JP6161839B2 - 水処理装置および水処理方法 - Google Patents

水処理装置および水処理方法 Download PDF

Info

Publication number
JP6161839B2
JP6161839B2 JP2016570519A JP2016570519A JP6161839B2 JP 6161839 B2 JP6161839 B2 JP 6161839B2 JP 2016570519 A JP2016570519 A JP 2016570519A JP 2016570519 A JP2016570519 A JP 2016570519A JP 6161839 B2 JP6161839 B2 JP 6161839B2
Authority
JP
Japan
Prior art keywords
water
discharge
treated
treatment
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016570519A
Other languages
English (en)
Other versions
JPWO2016117259A1 (ja
Inventor
学 生沼
学 生沼
正和 滝
正和 滝
稲永 康隆
康隆 稲永
皓貴 内藤
皓貴 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016117259A1 publication Critical patent/JPWO2016117259A1/ja
Application granted granted Critical
Publication of JP6161839B2 publication Critical patent/JP6161839B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F1/46114Electrodes in particulate form or with conductive and/or non conductive particles between them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/23O3
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、放電で生じたオゾンおよびラジカル等を用いて被処理水を処理する水処理装置および水処理方法に関するものである。
これまで、上下水の処理において、オゾンまたは塩素が広く用いられてきた。しかしながら、例えば、工業廃水等には、オゾンまたは塩素では分解されない難分解性物質が含まれることがある。特に、ダイオキシン類およびジオキサン等の除去が大きな課題となっている。
一部では、オゾン(O3)と過酸化水素(H22)または紫外線とを組み合わせることで、オゾンまたは塩素よりも活性の高いヒドロキシルラジカル(OHラジカル)を被処理水中で発生させ、難分解性物質の除去を行う方法が実用化されている。しかしながら、装置コストおよび運転コストが非常に高く、あまり普及していない。
そこで、放電で発生させたOHラジカル等を被処理水に直接作用させることで、高効率に難分解性物質を除去する方法が提案されている。具体的には、以下のような処理を行っている。
・段差部と段差部に連なる平板部とが複数交互に連設された階段状の流路の上段部の水供給配管から、階段状の流路に向かって雑菌を含んだ被処理水を供給する。
・そして、階段状の流路を膜状に流れる被処理水に対して、プラズマ発生装置で発生させたプラズマを照射して、被処理水中の水分子を解離してOラジカルおよびOHラジカルを生成させ、被処理水中の雑菌を死滅させる。
この水滅菌装置および水滅菌方法によれば、被処理水とプラズマとの接触を促進させて、被処理水中の雑菌を十分に死滅させることができる(例えば、特許文献1参照)。
また、上下に対向する一対の電極板を、傾斜した状態で配置し、下部電極上を被処理水が流下するようにし、電極間にバリア放電を形成することで、被処理水を処理する水処理装置も提案されている。この水処理装置によれば、簡単な構成で被処理水を効率よく処理することができる(例えば、特許文献2参照)。
特開2012−96141号公報 特許第4635204号公報
しかしながら、上述の先行技術には、次のような課題がある。
特許文献1に示された従来の水処理装置は、プラズマによって生成されたOラジカルおよびOHラジカルを直接作用させることで、被処理水を処理できる。しかしながら、OラジカルおよびOHラジカルから生成されたオゾンおよび過酸化水素が、被処理水中に溶け込む量を制御できない。このため、オゾンおよび過酸化水素による水中反応での被処理水の処理を効果的に活用することができず、効率的な水処理が行えないといった課題がある。
一方、特許文献2に示された従来の水処理装置は、放電で生じたオゾンやOHラジカルが被処理水の表面と接触して、一部が溶解して溶存オゾンや溶存過酸化水素となり、水中での反応により、水処理が進行する。しかしながら、この特許文献2による水処理装置は、オゾンの溶解量と過酸化水素の溶解量を独立に決めることができない。このため、水中反応を効果的に用いることができないだけでなく、被処理水の水質が変化したときに、それに合わせた最適な動作を行うことができないといった課題がある。
本発明は、上記のような課題を解決するためになされたものであり、難分解性物質の分解または高濃度の有機汚れの除去を、高効率かつ高速で行うことができ、かつ、被処理水の水質に応じた処理が可能な水処理装置および水処理方法を得ることを目的とする。
本発明に係る水処理装置は、処理槽の内部に複数の放電処理ユニットを備え、放電処理ユニットは、接地電極と、接地電極に対向する放電電極を有し、接地電極と放電電極との間に放電を形成し、放電によりオゾンを生成するとともに、被処理水を放電に触れさせることで被処理水を処理する水処理装置において、処理槽の内部に、複数の放電処理ユニットのうちの1つの放電処理ユニットで処理された被処理水を溜める水溜部と、処理槽内のオゾンを水溜部に溜められた被処理水に供給するオゾン供給部とを備え、接地電極は、被処理水を溜める水溜部の空間の外部に配置され、水溜部とオゾン供給部とでオゾン溶解ユニットが構成され、被処理水が、複数の放電処理ユニットを一連の流れとして通過するものである。
また、本発明に係る水処理方法は、処理槽の内部に複数の放電処理ユニットを備え、放電処理ユニットは、接地電極と、接地電極に対向する放電電極を有し、接地電極と放電電極との間に放電を形成し、放電によりオゾンを生成するとともに、被処理水を放電に触れさせることで被処理水を処理する水処理装置において実行される水処理方法であって、処理槽の内部に、複数の放電処理ユニットのうちの1つの放電処理ユニットにある水溜部の外部の接地電極で処理された被処理水を水溜部に溜めるステップと、処理槽内のオゾンを水溜部に溜められた被処理水に供給してオゾン溶解を行うステップとを有し、被処理水が、複数の放電処理ユニットを一連の流れとして通過することで、被処理水を処理するものである。
本発明の水処理装置および水処理方法は、処理槽の内部に複数の放電処理ユニットを備え、放電処理ユニットは、接地電極と、接地電極に対向する放電電極を有し、接地電極と放電電極との間に放電を形成し、放電によりオゾンを生成するとともに、被処理水を放電に触れさせることで被処理水を処理する。そして、処理槽の内部に、複数の放電処理ユニットのうちの1つの放電処理ユニットで処理が施された被処理水を溜める水溜部と、処理槽内のオゾンを水溜部の被処理水に供給するオゾン供給部とを備え、被処理水が、複数の放電処理ユニットを一連の流れとして通過する。この結果、難分解性物質の分解または高濃度の有機汚れの除去を、高効率かつ高速で行うことができ、かつ、被処理水の水質に応じた処理が可能な水処理装置および水処理方法を得ることができる。
本発明の実施の形態1による水処理装置の断面図である。 本発明の実施の形態1における、被処理水の溶存過酸化水素濃度および溶存オゾン濃度と、放電電力との関係を示す図である。 本発明の実施の形態1による処理槽内における被処理水の溶存オゾン濃度、溶存過酸化水素濃度、有機物濃度のそれぞれの時間変化を示す図である。 本発明の実施の形態2による水処理装置の断面図である。 本発明の実施の形態3による水処理装置の断面図である。 本発明の実施の形態4による水処理装置の断面図である。 本発明の実施の形態5による水処理装置の断面図である。 本発明の実施の形態6による水処理装置の断面図である。 本発明の実施の形態7による水処理装置の断面図である。 本発明の実施の形態7による水処理装置のシステム図である。 本発明の実施の形態8による水処理装置の断面図である。 本発明の実施の形態9による水処理装置の断面図である。 本発明の実施の形態10による水処理装置の断面図である。 本発明の実施の形態11による水処理装置の断面図である。 本発明の実施の形態12による水処理装置の断面図である。 本発明の実施の形態13による水処理装置の断面図である。
以下、本発明に係る水処理装置および水処理方法の好適な実施の形態を、図面を用いて詳細に説明する。
実施の形態1.
図1は、本発明の実施の形態1による水処理装置の断面図である。図1において、密閉構造の金属製の処理槽1の上部には、給水口1aおよびガス排出口1bが設けられている。処理槽1の下部には、排水口1cが設けられている。
一方、処理槽1の側面には、ガス供給口1dが設けられている。そして、処理槽1の内部には、3個の放電処理ユニット30a、30b、30cと、2個の水溜部(水溜め)32a、32bが備えられている。
3個の放電処理ユニット30a、30b、30cは、全て同様の構成であり、それぞれが接地電極である平板電極2と、放電電極である複数の(図1では5本の)ワイヤ電極6a、6b、6c、6d、6eを有している。平板電極2は、水平面に対して傾斜して処理槽1の内部に配置されている。すなわち、平板電極2の上流側端部(図1の左端部)は、下流側端部(図1の右端部)よりも高くなっている。
上流側端部は、処理槽1の左壁面と接続されて保持されており、下流側端部は、処理槽1の壁面に接続されずに保持されている。平板電極2の上方には、平板電極2に対して所定の間隔を介して、ワイヤ電極6a、6b、6c、6d、6eが形成されている。ワイヤ電極6a、6b、6c、6d、6eは、図1の左右の方向に互いに間隔をおいて配置されている。
また、ワイヤ電極6a、6b、6c、6d、6eは、平板電極2の上面に対して等間隔で配置されている。さらに、ワイヤ電極6a、6b、6c、6d、6eは、平板電極2の幅方向(図1紙面の奥行き方向)に平行かつ水平に張られている。ワイヤ電極6a、6b、6c、6d、6eと平板電極2は、それぞれが一対の電極となっている。
2個の水溜部32a、32bは、互いに同様の構成であり、それぞれが底板18と、側壁19とを備えている。底板18は、図1における右側端部が処理槽1の右壁面に接続されており、左側端部には、平板状の側壁19が鉛直方向に向けて取り付けられている。
すなわち、水溜部32a、32bは、処理槽1の壁面と底板18と側壁19によって囲まれた箱型の水溜めを形成している。
放電処理ユニット30a、30b、30cと水溜部32a、32bは、処理槽1の鉛直方向に、互いに交互に、かつ左右互い違いの方向に形成されている。すなわち、処理槽1の最上部には、放電処理ユニット30aが備えられ、放電処理ユニット30aの平板電極2は、処理槽1の左壁面に接続されている。放電処理ユニット30aの下方には、水溜部32aが備えられており、水溜部32aの底板18は、処理槽1の右壁面に接続されている。以下、同様に、放電処理ユニット30b、水溜部32b、放電処理ユニット30cの順に備えられている。
処理槽1の側面の最上部付近には、循環ガス吸気口14が形成されており、循環ガス吸気口14には、循環ガス配管15が接続されている。循環ガス配管15には、ガス循環装置に相当する循環ポンプ16が備えられており、循環ポンプ16には、ガス流量調節器に相当するインバーター33が接続されている。
循環ガス配管15は、循環ポンプ16を介して循環ガス吸気口14の反対側において分岐され、循環ガス配管15aと15bを形成している。循環ガス配管15aは、水溜部32a内に備えられた散気板(散気部材)17aと接続され、循環ガス配管15bは、水溜部32b内に備えられた散気板17bと接続されている。循環ガス配管15と循環ポンプ16と散気板17a、17bは、オゾン供給部を構成している。また、水溜部32a、32bとオゾン供給部により、オゾン溶解ユニット31a、31bが形成されている。
処理槽1の右側面には、電流導入端子12a、12b、12cが備えられている。放電処理ユニット30aにおいて、ワイヤ電極6a、6b、6c、6d、6eは、互いが配線8aで接続されており、配線8aは、電流導入端子12aを通って処理槽1の外部に通じている。
同様に、放電処理ユニット30bのワイヤ電極6a、6b、6c、6d、6eに繋がれた配線8bは、電流導入端子12bを通って処理槽1の外部に通じており、放電処理ユニット30cのワイヤ電極6a、6b、6c、6d、6eに繋がれた配線8cは、電流導入端子12cを通って処理槽1の外部に通じている。ここで、配線8a、8b、8cと処理槽1は、電流導入端子12a、12b、12cにより、電気的に絶縁されている。
処理槽1の外部において、配線8a、8b、8cは、互いに接続され、1本の配線8となっている。処理槽1の外部に備えられたパルス電源7の高電圧側の出力は、配線8に接続されている。一方、パルス電源7の接地側の出力は、処理槽1に繋がれており、電気的に接地されている。
また、放電処理ユニット30a、30b、30cのそれぞれの平板電極2は、いずれも金属で構成され、処理槽1の側面と接続されている。このため、平板電極2は、接地電位となっている。
このような構成により、放電処理ユニット30a、30b、30cのそれぞれのワイヤ電極6a、6b、6c、6d、6eは、パルス電源7に対して電気的に並列に接続されている。
さらに、パルス電源7には、放電電力調節器である電力調節器34が備えられている。電力調節器34は、パルス電源7から出力されるパルス電圧の波高値、パルス幅、パルス繰返し、パルス波形を調節することができる。
ガス供給口1dには、酸素ガスを満たしたガス供給源9が、流量調節器10を介して接続されている。
次に、本実施の形態1における水処理装置の動作について説明する。
酸素ガスは、ガス供給源9から、流量調節器10によりあらかじめ設定された流量に調節された後、ガス供給口1dから処理槽1内に供給される。一方、ガス排出口1bからは、供給酸素ガス流量と同じ流量で、処理槽1内のガスが排気される。これにより、所定時間経過後に、処理槽1内から空気が排出され、処理槽1内に高酸素濃度の雰囲気が形成される。
給水口1aから処理槽1内に供給された被処理水4は、放電処理ユニット30aの平板電極2上を、水膜3を形成して流下し、最下流部(図1の右側端部)から落下する。放電処理ユニット30aから落下した被処理水4は、水溜部32aに捕捉される。水溜部32a内の被処理水4の水位が側壁19よりも高くなると、被処理水4が水溜部32aから溢れ出して、落下する。
以下、同様に、被処理水4は、放電処理ユニット30b、水溜部32b、放電処理ユニット30cの順に通り、最終的に処理槽1の底部に落下し、処理後水13として排水口1cから排出される。このとき、被処理水4の一部が水蒸気として揮発するため、処理槽1の内部には、水蒸気を含む高酸素濃度の雰囲気が形成される。ここで、水膜3とワイヤ電極6a、6b、6c、6d、6eとの間には、気体層である空隙5が形成されている。すなわち、水膜3の厚さは、ワイヤ電極6a、6b、6c、6d、6eと水膜3の水面との間に空隙5が形成されるように調節されている。水膜の厚さは、供給される被処理水4の流量、または平板電極2の水平面に対する傾斜角度、または平板電極2の表面粗さによって調整される。
ここで、パルス電源7を動作させ、ワイヤ電極6a、6b、6c、6d、6eにパルス電圧を印加することで、ワイヤ電極6a、6b、6c、6d、6eから平板電極2の方向に放電11a、11b、11c、11d、11eが形成される。被処理水4が、平板電極2上を流れる過程で、放電11a、11b、11c、11d、11eと順に触れることで、難分解性物質の除去などの水処理が行われる。また、放電11a、11b、11c、11d、11eによってオゾンが生成され、処理槽1内は、オゾンが充満した状態となる。
ここで、さらに、循環ポンプ16を動作させ、処理槽1内のガスを、循環ガス吸気口14から吸気し、水溜部32a、32b内の散気板17a、17bに供給する。これにより、水溜部32a、32bの被処理水4中を気泡21として、循環ガスが上昇し、その際に、放電11a、11b、11c、11d、11eで発生したオゾンが、被処理水4に溶解して水処理が行われる。
次に、本実施の形態1に示す水処理装置によって、被処理水4の処理が行われる原理を説明する。なお、ここでは、有機物の分解を例にとって説明するが、放電で生じるO3やOHラジカルが除菌や脱色や脱臭にも有効であることは周知の事実である。
ワイヤ電極6a、6b、6c、6d、6eにパルス電圧を印加することで、放電11a、11b、11c、11d、11eが形成される。このとき、処理槽1内の酸素分子(O2)、水分子(H2O)が高エネルギーの電子と衝突し、下式(1)、(2)の解離反応が生じる。ここで、eは、電子、Oは、原子状酸素、Hは、原子状水素、OHは、OHラジカルである。
e + O2 → 2O (1)
e + H2O → H + OH (2)
上式(1)で発生した原子状酸素の多くは、下式(3)の反応により、オゾン(O3)となる。ここで、Mは、反応の第三体であり、気中のあらゆる分子や原子を表す。
O + O2 + M → O3 (3)
また、上式(2)で生じたOHラジカルの一部は、下式(4)の反応により、過酸化水素(H22)となる。
OH + OH → H22 (4)
上式(1)〜(4)の反応で生成された酸化性粒子(O、OH、O3、H22)は、下式(5)により、放電処理ユニット30a、30b、30cの平板電極2を流れる被処理水4の水面近傍の有機物と反応して、二酸化炭素(CO2)と水に酸化分解する。ここで、Rは、処理対象となる有機物である。
R + (O、OH、O3、H22) → CO2 + H2O(5)
なお、上式(5)で有機物と反応しなかったOとOHは、上式(3)、(4)により、比較的長寿命のO3とH22になり、その一部は、下式(6)、(7)により、被処理水4に溶解する。ここで、(l)は、液相を意味する。
3 → O3(l) (6)
22 → H22(l) (7)
3(l)とH22(l)は、水中での反応により、下式(8)の通り、OHラジカルを生成する。
3(l) + H22(l) → OH(l) (8)
上式(6)〜(8)で生成されたO3(l)、H22(l)、OH(l)は、下式(9)により、水中反応で有機物を分解する。
R +(O3(l)、H22(l)、OH(l))
→ CO2 + H2O (9)
本実施の形態1では、被処理水4が放電11a、11b、11c、11d、11eに接する領域では、上式(5)の反応と、上式(9)の反応の双方によって、また、放電と接しない領域では、上式(9)の反応によって、被処理水4中の有機物が分解される。
さらに、本実施の形態1では、循環ポンプ16を動作させることで、処理槽1内のガスを散気板17a、17bに供給することで、処理槽1内のオゾンが、水溜部32a、32bの被処理水4に溶解する。
これにより、被処理水4の有機物が、オゾンにより分解される。さらに、被処理水4に溶解しているH22(l)と、O3(l)が、上式(8)の反応により、OH(l)を生じ、被処理水4中の難分解性物質を分解する。
次に、本実施の形態1により、難分解性物質の分解または高濃度の有機汚れの除去を高効率かつ高速で行うことができる理由について説明する。
前述の通り、本実施の形態1においては、上式(5)による被処理水4の表層の有機物の分解と、上式(9)による被処理水4の水中の有機物の分解の双方によって、水処理が進行する。上式(5)の反応は、被処理水4の表層のみで生じる反応であるため、全体の水処理効果においては、上式(9)の反応がより重要である。
ここで、図2は、本発明の実施の形態1における、被処理水4のH22(l)濃度およびO3(l)濃度と、放電電力との関係を示す図である。水に対するH22の溶解度は高いため、放電11a、11b、11c、11d、11eの電力を増加させて、上式(2)、(4)により生成されるH22の量が増えると、上式(7)が進行し、H22(l)濃度が高まる。従って、図2に示す通り、溶存過酸化水素の濃度は、放電電力にほぼ比例して増加する。
一方、溶存オゾン濃度は、図2に示すように、一定値を超えると、放電電力を増加させても増加せずに、飽和する傾向を示す。以下で、その理由を説明する。
オゾンは、気中濃度C(O3g)と飽和溶存濃度C*(O3l)の間に、下式(10)のヘンリー則が成り立つ。
*(O3l)=m×C(O3g) (10)
ここで、濃度の単位は、いずれもmg/lである。上式(10)におけるmは、分配係数であり、温度やpHに依存するが、概ね0.3程度の値をとる。また、オゾンが水に溶ける速度(溶解速度)v(O3)は、下式(11)で与えられる。
v(O3)=kLa×(C*(O3l)−C(O3l)) (11)
ここで、kLaは、オゾンの包括物質移動係数で、水処理装置の体系に依存した固有の値であり、C(O3l)は、溶存オゾン濃度である。上式(11)より、オゾンの溶解速度は、飽和溶存濃度C*(O3l)と、溶存濃度C(O3l)の差が大きいほど高い。このため、オゾンの溶解が進み、溶存濃度が飽和溶存濃度に近づくと、溶解速度が低下し、溶存オゾン濃度が一定値に漸近する。これが、溶存オゾン濃度が飽和する理由である。
ここで、上式(1)で生成された原子状酸素(O)と、上式(2)で生成されたOHラジカル(OH)は、いずれも粒子寿命が1ミリ秒以下と短い。このため、生成された原子状酸素(O)およびOHラジカル(OH)は、ガス中で短時間で失われることから、放電11a、11b、11c、11d、11eから離れた領域には、ほとんど存在しない。
一方、O3は、ガス中での粒子寿命が数分以上と長く、また、水に対する溶解度が低い。このため、O3の一部は、上式(6)により、被処理水4に溶解し、残りは、処理槽1のガス中に存在する。
結局、処理槽1の、放電11a、11b、11c、11d、11eから離れた領域のガス中に存在する酸化性粒子は、ほとんどオゾンのみとなる。従って、循環ポンプ16によって、処理槽1内のガスを吸気して、被処理水4に供給すると、被処理水4とO3の接触が増加し、上式(6)によるオゾンの溶解が促進される。
図3は、本発明の実施の形態1による処理槽1内における被処理水4の溶存オゾン濃度(O3(l))、溶存過酸化水素濃度(H22(l))、有機物濃度のそれぞれの時間変化を示す図である。図3(a)は、オゾン溶解ユニット31a、31bを有さない場合に対応し、図3(b)は、オゾン溶解ユニット31a、31bを有する場合に対応している。
また、図3において、放電1、放電2、放電3は、被処理水4が図1の放電ユニット30a、30b、30cをそれぞれ通過する段階に該当し、オゾン溶解1およびオゾン溶解2はそれぞれ図1のオゾン溶解ユニット31a、オゾン溶解ユニット31bを通過する段階に該当する。
図3(a)において、溶存オゾン濃度は、放電1で飽和に至り、以後は、変化しない。一方、溶存過酸化水素濃度は、放電との接触時間に比例して増加し、処理時間全体にわたって単調に増加する。有機物濃度の減少速度は、放電1では溶存過酸化水素濃度の増加に伴って増加するが、放電3では、逆に溶存過酸化水素の過度な蓄積により低下する。
つまり、放電1では、O3(l)に対してH22(l)が不足しており、OH(l)の生成において、H22(l)が律速となっている。一方、放電3では、H22(l)が過剰な状態にあり、H22(l)のラジカルスカベンジャー作用により、生成されたOH(l)が無効消費される割合が増え、難分解性物質を含む有機物の分解が効率的に進まなくなる。
これに対して、オゾン溶解ユニット31a、31bを有する図3(b)の場合、放電1における動作は、図3(a)と同様である。また、オゾン溶解1においては、過酸化水素の溶解は生じないが、循環ガスによって処理槽1のオゾンが供給されることで、オゾンの溶解が生じる。
つまり、オゾン溶解1において、H22(l)は、放電1で蓄積された分が消費されることで濃度が低下し、O3(l)は、消費分が補われるため、定常濃度を維持する。このため、オゾン溶解1では、上式(9)の水中反応により、放電11a、11b、11c、11d、11eに接していないにも関わらず、被処理水4中の有機物の分解が進行する。
放電2では、再び過酸化水素が溶解し、H22(l)濃度が増加する。以下、同様に、オゾン溶解2、放電3と進むことで、被処理水4の処理が進行する。また、図3(a)と図3(b)の比較から、処理槽1内における被処理水4の滞在時間が異なる。図3(b)の場合、水溜部32a、32bに保水される時間が生じるため、被処理水4がより長い時間処理槽1に滞在することとなる。
以上に説明した通り、本実施の形態1では、オゾン溶解ユニット31a、31bを備えている。このような構成を備えることで、処理槽1内における被処理水4の滞在時間が増加し、放電と接していない領域においても、水中反応で被処理水4の有機物が分解される。このため、オゾン溶解ユニットを有さない場合と同じ放電エネルギーであっても、排水口1cの地点での有機物濃度を下げることができる。すなわち、水処理の速度と効率が向上する。
さらに、放電ユニットとオゾン溶解ユニットを交互に通過することで、H22(l)の溶解と消費が繰返される。このため、被処理水4にH22(l)が過剰に蓄積し、生成されたOH(l)がラジカルスカベンジャー作用で無効消費されてしまう現象を抑制できる。
次に、本実施の形態により、被処理水の水質に応じた処理が可能となる理由について、説明する。
ダイオキシン類およびジオキサン等の難分解性物質は、オゾンではほとんど分解されず、OHラジカルによって分解される。すなわち、難分解性物質の除去のためには、OH(l)を効率的に生成させる必要がある。ここで、上式(8)によりOH(l)を生成する際、O3(l)とH22(l)には、最適な濃度バランスが存在する。
例えば、O3(l)が過剰に存在してH22(l)が不足すると、上式(8)の反応は十分に生じず、被処理水4にO3(l)が蓄積される。逆に、H22(l)が過剰に存在してO3(l)が不足する場合も、上式(8)の反応が十分に生じず、H22(l)が蓄積される。
さらに、O3(l)やH22(l)が被処理水4に蓄積されると、ラジカルスカベンジャーとしてOH(l)を無効に消費する。従って、難分解性物質を効率的に分解処理するには、O3(l)とH22(l)の両方の濃度を適切に調節することが重要となる。
図2に示したように、放電電力の増加に伴ってH22(l)濃度は、増加するが、O3(l)は、飽和する。言い換えれば、図1の電力調節器34を制御して、放電11a、11b、11c、11d、11eの電力を増加させると、相対的にH22(l)の生成量が増加する。また、図1のインバーター33により循環ポンプ16の流量を増加させると、被処理水4に溶解するオゾン量が増加する。
以上の動作により、本実施の形態1では、被処理水4へのH22とO3の溶解量を独立に調節することができる。言い換えれば、電力調節器34が過酸化水素溶解量調節器として機能し、インバーター33がオゾン溶解量調節器として機能する。これにより、被処理水4の水質に応じた最適動作が可能となり、難分解性物質を含む被処理水4の効率的な処理が可能となる。
なお、本実施の形態1において、放電形成にパルス電源7を用いたが、本発明に適用される電源は、安定して放電が形成できれば、必ずしもパルス電源である必要はない。例えば、交流電源または直流電源を放電形成用の電源として用いることも可能である。
また、パルス電源7から出力される電圧の極性、電圧波高値、繰り返し周波数、パルス幅などは、電極構造およびガス種等の諸条件に応じて適宜決定することができる。一般に、電圧波高値は、1kV〜50kVが望ましい。これは、1kV未満では安定した放電が形成されず、また、50kVを超えるようにするには、電源の大型化および電気絶縁の困難化により、コストが著しく増加するためである。
さらに、繰り返し周波数は、10pps(pulse−per−second)以上、100kpps以下とすることが望ましい。これは、10pps未満では、十分な放電電力を投入するために非常に高い電圧が必要となり、逆に、100kppsよりも大きくすると、水処理の効果が飽和し、電力効率が低下するためである。また、被処理水4の流量または処理対象物質の水質の少なくともいずれか一方に応じて、電圧、パルス幅、パルス繰り返し周波数を調整するようにしてもよい。
また、平板電極2には、ステンレス鋼またはチタンなど、耐腐食性に優れた金属材料を用いることが望ましい。さらに、ワイヤ電極6a、6b、6c、6d、6eにも、ステンレス鋼またはチタンなど、耐腐食性に優れた金属材料を用いることが望ましいが、これ以外の導電性材料を用いることもできる。
また、ワイヤ電極6a、6b、6c、6d、6eの表面をガラスまたはセラミックなどの誘電体で被覆してもよい。
さらに、また、本実施の形態1では、放電電極としてワイヤ電極6a、6b、6c、6d、6eを用いたが、放電電極は、必ずしもワイヤ状である必要はない。放電電極として、例えば、ロッド、針、メッシュ、ネジ、リボン、またはパンチングメタルなども用いることができる。ただし、比較的低い電圧で安定した放電を形成するためには、放電電極は、板状よりも、電界集中が生じるワイヤ、針、メッシュ、ネジ、リボン状とすることが望ましい。
また、本実施の形態1では、ガス供給源9から酸素ガスを供給することで、処理槽1の内部を高酸素濃度雰囲気としたが、ガス種は、酸素に限定されるものではない。酸素を含むガス中であれば、上式(1)〜(9)の反応が生じるため、水処理を行うことが可能である。
例えば、酸素に対して窒素または希ガスを任意の割合で混合させたガスを用いることができる。特に、希ガスを用いれば、比較的低い電圧においても、放電を安定的に形成することが可能となり、空気を用いれば、ガスコストを大幅に削減できる。
さらに、供給するガスの流量は、一定である必要はなく、被処理水4の水質または放電条件等に応じて、適宜調節することができる。例えば、被処理水4中の有機物濃度が高い場合には、酸化分解過程で多くの酸素が消費されるため、供給ガス流量を多くすることが好適である。一方、被処理水4中の有機物濃度が低い場合には、供給ガス流量を少なくすることで、ガス中のオゾン濃度が高まり、反応を高速化することができる。
さらに、また、装置起動時にガス流量を多くして、内部の空気を短時間で置換し、その後、水処理に必要十分な量にまでガス流量を下げることもできる。これにより、ガスの使用量を抑制し、かつ、高速な水処理が可能となる。
さらに、本実施の形態1では、放電処理ユニット30a、30b、30cにおいて、5本のワイヤ電極6a、6b、6c、6d、6eを用いた。しかしながら、放電電極の数は、5本には限定されず、平板電極2の寸法、および被処理水4の水質または処理流量などに応じて、適宜変更可能である。
さらに、また、ワイヤ電極6a、6b、6c、6d、6eと平板電極2との間の距離(電極間距離)は、1mm以上、50mm以下とするのが好適である。これは、電極間距離が1mm未満だと、被処理水4を流した際、ワイヤ電極6a、6b、6c、6d、6eが水没してしまう可能性が増加し、電極間距離を50mmよりも大きくすると、放電形成に非常に高い電圧が必要となるためである。
さらに、処理槽1内の圧力は、被処理水4の供給および排水が容易となるように、大気圧またはその近傍とすることが望ましい。ただし、処理槽1内の圧力は、必要に応じて陽圧または陰圧にすることもできる。処理槽1内を陽圧にした場合には、外部からの空気の混入が抑制され、処理槽1内の雰囲気を管理し易くなる。
また、処理槽1内を陰圧にした場合には、比較的低い電圧で放電11a、11b、11c、11d、11eが形成されるようになり、電源の小型化および簡素化が可能となる。さらに、圧力が低いほど、放電11a、11b、11c、11d、11eが広がり易い。このため、広い領域で被処理水4が放電11a、11b、11c、11d、11eと接するようになり、水処理の効率および速度が向上する。
なお、本実施の形態1では、3台の放電処理ユニット30a、30b、30cと2台のオゾン溶解ユニット31a、31bを用いた。しかしながら、放電処理ユニットとオゾン溶解ユニットの台数は、このような実施の形態1の構成には限定されず、処理槽1の寸法、または必要とされる水処理能力などに応じて、適宜設定することができる。
また、放電処理ユニット30cの下段にオゾン溶解ユニット31cを加え、被処理水4が処理槽1の中で、オゾン溶解ユニット31cを最後に通過するようにしてもよい。この場合、処理後水13中の溶存過酸化水素濃度を低減させる効果が得られる。
すなわち、溶存過酸化水素は、残留性が高いため、処理後水13中から除去するために、別途、薬剤添加や活性炭処理等を行う必要が生じる場合がある。一方、溶存オゾンは、水中で数分から数10分で自己分解して消滅するため、別途、除去処理を行う必要がない。最下段にオゾン溶解ユニット31cを設けることで、処理後水13中の溶存過酸化水素濃度を低減させ、別途の過酸化水素除去処理を不要にする効果が得られる。
また、側壁19をメッシュやスリット加工を施した板材で構成することができる。これにより、水処理を停止した際に、水溜部32a、32bに被処理水4が残留することを防ぐとともに、被処理水4の流れを妨げる邪魔板としての効果により、水溜部32a、32bに被処理水4を溜めることができる。
実施の形態2.
図4は、本発明の実施の形態2による水処理装置の断面図である。本実施の形態2は、水溜部32a、32bの構成が、先の実施の形態1と異なるとともに、先の実施の形態1で備えていたインバーター33は有していない。その他の構成は、先の実施の形態1と同様である。
図4において、2個の水溜部32a、32bは、互いに同様の構成であり、それぞれが、底板18と、側壁19とを備えている。底板18は、図4における右側端部が処理槽1の右壁面に接続されており、左側端部には平板状の側壁19が鉛直方向に向けて取り付けられている。
すなわち、水溜部32a、32bは、処理槽1の壁面と底板18と側壁19によって囲まれた箱型の形状を構成している。ここで、側壁19は、底板18に対して上下方向に可動となっており、底板18に対する接続位置を決めて、ボルト35によって締結する構成となっている。
これにより、図4の構成では、底板18から側壁19の最上部までの高さを任意に変更できる。その他の構成は、先の実施の形態1と同様である。
本実施の形態2では、底板18から側壁19の最上部までの高さを任意に変更できることから、水溜部32a、32bの容積を変えることができる。すなわち、底板18と側壁19とボルト35が水溜部32a、32bの容積調節機構となっている。これにより、水溜部32a、32bにおいて、被処理水4が存在する平均時間(滞在時間)を任意に決めることができる。
先の実施の形態1においては、インバーター33により循環ポンプ16の流量を調節することで、被処理水4へのオゾンの溶解量を調節していた。一方、本実施の形態2では、水溜部32a、32bの容積を変えることで、オゾン溶解ユニット31a、31bにおけるオゾンの溶解量を調節することができる。
つまり、水溜部32a、32bの容積が大きい場合には、被処理水4の滞在時間が長くなり、循環ガス中のオゾンと触れる量が多くなり、オゾンの溶解量が増加する。逆に、水溜部32a、32bの容積が小さい場合には、被処理水4の滞在時間が短くなり、循環ガス中のオゾンと触れる量が少なくなり、オゾンの溶解量が減少する。すなわち、本実施の形態2においては、容積調節機構がオゾンの溶解量調節器となっている。
以上の動作により、本実施の形態2の水処理装置では、オゾン溶解ユニット31a、31bにおけるオゾンの溶解量を調節できる。これにより、本実施の形態2においても、O3(l)濃度とH22(l)濃度を独立に調節することができ、被処理水4の水質に応じた最適な水処理を行うことができる。
なお、本実施の形態2では、側壁19の底板18に対する接続位置を決めて、ボルト35で締結することで水溜部32a、32bの容積を変えたが、容積調節機構は、これに限定されるものではない。例えば、側壁19を電動にして処理槽1の外部から上下方向の位置を変更できるようにしてもよい。この場合、処理槽1を開放することなく水溜部32a、32bの容積を変えられることから、作業性や装置の稼働率が向上する。また、容積調節機構として、底板18の寸法を変えるようにしてもよい。
実施の形態3.
図5は、本発明の実施の形態3による水処理装置の断面図である。本実施の形態3は、放電処理ユニット30a、30b、30cとオゾン溶解ユニット31a、31bの構成が、先の実施の形態1と異なる。
本実施の形態3の図5に示した構成において、放電処理ユニット30a、30b、30cにおけるワイヤ電極の数が、それぞれ異なっている。上部に位置する放電処理ユニット30aには、5本のワイヤ電極6a、6b、6c、6d、6eが、中部に位置する放電処理ユニット30bには、4本のワイヤ電極6a、6b、6c、6dが、下部に位置する放電処理ユニット30cには、3本のワイヤ電極6a、6b、6cが、それぞれ備えられている。その他の構成は、すべて先の実施の形態1の構成と同様である。
また、本実施の形態3の図5に示した構成において、オゾン溶解ユニット31aと31bは、水溜部32aと32bの容積が異なっている。オゾン溶解ユニット31aは、側壁19aの高さが比較的低いため、水溜部の容積が比較的小さく、オゾン溶解ユニット31bは、側壁19bの高さが比較的高いため、水溜部32bの容積が比較的大きい。その他の構成は、すべて先の実施の形態1の構成と同様である。
本実施の形態3では、被処理水4が放電処理ユニット30a、30b、30cを通る際、それぞれワイヤ電極の数が異なるため、過酸化水素の溶解量は、放電処理ユニット30a、30b、30cの順で、上流ほど多くなる。
また、被処理水4が上方のオゾン溶解ユニット31aを通る際、水溜部32aの容積が比較的小さく、オゾンとの接触時間が短くなる。このため、オゾン溶解量は、オゾン溶解ユニット31b通過時と比べて少なくなる。逆に、被処理水4が下方のオゾン溶解ユニット31bを通る際、水溜部32bの容積が比較的大きく、オゾンとの接触時間が長くなる。このため、オゾン溶解量は、オゾン溶解ユニット31a通過時と比べて多くなる。
先の実施の形態1においては、各放電処理ユニット30a、30b、30cと、各オゾン溶解ユニット31a、31bの構成が全て同じであった。このため、被処理水4が上流から下流に向けて流れる際の、オゾンと過酸化水素の溶解量は、各段階で同じであった。
一方、本実施の形態3では、オゾンの溶解量は、上流ほど小さく、過酸化水素の溶解量は、上流ほど高くなっている。このため、本実施の形態3の構成は、先の実施の形態1よりもさらに効率的な水処理が可能となる。以下で、その理由を説明する。
被処理水4の難分解性物質の分解には上式(9)におけるOH(l)の反応が重要であり、OH(l)の生成には上式(8)において、O3(l)とH22(l)の両方の濃度を適切に調節する必要がある。
一般に、放電で生成される過酸化水素の生成速度は、オゾンの生成速度と比べて低い。このため、処理槽1の上流で、被処理水4の溶存オゾン濃度は、急速に増加するが、溶存過酸化水素濃度は、緩やかに増加する。このため、処理槽1の上流では、上式(8)は、H22(l)濃度が律速となる。
一方、溶存オゾン濃度は、短時間で飽和に至るが、溶存過酸化水素濃度は、放電電力の増加に伴って増加する。このため、処理槽1の下流では、H22(l)が高く、O3(l)が不足する。
また、被処理水4の有機物の分解により、過酸化水素が副生成物として形成されることがあり、H22(l)がさらに高くなることがある。このため、処理槽1の下流では、上式(8)は、O3(l)濃度が律速となる。このように、処理槽1の上流側と下流側で、上式(8)の律速条件が変化し、OH(l)の生成が制限されている。
ここで、本実施の形態3では、上流側に位置する放電処理ユニットほど、過酸化水素の溶解量が多い。また、下流側に位置するオゾン溶解ユニットほど、オゾンの溶解量が多い。このため、処理槽1の全体にわたって、上式(8)の反応を効率的に生じさせることができ、結果的に、上式(9)による難分解性物質を含む有機物の分解が効果的に生じることとなる。
なお、本実施の形態3では、放電処理ユニット30a、30b、30cのワイヤ電極の数が、それぞれ5、4、3本であり、オゾン溶解ユニット31a、31bに関しては、水溜部32aの容積よりも水溜部32bの容積を大きくした。しかしながら、ワイヤ電極の本数や水溜めの容積は、これに限定されるものではなく、被処理水4の水質や処理水量に応じて、適宜設定することができる。
実施の形態4.
図6は、本発明の実施の形態4による水処理装置の断面図である。本実施の形態4は、循環ガス配管15a、15bにガス流量制御器である循環ガス流量調節器36a、36bがそれぞれ備えられている。また、配線8a、8b、8cに、放電電力制御器であるマッチングユニット37a、37b、37cがそれぞれ備えられている。その他の構成は、先の実施の形態1と同様である。
図6において、循環ポンプ16により循環ガス吸気口14から吸気されたガスは、循環ガス流量調節器36a、36bによって、それぞれ独立に流量調節され、オゾン溶解ユニット31a、31bの散気板17a、17bに供給される。
パルス電源7から出力された高電圧パルス電圧は、マッチングユニット37a、37b、37cにより、それぞれ独立にインピーダンス調節され、放電処理ユニット30a、30b、30cのワイヤ電極6a、6b、6c、6d、6eに印加される。これにより、各放電処理ユニット30a、30b、30cで、独立に調節された電力で放電が形成される。本実施の形態4に係る水処理装置のその他の動作は、先の実施の形態1と同様である。
本実施の形態4によれば、オゾン溶解ユニット31a、31bに供給する循環ガスの流量を、それぞれ独立に調節できる。このため、溶解するオゾンの量も、独立に調節できる。また、放電処理ユニット30a、30b、30cで生じる放電の電力も、独立に調節できる。このため、溶解する過酸化水素の量も、独立に調節できる。
このような構成を備えることで、例えば、先の実施の形態1、2に示した水処理装置と異なり、上流から下流に向けて、オゾンと過酸化水素の溶解量を異ならせることができる。このため、処理槽1の全体にわたって、上式(8)の反応を効率的に生じさせることができ、結果的に、上式(9)による難分解性物質を含む有機物の分解が効果的に生じることとなる。
また、本実施の形態4に係る水処理装置は、先の実施の形態3に示した水処理装置と異なり、各放電処理ユニット30a、30b、30cとオゾン溶解ユニット31a、31bにおいて、簡易にオゾンと過酸化水素の溶解量を変えることができる。このため、被処理水4の水質や処理水量等が変化した場合でも、装置の作り替えすることなく、最適な条件で、水処理を行うことができる。
なお、マッチングユニット37a、37b、37cは、パルス電源7からみた放電処理ユニット30a、30b、30cのインピーダンスを変化させることで、それぞれの放電電力を調節する。そして、このようなマッチングユニット37a、37b、37cには、コイルやコンデンサーや抵抗等の電気素子を適宜組み合わせて用いることができる。
また、循環ガス流量調節器36a、36bとして、例えば、マスフローコントローラ―を用いることができる。しかしながら、より簡易に、ニードルバルブなどで流量を調節できるようにしてもよい。
実施の形態5.
図7は、本発明の実施の形態5による水処理装置の断面図である。本実施の形態5は、放電処理部40とオゾン溶解部41が接続されて、一体となった処理ユニット38a、38b、38c、38dを形成しており、処理槽1の内部には処理ユニットが複数(図7では4個)備えられている。
図7において、放電処理部40は、接地電極に相当する平板電極2と、放電電極に相当する複数(図7では4個)のワイヤ電極6a、6b、6c、6dを備えている。平板電極2は、水平面に対して傾斜して処理槽1の内部に配置されている。すなわち、平板電極2の上流側端部(図7の左端部)は、下流側端部(図7の右端部)よりも高くなっている。
ワイヤ電極6a、6b、6c、6dは、配線8aによってパルス電源7と接続されている。オゾン溶解部41は、水溜部である貯水タンク39と、貯水タンク39の内部に設置された散気部材に相当する散気板17とを備えている。散気板17は、循環ガス配管15aによって、循環ポンプ16と接続されている。すわなち、散気板17と循環ガス配管15aと循環ポンプ16により、オゾン供給部が構成されている。
平板電極2の下流側端部と貯水タンク39の最上部が接続されている。そして、放電処理部40とオゾン溶解部41が一体となって、処理ユニット38aを形成している。
処理槽1の内部には、4個の処理ユニット38a、38b、38c、38dが、鉛直方向に、左右互い違いの方向に形成されている。これにより、最上部から供給された被処理水4は、処理ユニット38a、38b、38c、38dの順に連続して流下する。
次に、本実施の形態5に係る水処理装置の動作について説明する。給水口1aから処理槽1内に供給された被処理水4は、処理ユニット38aの平板電極2の上を流下する。さらに、平板電極2の下流側端部を通過した被処理水4は、貯水タンク39に流れ落ちる。
一定時間が経過すると、貯水タンク39の水位が上昇し、被処理水4が貯水タンク39の側壁(図7の右側側面)に沿って流れ落ち、処理ユニット38bの平板電極2の上に落下する。以下、同様に、処理ユニット38b、38c、38dの順に流れた被処理水4は、処理槽1の底部に溜まり、排水口1cより排水される。
ここで、パルス電源7を動作させて、ワイヤ電極6a、6b、6c、6dと平板電極2との間に放電を形成する。さらに、循環ポンプ16を動作させ、処理槽1内のガスを吸気して、散気板17から吐出させる。これにより、放電処理部40においては、上式(5)、(9)の反応により、被処理水4が処理され、オゾン溶解部41においては、上式(9)の反応により、被処理水4が処理される。
本実施の形態5では、放電処理部40とオゾン溶解部41が一体となった処理ユニット38a、38b、38c、38dを備えている。このため、先の実施の形態1のように、放電処理ユニット30a、30b、30cとオゾン溶解ユニット31a、31bを別々に備える必要がない。従って、装置構成が簡素化され、部品点数を減らせることから、装置コストを抑制できる。
なお、本実施の形態5においては、平板電極2の下流側端部と貯水タンク39の最上部が接続されて、放電処理部40とオゾン溶解部41が一体となって処理ユニット38aを形成している。しかしながら、一体化された処理ユニット38aの構成は、このような構成に限定されるものではない。例えば、平板電極2が窪みを有しており、その窪みを水溜めとして用い、さらに散気板17を備えるようにしてもよい。
実施の形態6.
図8は、本発明の実施の形態6による水処理装置の断面図である。図8において、密閉構造の金属製の処理槽1の上部には、給水口1aおよびガス排出口1bが設けられている。処理槽1の下部には、排水口1cが設けられている。処理槽1の側面には、ガス供給口1dが設けられている。
処理槽1内には、接地電極に相当する平板電極2が収容されている。平板電極2は、処理槽1の底面に立てられた架台A42および架台B43により支持されており、水平面に対して傾斜して配置されている。すなわち、平板電極2の上流側端部(図8の右端部)は、下流側端部(図8の左端部)よりも高くなっている。
平板電極2の上流側端部は、給水口1aの真下に配置されている。被処理水4は、給水口1aから処理槽1内に供給され、平板電極2の上面に沿って斜め下方へ流れ、排水口1cから処理槽1の外へ排出される。
ガス供給口1dには、酸素ガスを満たしたガス供給源9が、流量調節器10を介して接続されている。平板電極2には、複数の(この例では3箇所の)放電処理部49a、49b、49cと、複数の(この例では2箇所の)オゾン溶解部50a、50bが、被処理水4の流れ方向に対して交互に形成されている。
すなわち、最上流側に放電処理部49a、次に、オゾン溶解部50a、さらに、放電処理部49b、さらに、オゾン溶解部50b、さらに、放電処理部49cの順番に形成されている。
放電処理部49a、49b、49cは、いずれも同じ構成であり、平板電極2の上方にそれぞれ放電電極に相当するワイヤ電極6a、6b、6cが備えられている。ワイヤ電極6a、6b、6cは、被処理水4の流下方向に互いに間隔をおいて配置されている。また、ワイヤ電極6a、6b、6cは、平板電極2の上面に対して等間隔で配置されている。さらに、ワイヤ電極6a、6b、6cは、平板電極2の幅方向に、平行かつ水平に張られている。
オゾン溶解部50a、50bは、いずれも同じ構成であり、平板電極2に複数の細孔47a、47bが形成されている。平板電極2の下面には、バッファー46を介して、裏板45が気密接続されている。また、裏板45には、接続口44が備えられており、接続口44には、循環ガス配管15が接続されている。
処理槽1の外部には、パルス電源7が設置されている。ワイヤ電極6a、6b、6cは、パルス電源7に対して配線8を介して並列に接続されている。パルス電源7は、処理槽1に対して絶縁体48により電気的に絶縁されている。平板電極2は、電気的に接地されている。
処理槽1の側面には、循環ガス吸気口14が備えられており、循環ガス吸気口14と接続口44が、循環ガス配管15によって接続されている。また、循環ガス配管15には、循環ポンプ16が備えられている。循環ポンプ16と循環ガス配管15と細孔47a、47bによって、オゾン供給部が形成されている。
次に、本実施の形態6における水処理装置の動作について説明する。給水口1aから処理槽1内に供給された被処理水4は、平板電極2上に水膜3を形成して流下し、排水口1cから排出される。ここで、水膜3とワイヤ電極6a、6b、6cとの間には、気体層である空隙51が形成されている。すなわち、水膜3の厚さは、ワイヤ電極6a、6b、6cと水膜3の水面との間に空隙51が形成されるように調節される。
ここで、パルス電源7を動作させ、ワイヤ電極6a、6b、6cにパルス電圧を印加することで、ワイヤ電極6a、6b、6cから平板電極2の方向に放電11a、11b、11cが形成される。さらに、循環ポンプ16を動作させ、処理槽1内のガスを循環ガス吸気口14から吸気し、接続口44から吐出させる。
平板電極2上を流れる被処理水4は、まず、放電処理部49aにおいて放電11aと接することで、上式(5)、(9)の反応により処理される。次に、オゾン溶解部50aにおいて、処理槽1から吸気された循環ガスが、気泡21となって被処理水4中を上昇する。すなわち、平板電極2自体が水溜部の機能を果たす。
これにより、循環ガス中のオゾンが被処理水4に溶解し、上式(9)による処理がなされる。以降、被処理水4は、放電処理部49b、オゾン溶解部50b、放電処理部49cと通り、処理後水13となって排水口1cから排出される。水処理の詳細な原理は、先の実施の形態1と同様である。
本実施の形態6によれば、1枚の平板電極2を用いて、複数の放電処理部と複数のオゾン溶解部を交互に形成することができる。このため、先の実施の形態1と比較して、少ない構成部品で水処理装置を構成でき、同様の効果を得ることができる。
なお、本実施の形態6で示した平板電極2、ワイヤ電極6a、6b、6c、および裏板45を1つのカートリッジとして、処理槽1の内部に複数のカートリッジを備えるように構成してもよい。このとき、被処理水4が各カートリッジを連続的に流れるようにする。これにより、カートリッジを1個のみ備える場合と比較して、高い水処理性能が得られる。
また、本実施の形態6では、3箇所の放電処理部49a、49b、49cと、2箇所のオゾン溶解部50a、50bを備えている。しかしながら、それぞれの数は、これに限定されるものではなく、被処理水4の水質や処理水量に応じて、適宜設定することができる。
また、平板電極2の細孔47a、47bを有する領域の上面を、他の領域より凹ませることもできる。これにより、水溜部の容積を大きくすることができ、オゾン溶解部50a、50bでのオゾンの溶解量を増やすことができる。
実施の形態7.
図9は、本発明の実施の形態7による水処理装置の断面図である。図9において、オゾン溶解ユニット31aの水溜部32aの処理槽1側の側壁には、サンプリングポート56aが設けられている。そして、サンプリングポート56aには、サンプリング配管57aが繋がれている。
同様に、オゾン溶解ユニット31bの水溜部32bの処理槽1側の側壁には、サンプリングポート56bが設けられている。そして、サンプリングポート56bには、サンプリング配管57bが繋がれている。
サンプリング配管57a、57bは、それぞれ水質計53に接続されている。また、処理槽1の外部に、統括制御器である制御ユニット54を備えている。その他の構成は、先の実施の形態4と同様である。
図10は、本発明の実施の形態7による水処理装置のシステム図である。図10において、制御ユニット54と水質計53は、信号線でつながれている。また、制御ユニット54と循環ガス流量調節器36a、36bも、信号線でつながれている。さらに、制御ユニット54とマッチングユニット37a、37b、37cも、信号線でつながれている。
次に、本実施の形態7に係る水処理装置の動作について説明する。水溜部32a、32bに溜まった被処理水4の水質を、水質計53によって分析する。水質計53で分析する水質データは、例えば、溶存オゾン濃度、溶存過酸化水素濃度、有機物濃度である。
水質計53によって得られた水質データは、制御ユニット54へ送られる。制御ユニット54は、水質計53から受信した水質データに基づき、循環ガス流量調節器36a、36bとマッチングユニット37a、37b、37cを制御する。
これにより、オゾン溶解ユニット31a、31bに供給される循環ガスの流量、および、放電処理ユニット30a、30b、30cに供給される放電電力が調節される。すなわち、図10の構成を備えることで、制御ユニット54は、オゾン溶解ユニット31a、31bと放電処理ユニット30a、30b、30cを、被処理水4の水質に応じた最適化条件で動作させることができる。
例えば、被処理水4の有機物が分解される過程で、過酸化水素が副生成物として形成されることがある。この場合、H22(l)濃度が過剰となり、ラジカルスカベンジャーとなってOH(l)を無効に消費することとなってしまう。これに対して、本実施の形態7における制御ユニット54は、水質計53による水質データに基づいて、水溜部32aのH22(l)濃度が過剰であることが分かる。
そこで、制御ユニット54は、マッチングユニット37bと37cを調節して、放電処理ユニット30b、30cの放電電力を下げ、過酸化水素の溶解量を抑制する。さらに、制御ユニット54は、循環ガス流量調節器36bを調節し、オゾン溶解ユニット31bに供給される循環ガス流量を増加させ、オゾンの溶解量を増加させる。これにより、H22(l)とO3(l)の濃度バランスが適正となり、効率的な水処理が行えるようになる。
また、別の制御例として、被処理水4の有機物濃度が低い場合や、容易に分解される物質が多く含まれている場合には、制御ユニット54は、水質計53による水質データに基づいて、水溜部32bの有機物濃度が十分に低いことが分かる。この場合には、制御ユニット54は、マッチングユニット37cを制御して、放電処理ユニット30cの放電を停止させる。これにより、有機物分解後の不要な放電がなくなり、水処理のエネルギー効率が向上する。
実施の形態8.
図11は、本発明の実施の形態8による水処理装置の断面図である。図11において、オゾン溶解ユニット31aの水溜部32aには、サンプリング配管57aが、オゾン溶解ユニット31bの水溜部32bには、サンプリング配管57bが、それぞれ繋がれている。
サンプリング配管57a、57bは、それぞれpH計58に接続されている。また、水溜部32a、32bには、それぞれpH調節器59a、59bが接続されている。その他の構成は、先の実施の形態1と同様である。
実施の形態8では、水溜部32a、32bの被処理水4のpHを、pH計58によって測定する。pH調節器59a、59bは、pH計58によって測定されたpH値に基づき、水溜部32a、32bの被処理水4のpHを、水処理に適した値に調節する。その他の動作は、先の実施の形態1と同様である。
22(l)とO3(l)によるOH(l)の生成反応(すなわち、上式(8)の反応)の発生頻度は、pHに依存し、一般に、中性付近(pH=7程度)が好適である。一方、被処理水4の水質によっては、水処理の進行に伴ってpHが変化する場合がある。
例えば、被処理水4中の有機物の分解に伴って、ギ酸や酢酸等の有機酸が副生成物として生成され、pHが下がることがある。または、被処理水4中に、例えば、スルホン酸やアミノ酸などが含まれる場合、分解過程で硫酸イオンや硝酸イオンが形成されて、pHが下がることがある。
このような場合、pH調節器59a、59bは、水溜部32aと32bに対して、例えば、水酸化ナトリウム等の塩基物質を供給する、あるいは、リン酸塩等の緩衝剤を添加し、被処理水4のpHを中性付近に調整する。これにより、本実施の形態8に係る水処理装置は、上式(8)の反応を効率的に発生させ、効果的に水処理を行うことができる。
実施の形態9.
図12は、本発明の実施の形態9による水処理装置の断面図である。図12において、オゾン溶解ユニット31a、31bのそれぞれの水溜部32a、32bには、紫外線ランプ60a、60bが、被処理水4に浸漬するように備えられている。その他の構成は、先の実施の形態1と同様である。
3(l)、またはH22(l)、またはその両方を含む水に紫外線を照射すると、下式(12)、(13)の反応により、OH(l)が生成される。
3(l) + hν → OH(l) (12)
22(l) + hν → OH(l) (13)
このため、図12の通り、水溜部32a、32bに紫外線ランプ60a、60bを備え、水溜部32a、32bの被処理水4に対して紫外線を照射することで、上式(9)による水処理が促進される。さらに、循環ガスによって継続的にオゾンが溶解するため、上式(12)の反応が継続的に生じ、高速かつ高効率な水処理が実現される。
なお、紫外線ランプは、特に限定されないが、低圧水銀ランプ、エキシマランプ、LEDなどを用いることができる。また、被処理水4の水質や処理水量に応じて、紫外線の光強度を調節するようにしてもよい。また、紫外線は、必ずしも常時点灯させる必要はなく、間欠的に点灯させてもよい。
実施の形態10.
図13は、本発明の実施の形態10による水処理装置の断面図である。本実施の形態10は、放電処理ユニット30a、30b、30cの構成が、先の実施の形態1と異なる。図13において、放電処理ユニット30a、30b、30cは、互いに同様の構成であり、水平面に対して傾斜して配置された平板電極2と、平板電極2の上方に、下部空隙65を介して平板電極2と水平に配置された、放電電極であるメッシュ電極61と、メッシュ電極61の上方に、上部空隙66を介してメッシュ電極61と水平に配置された平板状の第二平板電極62と、を備えている。
メッシュ電極61は、パルス電源7と接続されており、平板電極2と第二平板電極62がいずれも電気的に接地されている。その他の構成は、先の実施の形態1と同様である。
図13において、パルス電源7を動作させてメッシュ電極61に高電圧のパルス電圧を印加する。これにより、平板電極2を流れる被処理水4が形成する水膜3の水面に対する放電、すなわち、下部放電63が形成される。同時に、メッシュ電極61と第二平板電極62との間に気相放電、すなわち、上部放電64が形成される。その他の動作は、先の実施の形態1と同様である。
先の実施の形態1においては、ワイヤ電極6a、6b、6c、6d、6eと平板電極2の間のみに放電11a、11b、11c、11d、11eを形成していた。この場合、水膜3に向けた放電になることから、過酸化水素が多く生成される。一方、本実施の形態10においては、メッシュ電極61と平板電極2の間の下部放電63に加えて、メッシュ電極61と第二平板電極62の間にも上部放電64が形成される。
水面に対する放電である下部放電63では、過酸化水素が多く生成され、気相放電である上部放電64では、オゾンが多く生成される。結果的に、先の実施の形態1と比較して、オゾンの生成量が増加することになる。
例えば、オゾンでも容易に分解される物質を多く含む被処理水4を処理する場合、上式(9)の反応において、オゾンが多く消費されるようになる。この場合、先の実施の形態1においては、循環ポンプ16の流量を多くし、被処理水4に対するオゾンの溶解量を増加させていた。しかしながら、処理槽1内のオゾン量は、放電11a、11b、11c、11d、11eで生成される速度によって制限されるため、オゾンが不足することがある。
一方、本実施の形態10では、水面への下部放電63に加えて、気相での上部放電64が形成されるため、より多くのオゾンが生成される。これにより、オゾンが不足することなく、高速かつ高効率な水処理が実現される。
なお、本実施の形態10では、放電電極としてメッシュ電極61を用いたが、メッシュ形状に限定されるものではない。例えば、ワイヤ、ロッド、針、ネジ、リボン、またはパンチングメタルなどを放電電極として用いることができる。
実施の形態11.
図14は、本発明の実施の形態11による水処理装置の断面図である。本実施の形態11では、放電処理ユニットとオゾン溶解ユニットの数と配列が、先の実施の形態1と異なる。図14において、処理槽1の内部には、3個の放電処理ユニット30a、30b、30cと、4個のオゾン溶解ユニット31a、31b、31c、31dが備えられている。
処理槽1の中において、最上部に放電処理ユニット31aが備えられ、その下にオゾン溶解ユニット31aが備えられ、その下にオゾン溶解ユニット31bが備えられ、その下に放電処理ユニット30bが備えられている。以下、同様に、オゾン溶解ユニット31c、オゾン溶解ユニット31d、そして最下部に放電処理ユニット30cの順に備えられている。
被処理水4は、最上部に位置する放電処理ユニット30aから最下部に位置する放電処理ユニット30cまでを連続的に流下する。なお、放電処理ユニット30a、30b、30cとオゾン溶解ユニット31a、31b、31c、31dの構成は、いずれも先の実施の形態1と同様である。
先の実施の形態1では、放電処理ユニットとオゾン溶解ユニットが上下方向に交互に配列されていた。これに対して、本実施の形態11では、放電処理ユニット1個の下にオゾン溶解ユニット2個が配列されている。その他の構成は、先の実施の形態1と同様である。
本実施の形態11によれば、先の実施の形態1と比べて、さらに多くのオゾンを被処理水4に溶解させることができる。従って、被処理水4の組成によってオゾンを多く消費する場合、あるいは副生成物として多くの過酸化水素が生成されるような条件においても、オゾンを欠乏させることなく、効率的かつ高速な水処理が達成される。
なお、本実施の形態11では、放電処理ユニット1個の下にオゾン溶解ユニット2個が配列される配列としたが、配列は、これに限定されず、任意に決めることができる。例えば、本実施の形態11とは逆に、放電処理ユニット2個の下に、オゾン溶解ユニット1個を配列することもできる。配列は、被処理水4の水質に応じて、適宜決定すればよい。
また、放電処理ユニットが必ずしも最上流にある必要はなく、最上流にオゾン溶解ユニットを配置し、その下流に放電処理ユニットを配置するようにしても、同様の効果が得られる。
実施の形態12.
図15は、本発明の実施の形態12による水処理装置の断面図である。本実施の形態12では、オゾン溶解ユニットの構成が、先の実施の形態1と異なる。図15において、オゾン溶解ユニット31a、31bは、それぞれ水溜部32a、32bと、オゾン供給部から形成されている。
水溜部32a、32bは、互いに同様の構成であり、それぞれが底板18と側壁19とを備えている。水溜部32aの底板18は、図15における右側端部が処理槽1の右壁面に接続されており、左側端部には平板状の側壁19が鉛直方向に取り付けられている。すなわち、水溜部32a、32bは、処理槽1の壁面と底板18と側壁19によって箱型の形状を構成している。
水溜部32a、32bのそれぞれの側壁19の最上部より高い位置には、散気部材に相当するノズル67a、67bが備えられている。そして、ノズル67a、67bは、それぞれ循環ガス配管15a、15bと接続されており、循環ガス配管15には循環ポンプ16が備えられている。
すなわち、本実施の形態12では、循環ポンプ16と、循環ガス配管15、15a、15bと、ノズル67a、67bが、オゾン供給部を構成している。また、ノズル67a、67bは、ガス噴き出し方向が図15中で下を向くように取り付けられている。
循環ポンプ16によって吸気されたオゾンを含む処理槽1内のガスは、循環配管15、15a、15bとノズル67a、67bを通って、水溜部32a、32bに溜められた被処理水4の水面に吹き付けられる。これにより、被処理水4にオゾンが溶解する。
その他の動作は、先の実施の形態1と同様である。先の実施の形態1では、水溜部32a、32b内の散気板17a、17bによって被処理水4にオゾンを供給した。しかしながら、被処理水4の水質によっては、長時間の動作により散気板17a、17bが目詰まりを起こすことがある。一方、本実施の形態12では、ノズル67a、67bは、被処理水4と接していない。このため、目詰まりを生じることなく、長期間動作させることができる。
実施の形態13.
図16は、本発明の実施の形態13による水処理装置の断面図である。本実施の形態13では、オゾン溶解ユニットの構成が、先の実施の形態1と異なる。図16において、オゾン溶解ユニット31a、31bは、それぞれ傾斜板68a、68bと、突起69a、69bにより構成される。
傾斜板68aは、水平面に対して傾斜して備えられ、直上に位置する放電処理ユニット30aの平板電極2と逆方向の傾斜となっている。また、傾斜板68aは、処理槽1の中にあって、直上に位置する放電処理ユニット30aの平板電極2と反対側の側面に固定されている。傾斜板68bも同様の構成となっている。
これにより、処理槽1の最上部から供給される被処理水4は、放電処理ユニット30a、傾斜板68a、放電処理ユニット30b、傾斜板68b、放電処理ユニット30cの順に、一連の流れとして流下する。
傾斜板68a、68bの上面には、それぞれ複数(図16では5個)の突起69a、69bが備えられている。本実施の形態13では、例えば、傾斜板68a、68bを備えない場合と比較して、被処理水4が処理槽1の内部に、より長時間滞在する。すなわち、傾斜板68a、68bが水溜部として働く。
また、被処理水4が傾斜板68a、68b上を流下する際、突起69a、69bにより撹拌される。これにより、処理槽1内のオゾンとの接触頻度が増加し、多くのオゾンが被処理水4に溶解する。すなわち、突起69a、69bがオゾン供給部として働く。
本実施の形態13は、先の実施の形態1と異なり、循環ガス吸気口14、循環ガス配管15、15a、15b、循環ポンプ16、散気板17a、17bを備えていない。しかしながら、本実施の形態13は、傾斜板68a、68b(水溜部)と、突起69a、69b(オゾン供給部)により、先の実施の形態1と同様の効果を得られる。従って、よりシンプル、かつ少ない構成部品により、高速かつ高効率な水処理が行われる。

Claims (16)

  1. 処理槽の内部に複数の放電処理ユニットを備え、前記放電処理ユニットは、接地電極と、前記接地電極に対向する放電電極を有し、前記接地電極と前記放電電極との間に放電を形成し、前記放電によりオゾンを生成するとともに、被処理水を前記放電に触れさせることで前記被処理水を処理する水処理装置において、
    前記処理槽の内部に、前記複数の放電処理ユニットのうちの1つの放電処理ユニットで処理された前記被処理水を溜める水溜部と、
    前記処理槽内の前記オゾンを前記水溜部に溜められた前記被処理水に供給するオゾン供給部と
    を備え、
    前記接地電極は、前記被処理水を溜める前記水溜部の空間の外部に配置され、
    前記水溜部と前記オゾン供給部とでオゾン溶解ユニットが構成され、
    前記被処理水が、前記複数の放電処理ユニットを一連の流れとして通過する
    水処理装置。
  2. 前記複数の放電処理ユニットのそれぞれは、前記被処理水に過酸化水素を溶解させる
    請求項1に記載の水処理装置。
  3. 前記オゾン溶解ユニットは、前記処理槽の内部において、前記被処理水の流れの最上流側に設けられている
    請求項1または2に記載の水処理装置。
  4. 1つの放電処理ユニットと、1つのオゾン溶解ユニットを一対の一体化した処理ユニットとして形成し、前記処理槽の内部に前記処理ユニットが複数段配置される
    請求項1から3のいずれか1項に記載の水処理装置。
  5. 前記複数の放電処理ユニットのそれぞれと前記オゾン溶解ユニットのそれぞれとが交互に配置された構成が、1枚の平板電極上において形成されている
    請求項1から4のいずれか1項に記載の水処理装置。
  6. 前記オゾン溶解ユニットの少なくとも1つは、前記水溜部に溜められた前記被処理水に紫外線を照射する紫外線ランプを有する
    請求項1から5のいずれか1項に記載の水処理装置。
  7. 前記接地電極は、水平面に対して傾斜して配置された平板電極であり、前記平板電極の上面に沿って前記被処理水が流され、
    前記放電電極は、前記平板電極を流れる前記被処理水が形成する水膜と、前記水膜の上方に形成された気体層とを介して、前記平板電極に対向配置され、
    前記複数の放電処理ユニットのそれぞれは、前記平板電極と前記放電電極との間に電圧が印加されることで前記放電を形成する
    請求項1からのいずれか1に記載の水処理装置。
  8. 前記複数の放電処理ユニットのそれぞれは、前記放電電極を間に挟んで前記平板電極と対向配置され、前記放電電極の上方に空隙を介して設けられた第2平板電極を有する
    請求項に記載の水処理装置。
  9. 前記複数の放電処理ユニットは、互いに縦並びの方向に配置されている
    請求項1からのいずれか1項に記載の水処理装置。
  10. 前記水溜部は、底板と、前記底板を囲うように配置された側壁とから構成された箱型の水溜めであり、前記水溜めに前記被処理水が溜められる
    請求項1からのいずれか1項に記載の水処理装置。
  11. 前記オゾン供給部は、ガス循環装置と、循環配管と、散気部材から構成され、
    前記散気部材は、前記水溜部に溜められた前記被処理水に接触するように配置され、
    前記循環配管は、前記ガス循環装置によって前記処理槽から吸気した気体を、前記散気部材から吐出させるように接続され、前記散気部材から吐出された前記気体を前記水溜部の前記被処理水中に噴出させる
    請求項1から10のいずれか1項に記載の水処理装置。
  12. 前記水溜部は、上面に沿って前記被処理水が流下するように、水平面に対して傾斜して配置された傾斜板であり、
    前記オゾン供給部は、前記傾斜板の上面に設けられた突起で構成され、
    前記突起は、前記傾斜板を流下する前記被処理水の流れを撹拌する
    請求項1からのいずれか1項に記載の水処理装置。
  13. 処理槽の内部に複数の放電処理ユニットを備え、前記放電処理ユニットは、接地電極と、前記接地電極に対向する放電電極を有し、前記接地電極と前記放電電極との間に放電を形成し、前記放電によりオゾンを生成するとともに、被処理水を前記放電に触れさせることで前記被処理水を処理する水処理装置において実行される水処理方法であって、
    前記処理槽の内部に、前記複数の放電処理ユニットのうちの1つの放電処理ユニットにある水溜部の外部の接地電極で処理された前記被処理水を前記水溜部に溜めるステップと、
    前記処理槽内の前記オゾンを前記水溜部に溜められた前記被処理水に供給してオゾン溶解を行うステップと
    を有し、
    前記被処理水が、前記複数の放電処理ユニットを一連の流れとして通過することで、前記被処理水を処理する水処理方法。
  14. 前記被処理水の水質データを、水質計を介して取得するステップと、
    取得した前記水質データに基づいて、共通電源から供給される電力を個別に調整し、所望の放電電力で放電を形成するように制御するステップと
    をさらに有する請求項13に記載の水処理方法。
  15. 処理槽の内部に複数の放電処理ユニットを備え、前記放電処理ユニットは、接地電極と、前記接地電極に対向する放電電極を有し、前記接地電極と前記放電電極との間に放電を形成し、前記放電によりオゾンを生成するとともに、被処理水を前記放電に触れさせることで前記被処理水を処理する水処理装置において、
    前記処理槽の内部に、前記複数の放電処理ユニットのうちの1つの放電処理ユニットで処理された前記被処理水を溜める水溜部と、
    前記処理槽内の前記オゾンを前記水溜部に溜められた前記被処理水に供給するオゾン供給部と
    を備え、
    前記被処理水が、前記複数の放電処理ユニットを一連の流れとして通過し、
    前記オゾン供給部は、ガス循環装置と、循環配管と、散気部材から構成され、
    前記散気部材は、前記水溜部に溜められた前記被処理水に接触するように配置され、
    前記循環配管は、前記ガス循環装置によって前記処理槽から吸気した気体を、前記散気部材から吐出させるように接続され、前記散気部材から吐出された前記気体を前記水溜部の前記被処理水中に噴出させる
    水処理装置。
  16. 処理槽の内部に複数の放電処理ユニットを備え、前記放電処理ユニットは、接地電極と、前記接地電極に対向する放電電極を有し、前記接地電極と前記放電電極との間に放電を形成し、前記放電によりオゾンを生成するとともに、被処理水を前記放電に触れさせることで前記被処理水を処理する水処理装置において、
    前記処理槽の内部に、前記複数の放電処理ユニットのうちの1つの放電処理ユニットで処理された前記被処理水を溜める水溜部と、
    前記処理槽内の前記オゾンを前記水溜部に溜められた前記被処理水に供給するオゾン供給部と
    を備え、
    前記被処理水は、前記複数の放電処理ユニットを一連の流れとして通過し、
    前記水溜部は、上面に沿って前記被処理水が流下するように、水平面に対して傾斜して配置された傾斜板であり、
    前記オゾン供給部は、前記傾斜板の上面に設けられた突起で構成され、
    前記突起は、前記傾斜板を流下する前記被処理水の流れを撹拌する
    水処理装置。
JP2016570519A 2015-01-20 2015-12-18 水処理装置および水処理方法 Expired - Fee Related JP6161839B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015008815 2015-01-20
JP2015008815 2015-01-20
PCT/JP2015/085513 WO2016117259A1 (ja) 2015-01-20 2015-12-18 水処理装置および水処理方法

Publications (2)

Publication Number Publication Date
JPWO2016117259A1 JPWO2016117259A1 (ja) 2017-06-08
JP6161839B2 true JP6161839B2 (ja) 2017-07-12

Family

ID=56416818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016570519A Expired - Fee Related JP6161839B2 (ja) 2015-01-20 2015-12-18 水処理装置および水処理方法

Country Status (5)

Country Link
US (1) US10035718B2 (ja)
JP (1) JP6161839B2 (ja)
CN (1) CN107207292B (ja)
SG (1) SG11201704675RA (ja)
WO (1) WO2016117259A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201803759QA (en) 2015-12-04 2018-06-28 Mitsubishi Electric Corp Water treatment apparatus and water treatment method
SG11201805241SA (en) 2015-12-24 2018-07-30 Mitsubishi Electric Corp Water treatment device and water treatment method
CN111886205A (zh) * 2018-03-22 2020-11-03 三菱电机株式会社 水处理装置及水处理方法
LT3562276T (lt) 2018-04-23 2021-05-10 Leibniz-Institut für Plasmaforschung und Technologie e.V. Skysčių plazminio apdorojimo įrenginys
US20220081328A1 (en) * 2018-11-30 2022-03-17 Graforce Gmbh Method And Device For A Plasma-Induced Water Purification
EP3823112A1 (en) * 2019-11-18 2021-05-19 Groon Co., Ltd. Electron generation apparatus capable of multi-stage boosting for variable capacity
FR3108603A1 (fr) * 2020-03-31 2021-10-01 Sorbonne Universite Dispositif de traitement d’un liquide par plasma et procédé de mise en œuvre correspondant

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4850563A (ja) * 1971-11-01 1973-07-17
US5862956A (en) * 1997-06-26 1999-01-26 Kimberly-Clark Worldwide, Inc. Dispensing system for flowable liquids
US6793801B2 (en) * 2002-01-03 2004-09-21 Herbert W. Holland Method and apparatus for removing contaminants from conduits and fluid columns
TW200528390A (en) * 2004-02-25 2005-09-01 Toshiba Mitsubishi Elec Inc Apparatus and method of producing ozone gas
EP1905512B1 (en) * 2005-07-15 2015-11-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Method for producing photocatalytic material
JP4635204B2 (ja) 2006-01-25 2011-02-23 国立大学法人名古屋大学 水処理方法および水処理装置
JP2007307486A (ja) * 2006-05-18 2007-11-29 Toshiba Corp ラジカル処理システム
US20110240539A1 (en) 2008-11-12 2011-10-06 Taisuke Nose Water treatment system
US20100240943A1 (en) * 2009-03-19 2010-09-23 Solnik Dvir Degradation of organic pollutants in an aqueous environment using corona discharge
JP2011251275A (ja) 2010-06-04 2011-12-15 Sekisui Chem Co Ltd 水処理方法及びこの水処理方法に用いる水処理装置
JP5778911B2 (ja) 2010-10-29 2015-09-16 東京エレクトロン株式会社 水滅菌装置及び水滅菌方法
JP2013081916A (ja) * 2011-10-12 2013-05-09 Panasonic Corp 水処理装置
WO2015111240A1 (ja) 2014-01-23 2015-07-30 三菱電機株式会社 水処理装置及び水処理方法

Also Published As

Publication number Publication date
US20170362107A1 (en) 2017-12-21
US10035718B2 (en) 2018-07-31
CN107207292B (zh) 2018-09-04
SG11201704675RA (en) 2017-08-30
JPWO2016117259A1 (ja) 2017-06-08
WO2016117259A1 (ja) 2016-07-28
CN107207292A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6161839B2 (ja) 水処理装置および水処理方法
JP3995654B2 (ja) 絶縁体放電系で水中放電を利用したオゾン水発生装置
WO2015111240A1 (ja) 水処理装置及び水処理方法
JP2005058887A (ja) 高電圧パルスを利用した廃水処理装置
KR20190043257A (ko) 플라즈마 활성수 제조 시스템 및 방법
JP2013049015A (ja) 水処理装置
US9868655B1 (en) Water treatment apparatus and water treatment method
JP2014159008A (ja) 水処理装置
KR20140104360A (ko) 수 처리 장치
US9914655B2 (en) Water treatment apparatus and water treatment method
US10723638B2 (en) Liquid treatment device
JP6486569B1 (ja) 水処理装置および水処理方法
JP2001293478A (ja) 排水処理装置
JP2002126769A (ja) オゾン水処理装置
WO2019175998A1 (ja) 水処理装置及び水処理方法
JP2009034625A (ja) 排水処理装置及び方法
JP6430076B1 (ja) 水処理装置
JP2005013858A (ja) 高電圧パルスを利用した排水処理装置及び該方法
JP6029605B2 (ja) 水処理装置及び水処理方法
JP6529705B1 (ja) 水処理システム及び水処理方法
JP2004098039A (ja) マイナスイオン発生装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170202

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170202

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170613

R150 Certificate of patent or registration of utility model

Ref document number: 6161839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees