WO2019175998A1 - 水処理装置及び水処理方法 - Google Patents

水処理装置及び水処理方法 Download PDF

Info

Publication number
WO2019175998A1
WO2019175998A1 PCT/JP2018/009863 JP2018009863W WO2019175998A1 WO 2019175998 A1 WO2019175998 A1 WO 2019175998A1 JP 2018009863 W JP2018009863 W JP 2018009863W WO 2019175998 A1 WO2019175998 A1 WO 2019175998A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
voltage electrode
electrode
treatment apparatus
water treatment
Prior art date
Application number
PCT/JP2018/009863
Other languages
English (en)
French (fr)
Inventor
学 生沼
皓貴 内藤
佑 神谷
稲永 康隆
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/967,885 priority Critical patent/US11279634B2/en
Priority to SG11202006545SA priority patent/SG11202006545SA/en
Priority to JP2018530186A priority patent/JP6400259B1/ja
Priority to CN201880090670.3A priority patent/CN111867988A/zh
Priority to PCT/JP2018/009863 priority patent/WO2019175998A1/ja
Publication of WO2019175998A1 publication Critical patent/WO2019175998A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Definitions

  • the present application relates to a water treatment apparatus and a water treatment method for treating water to be treated using ozone, radicals, and the like generated by discharge.
  • Industrial wastewater and the like may contain hardly decomposable substances that cannot be decomposed by existing ozone treatment apparatuses, and in particular, removal of dioxins and dioxane is a major issue. For this reason, a method for removing a hardly decomposable substance by generating hydroxyl radicals (hereinafter referred to as OH radicals) having higher activity than ozone by discharge and acting on the water to be treated has been proposed.
  • OH radicals hydroxyl radicals
  • Patent Document 1 a plurality of wire-like high-voltage electrodes held in a horizontal direction are arranged between two plate-like ground electrodes installed vertically, and a voltage is applied between them.
  • a water treatment apparatus is disclosed which is adapted to form a short pulse discharge.
  • both ends of the wire-shaped high-voltage electrode are connected to the treatment tank via an insulating member, and the water to be treated is supplied in a shower form from the upper part of the treatment tank.
  • the wire-shaped high-voltage electrode as disclosed in Patent Document 1 tends to bend in the vertical direction and the horizontal direction when installed in the treatment tank, and can maintain a uniform distance from the ground electrode, that is, the discharge gap length. difficult.
  • it is necessary to hold both ends by applying a tensile stress.
  • excessive tensile stress leads to breakage of the wire, attention is required.
  • the wire-shaped high-voltage electrode has a problem that the holding part is loosened due to long-term operation or the wire material is stretched, and thus the discharge gap length becomes non-uniform. When the discharge becomes non-uniform, the contact area between the discharge and the water to be treated decreases, and the water treatment efficiency decreases.
  • the wire-like high-voltage electrode is likely to break due to deterioration of the material due to long-term operation or generation of a strong local discharge.
  • the broken wire hangs down from the connection point and contacts or approaches the treatment tank or the ground electrode, thereby causing a short circuit and a localized discharge. For this reason, when a wire broke, it was necessary to stop an apparatus and repair an electrode, and there existed a problem that an apparatus operation rate fell.
  • the present application aims to obtain a water treatment apparatus that suppresses bending and fracture of a high-voltage electrode and localization of discharge and has high water treatment efficiency and high availability.
  • Another object of the present invention is to obtain a water treatment method capable of suppressing the deflection and fracture of the high-voltage electrode and the localization of discharge.
  • the water treatment device disclosed in the present application includes at least two ground electrodes disposed opposite to each other inside the treatment tank, a plate-shaped high-voltage electrode disposed between the ground electrodes, a support that supports the high-voltage electrode, A high-pressure electrode having two end faces opposed to each ground electrode, and the distance between each end face and the ground electrode facing each other is equal to each other.
  • a discharge region is formed by generating a discharge between the ground electrode and the end face of the high-voltage electrode so that the water to be treated passes through the discharge region.
  • a plate-like high-voltage electrode having two end faces facing each ground electrode is disposed between at least two plate-like ground electrodes arranged parallel and vertically to each other.
  • the high-voltage electrode is restrained from being bent and broken, and the localization of the discharge, and between the end face of the high-voltage electrode and the ground electrode.
  • a uniform discharge can be maintained, and highly efficient water treatment can be realized.
  • the frequency of repairing the high-voltage electrode is reduced, the operating rate is improved.
  • FIG. It is the schematic which shows the whole structure of the water treatment apparatus by Embodiment 1.
  • FIG. It is a perspective view which shows the electrode part of the water treatment apparatus by Embodiment 1.
  • FIG. It is a side view which shows the electrode part of the water treatment apparatus by Embodiment 1.
  • FIG. 1 It is a side view which shows the electrode part of the water treatment apparatus by Embodiment 2. It is a figure explaining the effect of the electric field relaxation member in the water treatment apparatus by Embodiment 2. It is the schematic which shows the structure of the processing tank of the water treatment apparatus by Embodiment 3. FIG. It is the schematic which shows the whole structure of the water treatment apparatus by Embodiment 4. It is the schematic which shows the whole structure of the water treatment apparatus by Embodiment 5. It is the schematic which shows the whole structure of the water treatment apparatus by Embodiment 6. FIG.
  • FIG. 1 is a schematic diagram showing the overall configuration of a water treatment apparatus according to Embodiment 1
  • FIGS. 2, 3, and 4 are perspective views and side views showing electrode portions of the water treatment apparatus according to Embodiment 1, respectively.
  • FIG. 1 the same code
  • the water treatment apparatus 100 according to the first embodiment includes a pre-treatment water storage tank 1 for storing pre-treatment water W1, a treatment tank 2 for treating water to be treated W2, and a post-treatment water storage tank 3 for collecting post-treatment water W3. I have.
  • the pre-treatment water W1 is water before being transported to the treatment tank 2, and is, for example, industrial waste water to be treated.
  • the water to be treated W2 is water existing in the treatment tank 2
  • the post-treatment water W3 is water after passing through the treatment tank 2.
  • the water treatment apparatus 100 includes a water supply pump 4 and a water supply pipe 5 as pre-treatment water delivery means for delivering the pre-treatment water W1 stored in the pre-treatment water storage tank 1 to the treatment tank 2.
  • One end of the water supply pipe 5 is connected to the vicinity of the bottom of the pre-treatment water storage tank 1, and the other end of the water supply pipe 5 is connected to a water spray pipe 6 that is a water spray part disposed above the inside of the treatment tank 2.
  • the water spray pipe 6 has a plurality of pores formed on the side surface of the cylindrical pipe, and sprays the water to be treated W2 in the form of droplets at least between the ground electrodes 17.
  • the water treatment apparatus 100 includes a drain pump 7 and a drain pipe 8 as discharge means for discharging the water W2 to be treated from the reservoir 2a at the bottom of the treatment tank 2.
  • One end of the drain pipe 8 is connected to the reservoir 2 a of the treatment tank 2, and the other end of the drain pipe 8 is connected to the post-treatment water storage tank 3.
  • the water treatment apparatus 100 includes a gas supply means for making the inside of the treatment tank 2 have a high oxygen concentration atmosphere.
  • a gas supply port 9 and a gas discharge port 10 are provided in the upper part of the processing tank 2, and a gas supply source 11 is connected to the gas supply port 9.
  • the gas supplied to the inside of the treatment tank 2 is not limited to oxygen gas, and may contain oxygen gas.
  • oxygen gas for example, air or a gas in which nitrogen or a rare gas is mixed in an arbitrary ratio with respect to oxygen can be used.
  • a rare gas such as argon or neon, a discharge can be stably formed even at a relatively low voltage.
  • the gas cost can be greatly reduced.
  • the high voltage output terminal of the pulse power source 12 is connected to the high voltage frame 14 via the insulating member 13. Both the ground side terminal of the pulse power source 12 and the processing tank 2 are electrically grounded. Inside the processing tank 2, a high-pressure frame 14 and a ground frame 15 are horizontally arranged. The high-pressure frame 14 is connected to the ground frame 15 via the insulating holding body 16, and the ground frame 15 is connected to the processing tank 2.
  • the electrode portion disposed inside the processing tank 2 is disposed between the three flat plate-like ground electrodes 17 arranged in parallel and vertically and the ground electrode 17.
  • two high voltage electrode units 20 are provided.
  • the ground electrode 17 is connected to the ground frame 15, and the high voltage electrode unit 20 is connected to the high voltage frame 14.
  • the three ground electrodes 17 are arranged at equal intervals, and the high-voltage electrode unit 20 is arranged at an intermediate position between the two ground electrodes 17 arranged opposite to each other.
  • the high voltage electrode unit 20 includes a plate-shaped high voltage electrode 18 and a support 19 that supports the high voltage electrode 18.
  • the first embodiment includes six high-voltage electrodes 18 that are rectangular flat plates and three supports 19 that stand up in the vertical direction. Six high voltage electrodes 18 arranged at predetermined intervals in the vertical direction are integrally supported by three supports 19.
  • the support body 19 has a prismatic shape, is arranged with a space in the longitudinal direction of the high-voltage electrodes 18, and supports the high-voltage electrodes 18 horizontally.
  • the six high-voltage electrodes 18 are stacked in the vertical direction, and thus appear to overlap when viewed from above.
  • the high-voltage electrode 18 has two end faces 18a facing each ground electrode 17, and is provided so that the distance between each end face 18a and the ground electrode 17 facing each other is equal. That is, the end face 18a of the high-voltage electrode 18 and the planar portion 17a of the opposing ground electrode 17 are parallel, and the distances S1, S2, S3, and S4 (collectively, distance S) between the ground electrode 17 and the high-voltage electrode 18 are equal. .
  • the high-voltage electrode 18 and the support body 19 constituting the high-voltage electrode unit 20 are disposed in a rectangular interior (region indicated by A in FIG. 4) having two sides of the ground electrode 17 when viewed from above.
  • the dimension in the longitudinal direction of the high-voltage electrode 18, that is, the length of the end face 18 a in the first embodiment is smaller than the dimension in the horizontal direction of the ground electrode 17.
  • the distance S between the end face 18 a of the high-voltage electrode 18 and the ground electrode 17 is shorter than the distance L between the support 19 and the ground electrode 17.
  • the water treatment apparatus 100 generates a discharge D between the ground electrode 17 and the end face 18 a of the high-voltage electrode 18 to form a discharge region 21.
  • the water to be treated W2 is treated by passing through the discharge region 21.
  • the sprinkling pipe 6 is provided above the inside of the treatment tank 2 and sprays the water to be treated W2 downward, so that the water to be treated W2 falls in the discharge region 21.
  • FIG. 5A is a top view showing the electrode part of the water treatment device according to the first embodiment
  • FIG. 5B is a top view showing the electrode part of the water treatment device according to the comparative example.
  • the high-voltage electrode unit 20 according to the first embodiment shown in FIG. 5A has a columnar support 19.
  • the high-voltage electrode unit 20 of the water treatment apparatus 100 has a dimension in the longitudinal direction of the high-voltage electrode 18, that is, the length of the end face 18 a is the dimension in the horizontal direction of the planar portion 17 a of the ground electrode 17. Therefore, the high-voltage electrode 18 does not exist at a position facing the end portion 17b of the ground electrode 17. Thereby, the localization of the discharge accompanying the electric field concentration on the end portion 17 b of the ground electrode 17 is suppressed, and a uniform discharge is formed between the end surface 18 a of the high-voltage electrode 18 and the ground electrode 17.
  • the high voltage electrode unit 30 according to the comparative example shown in FIG. 5B supports both ends of the high voltage electrode 28 with the support 29, and the longitudinal dimension of the high voltage electrode 28 is the same as that of the ground electrode 17. Greater than horizontal dimension. For this reason, the high voltage electrode 28 exists at a position facing the end portion 17 b of the ground electrode 17. As a result, a strong local discharge LD occurs with the concentration of the electric field on the end portion 17b of the ground electrode 17, and a uniform discharge is not formed.
  • FIG. 6A is a side view showing the electrode part of the water treatment device according to the first embodiment
  • FIG. 6B is a side view showing the electrode part of the water treatment device according to the comparative example.
  • the distance between the end surface 18 a of the high-voltage electrode 18 and the ground electrode 17 is shorter than the distance between the support 19 and the ground electrode 17. For this reason, even if there is the adhering water 22 to which the water to be treated W2 adheres to the support 19, a normal discharge D is formed between the end face 18a of the high-voltage electrode 18 and the ground electrode 17.
  • the distance between the end surface 38a of the high-voltage electrode 38 and the ground electrode 17 is the distance between the support 39 and the ground electrode 17.
  • the electric field is the highest between the adhering water 22 and the ground electrode 17, and a locally strong discharge LD is formed.
  • the water treatment apparatus 100 has an electrode part configuration that can suppress the localization of discharge as compared with the comparative example, and the ground electrode 17 and the high-voltage electrode 18 are wet with the water to be treated W2. In this case, a uniform discharge can be formed between the electrodes.
  • an electrode part for forming the discharge region 21 is prepared inside the processing tank 2.
  • the electrode portion includes a plate-like high-voltage electrode 18 having two end faces 18a facing each ground electrode 17 between three plate-like ground electrodes 17 arranged parallel and perpendicular to each other. The distance between 18a and the opposing ground electrode 17 is equal to each other.
  • oxygen gas is supplied from the gas supply port 9, and the inside of the processing tank 2 is set to a high oxygen concentration atmosphere.
  • the gas in the treatment tank 2 is discharged from the gas discharge port 10.
  • the pulse power source 12 is operated to apply a pulsed high voltage to the high-voltage frame 14 and the high-voltage electrode unit 20, thereby generating a discharge D between the ground electrode 17 and the end face 18 a of the high-voltage electrode 18.
  • the pretreatment water W1 stored in the pretreatment water storage tank 1 is pumped up by the feed water pump 4, delivered to the treatment tank 2 through the water supply pipe 5, and sprayed from the sprinkling pipe 6 as the treated water W2.
  • Most of the water to be treated W2 falls in a shower shape in the discharge region 21, and a part of the treated water W2 adheres to the ground electrode 17 and falls in a water film shape.
  • the treated water W2 that has passed through the discharge region 21 is treated by contacting with the discharge D, and the organic compound in the treated water W2 is oxidatively decomposed.
  • the treated water W2 collected in the reservoir 2a at the bottom of the treatment tank 2 is delivered to the treated water storage tank 3 by the drainage pump 7 and stored as the treated water W3.
  • the organic compound in the water W2 is oxidized and decomposed into carbon dioxide (CO 2 ) and water.
  • R is an organic compound to be decomposed.
  • O 3 (liq.) And H 2 O 2 (liq.) Generate an OH radical as shown in Formula (8) by reaction in water.
  • O 3 (liq.), H 2 O 2 (liq.), And OH (liq.) Produced in the above formulas (6) to (8) are reacted with water according to the following formula (9). Decompose the organic compounds in the treated water W2.
  • the decomposition of the organic compound in the water W2 to be treated in the treatment tank 2 of the water treatment apparatus 100 includes the decomposition of the organic compound by the oxidizing particles present in the air according to the equation (5) and the equation (9). It proceeds by both decomposition of organic compounds by oxidizing particles present in water.
  • a metal material having excellent corrosion resistance such as stainless steel or titanium is suitable.
  • the electrode material may be a metal material other than the above or a conductive carbon material.
  • a conductive material such as stainless steel or titanium is suitable for both the high-pressure frame 14 and the ground frame 15.
  • a voltage is applied to all the high-voltage electrode units 20 by supplying power to one place of the high-voltage frame 14. Further, by grounding one place of the ground frame 15, all the ground electrodes 17 are grounded.
  • the electrode section only needs to have at least two flat plate-like ground electrodes 17 and one set of high-voltage electrode units 20, and the number and interval of the ground electrodes 17 and the high-voltage electrodes included in the high-voltage electrode unit 20.
  • the number and interval of 18 can be appropriately changed according to the flow rate of the water to be treated W2, the component or concentration contained in the water to be treated W2, and the like.
  • the number and interval of the supports 19 can be appropriately changed according to the length, shape, rigidity, and the like of the high-voltage electrode 18. For example, when the high-voltage electrode 18 is difficult to bend, only both ends in the longitudinal direction may be supported by the support body 19.
  • the horizontal or vertical portion does not necessarily need to be completely horizontal and vertical, and has a slight angle with respect to the horizontal or vertical as long as the effects of the present application are not impaired. May be.
  • the support body 19 does not necessarily have to stand upright.
  • the plate-like high-voltage electrode 18 does not necessarily have to be supported horizontally, and may be inclined in the longitudinal direction or the width direction.
  • the ground electrode 17 and the high-voltage electrode unit 20 are arranged so as to stand upward from the high-voltage frame 14 and the ground frame 15, respectively. At least one may be arranged above the ground electrode 17 or the high-voltage electrode unit 20 and at least one of the ground electrode 17 or the high-voltage electrode unit 20 may be suspended. Also in this case, the high voltage electrode 18 is supported by the support body 19 as in the first embodiment.
  • the water sprinkling pipe 6 was used as a water sprinkling part, the water sprinkling part should just be a mechanism which can spray the to-be-processed water W2 in the inside of the processing tank 2, and is a nozzle. Or it may be a shower plate.
  • the power source is not limited to the pulse power source 12, and may be an AC power source or a DC power source as long as a stable discharge can be formed.
  • the polarity, voltage peak value, repetition frequency, pulse width, etc. of the voltage output from the pulse power supply 12 can be determined as appropriate according to various conditions such as the electrode structure and gas type.
  • the voltage peak value is desirably 1 kV to 50 kV. This is because if the voltage is less than 1 kV, a stable discharge is not formed, and if it exceeds 50 kV, the cost increases remarkably due to an increase in the size of the power source and difficulty in electrical insulation.
  • the repetition frequency is 10 pps (pulse-per-second) or more and 100 kpps or less. This is because if it is less than 10 pps, a very high voltage is required to supply sufficient discharge power, and conversely if it is greater than 100 kpps, the efficiency of water treatment decreases. Further, the voltage, pulse width, and pulse repetition frequency may be adjusted in accordance with conditions such as the component, concentration, or flow rate of the water to be treated W2.
  • the high-voltage electrode 18 is plate-shaped, it is less likely to break compared to a conventional wire-shaped high-voltage electrode. Moreover, since the high-voltage electrode 18 is supported by the plurality of supports 19, even when the high-voltage electrode 18 is broken, it is suppressed from hanging from the connecting portion and contacting or approaching the treatment tank 2 or the ground electrode 17, Short circuit and discharge localization are unlikely to occur. Thereby, the frequency of repair of an electrode part is reduced and a high apparatus operation rate is obtained.
  • the plate-like high-voltage electrode 18 which is more rigid than the wire-like high-voltage electrode is supported by a plurality of supports 19, bending in the vertical direction and the horizontal direction is difficult to occur. Therefore, it is easy to uniformly form the distance between the end face 18a of the high-voltage electrode 18 and the ground electrode 17, that is, the discharge gap length in the longitudinal direction. Furthermore, even when the processing tank 2 is enlarged, it is possible to suppress the bending of the high-voltage electrode 18 by increasing the number of the supports 19.
  • the water treatment apparatus 100 with high water treatment efficiency and a high operation rate is obtained.
  • Embodiment 2 FIG. In the said Embodiment 1, the electrode part provided with the high voltage electrode unit 20 containing the some rectangular high voltage electrode 18 was shown. In the second embodiment, various modifications of the electrode unit of the water treatment device will be described with reference to FIGS. In addition, since the whole structure of the water treatment apparatus by this Embodiment 2 is the same as that of the said Embodiment 1, FIG. 1 is diverted and description of each part is abbreviate
  • the high voltage electrode 18 is formed with a thin plate thickness so that the electric field is easily concentrated on the end portion, and discharge can be formed with a relatively low applied voltage. As a result, the pulse power supply 12 can be simplified and reduced in price.
  • the plate thickness of the high-voltage electrode 18 is thin, bending tends to occur.
  • the plate thickness of the high-voltage electrode 18 can be appropriately determined according to the discharge gap length or the characteristics of the pulse power source 12, but is generally preferably between 0.02 mm and 2.0 mm. If the thickness is less than 0.02 mm, sufficient strength cannot be ensured. If the thickness is more than 2.0 mm, sufficient electric field concentration cannot be obtained, and a high voltage is required to form a discharge.
  • the high voltage electrode 18A having the bending portion 23 along the longitudinal direction by using the high voltage electrode 18A having the bending portion 23 along the longitudinal direction, the bending strength is improved as compared with the flat high voltage electrode 18, and the bending is suppressed. Therefore, the plate thickness can be reduced as compared with the rectangular high-voltage electrode 18.
  • the high-voltage electrode 18A shown in FIG. 7 has a convex portion extending in the longitudinal direction in the vicinity of the center in the width direction, but the arrangement and shape of the bent portion are not limited to this. For example, it may be bent into a crank shape, and the same effect can be obtained.
  • the formation method of the bending part 23 is not specifically limited, it can mass-produce cheaply by press work.
  • the high-voltage electrode 18B has two longitudinal end faces 18b that connect the two end faces 18a, and the longitudinal end face 18b has an arc shape.
  • both end portions of the high-voltage electrode 18B are supported by a columnar support body 19, and the longitudinal end surface 18 b of the high-voltage electrode 18B has an arc shape along the support body 19.
  • the electric field tends to concentrate on the corners, and the discharge may be localized.
  • the support 19 has a prismatic shape, the electric field concentrates on the corners, and a strong discharge may be locally generated between the support 19 and the ground electrode 17 particularly when wet.
  • the support 19 cylindrical and the end face 18b in the longitudinal direction of the high-voltage electrode 18B have an arc shape, electric field concentration does not occur at both ends of the support 19 and the high-voltage electrode 18B, and the end face 18a and the ground electrode 17 A uniform discharge is formed between them.
  • the support 19 and the high voltage electrode 18B have the same potential. At both ends in the longitudinal direction of the high-voltage electrode 18B, the electric field is relaxed by the support body 19 that exists so as to sandwich the upper and lower sides. This further suppresses local discharge formation at both ends in the longitudinal direction of the high-voltage electrode 18B.
  • the high voltage electrodes 18, 18 ⁇ / b> A, 18 ⁇ / b> B may have a configuration having through holes (not shown). As a result, the amount of water collected on the upper portions of the high-voltage electrodes 18 and 18A is reduced, the load on the high-voltage electrodes 18 and 18A is reduced, and the vertical deflection is suppressed.
  • FIG. 9 shows still another modification of the electrode part.
  • the high-voltage electrode unit 20 shown in FIG. 9 is provided with an electric field relaxation member 24 formed of a conductive material above the uppermost high-voltage electrode 18 and below the lowermost high-voltage electrode 18.
  • the electric field relaxation member 24 has a length equivalent to that of the high-voltage electrode 18 in the longitudinal direction.
  • the vertical axis represents the vertical position of the high-voltage electrode
  • the horizontal axis represents the electrolytic strength at the end of the high-voltage electrode.
  • the triangle indicates the case where the electric field relaxation member is not provided
  • the circle indicates the case where the electric field relaxation member is provided.
  • the electric field relaxation member 24 When the electric field relaxation member 24 is not provided, the electric field of the uppermost high-voltage electrode 18 is relaxed only by the second high-voltage electrode 18 from the top, and the lowermost high-voltage electrode 18 is lowered by the second high-voltage electrode 18 from the bottom. Only the electric field is relaxed.
  • the high voltage electrodes 18 other than the uppermost part and the lowermost part have a large electric field relaxation effect because the electric field is relaxed by the high voltage electrodes 18 adjacent to each other in the vertical direction. For this reason, when the electric field relaxation member 24 is not provided, the electric fields of the uppermost and lowermost high-voltage electrodes 18 are relatively high, and the discharge tends to concentrate.
  • the electric field relaxation member 24 is preferably formed of a conductive material that is thicker than the high-voltage electrode 18. As a result, the electric field relaxation member 24 is at the same potential as the high voltage electrode 18, but the electric field strength at the end is lower than that of the high voltage electrode 18. Therefore, no discharge occurs between the end face of the electric field relaxation member 24 and the ground electrode 17, and only the electric field relaxation effect on the adjacent high-voltage electrode 18 can be generated.
  • the vertical position and width dimension of the electric field relaxation member 24 can be designed as appropriate.
  • the distance between the electric field relaxation member 24 and the adjacent high voltage electrode 18 is preferably equal to the distance between the high voltage electrodes 18, and the width dimension of the electric field relaxation member 24 is preferably equal to the width dimension of the high voltage electrode 18. .
  • a more uniform discharge can be formed and the water treatment efficiency is improved.
  • FIG. FIG. 11 shows a treatment tank of the water treatment apparatus according to the third embodiment.
  • the water treatment apparatus according to the third embodiment includes a blower 25 that is a blowing means inside the treatment tank 2.
  • FIG. 1 is diverted and description of each part is abbreviate
  • the water treatment apparatus is provided with a plurality (three in FIG. 11) of nozzles 26 that are sprinkling units above the inside of the treatment tank 2.
  • a blower 25 is provided above the nozzle 26 to induce an airflow (indicated by an arrow B in FIG. 11) that intersects with the direction in which the discharge D extends.
  • a propeller fan, a sirocco fan, a cross flow fan, or the like that can form an airflow in the processing tank 2 is used.
  • the airflow rises outside the discharge region 21 after descending the discharge region 21.
  • the water to be treated W2 may adhere to the high-voltage electrode 18 and the ground electrode 17 and the discharge may become unstable.
  • the instability of discharge is suppressed by forming an air flow in the treatment tank 2 by the blower 25 and blowing away the water to be treated W2 attached to the high-voltage electrode 18 and the ground electrode 17.
  • the cooling effect by an airflow arises, the excessive heating of the high voltage electrode 18 and the ground electrode 17 is suppressed, and the stable water treatment is performed.
  • the direction of the airflow induced by the blower 25 is not limited to the direction shown in FIG. 11, and the discharge region 21 may be raised by reversing the rotation direction of the blower 25.
  • the falling water to be treated W2 and the airflow are in opposite directions, and an effect of promoting dissolution of oxidizing particles such as ozone in the water to be treated W2 is obtained.
  • the position of the blower 25 inside the treatment tank 2 is preferably above the nozzle 26 in order to prevent wetting by the water to be treated W2, but is not limited thereto. It is also possible to arrange a blower 25 in the vicinity of the side wall of the processing tank 2 to form a similar air flow.
  • the blower 25 is not limited to a propeller fan or the like, and may be configured to include a blower outside the processing tank 2 and to be connected to the processing tank 2 by a duct. According to the third embodiment, in addition to the same effects as in the first embodiment, it is possible to perform more stable water treatment.
  • FIG. 12 shows the overall configuration of the water treatment apparatus according to the fourth embodiment.
  • the water treatment apparatus 100A according to the fourth embodiment includes a water circulation pump 31 and a water circulation pipe 32 that are circulation means for extracting the treated water W2 from the reservoir 2a at the bottom of the treatment tank 2 and delivering it to the sprinkling pipe 6.
  • the water supply pump 4 and the water supply pipe 5 which are pre-treatment water delivery means deliver the pre-treatment water W1 stored in the pre-treatment water storage tank 1 to the reservoir 2a of the treatment tank 2. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the pre-treatment water W1 stored in the pre-treatment water storage tank 1 is delivered to the water spray pipe 6 of the treatment tank 2 by the water supply pump 4 and the water supply pipe 5 (see FIG. 1).
  • the pre-treatment water W1 is delivered to the reservoir 2a of the treatment tank 2 by the feed water pump 4 and the feed water pipe 5, and is stored in the reservoir 2a as the treated water W2.
  • the treated water W ⁇ b> 2 stored in the reservoir 2 a is delivered to the water spray pipe 6 by the water circulation pump 31 and the water circulation pipe 32 and sprayed from the water spray pipe 6.
  • the water to be treated W2 that has passed through the discharge region 21 is accumulated in the reservoir 2a.
  • the water to be treated W2 can be circulated a plurality of times in the treatment tank 2, so that a sufficient water treatment effect is obtained.
  • the water supply flow rate by the water supply pump 4 and the water circulation flow rate by the water circulation pump 31 can be appropriately determined according to the characteristics of the water to be treated W2.
  • the organic substance concentration and the hardly decomposable substance content in the pre-treatment water W1 are set separately, and either the organic substance concentration or the hardly decomposable substance content in the pre-treatment water W1 exceeds the reference value, It is better to reduce the feed water flow rate and increase the water circulation flow rate.
  • the to-be-treated water W2 passes through the discharge region 21 and contacts the discharge a plurality of times before being discharged from the treatment tank 2, the oxidative decomposition of the organic compound or the hardly decomposable substance proceeds.
  • the feed water flow rate by the feed water pump 4 may be increased to increase the treatment amount of the treated water W2.
  • the feed water flow rate and the water circulation flow rate may be changed according to the variation in the characteristics of the water to be treated W2. Further, by making the time average of the water supply flow rate by the water supply pump 4 equal to the time average of the drainage flow rate by the drainage pump 7, continuous water treatment can be performed. According to the fourth embodiment, in addition to the same effects as those of the first embodiment, it is possible to perform more stable water treatment on the water to be treated W2 having a high organic substance concentration and a high content of hardly decomposable substances. It is.
  • FIG. 13 shows the overall configuration of the water treatment apparatus according to the fifth embodiment.
  • the water treatment apparatus 100B according to the fifth embodiment includes a plurality (three in FIG. 13) of spray nozzles 33 as a water sprinkling unit.
  • the spray nozzle 33 is provided below the inside of the treatment tank 2 and sprays the water to be treated W2 upward. Since other configurations are the same as those in the first embodiment and the fourth embodiment, description thereof is omitted.
  • the spray nozzle 33 is provided below the ground electrode 17 and the high-voltage electrode 18 and above the water surface of the water to be treated W2 accumulated in the reservoir 2a of the treatment tank 2.
  • the reservoir 2 a and the injection nozzle 33 are connected by a water circulation pipe 32, and the water circulation pipe 32 is provided with a water circulation pump 31.
  • the water to be treated W2 sprayed from the spray nozzle 33 passes through the discharge region 21 upward, descends the discharge region 21 by gravity, and falls to the reservoir 2a. That is, the water to be treated W2 passes through the discharge region 21 twice in a single circulation and comes into contact with the discharge D.
  • the water treatment efficiency can be further improved.
  • FIG. 14 shows the overall configuration of the water treatment apparatus according to the sixth embodiment.
  • the water treatment apparatus 100 ⁇ / b> C according to the sixth embodiment sucks the gas inside the treatment tank 2 and the diffusion pipe 34 that is an aeration member installed in the reservoir 2 a of the treatment tank 2 and supplies the gas to the diffusion pipe 34.
  • a gas circulation pump 36 and a gas circulation pipe 37 which are gas circulation means are provided. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the operation of the gas circulation means in the water treatment apparatus 100C will be described.
  • the gas circulation pump 36 sucks the gas in the processing tank 2 from a gas inlet 35 provided in the upper part of the processing tank 2 and ejects the gas from the diffuser pipe 34.
  • the ozone which exists in the processing tank 2 contacts with the to-be-processed water W2, and since dissolution of ozone is accelerated
  • the gas inlet 35 is not necessarily provided above the treatment tank 2, but is preferably disposed above the sprinkling pipe 6 in order to avoid mixing of the water to be treated W ⁇ b> 2 into the gas circulation pump 36. . Further, instead of the gas circulation pump 36, the gas in the processing tank 2 can be circulated by a blowing means such as a blower.
  • the gas circulation means according to the sixth embodiment may be applied to the water treatment apparatus 100B according to the fifth embodiment so that the gas and the water to be treated W2 are circulated in the treatment tank 2, respectively.
  • the water treatment efficiency can be further improved.
  • Pre-treatment water storage tank 2 treatment tank, 2a reservoir, 3 post-treatment water storage tank, 4 water supply pump, 5 water supply pipe, 6 watering pipe, 7 drainage pump, 8 drainage pipe, 9 gas supply port, 10 gas exhaust Outlet, 11 gas supply source, 12 pulse power supply, 13 insulation member, 14 high voltage frame, 15 ground frame, 16 insulation holder, 17 ground electrode, 17a flat part, 17b end, 18, 18A, 18B, 28, 38 high pressure Electrode, 18a, 38a end face, 18b longitudinal end face, 19, 29, 39 support, 20, 30, 40 high voltage electrode unit, 21 discharge area, 22 attached water, 23 bending part, 24 electric field relaxation member, 25 blower, 26 Nozzle, 31 water circulation pump, 32 water circulation piping, 33 injection nozzle, 34 diffuser pipe, 35 gas inlet, 36 gas Circulation pump, 37 a gas circulation pipe, 100, 100A, 100B, 100C water treatment apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

水処理装置(100)は、互いに平行且つ鉛直に配置された少なくとも2枚の平板状の接地電極(17)の間に、各々の接地電極(17)と対向する2つの端面(18a)を有する板状の高圧電極(18)を備えている。板状の高圧電極(18)を複数本の支持体(19)で支持することにより、高圧電極(18)の上下方向及び水平方向の撓みが抑制され、高圧電極(18)の端面(18a)と接地電極(17)との距離、すなわち放電ギャップ長を均一に保つことができる。これにより、高圧電極(18)と接地電極(17)との間に均一な放電を維持することができ、高効率な水処理が実現可能である。

Description

水処理装置及び水処理方法
 本願は、放電で生じたオゾンおよびラジカル等を用いて被処理水を処理する水処理装置及び水処理方法に関する。
 工業廃水等には、既存のオゾン処理装置では分解されない難分解性物質が含まれることがあり、特にダイオキシン類及びジオキサン等の除去が大きな課題となっている。このため、オゾンよりも活性の高いヒドロキシルラジカル(以下、OHラジカルと記す)を放電により発生させ、被処理水に作用させることで、難分解性物質を除去する方法が提案されている。
 例えば特許文献1には、鉛直に設置された2枚の板状の接地電極の間に、水平方向に保持されたワイヤー状の高圧電極を複数本配置し、両者の間に電圧を印加して短パルス放電を形成するようにした水処理装置が開示されている。この先行例では、ワイヤー状の高圧電極の両端部は絶縁部材を介して処理槽に接続され、被処理水は処理槽の上部からシャワー状に供給される。
WO2014/188078A1
 特許文献1に開示されたようなワイヤー状の高圧電極は、処理槽への設置時に上下方向及び水平方向の撓みが生じやすく、接地電極との距離、すなわち放電ギャップ長を均一に保持することが難しい。高圧電極の撓みを抑制するためには、両端部に引張り応力をかけて保持する必要があるが、過剰な引張り応力はワイヤーの破断に繋がるため注意を要する。また、ワイヤー状の高圧電極は、長期稼動に伴う保持部の緩み、あるいはワイヤー材料の延伸等によっても撓みが生じ、放電ギャップ長の不均一化が増大するという問題があった。放電が不均一化すると、放電と被処理水との接触面積が減少し、水処理効率が低下する。
 さらに、ワイヤー状の高圧電極は、長期稼動に伴う材料の劣化または局所的な強い放電の発生により破断しやすい。破断したワイヤーは接続箇所から垂れ下がり、処理槽または接地電極と接触あるいは接近するため、短絡及び放電の局在化を引き起こす。このため、ワイヤーが破断した場合、装置を停止させて電極を改修する必要があり、装置稼働率が低下するという問題があった。
 本願は、上記問題点に鑑み、高圧電極の撓み及び破断、及び放電の局在化を抑制し、水処理効率及び稼働率が高い水処理装置を得ることを目的とする。また、高圧電極の撓み及び破断、及び放電の局在化を抑制することが可能な水処理方法を得ることを目的とする。
 本願に開示される水処理装置は、処理槽の内部に対向配置された少なくとも2つの接地電極と、接地電極の間に配置された板状の高圧電極と、高圧電極を支持する支持体と、少なくとも接地電極の間に被処理水を散布する散水部とを備え、高圧電極は、各々の接地電極と対向する2つの端面を有すると共に、各々の端面と対向する接地電極との距離が互いに等しく設けられ、接地電極と高圧電極の端面との間に放電を生じさせて放電領域を形成し、被処理水が放電領域を通過するようにしたものである。
 本願に開示される水処理方法は、互いに平行且つ鉛直に配置された少なくとも2枚の平板状の接地電極の間に、各々の接地電極と対向する2つの端面を有する板状の高圧電極を、各々の端面と対向する接地電極との距離が互いに等しいように配置するステップと、高圧電極に電圧を印加して接地電極と高圧電極の端面との間に放電を生じさせ、放電領域を形成するステップと、接地電極の間に被処理水を散布して放電領域を通過させ、被処理水を放電と接触させることにより処理するステップと、を含むものである。
 本願に開示される水処理装置によれば、板状の高圧電極を備えているので、高圧電極の撓み及び破断、及び放電の局在化が抑制され、高圧電極の端面と接地電極との間に均一な放電を維持することができ、高効率な水処理が実現可能である。また、高圧電極の改修の頻度が低減されるため、稼働率が向上する。
 本願に開示される水処理方法によれば、板状の高圧電極を用いることにより、高圧電極の撓み及び破断、及び放電の局在化が抑制され、高圧電極の端面と接地電極との間に均一な放電を維持することができ、高効率な水処理が実現可能である。
 本願の上記以外の目的、特徴、観点および効果は、図面を参照する以下の詳細な説明から、さらに明らかになるであろう。
実施の形態1による水処理装置の全体構成を示す概略図である。 実施の形態1による水処理装置の電極部を示す斜視図である。 実施の形態1による水処理装置の電極部を示す側面図である。 実施の形態1による水処理装置の電極部を示す上面図である。 実施の形態1及び比較例による水処理装置の電極部を示す図である。 実施の形態1及び比較例による水処理装置の電極部を示す図である。 実施の形態2による水処理装置の高圧電極を示す斜視図である。 実施の形態2による水処理装置の電極部を示す上面図である。 実施の形態2による水処理装置の電極部を示す側面図である。 実施の形態2による水処理装置における電界緩和部材の効果を説明する図である。 実施の形態3による水処理装置の処理槽の構成を示す概略図である。 実施の形態4による水処理装置の全体構成を示す概略図である。 実施の形態5による水処理装置の全体構成を示す概略図である。 実施の形態6による水処理装置の全体構成を示す概略図である。
実施の形態1.
 以下に、本願の実施の形態1による水処理装置及び水処理方法について、図面に基づいて説明する。図1は、実施の形態1による水処理装置の全体構成を示す概略図、図2、図3、及び図4は、それぞれ実施の形態1による水処理装置の電極部を示す斜視図、側面図、及び上面図である。なお、各図において、同一、相当部分には同一符号を付している。本実施の形態1による水処理装置100は、処理前水W1を溜める処理前水貯留槽1、被処理水W2を処理する処理槽2、及び処理後水W3を溜める処理後水貯留槽3を備えている。
 以下の説明において、処理前水W1とは、処理槽2に輸送される前の水であり、例えば処理対象となる工業廃水等である。被処理水W2とは処理槽2内に存在する水であり、処理後水W3とは、処理槽2を通過した後の水である。
 水処理装置100は、処理前水貯留槽1に溜め置かれた処理前水W1を処理槽2へ配送する処理前水配送手段として、給水ポンプ4及び給水配管5を備えている。給水配管5の一端は処理前水貯留槽1の底部近傍に接続され、給水配管5の他端は処理槽2の内部の上方に配置された散水部である散水管6に接続されている。散水管6は、筒状配管の側面に複数の細孔が形成されたものであり、少なくとも接地電極17の間に液滴状の被処理水W2を散布する。
 また、水処理装置100は、処理槽2の底部の溜部2aから被処理水W2を排出する排出手段として、排水ポンプ7及び排水配管8を備えている。排水配管8の一端は処理槽2の溜部2aに接続され、排水配管8の他端は処理後水貯留槽3に接続されている。
 また、水処理装置100は、処理槽2の内部を高酸素濃度雰囲気とするためのガス供給手段を備えている。具体的には、処理槽2の上部に、ガス供給口9とガス排出口10が備えられ、ガス供給口9にはガス供給源11が接続されている。処理槽2の内部に供給されるガスは酸素ガスに限定されるものではなく、酸素ガスを含んでいればよい。例えば空気、あるいは酸素に対して窒素または希ガスを任意の割合で混合させたガスを用いることができる。特に、アルゴン、ネオン等の希ガスを用いることにより、比較的低い電圧においても放電を安定的に形成することが可能である。また、空気を用いた場合、ガスコストを大幅に削減できる。
 パルス電源12の高電圧出力端子は、絶縁部材13を介して高圧フレーム14に接続されている。パルス電源12のグランド側端子と処理槽2は、いずれも電気的に接地されている。処理槽2の内部には、高圧フレーム14と接地フレーム15がそれぞれ水平に配置されている。高圧フレーム14は絶縁保持体16を介して接地フレーム15に接続され、接地フレーム15は処理槽2に接続されている。
 処理槽2の内部に配置された電極部は、図2及び図3に示すように、互いに平行且つ鉛直に配置された3枚の平板状の接地電極17と、接地電極17の間に配置された2組の高圧電極ユニット20を有している。接地電極17は接地フレーム15に接続され、高圧電極ユニット20は高圧フレーム14に接続されている。3枚の接地電極17は等間隔に配置され、対向配置された2枚の接地電極17の中間位置に、高圧電極ユニット20がそれぞれ配置されている。
 高圧電極ユニット20は、板状の高圧電極18と、高圧電極18を支持する支持体19により構成される。本実施の形態1では、長方形型の平板である6枚の高圧電極18と、鉛直方向に起立した3本の支持体19を有している。鉛直方向に互いに所定の間隔を設けて配置された6枚の高圧電極18は、3本の支持体19により一体的に支持されている。図2に示す例では、支持体19は角柱状であり、高圧電極18の長手方向に間隔を設けて配置され、各々の高圧電極18を水平に支持している。
 また、図4に示すように、6枚の高圧電極18は、鉛直方向に積層配置されているため、上方から見た際に重なって見える。高圧電極18は、各々の接地電極17と対向する2つの端面18aを有すると共に、各々の端面18aと対向する接地電極17との距離が互いに等しいように設けられている。すなわち、高圧電極18の端面18aと、対向する接地電極17の平面部17aは平行であり、接地電極17と高圧電極18との距離S1、S2、S3、S4(総称して距離S)は等しい。
 さらに、高圧電極ユニット20を構成する高圧電極18と支持体19は、上方から見た時、2枚の接地電極17を2辺とする矩形の内部(図4中、Aで示す領域)に配置されている。すなわち、高圧電極18の長手方向の寸法、本実施の形態1では端面18aの長さは、接地電極17の水平方向の寸法よりも小さい。また、高圧電極18の端面18aと接地電極17との距離Sは、支持体19と接地電極17との距離Lよりも短い。
 水処理装置100は、接地電極17と高圧電極18の端面18aとの間に放電Dを生じさせて、放電領域21を形成する。被処理水W2は、放電領域21を通過することにより処理される。本実施の形態1では、散水管6は処理槽2の内部の上方に設けられ、下方に向けて被処理水W2を散布するため、被処理水W2は放電領域21を落下する。
 上記のように構成された電極部を備えた水処理装置100の特徴について、比較例を挙げて説明する。図5(a)は、本実施の形態1による水処理装置の電極部を示す上面図、図5(b)は、比較例による水処理装置の電極部を示す上面図である。なお、図5(a)に示す本実施の形態1による高圧電極ユニット20は、円柱状の支持体19を有している。
 図5(a)に示すように、水処理装置100の高圧電極ユニット20は、高圧電極18の長手方向の寸法、すなわち端面18aの長さが、接地電極17の平面部17aの水平方向の寸法よりも小さいため、接地電極17の端部17bに対向する位置には高圧電極18が存在しない。これにより、接地電極17の端部17bへの電界集中に伴う放電の局在化が抑制され、高圧電極18の端面18aと接地電極17との間に均一な放電が形成される。
 これに対し、図5(b)に示す比較例による高圧電極ユニット30は、高圧電極28の両端部を支持体29で支持しており、高圧電極28の長手方向の寸法は、接地電極17の水平方向の寸法よりも大きい。このため、接地電極17の端部17bに対向する位置に、高圧電極28が存在する。これにより、接地電極17の端部17bへの電界集中に伴い局所的な強い放電LDが生じ、均一な放電が形成されない。
 また、図6(a)は、本実施の形態1による水処理装置の電極部を示す側面図、図6(b)は、比較例による水処理装置の電極部を示す側面図である。図6(a)に示すように、水処理装置100において、高圧電極18の端面18aと接地電極17との距離は、支持体19と接地電極17との距離よりも短い。このため、支持体19に被処理水W2が付着した付着水22が存在する場合であっても、高圧電極18の端面18aと接地電極17との間で正常な放電Dが形成される。
 一方、図6(b)に示す比較例による水処理装置の高圧電極ユニット40のように、高圧電極38の端面38aと接地電極17との距離が、支持体39と接地電極17との距離とほぼ同じである場合は、支持体39に付着水22が存在すると、付着水22と接地電極17との間で電界が最も高くなり、局所的な強い放電LDが形成される。
 なお、接地電極と高圧電極が被処理水W2で濡れた状態では、放電ギャップ長の不整に対する尤度(ゆうど)が低下する。すなわち、気相放電の場合と比較して、放電ギャップ長の不整による放電の局在化が生じやすくなる。本実施の形態1による水処理装置100は、比較例よりも放電の局在化を抑制することが可能な電極部構成であり、接地電極17と高圧電極18が被処理水W2で濡れた状況においても、電極間に均一な放電を形成することができる。
 次に、水処理装置100を用いた水処理方法の手順について、図1を用いて説明する。準備ステップとして、処理槽2の内部には、放電領域21を形成するための電極部が用意されている。電極部は、互いに平行且つ鉛直に配置された3枚の平板状の接地電極17の間に、各々の接地電極17と対向する2つの端面18aを有する板状の高圧電極18が、各々の端面18aと対向する接地電極17との距離が互いに等しいように配置されている。
 まず、ガス供給口9から酸素ガスを供給し、処理槽2の内部を高酸素濃度雰囲気とする。なお、処理槽2内のガスは、ガス排出口10から排出される。続いてパルス電源12を動作して高圧フレーム14及び高圧電極ユニット20にパルス状の高電圧を印加し、接地電極17と高圧電極18の端面18aとの間に放電Dを生じさせ、放電領域21を形成する。
 次に、処理前水貯留槽1に溜め置かれた処理前水W1を給水ポンプ4によって汲み上げ、給水配管5を介して処理槽2に配送し、被処理水W2として散水管6から散布する。被処理水W2の多くは放電領域21をシャワー状に落下し、一部は接地電極17に付着して水膜状に落下する。放電領域21を通過した被処理水W2は、放電Dと接触することにより処理され、被処理水W2中の有機化合物が酸化分解される。処理槽2の底部の溜部2aに溜まった被処理水W2は、排水ポンプ7によって処理後水貯留槽3に配送され、処理後水W3として貯留される。
 水処理装置100の処理槽2において、被処理水W2中の有機化合物が酸化分解される原理について説明する。なお、ここでは有機化合物の分解を例にとって説明するが、放電で生じるオゾン及びOHラジカルが除菌、脱色、及び脱臭に有効であることは周知である。放電により、処理槽2内の酸素分子(O)と水分子(HO)は、高エネルギーの電子と衝突し、下の式(1)及び式(2)の解離反応が生じる。なお、式(1)及び式(2)において、eは電子、Oは原子状酸素、Hは原子状水素、OHはOHラジカルである。
  e+O→2O        (1)
  e+HO→H+OH     (2)
 式(1)で発生した原子状酸素の多くは、式(3)の反応によりオゾン(O)となる。なお、式(3)において、Mは反応の第三体であり、気中のあらゆる分子及び原子を表す。
  O+O+M→O      (3)
 また、式(2)で生じたOHラジカルの一部は、式(4)の反応により、過酸化水素(H)となる。
  OH+OH→H     (4)
 これらの式(1)から式(4)の反応で生成された酸化性粒子(O、OH、O、H)は、式(5)により、処理槽2内を落下する被処理水W2中の有機化合物を二酸化炭素(CO)と水に酸化分解する。なお、式(5)において、Rは分解対象となる有機化合物である。
  R+(O、OH、O、H)→CO+HO     (5)
 また、式(5)で有機化合物と反応しなかった原子状酸素とOHラジカルは、式(3)及び式(4)により比較的長寿命のオゾンと過酸化水素となり、その一部は、式(6)及び式(7)により被処理水W2に溶解する。なお、式(6)及び式(7)において、(liq.)は液相を意味する。
  O→O(liq.)        (6)
  H→H(liq.)     (7)
 さらに、O(liq.)とH(liq.)は、水中での反応により、式(8)のようにOHラジカルを生成する。
  O(liq.)+H(liq.)→OH(liq.)  (8)
 上の式(6)から式(8)で生成されたO(liq.)、H(liq.)、OH(liq.)は、下の式(9)により、水中反応で被処理水W2中の有機化合物を分解する。
  R+(O(liq.)、H(liq.)、OH(liq.))
                        →CO+HO(9)
 以上のように、水処理装置100の処理槽2における被処理水W2中の有機化合物の分解は、式(5)による気中に存在する酸化性粒子による有機化合物の分解と、式(9)による水中に存在する酸化性粒子による有機化合物の分解の双方によって進行する。
 水処理装置100の電極部を構成する接地電極17、高圧電極18、及び支持体19には、ステンレス鋼またはチタン等の耐腐食性に優れた金属材料が好適である。ただし、電極材料は、上記以外の金属材料または導電性の炭素材料であってもよい。支持体19を導電性材料とすることにより、高圧電極ユニット20の一箇所に給電することで、高圧電極ユニット20全体に電圧が印加される。
 また、高圧フレーム14と接地フレーム15にも、共にステンレス鋼またはチタン等の導電性材料が好適である。これにより、高圧フレーム14の一箇所に給電することで全ての高圧電極ユニット20に電圧が印加される。また接地フレーム15の一箇所を接地することにより全ての接地電極17が接地される。
 また、電極部は、少なくとも2枚の平板状の接地電極17と、1組の高圧電極ユニット20を有していればよく、接地電極17の数及び間隔、高圧電極ユニット20に含まれる高圧電極18の数及び間隔は、被処理水W2の流量、被処理水W2に含まれる成分または濃度等に応じて適宜変更することが可能である。また、支持体19の数及び間隔等は、高圧電極18の長さ、形状、及び剛性等に応じて適宜変更可能である。例えば高圧電極18が撓みにくい場合、長手方向の両端部のみを支持体19で支持してもよい。
 なお、本実施の形態1において、水平または鉛直と表記した部分は、必ずしも完全な水平と鉛直である必要はなく、本願の効果を損なわない範囲で水平または鉛直に対し多少の角度を有していてもよい。例えば、支持体19は必ずしも鉛直に立てられていなくてもよい。また、板状の高圧電極18は必ずしも水平に支持されていなくてもよく、長手方向または幅方向に傾斜していてもよい。また、本実施の形態1において、接地電極17と高圧電極ユニット20はそれぞれ、高圧フレーム14と接地フレーム15から上に向けて起立するように配置されているが、高圧フレーム14と接地フレーム15の少なくとも一方を接地電極17あるいは高圧電極ユニット20よりも上方に配置し、接地電極17あるいは高圧電極ユニット20の少なくとも一方を吊り下げる構成としてもよい。この場合も本実施の形態1と同様に、高圧電極18は支持体19によって支持される。
 また、本実施の形態1では、散水部として散水管6を用いたが、散水部は被処理水W2を処理槽2の内部に液滴状に散布することができる機構であればよく、ノズルまたはシャワープレートであってもよい。また、電源は、パルス電源12に限定されるものではなく、安定して放電が形成できるものであれば、交流電源または直流電源であってもよい。
 また、パルス電源12から出力される電圧の極性、電圧波高値、繰り返し周波数、パルス幅等は、電極構造およびガス種等の諸条件に応じて、適宜決定することができる。一般に、電圧波高値は、1kV~50kVが望ましい。これは、1kV未満では、安定した放電が形成されず、また、50kV超の場合、電源の大型化及び電気絶縁の困難化によりコストが著しく増加するためである。
 さらに、繰り返し周波数は、10pps(pulse-per-second)以上、100kpps以下とすることが望ましい。これは、10pps未満では、十分な放電電力を投入するために非常に高い電圧が必要となり、逆に、100kppsよりも大きくすると、水処理の効率が低下するためである。また、被処理水W2の成分、濃度、あるいは流量等の条件に応じて、電圧、パルス幅、パルス繰り返し周波数を調整するようにしてもよい。
 本実施の形態1における水処理装置100によれば、高圧電極18が板状であるため、従来のワイヤー状の高圧電極と比較して破断しにくい。また、高圧電極18が複数の支持体19により支持されているため、高圧電極18が破断した場合においても、接続部から垂れ下がって処理槽2または接地電極17と接触または近接することが抑制され、短絡及び放電の局在化が発生し難い。これにより、電極部の改修の頻度が低減され、高い装置稼働率が得られる。
 また、ワイヤー状の高圧電極と比較して剛性がある板状の高圧電極18を、複数本の支持体19により支持しているので、上下方向及び水平方向の撓みが生じ難い。従って、高圧電極18の端面18aと接地電極17との距離、すなわち放電ギャップ長を、長手方向に均一に形成することが容易である。さらに、処理槽2が大型化した場合においても、支持体19の数を増やすことにより高圧電極18の撓みを抑制することが可能である。
 また、高圧電極18の長手方向の寸法が接地電極17の水平方向の寸法よりも小さく、接地電極17の端部17bに対向する位置に高圧電極18が存在しないため、接地電極17の端部17bへの電界集中に伴う放電の局在化が抑制される。さらに、高圧電極18の端面18aと接地電極17との距離Sは、支持体19と接地電極17との距離Lよりも短いため、接地電極17と高圧電極18が被処理水W2で濡れた状況においても、電極間に均一な放電が形成され、効率的な水処理が行われる。これらのことから、本実施の形態1によれば、水処理効率及び稼働率が高い水処理装置100が得られる。
実施の形態2.
 上記実施の形態1では、複数の長方形の高圧電極18を含む高圧電極ユニット20を備えた電極部を示した。本実施の形態2では、水処理装置の電極部の様々な変形例について、図7から図10を用いて説明する。なお、本実施の形態2による水処理装置の全体構成は、上記実施の形態1と同様であるので図1を流用し、各部の説明は省略する。
 高圧電極18は、板厚を薄く形成することにより端部に電界が集中し易く、比較的低い印加電圧で放電を形成することができる。これにより、パルス電源12の簡素化及び低価格化が可能となる。一方、高圧電極18の板厚が薄いと折れ曲がりが生じやすくなる。高圧電極18の板厚は、放電ギャップ長またはパルス電源12の素性に応じて適宜決定することができるが、一般に0.02mmから2.0mmの間とすると好適である。0.02mmより薄いと十分な強度が担保できず、2.0mmより厚いと十分な電界集中が得られず放電の形成に高い電圧が必要となる。
 図7に示すように、長手方向に沿った曲げ部23を有する高圧電極18Aを用いることにより、平板状の高圧電極18よりも曲げ強度が向上し、折れ曲がりが抑制される。従って、長方形の高圧電極18に比べて板厚を薄くすることができる。なお、図7に示す高圧電極18Aは、幅方向の中心近傍において長手方向に伸長する凸部が形成されているが、曲げ部の配置及び形状等はこれに限定されるものではない。例えばクランク型に折り曲げてもよく、同様の効果が得られる。また、曲げ部23の形成方法は、特に限定するものではないが、プレス加工により安価に量産することができる。
 また、電極部の別の変形例を図8に示す。高圧電極18Bは、2つの端面18aを繋ぐ2つの長手方向端面18bを有しており、長手方向端面18bは円弧状である。図8に示す例では、高圧電極18Bの両端部は円柱状の支持体19により支持され、高圧電極18Bの長手方向端面18bは支持体19に沿うように円弧状となっている。
 長方形型の高圧電極18の場合、角部に電界が集中し易く、放電が局在化する可能性がある。また、支持体19が角柱状の場合も角部に電界が集中し、特に水に濡れた際に支持体19と接地電極17の間で局所的に強い放電が形成されることがある。支持体19を円柱状にすると共に高圧電極18Bの長手方向端面18bを円弧状とすることにより、支持体19及び高圧電極18Bの両端部で電界集中が生じず、端面18aと接地電極17との間で均一な放電が形成される。
 また、支持体19を金属部材で形成することで、支持体19と高圧電極18Bは同電位となる。高圧電極18Bの長手方向の両端部は、上下を挟むように存在する支持体19によって電界が緩和される。これにより、高圧電極18Bの長手方向の両端部での局所的な放電形成がさらに抑制される。また、高圧電極18、18A、18Bは、貫通孔(図示せず)を有する構成であってもよい。これにより、高圧電極18、18Aの上部に溜まる水の量が減少し、高圧電極18、18Aへの加重が低減され、鉛直方向の撓みが抑制される。
 図9は、電極部のさらに別の変形例を示している。図9に示す高圧電極ユニット20は、最上部の高圧電極18の上方と、最下部の高圧電極18の下方に、導電性材料により形成された電界緩和部材24がそれぞれ設けられている。電界緩和部材24は、長手方向に高圧電極18と同等の長さを有している。
 水処理装置における電界緩和部材の効果について、図10を用いて説明する。図10において、縦軸は高圧電極の鉛直方向の位置、横軸は高圧電極端部の電解強度をそれぞれ示している。また、図中、三角は電界緩和部材を設けていない場合、丸は電界緩和部材を設けた場合をそれぞれ示している。電界緩和部材24を設けていない場合、鉛直方向に積層された複数の高圧電極18の中で、最上部と最下部に位置する高圧電極18は、他の高圧電極18と比べて電界強度が高くなる。この違いは、近接する電極による電界緩和効果によって生じている。
 電界緩和部材24を設けていない場合、最上部の高圧電極18は、上から2番目の高圧電極18によってのみ電界が緩和され、最下部の高圧電極18は、下から2番目の高圧電極18によってのみ電界が緩和される。これに対し、最上部と最下部以外の高圧電極18は、上下に隣り合う高圧電極18によって電界が緩和されるため、電界緩和効果が大きい。このため、電界緩和部材24を設けない場合、最上部と最下部の高圧電極18の電界は相対的に高くなり、放電が集中しやすい。
 一方、図9に示すように、最上部の高圧電極18の上方と、最下部の高圧電極18の下方に電界緩和部材24を設けることにより、最上部と最下部の高圧電極18はそれぞれ電界緩和部材24によって電界が緩和され、他の高圧電極18と同程度の電界となるため、全ての高圧電極18において均一な放電を形成することができる。
 なお、電界緩和部材24は、高圧電極18よりも板厚が厚い導電性材料で形成されることが好ましい。これにより、電界緩和部材24は、高圧電極18と同電位であるが、端部の電界強度は高圧電極18よりも低い状態となる。このため、電界緩和部材24の端面と接地電極17との間には放電が生じず、隣接する高圧電極18への電界緩和効果のみを生じさせることができる。
 また、電界緩和部材24の鉛直方向の位置及び幅寸法等は、適宜設計することができる。一般に、電界緩和部材24と隣接する高圧電極18との距離は、高圧電極18相互間の距離と同等とし、電界緩和部材24の幅寸法は、高圧電極18の幅寸法と同等とすることが好ましい。本実施の形態2によれば、さらに均一な放電を形成することが可能であり、水処理効率が向上する。
実施の形態3.
 図11は、実施の形態3による水処理装置の処理槽を示している。本実施の形態3による水処理装置は、処理槽2の内部に送風手段である送風機25を備えている。なお、本実施の形態3による水処理装置の全体構成は、上記実施の形態1と同様であるので図1を流用し、各部の説明は省略する。
 本実施の形態3による水処理装置は、処理槽2の内部の上方に、散水部である複数(図11では3個)のノズル26が備えられている。また、ノズル26の上方には送風機25が設けられ、放電Dの伸長方向と交差する気流(図11中、矢印Bで示す)を誘起する。送風機25としては、処理槽2の内部に気流を形成することが可能なプロペラファン、シロッコファン、またはクロスフローファン等が用いられる。図11に示す例では、気流は、放電領域21を下降した後、放電領域21の外側を上昇している。
 水処理装置においては、高圧電極18及び接地電極17に被処理水W2が付着し、放電が不安定化することがある。本実施の形態3では、送風機25によって処理槽2内に気流を形成し、高圧電極18及び接地電極17に付着した被処理水W2を吹き飛ばすことにより、放電の不安定化を抑制している。また、気流による冷却効果が生じるため、高圧電極18及び接地電極17の過度な加熱が抑制され、安定した水処理が行われる。
 なお、送風機25によって誘起される気流の方向は、図11に示す方向に限定されるものではなく、送風機25の回転方向を逆にして、放電領域21を上昇するようにしてもよい。この場合、落下する被処理水W2と気流が逆方向となり、気中のオゾン等の酸化性粒子の被処理水W2への溶解が促進される効果が得られる。
 また、処理槽2の内部における送風機25の位置は、被処理水W2による濡れを防止するため、ノズル26よりも上方であることが好ましいが、これに限定されるものではない。処理槽2の側壁近傍に送風機25を配置し、同様の気流を形成することも可能である。また、送風機25はプロペラファン等に限定されるものではなく、処理槽2の外部にブロワーを備え、ダクトにより処理槽2と接続する構成としても良い。本実施の形態3によれば、上記実施の形態1と同様の効果に加え、さらに安定した水処理を行うことが可能である。
実施の形態4.
 図12は、実施の形態4による水処理装置の全体構成を示している。本実施の形態4による水処理装置100Aは、処理槽2の底部の溜部2aから被処理水W2を引き抜いて散水管6へ配送する循環手段である水循環ポンプ31及び水循環配管32を備えている。また、処理前水配送手段である給水ポンプ4及び給水配管5は、処理前水貯留槽1に溜められた処理前水W1を、処理槽2の溜部2aへ配送する。なお、それ以外の構成は上記実施の形態1と同様であるので説明を省略する。
 上記実施の形態1では、処理前水貯留槽1に溜められた処理前水W1は、給水ポンプ4及び給水配管5によって処理槽2の散水管6に配送される(図1参照)。これに対し、本実施の形態4では、処理前水W1は、給水ポンプ4及び給水配管5によって処理槽2の溜部2aへ配送され、被処理水W2として溜部2aに溜められる。溜部2aに溜められた被処理水W2は、水循環ポンプ31及び水循環配管32によって散水管6へ配送され、散水管6から散布される。放電領域21を通過した被処理水W2は溜部2aに溜まる。
 被処理水W2中の有機物濃度が高い場合、または難分解性物質含有量が多い場合、上記実施の形態1のように処理槽2内の放電領域21を一度通過させるだけでは十分な酸化分解が生じず、水処理が完了しない可能性がある。このような場合、本実施の形態4による水処理装置100Aによれば、被処理水W2を処理槽2内で複数回循環させることができるため、十分な水処理効果が得られる。
 なお、給水ポンプ4による給水流量と、水循環ポンプ31による水循環流量は、被処理水W2の素性に応じて適宜決めることができる。例えば処理前水W1の有機物濃度及び難分解性物質含有量にそれぞれ基準値を設けておき、処理前水W1中の有機物濃度及び難分解性物質含有量のいずれか一方が基準値を上回る場合は、給水流量を小さくし、且つ水循環流量を大きくするとよい。これにより、被処理水W2は、処理槽2から排出されるまでに複数回、放電領域21を通過し放電に接触するため、有機化合物または難分解性物質の酸化分解が進行する。
 一方、処理前水W1中の有機物濃度及び難分解性物質含有量が基準値を下回る場合は、給水ポンプ4による給水流量を大きくし、被処理水W2の処理量を増加するとよい。さらに、被処理水W2の素性の変動に応じて給水流量と水循環流量を変化させるようにしてもよい。また、給水ポンプ4による給水流量の時間平均と、排水ポンプ7による排水流量の時間平均を同等にすることで、連続的な水処理が可能となる。本実施の形態4によれば、上記実施の形態1と同様の効果に加え、有機物濃度及び難分解性物質含有量が高い被処理水W2に対して、さらに安定した水処理を行うことが可能である。
実施の形態5.
 図13は、実施の形態5による水処理装置の全体構成を示している。本実施の形態5による水処理装置100Bは、散水部として、複数(図13では3個)の噴射ノズル33を備えている。噴射ノズル33は、処理槽2の内部の下方に設けられ、上方に向けて被処理水W2を散布する。なお、それ以外の構成は上記実施の形態1及び実施の形態4と同様であるので説明を省略する。
 噴射ノズル33は、接地電極17及び高圧電極18よりも下方で、且つ処理槽2の溜部2aに溜まった被処理水W2の水面よりも上方に設けられている。溜部2aと噴射ノズル33は、水循環配管32によって接続されており、水循環配管32には水循環ポンプ31が備えられている。噴射ノズル33から噴射された被処理水W2は、放電領域21を上向きに通過した後、重力によって放電領域21を下降し、溜部2aに落下する。すなわち、被処理水W2は、一度の循環で放電領域21を二度通過し放電Dと接触する。本実施の形態5によれば、上記実施の形態4と同様の効果に加え、さらに水処理効率の向上が図られる。
実施の形態6.
 図14は、実施の形態6による水処理装置の全体構成を示している。本実施の形態6による水処理装置100Cは、処理槽2の溜部2aに設置された散気部材である散気管34と、処理槽2の内部のガスを吸引して散気管34に供給するガス循環手段であるガス循環ポンプ36及びガス循環配管37を備えている。なお、それ以外の構成は上記実施の形態1と同様であるので説明を省略する。
 水処理装置100Cにおけるガス循環手段の動作について説明する。ガス循環ポンプ36は、処理槽2の上部に設けられたガス吸気口35から処理槽2内のガスを吸引し、散気管34から噴出させる。これにより、処理槽2内に存在するオゾンが被処理水W2と接触し、オゾンの溶解が促進されるため、ガス循環を行わない場合と比較して有機化合物の分解が促進される。
 なお、ガス吸気口35は、必ずしも処理槽2の上部に設ける必要はないが、ガス循環ポンプ36への被処理水W2の混入を避けるために、散水管6よりも上方に配置することが好ましい。また、ガス循環ポンプ36の替わりに、ブロワー等の送風手段によって処理槽2内のガスを循環させることも可能である。
 また、本実施の形態6によるガス循環手段を、上記実施の形態5による水処理装置100Bに適用し、処理槽2内においてガスと被処理水W2をそれぞれ循環させるようにしてもよい。本実施の形態6によれば、上記実施の形態1と同様の効果に加え、さらに水処理効率の向上が図られる。
 本願は、様々な例示的な実施の形態が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は、特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1 処理前水貯留槽、2 処理槽、2a 溜部、3 処理後水貯留槽、4 給水ポンプ、5 給水配管、6 散水管、7 排水ポンプ、8 排水配管、9 ガス供給口、10 ガス排出口、11 ガス供給源、12 パルス電源、13 絶縁部材、14 高圧フレーム、15 接地フレーム、16 絶縁保持体、17 接地電極、17a 平面部、17b 端部、18、18A、18B、28、38 高圧電極、18a、38a 端面、18b 長手方向端面、19、29、39 支持体、20、30、40 高圧電極ユニット、21 放電領域、22 付着水、23 曲げ部、24 電界緩和部材、25 送風機、26 ノズル、31 水循環ポンプ、32 水循環配管、33 噴射ノズル、34 散気管、35 ガス吸気口、36 ガス循環ポンプ、37 ガス循環配管、100、100A、100B、100C 水処理装置

Claims (20)

  1.  処理槽の内部に対向配置された少なくとも2つの接地電極と、前記接地電極の間に配置された板状の高圧電極と、前記高圧電極を支持する支持体と、少なくとも前記接地電極の間に被処理水を散布する散水部とを備え、
    前記高圧電極は、各々の前記接地電極と対向する2つの端面を有すると共に、各々の前記端面と対向する前記接地電極との距離が互いに等しく設けられ、
    前記接地電極と前記高圧電極の前記端面との間に放電を生じさせて放電領域を形成し、被処理水が前記放電領域を通過するようにしたことを特徴とする水処理装置。
  2.  前記接地電極は平板状であり、互いに平行且つ鉛直に配置されていることを特徴とする請求項1記載の水処理装置。
  3.  前記高圧電極は、複数の前記支持体により水平に支持されていることを特徴とする請求項1または請求項2に記載の水処理装置。
  4.  複数の前記高圧電極が鉛直方向に互いに間隔を設けて配置され、前記支持体により一体に支持されていることを特徴とする請求項1から請求項3のいずれか一項に記載の水処理装置。
  5.  最上部の前記高圧電極の上方と、最下部の前記高圧電極の下方に、導電性材料により形成された電界緩和部材がそれぞれ設けられていることを特徴とする請求項4記載の水処理装置。
  6.  前記支持体は角柱状または円柱状であり、鉛直に配置されていることを特徴とする請求項1から請求項5のいずれか一項に記載の水処理装置。
  7.  前記支持体は、少なくとも前記高圧電極の長手方向の両端部を支持していることを特徴とする請求項1から請求項6のいずれか一項に記載の水処理装置。
  8.  前記高圧電極の長手方向の寸法は、前記接地電極の水平方向の寸法よりも小さいことを特徴とする請求項1から請求項7のいずれか一項に記載の水処理装置。
  9.  前記高圧電極及び前記支持体は、上方から見た時、前記2つの接地電極を2辺とする矩形の内部に配置されていることを特徴とする請求項8記載の水処理装置。
  10.  前記高圧電極の前記端面と前記接地電極との距離は、前記支持体と前記接地電極との距離よりも短いことを特徴とする請求項1から請求項9のいずれか一項に記載の水処理装置。
  11.  前記高圧電極は、長方形型の平板であることを特徴とする請求項1から請求項10のいずれか一項に記載の水処理装置。
  12.  前記高圧電極は、長手方向に沿って形成された曲げ部を有することを特徴とする請求項1から請求項10のいずれか一項に記載の水処理装置。
  13.  前記高圧電極は、前記2つの端面を繋ぐ2つの長手方向端面を有し、前記長手方向端面は円弧状であることを特徴とする請求項1から請求項10のいずれか一項に記載の水処理装置。
  14.  前記散水部は、前記処理槽の内部の上方に設けられ、下方に向けて被処理水を散布することを特徴とする請求項1から請求項13のいずれか一項に記載の水処理装置。
  15.  前記散水部は、前記処理槽の内部の下方に設けられ、上方に向けて被処理水を散布することを特徴とする請求項1から請求項13のいずれか一項に記載の水処理装置。
  16.  前記処理槽の内部に送風手段を備え、前記送風手段は、放電の伸長方向と交差する気流を誘起することを特徴とする請求項1から請求項15のいずれか一項に記載の水処理装置。
  17.  処理前水貯留槽に溜められた処理前水を前記散水部へ配送する処理前水配送手段と、前記処理槽の底部の溜部から被処理水を排出する排出手段とを備えたことを特徴とする請求項1から請求項16のいずれか一項に記載の水処理装置。
  18.  処理前水貯留槽に溜められた処理前水を前記処理槽へ配送する処理前水配送手段と、前記処理槽の底部の溜部から被処理水を引き抜いて前記散水部へ配送する循環手段と、前記溜部から被処理水を排出する排出手段とを備えたことを特徴とする請求項1から請求項16のいずれか一項に記載の水処理装置。
  19.  前記処理槽の前記溜部に設置された散気部材と、前記処理槽の内部のガスを吸引して前記散気部材に供給するガス循環手段とを備えたことを特徴とする請求項17または請求項18に記載の水処理装置。
  20.  互いに平行且つ鉛直に配置された少なくとも2枚の平板状の接地電極の間に、各々の前記接地電極と対向する2つの端面を有する板状の高圧電極を、各々の前記端面と対向する前記接地電極との距離が互いに等しいように配置するステップと、
    前記高圧電極に電圧を印加して前記接地電極と前記高圧電極の前記端面との間に放電を生じさせ、放電領域を形成するステップと、
    前記接地電極の間に被処理水を散布して前記放電領域を通過させ、被処理水を放電と接触させることにより処理するステップと、を含むことを特徴とする水処理方法。
PCT/JP2018/009863 2018-03-14 2018-03-14 水処理装置及び水処理方法 WO2019175998A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/967,885 US11279634B2 (en) 2018-03-14 2018-03-14 Water treatment device and water treatment method
SG11202006545SA SG11202006545SA (en) 2018-03-14 2018-03-14 Water treatment device and water treatment method
JP2018530186A JP6400259B1 (ja) 2018-03-14 2018-03-14 水処理装置及び水処理方法
CN201880090670.3A CN111867988A (zh) 2018-03-14 2018-03-14 水处理装置及水处理方法
PCT/JP2018/009863 WO2019175998A1 (ja) 2018-03-14 2018-03-14 水処理装置及び水処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009863 WO2019175998A1 (ja) 2018-03-14 2018-03-14 水処理装置及び水処理方法

Publications (1)

Publication Number Publication Date
WO2019175998A1 true WO2019175998A1 (ja) 2019-09-19

Family

ID=63708685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009863 WO2019175998A1 (ja) 2018-03-14 2018-03-14 水処理装置及び水処理方法

Country Status (5)

Country Link
US (1) US11279634B2 (ja)
JP (1) JP6400259B1 (ja)
CN (1) CN111867988A (ja)
SG (1) SG11202006545SA (ja)
WO (1) WO2019175998A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240679A1 (ja) * 2019-05-28 2020-12-03 三菱電機株式会社 水処理装置及び水処理方法
CN112390455A (zh) * 2020-12-31 2021-02-23 山西远航环境科技股份有限公司 一种强化芬顿氧化法废水处理工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122950A (en) * 1975-04-18 1976-10-27 Tsutsunaka Plast Kogyo Kk Sewage treatment apparatus with an ozone generator
JP2003320373A (ja) * 2002-04-26 2003-11-11 Toshiba Corp ラジカル処理装置
JP2009114001A (ja) * 2007-11-02 2009-05-28 Metawater Co Ltd オゾン発生装置
JP2010207718A (ja) * 2009-03-10 2010-09-24 Sekisui Chem Co Ltd 水処理装置
JP2012236130A (ja) * 2011-05-11 2012-12-06 Sekisui Chem Co Ltd 水処理装置
JP2013086040A (ja) * 2011-10-20 2013-05-13 Sekisui Chem Co Ltd 水処理装置および水処理方法
JP2014117639A (ja) * 2012-12-14 2014-06-30 Sekisui Chem Co Ltd 被処理水中のジオキサン分解処理方法
WO2014188078A1 (en) * 2013-05-24 2014-11-27 Wapulec Oy Method and device for a liquid purifying and use of device
WO2017094301A1 (ja) * 2015-12-04 2017-06-08 三菱電機株式会社 水処理装置および水処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2255425Y (zh) * 1996-06-14 1997-06-04 清华大学 高效高浓度臭氧发生装置
US6176977B1 (en) * 1998-11-05 2001-01-23 Sharper Image Corporation Electro-kinetic air transporter-conditioner
JP4599023B2 (ja) * 2002-06-21 2010-12-15 大日本印刷株式会社 高電圧パルス電源を用いた包装材料の殺菌方法およびその装置
US8021523B2 (en) * 2007-06-08 2011-09-20 Paul Jarvis Apparatus and method for electrostatic filtration of fluids
JP2010234187A (ja) 2009-03-30 2010-10-21 Yamatake Corp エアクリーナ
CN103819030B (zh) * 2014-01-21 2015-10-14 中国科学院等离子体物理研究所 气液混合介质阻挡放电水处理装置与方法
CN107207291B (zh) * 2015-01-21 2018-10-02 三菱电机株式会社 水处理装置以及水处理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122950A (en) * 1975-04-18 1976-10-27 Tsutsunaka Plast Kogyo Kk Sewage treatment apparatus with an ozone generator
JP2003320373A (ja) * 2002-04-26 2003-11-11 Toshiba Corp ラジカル処理装置
JP2009114001A (ja) * 2007-11-02 2009-05-28 Metawater Co Ltd オゾン発生装置
JP2010207718A (ja) * 2009-03-10 2010-09-24 Sekisui Chem Co Ltd 水処理装置
JP2012236130A (ja) * 2011-05-11 2012-12-06 Sekisui Chem Co Ltd 水処理装置
JP2013086040A (ja) * 2011-10-20 2013-05-13 Sekisui Chem Co Ltd 水処理装置および水処理方法
JP2014117639A (ja) * 2012-12-14 2014-06-30 Sekisui Chem Co Ltd 被処理水中のジオキサン分解処理方法
WO2014188078A1 (en) * 2013-05-24 2014-11-27 Wapulec Oy Method and device for a liquid purifying and use of device
WO2017094301A1 (ja) * 2015-12-04 2017-06-08 三菱電機株式会社 水処理装置および水処理方法

Also Published As

Publication number Publication date
US11279634B2 (en) 2022-03-22
JP6400259B1 (ja) 2018-10-03
SG11202006545SA (en) 2020-08-28
JPWO2019175998A1 (ja) 2020-04-16
CN111867988A (zh) 2020-10-30
US20200385290A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US10093566B2 (en) Water treatment apparatus and water treatment method
JP5099612B2 (ja) 液体処理装置
JP6161839B2 (ja) 水処理装置および水処理方法
WO2010055729A1 (ja) 水処理装置
JP6400259B1 (ja) 水処理装置及び水処理方法
JP4073240B2 (ja) ラジカル処理装置
US9868655B1 (en) Water treatment apparatus and water treatment method
JP2014159008A (ja) 水処理装置
JP6157763B2 (ja) 水処理装置および水処理方法
US11358884B2 (en) Water treatment apparatus and water treatment method
US11530142B2 (en) Water treatment apparatus
JP2020192496A (ja) 水処理装置
JP6608567B1 (ja) 水処理装置及び水処理方法
KR100537214B1 (ko) 전자기파동과 마이크로파 및 활성전자를 이용한폐수처리장치 및 방법
JP6029605B2 (ja) 水処理装置及び水処理方法
JPWO2020021635A1 (ja) 水処理システム及び水処理方法
JP2010194527A (ja) 水処理装置
JP2011016118A (ja) 水処理装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530186

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909345

Country of ref document: EP

Kind code of ref document: A1