WO2015110310A1 - Verfahren zur optimierten herstellung von metallischen stahl- und eisenlegierungen in warmwalz- und grobblechwerken mittels eines gefügesimulators, -monitors und/oder -modells - Google Patents

Verfahren zur optimierten herstellung von metallischen stahl- und eisenlegierungen in warmwalz- und grobblechwerken mittels eines gefügesimulators, -monitors und/oder -modells Download PDF

Info

Publication number
WO2015110310A1
WO2015110310A1 PCT/EP2015/050460 EP2015050460W WO2015110310A1 WO 2015110310 A1 WO2015110310 A1 WO 2015110310A1 EP 2015050460 W EP2015050460 W EP 2015050460W WO 2015110310 A1 WO2015110310 A1 WO 2015110310A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical strength
metallurgical
strength property
operating parameters
program
Prior art date
Application number
PCT/EP2015/050460
Other languages
English (en)
French (fr)
Inventor
August Sprock
Christoph Hassel
Original Assignee
Sms Group Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53497928&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015110310(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sms Group Gmbh filed Critical Sms Group Gmbh
Priority to RU2016133849A priority Critical patent/RU2703009C2/ru
Priority to CN201580005409.5A priority patent/CN106413931B/zh
Priority to EP15701113.1A priority patent/EP3096896B1/de
Priority to JP2016547925A priority patent/JP6297159B2/ja
Priority to KR1020167020718A priority patent/KR20160105464A/ko
Priority to US15/113,260 priority patent/US20170002440A1/en
Publication of WO2015110310A1 publication Critical patent/WO2015110310A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention is directed to a method for controlling a metallurgical production plant for producing a product from a metallic steel and / or iron alloy, wherein the manufacturing process is controlled at least partially by means of a microstructure simulator and / or microstructure and / or structural model, which / at least one a mechanical strength property of the produced, the metallic steel and / or iron containing product containing program comprises, by means of which the at least one mechanical strength property depending on a respective process chain based on calculated metallurgical phase components and / or their respective shares in the adjusting metallurgical microstructure the process chain of the metallurgical production plant includes a hot rolling and / or plate rolling mill with a final cooling section and in the calculation of the at least one mechanical strength property operating parameters of the metallurgical production plant, on which the obtained at least one mechanical strength property depends, with at least partially set in advance, customizable initial values.
  • the reel or cooling stop temperature as well as the cooling rate are specified as the mechanical strength properties of the product obtained can be adjusted to a large extent. Changes in these parameters are therefore inevitably also noticeable in changes in the mechanical strength properties, but only later on the basis of tensile tests on tensile specimens taken from the product produced can be determined. Setting the respective desired mechanical strength properties to the desired extent is one of the essential goals of a rolling process, since these properties substantially determine the price that can be achieved for the product produced on the market.
  • the operating parameters are determined by means of a microstructure optimizer depending on the desired material properties of the steel or aluminum, the material properties being the yield strength, the yield strength, the tensile strength, the elongation at break, the hardness, the transition temperature, the anisotropy or the solidification exponent of the steel or aluminum can.
  • DE 10 2007 007 560 A1 discloses a method for supporting an at least partially manual control of a metalworking line in which strip-shaped or slab-shaped or pre-profiled material is processed.
  • the proportion of at least one metallurgical phase of the metal taking account of the phase state influencing operating parameters of the metalworking line and / or state parameters of the metal, based on a model that includes a model for determining the phase state continuously, based on a specific point of the metalworking line , Determined and the proportion of at least one phase, relative to a specific point of the metalworking line, is displayed to an operator. For example, the proportions of ferrite, austenite, perlite and cementite are displayed.
  • WO 2005/099923 A1 discloses in the production of steel the use of a conversion model for the cooling section of a rolling train, with which conversion model in addition to the temperature of the steel and its metallurgical phase components along the steel strip are calculated in real time.
  • a control system is described which keeps constant the phase components of the steel strip wound on a reel device. This will be done in The following steps are taken: In a first step, data is used to determine the degree of conversion and thus a specific phase proportion. In a second step, one or more parameters of the cooling strategy (manipulated variables) are adapted online as part of the cooling line of the rolling train so that the desired phase content of the cooled steel is kept constant at the reel device.
  • the aim is to comply as precisely as possible with the required properties or material properties of the metal produced.
  • Steel materials are added to alloying elements in order to obtain optimal mechanical strength properties of a product produced therefrom under the given process and process conditions.
  • the amount of alloying elements to be added to the respective steel material depends above all on the mechanical strength properties desired in the respective application. Alloying elements are very expensive, which is why it is attempted to reduce or optimize the costs of the alloy. Since in each case concrete predictions about the result to be achieved by adding alloying elements with respect to the mechanical strength values of the respective steel product are not possible, it must be determined by experimental experiments which amount of a respective alloying element has an effect on the mechanical properties or mechanical properties Strength properties of a particular steel product exercises.
  • WO 98/18970 A1 a method for monitoring and controlling the quality of rolled products from hot rolling processes is known in which production conditions such as temperatures, stitches, etc. are recorded online in the entire rolling process and therefrom by means of interconnected and the entire rolling process descriptive physical / metallurgical and / or statistical models, the expected mechanical / technological material properties, in particular the yield strength, the tensile strength and the elongation at break, of the rolled product are calculated in advance.
  • the expected material properties can be predicted with this method.
  • its chemical analysis is identified for each semi-finished material and fed to a physical / metallurgical Austenitmaschines- and excretion model.
  • the process known from this document optimizes the desired chemical analysis of the primary material and the production conditions using austenitizing, deformation, recrystallization, transformation, precipitation, cooling and material physical / metallurgical models and determines these for new related product qualities .
  • the carbon content or the manganese content of the material used in the calculation of a strength property is taken into account, so that from this model already the influence of alloying elements on a mechanical strength property of the product obtained is apparent.
  • the invention has for its object to provide a solution which is advantageous over the previous procedure setting of operating parameters to achieve the desired mechanical strength properties of a metallic steel and / or iron alloy product and the desired metallurgical phase components in the product in its manufacture in a rolling mill.
  • this object is achieved in that as detailed in the calculation of at least one strength property operating parameters of the metallurgical production plant, the respective mass fraction of at least one alloying element, preferably all alloying elements, the / in the chemical composition of the metallic Steel and / or iron alloy is / are present, and at least one other operating parameters, in particular a in the manufacture of the product acting on this cooling rate, preferably a setting in the context of a cooling process after a cooling cooling rate, are detected and a by a change at least this further operating parameter, in particular an increase in the cooling rate, achievable or achieved increase in the considered strength property by reducing the mass fraction of one or more rer of the alloying elements is at least partially compensated and / or compensated for the chemical composition of the metallic steel and / or iron alloy used.
  • alloying agent (s) in such a way that only the proportions by mass of alloying agent (s) required in the achievable cooling rates or in another of the further operating parameters in each case at least to achieve the considered strength property chemical composition of the respective steel and / or iron alloy are present.
  • the considered too The resulting strength property of the product produced is thus determined, determined and regulated, for example, by the possible or set cooling rate, whereas the chemical composition is adjusted as a function thereof.
  • the influence and the contribution of the respectively present alloying elements to the mechanical strength properties of the product produced are taken into account in the calculation of the mechanical strength properties or the at least one mechanical strength property due to the solid solution precipitation hardening caused or influenced by them.
  • the influence of the alloying elements on the mechanical strength properties can be determined precisely. If, for example, some manganese is added, this change is determined immediately with the program stored in the microstructure simulator and / or microstructure model and / or microstructure model so that the influence of this change on the mechanical strength properties or at least a mechanical strength property of the product produced can be determined. An operator can use this knowledge to modernize the cooling section of a rolling mill to increase, for example, the cooling rate.
  • This higher cooling rate has an influence on the mechanical strength properties and can be used selectively to change the mechanical strength properties.
  • the microstructure simulator and / or microstructure monitor and / or the microstructure model with the program stored therein provides the necessary information.
  • the program takes into account the higher cooling rate and determines the resulting change in the strength properties.
  • microstructure simulator and / or microstructure model and / or microstructure model which adjusts the at least one mechanical strength property of the product produced as a function of the respective process chain of a rolling mill on the basis of calculated metallurgical phase constituents and / or their respective proportions metallurgical microstructure of the product produced can be quantified.
  • the stored program determines the necessary changes in the process or operating parameters and accordingly calculates the mechanical strength properties resulting from that change.
  • the microstructure simulator and / or microstructure monitor and / or structural model and the program stored therein the operator has a new tool available for material development through optimal adjustment of the process, process and / or operating parameters of the process chain comprising the rolling mill with cooling section Perform plant and obtain a desired mechanical strength property of the material.
  • the invention provides that the respective detected mass fraction of alloying elements (n) and / or the respectively detected at least one further operating parameter, in particular the respectively detected cooling rate, is / are evaluated with a countable number of a rating unit depicting a valuation unit.
  • the invention also provides in a further embodiment that the respective summation values of the countable valuation units, the arise, be determined and / or represented for each considered strength property in different combinations of a weighted at a number of countable valuation units mass fraction of alloying agent (s) and a counted with a number of countable valuation units further operating parameters, in particular a cooling rate.
  • the program comprises a mathematical term and / or algorithm by means of which the respective number of evaluation units and / or the different sum values determined are compared with one another.
  • the method according to the invention therefore also includes an evaluation of the influence of the alloy composition and the cooling rate with respect to the respective desired mechanical mechanical strength (s) to be achieved.
  • the evaluation is carried out by means of a rating scale of mapping evaluation units, with which the alloy composition and the cooling rates are evaluated.
  • the evaluation units may be of a technically quantitative nature, such as ⁇ increase in strength / ⁇ % by mass of the sum of alloying elements compared to ⁇ increase in strength / ⁇ cooling water quantity. But these valuation units can (additionally) costs, ie monetary values are assigned, as can be seen from FIG. 1.
  • the additional monetary costs (EUR 40.00 to EUR 215.00) required to change the yield strength to higher-strength steel grades (from S315MC to S650MC) are plotted there.
  • different, different combinations of alloy compositions and cooling rates can be compared with each other on the basis of the respectively associated evaluation units.
  • the sum values of countable valuation units formed in each case as comparison values can then be used to select a particular combination of an alloy composition and a cooling rate for the execution of the production process particularly favorable or suitable.
  • a valuation unit that depicts a valuation scale can be, for example, a currency unit or a valuation unit assigned to the valuation unit. It is then possible to assign a cost value individually to the different cooling rates and to the different alloy compositions, but also summed up.
  • the influence of alloying costs can be compared with the costs resulting from the costs for realizing a particular cooling rate for achieving the respectively desired mechanical strength property. It is thus possible with the method according to the invention to quantify the alloying costs for the adjustment of the specific desired mechanical property. Similarly, the cost of performing the necessary cooling rate to adjust the desired mechanical strength property is quantifiable. Since a higher cooling rate as well as the alloying elements of the steel or iron alloy greatly affect the mechanical properties of the obtained product, the cost of alloy change with respect to a change in mechanical strength properties can be accurately quantified by comparison with the method of the present invention. Thus, for example, after the conversion of an existing cooling section with a now higher, adjustable cooling rate, the values of the desired mechanical strength property can increase.
  • This increase can be used to reduce individual alloying elements in the alloy composition of the steel and / or iron material used, thereby achieving cost savings for the overall process, which is due to the use of a reduced amount of one or more alloying elements.
  • the method according to the invention such an estimation and evaluation is possible.
  • the method according to the invention it is possible to determine the possible savings for each material by reducing the amount of alloying elements used. Materials with high alloy contents offer a high potential for savings, materials with fewer alloying parts a correspondingly lower potential.
  • the method according to the invention or the program stored therein makes it possible to calculate the savings possibilities for the entire annual production of a considered metallurgical production plant, if the alloying costs for the respective considered material, ie the respective considered steel and / or iron alloy, are known.
  • the invention is further characterized in that the program has the influence of mass fractions of alloying elements in the chemical composition of the metallic steel and / or iron alloy used includes the yield strength of the manufactured product mapping mathematical term and / or algorithm.
  • the term is the equation having.
  • C the proportions of the respective various alloying elements i, respectively in weight percent, A, and B, are respectively corresponding regression coefficients determined in advance by experimental tests, and YS is the yield strength whose change ( ⁇ ) is determined becomes.
  • the regression coefficients are determined on the basis of test series in which the influence of carbon (C), silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), vanadium (V), nitrogen ( N), copper (Cu), aluminum (AI), niobium (Nb), titanium (Ti) and phosphorus (P) are taken into account as alloying elements of a steel and / or iron alloy, using the experimental measurement data for the determination of regression parameters present / templates or are known.
  • the grain size ultimately resulting after the conversion in the product produced is deposited with the grain size in the microstructure simulator and / or microstructure model and / or microstructure model Program can also be determined, since the grain size according to the Hall-Petch relation of influence on the mechanical strength properties.
  • the invention therefore also provides, in an embodiment, for the program to have an expression of the influence of the ferrite grain size (d) on the yield strength in the form of the equation in the case of a final cooling of the product forming ferrite structure
  • ⁇ 3 includes.
  • the ferrite grain size has a decisive influence on the resulting mechanical strength properties, since according to the Hall-Petch relation an increase ⁇ of the strength property "yield strength" with decrease of the grain size is to be expected
  • d is the ferrite grain size
  • A is a regression parameter
  • YS is the Yield Strength, the change ( ⁇ ) of which is determined.
  • the invention also provides that the program has a term which reflects the influence of the cooling rate on the ferrite grain size (d a ) of the ferrite microstructure forming a final cooling of the product in the form of the equation ⁇ ⁇ - ⁇ ⁇ * 2 a r covers.
  • d a the ferrite grain size
  • Austenite grain size, ⁇ ⁇ . the residual solidification and CR the cooling rate. It can be seen that a higher cooling rate leads to a smaller ferrite grain. In the production, one usually pursues the goal of producing a material with the greatest possible strength and to set the smallest possible ferrite grain.
  • the ferrite grain size is significantly influenced by the cooling rate or the cooling rate, which can be set in the - usually the rolling train and thus the rolling process of the product produced final - cooling line depending on the available cooling capacity.
  • a model which comprises a microstructure simulator and / or microstructure monitor and / or a structural model which has at least one mechanical strength property of the generated metallic steel and / or iron alloy comprising calculating the at least one mechanical strength property as a function of the respective process chain of the metallurgical plant on the basis of calculated metallurgical phase constituents and / or their respective proportions on the adjusting metallurgical structure of the product produced.
  • MPC Mechanism Calculator
  • the model is suitable for control purposes in the trim water zone.
  • control variables the yield strength or the tensile strength can be used after cooling.
  • the model calculates the necessary process parameters. The results are immediately visible and updated with each new cyclic calculation.
  • the core of the MPC program is the calculation of the mechanical strength properties of the produced material after cooling. The calculation is done by semi-empirical equations. The calculation is made for different volume elements of the strip or sheet. The tape or sheet is therefore divided into small elements.
  • the process variables such as rolling speed and rolling temperature are taken into account. These are included in a change immediately in the new bill.
  • the result is a distribution of mechanical (strength) properties in the strip or sheet.
  • the basis of the calculation of the mechanical (strength) properties is the calculation of the phase components of the produced material. This is it It is necessary to calculate the precise cooling curve of the metal and to model the decay of the austenite into ferrite, perlite, bainite and martensite using this cooling curve, which itself is influenced by the metallurgical microstructure transformation. If this model is used for the calculation of mechanical (strength) properties, a comparison with measured values must take place in order to ensure a good prediction of the mechanical (strength) properties.
  • the strength properties of a product to be produced can be calculated with a given chemical composition. If the operating parameters such as the load distribution in the finishing train (rolling), the final rolling temperature, the cooling strategy or the coiler temperature changes, the resulting mechanical strength properties change.
  • the program used in carrying out the method according to the invention carries out an optimization of the set operating parameters to be set and thus determines the best strength properties. Furthermore, effects of an improved system technology can be taken into account, for example an increased maximum rolling force or an increased maximum cooling rate or the like.
  • the invention further enables on-line visualization of the currently adjusting mechanical (strength) properties by providing in a further development that the respectively calculated at least one mechanical strength property is displayed online at a control station. This allows manual intervention based on information and status messages and leads to less production downtime.
  • an automatic control of the target strength properties can also be used.
  • the invention is therefore also distinguished by the fact that operating parameters of the metallurgical plant are controlled by means of the calculated at least one mechanical strength property and the desired at least one mechanical strength property is automatically controlled. If predetermined desired operating parameters (for example, the intended final rolling temperature) are not met, for example because of a malfunction, the intended mechanical strength property (s) may no longer be achieved.
  • the program carries out a calculation with the respectively currently measured values / data and changes the other operating parameters (eg the cooling strategy and the reel temperature) such that the desired desired mechanical strength properties (if possible) nevertheless be achieved.
  • the mechanical strength property (s) is / are automatically controlled.
  • a metallurgical plant for carrying out the method according to the invention comprises a hot rolling and / or plate mill, in which after a furnace forming in any number of stands takes place, which can also be divided into one or more roughing and one or more finishing stands, and wherein the formed material is then cooled in a cooling section on reel temperature or cooling stop temperature.
  • the invention is therefore further distinguished by the fact that the metallurgical production plant has a process chain comprising a furnace, a rolling mill, in particular the hot rolling and / or plate mill, and a cooling section, and that operating parameters of the entire process chain of this metallurgical plant are included in the program.
  • the metallurgical production plant comprises a steelworks and / or a continuous casting plant, which is / are also comprised of the microstructure simulator and / or microstructure monitor and / or structural model, which then forms a so-called Level 3 tool.
  • the invention therefore finally also provides that the metallurgical plant comprises an area, in particular a steelworks and / or a continuous casting plant, in which the metallic steel and / or iron alloy is molten and in the program operating parameters of the entire process chain of this area comprehensive metallurgical plant.
  • microstructure simulator and / or microstructure monitor and / or microstructure model By using the microstructure simulator and / or microstructure monitor and / or microstructure model, it is possible to reduce operating costs and to quantitatively assess the benefits of investment costs.

Abstract

Bei einem Verfahren zur Steuerung einer hüttentechnischen Produktionsanlage mittels eines Gefügemodells, welches ein mindestens eine mechanische Festigkeitseigenschaft eines erzeugten Produktes berechnendes Programm umfasst, das die Festigkeitseigenschaft auf Basis errechneter metallurgischer Phasenbestandteile am Gefüge des erzeugten Produktes errechnet, wobei die hüttentechnische Anlage eine abschließende Kühlstrecke umfasst und in die Berechnung der mechanischen Festigkeitseigenschaft Betriebsparameter der hüttentechnischen Anlage mit zumindest teilweise vorab gesetzten, anpassbaren Ausgangswerten eingehen, soll eine Lösung geschaffen werden, die eine vorteilhafte Einstellung von Betriebsparametern zur Erzielung gewünschter mechanischer Festigkeitseigenschaften eines aus einer metallischen Stahl- und/oder Eisenlegierung bestehenden Produktes ermöglicht. Dies wird dadurch erreicht, dass als in die Berechnung der Festigkeitseigenschaft eingehender Betriebsparameter der jeweilige Massenanteil mindestens eines Legierungselementes, das in der chemischen Zusammensetzung einer eingesetzten metallischen Stahl- und/oder Eisenlegierung vorhanden ist, und mindestens ein weiterer Betriebsparameter, vorzugsweise eine sich im Rahmen einer nach einem Walzprozess durchgeführten Abkühlung einstellende Abkühlrate, erfasst werden und eine durch eine Änderung mindestens dieses weiteren Betriebsparameters erzielte Erhöhung der betrachteten Festigkeitseigenschaft durch eine Verminderung des Massenanteils eines oder mehrerer der Legierungselemente der eingesetzten metallischen Stahl- und/oder Eisenlegierung zumindest teilweise kompensiert wird.

Description

Verfahren zur optimierten Herstellung von metallischen Stahl- und Eisenlegierungen in Warmwalz- und Grobblechwerken mittels eines Gefügesimulators, -monitors und/oder -modells
Die Erfindung richtet sich auf ein Verfahren zur Steuerung einer hüttentechnischen Produktionsanlage zur Herstellung eines Produktes aus einer metallischen Stahl- und/oder Eisenlegierung, wobei der Herstellprozess zumindest teilweise mittels eines Gefügesimulators und/oder Gefügemonitors und/oder Gefügemodells gesteuert wird, welcher/welches ein mindestens eine mechanische Festigkeitseigenschaft des erzeugten, die metallische Stahl- und/oder Eisenlegierung enthaltenden Produktes berechnendes Programm umfasst, mittels welchem die mindestens eine mechanische Festigkeitseigenschaft in Abhängigkeit von einer jeweiligen Prozesskette auf Basis errechneter metallurgischer Phasenbestandteile und/oder deren jeweiliger Anteile am sich einstellenden metallurgischen Gefüge des hergestellten Produktes berechnet wird, wobei die Prozesskette der hüttentechnischen Produktionsanlage ein Warmwalz- und/oder Grobblechwalzwerk mit einer abschließenden Kühlstrecke umfasst und in die Berechnung der mindestens einen mechanischen Festigkeitseigenschaft Betriebsparameter der hüttentechnischen Produktionsanlage, von welchen die erhaltene mindestens eine mechanische Festigkeitseigenschaft abhängt, mit zumindest teilweise vorab gesetzten, anpassbaren Ausgangswerten eingehen.
Beim Betrieb von Warmband- und/oder Grobblechstraßen werden neben der Umformung im Walzwerk als wesentliche Zielgrößen die Haspel- oder Kühlstopptemperatur sowie die Abkühlrate vorgegeben, da damit die mechanischen Festigkeitseigenschaften des erhaltenen Produktes zum großen Teil eingestellt werden können. Veränderungen in diesen Parametern machen sich daher zwangsläufig auch in Änderungen der mechanischen Festigkeitseigenschaften bemerkbar, die allerdings erst nachträglich anhand von Zugversuchen an aus dem hergestellten Produkt entnommenen Zugproben ermittelt werden können. Die jeweils gewünschten mechanischen Festigkeitseigenschaften in gewünschtem Maße einzustellen, ist eines der wesentlichen Ziele eines Walzprozesses, da diese Eigenschaften den für das hergestellte Produkt auf dem Markt erzielbaren Preis wesentlich (mit)bestimmen. Bei der Herstellung eines Produktes aus einer metallischen Stahl- und/oder Eisenlegierung in einer hüttentechnischen Anlage werden dessen mechanischen Festigkeitseigenschaften von weiteren (Betriebs)Parametern wie z.B. der Walzgeschwindigkeit oder der Endwalztemperatur beeinflusst. Eine konstante Haspeltemperatur garantiert somit nicht unbedingt auch konstante mechanische Festigkeitseigenschaften der jeweils gewünschten Art. Zwar können die Temperaturen des hergestellten Produktes unmittelbar nach dem Walzen bzw. vor dem Haspel online direkt z.B. mit Hilfe von Pyrometern oder anderen Temperaturmesseinrichtungen gemessen und somit direkt für die Regelung verwendet werden. Mechanische Festigkeitseigenschaften werden in der Regel aber erst mit großem Zeitversatz mit Hilfe von Zugversuchen gemessen und können somit nicht direkt für die Regelung eines jeweiligen hüttentechnischen Prozesses eingesetzt werden. Das vorab festgelegte Setzen von Prozess- oder Verfahrensparametern einer Metallbearbeitungsstraße im Walzwerk und der anschließenden Kühlstrecke führt somit nicht zwangsläufig zum Einhalten von Zielwerten der gewünschten mechanischen (Festigkeits)Eigenschaften. Diese können zudem auch nicht direkt und unmittelbar gemessen werden, so dass eine umgehende Korrektur der Prozess- oder Verfahrensparameter oder Betriebsparameter der hüttentechnischen Anlage nicht möglich ist. Im Stand der Technik sind daher Modelle und auch Gefügemodelle entwickelt worden, die die Berechnung erhaltener mechanischer Festigkeitswerte online mit umgehender Einflussnahme auf die Betriebsparameter der hüttenmännischen Anlage ermöglichen. So offenbart die DE 198 81 71 1 B4 ein gattungsgemäßes Verfahren zur Steuerung einer hüttentechnischen Anlage zur Erzeugung von Stahl oder Aluminium, insbesondere eines Walzwerks. Hierbei wird in der hüttentechnischen Anlage aus Eingangsstoffen Stahl oder Aluminium mit bestimmten vom Gefüge des Stahls oder des Aluminiums abhängigen Materialeigenschaften hergestellt, die von Betriebsparametern abhängig sind, mit denen die hüttentechnische Anlage betrieben wird. Hierbei werden die Betriebsparameter mittels eines Gefügeoptimierers in Abhängigkeit von den gewünschten Materialeigenschaften des Stahls oder Aluminiums bestimmt, wobei die Materialeigenschaften die Streckgrenze, die Dehngrenze, die Zugfestigkeit, die Bruchdehnung, die Härte, die Übergangstemperatur, die Anisotropie oder der Verfestigungsexponent des Stahls oder Aluminiums sein können.
Aus der DE 10 2007 007 560 A1 ist ein Verfahren zur Unterstützung einer wenigstens teilweise manuellen Steuerung einer Metallbearbeitungsstraße, in der band- oder brammenförmiges oder vorprofiliertes Material bearbeitet wird, bekannt. Hierbei wird kontinuierlich, bezogen auf eine bestimmte Stelle der Metallbearbeitungsstraße, der Anteil wenigstens einer metallurgischen Phase des Metalls unter Berücksichtigung von den Phasenzustand beeinflussenden Betriebsparametern der Metallbearbeitungsstraße und/oder von Zustandsparametern des Metalls rechnerisch auf Basis eines Modells, das ein Modell zur Ermittlung des Phasenzustandes umfasst, ermittelt und der Anteil der wenigstens einen Phase, bezogen auf eine bestimmte Stelle der Metallbearbeitungsstraße, wird einem Bediener zur Anzeige gebracht. So werden beispielsweise die Anteile an Ferrit, Austenit, Perlit und Zementit zur Anzeige gebracht.
Die WO 2005/099923 A1 offenbart bei der Herstellung von Stahl die Verwendung eines Umwandlungsmodells für die Kühlstrecke einer Walzstraße, mit welchem Umwandlungsmodell zusätzlich zur Temperatur des Stahls auch dessen metallurgische Phasenanteile entlang des Stahlbandes in Echtzeit berechnet werden. Es wird ein Regelungssystem beschrieben, das die Phasenanteile des an einer Haspelvorrichtung aufgewickelten Stahlbandes konstant hält. Dazu wird in folgenden Schritten vorgegangen: In einem ersten Schritt wird aus Daten der Umwandlungsgrad und somit ein bestimmter Phasenanteil ermittelt. In einem zweiten Schritt werden bei Bandeintritt in die Kühlstrecke der Walzstraße ein oder mehrere Parameter der Kühlstrategie (Stellgrößen) im Sinne einer Regelung online so angepasst, dass der gewünschte Phasenanteil des gekühlten Stahls an der Haspelvorrichtung konstant gehalten wird. Ziel ist es, die geforderten Eigenschaften oder Materialeigenschaften des produzierten Metalls möglichst genau einzuhalten. Durch die direkte Berechnung von mechanischen Eigenschaften in einem geeigneten Modell können die dafür notwendigen Prozessparameter mit größtmöglicher Genauigkeit festgelegt werden. Hierbei sind bei Stahl im Wesentlichen die Phasenbestandteile an Austenit, Ferrit, Perlit, Bainit und Martensit von entscheidender Bedeutung für die resultierenden mechanischen Festigkeitseigenschaften.
Stahlwerkstoffen werden Legierungselemente beigegeben, um unter den jeweils gegebenen Prozess- und Verfahrensbedingungen optimale mechanische Festigkeitseigenschaften eines daraus hergestellten Produktes zu erhalten. Die dem jeweiligen Stahlwerkstoff zuzugebende Menge an Legierungselementen richtet sich vor allem nach den im jeweiligen Anwendungsfall gewünschten mechanischen Festigkeitseigenschaften. Legierungselemente sind sehr teuer, weshalb versucht wird, die Kosten für die Legierung zu reduzieren oder zu optimieren. Da jeweils konkrete Vorhersagen über das durch eine Zugabe von Legierungselementen zu erreichende Ergebnis in Bezug auf die mechanischen Festigkeitswerte des jeweiligen Stahlproduktes bisher nicht möglich sind, muss anhand von experimentellen Versuche ermittelt werden, welche Menge an einem jeweiligen Legierungselement welchen Einfluss auf die mechanischen Eigenschaften oder mechanischen Festigkeitseigenschaften eines jeweiligen Stahlproduktes ausübt. Aus der WO 98/18970 A1 ist ein Verfahren zur Überwachung und Steuerung der Qualität von Walzprodukten aus Warmwalzprozessen bekannt, bei welchen Erzeugungsbedingungen wie Temperaturen, Stichabnahmen usw. im gesamten Walzprozess online erfasst werden und daraus mittels untereinander verknüpfter und den gesamten Walzprozess beschreibender physikalisch/metallurgischer und/oder statistischer Modelle die zu erwartenden mechanisch/technologischen Materialeigenschaften, insbesondere die Streckgrenze, die Zugfestigkeit und die Bruchdehnung, des Walzproduktes vorausberechnet werden. Durch die Online- Erfassung der tatsächlichen und momentanen Erzeugungsbedingungen können mit diesem Verfahren die zu erwartenden Materialeigenschaften vorausberechnet werden. Hierbei wird für jedes Vormaterial unter anderem auch dessen chemische Analyse identifiziert und einem physikalisch/metallurgischen Austenitisierungs- und Ausscheidungsmodell zugeführt. Zudem werden die zur Einhaltung der geforderten mechanisch/technologischen Materialeigenschaften notwendigen Änderungen des Zeit-Temperatur-Verlaufes für die Erwärmung, des Zeit- Temperatur-Verformungsverlaufes beim Walzen, des Zeit-Temperatur-Verlaufes beim Abkühlen berechnet und an die Steuerungssysteme der Erwärm-, Walz- und Abkühlanlagen übermittelt. Dadurch wird die Einhaltung der geforderten mechanisch-technologischen Materialeigenschaften des Walzprozesses sichergestellt. Mit dem aus diesem Dokument bekannten Verfahren werden unter Anwendung von physikalisch/metallurgischen Austenitisierungs-, Verformungs-, Rekristallisations-, Umwandlung-, Ausscheidungs-, Abkühl- und Materialmodellen die chemische Sollanalyse des Vormaterials und die Produktionsbedingungen optimiert und werden diese für neue verwandte Produktqualitäten festgelegt. Bei diesem Verfahren werden beispielsweise der Kohlenstoffgehalt oder der Mangangehalt des eingesetzten Materials bei der Berechnung einer Festigkeitseigenschaft berücksichtigt, so dass aus diesem Modell auch bereits der Einfluss von Legierungselementen auf eine mechanische Festigkeitseigenschaft des erhaltenen Produktes ersichtlich ist. Der Erfindung liegt die Aufgabe zugrunde, eine Lösung zu schaffen, die eine gegenüber dem bisherigen Vorgehen vorteilhafte Einstellung von Betriebsparametern zur Erzielung gewünschter mechanischer Festigkeitseigenschaften eines aus einer metallischen Stahl- und/oder Eisenlegierung bestehenden Produktes und der gewünschten metallurgischen Phasenanteile in dem Produkt bei seiner Herstellung in einer Walzstraße ermöglicht.
Bei einem Verfahren der eingangs näher bezeichneten Art wird diese Aufgabe erfindungsgemäß dadurch gelöst, dass als in die Berechnung der mindestens einen Festigkeitseigenschaft eingehender Betriebsparameter der hüttentechnischen Produktionsanlage der jeweilige Massenanteil mindestens eines Legierungselementes, vorzugsweise aller Legierungselemente, das/die in der chemischen Zusammensetzung der eingesetzten metallischen Stahl- und/oder Eisenlegierung vorhanden ist/sind, und mindestens ein weiterer Betriebsparameter, insbesondere eine bei der Herstellung des Produktes auf dieses einwirkende Abkühlrate, vorzugsweise eine sich im Rahmen einer nach einem Walzprozess durchgeführten Abkühlung einstellende Abkühlrate, erfasst werden und eine durch eine Änderung mindestens dieses weiteren Betriebsparameters, insbesondere eine Erhöhung der Abkühlrate, erzielbare oder erzielte Erhöhung der betrachteten Festigkeitseigenschaft durch eine Verminderung des Massenanteils eines oder mehrerer der Legierungselemente an der chemischen Zusammensetzung der eingesetzten metallischen Stahl- und/oder Eisenlegierung zumindest teilweise kompensiert und/oder ausgeglichen wird.
Mit der Erfindung ist es folglich möglich, den Einsatz an Legierungsmittel(n) dahingehend zu optimieren, dass nur die bei den erreichbaren Abkühlraten oder bei einem anderen der weiteren Betriebsparameter jeweils mindestens zur Erreichung der betrachteten Festigkeitseigenschaft notwendigerweise benötigten Massenanteile an Legierungsmittel(n) in der chemischen Zusammensetzung der jeweiligen Stahl- und/oder Eisenlegierung vorhanden sind. Die betrachtete zu erreichende Festigkeitseigenschaft des hergestellten Produktes wird folglich beispielsweise durch die mögliche oder eingestellte Abkühlrate festgelegt, bestimmt und geregelt, wohingegen die chemische Zusammensetzung in Abhängigkeit davon angepasst wird.
Erfindungsgemäß werden also der Einfluss und der Beitrag der jeweils vorhandenen Legierungselemente auf die mechanischen Festigkeitseigenschaften des erzeugten Produktes aufgrund der durch sie verursachten oder beeinflussten Mischkristallausscheidungshärtung bei der Berechnung der mechanischen Festigkeitseigenschaften bzw. der mindestens einen mechanischen Festigkeitseigenschaft berücksichtigt. Mit dem erfindungsgemäßen Verfahren lässt sich der Einfluss der Legierungselemente auf die mechanischen Festigkeitseigenschaften genau ermitteln. Wird zum Beispiel etwas Mangan hinzugegeben, wird diese Änderung sofort mit dem in dem Gefügesimulator und/oder Gefügemonitor und/oder Gefügemodell hinterlegten Programm ermittelt, so dass der Einfluss dieser Änderung auf die mechanischen Festigkeitseigenschaften oder zumindest eine mechanische Festigkeitseigenschaft des erzeugte Produkts feststellbar ist. Ein Betreiber kann mit diesem Wissen eine Modernisierung der Kühlstrecke eines Walzwerks durchführen, um beispielsweise die Kühlrate zu erhöhen. Diese höhere Kühlrate hat einen Einfluss auf die mechanischen Festigkeitseigenschaften und kann gezielt eingesetzt werden, um die mechanischen Festigkeitseigenschaften zu verändern. Dazu liefert der Gefügesimulator und/oder Gefügemonitor und/oder das Gefügemodell mit dem darin hinterlegten Programm die notwendigen Informationen. Das Programm berücksichtigt die höhere Kühlrate und ermittelt die daraus resultierende Änderung der Festigkeitseigenschaften. Es ergeben sich also bei gleicher chemischer Analyse bzw. Zusammensetzung der eingesetzten Legierung und einer höheren Kühlrate andere mechanischen Festigkeitseigenschaften oder es lassen sich dieselben mechanischen Festigkeitseigenschaften mit weniger Legierungselementen, d.h. einem geringeren Massenanteil oder Gewichtsanteil (Gewichtsprozent) an Legierungselementen erreichen, so dass Kosten eingespart werden. Diese Kosten können mit dem in dem Gefügesimulator und/oder Gefügemonitor und/oder Gefügemodell hinterlegten Programm, das die mindestens eine mechanische Festigkeitseigenschaft des hergestellten Produktes in Abhängigkeit von der jeweiligen Prozesskette eines Walzwerks auf Basis errechneter metallurgischer Phasenbestandteile und/oder deren jeweiligen Anteilen am sich einstellenden metallurgischen Gefüge des hergestellten Produktes errechnet, quantifiziert werden.
Weiterhin ist es möglich, die Auswirkungen von geänderten Prozessparametern mit dem hinterlegten Programm zu berechnen. Wird beispielsweise die Walzstraßen- oder Fertigstraßentemperatur erhöht und gleichzeitig die Haspeltemperatur gesenkt, so ermittelt das hinterlegte Programm die notwendigen Änderungen der Prozess- oder Betriebsparameter und berechnet entsprechend die mechanischen Festigkeitseigenschaften, die sich durch diese Änderung ergeben. Mit dem Gefügesimulator und/oder Gefügemonitor und/oder Gefügemodell und dem darin hinterlegten Programm steht dem Betreiber ein neues Werkzeug zur Verfügung, um eine Materialentwicklung durch optimale Einstellung der Prozess-, Verfahrens- und/oder Betriebsparameter der das Walzwerk mit Kühlstrecke umfassenden Prozesskette der hüttentechnischen Anlage durchzuführen und eine gewünschte mechanische Festigkeitseigenschaft des Materials zu erhalten. In Ausgestaltung sieht die Erfindung vor, dass der jeweilige erfasste Massenanteil an Legierungselemente(n) und/oder der jeweils erfasste mindestens eine weitere Betriebsparameter, insbesondere die jeweils erfasste Abkühlrate, mit einer zählbaren Anzahl einer einen Bewertungsmaßstab abbildenden Bewertungseinheit bewertet wird/werden. Damit kann dann sowohl dem durch die Änderung der Legierungszusammensetzung zuzuschreibenden Einfluss als auch dem durch eine Änderung des weiteren Betriebsparameters, insbesondere der Abkühlrate, bewirkten Einfluss auf die Änderung der betrachteten mechanischen Festigkeitseigenschaft des hergestellten Produktes ein Kostenwert zugeordnet werden. Um unmittelbar einen bewerteten Vergleich zwischen unterschiedlichen Kombinationen von Änderungen der chemischen Zusammensetzung des eingesetzten Stahl- und/oder Eisenlegierungsmaterials und Änderungen der Abkühlraten vornehmen zu können, sieht die Erfindung in weiterer Ausgestaltung auch vor, dass mittels des Programms die jeweiligen Summenwerte der zählbaren Bewertungseinheiten, die sich für die jeweils betrachtete Festigkeitseigenschaft bei unterschiedlichen Kombinationen aus jeweils einem mit einer Anzahl an zählbaren Bewertungseinheiten bewerteten Massenanteil an Legierungsmittel(n) und einem mit einer Anzahl an zählbaren Bewertungseinheiten bewerteten weiteren Betriebsparameter, insbesondere einer Abkühlrate, ergeben, ermittelt und/oder dargestellt werden.
Um die vergleichende Bewertung durchführen zu können, ist es zweckmäßig, wenn das Programm einen mathematischen Term und/oder Algorithmus umfasst, mittels welchem die jeweilige Anzahl an Bewertungseinheiten und/oder die verschiedenen ermittelten Summenwerte miteinander verglichen werden.
Ergänzend umfasst das erfindungsgemäße Verfahren also auch eine Bewertung des Einflusses der Legierungszusammensetzung und der Abkühlrate in Bezug auf die jeweils zu erreichende(n) gewünschte(n) mechanische(n) Festigkeitseigenschaft(en). Die Bewertung erfolgt mittels einen Bewertungsmaßstab abbildender Bewertungseinheiten, mit denen die Legierungszusammensetzung und die Abkühlraten bewertet werden. Die Bewertungseinheiten können technisch quantitativer Art sein, wie beispielsweise Δ Festigkeitssteigerung/Δ Massenprozentanteil der Summe an Legierungselementen gegenüber Δ Festigkeitssteigerung/Δ Kühlwassermenge. Diesen Bewertungseinheiten können aber (zusätzlich) auch Kosten, also monetäre Werte, zugeordnet werden, wie dies der Fig. 1 zu entnehmen ist. Dort sind die für die Änderung der Streckgrenze zu höherfesten Stahlgüten (von S315MC zu S650MC) hin jeweils notwendigen monetären Zusatzaufwendungen (EUR 40,00 bis EUR 215,00) aufgetragen. Anschließend können verschiedene, unterschiedliche Kombinationen von Legierungszusammensetzungen und Abkühlraten anhand der diesen jeweils zugeordneten Bewertungseinheiten miteinander verglichen werden. Die als Vergleichswerte jeweils gebildeten Summenwerte an zählbaren Bewertungseinheiten können dann genutzt werden, um eine bestimmte Kombination aus einer Legierungszusammensetzung und einer Abkühlrate für die Durchführung des Produktionsprozesses besonders (kosten)günstige oder geeignete auszuwählen. Eine einen Bewertungsmaßstab abbildende Bewertungseinheit kann beispielsweise eine Währungseinheit oder eine der Bewertungseinheit zugeordnete Bewertungseinheit sein. Dann ist es möglich, den verschiedenen Abkühlraten und den verschiedenen Legierungszusammensetzungen jeweils einzeln, aber auch summiert einen Kostenwert zuzuordnen. Damit kann mit dem erfindungsgemäßen Verfahren der Einfluss von Legierungskosten mit den sich aus den Kosten für die Realisierung einer bestimmten Abkühlrate ergebenden Kosten zur Erzielung der jeweils gewünschten mechanischen Festigkeitseigenschaft verglichen werden. Es ist mit dem erfindungsgemäßen Verfahren somit möglich, die Legierungskosten für die Einstellung der bestimmten gewünschten mechanischen Eigenschaft zu quantifizieren. Ebenso sind die Kosten für die Durchführung der notwendigen Abkühlrate zur Einstellung der gewünschten mechanischen Festigkeitseigenschaft quantifizierbar. Da eine höhere Kühlrate ebenso wie die Legierungselemente der Stahl- oder Eisenlegierung die mechanischen Eigenschaften des erhaltenen Produktes stark beeinflussen, können durch Vergleich mit dem erfindungsgemäßen Verfahren die Kosten einer Legierungsänderung in Bezug auf eine Änderung der mechanischen Festigkeitseigenschaften genau quantifiziert werden. So können beispielsweise nach dem Umbau einer bestehenden Kühlstrecke mit einer nun höheren, einstellbaren Kühlrate die Werte der gewünschten mechanischen Festigkeitseigenschaft ansteigen. Dieser Anstieg kann für eine Reduzierung einzelner Legierungselemente in der Legierungszusammensetzung des eingesetzten Stahl- und/oder Eisenmaterials genutzt werden, wodurch eine Kostenersparnis für das Gesamtverfahren erreicht wird, die mit dem Einsatz einer verminderten Menge an einem oder mehreren Legierungselementen begründet ist. Mit dem erfindungsgemäßen Verfahren ist eine solche Abschätzung und Bewertung möglich.
Diese Abschätzung und Bewertung ist bei der Erfindung mittels des Gefügemodells und/oder Gefügemonitors und/oder Gefügesimulators möglich. Insbesondere sind die Einflussnahmen der jeweiligen Parameter dann im erfindungsgemäßen Sinne mittels der einen Bewertungsmaßstab abbildenden Bewertungseinheiten auch monetär quantifizierbar, wenn derartige wirtschaftliche oder monetäre Abhängigkeiten in dem Gefügemodell und/oder Gefügemonitor und/oder Gefügesimulator hinterlegt sind, wie sie der Fig. 1 zu entnehmen sind. Der Fig. 1 ist zu entnehmen, dass eine Steigerung der Streckgrenze um ca. 100 MPa ca. 30,00 EUR Aufpreis kosten bewirkt. Beispielsweise ist die Steigerung der Streckgrenze vom Stahl S420MC zum Stahl S500MC mit einer Kostensteigerung von 65,00 EUR auf 85,00 EUR gleich 20,00 EUR Differenz verbunden. Diese durchschnittlich EUR 30,00 und beim vorstehend genannten Beispiel EUR 20,00 betragende Kostenerhöhung muss in Form eines Zusatzes von Legierungselementen oder in Form einer Erhöhung der Abkühlrate des jeweiligen Stahlbandes bei seiner Herstellung in einer Walzstraße getragen werden, wobei die erhöhte Abkühlrate eine kleinere Ferritkorngröße und eine dadurch bedingte Erhöhung der Festigkeitseigenschaft „Streckgrenze" mit sich bringt. Dieser Zusammenhang ist in dem erfindungsgemäßen Gefügemodell hinterlegt und kann daher auch quantitativ in Form der entsprechend formulierten und bewerteten zählbaren Bewertungseinheiten kenntlich gemacht werden.
Wenn also der Betreiber einer hüttentechnischen Produktionsanlage in der Lage ist, während der beispielsweise nach einem Walzprozess erfolgenden und notwendigen Abkühlung des erhaltenen Produktes eine höhere Kühlrate zu realisieren, beispielsweise durch einen Umbau der Kühlstrecke mit einer Erhöhung der Kühlkapazitäten, so kann hierdurch ein Festigkeitsanstieg, d.h. eine Erhöhung der betrachteten mechanischen Festigkeitseigenschaft erreicht werden. Der durch diese erhöhte Abkühlrate erreichte Effekt eines Festigkeitsanstieges kann nun dazu genutzt werden, durch Änderung der chemischen Zusammensetzung der eingesetzten Stahl- und/oder Eisenlegierung einen gegenläufigen Effekt zu erzielen. Mit dem erfindungsgemäßen Verfahren und dem dabei angewandte Programm ist es nun möglich, den Einfluss einer geänderten, reduzierte Mengenanteile an Legierungselementen aufweisenden chemischen Zusammensetzung einer eingesetzten Legierung auf die zu erhaltende und betrachtete mechanische Festigkeitseigenschaft des erhaltenen Produktes zu berechnen. Diese Berechnung wird dann so lange wiederholt, bis der durch die erhöhte Kühlrate hervorgerufene Festigkeitsanstieg auf „0" reduziert ist, so dass der durch die erhöhte Abkühlrate bewirkte Festigkeitsanstieg oder Anstieg des Wertes der mechanischen Festigkeitseigenschaft aufgebraucht ist und wieder der ursprüngliche Wert der mechanischen Festigkeitseigenschaft vorliegt. Die durch die Einsparung von Legierungselementen bewirkte Kostenersparnis wiegt dabei die durch die höhere Abkühlrate erforderliche Kostenerhöhung auf. Bei einem typischen Nb legierten Feinkornbaustahl mit ca. 0,07 % C, 0,7 % Mn, 0,2 % Si, 0,04 % Nb, 0,084 % Ni, 0,034 % Mo, 0,084 % Cr, 0,0084 % V und 0,0084 % Ti lassen sich ca. 4 % der üblicherweise 30,00 EUR/t betragenden Legierungskosten auf diese Weise durch verminderte Legierungsgehalte einsparen, so dass die Legierungskosten bei diesem Beispiel auf 28,80 EUR/t abgesenkt werden. Bei dem Betrieb einer hüttentechnischen Produktionsanlage mit einer jährlichen Produktion von 1 Mio t können somit ca. 1 ,20 Mio EUR an Legierungskosten für einen solchen Feinkornbaustahl pro Jahr eingespart werden.
Mit dem erfindungsgemäßen Verfahren ist es möglich, für jeden Werkstoff die durch die Verminderung der Menge an eingesetzten Legierungselementen möglichen Einsparungen zu ermitteln. Werkstoffe mit hohen Legierungsanteilen bieten dabei ein hohes Einsparpotential, Werkstoffe mit weniger Legierungsanteilen ein entsprechend geringeres Potential. Mit dem erfindungsgemäßen Verfahren bzw. dem darin hinterlegten Programm ist es möglich, die Einsparmöglichkeiten für die gesamte Jahresproduktion einer betrachteten hüttentechnischen Produktionsanlage zu berechnen, wenn die Legierungskosten für den jeweils betrachteten Werkstoff, d.h. die jeweils betrachtete Stahl- und/oder Eisenlegierung, bekannt sind.
Um den Einfluss der Legierungselemente auf die Streckgrenze als einer mechanischen Festigkeitseigenschaft des erhaltenen Produkts zu berücksichtigen, zeichnet sich die Erfindung weiterhin dadurch aus, dass das Programm einen den Einfluss von Massenanteilen an Legierungselementen in der chemischen Zusammensetzung der eingesetzten metallischen Stahl- und/oder Eisenlegierung auf die Streckgrenze des hergestellten Produktes abbildenden mathematischen Term und/oder Algorithmus umfasst. In besonders vorteilhafter Ausgestaltung der Erfindung ist dabei vorgesehen, dass der Term die Gleichung
Figure imgf000015_0001
aufweist. In der Gleichung sind C, die Anteile der jeweiligen verschiedenen Legierungselemente i jeweils in Gewichtsprozent, A, und B, jeweils entsprechende Regressionskoeffizienten, die durch experimentelle Untersuchungen vorab bestimmt wurden, und ist YS die Streckgrenze (Yield Strength), deren Änderung (Δ) ermittelt wird. Die Regressionskoeffizienten werden anhand von Versuchsreihen ermittelt, in welchen der Einfluss von Kohlenstoff (C), Silizium (Si), Mangan (Mn), Chrom (Cr), Molybdän (Mo), Nickel (Ni), Vanadium (V), Stickstoff (N), Kupfer (Cu), Aluminium (AI), Niob (Nb), Titan (Ti) und Phosphor (P) als Legierungselemente einer Stahl- und/oder Eisenlegierung berücksichtigt werden/wurden, wobei die experimentellen Messdaten für die Ermittlung der Regressionsparameter vorliegen/vorlagen bzw. bekannt sind.
Von Vorteil ist es weiterhin, wenn die nach der Umwandlung sich in dem hergestellten Produkt letztendlich einstellende Korngröße mit dem in dem Gefügesimulator und/oder Gefügemonitor und/oder Gefügemodell hinterlegten Programm ebenfalls ermittelt werden kann, da die Korngröße entsprechend der Hall-Petch-Relation von Einfluss auf die mechanischen Festigkeitseigenschaften ist. Die Erfindung sieht in Ausgestaltung daher weiterhin vor, dass das Programm einen den Einfluss der Ferritkorngröße (d) des sich bei einer abschließenden Kühlung des Produktes bildenden Ferritgefüges auf die Streckgrenze abbildenden Term in Form der Gleichung
&YS = A ^=
<3 umfasst. Neben der Berechnung der Phasenbestandteile und des Einflusses der Legierungselemente ist es auch wichtig, die Korngröße des umgewandelten Metalls zu berechnen. Die Ferrit-Korngröße hat entscheidenden Einfluss auf die resultierenden mechanischen Festigkeitseigenschaften, da nach der Hall-Petch Relation ein Anstieg ΔΥΞ der Festigkeitseigenschaft„Streckgrenze" mit Abnahme der Korngröße zu erwarten ist. In der Gleichung sind d die Ferritkorngröße, A ein Regressionsparameter und YS die Streckgrenze (Yield Strength), deren Änderung (Δ) ermittelt wird.
Da die sich bildende Ferritkorngröße von der jeweiligen Abkühlrate abhängt, sieht die Erfindung weiterhin vor, dass das Programm einen den Einfluss der Abkühlrate auf die sich bei einer abschließenden Kühlung des Produktes bildende Ferritkorngröße (da) des Ferritgefüges abbildenden Term in Form der Gleichung αα - \ ι *2 ar umfasst. Hierin sind da: die Ferritkorngröße,
Ait die empirische Koeffizienten, cgq -, das Kohlenstoffäquivalent, dY : die
Austenitkorngröße, ε·. die Restverfestigung und CR: die Abkühlrate. Daraus ist ersichtlich, dass eine höhere Abkühlrate zu einem kleineren Ferritkorn führt. Bei der Herstellung verfolgt man üblicherweise das Ziel, einen Werkstoff mit möglichst großer Festigkeit zu produzieren und ein möglichst kleines Ferritkorn einzustellen. Die Ferritkorngröße wird maßgeblich beeinflusst durch die Abkühlrate bzw. die Abkühlgeschwindigkeit, die in der - in der Regel die Walzstraße und damit den Walzprozess des hergestellten Produktes abschließenden - Kühlstrecke je nach verfügbarer Kühlkapazität eingestellt werden kann. Da die mechanischen Festigkeitseigenschaften üblicherweise nicht zeitnah gemessen werden können, findet erfindungsgemäß ein Modell Anwendung, das einen Gefügesimulator und/oder Gefügemonitor und/oder ein Gefügemodell umfasst, welcher/welches ein mindestens eine mechanische Festigkeitseigenschaft des erzeugten, die metallische Stahl- und/oder Eisenlegierung enthaltenden Produktes berechnendes Programm umfasst, das die mindestens eine mechanische Festigkeitseigenschaft in Abhängigkeit von der jeweiligen Prozesskette der hüttentechnischen Anlage auf Basis errechneter metallurgischer Phasenbestandteile und/oder deren jeweiligen Anteilen am sich einstellenden metallurgischen Gefüge des hergestellten Produktes errechnet. Ein solches Modell ist das sogenannte MPC- (Mechanical Property Calculator) - Programm, das die mechanischen Eigenschaften abhängig von den Prozessbedingungen in der gesamten Prozesskette bestehend aus Ofen, Walzstraße und Kühlstrecke bestimmt. Dies ermöglicht das Einstellen neuer Sollwerte für die Haspeltemperatur bzw. Kühlrate. Zusätzlich ist das Modell für Regelungszwecke in der Trimmwasserzone geeignet. Als Regelungsgrößen können die Streckgrenze bzw. die Zugfestigkeit nach dem Kühlen verwendet werden. Bei Vorgabe dieser Setzwerte berechnet das Modell die dafür notwendigen Prozessparameter. Die Ergebnisse sind sofort sichtbar und werden bei jeder neuen zyklischen Berechnung aktualisiert. Kern des MPC-Programmes ist die Berechnung der mechanischen Festigkeitseigenschaften des produzierten Werkstoffes nach der Abkühlung. Die Berechnung erfolgt über semi-empirische Gleichungen. Die Berechnung erfolgt für verschiedene Volumenelemente des Bandes oder Bleches. Das Band oder Blech wird daher in kleine Elemente unterteilt. Während der Berechnung werden die Prozessgrößen wie Walzgeschwindigkeit und Walztemperatur berücksichtigt. Diese gehen bei einer Änderung sofort in die neue Rechnung ein. Als Ergebnis ergibt sich eine Verteilung von mechanischen (Festigkeits)Eigenschaften im Band oder Blech. Basis der Berechnung der mechanischen (Festigkeits)Eigenschaften ist die Berechnung der Phasenbestandteile des produzierten Werkstoffs. Hierzu ist es nötig, den präzisen Abkühlverlauf des Metalls zu berechnen und anhand dieser Kühlkurve, die selbst wiederum durch die metallurgische Gefüge-Umwandlung beeinflusst wird, den Zerfall des Austenits in die Bestandteile Ferrit, Perlit, Bainit und Martensit zu modellieren. Verwendet man dieses Modell für die Berechnung mechanischer (Festigkeits)Eigenschaften, so muss ein Abgleich mit gemessenen Werten stattfinden, um eine gute Vorhersage der mechanischen (Festigkeits)Eigenschaften zu gewährleisten. Es wurden daher mit Hilfe des Modells berechnete Werte mit aus Zugproben ermittelten Werten verglichen und festgestellt, dass eine hervorragende Korrelation zwischen den berechneten und den gemessenen Werten bei einer geringen Streuung der Messwerte besteht. Diese Übereinstimmung ergibt sich bei verschiedenen Anlagentypen (Warmbandstraße, Grobblechstraße und Stranggießanlage, insbesondere CSP- Anlage). Mittels der Berechnungen im MPC Modell ist es möglich, eine aktuell bestehende Produktions- oder Prozesssituation zu analysieren und zu optimieren. So können durch eine Verbesserung des Legierungskonzeptes die Kosten für die Legierungselemente reduziert werden, da ein Kosten-Nutzen Verhältnis berechnet werden kann. Die Erfindung zeichnet sich in Weiterbildung daher auch dadurch aus, dass mittels des Programms die Betriebsparameter zumindest bezüglich der mindestens einen zu erreichenden mechanischen Festigkeitseigenschaft optimiert werden. Mit dem erfindungsgemäßen Verfahren lassen sich die Festigkeitseigenschaften eines herzustellenden Produktes mit gegebener chemischer Zusammensetzung berechnen. Werden die Betriebsparameter wie beispielsweise die Lastverteilung in der Fertigstraße (walzen), die Endwalztemperatur, die Kühlstrategie oder die Haspeltemperatur verändert, ändern sich die erhaltenen mechanischen Festigkeitseigenschaften. Das bei der Durchführung des erfindungsgemäßen Verfahrens zur Anwendung kommende Programm führt eine Optimierung der eingestellten bzw. einzustellenden Betriebsparameter durch und bestimmt so die besten Festigkeitseigenschaften. Weiterhin können Auswirkungen einer verbesserten Anlagentechnik berücksichtigt werden, so zum Beispiel eine erhöhte maximale Walzkraft oder eine erhöhte maximale Kühlrate oder ähnliches. Diese verbesserten Produktionsbedingungen ermöglichen die Erzielung verbesserter (Festigkeits)Eigenschaften des Materials bzw. reduzierte Kosten bei dessen Herstellung. Es ist somit möglich, eine Materialentwicklung zu betreiben, indem die Einstellung der Prozessparameter im Walzwerk sowie in der Kühlstrecke optimal in Bezug auf die jeweils gestellten Anforderungen erfolgt. Die Betriebsparameter in einzelnen Verarbeitungsschritten der Prozesskette im Stahlwerk, Walzwerk und der Kühlstrecke können im Hinblick auf die jeweils gewünschte mechanische Festigkeitseigenschaft mit dem bei dem erfindungsgemäßen Verfahren zur Anwendung kommenden Programm dadurch optimiert werden, dass die einzelnen Gefügeänderungen in den einzelnen Verarbeitungsschritten ermittelt und daraus ein Gefüge mit optimierten Eigenschaften iterativ bestimmt wird. Damit können herkömmliche Prozesse optimiert werden oder kann die Entwicklung und Herstellung neuer Werkstoffe beschleunigt werden. Hierdurch lassen sich erhebliche Kosten bei der Materialentwicklung sparen.
Zudem werden häufig aufgrund großer Konvertergefäße Vormaterial oder Brammen erzeugt, die angesichts kleiner Bestellmengen oder kleiner Losgrößen zum Teil (zwischen)gelagert werden müssen. Dies hat hohe Lagerbestände mit entsprechenden Lagerkosten zur Folge. Mittels des erfindungsgemäßen Verfahrens ist es möglich, Brammen gleicher Analyse, d.h. gleicher chemischer Zusammensetzung, aber unterschiedlicher Herstellungsparameter, zu verarbeiten und aufgrund der unterschiedlichen Herstellungs- bzw. Betriebsparameter auf verschiedene Festigkeitseigenschaften einzustellen. Dies ist durch Anwendung eines entsprechenden Iterationsverfahrens möglich, mittels welchem mögliche erreichbare mechanische Festigkeitseigenschaften mittels des bei dem erfindungsgemäßen Verfahren Anwendung findenden Programms ermittelt werden oder ermittelbar sind. Auf diese Weise kann eine Reduzierung von Lagerbeständen erfolgen bzw. der Lageraufwand vermindert und die Wirtschaftlichkeit erhöht werden. Die Erfindung ermöglicht weiterhin die Online-Visualisierung der sich aktuell jeweils einstellenden mechanischen (Festigkeits)Eigenschaften indem in Weiterbildung vorgesehen ist, dass die jeweils berechnete mindestens eine mechanische Festigkeitseigenschaft online an einem Steuerstand angezeigt wird. Hierdurch werden manuelle Eingriffe aufgrund von Informations- und Statusmeldungen ermöglicht und führen zu geringerem Produktionsausfall.
Zusätzlich kann aber auch eine automatische Steuerung der Ziel- Festigkeitseigenschaften Verwendung finden. Dadurch kann in Echtzeit auf Störungen reagiert und der weitere Produktionsablauf so optimiert werden, dass die gewünschte mindestens eine mechanische Festigkeitseigenschaft erreicht wird. Dies geschieht durch eine automatische Korrektur zumindest der oder einiger Verfahrensparameter im Walzwerk und in der Kühlstrecke. So wird über der Band- bzw. Blechlänge für eine homogene Eigenschaftsverteilung gesorgt. Die Erfindung zeichnet sich daher weiterhin auch dadurch aus, dass mittels der berechneten mindestens einen mechanischen Festigkeitseigenschaft Betriebsparameter der hüttentechnischen Anlage gesteuert werden und die gewünschte mindestens eine mechanische Festigkeitseigenschaft automatisch angesteuert wird. Falls vorgegebene Soll-Betriebsparameter (beispielsweise die vorgesehene Endwalztemperatur) beispielsweise aufgrund eine Betriebsstörung nicht eingehalten werden, werden möglicherweise auch die vorgesehenen mechanischen Festigkeitseigenschaft(en) nicht mehr erreicht. In einem solchen Fall führt das Programm bei dem erfindungsgemäßen Verfahren mit den jeweils aktuell gemessenen Werten/Daten eine Berechnung durch und verändert die übrigen Betriebsparameter (z.B. die Kühlstrategie und die Haspeltemperatur) derart, dass die gewünschten mechanischen Soll-Festigkeitseigenschaften (möglichst) dennoch erreicht werden. Die mechanische(n) Festigkeitseigenschaft(en) wird/werden so automatisch angesteuert.
Die Erfindung kann in einem Walzwerk, beispielsweise einem Warmband- und Grobblechwalzwerk, bei der Herstellung von metallischen Bändern und Blechen aus Stahl- und Eisenlegierungen sowie an allen Stellen eines Produktionsprozesses, an denen stahl- oder eisenhaltige Werkstoffe gekühlt werden, insbesondere einer Warmband- und Grobblechstraße mit jeweils zugehörigen Aggregaten, Verwendung bzw. Anwendung finden. Vorzugsweise umfasst eine hüttentechnische Anlage zur Durchführung des erfindungsgemäßen Verfahrens ein Warmwalz- und/oder Grobblechwerk, bei welchem nach einem Ofen eine Umformung in einer beliebigen Anzahl an Gerüsten stattfindet, die sich auch in ein oder mehrere Vorgerüste und ein oder mehrere Fertiggerüste aufteilen können, und wobei das umgeformte Material anschließend in einer Kühlstrecke auf Haspeltemperatur bzw. Kühlstopptemperatur abgekühlt wird. Die Erfindung zeichnet sich daher weiterhin auch dadurch aus, dass die hüttentechnische Produktionsanlage eine einen Ofen, ein Walzwerk, insbesondere das Warmwalz- und/oder Grobblechwalzwerk, und eine Kühlstrecke umfassende Prozesskette aufweist und dass in das Programm Betriebsparameter der gesamten Prozesskette dieser hüttentechnischen Anlage eingehen.
Es ist aber auch möglich, dass die hüttentechnische Produktionsanlage ein Stahlwerk und/oder eine Stranggießanlage umfasst, die ebenfalls von dem Gefügesimulator und/oder Gefügemonitor und/oder Gefügemodell umfasst ist/sind, der/das dann ein sogenanntes Level 3 tool ausbildet. Die Erfindung sieht daher schließlich auch vor, dass die hüttentechnische Anlage einen Bereich, insbesondere ein Stahlwerk und/oder eine Stranggießanlage, umfasst, in dem die metallische Stahl- und/oder Eisenlegierung schmelzflüssig vorliegt und dass in das Programm Betriebsparameter der gesamten Prozesskette der diesen Bereich umfassenden hüttentechnischen Anlage eingehen. Insgesamt ergeben sich durch die Erfindung folgende Vorteile:
• Optimierung der Legierungskosten aufgrund eines verbesserten Legierungskonzepts
• Materialentwicklung durch optimale Einstellung der Prozessparameter · Echtzeit-Visualisierung der mechanischen Eigenschaften und Anzeige von Informationsmeldungen
• Vollautomatische Echtzeit Steuerung der oder mindestens einer mechanischen Festigkeitseigenschaft(en)
• Durch den Einsatz des Gefügesimulators und/oder Gefügemonitors und/oder Gefügemodells ist es möglich, Betriebskosten zu senken sowie den Nutzen von Investitionskosten quantitativ zu beurteilen.

Claims

Patentansprüche . Verfahren zur Steuerung einer hüttentechnischen Produktionsanlage zur Herstellung eines Produktes aus einer metallischen Stahl- und/oder Eisenlegierung, wobei der Herstellprozess zumindest teilweise mittels eines Gefügesimulators und/oder Gefügemonitors und/oder Gefügemodells gesteuert wird, welcher/welches ein mindestens eine mechanische Festigkeitseigenschaft des erzeugten, die metallische Stahl- und/oder Eisenlegierung enthaltenden Produktes berechnendes Programm umfasst, mittels welchem die mindestens eine mechanische Festigkeitseigenschaft in Abhängigkeit von einer jeweiligen Prozesskette auf Basis errechneter metallurgischer Phasenbestandteile und/oder deren jeweiliger Anteile am sich einstellenden metallurgischen Gefüge des hergestellten Produktes berechnet wird, wobei die Prozesskette der hüttentechnischen Produktionsanlage ein Warmwalz- und/oder Grobblechwalzwerk mit einer abschließenden Kühlstrecke umfasst und in die Berechnung der mindestens einen mechanischen Festigkeitseigenschaft Betriebsparameter der hüttentechnischen Produktionsanlage, von welchen die erhaltene mindestens eine mechanische Festigkeitseigenschaft abhängt, mit zumindest teilweise vorab gesetzten, anpassbaren Ausgangswerten eingehen,
dadurch gekennzeichnet,
dass als in die Berechnung der mindestens einen Festigkeitseigenschaft eingehender Betriebsparameter der hüttentechnischen Produktionsanlage der jeweilige Massenanteil mindestens eines Legierungselementes, vorzugsweise aller Legierungselemente, das/die in der chemischen Zusammensetzung der eingesetzten metallischen Stahl- und/oder Eisenlegierung vorhanden ist/sind, und mindestens ein weiterer Betriebsparameter, insbesondere eine bei der Herstellung des Produktes auf dieses einwirkende Abkühlrate, vorzugsweise eine sich im Rahmen einer nach einem Walzprozess durchgeführten Abkühlung einstellende Abkühlrate, erfasst werden und eine durch eine Änderung mindestens dieses weiteren Betriebsparameters, insbesondere eine Erhöhung der Abkühlrate, erzielbare oder erzielte Erhöhung der betrachteten Festigkeitseigenschaft des hergestellten Produkts durch eine Verminderung des Massenanteils eines oder mehrerer der Legierungselemente an der chemischen Zusammensetzung der eingesetzten metallischen Stahl- und/oder Eisenlegierung zumindest teilweise kompensiert und/oder ausgeglichen wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der jeweilige erfasste Massenanteil an Legierungselemente(n) und/oder der jeweils erfasste mindestens eine weitere Betriebsparameter, insbesondere die jeweils erfasste Abkühlrate, mit einer zählbaren Anzahl einer einen Bewertungsmaßstab abbildenden Bewertungseinheit bewertet wird/werden.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass mittels des Programms die jeweiligen Summenwerte der zählbaren Bewertungseinheiten, die sich für die jeweils betrachtete Festigkeitseigenschaft bei unterschiedlichen Kombinationen aus jeweils einem mit einer Anzahl an zählbaren Bewertungseinheiten bewerteten Massenanteil an Legierungsmittel(n) und einem mit einer Anzahl an zählbaren Bewertungseinheiten bewerteten weiteren Betriebsparameter, insbesondere einer Abkühlrate, ergeben, ermittelt und/oder dargestellt werden.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Programm einen mathematischen Term und/oder Algorithmus umfasst, mittels welchem die jeweilige Anzahl an Bewertungseinheiten und/oder die verschiedenen ermittelten Summenwerte miteinander verglichen werden.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Progrannnn einen den Einfluss von Massenanteilen an Legierungselementen in der chemischen Zusammensetzung der eingesetzten metallischen Stahl- und/oder Eisenlegierung auf die Streckgrenze des hergestellten Produkts abbildenden mathematischen Term und/oder Algorithmus umfasst.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Term die Gleichung
Figure imgf000025_0001
aufweist.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Programm einen den Einfluss der Ferritkorngröße (d) des sich bei einer abschließenden Kühlung des Produktes bildenden Ferritgefüges auf die Streckgrenze abbildenden Term in Form der Gleichung d
umfasst.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Programm einen den Einfluss der Abkühlrate auf die sich bei einer abschließenden Kühlung des Produktes bildende Ferritkorngröße (da) des Ferritgefüges abbildenden Term in Form der Gleichung umfasst.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels des Programms die Betriebsparameter zumindest bezüglich der mindestens einen zu erreichenden mechanischen Festigkeitseigenschaft optimiert werden.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die jeweils berechnete mindestens eine mechanische Festigkeitseigenschaft online an einem Steuerstand der hüttentechnischen Produktionsanlage angezeigt wird.
1 1 . Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels der berechneten mindestens einen mechanischen Festigkeitseigenschaft Betriebsparameter der hüttentechnischen Produktionsanlage gesteuert werden und die gewünschte mindestens eine mechanische Festigkeitseigenschaft automatisch angesteuert wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die hüttentechnische Produktionsanlage eine einen Ofen, ein Walzwerk, insbesondere das Warmwalz- und/oder Grobblechwalzwerk, und eine Kühlstrecke umfassende Prozesskette aufweist und dass in das Programm Betriebsparameter der gesamten Prozesskette dieser hüttentechnischen Produktionsanlage eingehen.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die hüttentechnische Produktionsanlage einen Bereich, insbesondere ein Stahlwerk und/oder eine Stranggießanlage, umfasst, in dem die metallische Stahl- und/oder Eisenlegierung schmelzflüssig vorliegt und dass in das Programm Betriebsparameter der gesamten Prozesskette der diesen Bereich umfassenden hüttentechnischen Produktionsanlage eingehen.
PCT/EP2015/050460 2014-01-22 2015-01-13 Verfahren zur optimierten herstellung von metallischen stahl- und eisenlegierungen in warmwalz- und grobblechwerken mittels eines gefügesimulators, -monitors und/oder -modells WO2015110310A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2016133849A RU2703009C2 (ru) 2014-01-22 2015-01-13 Способ оптимизированного изготовления металлических стальных и железных сплавов в станах горячей прокатки и толстолистовых прокатных станах при помощи имитатора, монитора и/или модели структуры
CN201580005409.5A CN106413931B (zh) 2014-01-22 2015-01-13 优化制造金属的铁合金的方法
EP15701113.1A EP3096896B1 (de) 2014-01-22 2015-01-13 Verfahren zur optimierten herstellung von metallischen stahl- und eisenlegierungen in warmwalz- und grobblechwerken mittels eines gefügesimulators, -monitors und/oder -modells
JP2016547925A JP6297159B2 (ja) 2014-01-22 2015-01-13 最適化された、組織シミュレータ、組織モニタ及び/又は組織モデルを用いて金属の鋼合金及び/又は鉄合金を熱間圧延機及び厚板圧延機において製造するのため方法
KR1020167020718A KR20160105464A (ko) 2014-01-22 2015-01-13 미세조직 시뮬레이터, 모니터 및/또는 모델을 이용한, 열연 및 후판 공장에서 금속 강 합금 및 철 합금의 최적 제조 방법
US15/113,260 US20170002440A1 (en) 2014-01-22 2015-01-13 Method for optimally producing metal steel and iron alloys in hot-rolled and thick plate factories using a microstructure simulator, monitor, and/or model

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102014201086 2014-01-22
DE102014201086.1 2014-01-22
DE102014224461.7A DE102014224461A1 (de) 2014-01-22 2014-11-28 Verfahren zur optimierten Herstellung von metallischen Stahl- und Eisenlegierungen in Warmwalz- und Grobblechwerken mittels eines Gefügesimulators, -monitors und/oder -modells
DE102014224461.7 2014-11-28

Publications (1)

Publication Number Publication Date
WO2015110310A1 true WO2015110310A1 (de) 2015-07-30

Family

ID=53497928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/050460 WO2015110310A1 (de) 2014-01-22 2015-01-13 Verfahren zur optimierten herstellung von metallischen stahl- und eisenlegierungen in warmwalz- und grobblechwerken mittels eines gefügesimulators, -monitors und/oder -modells

Country Status (8)

Country Link
US (1) US20170002440A1 (de)
EP (1) EP3096896B1 (de)
JP (1) JP6297159B2 (de)
KR (1) KR20160105464A (de)
CN (1) CN106413931B (de)
DE (1) DE102014224461A1 (de)
RU (1) RU2703009C2 (de)
WO (1) WO2015110310A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786648C1 (ru) * 2022-06-23 2022-12-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им Г.И. Носова" Устройство для управления профилированной прокаткой заготовки в прокатной клети толстолистового стана с гидравлическим нажимным устройством

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10976712B2 (en) * 2018-02-05 2021-04-13 Honeywell International Inc. Method and system to provide cost of lost opportunity to operators in real time using advance process control
DE102018212074A1 (de) * 2018-07-19 2020-01-23 Sms Group Gmbh Verfahren zum Ermitteln von Stellgrößen für aktive Profil- und Planheitsstellglieder für ein Walzgerüst und von Profil- und Mittenplanheitswerten für warmgewalztes Metallband
KR20230141955A (ko) * 2018-12-18 2023-10-10 아르셀러미탈 중간 금속 제품(들)의 그룹으로부터의 최종 금속 제품(들)의 그룹의 제조를 제어하기 위한 방법 및 전자 장치, 관련 컴퓨터 프로그램, 제조 방법 및 설비
KR20210110661A (ko) * 2019-01-15 2021-09-08 제이에프이 스틸 가부시키가이샤 해석 시스템 및 해석 방법
JP6617842B1 (ja) * 2019-01-17 2019-12-11 Jfeスチール株式会社 金属材料の設計支援方法及び設計支援装置
RU2729801C1 (ru) * 2019-10-25 2020-08-12 Антон Владимирович Шмаков Способ производства проката из стали
CN111061257B (zh) * 2019-12-30 2021-02-19 杭州电子科技大学 一种基于动态全局lpp的工业过程监测方法
JP7287416B2 (ja) * 2020-07-07 2023-06-06 Jfeスチール株式会社 厚鋼板の製造仕様決定支援装置および製造仕様探索方法、コンピュータプログラム、コンピュータ読み取り可能な記録媒体ならびに厚鋼板の製造方法
JP7283499B2 (ja) * 2020-07-07 2023-05-30 Jfeスチール株式会社 製造仕様決定支援装置、製造仕様決定支援方法、コンピュータプログラムおよびコンピュータ読み取り可能な記録媒体
DE102020214532A1 (de) * 2020-11-18 2022-05-19 Sms Group Gmbh Verfahren zum Verarbeiten von einer Übergangsbramme oder -knüppel
RU2762195C1 (ru) * 2021-03-15 2021-12-16 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ получения изотропной электротехнической стали
TWI786580B (zh) * 2021-03-26 2022-12-11 中國鋼鐵股份有限公司 精軋機出口溫度估算方法
CN113617851A (zh) * 2021-06-23 2021-11-09 武汉钢铁有限公司 一种短流程产线在线反馈控制方法、装置及电子设备
DE102021211320A1 (de) 2021-10-07 2023-04-13 Sms Group Gmbh Verfahren zur Herstellung eines Walzproduktes unter optimiertem Einsatz von Einsatzstoffen
DE102021213885A1 (de) * 2021-12-07 2023-06-07 Sms Group Gmbh Verfahren zum Optimieren der chemischen Zusammensetzung eines Werkstoffs
CN115062504B (zh) * 2022-05-24 2024-04-16 桂林理工大学 一种模拟计算任意双相不锈钢显微组织磁导率的方法
CN117854655A (zh) * 2024-03-07 2024-04-09 宝鸡核力材料科技有限公司 一种钛合金制备中贵金属添加的均匀度优化方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018970A1 (de) * 1996-10-30 1998-05-07 Voest-Alpine Industrieanlagenbau Gmbh Verfahren zur überwachung und steuerung der qualität von walzprodukten aus warmwalzprozessen
US6309482B1 (en) * 1996-01-31 2001-10-30 Jonathan Dorricott Steckel mill/on-line controlled cooling combination
EP2058060A1 (de) * 2007-05-11 2009-05-13 Nippon Steel Corporation Vorrichtung und verfahren zur gesteuerten kühlung von stahlblech

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171212B1 (de) 1984-07-16 1990-03-14 Sumitomo Electric Industries Limited Gewalzter Stabstahl
JPS61272350A (ja) * 1985-05-28 1986-12-02 Sumitomo Electric Ind Ltd 高炭素鋼棒及びその製造方法
JPH0636931B2 (ja) * 1988-10-24 1994-05-18 新日本製鐵株式会社 線材、棒材の圧延、冷却における温度制御方法
SU1704872A1 (ru) * 1990-04-13 1992-01-15 Западно-Сибирский Металлургический Комбинат Им.50-Летия Великого Октября Способ управлени процессом охлаждени проката
JP2575968B2 (ja) * 1991-04-22 1997-01-29 新日本製鐵株式会社 棒鋼および線材圧延における寸法制御方法
AU645699B2 (en) * 1991-06-04 1994-01-20 Nippon Steel Corporation Method of estimating material of steel product
DE19806267A1 (de) 1997-11-10 1999-05-20 Siemens Ag Verfahren und Einrichtung zur Steuerung einer hüttentechnischen Anlage
DE10156008A1 (de) 2001-11-15 2003-06-05 Siemens Ag Steuerverfahren für eine einer Kühlstrecke vorgeordnete Fertigstraße zum Walzen von Metall-Warmband
JP4365600B2 (ja) * 2002-03-08 2009-11-18 Jfeスチール株式会社 鋼材の製品品質設計装置及び鋼材製品の製造方法
US8108064B2 (en) 2003-03-28 2012-01-31 Tata Steel Limited System and method for on-line property prediction for hot rolled coil in a hot strip mill
DE10339766A1 (de) 2003-08-27 2005-04-07 Siemens Ag Verfahren und Einrichtung zur Steuerung einer Anlage zur Herstellung von Stahl
JP4305245B2 (ja) * 2004-03-30 2009-07-29 株式会社デンソー 目的地記述生成装置,目的地記述解釈装置
US7853348B2 (en) 2004-04-06 2010-12-14 Siemens Aktiengesellschaft Method for producing a metal
CN100362332C (zh) 2005-03-29 2008-01-16 东北大学 轧制过程在线检测钢板力学性能的方法
KR100619082B1 (ko) * 2005-07-20 2006-09-05 삼성전자주식회사 와이드 모노 사운드 재생 방법 및 시스템
CN101165202A (zh) * 2006-10-19 2008-04-23 鞍钢股份有限公司 具有高焊接热影响区韧性的高强钢及其制造方法
DE102007007560A1 (de) 2007-02-15 2008-08-21 Siemens Ag Verfahren zur Unterstützung einer wenigstens teilweise manuellen Steuerung einer Metallbearbeitungsstraße
JP5682131B2 (ja) * 2010-04-05 2015-03-11 Jfeスチール株式会社 鋼材の材質予測装置
RU2477187C2 (ru) * 2011-06-08 2013-03-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ автоматического управления процессом прокатки в непрерывной группе клетей
JP5795924B2 (ja) * 2011-09-26 2015-10-14 東芝三菱電機産業システム株式会社 最適化装置、最適化方法、及び最適化プログラム
CN102564875A (zh) * 2012-01-29 2012-07-11 重庆大学 基于五点弯曲测试的钢丝绳疲劳评估系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309482B1 (en) * 1996-01-31 2001-10-30 Jonathan Dorricott Steckel mill/on-line controlled cooling combination
WO1998018970A1 (de) * 1996-10-30 1998-05-07 Voest-Alpine Industrieanlagenbau Gmbh Verfahren zur überwachung und steuerung der qualität von walzprodukten aus warmwalzprozessen
EP2058060A1 (de) * 2007-05-11 2009-05-13 Nippon Steel Corporation Vorrichtung und verfahren zur gesteuerten kühlung von stahlblech

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786648C1 (ru) * 2022-06-23 2022-12-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Магнитогорский государственный технический университет им Г.И. Носова" Устройство для управления профилированной прокаткой заготовки в прокатной клети толстолистового стана с гидравлическим нажимным устройством

Also Published As

Publication number Publication date
EP3096896A1 (de) 2016-11-30
US20170002440A1 (en) 2017-01-05
RU2703009C2 (ru) 2019-10-15
CN106413931A (zh) 2017-02-15
KR20160105464A (ko) 2016-09-06
JP2017511752A (ja) 2017-04-27
DE102014224461A1 (de) 2015-07-23
RU2016133849A (ru) 2018-03-02
RU2016133849A3 (de) 2018-03-02
JP6297159B2 (ja) 2018-03-20
CN106413931B (zh) 2019-10-15
EP3096896B1 (de) 2017-12-20

Similar Documents

Publication Publication Date Title
EP3096896B1 (de) Verfahren zur optimierten herstellung von metallischen stahl- und eisenlegierungen in warmwalz- und grobblechwerken mittels eines gefügesimulators, -monitors und/oder -modells
AT408623B (de) Verfahren zur überwachung und steuerung der qualität von walzprodukten aus warmwalzprozessen
DE19881711B4 (de) Verfahren und Einrichtung zur Steuerung einer Hüttentechnischen Anlage
EP3535431B1 (de) Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung
DE69909946T2 (de) Stahlblech für die Fertigung von Dosen und Verfahren zu seiner Herstellung
EP2753439B1 (de) Giessverfahren, insbesondere stranggiessverfahren
EP2991783B1 (de) Verfahren zur herstellung eines metallischen bandes
DE10256750A1 (de) Verfahren zur Prozesssteuerung oder Prozessregelung einer Anlage zur Umformung, Kühlung und/oder Wärmebehandlung von Metall
EP3902931A1 (de) Verfahren zur herstellung von konventionell warmgewalzten, profilierten warmbanderzeugnissen
EP1289691A1 (de) Verfahren zum stranggiessen eines metallstranges
EP3853385A1 (de) Verfahren zur herstellung ultrahochfester stahlbleche und stahlblech hierfür
WO2020108754A1 (de) Flachprodukt aus einem eisenbasierten formgedächtniswerkstoff
WO2020127558A1 (de) Verfahren zur herstellung von konventionell warmgewalzten warmbanderzeugnissen
WO2020187419A1 (de) Verfahren zur herstellung eines warmgewalzten stahlflachproduktes mit unterschiedlichen eigenschaften, ein entsprechend warmgewalztes stahlflachprodukt sowie eine entsprechende verwendung
DE102021211320A1 (de) Verfahren zur Herstellung eines Walzproduktes unter optimiertem Einsatz von Einsatzstoffen
WO2023104836A1 (de) Verfahren zum optimieren der chemischen zusammensetzung eines werkstoffs
WO2023006834A1 (de) Verfahren zur feststellung einer defektwahrscheinlichkeit eines gegossenen produktabschnittes
DE102022201922A1 (de) Verfahren zur Planung und/oder Steuerung und/oder Regelung eines Herstellungsprozesses in einer metallurgischen Produktionsanlage mit mehreren aufeinanderfolgenden Prozessschritten
EP4298255A1 (de) Hochfestes, warmgewalztes stahlflachprodukt mit hoher lokaler kaltumformbarkeit sowie ein verfahren zur herstellung eines solchen stahlflachprodukts
EP0582132B1 (de) Baustahl, insbesondere Betonstahl und Verfahren zu seiner Herstellung
DE102021201150A1 (de) Verfahren zur Herstellung eines warmgewalzten und wärmebehandelten Stahlflachprodukts, ein entsprechend warmgewalztes und wärmebehandeltes Stahlflachprodukt sowie eine entsprechende Verwendung
WO2019011644A1 (de) Verfahren zur herstellung eines pressgehärteten bauteils
DE2305098A1 (de) Verfahren zum bestimmen der materialzusammensetzung
EP3009205A1 (de) Berücksichtigung einer Referenzgeschwindigkeit beim Ermitteln einer Leitgeschwindigkeit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15701113

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015701113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015701113

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016547925

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15113260

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167020718

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016133849

Country of ref document: RU

Kind code of ref document: A