパレータ
JP2012043775A (ja) 2010-07-20 2012-03-01 Kobe Steel Ltd チタン製燃料電池セパレータの製造方法
JP2012043776A (ja) 2010-07-20 2012-03-01 Kobe Steel Ltd 燃料電池セパレータの製造方法
JP2012170363A (ja) 2011-02-18 2012-09-10 Sanyo Shokuhin Kk 即席麺の製造方法
JP2013109891A (ja) 2011-11-18 2013-06-06 Nippon Steel & Sumitomo Metal 固体高分子型燃料電池セパレータ用チタン材並びにその製造方法およびそれを用いた固体高分子型燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. LUTJERING; J. ALBRECHT: "Ti-2003 Science and Technology", 2004, WILEY-VCH VERLAG GMBH & CO., pages: 3117 - 3124

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305119B2 (en) 2014-01-22 2019-05-28 Nippon Steel & Sumitomo Metal Corporation Titanium material or titanium alloy material having surface electrical conductivity and method for producing the same, and fuel cell separator and fuel cell using the same
EP3073558B1 (en) * 2014-01-22 2020-03-04 Nippon Steel Corporation Titanium material or titanium alloy material having surface conductivity, production method therefor, fuel cell separator using same, and fuel cell
WO2019163851A1 (ja) * 2018-02-21 2019-08-29 日本製鉄株式会社 チタン材、セパレータ、セル、および燃料電池
JP6610842B1 (ja) * 2018-02-21 2019-11-27 日本製鉄株式会社 チタン材、セパレータ、セル、および燃料電池

Also Published As

Publication number Publication date
JPWO2015111652A1 (ja) 2017-03-23
EP3098885A4 (en) 2017-05-31
RU2643736C2 (ru) 2018-02-05
CN105934842B (zh) 2018-11-13
EP3098885A1 (en) 2016-11-30
CN105934842A (zh) 2016-09-07
US10033052B2 (en) 2018-07-24
US20160308222A1 (en) 2016-10-20
CA2935525C (en) 2019-01-15
CA2935525A1 (en) 2015-07-30
KR20160098396A (ko) 2016-08-18
KR101861032B1 (ko) 2018-05-24
EP3098885B1 (en) 2019-04-03
JP5790906B1 (ja) 2015-10-07

Similar Documents

Publication Publication Date Title
JP5790906B1 (ja) 表面の導電性を有するチタン材又はチタン合金材、これを用いた燃料電池セパレータと燃料電池
JP5831670B1 (ja) 表面の導電性を有するチタン材又はチタン合金材とその製造方法、及び、これを用いた燃料電池セパレータと燃料電池
JP5574066B2 (ja) 対カーボン接触導電性と耐久性を高めた燃料電池セパレータ用チタンまたはチタン合金材、及びこれを用いた燃料電池セパレータ、並びにそれらの製造方法
WO2010038544A1 (ja) 低い接触抵抗を有する固体高分子型燃料電池セパレータ用チタン材およびその製造方法
KR101741935B1 (ko) 대 카본 접촉 도전성과 내구성이 우수한 연료 전지 세퍼레이터용 티타늄재 또는 티타늄 합금재, 이를 사용한 연료 전지 세퍼레이터, 및, 연료 전지
JP5192908B2 (ja) 燃料電池セパレータ用チタン基材、および、燃料電池セパレータ、ならびに燃料電池セパレータの製造方法
WO2018147087A1 (ja) 燃料電池のセパレータ用鋼板の基材ステンレス鋼板およびその製造方法
JP6805822B2 (ja) チタン材、セパレータ、セル、および固体高分子形燃料電池
Fan et al. Solution acidity and temperature induced anodic dissolution and degradation of through-plane electrical conductivity of Au/TiN coated metal bipolar plates used in PEMFC
JP5850184B2 (ja) 対カーボン接触導電性と耐久性に優れた燃料電池セパレータ用チタン又はチタン合金、これを用いた燃料電池セパレータ、及び、燃料電池
Hu et al. Alternating C-and Ti-dominated sublayers on bipolar plates achieve enhanced corrosion resistance under high potentials toward proton exchange membrane fuel cells

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015524541

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15100890

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015740971

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015740971

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2935525

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20167018869

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016128720

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE