WO2015111240A1 - 水処理装置及び水処理方法 - Google Patents

水処理装置及び水処理方法 Download PDF

Info

Publication number
WO2015111240A1
WO2015111240A1 PCT/JP2014/066426 JP2014066426W WO2015111240A1 WO 2015111240 A1 WO2015111240 A1 WO 2015111240A1 JP 2014066426 W JP2014066426 W JP 2014066426W WO 2015111240 A1 WO2015111240 A1 WO 2015111240A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
water treatment
discharge
gas
Prior art date
Application number
PCT/JP2014/066426
Other languages
English (en)
French (fr)
Inventor
学 生沼
正和 滝
稲永 康隆
▲高▼田 誠
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/102,804 priority Critical patent/US10093566B2/en
Priority to PCT/JP2015/050677 priority patent/WO2015111465A1/ja
Priority to SG11201604514TA priority patent/SG11201604514TA/en
Priority to JP2015526825A priority patent/JP5819031B1/ja
Priority to CN201580005431.XA priority patent/CN106414345B/zh
Publication of WO2015111240A1 publication Critical patent/WO2015111240A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Definitions

  • the present invention relates to a water treatment apparatus and a water treatment method for treating water to be treated using ozone, radicals and the like generated by discharge.
  • ozone or chlorine has generally been used in the treatment of water and sewage.
  • industrial wastewater and reused water may contain a hardly decomposable substance that is not decomposed by ozone or chlorine.
  • the removal of dioxins and dioxane is a major issue.
  • ozone (O 3 ) and hydrogen peroxide (H 2 O 2 ) or ultraviolet rays are combined to generate hydroxyl radicals (OH radicals) that are more active than ozone or chlorine in the treated water, making it difficult.
  • OH radicals hydroxyl radicals
  • a method for removing a degradable substance has been put into practical use, the apparatus cost and the operation cost are very high and are not so popular.
  • a method has been proposed in which OH radicals generated by electric discharge are directly applied to the water to be treated to remove the hardly decomposable substance with high efficiency.
  • streamer discharge is formed by applying a pulse voltage between a linear high-voltage electrode and a cylindrical ground electrode surrounding the linear high-voltage electrode, and water to be treated is treated from above with a streamer discharge space.
  • a water treatment apparatus for treating water to be treated has been proposed. According to this water treatment apparatus, short-lived OH radicals can be efficiently applied to the water to be treated (see, for example, Patent Document 1).
  • a water treatment device that treats the water to be treated by arranging a pair of electrode plates facing each other in an inclined state so that the water to be treated flows down on the lower electrode and forming a barrier discharge between the electrodes.
  • water to be treated can be efficiently treated with a simple configuration (see, for example, Patent Document 2).
  • Japanese Patent No. 4934119 (first page, lines 1-8, FIG. 1)
  • Japanese Patent No. 4635204 (first page, lines 1-14, FIG. 1)
  • the present invention has been made in order to solve the above-described problems, and a water treatment apparatus and water that can perform the decomposition of a hardly decomposable substance or the removal of high-concentration organic stains with high efficiency and high speed.
  • the object is to obtain a processing method.
  • the water treatment apparatus is arranged to be inclined with respect to a horizontal plane, and at least a part of the treated water flowing on the inclined plate and the inclined plate on which the treated water flows along the upper surface is formed into water droplets.
  • a water droplet forming device and a discharge forming body that is disposed above the inclined plate via a gap and that forms a discharge are provided.
  • the water treatment method according to the present invention is such that at least a pair of the water to be treated is allowed to flow along the upper surface of the inclined plate that is inclined with respect to the horizontal plane, and is disposed above the inclined plate through the gap.
  • a discharge is formed between the electrodes, and at least a part of the water to be treated flowing on the inclined plate is made into water droplets.
  • the water treatment method according to the present invention includes an electrode disposed above the inclined plate through a gap while flowing the water to be treated along the upper surface of the inclined plate disposed inclined with respect to the horizontal plane.
  • a discharge is formed between the inclined plate and at least a part of the water to be treated flowing on the inclined plate is made into water droplets.
  • the water to be treated is caused to flow along the upper surface of the inclined plate inclined with respect to the horizontal plane to form a discharge, and at least a part of the water to be treated is dropped by the water droplet forming apparatus.
  • the water to be treated comes into contact with the discharge for a long time and over a wide area, and the stirring of the water to be treated and the mixing of ozone or hydrogen peroxide dissolved in the water to be treated proceeds to decompose the hardly decomposable substance.
  • high-concentration organic soil can be removed with high efficiency and high speed.
  • Embodiment 1 of this invention It is sectional drawing of the water treatment apparatus by Embodiment 1 of this invention. It is a perspective view which shows the principal part of the water treatment apparatus of FIG. It is sectional drawing which shows the mode of the to-be-processed water when not driving the ultrasonic transducer
  • FIG. 1 is a cross-sectional view of a water treatment apparatus according to Embodiment 1 of the present invention.
  • a water supply port 1a and a gas discharge port 1b are provided in the upper part of a metal-made treatment tank 1 having a sealed structure.
  • a drain port 1 c is provided in the lower part of the processing tank 1.
  • a gas supply port 1 d is provided on the side surface of the processing tank 1.
  • a plate electrode 2 as an inclined plate is accommodated in the treatment tank 1, a plate electrode 2 as an inclined plate is accommodated.
  • the flat plate electrode 2 is supported by an upstream frame 3a and a downstream frame 3b that are set up on the bottom surface of the processing tank 1, and is arranged to be inclined with respect to a horizontal plane. That is, the upstream end (right end in FIG. 1) of the plate electrode 2 is higher than the downstream end (left end in FIG. 1).
  • the upstream end of the plate electrode 2 is disposed directly below the water supply port 1a.
  • the treated water 4 is supplied into the treatment tank 1 from the water supply port 1 a, flows obliquely downward along the upper surface of the flat plate electrode 2, and is discharged out of the treatment tank 1 from the drain port 1 c.
  • a plurality of (three in this example) wire electrodes 6 a, 6 b, and 6 c as discharge forming bodies (discharge forming electrodes) are disposed above the flat plate electrode 2 in the treatment tank 1 through the gap 5 with respect to the flat plate electrode 2. Is arranged.
  • the wire electrodes 6a, 6b, 6c are arranged at intervals in the flow-down direction of the water 4 to be treated. Further, the wire electrodes 6 a, 6 b, 6 c are arranged at equal intervals with respect to the upper surface of the plate electrode 2. Furthermore, the wire electrodes 6a, 6b, 6c are stretched in parallel and horizontally in the width direction of the flat plate electrode 2 (X-axis direction in FIG. 1).
  • a pulse power source 7 is installed outside the processing tank 1.
  • the wire electrodes 6a, 6b, 6c are connected in parallel to the pulse power source 7 via the wiring 8.
  • the pulse power source 7 is electrically insulated from the processing tank 1 by an insulating portion 9.
  • the plate electrode 2 is electrically grounded.
  • the discharge power supply unit 10 of the first embodiment includes a pulse power supply 7 and a wiring 8, and applies a high voltage between the plate electrode 2 and the wire electrodes 6a, 6b, 6c to discharge 11a, 11b, 11c is formed.
  • a plurality of ultrasonic transducers 12a, 12b, and 12c as water droplet forming devices are fixed to the lower surface of the plate electrode 2.
  • the ultrasonic transducers 12a, 12b, 12c are arranged corresponding to the wire electrodes 6a, 6b, 6c.
  • the ultrasonic transducers 12a, 12b, and 12c are arranged on the back side of the portion of the flat plate electrode 2 that faces the wire electrodes 6a, 6b, and 6c.
  • the ultrasonic transducers 12a, 12b, and 12c splash at least a part of the treated water 4 flowing on the flat plate electrode 2 to form water droplets. That is, the ultrasonic transducers 12a, 12b, and 12c generate water droplets 13a, 13b, and 13c of the water to be treated 4 on the flat plate electrode 2.
  • each of the ultrasonic transducers 12a, 12b, and 12c is made of piezoelectric ceramic (PZT).
  • a high frequency power supply 14 is installed outside the processing tank 1.
  • the ultrasonic transducers 12 a, 12 b, and 12 c are connected in parallel to the high frequency power supply 14 via the wiring 15.
  • the high frequency power supply 14 is electrically insulated from the processing tank 1 by an insulating portion 16.
  • a gas supply source 17 filled with oxygen gas is connected to the gas supply port 1d via a flow rate regulator 18.
  • the water treatment unit 19 includes a flat plate electrode 2, wire electrodes 6a, 6b, and 6c, and ultrasonic transducers 12a, 12b, and 12c.
  • FIG. 2 is a perspective view showing a main part of the water treatment apparatus of FIG.
  • the plate electrode 2 is inclined by an inclination angle ⁇ with respect to the horizontal direction.
  • a pair of side walls 20 a and 20 b are provided at both ends in the width direction of the plate electrode 2.
  • the treated water 4 flows down between the side walls 20a and 20b on the plate electrode 2.
  • a plurality of pairs (three pairs in this example) of holding members 21 holding the wire electrodes 6a, 6b, 6c are fixed on the side walls 20a, 20b.
  • the oxygen gas from the gas supply source 17 is adjusted to a predetermined flow rate by the flow rate regulator 18 and then supplied into the processing tank 1 from the gas supply port 1d.
  • the gas in the processing tank 1 is exhausted from the gas discharge port 1b at the same flow rate as the supply oxygen gas flow rate. As a result, after a predetermined time has elapsed, air is discharged from the processing tank 1, and an atmosphere having a high oxygen concentration is formed in the processing tank 1.
  • the treated water 4 supplied into the treatment tank 1 from the water supply port 1a flows down by forming a water film between the side walls 20a, 20b on the plate electrode 2, and is discharged from the drain port 1c.
  • some of the treated water 4 becomes water droplets 13a, 13b, and 13c.
  • the pulse power source 7 is further operated, and a pulse voltage is applied to the wire electrodes 6a, 6b, and 6c in a state where a part of the gap 5 is filled with oxygen gas, so that a flat plate is formed from the wire electrodes 6a, 6b, and 6c.
  • Discharges 11a, 11b, and 11c are formed in the direction of the electrode 2.
  • the treated water 4 passes through the discharges 11c, 11b, and 11a in order in the process of flowing on the plate electrode 2.
  • the water to be treated 4 is subjected to water treatment such as removal of a hardly decomposable substance.
  • FIG. 3 is a cross-sectional view showing the state of the water 4 to be treated when the ultrasonic transducers 12a, 12b, and 12c of FIG. 1 are not driven.
  • FIG. 4 is a diagram of driving the ultrasonic transducers 12a, 12b, and 12c of FIG. It is sectional drawing which shows the mode of the to-be-processed water 4 in a case.
  • the discharges 11a, 11b, and 11c are formed from the wire electrodes 6a, 6b, and 6c toward the surface of the water to be treated 4. do not do.
  • the ultrasonic transducers 12a, 12b, and 12c are driven, a large number of water droplets 13a, 13b, and 13c are formed in regions where the discharges 11a, 11b, and 11c are formed.
  • the formed water droplets 13a, 13b, and 13c are dropped by gravity and unite with the water to be treated 4 flowing on the flat plate electrode 2. In this way, when the ultrasonic transducers 12a, 12b, and 12c are driven, the formation and coalescence of the water droplets 13a, 13b, and 13c are repeated at a high frequency.
  • Oxidized particles such as O, OH, O 3 , and H 2 O 2 produced by the reactions of the formulas (1) to (4) are converted into organic substances in the water 4 to be treated by the reaction of the formula (5).
  • R is an organic substance to be processed.
  • the water to be treated 4 is caused to flow along the upper surface of the plate electrode 2 inclined with respect to the horizontal plane, and the plate electrode 2 and the wire electrodes 6a, 6b, While forming discharges 11a, 11b, and 11c with 6c, at least a part of the water to be treated 4 is converted into water droplets by the ultrasonic vibrators 12a, 12b, and 12c, so that many reactions of the formula (5) are generated. Therefore, removal of high-concentration organic dirt can be performed with high efficiency and high speed.
  • the ultrasonic transducers 12a, 12b, and 12c cause water droplets 13a, 13b, and 13c to be part of the water to be treated 4 flowing down the flat plate electrode 2, so that the water flows like a water film.
  • the area of the liquid interface is greatly increased. For this reason, the oxidizing particles generated by the discharge react with the organic substance R existing in the vicinity of the gas-liquid interface, and the decomposition of the organic substance proceeds (effect of a wide gas-liquid interface area).
  • the reaction frequency of the formula (5) is lowered.
  • the water droplets 13a, 13b, and 13c formed by the ultrasonic transducers 12a, 12b, and 12c are dropped on the water surface of the water 4 to be treated in a short time and united again. The formation and coalescence of the water droplets 13a, 13b, 13c are frequently repeated such that another water droplet is formed.
  • the water to be treated 4 is agitated during the formation and coalescence of the water droplets 13a, 13b, and 13c, the dissolution of O 3 and H 2 O 2 in the water to be treated 4 is promoted. Further, the concentrations of O 3 and H 2 O 2 dissolved in the water 4 to be treated are made uniform, and the decomposition reaction of the organic matter R caused by O 3 and H 2 O 2 in the water occurs efficiently (dissolution mixing promoting effect) ).
  • the above four effects can be carried out without circulating the discharge electrode or making the discharge electrode very high. Moreover, compared with patent document 2, water treatment can be performed efficiently and at high speed. Such an effect can be similarly obtained for the decomposition of a hardly decomposable substance.
  • the ultrasonic transducers 12a, 12b, 12c are arranged with respect to the plate electrode 2, so that the water treatment capability can be further improved. Furthermore, since the ultrasonic transducers 12a, 12b, and 12c are used as the water droplet forming device, a part of the water to be treated 4 can be efficiently formed into water droplets.
  • the efficiency of the water treatment is improved as the water droplet formation rate of the water to be treated 4 is increased, but is saturated at a certain water droplet formation rate or more. This is considered to be because the consumption rate of the oxidizing particles is improved with the increase of water droplets, and the generation rate of the oxidizing particles by discharge limits the water treatment rate.
  • the pulse power supply 7 is used for the discharge formation.
  • the power supply applied to the present invention is not necessarily a pulse power supply as long as a stable discharge can be formed. It may be a power source.
  • the polarity of the voltage output from the pulse power supply 7, the voltage peak value, the repetition frequency, the pulse width, and the like can be appropriately determined according to various conditions such as the electrode structure and the gas type.
  • the voltage peak value is desirably 1 kV to 50 kV. This is because a stable discharge is not formed at 1 kV or less, and the cost increases remarkably due to an increase in the size of the power source and difficulty in electrical insulation in order to achieve 50 kV or more.
  • the repetition frequency be 10 pps (pulse-per-second) or more and 100 kpps or less. This is because if it is less than 10 pps, a very high voltage is required to supply sufficient discharge power. Conversely, if it is greater than 100 kpps, the effect of water treatment is saturated and the power efficiency is lowered. Further, the voltage, pulse width, and pulse repetition frequency may be adjusted according to at least one of the flow rate of the water to be treated 4 and the composition of the substance to be treated.
  • the plate electrode 2 can be made of a conductive material.
  • a metal material having excellent corrosion resistance such as stainless steel or titanium.
  • the upper surface of the plate electrode 2 can be covered with a dielectric such as glass or ceramic. Thereby, effects such as suppression of corrosion, suppression of arc discharge, suppression of occurrence of metal contamination, and the like can be obtained.
  • wire electrodes 6a, 6b and 6c it is desirable to use a metal material having excellent corrosion resistance such as stainless steel or titanium for the wire electrodes 6a, 6b and 6c, but other conductive materials can be used. Further, the surfaces of the wire electrodes 6a, 6b, 6c may be covered with a dielectric such as glass or ceramic.
  • the wire electrodes 6a, 6b and 6c are used as the discharge forming body, but the discharge forming body does not necessarily have a wire shape.
  • a rod, a needle, a mesh, or a punching metal can be used as the discharge forming body.
  • oxygen gas is supplied from the gas supply source 17 to make the inside of the processing tank 1 have a high oxygen concentration atmosphere.
  • the gas type is not limited to oxygen. If it is in a gas containing oxygen, the above-described reactions (1) to (5) occur, so that water treatment can be performed.
  • nitrogen or a rare gas can be mixed with oxygen at an arbitrary ratio. In particular, if a rare gas is used, a discharge can be stably formed even at a relatively low voltage, and if air is used, the gas cost can be greatly reduced.
  • the flow rate of the gas to be supplied does not need to be constant, and can be appropriately adjusted according to the composition of the water 4 to be treated or discharge conditions.
  • the organic substance concentration in the water 4 to be treated is high, a large amount of oxygen is consumed in the oxidative decomposition process, so it is preferable to increase the supply gas flow rate.
  • the organic substance concentration in the water 4 to be treated is low, the ozone concentration in the gas is increased by reducing the supply gas flow rate, and the reaction can be speeded up.
  • the gas exhausted from the gas discharge port 1b may be circulated to the gas supply port 1d. Thereby, the amount of gas supplied from the gas supply source 17 can be reduced. In addition, the O 3 and H 2 O 2 generated by the discharge can be efficiently used by returning them to the treatment tank 1 without exhausting them to the outside.
  • the three wire electrodes 6a, 6b, 6c are used, but the number of discharge forming bodies depends on the dimensions of the plate electrode 2, the composition of the water 4 to be treated, the treatment flow rate, and the like. These can be changed as appropriate.
  • the distance between the wire electrodes 6a, 6b, 6c and the plate electrode 2 is preferably 1 mm or more and 50 or less. This is because if the distance between the electrodes is less than 1 mm, the possibility that the wire electrodes 6a, 6b, 6c will be submerged when the water to be treated 4 flows, and if the distance between the electrodes is larger than 50 mm, the discharge will occur. This is because a very high voltage is required for formation.
  • the positional relationship between the wire electrodes 6a, 6b, 6c and the ultrasonic transducers 12a, 12b, 12c is not limited as long as the water droplets 13a, 13b, 13c can be formed in the vicinity of the discharges 11a, 11b, 11c. It is not limited to relationships.
  • the wire electrodes 6a, 6b, 6c may be arranged at positions corresponding to antinodes of standing waves formed in the water 4 to be treated by ultrasonic vibration. Further, the ultrasonic transducers 12a, 12b, 12c may be brought into direct contact with the water 4 to be treated.
  • a plurality of through holes may be provided in the plate electrode 2 and the ultrasonic vibrators 12a, 12b, and 12c may be installed in the through holes. Further, ultrasonic transducers 12 a, 12 b, 12 c may be installed on the upper surface of the plate electrode 2.
  • the pressure in the treatment tank 1 is preferably set to atmospheric pressure or the vicinity thereof so that supply and drainage of the water to be treated 4 can be easily performed, but may be positive pressure or negative pressure as necessary. it can.
  • the inside of the processing tank 1 is set to a positive pressure, mixing of air from the outside is suppressed, and the atmosphere in the processing tank 1 is easily managed.
  • the inside of the processing tank 1 is set to a negative pressure, the discharges 11a, 11b, and 11c are formed at a relatively low voltage, and the power supply can be reduced in size and simplified.
  • the discharges 11a, 11b, and 11c are more likely to spread as the pressure is lower, the water to be treated 4 comes into contact with the discharges 11a, 11b, and 11c in a wide area, and the efficiency and speed of the water treatment are improved.
  • FIG.1 and FIG.2 it is good also as a structure which covers the upper side of wire electrode 6a, 6b, 6c with a cover.
  • region where the to-be-processed water 4 flows turns into a closed space, and it can suppress that the water droplets 13a, 13b, and 13c spread
  • FIG. 5 is a block diagram showing a water treatment apparatus according to Embodiment 2 of the present invention.
  • the water to be treated 4 is stored in the water tank 31 to be treated.
  • the water tank 31 to be treated is connected to the uppermost part of the treatment tank 1 through a fixed liquid feed pump 32.
  • the to-be-treated water 4 in the to-be-treated water tank 31 is sent from the lower part in the to-be-treated water tank 31 to the uppermost part of the to-be-treated water tank 1 by a fixed liquid feed pump 32.
  • the post-treatment water tank 33 that stores the post-treatment water 40 is connected to the bottom of the treatment tank 1 via a drainage pump 34.
  • the treated water 40 that has fallen to the bottom in the treatment tank 1 is sent to the treated water tank 33 by the drain pump 34.
  • a central control unit 35, a pulse power source 7, and an angle control unit 36 are provided outside the processing tank 1.
  • the water tank 31 is provided with a water quality meter 37 that detects the water quality (composition) of the water 4 to be treated.
  • the water quality meter 37 detects the biochemical oxygen demand (BOD), chemical oxygen demand (COD), and organic components of the water 4 to be treated.
  • a signal from the water quality meter 37 is input to the central control unit 35.
  • the centralized control unit 35 controls the pulse power supply 7, the fixed liquid feeding pump 32, the drainage pump 34, and the angle control unit 36.
  • FIG. 6 is an enlarged cross-sectional view of the treatment tank 1 of FIG.
  • the treatment tank 1 is provided with a water supply port 1a, a gas discharge port 1b, a drainage port 1c, and a gas supply port 1d.
  • a water amount adjusting mechanism 23 is provided in the water supply port 1a.
  • each water treatment unit 19a, 19b, 19c, 19d has a plate electrode 2, wire electrodes 6a, 6b, 6c, and ultrasonic transducers 12a, 12b, 12c, similarly to the water treatment unit 19 of the first embodiment. is doing.
  • the treated water 4 flows continuously (zigzag meandering) from the uppermost water treatment unit 19a to the lowermost water treatment unit 19d.
  • the plate electrodes 2 are alternately inclined in the opposite direction with respect to the horizontal plane. That is, in the water treatment units 19a, 19b, 19c, and 19d adjacent in the vertical direction, the inclination direction of the flat plate electrode 2 with respect to the horizontal plane is reversed.
  • the to-be-treated water 4 is supplied into the treatment tank 1 from the water supply port 1a and is sequentially processed through the water treatment units 19a, 19b, 19c, and 19d. Then, the treated water 40 that has passed through the lowermost water treatment unit 19d falls to the bottom of the treatment tank 1 and is then discharged out of the treatment tank 1 from the drain port 1c.
  • wire electrodes 6a, 6b, 6c of the water treatment units 19a, 19b, 19c, 19d are all electrically connected in parallel to the pulse power source 7. Further, all the plate electrodes 2 are electrically grounded.
  • the water treatment units 19a, 19b, 19c, 19d are provided with angle adjustment mechanisms 22a, 22b, 22c, 22d for adjusting the inclination angles of the corresponding water treatment units 19a, 19b, 19c, 19d, respectively.
  • the angle adjustment mechanisms 22a, 22b, 22c, and 22d are connected to an angle control unit 36 (FIG. 5).
  • Other configurations are the same as those in the first embodiment.
  • the water to be treated 4 in the water tank to be treated 31 is absorbed by the fixed liquid feed pump 32 and supplied into the treatment tank 1 from the water supply port 1a.
  • the to-be-treated water 4 supplied into the treatment tank 1 flows from the upper end of the water treatment unit 19a along the upper surface of the plate electrode 2, and then from the lower end of the water treatment unit 19a to the water treatment unit 19b. Drop to the upper edge.
  • the water 4 to be treated flows down the water treatment units 19b, 19c, and 19d in order.
  • the pulse power supply 7 by operating the pulse power supply 7 and applying a high voltage to the wire electrodes 6a, 6b, 6c, discharges 11a, 11b, 11c are formed, and the water to be treated 4 is formed by the ultrasonic vibrators 12a, 12b, 12c.
  • the water to be treated 4 is treated by forming water droplets.
  • the treated water 40 is sent from the bottom of the treatment tank 1 to the treated water tank 33 by the drainage pump 34.
  • the centralized control unit 35 controls the fixed liquid feed pump 32, the drainage pump 34, the angle control unit 36, and the pulse power source 7 based on the information from the water quality meter 37, that is, according to the water quality of the treated water 4. To do.
  • the liquid feed amounts of the quantitative liquid feed pump 32 and the drain pump 34 are set to be small, and the water treatment unit The inclination angle of 19a, 19b, 19c, 19d, that is, the inclination angle of each plate electrode 2 with respect to the horizontal direction is set small.
  • the to-be-processed water 4 stays in the water treatment unit 19a, 19b, 19c, 19d for a long time, and a process target substance is fully decomposed
  • the flow rate of the treated water 4 is set large, and the water treatment units 19a, 19b, The inclination angles 19c and 19d are set large.
  • the to-be-processed water 4 passes water treatment unit 19a, 19b, 19c, 19d in a short time, high-speed water treatment is performed as a whole.
  • the discharge power can be increased by increasing at least one of the output voltage of the pulse power source 7 and the pulse repetition frequency. Conversely, when the concentration of the substance to be treated is low, the discharge power can be reduced.
  • the flow rate of the water to be treated 4, the inclination angle of the plate electrode 2 of the water treatment units 19 a, 19 b, 19 c and 19 d and the discharge power are adjusted according to the quality of the water to be treated 4. Optimum operation according to the water quality or the amount of water becomes possible.
  • water treatment units 19a, 19b, 19c, and 19d are used.
  • the number of water treatment units depends on the dimensions of the treatment tank 1 or the required water treatment capacity. Can be set as appropriate.
  • the quantitative liquid feed pump 32 is used to adjust the flow rate of the water 4 to be treated.
  • the present invention is not limited to this.
  • a mass flow controller or the like can be used.
  • each water treatment unit 19a, 19b, 19c, 19d may be different from each other.
  • the inclination angle of the first electrode, the distance between the discharge forming body and the inclined plate, the number, type and shape of the discharge forming body, the number, type and position of the water droplet forming device, and the discharge power vary depending on the water treatment unit. It may be.
  • the process of the to-be-processed water 4 progresses as it progresses downstream, for example, an invalid power consumption can be suppressed by lowering the discharge power in the water treatment unit located on the downstream side.
  • the inclination angle of the plate electrode 2, the flow rate of the water to be treated 4, and the discharge power can be adjusted, but only one or two of these may be adjustable.
  • FIG. 7 is a cross-sectional view of an essential part of a water treatment apparatus according to Embodiment 3 of the present invention.
  • a plurality (only one is shown in FIG. 7) of ultrasonic homogenizers 24 is used as the water droplet forming device.
  • the ultrasonic homogenizer 24 is arranged corresponding to the wire electrodes 6a, 6b, 6c.
  • the ultrasonic homogenizer 24 is disposed above the plate electrode 2. And the front-end
  • the ultrasonic homogenizer 24 is connected to the high frequency power supply 14 (FIG. 1). By operating the high-frequency power supply 14 and driving the ultrasonic homogenizer 24, at least a part of the water to be treated 4 jumps up to form water droplets. Other configurations are the same as those in the first or second embodiment.
  • the ultrasonic homogenizer 24 is used as the water droplet forming apparatus, it is possible to locally form the water 4 to be treated in the region where the discharges 11a, 11b, and 11c are formed.
  • the water droplets 13a, 13b, and 13c can be formed efficiently.
  • the ultrasonic homogenizer 24 is disposed on the upper side of the flat plate electrode 2, but may be disposed on the lower side of the flat plate electrode 2 as shown in FIG. In FIG. 8, the tip of the ultrasonic homogenizer 24 passes through the plate electrode 2 and is in contact with the water to be treated 4.
  • the number of the ultrasonic homogenizers 24 can be arbitrarily determined.
  • a plurality of ultrasonic homogenizers 24 may be arranged in a direction perpendicular to the flow of the water to be treated 4 flowing down on the plate electrode 2 (a direction perpendicular to the paper surface in FIGS. 7 and 8).
  • the water 4 to be treated can be uniformly formed in a wide region along the length direction of the wire electrodes 6a, 6b, 6c (width direction of the flat plate electrode 2), and efficient water treatment is performed. Can do.
  • the shape of the tip portion (water contact portion) of the ultrasonic homogenizer 24 can be arbitrarily determined. For example, when the thickness of the water contact portion is reduced, the water droplets 13a, 13b, and 13c can be locally formed with less power. Conversely, when the thickness of the water contact portion is increased, the water droplets 13a, 13b, and 13c can be formed in a relatively wide area. Therefore, what is necessary is just to select the shape of a water-contact part suitably according to the distance between electrodes, the flow volume of the to-be-processed water 4, etc. FIG.
  • an insulating transformer may be connected between the high frequency power supply 14 and the ultrasonic homogenizer 24. This prevents the ultrasonic homogenizer 24 and the high-frequency power source 14 from being damaged by the high voltage pulse applied to the wire electrodes 6a, 6b, 6c.
  • FIG. 9 is a waveform diagram showing drive voltage signals of the ultrasonic transducers 12a, 12b, 12c in the water treatment apparatus according to Embodiment 4 of the present invention.
  • the fourth embodiment is different from the first embodiment in that the ultrasonic transducers (PZT ultrasonic transducers) 12a, 12b, and 12c are intermittently driven.
  • water droplets are intermittently generated by intermittently operating a high-frequency voltage.
  • FIG. 10 shows waveforms comparing the drive voltage signals of the ultrasonic transducers 12a, 12b, and 12c and the discharge pulse voltage signals applied to the wire electrodes 6a, 6b, and 6c in the water treatment apparatus of the fourth embodiment.
  • the ultrasonic transducer driving signal is applied in synchronization with the discharge generating pulse voltage output from the pulse power source 7 (FIG. 1). Thereby, water droplet generation is performed intermittently in synchronization with the discharge.
  • Other configurations are the same as those in the first or second embodiment.
  • the water treatment apparatus and the water treatment method of the present invention at least a part of the water to be treated 4 is made into water droplets, thereby improving the efficiency and speed of water treatment, but the water droplet formation is not necessarily performed continuously, The effect can also be obtained by performing intermittently.
  • the duty ratio of the ultrasonic transducer drive is increased, the efficiency and speed of water treatment are improved, but the effect tends to be saturated at a duty ratio of a certain level or more. This is because when a large number of water droplets are formed, the water treatment speed is limited by the number of oxidizing particles such as O, OH, O 3 , and H 2 O 2 generated by the discharge rather than the number of water droplets. It is done.
  • the lifetime of OH radicals effective for decomposing refractory substances is generally very short, less than 1 millisecond, and even after the discharge is stopped and the OH radicals disappear, the water to be treated 4 can be converted into water droplets with a high decomposing effect. Cannot be obtained. Therefore, as shown in FIG. 10, by performing an intermittent operation in which water droplets are generated only during a period in which OH radicals are present in synchronization with pulse discharge, it is possible to suppress invalid consumption of energy and perform water treatment efficiently. it can.
  • the ultrasonic vibrators 12a, 12b, and 12c are intermittently operated, thereby suppressing ineffective energy consumption as compared with the case of continuous driving.
  • efficient water treatment can be performed.
  • the driving method of the ultrasonic transducers 12a, 12b, and 12c shown in the fourth embodiment is a water droplet forming device other than the ultrasonic transducers 12a, 12b, and 12c, for example, the ultrasonic homogenizer 24 shown in the third embodiment. It can also be applied to.
  • FIG. 11 is a cross-sectional view of an essential part of a water treatment apparatus according to Embodiment 5 of the present invention.
  • a plurality (only one is shown in FIG. 11) of gas ejection devices 25 is used as the water droplet forming device.
  • the gas ejection device 25 has a gas source 26 and a gas pipe 27 connected to the gas source 26.
  • the front end of the gas pipe 27 is branched into a plurality of nozzle portions 27a.
  • a plurality of pores 2a are provided in the vicinity of the wire electrodes 6a, 6b, 6c of the plate electrode 2, that is, in the region where the discharges 11a, 11b, 11c of the plate electrode 2 are formed.
  • the tip of the nozzle portion 27a is connected to the pore 2a.
  • the gas ejection device 25 ejects (discharges) gas into the treated water 4 to splash at least a part of the treated water 4 to form water droplets.
  • Other configurations are the same as those in the first or second embodiment.
  • the water droplets 13a, 13b, and 13c are formed only by supplying gas without using electrically driven parts such as the ultrasonic vibrators 12a, 12b, and 12c. Can do. For this reason, failure occurrence is suppressed and continuous water treatment for a long period of time is possible.
  • the pore diameter, number, and position of the pores 2a can be set according to the electrode arrangement, the film thickness of the treated water 4, and the like. For example, if the number of pores is reduced and the pore diameter is reduced, the cross-sectional area through which the gas passes becomes narrow and the gas flow rate increases. Thereby, the water droplets 13a, 13b, and 13c can be formed in a narrow area with high density.
  • FIG. 12 is a cross-sectional view of an essential part of a water treatment apparatus according to Embodiment 6 of the present invention.
  • the sixth embodiment is different from the fifth embodiment in that a gas used for generating water droplets is supplied from above the water 4 to be treated. That is, the gas ejection device 25 according to the sixth embodiment is arranged so as to blow gas from the upper spaced position to the water to be treated 4 flowing on the upper surface of the plate electrode 2. Further, the nozzle part 27 a is not provided at the tip of the gas pipe 27. Other configurations are the same as those of the fifth embodiment.
  • the position and angle of the outlet of the gas pipe 27 can be arbitrarily set according to the required positions and amounts of the water droplets 13a, 13b, 13c, the electrode arrangement, and the like.
  • the formed water droplets 13a, 13b, and 13c are distributed over a wide area.
  • the formation positions of the water droplets 13a, 13b, and 13c are localized.
  • the water droplets 13a, 13b, and 13c can be formed by immersing the outlet of the gas pipe 27 in the water 4 to be treated.
  • a gas cylinder installed outside the processing tank 1 (FIGS. 1 and 5) can be used.
  • a gas such as oxygen may be supplied from the gas pipe 27 into the processing tank 1.
  • the composition of the gas used to form the water droplets 13a, 13b, and 13c is not particularly limited, but it is desirable to use oxygen gas or a mixed gas of oxygen gas and inert gas. . Thereby, the reaction rate of (1) Formula and (3) Formula improves, and the high water treatment effect is acquired.
  • the gas supply from the gas source 26 is not necessarily continuous, and may be intermittently supplied.
  • the instantaneous value of the gas flow velocity can be increased when intermittently supplied.
  • the water droplets 13a, 13b, and 13c can be formed effectively.
  • FIG. 13 is a cross-sectional view of an essential part of a water treatment apparatus according to Embodiment 7 of the present invention.
  • a plurality of (only one is shown in FIG. 13) jumping mechanisms 28 that mechanically spring up the water to be treated 4 in contact with the water to be treated 4 to form water droplets are used.
  • the jumping mechanism 28 for example, a water wheel can be used.
  • the jumping mechanism 28 is arranged at a predetermined distance from the wire electrodes 6a, 6b, 6c on the upstream side of the wire electrodes 6a, 6b, 6c in the flow direction of the water 4 to be treated.
  • a part of the lower side of the jumping mechanism 28 is immersed in the water film of the water to be treated 4 and is arranged so as to rotate according to the flow of the water 4 to be treated.
  • the jumping mechanism 28 is rotated by the flow of the water to be treated 4, a part of the water 4 to be treated is splashed and formed into water droplets.
  • Other configurations are the same as those in the first or second embodiment.
  • the jumping mechanism 28 is rotated by the flow of the water to be treated 4, whereby a part of the water to be treated 4 is formed into water droplets.
  • the water droplets 13a, 13b, and 13c can be formed only by the fluid energy of the treated water 4 flowing down without driving the ultrasonic transducers 12a, 12b, and 12c or supplying gas.
  • the jumping mechanism 28 is rotated by the flow of the water 4 to be treated.
  • the jumping mechanism 28 may be separately rotated using external power such as a motor.
  • the rotational speed or drive timing of the jumping mechanism 28 the water droplet generation amount and the water droplet formation timing can be set as appropriate.
  • the jumping mechanism 28 is not limited to the water wheel, and for example, a mechanism for hitting the water surface with a plate-like member can be used.
  • FIG. 14 is a cross-sectional view of a water treatment apparatus according to Embodiment 8 of the present invention.
  • a plurality of pores 2b penetrating the plate electrode 2 in the thickness direction are provided. It has been.
  • the air storage chamber 41 is connected to all the pores 2b.
  • a circulation pipe connection port 42a is provided in the center of the back plate 42.
  • a gas inlet 1 e is provided at the lower side of the processing tank 1.
  • a first end of a gas circulation pipe 43 is connected to the gas inlet 1e.
  • the first end of the gas circulation pipe 43 is disposed outside the processing tank 1.
  • the second end of the gas circulation pipe 43 is connected to the circulation pipe connection port 42a.
  • the gas circulation device 45 which is a water droplet forming device according to the eighth embodiment, includes a back plate 42, a gas circulation pipe 43, and an air pump 44.
  • the gas circulation device 45 sucks the gas from the processing tank 1 and the sucked gas flows into the pores 2b. Erupt upward.
  • a gas supply source 17 is connected to the gas supply port 1d via a pressure regulator 46. Further, the water treatment unit 47 of the eighth embodiment includes the flat plate electrode 2, the wire electrodes 6 a, 6 b, 6 c, and the back plate 42 that is a part of the gas circulation device 45.
  • the treated water 4 supplied into the treatment tank 1 from the water supply port 1a flows through the upper surface of the flat plate electrode 2 and is discharged from the drain port 1c.
  • Oxygen gas supplied into the processing tank 1 from the gas supply port 1d is discharged out of the processing tank 1 from the gas discharge port 1b.
  • the pressure in the processing tank 1 is maintained higher than the external atmospheric pressure by operating the pressure regulator 46.
  • the water to be treated 4 can be formed into water droplets using the circulating gas without using the gas source 26 as in the fifth and sixth embodiments.
  • the inside of the processing tank 1 is maintained at a predetermined pressure and consumed by the water treatment (the amount consumed for the oxidative decomposition of the organic matter and the amount dissolved in the treated water 4). It is only necessary to supply a gas sufficient to compensate for this. For this reason, the usage-amount of gas can be suppressed and the running cost of water treatment can be reduced.
  • the O 3 gas and H 2 O 2 gas generated by the discharge are filled in the treatment tank 1, and the gas containing these O 3 and H 2 O 2 is supplied by the gas circulation device 45. It is made to circulate, and it ejects with respect to the to-be-processed water 4 which flows on the flat plate electrode 2. FIG. For this reason, O 3 and H 2 O 2 in the gas are efficiently dissolved in the water 4 to be treated, the decomposition reaction of the organic matter in the water reaction is promoted, and the performance of the water treatment is improved.
  • the water to be treated 4 is circulated by the air pump 44 while the water to be treated 4 naturally flows down along the flat plate electrode 2 by gravity, and the water to be treated 4 is made into water droplets.
  • the energy consumption of a pump is much less when transporting a gas than when transporting a liquid. Therefore, the water to be treated is circulated with a pump to form water droplets as in the water treatment device of Patent Document 1. In comparison, a high water treatment effect can be obtained with less energy consumption.
  • the air pump 44 is disposed outside the processing tank 1, but may be disposed inside the processing tank 1. In this case, it is not necessary to provide the gas inlet 1e in the processing tank 1, and the gas circulation pipe 43 may be laid only in the processing tank 1.
  • FIG. 15 is a graph showing the results of a water treatment experiment using the water treatment apparatus of FIG.
  • an aqueous sodium acetate solution having a total organic carbon (TOC) concentration of about 14 mg / l was circulated as the treated water 4 at a flow rate of 150 ml per minute.
  • oxygen gas was supplied to the treatment tank 1 at a flow rate of 250 ml per minute and a pulse discharge was formed.
  • the to-be-processed water 4 was sampled by the fixed time interval, and the TOC density
  • test condition A the air pump 44 of FIG. 14 was not operated and water droplets 13a, 13b, and 13c were not formed.
  • test condition B it tested on the conditions by which the air pump 44 of FIG. 14 is operated and water droplet 13a, 13b, 13c is formed.
  • the initial TOC concentration was 14.6 mg / l, but decreased to 11.1 mg / l after the discharge energy of 1 Wh (decrease of 3.5 mg / l).
  • the initial TOC concentration was 13.6 mg / l, but decreased to 6.6 mg / l after 1 Wh of discharge energy was input (a decrease of 7.0 mg / l).
  • FIG. 16 is a graph showing the relationship between the flow rate of the circulating gas and time in the water treatment apparatus according to Embodiment 9 of the present invention.
  • the water to be treated 4 is converted into water droplets by circulating the gas using the air pump 44.
  • the circulation flow rate of the gas is changed temporally to form a pulsating flow. That is, the gas circulation device 45 of the ninth embodiment intermittently converts the treated water 4 into water droplets.
  • Examples of the method for forming the pulsating flow include a method in which a valve is provided in the middle of the gas circulation pipe 43 and the opening and closing of the valve is controlled. Further, if a diaphragm pump or a bellows pump is used as the air pump 44, the pump itself has a pulsating property, so that the pulsating flow can be formed without providing a separate valve or the like. Other configurations and operations are the same as those in the eighth embodiment.
  • the ninth embodiment by forming the circulating gas as a pulsating flow, more water droplets can be formed with the same amount of the circulating gas as compared with the case where the circulating gas is supplied in a constant flow. .
  • the capacity of the air pump 44 can be reduced, or the amount of water droplets that can be formed by the air pump 44 having the same capacity can be increased.
  • the flow rate of the circulating gas is not necessarily pulsed as shown in FIG. 16, and may be modulated with time.
  • the flow rate of the circulating gas, the duty ratio, and the pulsating flow cycle may be determined as appropriate depending on how the water droplets are formed.
  • FIG. 17 is a sectional view of a water treatment apparatus according to Embodiment 10 of the present invention.
  • a plurality (four in this case) of water treatment units 47a, 47b, 47c, and 47d are arranged in multiple stages in the vertical direction.
  • Each water treatment unit 47a, 47b, 47c, 47d has the flat plate electrode 2, the wire electrodes 6a, 6b, 6c, and the back plate 42 similarly to the water treatment unit 47 of the eighth embodiment.
  • the water 4 to be treated flows continuously (zigzag meandering) from the uppermost water treatment unit 47a to the lowermost water treatment unit 47d.
  • the plate electrodes 2 are alternately inclined in the opposite direction with respect to the horizontal plane. That is, in the water treatment units 47a, 47b, 47c, and 47d adjacent in the vertical direction, the inclination direction of the flat plate electrode 2 with respect to the horizontal plane is reversed.
  • the gas circulation pipe 43 is branched into first to fourth branch pipes 43a, 43b, 43c, and 43d on the downstream side of the air pump 44. And the front-end
  • a first valve 48a is provided in the first branch pipe 43a connected to the uppermost water treatment unit 47a.
  • a second valve 48b is provided in the second branch pipe 43b connected to the second-stage water treatment unit 47b.
  • a third branch pipe 43c connected to the third-stage water treatment unit 47c is provided with a third valve 48c.
  • a fourth valve 48d is provided in the fourth branch pipe 43d connected to the lowermost water treatment unit 47d.
  • a gas circulation device 49 which is a water droplet forming device of the tenth embodiment includes a back plate 42 of water treatment units 47a, 47b, 47c and 47d, a gas circulation pipe 43 including branch pipes 43a, 43b, 43c and 43d, and an air pump 44. have.
  • Other configurations are the same as those in the eighth embodiment.
  • the to-be-treated water 4 is adjusted to a predetermined flow rate by the water amount adjusting mechanism 23 and then supplied into the treatment tank 1 through the water supply port 1a.
  • the treated water 4 supplied into the treatment tank 1 flows in order from the uppermost water treatment unit 47a to the lowermost water treatment unit 47d, and then accumulates at the bottom of the treatment tank 1 as treated water 40, and is discharged into the drainage port. Drained from 1c.
  • the water supply port 1a is blocked by the water 4 to be treated, and the drain port 1c is blocked by the post-treatment water 40 so that no gas can pass therethrough.
  • the oxygen gas from the gas supply source 17 is adjusted by the pressure regulator 46 to a flow rate at which the pressure in the processing tank 1 becomes a predetermined pressure higher than the external pressure, and is supplied into the processing tank 1.
  • the gas in the treatment tank 1 sucked from the gas suction port 1e by the air pump 44 is supplied to the water treatment units 47a, 47b, 47c, 47d through the branch pipes 43a, 43b, 43c, 43d and flows down. Water 4 is converted into water droplets.
  • FIG. 18 is a timing chart showing the opening / closing operation of the first to fourth valves 48a, 48b, 48c, 48d of FIG.
  • the valves 48a, 48b, 48c, and 48d are periodically opened and closed. Further, the duty ratios for opening the valves 48a, 48b, 48c, and 48d are all 25%.
  • valves 48a, 48b, 48c, 48d are opened with a shift of 1 ⁇ 4 period from each other. For this reason, two or more of the valves 48a, 48b, 48c, and 48d do not open at the same time, and the remaining is closed when any one of them is open. Moreover, one of the valves 48a, 48b, 48c, 48d is always open. Therefore, it is possible to efficiently form water droplets with a small circulating gas flow rate as compared with the case where the circulating gas is simultaneously supplied to all the water treatment units 47a, 47b, 47c, 47d.
  • one water pump 44 can form water droplets with four water treatment units 47a, 47b, 47c, and 47d, the device configuration is simplified and the device cost is suppressed.
  • valves 48a, 48b, 48c, and 48d in the branch pipes 43a, 43b, 43c, and 43d and opening and closing them at different timings, water droplets can be efficiently formed with a small circulating gas flow rate.
  • valves 48a, 48b, 48c, 48d are not essential, and the circulating gas may always flow through the branch pipes 43a, 43b, 43c, 43d. Further, the valves 48a, 48b, 48c, and 48d can be opened and closed at an arbitrary timing according to the composition of the water to be treated 4, and need not necessarily be as shown in FIG.
  • FIG. 19 is a sectional view of a water treatment apparatus according to Embodiment 11 of the present invention.
  • the treatment tank 1 a plurality (four in this case) of water treatment units 51a, 51b, 51c, 51d are arranged in multiple stages in the vertical direction.
  • Each of the water treatment units 51a, 51b, 51c, 51d is obtained by removing the back plate 42 from the water treatment unit 47 of the eighth embodiment. That is, each water treatment unit 51a, 51b, 51c, 51d has the plate electrode 2 and the wire electrodes 6a, 6b, 6c.
  • each water treatment unit 51a, 51b, 51c, 51d is airtightly connected to the inner wall surface of the treatment tank 1.
  • a plurality (5 in this example) of independent divided spaces (sealed spaces) are formed above and below each flat plate electrode 2 in the processing tank 1. That is, the space in the processing tank 1 is divided into five divided spaces by the plate electrode 2.
  • the divided spaces adjacent to each other in the vertical direction are connected only through the pores 2 b of the plate electrode 2.
  • each plate electrode 2 On the downstream end portion of each plate electrode 2, a water reservoir portion 52 in which the water to be treated 4 is accumulated is formed. In the vicinity of the downstream end of each plate electrode 2, one or a plurality of through holes 2 c are provided for dropping the treated water 4 collected in the water reservoir 52 downward.
  • the gas suction port 1e is arranged so as to face the uppermost divided space, that is, the space above the uppermost flat plate electrode 2.
  • the end of the gas circulation pipe 43 opposite to the gas suction port 1 e is not branched and is connected to a gas discharge port 1 f provided in the processing tank 1.
  • the gas discharge port 1f is disposed so as to face the lowermost divided space, that is, the space below the lowermost flat plate electrode 2. Further, the treatment tank 1 is not provided with a gas discharge port 1b.
  • the gas circulation device 53 that is the water droplet forming device of the eleventh embodiment includes an air pump 44 and a gas circulation pipe 43. Other configurations are the same as those of the tenth embodiment.
  • the to-be-treated water 4 supplied into the treatment tank 1 flows in order from the uppermost water treatment unit 47a to the lowermost water treatment unit 47d, and is then treated as treated water 40 at the bottom of the treatment tank 1. It collects and drains from the drain port 1c. At this time, the to-be-treated water 4 collected in each water reservoir 52 falls to the lower end through the through hole 2c.
  • the oxygen gas from the gas supply source 17 is adjusted by the pressure regulator 46 to a flow rate at which the pressure in the processing tank 1 becomes a predetermined pressure higher than the external pressure, and is supplied into the processing tank 1.
  • the gas in the processing tank 1 sucked from the gas suction port 1 e by the air pump 44 is supplied to the lowermost divided space through the gas discharge port 50.
  • the internal pressure of the processing tank 1 is highest in the lowermost divided space and becomes lower as it goes to the upper divided space. For this reason, the circulating gas flow generated by the air pump 44 forms a series of flows upward in the processing tank 1.
  • each water reservoir 52 is larger than the water film thickness of the water to be treated 4 flowing down on each plate electrode 2. For this reason, the circulating gas flowing upward in the processing tank 1 passes only through the pores 2b without passing through the through holes 2c. Thereby, the to-be-processed water 4 can be efficiently made into water droplets.
  • the branch pipes 43a, 43b, 43c, and 43d are connected to the water treatment units 47a, 47b, 47c, and 47d, respectively. 43b, 43c, and 43d are unnecessary, and the apparatus configuration is simplified.
  • the total amount of circulating gas is all of the water treatment units 51a, 51b, 51c. , 51d sequentially, and the water droplet formation efficiency is improved.
  • the number of water treatment units can be appropriately set according to the dimensions of the treatment tank 1 or the required water treatment capacity.
  • FIG. 20 is a cross-sectional view of an essential part of a water treatment apparatus according to Embodiment 12 of the present invention.
  • an inclined plate 55 is used instead of the flat plate electrode 2 of the eighth embodiment.
  • the inclined plate 55 is provided with a plurality of pores 55a.
  • wire electrodes as discharge forming bodies that is, three high-voltage wire electrodes 56 a, 56 b, and 56 c, and four ground wires through the gap 5 with respect to the inclined plate 55. Electrodes 57a, 57b, 57c, 57d are arranged.
  • the wire electrodes 56 a, 56 b, 56 c, 57 a, 57 b, 57 c, 57 d are arranged at intervals from each other in the flow-down direction of the treated water 4.
  • wire electrodes 56 a, 56 b, 56 c, 57 a, 57 b, 57 c, 57 d are arranged at equal intervals with respect to the upper surface of the inclined plate 55. Furthermore, the wire electrodes 56a, 56b, 56c, 57a, 57b, 57c, and 57d are stretched in parallel and horizontally in the width direction of the inclined plate 55 (X-axis direction in FIG. 20).
  • the high-voltage wire electrodes 56a, 56b, and 56c and the ground wire electrodes 57a, 57b, 57c, and 57d are alternately arranged in the flow-down direction of the water 4 to be treated.
  • the high voltage wire electrodes 56 a, 56 b and 56 c are connected to the pulse power source 7.
  • the ground wire electrodes 57a, 57b, 57c, and 57d are grounded.
  • the adjacent electrodes that is, the electrodes 56a and 57a, the electrodes 56a and 57b, the electrodes 56b and 57b, the electrodes 56b and 57c, the electrodes 56c and 57c, and the electrodes 56c and 57d form a pair, and a discharge is generated between each pair of electrodes.
  • 58a, 58b and 58c are formed.
  • the pores 55a are provided uniformly over the entire region of the inclined plate 55 facing the wire electrodes 56a, 56b, 56c, 57a, 57b, 57c, and 57d.
  • the back plate 42 is airtightly fixed to the lower surface of the inclined plate 55.
  • the air storage chamber 41 is connected to all the pores 55a.
  • the water treatment unit 59 of the twelfth embodiment includes an inclined plate 55, high-voltage wire electrodes 56a, 56b, 56c, ground wire electrodes 57a, 57b, 57c, 57d, and a back plate 42.
  • discharges 58a, 58b, and 58c are formed between the high-voltage wire electrodes 56a, 56b, and 56c and the ground wire electrodes 57a, 57b, 57c, and 57d.
  • the circulating gas is ejected from the pores 55a, whereby water droplets 13 are formed and water treatment is performed.
  • Other configurations and operations are the same as those in the eighth embodiment.
  • the discharges 58a, 58b, and 58c are formed in a direction perpendicular to the direction in which the water droplet 13 jumps up. For this reason, the water droplet 13 crosses the discharges 58a, 58b, and 58c, and discharges between the wire electrodes 6a, 6b, and 6c and the water surface of the water 4 to be treated, for example, as in the first embodiment (FIG. 1).
  • the contact probability between the water droplet 13 and the discharges 58a, 58b, and 58c is increased, and the water treatment efficiency is improved.
  • the inclined plate 55 may be electrically grounded or not grounded.
  • a discharge is also generated between the high voltage wire electrodes 56a, 56b, 56c and the water surface of the water 4 to be treated on the inclined plate 55. For this reason, the discharge region can be widened, and the speed of water treatment is improved.
  • the inclined plate 55 when the inclined plate 55 is not electrically grounded, the inclined plate 55 can be formed of an insulator. If the inclined plate 55 is formed of ceramic such as alumina, sputtering and corrosion due to discharge can be suppressed, and the life of the apparatus can be extended. Further, when the inclined plate 55 is not electrically grounded, the arrangement and shape of the inclined plate 55 can be determined regardless of the discharge formation, so that the degree of freedom in design such as the width of the gap 5 is improved. .
  • the twelfth embodiment may be appropriately combined with the ninth to eleventh embodiments.
  • the circulatory flow rate of the gas may be changed with time to generate a pulsating flow.
  • the water treatment units 59 of the twelfth embodiment may be arranged in multiple stages as in the tenth or eleventh embodiment.
  • FIG. 21 is a cross-sectional view of an essential part of a water treatment apparatus according to Embodiment 13 of the present invention.
  • the ground wire electrodes 57a, 57b, 57c, and 57d of the twelfth embodiment are replaced with ground plate electrodes 60a, 60b, 60c, and 60d.
  • the ground plate electrodes 60 a, 60 b, 60 c and 60 d are arranged at right angles to the upper surface of the inclined plate 55.
  • the water treatment unit 61 of the thirteenth embodiment has an inclined plate 55, high-voltage wire electrodes 56a, 56b, 56c, ground plate electrodes 60a, 60b, 60c, 60d, and a back plate 42.
  • Other configurations and operations are the same as those in the twelfth embodiment.
  • the thirteenth embodiment may be appropriately combined with the ninth to eleventh embodiments.
  • the circulatory flow rate of gas may be changed with time to generate a pulsating flow.
  • the water treatment units 61 of the thirteenth embodiment may be arranged in multiple stages as in the tenth or eleventh embodiment.
  • FIG. 22 is a sectional view showing the principal parts of a water treatment apparatus according to Embodiment 14 of the present invention.
  • ground arc electrodes 62a, 62b, and 62c formed by bending a flat plate into a circular arc shape are used.
  • the grounding arc electrodes 62a, 62b, and 62c are arranged so that the concave side faces the upper surface of the inclined plate 55 via a gap.
  • Adjacent ground arc electrodes 62a, 62b, 62c are connected to each other.
  • the high-voltage wire electrodes 56a, 56b, and 56c are disposed between the ground arc electrodes 62a, 62b, and 62c and the inclined plate 55, respectively. That is, the ground arc electrodes 62a, 62b, and 62c are disposed so as to cover the corresponding high-voltage wire electrodes 56a, 56b, and 56c.
  • the inclined plate 55 is made of metal and is grounded. That is, the inclined plate 55 also serves as a flat plate electrode (ground electrode).
  • the water treatment unit 63 of the fourteenth embodiment has an inclined plate 55, high-voltage wire electrodes 56a, 56b, 56c, ground arc electrodes 62a, 62b, 62c, and a back plate 42.
  • Other configurations and operations are the same as those in the twelfth embodiment.
  • ground arc electrodes 62a, 62b, and 62c are arranged so as to surround the high-voltage wire electrodes 56a, 56b, and 56c, a more uniform electric field is formed. For this reason, the discharges 58a, 58b, and 58c are not locally increased, arcing is suppressed, and a uniform and stable discharge is formed.
  • ground arc electrodes 62a, 62b, 62c are arranged so as to cover the splashed water droplets 13, some of the water droplets 13 attached to the ground arc electrodes 62a, 62b, 62c are inclined again as water droplets 13. Drop toward the plate 55. The other part of the water droplet 13 attached to the ground arc electrodes 62a, 62b, 62c flows along the inner surfaces of the ground arc electrodes 62a, 62b, 62c due to surface tension. By repeating such an operation, the contact time between the water to be treated 4 and the discharges 58a, 58b, 58c is increased, and the area of the gas-liquid interface is increased, so that the water treatment is efficiently performed.
  • the fourteenth embodiment may be appropriately combined with the ninth to eleventh embodiments.
  • the circulatory flow rate of gas may be changed with time to generate a pulsating flow.
  • the water treatment units 63 of the fourteenth embodiment may be arranged in multiple stages as in the tenth or eleventh embodiment.
  • FIG. 23 is a sectional view showing the principal parts of a water treatment apparatus according to Embodiment 15 of the present invention.
  • a mesh electrode 64 which is a discharge forming body, is arranged in parallel to the inclined plate 55 with a gap 5a interposed therebetween.
  • the mesh electrode 64 is connected to the pulse power source 7.
  • the inclined plate 55 is made of metal and is grounded. That is, the inclined plate 55 also serves as a flat plate electrode (ground electrode).
  • an upper plate electrode 65 which is a discharge forming body, is disposed in parallel with the mesh electrode 64 via the gap 5b.
  • the upper plate electrode 65 is grounded.
  • the mesh electrode 64 and the inclined plate 55 are paired to form a discharge 66a.
  • the mesh electrode 64 and the upper plate electrode 65 are paired to form a discharge 66b.
  • the water treatment unit 67 of the fifteenth embodiment includes an inclined plate 55, a mesh electrode 64, an upper flat plate electrode 65, and a back plate 42. Other configurations and operations are the same as those in the twelfth embodiment.
  • a discharge 66a is formed between the mesh electrode 64 and the inclined plate 55, and a discharge 66b is formed between the mesh electrode 64 and the upper plate electrode 65. Further, a part of the water droplet 13 that jumps up from above the inclined plate 55 passes through the mesh electrode 64 and collides with the upper plate electrode 65.
  • the formation regions of the discharges 66a and 66b are expanded. Can increase the speed of water treatment.
  • a part of the splashed water droplet 13 collides with the upper plate electrode 65, and a part of the water droplet 13 again becomes the water droplet 13 and falls toward the inclined plate 55. Further, the other part of the water droplet 13 colliding with the upper plate electrode 65 flows along the upper plate electrode 65 due to surface tension. For this reason, in addition to improving the contact time between the water to be treated 4 and the discharges 66a and 66b, the area of the gas-liquid interface is increased, and water treatment is efficiently performed.
  • the fifteenth embodiment may be appropriately combined with the ninth to eleventh embodiments.
  • the circulatory flow rate of the gas may be changed with time to generate a pulsating flow.
  • the water treatment units 67 of the fifteenth embodiment may be arranged in multiple stages as in the tenth or eleventh embodiment.
  • the apparatus for forming the circulating gas is not limited to the air pump 44, and may be, for example, a blower or a compressor.
  • a plurality of different types of water droplet forming apparatuses may be used in combination in one treatment tank.
  • the water droplet forming apparatuses shown in the first, third, fifth to seventh and eighth embodiments may be used in appropriate combination.
  • the discharge forming bodies shown in the twelfth to fifteenth embodiments may be combined with the water droplet forming apparatuses shown in the first, third, and fifth to seventh embodiments.
  • a water droplet means the aggregate
  • the particle size and number density are not specifically limited.
  • the water droplet diameter varies depending on the frequency, but it can be formed from a mist of several micrometers to a relatively large water droplet of several millimeters.
  • water droplets of 0.1 to several millimeters are formed. The water droplet formation method, water droplet diameter, and number density can be determined so that the water treatment efficiency and speed are the best.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Water Treatments (AREA)

Abstract

 水処理装置において、傾斜板は、水平面に対して傾斜して配置されている。被処理水は、傾斜板の上面に沿って流される。水滴形成装置は、傾斜板上を流れる被処理水の少なくとも一部を水滴化する。放電形成体は、空隙を介して傾斜板の上方に配置されており、放電を形成する。

Description

水処理装置及び水処理方法
 この発明は、放電で生じたオゾン及びラジカル等を用いて被処理水を処理する水処理装置及び水処理方法に関するものである。
 これまで上下水の処理においては、一般にオゾン又は塩素が用いられてきた。しかし、例えば工業排水及び再利用水等には、オゾン又は塩素では分解されない難分解性物質が含まれることがある。特に、ダイオキシン類及びジオキサン等の除去が大きな課題となっている。
 一部では、オゾン(O3)と過酸化水素(H22)又は紫外線とを組み合わせることで、オゾン又は塩素よりも活性の高いヒドロキシルラジカル(OHラジカル)を被処理水中で発生させ、難分解性物質の除去を行う方法が実用化されているが、装置コスト及び運転コストが非常に高く、あまり普及していない。そこで、放電で発生させたOHラジカルを被処理水に直接作用させることで、高効率に難分解性物質を除去する方法が提案されている。
 具体的には、線状の高圧電極と、それを囲う円筒状の接地電極との間にパルス電圧を印加することでストリーマー放電を形成するとともに、水滴状態の被処理水を上方からストリーマー放電空間に供給することで、被処理水を処理する水処理装置が提案されている。この水処理装置によれば、短寿命のOHラジカルを被処理水に効率よく作用させることができる(例えば、特許文献1参照)。
 また、上下に対向する一対の電極板を傾斜した状態で配置し、下部電極上を被処理水が流下するようにし、電極間にバリア放電を形成することで被処理水を処理する水処理装置も提案されている。この水処理装置によれば、簡単な構成で被処理水を効率よく処理することができる(例えば、特許文献2参照)。
特許第4934119号公報(第1頁第1~8行目、図1) 特許第4635204号公報(第1頁第1~14行目、図1)
 しかしながら、上述の特許文献1に示された従来の水処理装置では、水滴状態の被処理水がストリーマー放電空間を垂直に落下するため、ストリーマー放電空間に存在するOHラジカルと被処理水との接触時間が極めて短い。このため、難分解性物質の分解又は高濃度の有機汚れの除去を行う際には、被処理水を何度も循環させるか、放電電極を非常に高くする必要がある。このため、被処理水の吸い上げエネルギーの増加、及び装置の大型化などが問題となる。
 一方、特許文献2に示された従来の水処理装置では、放電で生じるOHラジカルと被処理水との接触が被処理水の表面に限られるため、ラジカルを被処理水に対して効率的に作用させることができない。また、OHラジカルの寿命は1ミリ秒以下と短いため、実質的に有効なのは水面の極近傍に限られ、被処理水の深い部分の処理が進まない問題があった。
 この発明は、上記のような課題を解決するためになされたものであり、難分解性物質の分解又は高濃度の有機汚れの除去を、高効率かつ高速で行うことができる水処理装置及び水処理方法を得ることを目的とする。
 この発明に係る水処理装置は、水平面に対して傾斜して配置されており、上面に沿って被処理水が流される傾斜板、傾斜板上を流れる被処理水の少なくとも一部を水滴化する水滴形成装置、及び空隙を介して傾斜板の上方に配置されており、放電を形成する放電形成体を備えている。
 また、この発明に係る水処理方法は、水平面に対して傾斜して配置されている傾斜板の上面に沿って被処理水を流しつつ、空隙を介して傾斜板の上方に配置された少なくとも一対の電極間に放電を形成し、さらに傾斜板上を流れる被処理水の少なくとも一部を水滴化する。
 さらに、この発明に係る水処理方法は、水平面に対して傾斜して配置されている傾斜板の上面に沿って被処理水を流しつつ、空隙を介して傾斜板の上方に配置された電極と傾斜板との間に放電を形成し、さらに傾斜板上を流れる被処理水の少なくとも一部を水滴化する。
 この発明の水処理装置及び水処理方法は、水平面に対して傾斜した傾斜板の上面に沿って被処理水を流し、放電を形成しつつ、被処理水の少なくとも一部を水滴形成装置により水滴化するので、被処理水が放電に長時間かつ広い面積で接触し、また、被処理水の攪拌と、被処理水に溶解したオゾン又は過酸化水素の混合が進み、難分解性物質の分解又は高濃度の有機汚れの除去を、高効率かつ高速で行うことができる。
この発明の実施の形態1による水処理装置の断面図である。 図1の水処理装置の要部を示す斜視図である。 図1の超音波振動子を駆動させない場合の被処理水の様子を示す断面図である。 図3の超音波振動子を駆動させた場合の被処理水の様子を示す断面図である。 この発明の実施の形態2による水処理装置を示す構成図である。 図5の処理槽を拡大して示す断面図である。 この発明の実施の形態3による水処理装置の要部断面図である。 図7の超音波ホモジナイザを平板電極の下側に配置した変形例を示す断面図である。 この発明の実施の形態4による水処理装置における超音波振動子の駆動電圧信号を示す波形図である。 実施の形態4の水処理装置における超音波振動子の駆動電圧信号とワイヤ電極に印加される放電パルス電圧信号とを比較して示す波形図である。 この発明の実施の形態5による水処理装置の要部断面図である。 この発明の実施の形態6による水処理装置の要部断面図である。 この発明の実施の形態7による水処理装置の要部断面図である。 この発明の実施の形態8による水処理装置の断面図である。 図14の水処理装置による水処理実験の結果を示すグラフである。 この発明の実施の形態9による水処理装置における循環ガスの流量と時間との関係を示すグラフである。 この発明の実施の形態10による水処理装置の断面図である。 図17の第1ないし第4のバルブの開閉動作を示すタイミングチャートである。 この発明の実施の形態11による水処理装置の断面図である。 この発明の実施の形態12による水処理装置の要部断面図である。 この発明の実施の形態13による水処理装置の要部断面図である。 この発明の実施の形態14による水処理装置の要部断面図である。 この発明の実施の形態15による水処理装置の要部断面図である。
 以下、この発明を実施するための形態について、図面を参照して説明する。
 実施の形態1.
 図1はこの発明の実施の形態1による水処理装置の断面図である。図において、密閉構造の金属製の処理槽1の上部には、給水口1a及びガス排出口1bが設けられている。処理槽1の下部には、排水口1cが設けられている。処理槽1の側面には、ガス供給口1dが設けられている。
 処理槽1内には、傾斜板としての平板電極2が収容されている。平板電極2は、処理槽1の底面に立てられた上流側架台3a及び下流側架台3bにより支持されており、水平面に対して傾斜して配置されている。即ち、平板電極2の上流側端部(図1の右端部)は、下流側端部(図1の左端部)よりも高くなっている。
 平板電極2の上流側端部は、給水口1aの真下に配置されている。被処理水4は、給水口1aから処理槽1内に供給され、平板電極2の上面に沿って斜め下方へ流れ、排水口1cから処理槽1外へ排出される。
 処理槽1内の平板電極2の上方には、平板電極2に対して空隙5を介して放電形成体(放電形成電極)としての複数(この例では3本)のワイヤ電極6a,6b,6cが配置されている。ワイヤ電極6a,6b,6cは、被処理水4の流下方向に互いに間隔をおいて配置されている。また、ワイヤ電極6a,6b,6cは、平板電極2の上面に対して等間隔をおいて配置されている。さらに、ワイヤ電極6a,6b,6cは、平板電極2の幅方向(図1のX軸方向)に平行かつ水平に張られている。
 処理槽1の外部には、パルス電源7が設置されている。ワイヤ電極6a,6b,6cは、パルス電源7に対して配線8を介して並列に接続されている。パルス電源7は、処理槽1に対して絶縁部9により電気的に絶縁されている。平板電極2は、電気的に接地されている。実施の形態1の放電電力供給部10は、パルス電源7及び配線8を有しており、平板電極2とワイヤ電極6a,6b,6cとの間に高電圧を印加して放電11a,11b,11cを形成する。
 平板電極2の下面には、水滴形成装置(水滴発生機構)としての複数の超音波振動子12a,12b,12cが固定されている。超音波振動子12a,12b,12cは、ワイヤ電極6a,6b,6cに対応して配置されている。この例では、超音波振動子12a,12b,12cは、平板電極2のワイヤ電極6a,6b,6cに対向する部分の裏側に配置されている。また、超音波振動子12a,12b,12cは、平板電極2上を流れる被処理水4の少なくとも一部を跳ね上がらせて水滴化する。即ち、超音波振動子12a,12b,12cは、平板電極2上に被処理水4の水滴13a,13b,13cを発生させる。
 この例では、各超音波振動子12a,12b,12cは、圧電セラミック(PZT)により構成されている。処理槽1の外部には、高周波電源14が設置されている。超音波振動子12a,12b,12cは、高周波電源14に対して配線15を介して並列に接続されている。高周波電源14は、処理槽1に対して絶縁部16により電気的に絶縁されている。
 ガス供給口1dには、酸素ガスを満たしたガス供給源17が流量調節器18を介して接続されている。
 水処理ユニット19は、平板電極2、ワイヤ電極6a,6b,6c、及び超音波振動子12a,12b,12cを有している。
 図2は図1の水処理装置の要部を示す斜視図である。平板電極2は、水平方向に対して傾斜角θだけ傾斜している。平板電極2の幅方向両端部には、一対の側壁20a,20bが設けられている。被処理水4は、平板電極2上の側壁20a,20b間を流下する。側壁20a,20b上には、ワイヤ電極6a,6b,6cを保持する複数対(この例では3対)の保持部材21が固定されている。
 次に、動作について説明する。ガス供給源17からの酸素ガスは、流量調節器18により所定の流量に調節された後、ガス供給口1dから処理槽1内に供給される。ガス排出口1bからは、供給酸素ガス流量と同じ流量で、処理槽1内のガスが排気される。これにより、所定時間経過後に、処理槽1内から空気が排出され、処理槽1内に高酸素濃度の雰囲気が形成される。
 給水口1aから処理槽1内に供給された被処理水4は、平板電極2上の側壁20a,20b間に水膜を形成して流下し、排水口1cから排出される。このとき、高周波電源14を動作させ、超音波振動子12a,12b,12cを駆動することで、被処理水4の一部は水滴13a,13b,13cとなる。
 ここでさらに、パルス電源7を動作させ、空隙5の一部が酸素ガスで満たされた状態でワイヤ電極6a,6b,6cにパルス電圧を印加することで、ワイヤ電極6a,6b,6cから平板電極2の方向に放電11a,11b,11cが形成される。被処理水4は、平板電極2上を流れる過程で、放電11c,11b,11aを順に通過する。そして、放電11c,11b,11aを通過する際、被処理水4に対して難分解性物質の除去などの水処理が行われる。
 図3は図1の超音波振動子12a,12b,12cを駆動させない場合の被処理水4の様子を示す断面図、図4は図3の超音波振動子12a,12b,12cを駆動させた場合の被処理水4の様子を示す断面図である。
 超音波振動子12a,12b,12cを駆動させない場合、ワイヤ電極6a,6b,6cから被処理水4の表面に向けて放電11a,11b,11cが形成されるが、被処理水4は水滴化しない。これに対して、超音波振動子12a,12b,12cを駆動させた場合、放電11a,11b,11cが形成された領域に、多数の水滴13a,13b,13cが形成される。
 また、形成された水滴13a,13b,13cは、重力により落下し、平板電極2上を流れる被処理水4と合一する。このように、超音波振動子12a,12b,12cを駆動した場合、水滴13a,13b,13cの形成及び合一が高い頻度で繰り返されることになる。
 次に、実施の形態1の水処理装置による水処理の原理について説明する。ここでは、有機物の分解を例にとって説明するが、放電で生じるO3及びOHラジカルは除菌及び脱色にも有効である。
 ワイヤ電極6a,6b,6cにパルス電圧を印加することで、空隙5の気体中、あるいは気体と被処理水4との界面で放電が生じる。このとき、酸素分子(O2)、水分子(H2O)が高エネルギーの電子と衝突し、(1)式、(2)式の解離反応が生じる。ここでeは電子、Oは原子状酸素、Hは原子状水素、OHはOHラジカルである。
 e+O2→2O ・・・(1)
 e+H2O→H+OH ・・・(2)
 (1)式で発生した原子状酸素の一部は、(3)式の反応によりオゾン(O3)となる。ここで、Mは反応の第三体であり、気中のあらゆる分子又は原子を表す。
 O+O2+M→O3 ・・・(3)
 また、(2)式で生じたOHラジカルの一部は、(4)式の反応により過酸化水素(H22)となる。
 OH+OH→H22 ・・・(4)
 そして、(1)~(4)式の反応で生成されたO、OH、O3、H22などの酸化性粒子は、(5)式の反応により、被処理水4中の有機物を二酸化炭素(CO2)と水とに酸化分解する。ここで、Rは処理対象となる有機物である。
 R+(O、OH、O3、H22)→CO2+H2O ・・・(5)
 このような実施の形態1の水処理装置及び水処理方法によれば、水平面に対して傾斜した平板電極2の上面に沿って被処理水4を流し、平板電極2とワイヤ電極6a,6b,6cとの間に放電11a,11b,11cを形成しつつ、被処理水4の少なくとも一部を超音波振動子12a,12b,12cにより水滴化するので、(5)式の反応を多く生じさせることができ、高濃度の有機汚れの除去を、高効率かつ高速で行うことができる。
 即ち、被処理水4が傾斜した平板電極2上を流れるため、垂直に落下する場合と比べて流下速度が遅くなり、放電11a,11b,11cに長時間接触することになる。このため、被処理水4中の有機物と酸化性粒子との反応回数が増加し、有機物の分解が進行する(長時間滞在効果)。
 また、超音波振動子12a,12b,12cにより、平板電極2を流下する被処理水4の一部が水滴13a,13b,13cとなることで、水膜状に流れる場合と比較して、気液界面の面積が大幅に増加する。このため、放電で生じた酸化性粒子が気液界面近傍に存在する有機物Rと多く反応し、有機物の分解が進行する(広い気液界面面積の効果)。
 さらに、OHラジカル等の作用により、水滴13a,13b,13cの気液界面近傍の有機物が分解されてその濃度が低下すると、(5)式の反応頻度が低下する。これに対して、実施の形態1では、超音波振動子12a,12b,12cにより形成された水滴13a,13b,13cは、短時間で被処理水4の水面に落下して合一し、再び別の水滴が形成されるといったように、水滴13a,13b,13cの形成及び合一が頻繁に繰り返される。このような水滴13a,13b,13cの再形成に伴い、気液界面近傍の分子が交換され、新たな有機物の分子が現れることになるため、(5)式の反応が継続的に生じ、有機物の分解が進行する(分子交換効果)。
 さらにまた、水滴13a,13b,13cの形成及び合一の過程において、被処理水4が攪拌されるため、被処理水4へのO3及びH22の溶解が促進される。また、被処理水4中に溶解したO3及びH22の濃度が均一化され、水中におけるO3、H22によって生じる有機物Rの分解反応が効率的に生じる(溶解混合促進効果)。
 以上の4つの効果(長時間滞在効果、広い気液界面面積の効果、分子交換効果、溶解混合促進効果)により、実施の形態1によれば、例えば特許文献1のように被処理水を何度も循環させたり、放電電極を非常に高くしたりすることなく、水処理を行うことができる。また、特許文献2と比べて、効率的かつ高速に水処理を行うことができる。このような効果は、難分解性物質の分解についても同様に得られる。
 また、実施の形態1では、平板電極2に対してワイヤ電極6a,6b,6c及び超音波振動子12a,12b,12cが3組配置されているので、水処理能力をさらに向上させることができる。
 さらに、水滴形成装置として超音波振動子12a,12b,12cを用いたので、被処理水4の一部を効率的に水滴化することができる。
 さらにまた、平板電極2の傾斜角度、被処理水4の流量、及び放電11a,11b,11cの放電電力のうちの少なくとも1つを、被処理水4の組成に合わせて調節すれば、被処理水4の組成に合わせて最適な条件で水処理を行うことができる(以下の実施の形態においても同様)。
 ここで、水処理の効率は、被処理水4の水滴化率を増加させるに従って向上するが、ある水滴化率以上では飽和する。これは、水滴の増加に伴い酸化性粒子の消費速度が向上し、放電による酸化性粒子の生成速度が、水処理の速度を制限するためと考えられる。
 一方、放電電力の増加に伴って酸化性粒子の生成量は増加するため、水滴を増やしても効果が飽和しにくくなる。水滴の形成にはエネルギーが必要であることから、過剰な水滴化はトータルでのエネルギー効率低下に繋がる。従って、被処理水4の組成及び放電電力などの諸条件に応じて、水滴化の割合を調節するようにすると好適である。
 なお、実施の形態1において、放電形成にパルス電源7を用いたが、この発明に適用される電源は、安定して放電が形成できれば、必ずしもパルス電源である必要はなく、例えば交流電源又は直流電源であってもよい。
 また、パルス電源7から出力される電圧の極性、電圧波高値、繰り返し周波数、パルス幅などは、電極構造及びガス種等の諸条件に応じて適宜決定することができる。一般に、電圧波高値は、1kV~50kVが望ましい。これは、1kV以下では安定した放電が形成されず、また、50kV以上とするには、電源の大型化及び電気絶縁の困難化によりコストが著しく増加するためである。
 さらに、繰り返し周波数は、10pps(pulse-per-second)以上、100kpps以下とすることが望ましい。これは、10pps未満では、十分な放電電力を投入するために非常に高い電圧が必要となり、逆に、100kppsよりも大きくすると、水処理の効果が飽和し、電力効率が低下するためである。また、被処理水4の流量又は処理対象物質の組成の少なくともいずれか一方に応じて、電圧、パルス幅、パルス繰り返し周波数を調整するようにしてもよい。
 さらにまた、平板電極2は、導電性材料で構成することができる。特にステンレス鋼又はチタンなど、耐腐食性に優れた金属材料を用いることが望ましい。
 また、平板電極2の上面をガラス又はセラミックなどの誘電体で被覆することもできる。これにより、腐食の抑制、アーク放電の抑制、金属コンタミネーション発生の抑制などといった効果が得られる。
 さらに、ワイヤ電極6a,6b,6cにも、ステンレス鋼又はチタンなど耐腐食性に優れた金属材料を用いることが望ましいが、これ以外の導電性材料を用いることもできる。また、ワイヤ電極6a,6b,6cの表面をガラス又はセラミックなどの誘電体で被覆してもよい。
 さらにまた、実施の形態1では、放電形成体としてワイヤ電極6a,6b,6cを用いたが、放電形成体は必ずしもワイヤ状である必要はない。放電形成体として、例えばロッド、針、メッシュ又はパンチングメタルなども用いることができる。但し、比較的低い電圧で安定した放電を形成するためには、板状よりも、電界集中が生じるワイヤ、針、メッシュ状にすることが望ましい。
 また、実施の形態1では、ガス供給源17から酸素ガスを供給することで、処理槽1の内部を高酸素濃度雰囲気としたが、ガス種は酸素に限定されるものではない。酸素を含むガス中であれば、前述の(1)~(5)式の反応が生じるため、水処理を行うことが可能である。例えば、酸素に対して窒素又は希ガスを任意の割合で混合させることができる。特に希ガスを用いれば、比較的低い電圧においても放電を安定的に形成することが可能となり、空気を用いればガスコストを大幅に削減できる。
 さらに、供給するガスの流量は一定である必要はなく、被処理水4の組成又は放電条件等に応じて適宜調節することができる。例えば、被処理水4中の有機物濃度が高い場合は、酸化分解過程で多くの酸素が消費されるため、供給ガス流量を多くするのが好適である。一方、被処理水4中の有機物濃度が低い場合は、供給ガス流量を少なくすることで、ガス中のオゾン濃度が高まり、反応を高速化することができる。
 さらにまた、装置起動時にガス流量を多くして内部の空気を短時間で置換し、その後水処理に必要十分な量にまでガス流量を下げることもできる。これにより、ガスの使用量を抑制し、かつ高速な水処理が可能となる。
 また、ガス排出口1bから排気されるガスをガス供給口1dに循環させるようにしてもよい。これにより、ガス供給源17から供給されるガスの量を削減できる。加えて、放電で生じたO3及びH22を、外部に排気することなく処理槽1に戻すことで、効率的に利用することができる。
 さらに、実施の形態1では、3本のワイヤ電極6a,6b,6cを用いたが、放電形成体の数は、平板電極2の寸法、及び被処理水4の組成又は処理流量などに応じて、適宜変更可能である。
 さらにまた、ワイヤ電極6a,6b,6cと平板電極2との間の距離(電極間距離)は、1mm以上、50以下とするのが好適である。これは、電極間距離が1mm未満だと、被処理水4を流した際、ワイヤ電極6a,6b,6cが水没してしまう可能性が増加し、電極間距離を50mmよりも大きくすると、放電形成に非常に高い電圧が必要となるためである。
 また、ワイヤ電極6a,6b,6cと超音波振動子12a,12b,12cとの位置関係は、放電11a,11b,11cの近傍に水滴13a,13b,13cが形成できればよく、必ずしも図1の位置関係に限定されるものではない。例えば、ワイヤ電極6a,6b,6cは、超音波振動により被処理水4に形成される定在波の腹に対応した位置に配置してもよい。また、超音波振動子12a,12b,12cを被処理水4に直接接触させてもよい。例えば、平板電極2に複数の貫通孔を設けて、貫通孔内に超音波振動子12a,12b,12cを設置してもよい。また、平板電極2の上面に超音波振動子12a,12b,12cを設置してもよい。
 さらに、処理槽1内の圧力は、被処理水4の供給及び排水が容易となるように、大気圧又はその近傍とすることが望ましいが、必要に応じて陽圧又は陰圧にすることもできる。処理槽1内を陽圧にした場合、外部からの空気の混入が抑制され、処理槽1内の雰囲気を管理し易くなる。また、処理槽1内を陰圧にした場合、比較的低い電圧で放電11a,11b,11cが形成されるようになり、電源の小型化及び簡素化が可能となる。さらに、圧力が低いほど放電11a,11b,11cが広がり易いため、広い領域で被処理水4が放電11a,11b,11cと接するようになり、水処理の効率及び速度が向上する。
 さらにまた、図1及び図2において、ワイヤ電極6a,6b,6cの上側をカバーにより覆う構造としてもよい。これにより、被処理水4が流下する領域が閉空間となり、水滴13a,13b,13cが流路外に拡散することを抑制できる。
 実施の形態2.
 次に、図5はこの発明の実施の形態2による水処理装置を示す構成図である。図において、被処理水槽31内には、被処理水4が貯められている。被処理水槽31は、定量送液ポンプ32を介して処理槽1の最上部に接続されている。被処理水槽31内の被処理水4は、定量送液ポンプ32により、被処理水槽31内の下部から処理槽1の最上部に送られる。
 処理後水40を貯める処理後水槽33は、排水ポンプ34を介して処理槽1の底部に接続されている。処理槽1内の底部に落ちた処理後水40は、排水ポンプ34により、処理後水槽33に送られる。
 処理槽1の外部には、集中制御ユニット35、パルス電源7、及び角度制御ユニット36が設けられている。被処理水槽31には、被処理水4の水質(組成)を検出する水質計37が設けられている。水質計37は、被処理水4の生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)、及び有機物の成分などを検出する。
 水質計37からの信号は、集中制御ユニット35に入力される。集中制御ユニット35は、パルス電源7、定量送液ポンプ32、排水ポンプ34、及び角度制御ユニット36を制御する。
 図6は図5の処理槽1を拡大して示す断面図である。処理槽1には、給水口1a、ガス排出口1b、排水口1c、及びガス供給口1dが設けられている。給水口1aには、水量調節機構23か設けられている。
 処理槽1内には、複数(ここでは4台)の水処理ユニット19a,19b,19c,19dが、上下方向に多段に並べて配置されている。各水処理ユニット19a,19b,19c,19dは、実施の形態1の水処理ユニット19と同様に、平板電極2、ワイヤ電極6a,6b,6c、及び超音波振動子12a,12b,12cを有している。
 また、これらの水処理ユニット19a,19b,19c,19dでは、最上段の水処理ユニット19aから最下段の水処理ユニット19dまで被処理水4が連続して(ジグザグに蛇行して)流下するように、平板電極2が水平面に対して交互に逆方向に傾斜している。即ち、上下方向に隣接する水処理ユニット19a,19b,19c,19dでは、平板電極2の水平面に対する傾斜方向が逆になっている。
 被処理水4は、給水口1aから処理槽1内に供給され、水処理ユニット19a,19b,19c,19dを順次通過して処理される。そして、最下段の水処理ユニット19dを通過した処理後水40は、処理槽1の底部に落ちた後、排水口1cから処理槽1外へ排出される。
 また、各水処理ユニット19a,19b,19c,19dのワイヤ電極6a,6b,6cは、いずれもパルス電源7に対して電気的に並列に接続されている。さらに、平板電極2は、いずれも電気的に接地されている。
 さらにまた、水処理ユニット19a,19b,19c,19dには、対応する水処理ユニット19a,19b,19c,19dの傾斜角度を調節する角度調節機構22a,22b,22c,22dがそれぞれ設けられている。角度調節機構22a,22b,22c,22dは、角度制御ユニット36(図5)に接続されている。他の構成は、実施の形態1と同様である。
 次に、動作について説明する。被処理水槽31内の被処理水4は、定量送液ポンプ32によって吸水され、給水口1aから処理槽1内に供給される。処理槽1内に供給された被処理水4は、水処理ユニット19aの上側端部から平板電極2の上面に沿って流下した後、水処理ユニット19aの下側端部から水処理ユニット19bの上側端部に落下する。以下、被処理水4は、水処理ユニット19b,19c,19dを順に流下する。
 このとき、パルス電源7を動作させワイヤ電極6a,6b,6cに高電圧を印加することで、放電11a,11b,11cを形成するとともに、超音波振動子12a,12b,12cにより被処理水4を水滴化することによって、被処理水4が処理される。処理後水40は、処理槽1の底部から排水ポンプ34により処理後水槽33に送水される。
 一方、集中制御ユニット35は、水質計37からの情報に基づいて、即ち被処理水4の水質に応じて、定量送液ポンプ32、排水ポンプ34、角度制御ユニット36、及びパルス電源7を制御する。
 例えば、被処理水4中の有機物濃度が高い場合、又は難分解性物質が処理対象となる場合には、定量送液ポンプ32及び排水ポンプ34の送液量を少なく設定するとともに、水処理ユニット19a,19b,19c,19dの傾斜角度、即ち各平板電極2の水平方向に対する傾斜角度を小さく設定する。これにより、被処理水4が水処理ユニット19a,19b,19c,19d内に長時間滞在し、処理対象物質が十分に分解される。
 逆に、被処理水4中の有機物濃度が低い場合、又は容易に分解される物質が処理対象である場合には、被処理水4の流量を大きく設定するとともに、水処理ユニット19a,19b,19c,19dの傾斜角度を大きく設定する。これにより、被処理水4が短時間で水処理ユニット19a,19b,19c,19dを通過するため、全体として高速な水処理が行われる。
 また、被処理水4中の処理対象物質の濃度が高い場合には、パルス電源7の出力電圧及びパルス繰り返し周波数の少なくともいずれか一方を高くすることで、放電電力を大きくすることができる。逆に、処理対象物質の濃度が低い場合には、放電電力を小さくすることもできる。
 このような水処理装置及び水処理方法では、水処理ユニット19a,19b,19c,19dが多段に配置されているため、被処理水4が放電11a,11b,11cに接する時間が延長され、実施の形態1と比較して、処理槽1を一度通過しただけで高い水処理効果が得られる。
 また、被処理水4の水質に応じて、被処理水4の流量、水処理ユニット19a,19b,19c,19dの平板電極2の傾斜角度、及び放電電力を調節するので、被処理水4の水質又は水量に応じた最適な動作が可能となる。
 なお、実施の形態2では、4台の水処理ユニット19a,19b,19c,19dを用いたが、水処理ユニットの台数は、処理槽1の寸法、又は必要とされる水処理能力などに応じて適宜設定することができる。
 また、実施の形態2では、被処理水4の流量調節に定量送液ポンプ32を用いたが、これに限定されるものではなく、例えばマスフローコントローラなどを用いることができる。
 さらに、各水処理ユニット19a,19b,19c,19dの構成は、互いに異なっていてもよい。例えば、第1電極の傾斜角度、放電形成体と傾斜板との距離、放電形成体の数、種類及び形状、水滴形成装置の数、種類及び位置、並びに放電電力などは、水処理ユニットによって異なっていてもよい。
 さらにまた、被処理水4の処理は下流に進むに従って進行することから、例えば下流側に位置する水処理ユニットほど放電電力を低くすることで、無効な電力消費を抑制することができる。
 また、上記の例では、平板電極2の傾斜角度、被処理水4の流量及び放電電力を調節可能としたが、これらのうちのいずれか1つ又は2つのみを調節可能としてもよい。
 実施の形態3.
 次に、図7はこの発明の実施の形態3による水処理装置の要部断面図である。実施の形態3では、水滴形成装置として、複数(図7では1つのみ示す)の超音波ホモジナイザ24が用いられている。超音波ホモジナイザ24は、ワイヤ電極6a,6b,6cに対応して配置されている。
 この例では、超音波ホモジナイザ24は、平板電極2の上方に配置されている。そして、超音波ホモジナイザ24の先端部が、ワイヤ電極6a,6b,6cの近傍、即ち放電11a,11b,11cが形成される領域で、被処理水4に接している。
 超音波ホモジナイザ24は、高周波電源14(図1)に接続されている。高周波電源14を動作させ超音波ホモジナイザ24を駆動させることにより、被処理水4の少なくとも一部が跳ね上がり水滴化する。他の構成は、実施の形態1又は2と同様である。
 このような水処理装置及び水処理方法では、水滴形成装置として超音波ホモジナイザ24を用いたので、放電11a,11b,11cが形成される領域において局所的に被処理水4を水滴化することができ、効率的に水滴13a,13b,13cを形成することができる。
 なお、上記の例では、超音波ホモジナイザ24を平板電極2の上側に配置したが、図8に示すように、平板電極2の下側に配置してもよい。図8では、超音波ホモジナイザ24の先端部が平板電極2を貫通して被処理水4に接している。
 また、超音波ホモジナイザ24の数は、任意に決めることができる。例えば、平板電極2上を流下する被処理水4の流れに直角な方向(図7及び図8における紙面に直角の方向)に複数個ずつの超音波ホモジナイザ24を配置してもよい。この場合、ワイヤ電極6a,6b,6cの長さ方向(平板電極2の幅方向)に沿った広い領域で被処理水4を均等に水滴化することができ、効率的な水処理を行うことができる。
 さらに、超音波ホモジナイザ24の先端部(接水部)の形状も任意に決めることができる。例えば、接水部の太さを細くすると、少ない電力で局所的に水滴13a,13b,13cを形成できる。逆に、接水部の太さを太くすると、比較的広い領域に水滴13a,13b,13cを形成することができる。従って、接水部の形状は、電極間距離又は被処理水4の流量などに応じて適宜選定すればよい。
 さらにまた、超音波ホモジナイザ24の筐体を接地するか、又は筐体を絶縁体で覆うようにすると好適である。また、高周波電源14と超音波ホモジナイザ24との間に絶縁トランスを接続するようにしてもよい。これにより、ワイヤ電極6a,6b,6cに印加された高電圧パルスにより超音波ホモジナイザ24及び高周波電源14が破損するのが防止される。
 実施の形態4.
 次に、図9はこの発明の実施の形態4による水処理装置における超音波振動子12a,12b,12cの駆動電圧信号を示す波形図である。実施の形態4では、超音波振動子(PZT超音波振動子)12a,12b,12cの駆動を間欠的に行う点が実施の形態1と異なる。実施の形態では、高周波電圧を間欠的に動作させることで、水滴発生を間欠的に行う。
 また、図10は実施の形態4の水処理装置における超音波振動子12a,12b,12cの駆動電圧信号とワイヤ電極6a,6b,6cに印加される放電パルス電圧信号とを比較して示す波形図である。実施の形態4では、パルス電源7(図1)から出力される放電発生用パルス電圧に同期させて超音波振動子駆動信号を印加する。これにより、水滴発生を、放電に同期させて間欠的に行う。他の構成は、実施の形態1又は2と同様である。
 この発明の水処理装置及び水処理方法では、被処理水4の少なくとも一部を水滴化することで、水処理の効率及び速度を向上させるが、水滴化は必ずしも連続的に行う必要はなく、間欠的に行うことでも効果が得られる。
 一般に、超音波振動子駆動のデューティー比を高めていくと、水処理の効率及び速度が向上するが、一定以上のデューティー比では効果が飽和する傾向を示す。これは、水滴が数多く形成された場合、水処理速度は水滴数よりも、放電で生成されるO、OH、O3、H22などの酸化性粒子の数により制限されるためと考えられる。
 従って、図9に示すように、超音波振動子12a,12b,12cを間欠駆動させることで、無効な電力消費を抑制し、効率的な水処理を行うことができる。
 また、難分解性物質の分解に有効なOHラジカルの寿命は、一般に1ミリ秒以下と非常に短く、放電が停止しOHラジカルが消滅した後に、被処理水4を水滴化しても高い分解効果は得られない。そこで、図10に示すように、パルス放電に同期させ、OHラジカルが存在する期間のみ水滴化するような間欠動作を行うことで、エネルギーの無効消費を抑制し、効率よく水処理を行うことができる。
 このように、実施の形態4の水処理装置及び水処理方法では、超音波振動子12a,12b,12cを間欠的に動作させることで、連続駆動させる場合と比べて、無効なエネルギー消費を抑制し、効率的な水処理を行うことができる。
 また、超音波振動子12a,12b,12cをパルス放電に同期して駆動させることで、OHラジカルを効果的に作用させることができ、無効なエネルギー消費を抑制することができる。
 なお、超音波振動子12a,12b,12cの駆動とパルス放電とを同期させる際には、超音波振動子12a,12b,12cの駆動開始から水滴形成までの時間遅れを考慮する必要がある。時間遅れの要因としては、超音波の伝達時間、及び水膜振動から水滴形成までの時間などがある。従って、これらを考慮し、パルス電圧の印加開始に先立って、超音波振動子を駆動させるのが好適である。
 また、実施の形態4で示した超音波振動子12a,12b,12cの駆動方法は、超音波振動子12a,12b,12c以外の水滴形成装置、例えば実施の形態3で示した超音波ホモジナイザ24にも適用できる。
 実施の形態5.
 次に、図11はこの発明の実施の形態5による水処理装置の要部断面図である。実施の形態5では、水滴形成装置として、複数(図11では1つのみ示す)のガス噴出装置25が用いられている。ガス噴出装置25は、ガス源26、及びガス源26に接続されたガス配管27を有している。ガス配管27の先端は、複数のノズル部27aに分岐されている。
 平板電極2のワイヤ電極6a,6b,6c近傍、即ち平板電極2の放電11a,11b,11cが形成される領域には、複数の細孔2aが設けられている。ノズル部27aの先端は、細孔2aに接続されている。ガス噴出装置25は、被処理水4中にガスを噴出(吐出)することにより、被処理水4の少なくとも一部を跳ね上がらせて水滴化する。他の構成は、実施の形態1又は2と同様である。
 このような水処理装置及び水処理方法では、超音波振動子12a,12b,12cのように電気的に駆動する部品を用いることなく、ガスの供給のみによって水滴13a,13b,13cを形成することができる。このため、故障発生が抑制され、長期間の連続した水処理が可能となる。
 なお、実施の形態5において、細孔2aの孔径、数、位置は、電極配置及び被処理水4の膜厚などに応じて設定することができる。例えば、細孔数を少なくし、細孔径を小さくすると、ガスが通過する断面積が狭くなり、ガスの流速が高くなる。これにより、狭い領域に高密度で水滴13a,13b,13cを形成することができる。
 実施の形態6.
 次に、図12はこの発明の実施の形態6による水処理装置の要部断面図である。実施の形態6は、水滴発生に用いるガスを、被処理水4の上方から供給する点が実施の形態5と異なっている。即ち、実施の形態6のガス噴出装置25は、平板電極2の上面を流れる被処理水4に対して、上方の離間した位置からガスを吹き付けるように配置されている。また、ガス配管27の先端にノズル部27aは設けられていない。他の構成は、実施の形態5と同様である。
 このような水処理装置及び水処理方法では、ガス配管27が平板電極2から離間しているため、ガス配管27の位置及びガスの噴出角度などを任意に調節することができ、水滴発生位置などの自由度が向上する。
 なお、実施の形態6において、ガス配管27の吹き出し口の位置及び角度は、必要とされる水滴13a,13b,13cの位置及び量、並びに電極配置などに応じて任意に設定できる。例えば、被処理水4の流れの方向に対して垂直に近い角度でガスを吹き付けると、形成される水滴13a,13b,13cは広い領域に分布する。一方、被処理水4の流れの方向に対して水平に近い角度でガスを吹き付けると、水滴13a,13b,13cの形成位置が局在化する。
 また、ガス配管27の吹き出し口を被処理水4に浸漬させるようにしても水滴13a,13b,13cを形成することができる。
 さらに、実施の形態5、6において、ガス源26としては、例えば処理槽1(図1、図5)の外に設置されたガスボンベを用いることができる。この場合、実施の形態1のガス供給口1dの代わりに、ガス配管27から処理槽1内に酸素等のガスを供給するようにしてもよい。
 また、実施の形態5、6において、水滴13a,13b,13cの形成に用いられるガスの組成に特に制限はないが、酸素ガス、又は酸素ガスと不活性ガスとの混合ガスを用いることが望ましい。これにより、(1)式及び(3)式の反応レートが向上し、高い水処理効果が得られる。
 さらに、実施の形態5、6において、ガス源26からのガスの供給は必ずしも連続的である必要はなく、間欠的に供給してもよい。例えば、平均流量が連続的にガスを供給する場合と同等であっても、間欠的に供給した場合、ガス流速の瞬時値を高くすることができる。これにより、効果的に水滴13a,13b,13cを形成することができる。
 実施の形態7.
 次に、図13はこの発明の実施の形態7による水処理装置の要部断面図である。実施の形態7では、水滴形成装置として、被処理水4に接して被処理水4を機械的に跳ね上げて水滴化する複数(図13では1つのみ示す)の跳上機構28が用いられている。跳上機構28としては、例えば水車を用いることができる。
 跳上機構28は、被処理水4の流れ方向に対してワイヤ電極6a,6b,6cよりも上流側に、ワイヤ電極6a,6b,6cから所定距離離間して配置されている。また、跳上機構28は、その下側の一部が被処理水4の水膜に浸漬されており、被処理水4の流れに応じて回転するように配置されている。被処理水4の流れにより跳上機構28が回転することによって、被処理水4の一部が跳ね上げられて水滴化される。他の構成は、実施の形態1又は2と同様である。
 このような水処理装置及び水処理方法では、跳上機構28が被処理水4の流れによって回転することにより、被処理水4の一部が水滴化される。このため、超音波振動子12a,12b,12cの駆動又はガスの供給などを行うことなく、流下する被処理水4の流体エネルギーのみによって水滴13a,13b,13cを形成することができる。
 なお、本実施の形態7では、跳上機構28が被処理水4の流れによって回転するが、別途モーター等の外部動力を用いて跳上機構28を回転させてもよい。この場合、跳上機構28の回転速度又は駆動タイミングを制御することにより、水滴発生量及び水滴形成タイミングを適宜設定することができる。
 また、跳上機構28は水車に限定されず、例えば板状部材で水面を叩く機構なども用いることができる。
 実施の形態8.
 次に、図14はこの発明の実施の形態8による水処理装置の断面図である。平板電極2のワイヤ電極6a,6b,6c近傍、即ち平板電極2の放電11a,11b,11cが形成される領域には、平板電極2を厚さ方向に貫通する複数の細孔2bがそれぞれ設けられている。
 平板電極2の下面には、平板電極2との間に貯気室41を形成する裏板(貯気室形成部材)42が気密に固定されている。貯気室41は、全ての細孔2bに繋がっている。裏板42の中央には、循環配管接続口42aが設けられている。
 処理槽1の側面下部には、ガス吸入口1eが設けられている。ガス吸入口1eには、ガス循環配管43の第1の端部が接続されている。ガス循環配管43の第1の端部は、処理槽1外に配置されている。ガス循環配管43の第2の端部は、循環配管接続口42aに接続されている。
 ガス循環配管43の処理槽1外に配置されている部分には、ガス輸送部であるエアポンプ44が設けられている。実施の形態8の水滴形成装置であるガス循環装置45は、裏板42、ガス循環配管43及びエアポンプ44を有しており、処理槽1からガスを吸気し、吸気したガスを細孔2b内に上方へ向けて噴出させる。
 ガス供給口1dには、ガス供給源17が圧力調節器46を介して接続されている。また、実施の形態8の水処理ユニット47は、平板電極2と、ワイヤ電極6a,6b,6cと、ガス循環装置45の一部である裏板42を有している。
 次に、動作について説明する。給水口1aから処理槽1内に供給された被処理水4は、平板電極2の上面を流れ、排水口1cから排出される。ガス供給口1dから処理槽1内に供給された酸素ガスは、ガス排出口1bから処理槽1外へ排出される。このとき、ガス排出口1bで所定の圧力損失が生じるが、圧力調節器46を動作させることで、処理槽1内の圧力は外気圧よりも高く維持される。
 一方、エアポンプ44を動作させることにより、処理槽1内のガスを細孔2bから平板電極2上へ噴出させる。これにより、平板電極2上を流れる被処理水4の一部が跳ね上がり、水滴13a,13b,13cとなる。他の構成及び動作は、実施の形態1と同様である。
 このような水処理装置及び水処理方法では、実施の形態5、6のようなガス源26を用いず、循環ガスを用いて被処理水4を水滴化することができる。このため、ガス供給源17からは、処理槽1内を所定の圧力に保ち、かつ、水処理によって消費される分(有機物の酸化分解に消費される分と、被処理水4に溶け込む分)を補うだけのガスを供給すればよい。このため、ガスの使用量を抑制し、水処理のランニングコストを低減することができる。
 また、本実施の形態8では、放電で生じたO3ガス及びH22ガスが処理槽1内に充満するが、それらのO3及びH22を含むガスをガス循環装置45により循環させ、平板電極2上を流れる被処理水4に対して噴出させる。このため、ガス中のO3及びH22が被処理水4に効率的に溶解し、水中反応での有機物の分解反応が促進され、水処理の性能が向上する。
 さらに、本実施の形態8では、被処理水4を重力により平板電極2に沿って自然に流下させつつ、エアポンプ44によりガスを循環させて被処理水4を水滴化している。一般に、ポンプの消費エネルギーは、液体を輸送するよりも気体を輸送する方が遥かに少ないことから、特許文献1の水処理装置のようにポンプで被処理水を循環させて水滴化する場合と比べて、少ない消費エネルギーで、高い水処理効果を得ることができる。
 なお、実施の形態8では、エアポンプ44を処理槽1外に配置したが、処理槽1内に配置してもよい。この場合、処理槽1にガス吸入口1eを設ける必要はなく、ガス循環配管43は処理槽1内だけに敷設すればよい。
 ここで、図15は図14の水処理装置による水処理実験の結果を示すグラフである。この実験では、被処理水4として、全有機炭素(TOC)濃度が約14mg/lの酢酸ナトリウム水溶液を、毎分150mlの流量で循環させた。また、酸素ガスを毎分250mlの流量で処理槽1に供給するとともに、パルス放電を形成した。そして、一定の時間間隔で被処理水4をサンプリングし、全有機炭素濃度計(島津製作所製TOC-Vw)を用いてTOC濃度を測定した。
 試験条件Aでは、図14のエアポンプ44を稼働させず水滴13a,13b,13cが形成されない条件で試験した。また、試験条件Bでは、図14のエアポンプ44を稼働させて水滴13a,13b,13cが形成される条件で試験した。
 この結果、試験条件Aでは、初期TOC濃度が14.6mg/lであったのが、1Whの放電エネルギー投入後は11.1mg/lに低下した(3.5mg/lの減少)。一方、試験条件Bでは、初期TOC濃度が13.6mg/lであったのが、1Whの放電エネルギー投入後は6.6mg/lに低下した(7.0mg/lの減少)。
 このように、被処理水4を水滴化することにより、難分解性物質である酢酸ナトリウムの分解速度が大幅に向上することが確認された。
 実施の形態9.
 次に、図16はこの発明の実施の形態9による水処理装置における循環ガスの流量と時間との関係を示すグラフである。実施の形態8では、エアポンプ44によりガスを循環させることで被処理水4を水滴化したが、本実施の形態9では、ガスの循環流量を時間的に変化させて脈流とする。即ち、実施の形態9のガス循環装置45は、被処理水4を間欠的に水滴化する。
 図16において、破線で示す一定流の場合、循環ガス流量は時間的に変化することなく一定である。一方、実線で示す脈流の場合、循環ガスが流れる時間の割合を1/4(即ちデューティー比25%)とし、流量を4倍としている。従って、一定流と脈流とでは、一定時間の間に流れるガスの量は同じであるが、そのタイミングが異なることになる。
 脈流を形成する方法としては、例えば、ガス循環配管43の途中にバルブを設け、そのバルブの開閉を制御する方法が挙げられる。また、エアポンプ44としてダイヤフラムポンプ又はベローズポンプを用いれば、ポンプ自身が脈流の性質を持っているため、別途バルブ等を設けなくても脈流を形成することができる。他の構成及び動作は、実施の形態8と同様である。
 図14のような水処理装置では、細孔2bを通過するガスの流速が速いほど、多くの水滴が形成される。このため、本実施の形態9によれば、循環ガスを脈流とすることで、一定流で供給する場合と比べて、同様の循環ガスの量で、より多くの水滴を形成することができる。このため、同等量の水滴を形成する際にエアポンプ44の容量を小さくしたり、又は同じ容量のエアポンプ44で形成できる水滴量を増加させたりすることができる。
 なお、循環ガスの流量は、必ずしも図16のようにパルス状にする必要はなく、時間的に変調するようにしてもよい。循環ガスの流量、デューティー比、及び脈流周期は、水滴の形成具合によって適宜決定すればよい。
 実施の形態10.
 次に、図17はこの発明の実施の形態10による水処理装置の断面図である。処理槽1内には、複数(ここでは4台)の水処理ユニット47a,47b,47c,47dが、上下方向に多段に並べて配置されている。各水処理ユニット47a,47b,47c,47dは、実施の形態8の水処理ユニット47と同様に、平板電極2、ワイヤ電極6a,6b,6c、及び裏板42を有している。
 また、これらの水処理ユニット47a,47b,47c,47dでは、最上段の水処理ユニット47aから最下段の水処理ユニット47dまで被処理水4が連続して(ジグザグに蛇行して)流下するように、平板電極2が水平面に対して交互に逆方向に傾斜している。即ち、上下方向に隣接する水処理ユニット47a,47b,47c,47dでは、平板電極2の水平面に対する傾斜方向が逆になっている。
 ガス循環配管43は、エアポンプ44の下流側で第1ないし第4の分岐配管43a,43b,43c,43dに分岐されている。そして、分岐配管43a,43b,43c,43dの先端は、それぞれ対応する水処理ユニット47a,47b,47c,47dの循環配管接続口42aに接続されている。
 最上段の水処理ユニット47aに接続された第1の分岐配管43aには、第1のバルブ48aが設けられている。2段目の水処理ユニット47bに接続された第2の分岐配管43bには、第2のバルブ48bが設けられている。3段目の水処理ユニット47cに接続された第3の分岐配管43cには、第3のバルブ48cが設けられている。最下段の水処理ユニット47dに接続された第4の分岐配管43dには、第4のバルブ48dが設けられている。
 実施の形態10の水滴形成装置であるガス循環装置49は、水処理ユニット47a,47b,47c,47dの裏板42、分岐配管43a,43b,43c,43dを含むガス循環配管43、及びエアポンプ44を有している。他の構成は、実施の形態8と同様である。
 図17において、被処理水4は、水量調節機構23によって所定の流量に調整された後、給水口1aを通って、処理槽1内に供給される。処理槽1内に供給された被処理水4は、最上段の水処理ユニット47aから最下段の水処理ユニット47dまで順に流下した後、処理後水40として処理槽1の底部に溜まり、排水口1cから排水される。このとき、給水口1aは被処理水4によって塞がれており、排水口1cは処理後水40によって塞がれており、いずれもガスが通らないようになっている。
 ガス供給源17からの酸素ガスは、圧力調節器46によって、処理槽1内の圧力が外気圧よりも高い所定の圧力になる流量に調整され、処理槽1内に供給される。エアポンプ44よってガス吸入口1eから吸気された処理槽1内のガスは、分岐配管43a,43b,43c,43dを通って、水処理ユニット47a,47b,47c、47dに供給され、流下する被処理水4を水滴化する。
 図18は図17の第1ないし第4のバルブ48a,48b,48c,48dの開閉動作を示すタイミングチャートである。バルブ48a,48b,48c,48dは、周期的に開閉される。また、バルブ48a,48b,48c,48dの開のデューティー比は、いずれも25%である。
 さらに、バルブ48a,48b,48c,48dは、互いに1/4周期ずつずれて開放される。このため、バルブ48a,48b,48c,48dのうちの2つ以上が同時に開くことはなく、いずれか1つが開いているときに残りは閉じていることになる。しかも、常に、バルブ48a,48b,48c,48dのうちの1つが開いていることになる。従って、全ての水処理ユニット47a,47b,47c,47dに同時に循環ガスを供給する場合と比べて、少ない循環ガス流量で効率的に水滴を形成することができる。
 このような水処理装置及び水処理方法では、水処理ユニット47a,47b,47c,47dが多段に配置されているため、被処理水4が放電11a,11b,11cに接する時間が延長され、実施の形態8と比較して、処理槽1を一度通過しただけで高い水処理効果が得られる。
 また、1台のエアポンプ44により、4台の水処理ユニット47a,47b,47c,47dで水滴を形成できることから、装置構成が簡素化し、装置コストが抑制される。
 さらに、分岐配管43a,43b,43c,43dにバルブ48a,48b,48c,48dを設け、これらを異なるタイミングで開閉することで、少ない循環ガス流量で効率的に水滴を形成することができる。
 なお、バルブ48a,48b,48c,48dは必須ではなく、分岐配管43a,43b,43c,43dに循環ガスが常時流れるようにしてもよい。
 また、バルブ48a,48b,48c,48dの開閉は、被処理水4の組成に応じて任意のタイミングで行うことができ、必ずしも図18の通りである必要はない。
 実施の形態11.
 次に、図19はこの発明の実施の形態11による水処理装置の断面図である。処理槽1内には、複数(ここでは4台)の水処理ユニット51a,51b,51c,51dが、上下方向に多段に並べて配置されている。各水処理ユニット51a,51b,51c,51dは、実施の形態8の水処理ユニット47から裏板42を取り除いたものである。即ち、各水処理ユニット51a,51b,51c,51dは、平板電極2及びワイヤ電極6a,6b,6cを有している。
 各水処理ユニット51a,51b,51c,51dの平板電極2の周縁部は、処理槽1の内壁面に気密に接続されている。これにより、処理槽1内の各平板電極2の上下には、複数(この例では5つ)の独立した分割空間(密閉空間)が形成されている。即ち、処理槽1内の空間は、平板電極2により5つの分割空間に仕切られている。上下に隣り合う分割空間は、平板電極2の細孔2bのみを通して繋がっている。
 また、各平板電極2の下流側端部上には、被処理水4が溜まる水溜め部52が形成されている。各平板電極2の下流側端部近傍には、水溜め部52に溜まった被処理水4を下方へ落とすための1つ又は複数の貫通孔2cが設けられている。
 ガス吸入口1eは、最上段の分割空間、即ち最上段の平板電極2の上側の空間に臨むように配置されている。ガス循環配管43のガス吸入口1eとは反対側の端部は、分岐されておらず、処理槽1に設けられたガス吐出口1fに接続されている。ガス吐出口1fは、最下段の分割空間、即ち最下段の平板電極2の下側の空間に臨むように配置されている。また、処理槽1には、ガス排出口1bが設けられていない。
 実施の形態11の水滴形成装置であるガス循環装置53は、エアポンプ44及びガス循環配管43を有している。他の構成は、実施の形態10と同様である。
 図19において、処理槽1内に供給された被処理水4は、最上段の水処理ユニット47aから最下段の水処理ユニット47dまで順に流下した後、処理後水40として処理槽1の底部に溜まり、排水口1cから排水される。このとき、各水溜め部52に溜まった被処理水4は、貫通孔2cを通って下端へ落下する。
 ガス供給源17からの酸素ガスは、圧力調節器46によって、処理槽1内の圧力が外気圧よりも高い所定の圧力になる流量に調整され、処理槽1内に供給される。エアポンプ44によってガス吸入口1eから吸気された処理槽1内のガスは、ガス吐出口50を通して最下段の分割空間に供給される。
 ガス吐出口1fから処理槽1内に供給されたガスは、細孔2bを通して、順次上方の分割空間へと移動していく。このとき、各水処理ユニット51a,51b,51c,51dにおいて、平板電極2上を流れる被処理水4の一部が水滴化される。他の動作は、実施の形態10と同様である。
 本実施の形態11においては、処理槽1の内部の圧力が、最下段の分割空間で最も高く、上方の分割空間に行くに従って低くなっている。このため、エアポンプ44によって生じた循環ガス流は、処理槽1内で上方へ向けて一連の流れを形成することになる。
 また、本実施の形態11において、各水溜め部52の水深は、各平板電極2上を流下する被処理水4の水膜厚さよりも大きくなっている。このため、処理槽1内を上方へ向けて流れる循環ガスは、貫通孔2cを通ることなく、細孔2bのみを通る。これにより、被処理水4を効率的に水滴化することができる。
 さらに、実施の形態10においては、水処理ユニット47a,47b,47c,47dに対して分岐配管43a,43b,43c,43dがそれぞれ接続されていたが、本実施の形態11では、分岐配管43a,43b,43c,43dは不要となり、装置構成が簡素化される。
 さらにまた、本実施の形態11では、エアポンプ44に対して、水処理ユニット51a,51b,51c,51dが直列に接続されているため、循環ガスの全量が全ての水処理ユニット51a,51b,51c,51dを順次通過することになり、水滴の形成効率が向上する。
 なお、実施の形態10、11において、水処理ユニットの台数は、処理槽1の寸法、又は必要とされる水処理能力などに応じて適宜設定することができる。
 実施の形態12.
 次に、図20はこの発明の実施の形態12による水処理装置の要部断面図である。実施の形態12では、実施の形態8の平板電極2の代わりに傾斜板55が用いられている。傾斜板55には、複数の細孔55aが設けられている。
 傾斜板55の上方には、傾斜板55に対して空隙5を介して、放電形成体としての7本のワイヤ電極、即ち3本の高圧ワイヤ電極56a,56b,56cと、4本の接地ワイヤ電極57a,57b,57c,57dとが配置されている。ワイヤ電極56a,56b,56c,57a,57b,57c,57dは、被処理水4の流下方向に互いに間隔をおいて配置されている。
 また、ワイヤ電極56a,56b,56c,57a,57b,57c,57dは、傾斜板55の上面に対して等間隔をおいて配置されている。さらに、ワイヤ電極56a,56b,56c,57a,57b,57c,57dは、傾斜板55の幅方向(図20のX軸方向)に平行かつ水平に張られている。
 さらにまた、高圧ワイヤ電極56a,56b,56cと接地ワイヤ電極57a,57b,57c,57dとは、被処理水4の流下方向に交互に配置されている。高圧ワイヤ電極56a,56b,56cは、パルス電源7に接続されている。接地ワイヤ電極57a,57b,57c,57dは、接地されている。
 これにより、隣り合う電極、即ち電極56a,57a、電極56a,57b、電極56b,57b、電極56b,57c、電極56c,57c、電極56c,57dがそれぞれ対をなし、各対の電極間に放電58a,58b,58cを形成する。細孔55aは、傾斜板55のワイヤ電極56a,56b,56c,57a,57b,57c,57dに対向する領域全体に均等に設けられている。
 傾斜板55の下面には、裏板42が気密に固定されている。貯気室41は、全ての細孔55aに繋がっている。実施の形態12の水処理ユニット59は、傾斜板55と、高圧ワイヤ電極56a,56b,56cと、接地ワイヤ電極57a,57b,57c,57dと、裏板42とを有している。
 本実施の形態12では、高圧ワイヤ電極56a,56b,56cと接地ワイヤ電極57a,57b,57c,57dとの間に、放電58a,58b,58cが形成される。このとき、循環ガスが細孔55aから噴き出すことで、水滴13が形成され、水処理が行われる。他の構成及び動作は、実施の形態8と同様である。
 このような水処理装置及び水処理方法では、水滴13が跳ね上がる方向に対して直角の方向に放電58a,58b,58cが形成される。このため、水滴13は、放電58a,58b,58cを横切ることになり、例えば実施形態1(図1)のように、ワイヤ電極6a,6b,6cと被処理水4の水面との間に放電11a,11b,11cが形成される場合と比較して、水滴13と放電58a,58b,58cとの接触確率が高くなり、水処理効率が向上する。
 なお、本実施の形態12において、傾斜板55は電気的に接地しても、接地しなくてもよい。傾斜板55を電気的に接地した場合、高圧ワイヤ電極56a,56b,56cと傾斜板55上の被処理水4の水面との間にも放電が形成される。このため、放電領域を広くすることができ、水処理の速度が向上する。
 一方、傾斜板55を電気的に接地しない場合、傾斜板55を絶縁体で形成することができる。傾斜板55をアルミナ等のセラミックで形成すれば、放電によるスパッタリング及び腐食を抑制でき、装置の長寿命化を図ることができる。また、傾斜板55を電気的に接地しない場合には、傾斜板55の配置及び形状を、放電形成に関係なく決めることができるため、例えば空隙5の広さなどの設計の自由度が向上する。
 また、実施の形態12を実施の形態9~11と適宜組み合わせてもよい。例えば、実施の形態12の装置において、ガスの循環流量を時間的に変化させて脈流としてもよい。また、実施の形態12の水処理ユニット59を実施の形態10又は11のように多段で配置してもよい。
 実施の形態13.
 次に、図21はこの発明の実施の形態13による水処理装置の要部断面図である。実施の形態13は、実施の形態12の接地ワイヤ電極57a,57b,57c,57dを接地平板電極60a,60b,60c,60dと置き換えたものである。接地平板電極60a,60b,60c,60dは、傾斜板55の上面に対して直角に配置されている。
 実施の形態13の水処理ユニット61は、傾斜板55と、高圧ワイヤ電極56a,56b,56cと、接地平板電極60a,60b,60c,60dと、裏板42とを有している。他の構成及び動作は、実施の形態12と同様である。
 このような水処理装置及び水処理方法では、接地平板電極60a,60b,60c,60dを用いたので、実施の形態12と比較して、放電58a,58b,58cがより広い領域に形成される。このため、水滴13が放電58a,58b,58cと接する時間が長くなり、水処理の速度が向上する。
 なお、実施の形態13を実施の形態9~11と適宜組み合わせてもよい。例えば、実施の形態13の装置において、ガスの循環流量を時間的に変化させて脈流としてもよい。また、実施の形態13の水処理ユニット61を実施の形態10又は11のように多段で配置してもよい。
 実施の形態14.
 次に、図22はこの発明の実施の形態14による水処理装置の要部断面図である。実施の形態14は、実施の形態12の接地平板電極60a,60b,60c,60dの代わりに、平板を断面円弧状に湾曲させてなる接地円弧電極62a,62b,62cを用いたものである。接地円弧電極62a,62b,62cは、凹面側が傾斜板55の上面に空隙を介して対向するように配置されている。
 隣り合う接地円弧電極62a,62b,62cは、互いに接続されている。高圧ワイヤ電極56a,56b,56cは、接地円弧電極62a,62b,62cと傾斜板55との間にそれぞれ配置されている。即ち、接地円弧電極62a,62b,62cは、対応する高圧ワイヤ電極56a,56b,56cを覆うように配置されている。傾斜板55は、金属からなり、接地されている。即ち、傾斜板55は、平板電極(接地電極)を兼ねている。
 実施の形態14の水処理ユニット63は、傾斜板55と、高圧ワイヤ電極56a,56b,56cと、接地円弧電極62a,62b,62cと、裏板42とを有している。他の構成及び動作は、実施の形態12と同様である。
 このような水処理装置及び水処理方法では、接地円弧電極62a,62b,62cを用いたので、実施の形態12又は13と比較して、放電58a,58b,58cがより広い領域に形成される。このため、水滴13が放電58a,58b,58cと接する時間が長くなり、水処理の速度が向上する。
 また、高圧ワイヤ電極56a,56b,56cを囲うように接地円弧電極62a,62b,62cが配置されているため、より均一な電界が形成される。このため、放電58a,58b,58cが局所的に強くなることなく、アーキングが抑制され、均一で安定的な放電が形成される。
 さらに、接地円弧電極62a,62b,62cが跳ね上がった水滴13を覆うように配置されているため、接地円弧電極62a,62b,62cに付着した水滴13の一部が、再び水滴13となって傾斜板55へ向けて落下する。また、接地円弧電極62a,62b,62cに付着した水滴13の他の一部は、表面張力により、接地円弧電極62a,62b,62cの内面に沿って流れる。このような動作を繰り返すことにより、被処理水4と放電58a,58b,58cとの接触時間が長くなるのに加え、気液界面の面積が増加し、水処理が効率的に行われる。
 なお、実施の形態14を実施の形態9~11と適宜組み合わせてもよい。例えば、実施の形態14の装置において、ガスの循環流量を時間的に変化させて脈流としてもよい。また、実施の形態14の水処理ユニット63を実施の形態10又は11のように多段で配置してもよい。
 実施の形態15.
 次に、図23はこの発明の実施の形態15による水処理装置の要部断面図である。傾斜板55の上方には、放電形成体であるメッシュ電極64が、空隙5aを介して傾斜板55と平行に配置されている。メッシュ電極64は、パルス電源7に接続されている。傾斜板55は、金属からなり、接地されている。即ち、傾斜板55は、平板電極(接地電極)を兼ねている。
 メッシュ電極64の上方には、放電形成体である上部平板電極65が、空隙5bを介して、メッシュ電極64と平行に配置されている。上部平板電極65は、接地されている。メッシュ電極64及び傾斜板55は、対をなして放電66aを形成する。メッシュ電極64及び上部平板電極65は、対をなして放電66bを形成する。
 実施の形態15の水処理ユニット67は、傾斜板55と、メッシュ電極64と、上部平板電極65と、裏板42とを有している。他の構成及び動作は、実施の形態12と同様である。
 このような水処理装置及び水処理方法では、メッシュ電極64と傾斜板55との間に放電66aが形成され、メッシュ電極64と上部平板電極65との間に放電66bが形成される。また、傾斜板55上から跳ね上がった水滴13の一部は、メッシュ電極64を通過して上部平板電極65に衝突する。
 このため、実施の形態8のようにワイヤ電極6a,6b,6cと平板電極2との間だけに放電11a,11b,11cが形成される場合と比べて、放電66a,66bの形成領域を拡張することができ、水処理の速度が向上する。
 また、跳ね上がった水滴13の一部が上部平板電極65に衝突し、その一部は再び水滴13となって傾斜板55へ向けて落下する。また、上部平板電極65に衝突した水滴13の他の一部は、表面張力により、上部平板電極65に沿って流れる。このため、被処理水4と放電66a,66bの接触時間が向上することに加え、気液界面の面積が増加し、水処理が効率的に行われる。
 なお、実施の形態15を実施の形態9~11と適宜組み合わせてもよい。例えば、実施の形態15の装置において、ガスの循環流量を時間的に変化させて脈流としてもよい。また、実施の形態15の水処理ユニット67を実施の形態10又は11のように多段で配置してもよい。
 また、実施の形態8~15において、循環ガスを形成するための装置はエアポンプ44に限定されるものではなく、例えばブロア又はコンプレッサ等であってもよい。
 さらに、1つの処理槽内で異なる複数種類の水滴形成装置を組み合わせて使用してもよい。例えば、実施の形態1、3、5~7、8で示した水滴形成装置を適宜組み合わせて使用してもよい。
 さらにまた、実施の形態12~15で示した放電形成体を実施の形態1、3、5~7で示した水滴形成装置と組み合わせてもよい。
 また、この発明において水滴とは、気中に存在する液体状態の水分子の集合体を意味し、その粒径及び数密度は特に限定されるものではない。例えば、超音波振動子を用いる場合、水滴径は周波数に応じて変化するが、数マイクロメートルの霧状のものから、数ミリメートルの比較的大きな水滴まで形成可能である。
 さらに、実施の形態5、6に示したガスを用いる方法、及び実施の形態7に示した跳上機構28を用いる方法では、0.1ミリメートルから数ミリメートルの水滴が形成される。水処理効率及び速度が最良となるよう、水滴形成方法、水滴径、及び数密度を決定することができる。

Claims (16)

  1.  水平面に対して傾斜して配置されており、上面に沿って被処理水が流される傾斜板、
     前記傾斜板上を流れる被処理水の少なくとも一部を水滴化する水滴形成装置、及び
     空隙を介して前記傾斜板の上方に配置されており、放電を形成する放電形成体
     を備えている水処理装置。
  2.  前記水滴形成装置は、前記傾斜板上を流れる被処理水の少なくとも一部を跳ね上がらせて水滴化する請求項1記載の水処理装置。
  3.  前記放電形成体は、少なくも一対の電極を有しており、前記電極間に放電を形成する請求項1又は請求項2に記載の水処理装置。
  4.  前記放電形成体は、前記傾斜板との間に放電を形成する請求項1から請求項3までのいずれか1項に記載の水処理装置。
  5.  前記傾斜板と前記放電形成体とをそれぞれ有する複数の水処理ユニットが、上下方向に並べて配置されており、
     最上段の前記水処理ユニットから最下段の前記水処理ユニットまで被処理水が連続して流下するように、前記傾斜板が水平面に対して交互に逆方向に傾斜している請求項1から請求項4までのいずれか1項に記載の水処理装置。
  6.  前記傾斜板の傾斜角度、被処理水の流量、及び放電電力のうちの少なくとも1つが調節可能になっている請求項1から請求項5までのいずれか1項に記載の水処理装置。
  7.  被処理水の水質を検出する水質計、及び
     前記水質計からの情報に基づいて、前記傾斜板の傾斜角度、被処理水の流量、及び放電電力のうちの少なくとも1つを調節する集中制御ユニット
     をさらに備えている請求項6に記載の水処理装置。
  8.  前記水滴形成装置は、超音波振動子である請求項1から請求項7までのいずれか1項に記載の水処理装置。
  9.  前記水滴形成装置は超音波ホモジナイザである請求項1から請求項7までのいずれか1項に記載の水処理装置。
  10.  前記水滴形成装置は、被処理水に対してガスを噴出することにより、被処理水を跳ね上がらせて水滴化するガス噴出装置である請求項1から請求項7までのいずれか1項に記載の水処理装置。
  11.  前記水滴形成装置は、被処理水に接して被処理水を機械的に跳ね上げて水滴化する跳上機構である請求項1から請求項7までのいずれか1項に記載の水処理装置。
  12.  前記傾斜板及び前記放電形成体を収容する処理槽
     をさらに備え、
     前記傾斜板には、前記傾斜板を厚さ方向に貫通する細孔が設けられており、
     前記水滴形成装置は、前記処理槽からガスを吸気し、吸気したガスを前記細孔内に上方へ向けて噴出させるガス循環装置である請求項1から請求項7までのいずれか1項に記載の水処理装置。
  13.  前記水滴形成装置を間欠的に動作させる請求項1から請求項12までのいずれか1項に記載の水処理装置。
  14.  前記水滴形成装置を、前記放電の形成に同期して動作させる請求項1から請求項13までのいずれか1項に記載の水処理装置。
  15.  水平面に対して傾斜して配置されている傾斜板の上面に沿って被処理水を流しつつ、空隙を介して前記傾斜板の上方に配置された少なくとも一対の電極間に放電を形成し、さらに前記傾斜板上を流れる被処理水の少なくとも一部を水滴化する水処理方法。
  16.  水平面に対して傾斜して配置されている傾斜板の上面に沿って被処理水を流しつつ、空隙を介して前記傾斜板の上方に配置された電極と前記傾斜板との間に放電を形成し、さらに前記傾斜板上を流れる被処理水の少なくとも一部を水滴化する水処理方法。
PCT/JP2014/066426 2014-01-23 2014-06-20 水処理装置及び水処理方法 WO2015111240A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/102,804 US10093566B2 (en) 2014-01-23 2015-01-13 Water treatment apparatus and water treatment method
PCT/JP2015/050677 WO2015111465A1 (ja) 2014-01-23 2015-01-13 水処理装置及び水処理方法
SG11201604514TA SG11201604514TA (en) 2014-01-23 2015-01-13 Water treatment apparatus and water treatment method
JP2015526825A JP5819031B1 (ja) 2014-01-23 2015-01-13 水処理装置及び水処理方法
CN201580005431.XA CN106414345B (zh) 2014-01-23 2015-01-13 水处理装置以及水处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014010347 2014-01-23
JP2014-010347 2014-01-23

Publications (1)

Publication Number Publication Date
WO2015111240A1 true WO2015111240A1 (ja) 2015-07-30

Family

ID=53681063

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/066426 WO2015111240A1 (ja) 2014-01-23 2014-06-20 水処理装置及び水処理方法
PCT/JP2015/050677 WO2015111465A1 (ja) 2014-01-23 2015-01-13 水処理装置及び水処理方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050677 WO2015111465A1 (ja) 2014-01-23 2015-01-13 水処理装置及び水処理方法

Country Status (5)

Country Link
US (1) US10093566B2 (ja)
JP (1) JP5819031B1 (ja)
CN (1) CN106414345B (ja)
SG (1) SG11201604514TA (ja)
WO (2) WO2015111240A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117260A1 (ja) * 2015-01-21 2016-07-28 三菱電機株式会社 水処理装置および水処理方法
WO2016117259A1 (ja) * 2015-01-20 2016-07-28 三菱電機株式会社 水処理装置および水処理方法
CN109133256A (zh) * 2018-08-31 2019-01-04 江苏大学 激光超声波可选择式空化污水处理装置及方法
JP6529705B1 (ja) * 2018-07-24 2019-06-12 三菱電機株式会社 水処理システム及び水処理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6157764B1 (ja) 2015-12-04 2017-07-05 三菱電機株式会社 水処理装置および水処理方法
JP6121081B1 (ja) * 2015-12-24 2017-04-26 三菱電機株式会社 水処理装置及び水処理方法
CN108367951B (zh) * 2015-12-24 2021-03-23 三菱电机株式会社 水处理装置和水处理方法
US10710909B2 (en) 2016-09-08 2020-07-14 Mitsubishi Electric Corporation Pulse discharge power supply and pulse discharge generating method
WO2020026324A1 (ja) * 2018-07-31 2020-02-06 株式会社Fuji 大気圧プラズマ処理装置
CN112067498B (zh) * 2020-07-25 2024-02-13 东北电力大学 水中放电h2o2粒子时空密度分布测量装置及其测量方法
CN116621267A (zh) * 2023-05-30 2023-08-22 江南大学 基于气液两相等离子放电的液膜板式反应装置及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070946A (ja) * 1999-09-01 2001-03-21 Himeka Engineering Kk コロナ放電を利用した浄化方法および装置
JP2007196121A (ja) * 2006-01-25 2007-08-09 Univ Nagoya 水処理方法および水処理装置
JP2007307486A (ja) * 2006-05-18 2007-11-29 Toshiba Corp ラジカル処理システム
JP2009287823A (ja) * 2008-05-28 2009-12-10 Daikin Ind Ltd ヒートポンプ式給湯装置及び温水の滅菌方法
JP2010015260A (ja) * 2008-07-01 2010-01-21 Sony Corp 情報処理方法及び情報処理装置
WO2010055729A1 (ja) * 2008-11-12 2010-05-20 積水化学工業株式会社 水処理装置
JP2010523326A (ja) * 2007-04-10 2010-07-15 トゥエンティーワンシー シップビルディング カンパニー リミテッド 水中パルスプラズマ処理装置及びそれを用いた船舶バラスト水処理システム及びその方法
JP2010167012A (ja) * 2009-01-21 2010-08-05 Toto Ltd ミスト生成装置及びミスト生成方法
JP2012096141A (ja) * 2010-10-29 2012-05-24 Tokyo Electron Ltd 水滅菌装置及び水滅菌方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4073240B2 (ja) * 2002-04-26 2008-04-09 株式会社東芝 ラジカル処理装置
US6802981B2 (en) * 2002-11-05 2004-10-12 Aquapure Technologies Ltd. Method for purification and disinfection of water
JP4322728B2 (ja) 2004-03-16 2009-09-02 株式会社東芝 水処理システム
JP4934119B2 (ja) 2008-09-10 2012-05-16 積水化学工業株式会社 水処理装置
CN201593001U (zh) * 2009-12-17 2010-09-29 上海海事大学 放电雾化和催化协同水处理器
US20120024705A1 (en) * 2010-07-28 2012-02-02 Sze Huen Chong Process for treating waste water and nozzle therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070946A (ja) * 1999-09-01 2001-03-21 Himeka Engineering Kk コロナ放電を利用した浄化方法および装置
JP2007196121A (ja) * 2006-01-25 2007-08-09 Univ Nagoya 水処理方法および水処理装置
JP2007307486A (ja) * 2006-05-18 2007-11-29 Toshiba Corp ラジカル処理システム
JP2010523326A (ja) * 2007-04-10 2010-07-15 トゥエンティーワンシー シップビルディング カンパニー リミテッド 水中パルスプラズマ処理装置及びそれを用いた船舶バラスト水処理システム及びその方法
JP2009287823A (ja) * 2008-05-28 2009-12-10 Daikin Ind Ltd ヒートポンプ式給湯装置及び温水の滅菌方法
JP2010015260A (ja) * 2008-07-01 2010-01-21 Sony Corp 情報処理方法及び情報処理装置
WO2010055729A1 (ja) * 2008-11-12 2010-05-20 積水化学工業株式会社 水処理装置
JP2010167012A (ja) * 2009-01-21 2010-08-05 Toto Ltd ミスト生成装置及びミスト生成方法
JP2012096141A (ja) * 2010-10-29 2012-05-24 Tokyo Electron Ltd 水滅菌装置及び水滅菌方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117259A1 (ja) * 2015-01-20 2016-07-28 三菱電機株式会社 水処理装置および水処理方法
US10035718B2 (en) 2015-01-20 2018-07-31 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method
WO2016117260A1 (ja) * 2015-01-21 2016-07-28 三菱電機株式会社 水処理装置および水処理方法
JPWO2016117260A1 (ja) * 2015-01-21 2017-05-25 三菱電機株式会社 水処理装置および水処理方法
US9868655B1 (en) 2015-01-21 2018-01-16 Mitsubishi Electric Corporation Water treatment apparatus and water treatment method
JP6529705B1 (ja) * 2018-07-24 2019-06-12 三菱電機株式会社 水処理システム及び水処理方法
WO2020021635A1 (ja) * 2018-07-24 2020-01-30 三菱電機株式会社 水処理システム及び水処理方法
CN109133256A (zh) * 2018-08-31 2019-01-04 江苏大学 激光超声波可选择式空化污水处理装置及方法

Also Published As

Publication number Publication date
US20180134591A1 (en) 2018-05-17
JP5819031B1 (ja) 2015-11-18
SG11201604514TA (en) 2016-07-28
JPWO2015111465A1 (ja) 2017-03-23
CN106414345B (zh) 2019-09-03
WO2015111465A1 (ja) 2015-07-30
US10093566B2 (en) 2018-10-09
CN106414345A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2015111240A1 (ja) 水処理装置及び水処理方法
JP5067802B2 (ja) プラズマ発生装置、ラジカル生成方法および洗浄浄化装置
JP6161839B2 (ja) 水処理装置および水処理方法
JP5229423B1 (ja) 浄化装置
JP5099612B2 (ja) 液体処理装置
JP4813443B2 (ja) 水処理装置
JP6678338B2 (ja) 液体処理装置
US9409800B2 (en) Electric arc for aqueous fluid treatment
JP2008200636A (ja) 水処理方法及び該装置
JP6129447B2 (ja) 水処理装置および水処理方法
KR101626376B1 (ko) 배관형 플라즈마 수처리장치
JP2014159008A (ja) 水処理装置
JP6157763B2 (ja) 水処理装置および水処理方法
KR20140104360A (ko) 수 처리 장치
JP6486569B1 (ja) 水処理装置および水処理方法
JP6029605B2 (ja) 水処理装置及び水処理方法
WO2019175998A1 (ja) 水処理装置及び水処理方法
JP6430076B1 (ja) 水処理装置
JP2010194527A (ja) 水処理装置
JP2015054277A (ja) 水処理装置
JP2019051101A (ja) 脱臭装置
JP2005111324A (ja) 溶液の改質方法とその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14879589

Country of ref document: EP

Kind code of ref document: A1