WO2015111386A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2015111386A1
WO2015111386A1 PCT/JP2015/000123 JP2015000123W WO2015111386A1 WO 2015111386 A1 WO2015111386 A1 WO 2015111386A1 JP 2015000123 W JP2015000123 W JP 2015000123W WO 2015111386 A1 WO2015111386 A1 WO 2015111386A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
forming
conductivity type
trench
type
Prior art date
Application number
PCT/JP2015/000123
Other languages
English (en)
French (fr)
Inventor
榊原 純
望 赤木
水野 祥司
竹内 有一
鈴木 克己
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Priority to US15/113,475 priority Critical patent/US20170012108A1/en
Publication of WO2015111386A1 publication Critical patent/WO2015111386A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0882Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66484Unipolar field-effect transistors with an insulated gate, i.e. MISFET with multiple gate, at least one gate being an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • H01L2223/5446Located in scribe lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present disclosure relates to a method for manufacturing a semiconductor device having a trench gate.
  • a MOSFET having a trench gate structure has a technical problem that electric field concentration occurs at the bottom of the trench constituting the trench gate structure.
  • a deep layer deeper than the bottom of the trench is formed. Things have been done.
  • the amount of protrusion from the trench and the distance between the trench and the deep layer are design parameters.
  • the accuracy of the alignment between the trench and the contact hole formed in the deep layer and the interlayer insulating film becomes severe.
  • the deep layer expands due to thermal diffusion. difficult.
  • Patent Document 1 there is a vertical MOSFET disclosed in Patent Document 1 as a structure for solving this problem.
  • a trench is formed in an n-type drift layer, and a p-type deep layer is epitaxially grown in the trench.
  • electric field concentration at the bottom of the trench is suppressed, and the expansion margin of the p-type deep layer due to thermal diffusion is not expected.
  • a trench is formed in the contact portion of the semiconductor layer that is electrically connected to the source electrode, and the source electrode is embedded in the trench. As a result, the contact area between the source electrode and the semiconductor layer is increased, and the pitch can be made narrower than when the contact portion is flat.
  • the vertical MOSFET described in Patent Document 1 described above has a technical problem that an etching process for forming a trench in the contact portion is required, and the number of manufacturing processes increases.
  • the vertical MOSFET described in Patent Document 1 is manufactured by the following manufacturing method.
  • a trench is formed at a position where a p-type deep layer is to be formed in the n-type drift layer.
  • the p-type layer is planarized until the n-type drift layer is exposed, so that the surfaces of the p-type layer and the n-type drift layer become flat surfaces.
  • a p-type deep layer is formed by the p-type layer.
  • a p-type channel layer is formed on the p-type deep layer and the n-type drift layer, and an n-type source region is further formed thereon.
  • the n-type source region and the p-type channel layer are etched on the p-type deep layer to form a trench constituting the contact portion.
  • the inner wall surface of the trench is covered with a gate insulating film, and a gate electrode is disposed on the gate insulating film.
  • a source electrode in contact with the n-type source region and the p-type deep layer is formed through the contact hole.
  • a vertical MOSFET is completed.
  • the present disclosure is a vertical type that enables a narrow pitch of cells by forming a trench in a contact portion while forming a deep layer capable of relaxing an electric field at the bottom of the trench constituting the trench gate structure.
  • an object is to eliminate an etching process for forming a trench of a contact portion.
  • a drift layer of the first conductivity type having a lower impurity concentration than the semiconductor substrate is formed on the semiconductor substrate of the first or second conductivity type.
  • etching is performed using the mask so that the plurality of first recesses from which the drift layer is partially removed are separated from each other in a cross section parallel to the surface of the semiconductor substrate. Let it form.
  • a plurality of second conductivity type deep layers are formed in the plurality of first recesses, and a second conductivity type impurity is formed on the surface of the drift layer. Form a layer.
  • a first conductivity type source region having a higher concentration than the drift layer is formed by ion-implanting a first conductivity type impurity into the surface layer portion of the channel layer.
  • a second conductivity type contact region having a higher concentration than the channel layer is formed.
  • a source electrode electrically connected to the source region and the contact region is formed.
  • a drain electrode is formed on the back side of the semiconductor substrate.
  • a growth is formed in which a contact trench composed of a depression is formed on the surface of a portion of the second conductivity type impurity layer corresponding to the center position of the first recess. Epitaxial growth is performed under conditions.
  • the contact region is formed at the bottom of the contact trench.
  • the recess remains in the central portion of the second conductivity type impurity layer formed in the first recess. I am doing so.
  • the contact trench is formed by the depression. For this reason, it is not necessary to perform etching for forming the contact trench, and it is not necessary to increase the number of manufacturing steps, and in addition, the deep trench and the self-alignment can be formed.
  • FIG. 1 is a cross-sectional view of a SiC semiconductor device having a vertical MOSFET having an inverted trench gate structure according to a first embodiment of the present disclosure.
  • 2A is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device shown in FIG. 2B is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device following FIG. 2A.
  • FIG. 2C is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device continued from FIG. 2B.
  • FIG. 2D is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device following FIG. 2C.
  • FIG. 2E is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device following FIG. 2D.
  • 2F is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device subsequent to FIG. 2E.
  • FIG. 2G is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device following FIG. 2F.
  • FIG. 3 is a cross-sectional view of an SiC semiconductor device having a vertical MOSFET having an inverted trench gate structure according to a second embodiment of the present disclosure.
  • FIG. 4A is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device shown in FIG.
  • FIG. 4B is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device following FIG. 4A.
  • FIG. 4C is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device subsequent to FIG. 4B.
  • FIG. 4D is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device following FIG. 4C.
  • FIG. 4E is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device subsequent to FIG. 4D.
  • FIG. 4F is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device subsequent to FIG. 4E.
  • FIG. 4G is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device subsequent to FIG. 4F.
  • FIG. 4H is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device following FIG. 4G.
  • FIG. 5A is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device having the vertical MOSFET having the inverted trench gate structure according to the third embodiment of the present disclosure.
  • FIG. 5B is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device following FIG. 5A.
  • FIG. 5C is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device continued from FIG. 5B.
  • FIG. 5A is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device having the vertical MOSFET having the inverted trench gate structure according to the third embodiment of the present disclosure.
  • FIG. 5B is a cross-sectional view showing
  • FIG. 5D is a cross-sectional view showing a part of the manufacturing process of the SiC semiconductor device following FIG. 5C.
  • FIG. 6 is a cross-sectional view of an SiC semiconductor device having a vertical MOSFET having an inverted trench gate structure according to a fourth embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view of an SiC semiconductor device having a vertical MOSFET having an inverted trench gate structure according to a fifth embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view of an SiC semiconductor device having a vertical MOSFET having an inverted trench gate structure according to a sixth embodiment of the present disclosure.
  • FIG. 1 A first embodiment of the present disclosure will be described. First, the structure of an SiC semiconductor device having a vertical MOSFET having an inverted trench gate structure manufactured by the manufacturing method according to the present embodiment will be described with reference to FIG. In FIG. 1, only two vertical MOSFETs are shown, but a plurality of cells having the same structure as the vertical MOSFET shown in FIG. 1 are arranged adjacent to each other.
  • an n + type semiconductor substrate 1 made of a SiC single crystal doped with an n-type impurity (such as nitrogen) at a high concentration is used.
  • An n-type drift layer 2 made of SiC doped with n-type impurities is formed on the n + -type semiconductor substrate 1.
  • the n-type drift layer 2 is formed with a recessed portion (first recessed portion) 2a that is partially recessed.
  • p-type impurity layer 3 made of SiC doped with p-type impurities on the surface of n-type drift layer 2 including the inside of recess 2a, p-type channel layer 3a and p-type deep layer 3b become Is formed.
  • the p-type impurity layer 3 has a uniform impurity concentration in the depth direction, for example, an impurity concentration of 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the p-type channel layer 3a is a layer constituting a channel of the vertical MOSFET, and is formed on both sides of a trench 6 constituting a trench gate structure described later so as to be in contact with the side surface of the trench 6.
  • the p-type deep layer 3 b is disposed on both sides of the trench 6 so as to be separated from the side surface of the trench 6.
  • the distance from the p-type deep layer 3b to the side surface of the trench 6 is such that the n-type drift layer 2 located between the trench 6 and the p-type deep layer 3b is depleted as much as possible when the depletion layer spreads, and The distance is set such that the electric field relaxation effect can be exhibited.
  • the bottom of the p-type deep layer 3 b is formed deeper than the bottom of the trench 6 and to a position closer to the n + -type semiconductor substrate 1 than the bottom of the trench 6.
  • a contact trench 3c is formed at a position corresponding to the center position of the p-type deep layer 3b in the surface of the p-type channel layer 3a.
  • the contact trench 3c of this embodiment is formed in a shape having a plurality of surfaces including a bottom surface and a side surface, the bottom surface is a plane parallel to the surface of the n + type semiconductor substrate 1, and the side surface is relative to the bottom surface. Vertical plane.
  • the contact trench 3c has a shallower structure than the trench 6 and a shallower structure than the p-type channel layer 3a.
  • an n + -type source region 4 doped with an n-type impurity at a high concentration is formed in a portion other than the contact trench 3c, and at the bottom of the contact trench 3c.
  • a p + -type contact region 5 is formed in which p-type impurities are heavily doped.
  • the trench gate structure is constituted by the structure in which the gate insulating film 7 and the gate electrode 8 are provided in the trench 6.
  • the trench gate structure is, for example, a strip with the vertical direction on the paper as the longitudinal direction, and a plurality of trench gate structures are arranged in stripes at equal intervals in the horizontal direction of the paper. As a result, the structure is provided with a plurality of cells.
  • a source electrode 9 is formed on the surfaces of the n + type source region 4 and the p + type contact region 5.
  • the source electrode 9 is composed of a plurality of metals (for example, Ni / Al). Specifically, the portion connected to the n + -type source region 4 is made of a metal capable of ohmic contact with n-type SiC, and the portion connected to the p-type channel layer 3 a via the p + -type contact region 5 is It is made of a metal capable of ohmic contact with p-type SiC.
  • the source electrode 9 is electrically separated from a gate wiring (not shown) that is electrically connected to the gate electrode 8 on the interlayer insulating film 10.
  • the source electrode 9 is in electrical contact with the n + type source region 4 and the p + type contact region 5 through a contact hole formed in the interlayer insulating film 10.
  • n + -type semiconductor substrate 1 On the back side of the n + -type semiconductor substrate 1 n + -type semiconductor substrate 1 and electrically connected to the drain electrode 11 is formed. With such a structure, an n-channel type inverted MOSFET having a trench gate structure is formed.
  • the portion of the p-type channel layer 3 a that contacts the side surface of the trench 6 becomes an inversion channel, and the source electrode 9 and the drain electrode 11. Current flows between the two.
  • a high voltage (eg, 1200 V) is applied as the drain voltage.
  • SiC having an electric field breakdown strength nearly 10 times that of a silicon device
  • an electric field close to 10 times that of a silicon device is applied to the gate insulating film 7 due to the influence of this voltage.
  • Electric field concentration can occur at the bottom of 6).
  • the p-type deep layer 3b deeper than the trench 6 is provided.
  • the depletion layer at the PN junction between the p-type deep layer 3 b and the n-type drift layer 2 greatly extends toward the n-type drift layer 2, and a high voltage due to the influence of the drain voltage is applied to the gate insulating film 7. It becomes difficult to enter.
  • a contact trench 3c is formed at a contact portion with the source electrode 9, and a p + type contact region 5 is formed at the bottom of the contact trench 3c, so that the source electrode 9, the n + type source region 4 and the p + type contact are formed.
  • the region 5 is electrically connected.
  • the contact trench 3c has a structure having a plurality of surfaces, the contact area between the source electrode 9, the n + -type source region 4 and the p + -type contact region 5 can be further increased, and the contact resistance can be reduced. Can be realized.
  • an epitaxial substrate is prepared in which an n type drift layer 2 is epitaxially grown on the surface of an n + type semiconductor substrate 1 made of a SiC single crystal doped with an n type impurity at a high concentration.
  • a mask material such as an oxide film is deposited on the n-type drift layer 2 and then patterned to form a region where the recess 2a is to be formed, that is, the formation of the p-type deep layer 3b.
  • a mask 20 having an opening in a predetermined area is formed.
  • anisotropic etching such as reactive ion etching (RIE) is performed using the mask 20.
  • RIE reactive ion etching
  • the depth and width of the recess 2a are set so that the final depth and width of the final p-type deep layer 3b become target values in consideration of thermal diffusion in each process performed thereafter. .
  • the p-type channel layer 3a and the p-type deep layer 3b are formed on the surface of the n-type drift layer 2 including the inside of the recess 2a.
  • the type impurity layer 3 is epitaxially grown.
  • CVD chemical vapor deposition
  • silane (SiH 4 ) gas and propane (C 3 H 8 ) gas are simultaneously introduced into the atmosphere, and a gas containing a dopant is introduced into the gas while epitaxial growth is performed.
  • a gas containing a dopant is introduced into the gas while epitaxial growth is performed.
  • the p-type impurity layer 3 can be formed.
  • a depression is left in the central portion of the surface of the portion of the p-type impurity layer 3 formed in the recess 2a, and the contact trench 3c is configured by this depression.
  • the growth rate of the p-type impurity layer 3 has a plane orientation dependency, and the plane orientation dependency changes depending on growth parameters such as the growth temperature, gas flow rate, and atmospheric pressure during epitaxial growth. Therefore, it depends on the plane orientation, that is, the vertical growth rate formed on the surface of the n-type drift layer 2 other than the recess 2a and the bottom surface of the recess 2a in the p-type impurity layer 3, and on the side surface of the recess 2a. It is possible to control the ratio of the lateral growth rate of the portion formed on the basis of the growth parameter.
  • the p-type impurity layer 3 A contact trench 3c can be formed on the surface.
  • the width of the contact trench 3c in the direction in which the plurality of p-type deep layers 3b are arranged, that is, the distance between both side surfaces is made smaller than the width of the p-type deep layer 3b in the same direction. That is, in the vertical MOSFET of this embodiment, the length of the p-type channel layer 3a between the trench 6 and the p-type deep layer 3b is shortened so that the electric field relaxation effect can be effectively obtained. Yes. For this reason, at the time of designing, it is preferable to design with a focus on the length of the p-type channel layer 3a.
  • the distance from the trench 6 to the contact trench 3c is the p-type channel layer between the trench 6 and the p-type deep layer 3b. It becomes shorter than the length of 3a. In this case, the processing is restricted by the distance from the trench 6 to the contact trench 3c, and it becomes impossible to design with the main focus on the length of the p-type channel layer 3a as described above.
  • the contact trench 3c is shallower than the trench 6 and shallower than the p-type channel layer 3a.
  • the contact trench 3c is formed by etching. In that case, it is necessary to keep a certain aspect ratio in order to make it stable and deep, and thus a certain trench width is required, which hinders miniaturization. Therefore, miniaturization can be achieved by making the contact trench 3c shallow as in the present embodiment.
  • an etching mask (not shown) that opens the region where the trench 6 is to be formed is disposed while covering the surface of the p-type impurity layer 3. And after performing anisotropic etching using an etching mask, the trench 6 is formed by performing isotropic etching and a sacrificial oxidation process as needed. Thereby, the p-type channel layer 3a is penetrated and reaches the n-type drift layer 2, but is shallower than the p-type deep layer 3b and is separated from the p-type deep layer 3b between the adjacent p-type deep layers 3b. Trench 6 arranged to do so can be formed.
  • the gate insulating film 7 is formed by performing a gate oxidation process after removing the etching mask 21. Further, after forming a polysilicon layer doped with impurities on the surface of the gate insulating film 7, the gate electrode 8 is formed by patterning the polysilicon layer. Thereby, a trench gate structure is formed.
  • a mask (not shown) in which a region where the n + -type source region 4 is to be formed is formed on the surface of the p-type impurity layer 3, and then n-type impurities are ionized at a high concentration from above. By implantation, an n + type source region 4 is formed.
  • a mask (not shown) in which the region where the p + -type contact region 5 is to be formed is opened on the surface of the p-type impurity layer 3, the p-type impurity is ion-implanted at a high concentration from above. A p + -type contact region 5 is formed.
  • the interlayer insulating film 10 is patterned to form contact holes that expose the n + -type source region 4 and the p-type impurity layer 3, and the gate electrode 8.
  • a contact hole is formed in a different cross-section to expose.
  • an electrode material is deposited so as to fill the contact hole, and then patterned to form the source electrode 9 and a gate wiring (not shown). Then, by forming the drain electrode 11 on the back surface side of the n + type semiconductor substrate 1, the vertical MOSFET shown in FIG. 1 is completed.
  • the p-type impurity layer 3 when the p-type impurity layer 3 is formed, a depression remains in the center of the portion of the p-type impurity layer 3 formed in the recess 2a.
  • the contact trench 3c is constituted by this recess. For this reason, it is not necessary to perform etching for forming the contact trench 3c, and it is not necessary to increase the number of manufacturing steps.
  • the p-type deep layer 3b can be formed by self-alignment.
  • the p-type channel layer 3a and the p-type deep layer 3b are formed at the same time.
  • the p-type channel layer 3a and the p-type deep layer 3b are separately formed as shown in FIG.
  • different impurity concentrations are set.
  • the trench gate type vertical MOSFET shown in FIG. 3 is manufactured by the following manufacturing method.
  • FIGS. 4A to 4C the same steps as those in FIGS. 2A to 2C are performed. However, in the step shown in FIG. 4C, only the portion constituting the p-type deep layer 3b of the p-type impurity layer 3 is formed, and a depression remains in the p-type deep layer 3b in the central portion of the recess 2a. . The bottom of this recess is positioned deeper than the surface of the n-type drift layer 2 (position closer to the n + -type semiconductor substrate 1).
  • a portion of the p-type deep layer 3b formed on the surface of the n-type drift layer 2 is removed by chemical mechanical polishing (CMP), for example, and the surface of the n-type drift layer 2 is removed. To expose.
  • CMP chemical mechanical polishing
  • the p-type channel layer 3a is epitaxially grown on the n-type drift layer 2 and the p-type deep layer 3b.
  • the depression remains in the p-type deep layer 3b serving as the base, the depression remains in the p-type channel layer 3a at a position corresponding to the central portion of the recess 2a, and the contact trench 3c is formed by this depression. Composed.
  • the steps shown in FIGS. 4F to 4H the same steps as those shown in FIGS. 2D, 2E, and 2F are performed, and although not shown, the steps similar to FIG. The vertical MOSFET shown is completed.
  • the p-type channel layer 3a and the p-type deep layer 3b can be formed by separate steps. In that case, these can be set to independent impurity concentrations.
  • the p-type channel layer 3a has an impurity concentration according to the threshold setting, for example, 1 ⁇ 10 16 to 1 ⁇ 10 17 cm ⁇ 3
  • the p-type deep layer 3b has an impurity concentration according to the breakdown voltage design, for example, 1 It can be set to ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 .
  • an alignment mark part for mask alignment is provided in a scribe area that is diced when dividing into chips or an unnecessary area that is an outer peripheral part of the chip formation area, and mask alignment can be performed using the unevenness of the alignment mark part as a key. I am doing so.
  • the recess (second recess) 30 is also formed in the alignment mark portion.
  • the p-type impurity layer 3 is formed in the step shown in FIG. 5C
  • a recess remains in the p-type impurity layer 3 formed in the alignment mark portion, and this becomes the alignment mark 31.
  • each step is performed by mask alignment using the alignment mark 31 as a reference, thereby forming each part of the vertical MOSFET as shown in FIG. 5D. That is, the trench gate structure forming step shown in FIG. 2D, the n + -type source region 4 and p + -type contact region 5 forming step shown in FIGS.
  • the interlayer insulating film 10 patterning step and the source electrode 9 formation.
  • the process and the formation process of the drain electrode 11 are performed. As a result, all the masks can be aligned using the alignment mark 31 as a reference, so that the mask displacement of each part can be kept to a minimum.
  • the contact trench 3c has a planar bottom surface and a planar side surface, and the opening size gradually increases from the bottom surface side toward the trench inlet side.
  • the side surface is tapered.
  • the same effects as those of the above-described embodiments can be obtained even when the side surface of the contact trench 3c is tapered. Further, when the vertical MOSFET is operated as a diode or avalanche, a current can flow in a wide area on the planar bottom surface. Therefore, current concentration can be alleviated and a vertical MOSFET having a high breakdown strength can be realized.
  • the side surface of the contact trench 3c can be inclined by adjusting the mixing ratio of silane gas or propane gas used when forming the p-type channel layer 3a, that is, the C / Si ratio.
  • the bottom surface and the side surface of the contact trench 3c are configured, and the bottom surface has a rounded curved surface shape.
  • the p + -type contact region 5 also has a curved surface shape with rounded upper and lower surfaces similar to the bottom surface of the contact trench 3c.
  • the same effects as those of the above embodiments can be obtained.
  • the boundary position between the bottom surface and the side surface is rounded by rounding the bottom surface, current concentration at the boundary position between the bottom surface and the side surface can be reduced during the diode operation or the avalanche operation of the vertical MOSFET. Therefore, it is possible to realize a vertical MOSFET having a high breakdown resistance.
  • the bottom surface of the contact trench 3c can be rounded.
  • the contact trench 3 c has a bottom surface and a side surface, and a boundary portion between the bottom surface and the side surface has a rounded curved shape. Accordingly, both the p + -type contact region 5 and both the upper and lower surfaces in the left-right direction in FIG. 8 are rounded and curved like the boundary between the bottom surface and the side surface of the contact trench 3c. ing.
  • the boundary portion between the bottom surface and the side surface of the contact trench 3c can be rounded.
  • the present disclosure can be applied not only to SiC but also to a semiconductor device using another semiconductor material such as Si.
  • SiC a high voltage nearly ten times that of a silicon device is used as the drain voltage, and the breakdown electric field strength is large. Therefore, it is necessary to form the p-type deep layer 3b to a deeper position.
  • SiC since the material is very hard, it is difficult to form the p-type deep layer 3b by ion implantation, and a method of forming the p-type deep layer 3b by epitaxial growth into the recess 2a is effective. .
  • the present disclosure in the case of using SiC that is required to form the p-type deep layer 3b by epitaxial growth.
  • Si is used as the semiconductor material
  • the thermal diffusion of impurities is easier compared to SiC. Therefore, as a step of forming the p-type impurity layer 3, for example, after forming Poly-Si, p-type impurities are formed.
  • the p-type impurity layer 3 may be formed by vapor-diffusing (boron).
  • the trench gate structure forming step is performed before the n + type source region 4 and the p + type contact region 5 forming step.
  • the order may be reversed.
  • a plurality of p-type deep layers 3b are arranged apart from each other in the cross section shown in FIGS. 1 and 3, that is, in a cross section parallel to the substrate surface.
  • the p-type deep layer 3b only needs to be separated from each other at least in the cross sections shown in FIGS. 1 and 3, and may be partially connected in different cross sections.
  • the trench gate structure has a stripe shape extending in the direction perpendicular to the paper surface
  • the p-type deep layer 3b has a plurality of structures separated from each other.
  • the trench gate structure is, for example, a square shape and the p-type deep layer 3b is disposed around the trench gate structure, or even when the trench 6 is in a stripe shape, the p-type deep layer 3b is in a lattice shape. In such a case, they are partially connected in a cross section different from that in FIGS.
  • the n-channel type vertical MOSFET in which the first conductivity type is n-type and the second conductivity type is p-type has been described as an example.
  • the conductivity type of each component is reversed.
  • the present disclosure can also be applied to a p-channel type vertical MOSFET.
  • the present invention can be applied not only to a vertical MOSFET but also to an IGBT. In the case of an IGBT, the conductivity type of the SiC substrate is changed from the first conductivity type to the second conductivity type with respect to the vertical MOSFET, and the other conductivity may be the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 半導体装置の製造方法において、第1凹部内(2a)において第2導電型のディープ層(3b)を構成すると共に、ドリフト層(2)の表面において第2導電型のチャネル層(3a)を構成する第2導電型不純物層(3)を形成する際、前記第2導電型不純物層のうち前記第1凹部の中央位置に対応する部分の表面に、窪みにて構成されるコンタクトトレンチ(3c)が形成される成長条件でエピタキシャル成長を行い、前記コンタクトトレンチの底部に第2導電型不純物をイオン注入することによりコンタクト領域(5)を形成する。

Description

半導体装置の製造方法 関連出願の相互参照
 本開示は、2014年1月24日に出願された日本出願番号2014-11643号と、2014年12月5日に出願された日本出願番号2014-246956号に基づくもので、ここにその記載内容を援用する。
 本開示は、トレンチゲートを有する半導体装置の製造方法に関するものである。
 従来より、縦型MOSFETのオン抵抗を低減するために、セルの狭ピッチ化、つまりチャネルの高密度化を図ったトレンチゲート構造の縦型MOSFETがある。トレンチゲート構造の縦型MOSFETでは、チャネルがトレンチゲートの側面、つまり半導体基板の表面に対する法線方向に形成される。このため、チャネルが半導体基板の表面と平行とされるプレーナ構造の縦型MOSFETよりもセルの狭ピッチ化を図ることができる。ただし、縦型MOSFETでは半導体基板の表面側において、層間絶縁膜に形成したコンタクトホールを介してソース電極を形成するため、ある程度のコンタクト面積が必要とされ、狭ピッチ化には限界がある。
 一方、トレンチゲート構造のMOSFETにおいては、トレンチゲート構造を構成するトレンチの底部で電界集中が発生するという技術的課題があり、これを緩和するために、トレンチの底部よりも深いディープ層を形成することが行われている。このような電界緩和構造では、ディープ層の設計において、トレンチからの突出量とトレンチとディープ層との間の距離が設計パラメータとなる。しかしながら、セルの狭ピッチ化を進めると、トレンチとディープ層および層間絶縁膜に形成するコンタクトホールとの形成位置合わせの精度が厳しくなる。特に、シリコンデバイスにおいて、ディープ層を不純物のイオン注入および熱拡散による拡散層によって形成する場合、熱拡散によるディープ層の拡大が生じるため、そのマージンを見込まなければならず、セルの狭ピッチ化が難しい。
 これを解消する構造として、例えば、特許文献1に示される縦型MOSFETがある。この縦型MOSFETでは、n型ドリフト層にトレンチを形成し、そのトレンチ内にp型ディープ層をエピタキシャル成長させるようにしている。これにより、トレンチの底部での電界集中を抑制しつつ、熱拡散によるp型ディープ層の拡大マージンを見込まなくても済むようにしている。また、ソース電極と電気的に接続される半導体層のコンタクト部にトレンチを形成し、トレンチ内にソース電極が埋め込まれるようにしている。これにより、ソース電極と半導体層との接触面積を増大させ、コンタクト部が平坦な場合よりも狭ピッチ化が図れるようにしている。
特開2009-260253号公報
 しかしながら、上記した特許文献1に記載の縦型MOSFETでは、コンタクト部にトレンチを形成するためのエッチング工程が必要となり、製造工程数が増加するという技術的課題がある。
 具体的には、特許文献1に記載の縦型MOSFETは、以下の製造方法によって製造されている。
 まず、n型半導体基板の上にn型ドリフト層を形成したのち、n型ドリフト層におけるp型ディープ層の形成予定位置にトレンチを形成する。次に、トレンチ内を埋め込むようにp型層を成膜したのち、p型層をn型ドリフト層が露出するまで平坦化し、p型層およびn型ドリフト層の表面が平坦面となるようにすることで、p型層によってp型ディープ層を構成する。続いて、p型ディープ層およびn型ドリフト層の上にp型チャネル層を形成し、さらにその上にn型ソース領域を形成する。
 また、p型ディープ層上においてn型ソース領域およびp型チャネル層をエッチングし、コンタクト部を構成するトレンチを形成する。この後、コンタクト部を構成するトレンチと異なる位置にトレンチゲート構造を形成するためのトレンチを形成したのち、トレンチ内壁面をゲート絶縁膜で覆い、さらにゲート絶縁膜上にゲート電極を配置する。そして、層間絶縁膜を形成すると共に層間絶縁膜にコンタクトホールを形成したのち、コンタクトホールを介してn型ソース領域およびp型ディープ層に接するソース電極を形成する。最後に、n型半導体基板の裏面にドレイン電極を形成することで、縦型MOSFETが完成する。
 このような製造工程において、コンタクト部にトレンチを形成するために、p型ディープ層上においてn型ソース領域およびp型チャネル層をエッチングしている。このため、上記したように製造工程数が増加している。
 本開示は上記点に鑑みて、トレンチゲート構造を構成するトレンチの底部での電界緩和を行えるディープ層を形成しつつ、コンタクト部にトレンチを形成してセルの狭ピッチ化を可能とする縦型MOSFETを有する半導体装置の製造方法において、コンタクト部のトレンチを形成するためのエッチング工程を行わなくても済むようにすることを目的とする。
 本開示の一態様に係る半導体装置の製造方法では、第1または第2導電型の半導体基板上に、前記半導体基板よりも低不純物濃度とされた第1導電型のドリフト層を形成する。前記ドリフト層の表面にマスクを配置した後、前記マスクを用いてエッチングを行うことで、前記ドリフト層を部分的に除去した複数の第1凹部を前記半導体基板の表面と平行な断面において互いに離間させて形成する。前記マスクを除去したのち、前記複数の第1凹部内において第2導電型の複数のディープ層を構成すると共に、前記ドリフト層の表面において第2導電型のチャネル層を構成する第2導電型不純物層を形成する。前記複数のディープ層の間において、前記第2導電型不純物層の表面から前記チャネル層を貫通して前記ドリフト層に達し、かつ、前記ディープ層よりも浅いトレンチを形成したのち、前記トレンチの表面にゲート絶縁膜を形成し、さらに前記トレンチ内において、前記ゲート絶縁膜の上にゲート電極を形成することでトレンチゲート構造を形成する。前記チャネル層の表層部に第1導電型不純物をイオン注入することにより、前記ドリフト層よりも高濃度の第1導電型のソース領域を形成する。前記チャネル層のうち前記第1凹部の中央位置に対応する部分の表層部に第2導電型不純物をイオン注入することにより、前記チャネル層よりも高濃度の第2導電型のコンタクト領域を形成する。前記ソース領域および前記コンタクト領域に電気的に接続されるソース電極を形成する。前記半導体基板の裏面側にドレイン電極を形成する。
 前記第2導電型不純物層を形成する際に、前記第2導電型不純物層のうち前記第1凹部の中央位置に対応する部分の表面に、窪みにて構成されるコンタクトトレンチが形成される成長条件でエピタキシャル成長を行う。前記コンタクト領域を形成する際に、前記コンタクトトレンチの底部に前記コンタクト領域を形成する。
 上記の半導体装置の製造方法では、前記第2導電型不純物層を形成する際に、前記第2導電型不純物層のうち前記第1凹部内に形成された部分の前記中央部に前記窪みが残るようにしている。そして、前記窪みによって前記コンタクトトレンチを構成している。このため、前記コンタクトトレンチを形成するためのエッチングを行う必要が無く、製造工程数を増加しなくても済むのに加えて前記ディープ層とセルフアラインで形成するようにできる。
 本開示における上記あるいは他の目的、構成、利点は、下記の図面を参照しながら、以下の詳細説明から、より明白となる。図面において、
図1は、本開示の第1実施形態にかかる反転型のトレンチゲート構造の縦型MOSFETを有するSiC半導体装置の断面図である。 図2Aは、図1に示すSiC半導体装置の製造工程の一部を示した断面図である。 図2Bは、図2Aに続くSiC半導体装置の製造工程の一部を示した断面図である。 図2Cは、図2Bに続くSiC半導体装置の製造工程の一部を示した断面図である。 図2Dは、図2Cに続くSiC半導体装置の製造工程の一部を示した断面図である。 図2Eは、図2Dに続くSiC半導体装置の製造工程の一部を示した断面図である。 図2Fは、図2Eに続くSiC半導体装置の製造工程の一部を示した断面図である。 図2Gは、図2Fに続くSiC半導体装置の製造工程の一部を示した断面図である。 図3は、本開示の第2実施形態にかかる反転型のトレンチゲート構造の縦型MOSFETを有するSiC半導体装置の断面図である。 図4Aは、図3に示すSiC半導体装置の製造工程の一部を示した断面図である。 図4Bは、図4Aに続くSiC半導体装置の製造工程の一部を示した断面図である。 図4Cは、図4Bに続くSiC半導体装置の製造工程の一部を示した断面図である。 図4Dは、図4Cに続くSiC半導体装置の製造工程の一部を示した断面図である。 図4Eは、図4Dに続くSiC半導体装置の製造工程の一部を示した断面図である。 図4Fは、図4Eに続くSiC半導体装置の製造工程の一部を示した断面図である。 図4Gは、図4Fに続くSiC半導体装置の製造工程の一部を示した断面図である。 図4Hは、図4Gに続くSiC半導体装置の製造工程の一部を示した断面図である。 図5Aは、本開示の第3実施形態にかかる反転型のトレンチゲート構造の縦型MOSFETを有するSiC半導体装置の製造工程の一部を示した断面図である。 図5Bは、図5Aに続くSiC半導体装置の製造工程の一部を示した断面図である。 図5Cは、図5Bに続くSiC半導体装置の製造工程の一部を示した断面図である。 図5Dは、図5Cに続くSiC半導体装置の製造工程の一部を示した断面図である。 図6は、本開示の第4実施形態にかかる反転型のトレンチゲート構造の縦型MOSFETを有するSiC半導体装置の断面図である。 図7は、本開示の第5実施形態にかかる反転型のトレンチゲート構造の縦型MOSFETを有するSiC半導体装置の断面図である。 図8は、本開示の第6実施形態にかかる反転型のトレンチゲート構造の縦型MOSFETを有するSiC半導体装置の断面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 本開示の第1実施形態について説明する。まず、本実施形態にかかる製造方法により製造される反転型のトレンチゲート構造の縦型MOSFETを有するSiC半導体装置の構造について図1を参照して説明する。なお、図1では、縦型MOSFETの2セル分しか記載していないが、図1に示す縦型MOSFETと同様の構造のものが複数セル隣り合うように配置されている。
 図1に示すように、n型不純物(窒素など)が高濃度にドープされたSiC単結晶からなるn+型半導体基板1を用いている。このn+型半導体基板1の上に、n型不純物がドープされたSiCからなるn型ドリフト層2が形成されている。
 また、n型ドリフト層2には部分的に凹まされた凹部(第1凹部)2aが形成されている。この凹部2aの内部を含めてn型ドリフト層2の表面にp型不純物がドープされたSiCからなるp型不純物層3が形成されることにより、p型チャネル層3aおよびp型ディープ層3bが形成されている。本実施形態では、p型不純物層3は深さ方向において一様な不純物濃度とされており、例えば1×1017~1×1018cm-3の不純物濃度とされている。
 p型チャネル層3aは、縦型MOSFETのチャネルを構成する層であり、後述するトレンチゲート構造を構成するトレンチ6の両側において、トレンチ6の側面に接するように形成されている。
 p型ディープ層3bは、トレンチ6の両側において、トレンチ6の側面から離間して配置されている。また、p型ディープ層3bからトレンチ6の側面までの距離は、空乏層が広がったときにトレンチ6とp型ディープ層3bの間に位置するn型ドリフト層2ができるだけ空乏化して、かつ、電界緩和効果が発揮できる距離に設定されている。p型ディープ層3bの底部は、トレンチ6の底部よりも深く、トレンチ6の底部よりもn+型半導体基板1寄りの位置まで形成されている。
 また、p型チャネル層3aの表面のうち、p型ディープ層3bの中心位置と対応する位置にはコンタクトトレンチ3cが形成されている。本実施形態のコンタクトトレンチ3cは、底面と側面とを含めた複数の面を有する形状で形成されており、底面がn+型半導体基板1の表面と平行な平面とされ、側面が底面に対して垂直な平面とされている。本実施形態の場合、コンタクトトレンチ3cは、トレンチ6よりも浅い構造とされ、かつ、p型チャネル層3aよりも浅い構造とされている。
 そして、p型チャネル層3aの表層部のうち、コンタクトトレンチ3c以外の部分にはn型不純物が高濃度にドープされたn+型ソース領域4が形成されており、コンタクトトレンチ3cの底部にはp型不純物が高濃度にドープされたp+型コンタクト領域5が形成されている。
 さらに、図1の断面において隣り合って配置されたp型ディープ層3bの中央位置において、p型チャネル層3aおよびn+型ソース領域4を貫通してn型ドリフト層2に達し、かつ、p型ディープ層3bよりも浅いトレンチ6が形成されている。このトレンチ6の側面と接するようにp型チャネル層3aおよびn+型ソース領域4が配置されている。トレンチ6の内壁面は酸化膜などによって構成されたゲート絶縁膜7で覆われており、ゲート絶縁膜7の表面に形成されたドープトPoly-Siにて構成されたゲート電極8により、トレンチ6内が埋め尽くされている。このように、トレンチ6内にゲート絶縁膜7およびゲート電極8を備えた構造により、トレンチゲート構造が構成されている。
 なお、図1では示されていないが、トレンチゲート構造は、例えば紙面垂直方向を長手方向とした短冊状とされており、複数本のトレンチゲート構造が紙面左右方向に等間隔にストライプ状に並べられることで複数セルが備えられた構造とされている。
 また、n+型ソース領域4およびp+型コンタクト領域5の表面には、ソース電極9が形成されている。ソース電極9は、複数の金属(例えばNi/Al等)にて構成されている。具体的には、n+型ソース領域4に接続される部分はn型SiCとオーミック接触可能な金属で構成され、p+型コンタクト領域5を介してp型チャネル層3aに接続される部分はp型SiCとオーミック接触可能な金属で構成されている。なお、ソース電極9は、層間絶縁膜10上において、ゲート電極8に電気的に接続される図示しないゲート配線と電気的に分離されている。そして、層間絶縁膜10に形成されたコンタクトホールを通じて、ソース電極9はn+型ソース領域4およびp+型コンタクト領域5と電気的に接触させられている。
 さらに、n+型半導体基板1の裏面側にはn+型半導体基板1と電気的に接続されたドレイン電極11が形成されている。このような構造により、nチャネルタイプの反転型のトレンチゲート構造の縦型MOSFETが構成されている。
 このように構成された縦型MOSFETは、ゲート電極8に対してゲート電圧を印加すると、p型チャネル層3aのうちトレンチ6の側面に接する部分が反転型チャネルとなり、ソース電極9とドレイン電極11との間に電流を流す。
 一方、ゲート電圧を印加しない場合はドレイン電圧として高電圧(例えば1200V)が印加される。シリコンデバイスの10倍近い電界破壊強度を有するSiCでは、この電圧の影響によりゲート絶縁膜7にもシリコンデバイスの10倍近い電界がかかり、ゲート絶縁膜7(特に、ゲート絶縁膜7のうちのトレンチ6の底部において)に電界集中が発生し得る。しかしながら、本実施形態では、トレンチ6よりも深いp型ディープ層3bを備えた構造としている。このため、p型ディープ層3bとn型ドリフト層2とのPN接合部での空乏層がn型ドリフト層2側に大きく伸びることになり、ドレイン電圧の影響による高電圧がゲート絶縁膜7に入り込み難くなる。
 したがって、ゲート絶縁膜7内での電界集中、特にゲート絶縁膜7のうちのトレンチ6の底部での電界集中を緩和することが可能となる。これにより、ゲート絶縁膜7が破壊されることを防止することが可能となる。
 また、ソース電極9とのコンタクト部にコンタクトトレンチ3cを形成し、このコンタクトトレンチ3cの底部にp+型コンタクト領域5を形成して、ソース電極9とn+型ソース領域4およびp+型コンタクト領域5とを電気的に接続している。これにより、コンタクトトレンチ3cを形成していない場合と比較して、ソース電極9とn+型ソース領域4およびp+型コンタクト領域5との接触面積を増大させられ、セルの狭ピッチ化を図ることが可能となる。特に、コンタクトトレンチ3cを複数の面を有した構造としていることから、ソース電極9とn+型ソース領域4およびp+型コンタクト領域5との接触面積をより広面積化でき、低コンタクト抵抗化を実現することが可能となる。
 また、縦型MOSFETのダイオード動作時やアバランシェ動作時には、平面状の底面において広い面積で電流を流すことができる。したがって、電流集中を緩和でき、高破壊耐量の縦型MOSFETを実現することが可能となる。
 次に、図1に示すトレンチゲート型の縦型MOSFETの製造方法について、図2A~図2Gを参照して説明する。
 図2Aに示す工程では、まず、高濃度にn型不純物がドープされたSiC単結晶からなるn+型半導体基板1の表面にn型ドリフト層2がエピタキシャル成長させられたエピ基板を用意する。
 図2Bに示す工程では、n型ドリフト層2の上に、酸化膜などのマスク材料をデポジションしたのち、これをパターニングすることで、凹部2aの形成予定領域、つまりp型ディープ層3bの形成予定領域が開口するマスク20を形成する。そして、このマスク20を用いて、反応性イオンエッチング(RIE)などの異方性エッチングを行う。これにより、マスク20の開口部においてn型ドリフト層2の表層部を除去し、凹部2aを形成する。凹部2aの深さおよび幅については、この後に行われる各工程による熱拡散を考慮して、最終的なp型ディープ層3bの出来上がりの深さおよび幅が狙い値となるように設定している。
 図2Cに示す工程では、凹部2aの形成に用いたマスク20を除去したのち、凹部2a内を含むn型ドリフト層2の表面に、p型チャネル層3aおよびp型ディープ層3bを構成するp型不純物層3をエピタキシャル成長させる。例えば、化学蒸着(CVD)装置を用いて、雰囲気中に例えばシラン(SiH4)ガスとプロパン(C38)ガスを同時に導入しつつ、そのガス中にドーパントを含むガスを導入しながらエピタキシャル成長を行うことで、p型不純物層3を形成できる。このとき、p型不純物層3のうち凹部2a内に形成された部分の表面の中央部に窪みが残るようにし、この窪みによってコンタクトトレンチ3cが構成されるようにしている。
 例えば、p型不純物層3の成長レートは面方位依存性を有しており、面方位依存性はエピタキシャル成長の際の成長温度やガス流量、雰囲気圧力などの成長パラメータによって変化する。このため、面方位依存性、つまりp型不純物層3のうち、n型ドリフト層2のうち凹部2a以外の表面および凹部2aの底面上に形成される縦方向成長レートと、凹部2aの側面上に形成される部分の横方向成長レートの比を成長パラメータに基づいて制御できる。したがって、凹部2aの深さおよび幅や、成長パラメータを調整することで、p型不純物層3における縦方向成長レートが横方向成長レートよりも大きくなるようにすることで、p型不純物層3の表面にコンタクトトレンチ3cが形成されるようにできる。
 また、このとき、複数のp型ディープ層3bが並ぶ方向におけるコンタクトトレンチ3cの幅、つまり両側面間の距離がp型ディープ層3bの同方向の幅よりも小さくなるようにしている。すなわち、本実施形態の縦型MOSFETにおいては、トレンチ6とp型ディープ層3bとの間におけるp型チャネル層3aの長さを短くすることで、電界緩和効果が効果的に得られるようにしている。このため、設計時には、p型チャネル層3aの長さに主眼を置いた設計を行うのが好ましい。しかしながら、コンタクトトレンチ3cの幅がp型ディープ層3bの同方向の幅よりも大きくなると、トレンチ6からコンタクトトレンチ3cの距離の方がトレンチ6とp型ディープ層3bとの間におけるp型チャネル層3aの長さよりも短くなる。この場合、トレンチ6からコンタクトトレンチ3cまでの距離によって加工上の制約を受けることになり、上記のようにp型チャネル層3aの長さに主眼を置いた設計を行うことができなくなる。
 よって、本実施形態のように、コンタクトトレンチ3cの幅がp型ディープ層3bの同方向の幅よりも小さくなるようにすることで、トレンチ6からコンタクトトレンチ3cまでの距離による加工上の制約を受けないようにできる。したがって、p型チャネル層3aの長さに主眼を置いた設計を行うことが可能となる。
 さらに、本実施形態の場合、コンタクトトレンチ3cがトレンチ6よりも浅く、かつ、p型チャネル層3aよりも浅い構造になる。コンタクトトレンチ3cを深い構造とする場合、エッチングによってコンタクトトレンチ3cを形成することになる。その場合、安定して深くするために、ある程度のアスペクト比に留めることが必要になり、その為にある程度のトレンチ幅が必要になるため、微細化の妨げになる。したがって、本実施形態のようにコンタクトトレンチ3cを浅い構造とすることで、微細化が可能になる。
 図2Dに示す工程では、p型不純物層3の表面を覆いつつ、トレンチ6の形成予定領域が開口する図示しないエッチングマスクを配置する。そして、エッチングマスクを用いた異方性エッチングを行ったのち、必要に応じて等方性エッチングや犠牲酸化工程を行うことでトレンチ6を形成する。これにより、p型チャネル層3aを貫通してn型ドリフト層2に達しつつ、p型ディープ層3bよりも浅く、かつ、隣り合うp型ディープ層3bの間において、p型ディープ層3bから離間するように配置されたトレンチ6を形成することができる。
 次に、エッチングマスク21を除去してからゲート酸化工程を行うことでゲート絶縁膜7を形成する。また、ゲート絶縁膜7の表面に不純物をドーピングしたポリシリコン層を成膜したのち、これをパターニングすることでゲート電極8を形成する。これにより、トレンチゲート構造が形成される。
 図2Eに示す工程では、p型不純物層3の表面にn+型ソース領域4の形成予定領域が開口するマスク(図示せず)を形成したのち、この上からn型不純物を高濃度にイオン注入することでn+型ソース領域4を形成する。同様に、p型不純物層3の表面にp+型コンタクト領域5の形成予定領域が開口するマスク(図示せず)を形成したのち、この上からp型不純物を高濃度にイオン注入することでp+型コンタクト領域5を形成する。
 図2Fに示す工程では、層間絶縁膜10を成膜したのち、層間絶縁膜10をパターニングしてn+型ソース領域4やp型不純物層3を露出させるコンタクトホールを形成すると共に、ゲート電極8を露出させるコンタクトホールを別断面に形成する。
 図2Gに示す工程では、コンタクトホール内を埋め込むように電極材料を成膜したのち、これをパターニングすることでソース電極9や図示しないゲート配線を形成する。そして、n+型半導体基板1の裏面側にドレイン電極11を形成することで、図1に示した縦型MOSFETが完成する。
 以上説明したように、本実施形態では、p型不純物層3を形成する際に、p型不純物層3のうち凹部2a内に形成された部分の中央部に窪みが残るようにしている。そして、この窪みによってコンタクトトレンチ3cを構成している。このため、コンタクトトレンチ3cを形成するためのエッチングを行う必要が無く、製造工程数を増加しなくても済むのに加えてp型ディープ層3bとセルフアラインで形成するようにできる。
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対してp型不純物層3の形成工程を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 上記第1実施形態ではp型チャネル層3aおよびp型ディープ層3bを同時に形成したが、本実施形態では、図3に示すようにp型チャネル層3aおよびp型ディープ層3bを別々に形成することで異なる不純物濃度となるようにしている。具体的には、本実施形態では、以下の製造方法によって図3に示すトレンチゲート型の縦型MOSFETを製造している。
 まず、図4A~図4Cに示す工程として、上記した図2A~図2Cと同様の工程を行う。ただし、図4Cに示す工程においては、p型不純物層3のうちp型ディープ層3bを構成する部分についてのみ形成し、凹部2aの中央部においてp型ディープ層3bに窪みが残るようにしている。そして、この窪みの底部がn型ドリフト層2の表面よりも深い位置(n+型半導体基板1寄りの位置)となるようにしている。
 続いて、図4Dに示す工程として、例えば化学的機械的研磨(CMP)によってp型ディープ層3bのうちn型ドリフト層2の表面上に形成された部分を取り除き、n型ドリフト層2の表面を露出させる。このとき、上記したように、凹部2aの中央部に残されたp型ディープ層3bの窪みがn型ドリフト層2の表面よりも深い位置まで形成されるようにしているため、n型ドリフト層2の表面を露出させたときにも窪みが残った状態になる。
 その後、図4Eに示す工程として、n型ドリフト層2およびp型ディープ層3bの上にp型チャネル層3aをエピタキシャル成長させる。このとき、下地となるp型ディープ層3bに窪みが残っているため、p型チャネル層3aにも凹部2aの中央部と対応する位置に窪みが残った状態となり、この窪みによってコンタクトトレンチ3cが構成される。この後は、図4F~図4Hに示す工程として、上記した図2D、図2E、図2Fと同様の工程を行い、さらに図示しないが、図2Gと同様の工程を行うことで、図3に示した縦型MOSFETが完成する。
 以上説明したように、p型チャネル層3aとp型ディープ層3bとを別々の工程によって形成することもできる。その場合、これらを独立した不純物濃度に設定することができる。これにより、p型チャネル層3aについては閾値設定に応じた不純物濃度、例えば1×1016~1×1017cm-3とし、p型ディープ層3bについては耐圧設計に応じた不純物濃度、例えば1×1017~1×1018cm-3とすることができる。
 (第3実施形態)
 本開示の第3実施形態について説明する。本実施形態は、第1実施形態に対してアライメントマーク部の形成工程を加えたものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図5A~図5Cに示す工程において、基本的には上記した図2A~図2Cに示す工程と同様の工程を行う。
 このとき、チップ単位に分割する際にダイシングカットされるスクライブエリアもしくはチップ形成領域の外周部となる不要領域にマスク合わせ用のアライメントマーク部を設け、アライメントマーク部の凹凸をキーとしてマスク合わせが行えるようにしている。
 具体的には、図5Bに示す工程として、凹部2aを形成する際に同時にアライメントマーク部にも凹部(第2凹部)30を形成する。これにより、図5Cに示す工程の際にp型不純物層3を形成したときに、アライメントマーク部に形成されたp型不純物層3に窪みが残り、これがアライメントマーク31となる。この後は、アライメントマーク31を基準としたマスク合わせによって各工程を行うことで、図5Dに示すように縦型MOSFETの各部を形成する。すなわち、図2Dに示すトレンチゲート構造の形成工程および図2E~図2Gに示すn+型ソース領域4およびp+型コンタクト領域5の形成工程や層間絶縁膜10のパターニング工程、ソース電極9の形成工程やドレイン電極11の形成工程を行う。これにより、アライメントマーク31を基準としてすべてのマスク合わせを行うことが可能となるため、各部のマスクズレを最小限に留めることが可能となる。
 (第4実施形態)
 本開示の第4実施形態について説明する。本実施形態は、第1実施形態に対してp+型コンタクト領域5を構成するためのコンタクトトレンチ3cの形状を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図6に示すように、本実施形態では、コンタクトトレンチ3cを平面状の底面と平面状の側面とを有した構成としつつ、底面側からトレンチ入口側に向かって徐々に開口寸法が大きくなるように側面を傾斜面としたテーパ形状としている。
 このように、コンタクトトレンチ3cの側面を傾斜面としたテーパ形状としても、上記各実施形態と同様の効果を得ることができる。また、縦型MOSFETのダイオード動作時やアバランシェ動作時には、平面状の底面において広い面積で電流を流すことができる。したがって、電流集中を緩和でき、高破壊耐量の縦型MOSFETを実現することが可能となる。
 なお、p型チャネル層3aを形成する際に用いるシランガスやプロパンガスの混合比、つまりC/Si比を調整することによって、コンタクトトレンチ3cの側面を傾斜面とすることができる。
 (第5実施形態)
 本開示の第5実施形態について説明する。本実施形態も、第1実施形態に対してp+型コンタクト領域5を構成するためのコンタクトトレンチ3cの形状を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図7に示すように、本実施形態では、コンタクトトレンチ3cの底面と側面とを有した構成としつつ、底面を丸みの帯びた曲面形状としている。これに伴って、p+型コンタクト領域5も上面および下面がコンタクトトレンチ3cの底面と同様に丸みの帯びた曲面形状とされている。
 このように、コンタクトトレンチ3cの底面が丸みの帯びた曲面形状とされていても、上記各実施形態と同様の効果を得ることができる。また、底面を丸めることによって、底面と側面との境界位置が丸められていることから、縦型MOSFETのダイオード動作時やアバランシェ動作時に底面と側面との境界位置での電流集中を緩和できる。したがって、高破壊耐量の縦型MOSFETを実現することが可能となる。
 なお、p型チャネル層3aを形成する際のCVD装置の雰囲気温度を高い温度(例えば1600℃以上)にすると、コンタクトトレンチ3cの底面を丸みの帯びた形状にできる。
 (第6実施形態)
 本開示の第6実施形態について説明する。本実施形態も、第1実施形態に対してp+型コンタクト領域5を構成するためのコンタクトトレンチ3cの形状を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図8に示すように、本実施形態では、コンタクトトレンチ3cの底面と側面とを有した構成としつつ、底面と側面との境界部を丸みの帯びた曲面形状としている。これに伴って、p+型コンタクト領域5も上面および下面のうちの図8中の左右方向両端も、コンタクトトレンチ3cの底面と側面との境界部と同様に、丸みの帯びた曲面形状とされている。
 このように、コンタクトトレンチ3cの底面と側面との境界部が丸みの帯びた曲面形状とされていても、上記各実施形態と同様の効果を得ることができる。また、底面と側面との境界部を丸めることによって、縦型MOSFETのダイオード動作時やアバランシェ動作時に底面と側面との境界位置での電流集中を緩和できる。したがって、高破壊耐量の縦型MOSFETを実現することが可能となる。
 なお、p型チャネル層3aを形成する際のCVD装置の雰囲気温度を高い温度(例えば1600℃以上)にすると、コンタクトトレンチ3cの底面と側面との境界部を丸みの帯びた形状にできる。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。
 例えば、上記実施形態では、半導体材料としてSiCを用いる場合について説明したが、SiCに限らず、Siなど他の半導体材料を用いた半導体装置についても、本開示を適用できる。ただし、SiCの場合、ドレイン電圧としてシリコンデバイスの10倍近い高電圧が使用され、破壊電界強度が大きいため、より深い位置までp型ディープ層3bを形成することが必要となる。そして、SiCの場合、材料が非常に硬いことから、イオン注入によってp型ディープ層3bを形成することが難しく、凹部2a内へのエピタキシャル成長によってp型ディープ層3bを形成するという方法が有効となる。このため、p型ディープ層3bの形成をエピタキシャル成長によって行うことが求められるSiCを用いる場合において、本開示を適用すると特に好適である。なお、半導体材料としてSiを用いる場合、SiCと比較して不純物の熱拡散が容易であることから、p型不純物層3を形成する工程として、例えばPoly-Siを成膜したのち、p型不純物(ボロン)を気相拡散させることでp型不純物層3を形成しても良い。
 また、上記各実施形態では、トレンチゲート構造の形成工程をn+型ソース領域4およびp+型コンタクト領域5の形成工程の前に行ったが、これらの順番を逆にしても構わない。
 また、上記実施形態では、図1、図3に示す断面、つまり基板表面に対して平行な一断面において、p型ディープ層3bが複数互いに離間して配置された構造とされている。これは、少なくとも図1、図3に示す断面においてp型ディープ層3bが互いに分離されていれば良いことを示しており、異なる断面において部分的に繋がっていても良い。例えば、トレンチゲート構造が紙面垂直方向に延設されるようなストライプ状である場合、p型ディープ層3bは互いに分離した複数個の構造となる。これに対して、トレンチゲート構造が例えば四角形状などで、その周囲にp型ディープ層3bが配置されるような場合や、トレンチ6がストライプ状であっても、p型ディープ層3bが格子状とされるような場合には、図1、図3とは異なる断面で部分的に接続される。
 また、上記各実施形態では、第1導電型をn型、第2導電型をp型としたnチャネルタイプの縦型MOSFETを例に挙げて説明したが、各構成要素の導電型を反転させたpチャネルタイプの縦型MOSFETに対しても本開示を適用することができる。また、縦型MOSFETに限らず、IGBTに対しても適用することができる。IGBTの場合、縦型MOSFETに対してSiC基板の導電型を第1導電型から第2導電型に変えた構造となり、他の部分については同じ導電型で良い。

Claims (10)

  1.  第1または第2導電型の半導体基板(1)上に、前記半導体基板よりも低不純物濃度とされた第1導電型のドリフト層(2)を形成することと、
     前記ドリフト層の表面にマスク(20)を配置した後、前記マスクを用いてエッチングを行うことで、前記ドリフト層を部分的に除去した複数の第1凹部(2a)を前記半導体基板の表面と平行な断面において互いに離間させて形成することと、
     前記マスクを除去したのち、前記複数の第1凹部内において第2導電型の複数のディープ層(3b)を構成すると共に、前記ドリフト層の表面において第2導電型のチャネル層(3a)を構成する第2導電型不純物層(3)を形成することと、
     前記複数のディープ層の間において、前記第2導電型不純物層の表面から前記チャネル層を貫通して前記ドリフト層に達し、かつ、前記ディープ層よりも浅いトレンチ(6)を形成したのち、前記トレンチの表面にゲート絶縁膜(7)を形成し、さらに前記トレンチ内において、前記ゲート絶縁膜の上にゲート電極(8)を形成することでトレンチゲート構造を形成することと、
     前記チャネル層の表層部に第1導電型不純物をイオン注入することにより、前記ドリフト層よりも高濃度の第1導電型のソース領域(4)を形成することと、
     前記チャネル層のうち前記第1凹部の中央位置に対応する部分の表層部に第2導電型不純物をイオン注入することにより、前記チャネル層よりも高濃度の第2導電型のコンタクト領域(5)を形成することと、
     前記ソース領域および前記コンタクト領域に電気的に接続されるソース電極(9)を形成することと、
     前記半導体基板の裏面側にドレイン電極(11)を形成することと、を含み、
     前記第2導電型不純物層を形成する際に、前記第2導電型不純物層のうち前記第1凹部の中央位置に対応する部分の表面に、窪みにて構成されるコンタクトトレンチ(3c)が形成される成長条件でエピタキシャル成長を行い、
     前記コンタクト領域を形成する際に、前記コンタクトトレンチの底部に前記コンタクト領域を形成する半導体装置の製造方法。
  2.  前記半導体基板の半導体材料として炭化珪素を用い、前記ドリフト層および前記第2導電型不純物層を炭化珪素で構成する請求項1に記載の半導体装置の製造方法。
  3.  前記第2導電型不純物層を形成する際に、前記第2導電型不純物層のうち、前記ディープ層となる部分と前記チャネル層となる部分を同じエピタキシャル成長によって同時に形成する請求項1または2に記載の半導体装置の製造方法。
  4.  前記第2導電型不純物層のうちの前記ディープ層となる部分を形成する際には、前記第1凹部の中央部に対応する位置に前記ドリフト層の表面よりも深い窪みが残るように前記ディープ層となる部分を形成し、
     前記第2導電型不純物層のうちの前記チャネル層となる部分を形成する際には、前記チャネル層の表面に前記コンタクトトレンチが残るように、前記窪み内を含めて前記ドリフト層の表面に、前記チャネル層となる部分を形成する請求項1または2に記載の半導体装置の製造方法。
  5.  前記マスクを用いて前記第1凹部を形成する際に、同時に、前記マスクを用いて前記第1凹部とは異なる部分に第2凹部(30)を形成し、
     前記第2導電型不純物層を形成したときに、前記第2凹部にも窪みを残し、前記窪みをアライメントマーク(31)として、前記トレンチゲート構造を形成する際、前記ソース領域を形成する際、および前記コンタクト領域を形成する際のマスク合わせを行う請求項1ないし4のいずれか1つに記載の半導体装置の製造方法。
  6.  前記第2導電型不純物層を形成する際に、前記コンタクトトレンチを底面と側面を含む複数の面を持つ形状で形成する請求項1ないし5のいずれか1つに記載の半導体装置の製造方法。
  7.  前記第2導電型不純物層を形成する際に、前記コンタクトトレンチの前記底面を平面で形成する請求項6に記載の半導体装置の製造方法。
  8.  前記第2導電型不純物層を形成する際に、前記コンタクトトレンチの前記底面もしくは前記底面と前記側面との境界部を丸みの帯びた形状で形成する請求項6に記載の半導体装置の製造方法。
  9.  前記第2導電型不純物層を形成する際に、前記第2導電型不純物層のうち前記第1凹部の側面上に形成される部分の成長レートとなる横方向成長レートよりも前記第1凹部の底面上に形成される部分の成長レートとなる縦方向成長レートの方が大きくなるようにする請求項6ないし8のいずれか1つに記載の半導体装置の製造方法。
  10.  前記第2導電型不純物層を形成する際に、前記複数のディープ層が並ぶ方向における前記コンタクトトレンチの幅を前記方向における前記第1凹部の幅よりも小さくする請求項1ないし9のいずれか1つに記載の半導体装置の製造方法。
PCT/JP2015/000123 2014-01-24 2015-01-14 半導体装置の製造方法 WO2015111386A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/113,475 US20170012108A1 (en) 2014-01-24 2015-01-14 Method for manufacturing semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014011643 2014-01-24
JP2014-011643 2014-01-24
JP2014-246956 2014-12-05
JP2014246956A JP6341074B2 (ja) 2014-01-24 2014-12-05 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2015111386A1 true WO2015111386A1 (ja) 2015-07-30

Family

ID=53681201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000123 WO2015111386A1 (ja) 2014-01-24 2015-01-14 半導体装置の製造方法

Country Status (3)

Country Link
US (1) US20170012108A1 (ja)
JP (1) JP6341074B2 (ja)
WO (1) WO2015111386A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037074A (zh) * 2018-08-02 2018-12-18 深圳市诚朗科技有限公司 一种晶体管的制作方法
CN109037073A (zh) * 2018-08-02 2018-12-18 深圳市诚朗科技有限公司 一种晶体管及其制作方法
JPWO2018052098A1 (ja) * 2016-09-14 2018-12-27 富士電機株式会社 半導体装置およびその製造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016003510B4 (de) * 2015-10-16 2023-11-16 Fuji Electric Co., Ltd. HALBLEITERVORRlCHTUNG UND VERFAHREN ZUR HERSTELLUNG EINER HALBLEITERVORRICHTUNG
JP6651894B2 (ja) * 2016-02-23 2020-02-19 株式会社デンソー 化合物半導体装置およびその製造方法
JP6560142B2 (ja) * 2016-02-26 2019-08-14 トヨタ自動車株式会社 スイッチング素子
JP6560141B2 (ja) * 2016-02-26 2019-08-14 トヨタ自動車株式会社 スイッチング素子
JP6926261B2 (ja) * 2016-07-06 2021-08-25 株式会社東芝 半導体装置及びその製造方法
JP2018006639A (ja) * 2016-07-06 2018-01-11 株式会社東芝 半導体装置及びその製造方法
JP6625938B2 (ja) * 2016-07-22 2019-12-25 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
KR101875638B1 (ko) * 2016-10-14 2018-07-06 현대자동차 주식회사 반도체 소자 및 그 제조 방법
JP6673232B2 (ja) * 2017-01-17 2020-03-25 株式会社デンソー 炭化珪素半導体装置
JP7325931B2 (ja) * 2017-05-16 2023-08-15 富士電機株式会社 半導体装置
JP6847007B2 (ja) * 2017-09-13 2021-03-24 株式会社日立製作所 半導体装置およびその製造方法
JP6791083B2 (ja) * 2017-09-28 2020-11-25 豊田合成株式会社 半導体装置の製造方法
KR102394547B1 (ko) * 2017-10-25 2022-05-04 현대자동차 주식회사 반도체 소자
CN111357116B (zh) * 2017-11-15 2023-12-01 株式会社Flosfia 半导体装置
US11594601B2 (en) 2017-11-15 2023-02-28 Flosfia Inc. Semiconductor apparatus
JP2019129300A (ja) * 2018-01-26 2019-08-01 トヨタ自動車株式会社 半導体装置とその製造方法
US10797131B2 (en) 2018-04-05 2020-10-06 Pakal Technologies, Inc. Enhancements to cell layout and fabrication techniques for MOS-gated devices
JP7363539B2 (ja) * 2020-01-31 2023-10-18 株式会社デンソー 窒化物半導体装置の製造方法
TWI801173B (zh) * 2022-03-22 2023-05-01 漢磊科技股份有限公司 半導體裝置及製造半導體裝置的方法
CN114496785B (zh) * 2022-04-18 2022-08-02 深圳芯能半导体技术有限公司 一种t型底部保护的沟槽型碳化硅mosfet及其制备方法
CN114496783B (zh) * 2022-04-18 2022-08-05 深圳芯能半导体技术有限公司 一种基于缓冲层制备的沟槽型碳化硅mosfet及其制备方法
CN114496784B (zh) * 2022-04-18 2022-07-12 深圳芯能半导体技术有限公司 一种底部保护接地沟槽型碳化硅mosfet及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096139A (ja) * 2005-09-29 2007-04-12 Denso Corp 半導体基板の製造方法
JP2009260253A (ja) * 2008-03-26 2009-11-05 Rohm Co Ltd 半導体装置およびその製造方法
US20100044791A1 (en) * 2008-08-20 2010-02-25 Alpha & Omega Semiconductor, Ltd Configurations and methods for manufacturing charge balanced devices
JP2010258386A (ja) * 2009-04-28 2010-11-11 Fuji Electric Systems Co Ltd 炭化珪素半導体装置およびその製造方法
JP2013214658A (ja) * 2012-04-03 2013-10-17 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2013239489A (ja) * 2012-05-11 2013-11-28 Rohm Co Ltd 半導体装置および半導体装置の製造方法
JP2014209540A (ja) * 2013-03-26 2014-11-06 豊田合成株式会社 半導体装置およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4924440B2 (ja) * 2008-01-14 2012-04-25 株式会社デンソー 炭化珪素半導体装置の製造方法
JP5509543B2 (ja) * 2008-06-02 2014-06-04 富士電機株式会社 半導体装置の製造方法
US9087893B2 (en) * 2010-01-29 2015-07-21 Fuji Electric Co., Ltd. Superjunction semiconductor device with reduced switching loss
TWI562195B (en) * 2010-04-27 2016-12-11 Pilegrowth Tech S R L Dislocation and stress management by mask-less processes using substrate patterning and methods for device fabrication
US9646951B2 (en) * 2013-12-10 2017-05-09 Semiconductor Components Industries, Llc Method of forming a semiconductor device and structure therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096139A (ja) * 2005-09-29 2007-04-12 Denso Corp 半導体基板の製造方法
JP2009260253A (ja) * 2008-03-26 2009-11-05 Rohm Co Ltd 半導体装置およびその製造方法
US20100044791A1 (en) * 2008-08-20 2010-02-25 Alpha & Omega Semiconductor, Ltd Configurations and methods for manufacturing charge balanced devices
JP2010258386A (ja) * 2009-04-28 2010-11-11 Fuji Electric Systems Co Ltd 炭化珪素半導体装置およびその製造方法
JP2013214658A (ja) * 2012-04-03 2013-10-17 Denso Corp 炭化珪素半導体装置およびその製造方法
JP2013239489A (ja) * 2012-05-11 2013-11-28 Rohm Co Ltd 半導体装置および半導体装置の製造方法
JP2014209540A (ja) * 2013-03-26 2014-11-06 豊田合成株式会社 半導体装置およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018052098A1 (ja) * 2016-09-14 2018-12-27 富士電機株式会社 半導体装置およびその製造方法
CN109037074A (zh) * 2018-08-02 2018-12-18 深圳市诚朗科技有限公司 一种晶体管的制作方法
CN109037073A (zh) * 2018-08-02 2018-12-18 深圳市诚朗科技有限公司 一种晶体管及其制作方法

Also Published As

Publication number Publication date
JP2015159271A (ja) 2015-09-03
JP6341074B2 (ja) 2018-06-13
US20170012108A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6341074B2 (ja) 半導体装置の製造方法
US9818860B2 (en) Silicon carbide semiconductor device and method for producing the same
JP6428489B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6179409B2 (ja) 炭化珪素半導体装置の製造方法
JP6354525B2 (ja) 炭化珪素半導体装置の製造方法
JP5673393B2 (ja) 炭化珪素半導体装置
JP5728992B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2014196164A1 (ja) 炭化珪素半導体装置およびその製造方法
JP7099369B2 (ja) 半導体装置およびその製造方法
KR101750387B1 (ko) 탄화규소 반도체 장치
US10707343B2 (en) Method of manufacturing semiconductor device and semiconductor device
WO2016042738A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2009200300A (ja) 半導体装置およびその製造方法
JP5767869B2 (ja) 半導体装置の製造方法
JP2013214658A (ja) 炭化珪素半導体装置およびその製造方法
WO2017145548A1 (ja) 化合物半導体装置およびその製造方法
US9099435B2 (en) Method of manufacturing semiconductor device
US20170047394A1 (en) Silicon carbide semiconductor device and manufacturing method of silicon carbide semiconductor device
JP6928336B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US20230154999A1 (en) Method of manufacturing silicon carbide semiconductor device
WO2018066662A1 (ja) 炭化珪素半導体装置の製造方法
CN112005349A (zh) 半导体装置及半导体装置的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740802

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15113475

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740802

Country of ref document: EP

Kind code of ref document: A1