EP1289691A1 - Verfahren zum stranggiessen eines metallstranges - Google Patents

Verfahren zum stranggiessen eines metallstranges

Info

Publication number
EP1289691A1
EP1289691A1 EP01942855A EP01942855A EP1289691A1 EP 1289691 A1 EP1289691 A1 EP 1289691A1 EP 01942855 A EP01942855 A EP 01942855A EP 01942855 A EP01942855 A EP 01942855A EP 1289691 A1 EP1289691 A1 EP 1289691A1
Authority
EP
European Patent Office
Prior art keywords
strand
metal
cooling
model
solving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01942855A
Other languages
English (en)
French (fr)
Other versions
EP1289691B1 (de
EP1289691B2 (de
Inventor
Christian Chimani
Kurt Dittenberger
Andreas Flick
Karl Mörwald
Helmut Resch
Josef Watzinger
Manfred Thalhammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIEMENS VAI METALS Technologies GmbH
Original Assignee
Voest Alpine Industrienlagenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3683713&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1289691(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Voest Alpine Industrienlagenbau GmbH filed Critical Voest Alpine Industrienlagenbau GmbH
Priority to AT01942855T priority Critical patent/ATE346706T1/de
Publication of EP1289691A1 publication Critical patent/EP1289691A1/de
Publication of EP1289691B1 publication Critical patent/EP1289691B1/de
Application granted granted Critical
Publication of EP1289691B2 publication Critical patent/EP1289691B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling

Definitions

  • the invention relates to a method for the continuous casting of a metal strand, in particular a steel strand, a strand being pulled out of a cooled continuous mold, supported in a strand support device arranged downstream of the continuous mold and cooled with coolant and optionally reduced in thickness, and a system for carrying out the method.
  • DE-C - 25 42 290 it is known from DE-C - 25 42 290 to predefine a specific temperature profile according to an optimal casting speed for which the coolant quantities for cooling the strand are set and during casting the measured real casting speed with the optimum casting speed to compare and to make adjustments for the coolant quantities from deviations of the actual casting speed from the optimal casting speed.
  • thermodynamic changes in state of the strand into account with great accuracy, so that disadvantages caused by such thermodynamic changes in state, e.g. responsible for internal cracks or edge cracks can be reliably avoided.
  • thermodynamic changes in the state of the entire strand such as changes in the surface temperature, the mean temperature, the shell thickness, and also the mechanical state, such as the deformation behavior, etc., are constantly included in a mathematical simulation model by solving the heat conduction equation, and the cooling of the strand is taken into account Depending on the calculated value, at least one of the thermodynamic state variables is set, the strand thickness and the chemical analysis of the metal and the continuously measured casting speed being taken into account for the simulation.
  • Another cause of surface cracks is the segregation of trace elements such as S, Sn, Cu etc. at the grain boundaries. These segregations result in hot brittleness of the rolled product after rolling.
  • the crack intensity is directly related to the initial grain size, i.e. the larger the grain, the higher the crack intensity.
  • the starting grain size is generally larger than with cold-charged slabs, which undergo a complete conversion from ⁇ to ⁇ .
  • This effect can also be positively influenced by targeted temperature-time control, in particular rapid cooling to approximately 500 ° C. having a favorable effect on the excretion processes. That concentrated precipitation of nitrides at the austenite grain boundaries is suppressed and replaced by an even distribution over the volume. Depending on the steel analysis and time of the temperature treatment, a fine pearlitic or bainitic structure is created. In spite of a slight loss of global strength, the material toughness increases. Local softening at the primary austenite grain boundaries is avoided and cracking is consequently suppressed. The effect applies both to A1N excretions and to trace elements, which cause hot fragility.
  • temperature control is usually carried out in accordance with theoretical predictions and calculations.
  • the amounts of water are controlled so that at different casting speeds approximately the same surface temperatures are reached on the strand.
  • a temperature measuring device is used for this feedback, which measures the surface temperature of the cast product before and after the intensive exposure to water. These values are compared with the calculated ones and the optimum amount of water is determined from them after appropriate tests.
  • the water control is therefore linked purely to the casting speed. Changes that arise due to transient conditions (short changes in speed, start of casting when the machine is cold, end of casting, etc.) so that they are not influenced unless a permanent temperature measurement is used. Measuring instruments used for this purpose usually have only a low measuring accuracy and are strongly influenced in particular by scale, which is located on the surface of the cast product. The feedback is imprecise, so it is not possible to apply water evenly and intensively.
  • Another disadvantage relates to the fact that, in the case of greatly changed casting speeds, the optimum length of the section in which the strand is to be intensively cooled has to be changed in order to achieve a certain depth of the influence of the intensive cooling and it is not sufficient to change only the amount of water , If you have only inaccurate temperature signals to specify the optimal length or depth of the area of influence, you will never achieve the desired optimum.
  • DE 196 12 420 AI describes a method for achieving improved strand cooling at varying strand speeds, with model parameters such as mold length, strand geometry, strand speed, melting temperature, solidification enthalpy and cooling water volume being taken into account for various cooling models.
  • the thermal model is expanded with the functionality of a neural network for adapting modeling parameters. A thermal Modeling of the casting process coupled with metallurgical modeling in order to influence the material properties online is not addressed here.
  • the steel quality is not taken into account.
  • some (sensitive) steel grades are overcooled and subjected to unnecessary thermal stress.
  • the desired phase transition effect is not achieved in some other types of steel.
  • the invention aims to avoid these disadvantages and difficulties and has as its object the further development of a continuous casting process of the type described in such a way that it is possible to specify the formation of a desired structure of the metal as a target, etc. for metals, i.e. Different chemical composition in the continuous casting of steel for all steel qualities or steel grades to be cast.
  • a target i.e. Different chemical composition in the continuous casting of steel for all steel qualities or steel grades to be cast.
  • This object is achieved in a method of the type described at the outset in that, in order to form a specific structure in the cast strand, the continuous casting is carried out using on-line calculation on the basis of a computational model describing the formation of the specific structure of the metal, the structure-influencing variable of the continuous casting process, such as, for example, the specific quantity of coolant provided for cooling the strand, can be set dynamically online, ie during the ongoing casting.
  • the calculation model uses thermodynamic changes in the state of the entire strand, such as changes in the surface temperature, the mean temperature, the shell thickness, by solving the heat conduction equation and solving an equation describing the phase transition kinetics, and the cooling of the strand is dependent on the calculated value set at least one of the thermodynamic state variables, the strand thickness and the chemical analysis of the metal and the continuously measured casting speed being taken into account for the simulation.
  • the calculation model which includes the formation of a specific time and temperature-dependent structure of the metal, it is possible to determine the variables of the continuous casting process that influence the structure, e.g. adapt the amount of coolant to be applied to the strand surface, the chemical analysis of the metal, and the local temperature history of the strand. In this way, a desired microstructure in the broadest sense (grain size, phase formation, excretions) can be achieved in the region of the strand near the surface.
  • a continuous phase conversion model of the metal is preferably integrated into the computing model, in particular according to Avrami.
  • the Avrami equation describes all diffusion-controlled conversion processes for the respective temperature under isothermal conditions.
  • ferrite, pearlite and bainite fractions can be set in a targeted manner in steel continuous casting, etc. also taking into account a holding time at a certain temperature.
  • the method is preferably characterized in that thermal changes in the state of the entire strand, such as changes in surface temperature, mean temperature, shell thickness, are solved by solving the thermal conduction equation and solving an equation describing the excretion kinetics, in particular non-metallic and intermetallic precipitates, and continuously the cooling of the strand is set as a function of the calculated value of at least one of the thermodynamic state variables, the strand thickness and the chemical analysis of the metal and the constant being used for the simulation Measured pouring speed are taken into account, the excretion kinetics due to free phase energy and nucleation and use of thermodynamic basic variables, in particular Gibb's energy, and the germ growth according to Zener advantageously being integrated into the calculation model.
  • Structural quantity relationships in equilibrium states according to multi-substance system diagrams in particular according to the Fe-C diagram, are also expediently integrated into the calculation model.
  • Grain growth properties are preferably integrated into the computing model, in particular taking into account recrystallization of the metal.
  • Dynamic and / or delayed and / or post-recrystallization i.e. a recrystallization that later takes place in an oven must be taken into account in the calculation model.
  • thermodynamic rolling for example high-temperature rolling, which takes place during the continuous casting thermodynamic rolling with a surface temperature greater than A c3 can be taken into account.
  • the mechanical state such as the deformation behavior
  • the mechanical state is preferably also constantly included in the calculation model by solving further model equations, in particular by solving the thermal conductivity equation.
  • a preferred embodiment is characterized in that phase components defined in terms of quantity are set by applying specific strand coolant quantities calculated on-line before and / or after the strand has solidified.
  • a defined structure is expediently set by applying an on-line strand deformation calculated before and / or after the strand has solidified, which causes the structure to recrystallize.
  • An advantageous variant of the method according to the invention is characterized in that the phase transformation that concludes the continuous casting with setting of a phase component of the strand that is defined in terms of quantity, calculated specific strand The amount of coolant is set after solidification of the strand in the end region of a secondary cooling zone in a cooling zone causing increased cooling.
  • the calculation model to be used according to the invention can calculate all transformation temperatures and data which are necessary for predicting and describing the transformation processes for the phase fractions ferrite, pearlite, bainite and martensite.
  • X is the proportion of the converted phase and b and n are parameters which are dependent on the nucleation and the growth of the phase formed. These parameters b and n are dependent on the analysis and can be determined by dilatometer tests.
  • the Avrami equation can be used to calculate the start and end times as well as the temperature for the ferrite, pearlite and bainite transformation under isothermal conditions.
  • t s (T) means a virtual start time of the conversion at a temperature T in accordance with the amount actually converted.
  • the temperature is defined as a function of time. Since the calculated conversion or excretion percentage according to Avrami does not provide any information about the actual microstructure / quantity ratios, but only reveals whether and how the equilibrium state is reached, the conversion fractions on the equilibrium lines from the iron / carbon are used to determine the microstructure ratio Diagram related and also taken into account in the calculation model.
  • ⁇ G chem ⁇ G ° A1N - R ⁇ T • (In XAI + In X N )
  • G .0 A I N is the standard Gibb energy for the formation of AIN
  • X AI is the molar fraction of aluminum in the austenite volume
  • X N is the average nitrogen content.
  • S is the density of nucleation in austenite.
  • is the austenite / AIN interface energy.
  • k ß is the Boltzmann constant and D A ⁇ is the spreading capacity of aluminum in austenite.
  • Zener for example, discussed in JS Kirkaldy, "Diffusion in the Condensed State", The Universities Press, Harbor, 1985).
  • the calculation process takes place in two main stages. In the first stage the number of currently formed germs is determined and in the second stage the growth of all previously formed excretions is calculated.
  • a steel strand 1 is formed from a molten steel 2 with a certain chemical composition by casting in a continuous mold 3.
  • the molten steel 2 is poured from a ladle 4 via an intermediate vessel 5 and one from the intermediate vessel 5 into the continuous mold 3 by means of a pouring tube 6 extending under the casting level formed in the continuous mold 3.
  • strand guide rollers 7 are provided for supporting the steel strand 1, which still has a liquid core 8 and initially only a very thin strand shell 9.
  • the steel strand 1 emerging from the continuous mold with a straight axis is deflected in a bending zone 10 into a circular arc path 11 and is also supported in this by strand guide rollers 7.
  • a straightening zone 12 following the circular arc path 11 the steel strand 1 is again straightened and conveyed out via an outfeed roller table or directly reduced in thickness on-line, e.g. by means of an on-line mill stand 13.
  • the steel strand 1 To cool the steel strand 1, it is cooled directly or indirectly - via strand guide rollers 7 provided with internal cooling - so that a certain temperature can be set on its surface to a certain depth range.
  • the steel strand 1 is supplied with the amount of coolant required for the desired structure of the steel strand 1 via a closed or open control circuit by means of a computer 14.
  • Machine data m the format f of the steel strand 1, material data, such as the chemical analysis St C h of the molten steel 2, the pouring state z, the pouring speed v, the molten steel temperature tn at which the molten steel 2 enters the continuous mold 3, as well as the desired structure ⁇ / ⁇ and possibly a deformation w of the steel strand 1, which is on the way of the strand guidance is entered.
  • This deformation can also be given, for example, by straightening the steel strand 1 in the straightening zone 12.
  • a set amount of water Q s is calculated on the basis of a metallurgical calculation model that takes into account the phase change kinetics and nucleation kinetics according to the calculation models specified above, and a thermal calculation model that enables the temperature analysis based on the solution of the heat conduction equation, etc. due to the current, already applied amount of water Q A , which is also entered into the computer.
  • a solution of the heat conduction equation using a process computer is state of the art and e.g. dealt with in detail in DE-C2 - 44 17 808 for continuous casting.
  • the finite difference method with Lagrangian description is given as one way of solving the heat conduction equation.
  • the metallurgical calculation model takes the current steel analysis St C into account in order to cope with different material behavior.
  • the current temperature T A calculated by the thermal calculation model is fed on-line to the metallurgical calculation model and this continuously calculates the desired target temperature T s , on the basis of which the thermal calculation model calculates and automatically sets the target water quantity Q s for the individual strand cooling sections.

Description

Verfahren zum Stranggießen eines Metallstranges
Die Erfindung betrifft ein Verfahren zum Stranggießen eines Metallstranges, insbesondere eines Stahlstranges, wobei ein Strang aus einer gekühlten Durchlaufkokille ausgezogen, in einer der Durchlaufkokille nachgeordneten Strangstützeinrichtung gestützt und mit Kühlmittel gekühlt sowie gegebenenfalls dickenreduziert wird, sowie eine Anlage zur Durchführung des Verfahrens.
Es ist eine beim Stranggießen bekannte Anforderung, die Kühlung eines kontinuierlich gegossenen Stranges derart einzustellen, daß die Strangoberflächentemperatur vorgegebenen Werten, die gegebenenfalls vom Alter eines Querschnittselementes des Stranges abhängen, möglichst nahekommt. Dies ist insbesondere bei Strangverzögerungen und oder Strangbeschleunigungen von besonderer Bedeutung.
Aus der AT-B - 300.238 ist ein Verfahren zum Kühlen eines aus einer Durchlaufkokille austretenden Stranges bekannt, wobei die Sollwerte der Kühlwassermenge in Abhängigkeit von der chemischen Zusammensetzung des Strangmaterials, der Erstarrungszeit und weiters in Abhängigkeit vom augenblicklichen Integralwert der Gießgeschwindigkeit während des Weges des Stranges bis zur jeweiligen Kühlzone eingestellt werden, so daß die Strangoberflächentemperatur vorbestimmbar bleibt.
Weiters ist es aus der DE-C - 25 42 290 bekannt, vor dem Gießen einen bestimmten Temperaturverlauf entsprechend einer optimalen Gießgeschwindigkeit, für welche die Kühlmittelmengen für die Kühlung des Stranges eingestellt werden, vorzugeben und während des Gießens die gemessene wirkliche Gießgeschwindigkeit mit der optimalen Gießgeschwindigkeit zu vergleichen und aus Abweichungen der tatsächlichen Gießgeschwindigkeit von der optimalen Gießgeschwindigkeit eine Nachsteuerung für die Kühlmittelmengen vorzunehmen.
Aus der DE-A - 2 344 438 ist es bekannt, während des Gießens durch Integrieren der Geschwindigkeit einzelner Strangabschnitte über die Laufzeit und durch gleichzeitiges Festhalten der von einem Strangabschnitt im Kühlbereich verbrachten Zeit die auf einen einzelnen Abschnitt aufgebrachte Kühlmittelmenge zu ermitteln und mit einer Sollmenge zu vergleichen, auf diese Weise sogenannte "Rest-Kühlmittelmengen" zu bestimmen und aus ieser Bestimmung heraus die Verweilzeit einzelner Strangabschnitte im gesamten Kühlbereich konstant zu halten. Diese bekannten Verfahren ermöglichen Korrekturen der Kühlmittelmengen, die in erster Linie von der Gießgeschwindigkeit abhängen, also gießgeschwindigkeitsabhängige Regelungen, wobei jedoch die tatsächlichen thermodynamischen Zustandsänderungen des Stranges unberücksichtigt bleiben. Der Stand der Technik berücksichtigt also nur - kommt es zu einem Abweichen der tatsächlichen Gießgeschwindigkeit von der Gießgeschwindigkeit, für die die Strangkühlung eingestellt ist - Tendenzen, ohne jedoch den tatsächlichen Verhältnissen gerecht zu werden.
Gemäß der DE-A - 44 17 808 werden in Weiterentwicklung zu obigen Verfahren thermodynamische Zustandsänderungen des Stranges mit großer Genauigkeit berücksichtigt, so daß durch solche thermodynamische Zustandsänderungen verursachte Nachteile, die z.B. für Innenrisse oder Kantenrisse verantwortlich sind, zuverlässig vermieden werden.
Hierzu werden thermodynamische Zustandsänderungen des gesamten Stranges, wie Änderungen der Oberflächentemperatur, der Mittentemperatur, der Schalenstärke, und auch der mechanische Zustand, wie das Verformungsverhalten, etc., in einem mathematischen Simulationsmodell durch Lösen der Wärmeleitungsgleichung ständig mitgerechnet und es wird die Kühlung des Stranges in Abhängigkeit des errechneten Wertes mindestens einer der thermodynamischen Zustandsgrößen eingestellt, wobei für die Simulation die Strangdicke und die chemische Analyse des Metalles sowie die ständig gemessene Gießgeschwindigkeit berücksichtigt werden.
Beim Direktverbund einer Stranggießanlage mit einem Walzwerk hängen Ausscheidungsbildung und Phasenumwandlungen im Gußprodukt von der Kühlrate, dem Temperaturniveau und von der Deformationskinetik ab. Es wurde beispielsweise beobachtet, daß im Falle eines zeitlich verzögerten Chargierens von Brammen in einen Ofen, z.B. infolge langer Transportzeit, Oberflächenrisse (Netzrisse) am Walzprodukt entstehen, welche auf eine Schädigung entlang der Korngrenzen zurückzuführen sind. Insbesondere trifft dies auf Aluminiumnitridausscheidungen zu, welche sich verstärkt an den Korngrenzen ausscheiden und dort die Mobilität der Körner zueinander behindern. Bei einer Warmumformung entstehen an den Korngrenzen hohe Spannungen, welche im Falle solcher Ausscheidungen in Rissen nach dem Walzen enden. Die Ausscheidung von A1N im stabilen γ-Bereich ist von der Temperatur-Zeitgeschichte abhängig. Durch die Phasenumwandlung von γ in α, bei Temperaturen zwischen 900°C und 720°C, kommt es zur annähernd spontanen Ausscheidung der sich nicht im Gleichgewicht befindlichen Aluminiumnitride. Zur Vermeidung der mit A1N- Ausscheidungen verbundenen Nachteile ist es bekannt (EP-A - 0 650 790), den durcherstarrten Strang (Bramme, Vorblock, Knüppel) in oder nach der Stranggießanlage in solcher Art mit einem Kühlmedium zu kühlen, daß die Oberflächentemperatur einen bestimmten Wert von ca. 500 bis 550°C erreicht. Anschließend wird die Kühlung gestoppt und der gekühlte Abschnitt erwärmt sich von innen auf einen sich ergebenden Wert.
Eine andere Ursache von Oberflächenrissen sind Seigerungen von Spurenelementen, wie S, Sn, Cu etc., an den Korngrenzen. Diese Seigerungen resultieren in Heißbrüchigkeit des Walzproduktes nach dem Walzen. Die Rissintensität steht in einem direkten Zusammenhang mit der Ausgangskorngröße, d.h. je größer das Korn ist, umso höher wird die Rissintensität sein. In einem Direktverbundsystem ist die Ausgangskorngröße im allgemeinen größer als bei kalt chargierten Brammen, welche eine vollständige Umwandlung von γ in α erfahren.
Auch dieser Effekt kann durch eine gezielte Temperatur-Zeitsteuerung positiv beeinflußt werden, wobei insbesondere eine rasche Abkühlung auf ca. 500°C die Ausscheidungsvorgänge günstig beeinflußt. D.h. eine konzentrierte Ausscheidung von Nitriden an den Austenitkorngrenzen wird unterdrückt und durch eine über das Volumen gleichmäßige Verteilung ersetzt. Je nach Stahlanalyse und Zeit der Temperaturbehandlung entsteht eine fein perlitische oder bainitische Gefügestruktur. Trotz einer geringen globalen Festigkeitseinbuße erhöht sich damit die Materialzähigkeit. Lokale Entfestigung an den primären Austenitkorngrenzen werden vermieden und folglich wird die Rißbildung unterdrückt. Der Effekt gilt sowohl für A1N- Ausscheidungen als auch für Spurenelemente, welche Heißbrüchigkeit hervorrufen.
Die Temperatursteuerung erfolgt gemäß dem Stand der Technik üblicherweise entsprechend theoretischer Vorhersagen und Berechnungen. Die Wassermengen werden so gesteuert, daß bei unterschiedlichen Gießgeschwindigkeiten in etwa gleiche Oberflächentemperaturen am Strang erreicht werden. Üblicherweise wird dazu als Rückkoppelung eine Temperaturmeßeinrichtung verwendet, welche die Oberflächentemperatur des Gußproduktes vor und nach der intensiven Wasserbeaufschlagung mißt. Diese Werte werden mit berechneten verglichen und daraus nach entsprechenden Versuchen die optimale Wassermenge bestimmt.
Die Wassersteuerung ist also rein mit der Gießgeschwindigkeit gekoppelt. Veränderungen, welche aufgrund von instationären Zuständen entstehen (kurze Geschwindigkeitsänderungen, Gießbeginn bei kalter Maschine, Gießende etc.), können damit nicht beeinflußt werden, außer man bedient sich einer permanenten Temperaturmessung. Hierzu dienende Messinstrumente haben üblicherweise nur eine geringe Meßgenauigkeit und werden stark inbesondere durch Zunder, welcher sich auf der Oberfläche des Gußproduktes befindet, beeinflußt. Die Rückkoppelung ist ungenau, ein gleichmäßiges intensives Beaufschlagen mit Wasser ist daher nicht möglich.
Ein weiterer Nachteil betrifft den Umstand, daß sich bei stark veränderten Gießgeschwindigkeiten die optimale Länge der Strecke, in der der Strang intensiv zu kühlen ist, zur Erzielung einer bestimmten Tiefe des Einflusses der intensiven Kühlung verändern muß und es nicht ausreicht, nur die Wassermenge zu verändern. Hat man zur Vorgabe der optimalen Länge bzw. Tiefe des Einflußbereiches nur ungenaue Temperatursignale, erreicht man nie ein angestrebtes Optimum.
Der Aufsatz H.P. Hougrady et al; Möglichkeiten und Grenzen einer Simulation des Werkstoffverhaltens, Stahl und Eisen; Bd 116, Nr. 4 April 1996, Seiten 109 bis 113, gibt einen grundlegenden Überblick in Modelle, insbesondere physikalisch basierte Modelle, die zur Beschreibung von werkstoffkundlichen Vorgängen beim Verarbeiten von Metallen, insbesondere bei Walzprozessen, benutzt werden können. In diesem Dokument wird die Anwendbarkeit dieser Modelle zur Nachbildung von metallurgischen Vorgängen und deren Verifikation mit experimenteller Laborarbeit beschrieben. Hierdurch ist es möglich, sich grundlegend über physikalische Modelle zur Beschreibung von Phasenumwandlungen und Rekristallisation beim Walzumformen zu informieren. Ein Bezug auf eine Onlinemodellierung bzw. Regelung von Phasenumwandlungen des zu vergießenden Metalls in Stranggießanlagen ist in diesem Dokument nicht gegeben.
Das Dokument C. Biegus et al.; Ermittlung von Werkstoffdaten zur Gefugesimulation, Stahl und Eisen, Bd 116 Nr. 5, 1996, Seiten 43 bis 49 zeigt Methoden auf, die es erlauben, Werkstoffeigenschaften experimentell zu ermitteln, die zur physikalisch basierten Modellierung von Phasenumwandlungen bzw. Rekristallisation notwendig sind.
Die DE 196 12 420 AI beschreibt ein Verfahren zur Erzielung einer verbesserten Strangkühlung bei variierender Stranggeschwindigkeit, wobei für verschiedene Kühlmodelle Modellparameter, wie Kokillenlänge, Stranggeometrie, Stranggeschwindigkeit, Schmelztemperatur, Erstarrungsenthalpie und Kühlwasservolumen berücksichtig werden. Nach bevorzugten Ausführungsformen wird das thermische Modell mit der Funktionalität eines neuronalen Netzes zur Anpassung von Modellierparametern erweitert. Eine thermische Modellierung des Gießprozesses gekoppelt mit einer metallurgischen Modellierung um damit online die Werkstoffeigenschaften zu beeinflussen, ist hier nicht angesprochen.
In der DE 197 17 615 AI wird ein Simulationsansatz zur Beschreibung der Temperaturverteilung während des Warmwalzens beschrieben; es handelt sich um die Anwendung eines rein thermischen Modells.
Gemäß der DE 195 08 476 AI ist eine pauschale Prozessautomatisierung für Bandgießverfahren ohne nähere Angaben über die Art der Prozessregelung beinhaltet. In . einer pauschalen Auflistung von Teilmodellen wird der Ausdruck Kornstruktur angesprochen, jedoch sind Angaben zu Modellierungsansätzen sowie zur Verwendung von diesem Teilmodell nicht enthalten. Es gibt keine Hinweise auf die Benutzung von Simulationtools um Phasenumwandlungen gezielt nach Produktanforderungen zu steuern.
Gemäß dem Stand der Technik wird die Stahlqualität nicht berücksichtigt. Dies hat zur Folge, daß manche (empfindliche) Stahlgüten überkühlt und unnötig thermisch beansprucht werden. Andererseits wird bei manch anderer Stahlsorte der gewünschte Effekt der Phasenumwandlung nicht erreicht. Insbesondere ist es nicht möglich, Phasenanteile in einem gewünschten Ausmaß, wie z.B. für einen Stahlstrang Phasenanteile an Ferrit, Perlit, Baimit und Martensit, am Gußprodukt - vor oder nach einer Walzung - sicherzustellen.
Die Erfindung bezweckt die Vermeidung dieser Nachteile und Schwierigkeiten und stellt sich die Aufgabe, ein Stranggießverfahren der eingangs beschriebenen Art dahingehend weiterzuentwi ekeln, daß es möglich ist, als Zielvorgabe die Ausbildung eines gewünschten- Gefuges des Metalls vorgeben zu- können, u.zw. für Metalle, d.h. unterschiedlicher chemischer Zusammensetzung beim Stahl-Stranggießen für sämtliche zu gießenden Stahlqualitäten bzw. Stahlgüten. Beim Stahl-Stranggießen soll es inbesondere möglich sein, eine bestimmte Ferrit-, Perlit-Struktur einzustellen und/oder Ausscheidungen, wie Aluminiumnitridausscheidungen, an den Korngrenzen zu vermeiden.
Diese Aufgabe wird bei einem Verfahren der eingangs beschriebenen Art dadurch gelöst, daß zur Ausbildung eines bestimmten Gefuges im gegossenen Strang das Stranggießen unter on-line-Berechnung unter Zugrundelegung eines die Ausbildung des bestimmten Gefuges des Metalles beschreibenden Rechenmodells durchgeführt wird, wobei die Gefügeausbildung beinflussende Variable des Stranggießverfahrens, wie zum Beispiel die zur Kühlung des Stranges vorgesehene spezifische Kühlmittelmenge, on-line-dynamisch, d.h. während des laufenden Gießens eingestellt werden. Hierbei werden gemäß einer bevorzugten Ausfuhrungsform mit dem Rechenmodell thermodynamische Zustandsänderungen des gesamten Stranges, wie Änderungen der Oberflächentemperatur, der Mittentemperatur, der Schalenstärke durch Lösen der Wärmeleitungsgleichung und Lösen von einer die Phasen-Umwandlungskinetik beschreibenden Gleichung ständig mitgerechnet und wird die Kühlung des Stranges in Abhängigkeit des errechneten Wertes mindestens einer der thermodynamischen Zustandsgrößen eingestellt, wobei für die Simulation die Strangdicke und die chemische Analyse des Metalles sowie die ständig gemessene Gießgeschwindigkeit berücksichtigt werden.
Durch die erfϊndungsgemäße Koppelung der Berechnung der Temperatur des Stranges mit dem Rechenmodell, das die Ausbildung eines bestimmten zeit- und temperaturabhängigen Gefuges des Metalles beinhaltet, ist es möglich, die Variablen des Stranggießverfahrens, die die Gefügeausbildung beeinflussen, wie z.B. die auf die Strangoberfläche aufzubringende Kühlmittelmenge, der chemischen Analyse des Metalles, sowie der örtlichen Temperaturgeschichte des Stranges anzupassen. Hierdurch kann gezielt eine gewünschte Gefügestruktur im weitesten Sinn (Korngröße, Phasenausbildung, Ausscheidungen) im oberflächennahen Bereich des Stranges erreicht werden.
Vorzugsweise ist in das Rechenmodell ein kontinuierliches Phasen-Umwandlungsmodell des Metalles integriert, insbesondere nach Avrami.
Die Avrami-Gleichung beschreibt in ihrer allgemeinen Form alle diffusionsgesteuerten Umwandlungsvorgänge für die jeweilige Temperatur unter isothermen Bedingungen. Durch Berücksichtigung dieser Gleichung im Rechenmodell können ganz gezielt beim Stahl- Stranggießen Ferrit-, Perlit- und Bainit-Anteile eingestellt werden, u.zw. auch unter Berücksichtigung einer Haltezeit bei bestimmter Temperatur.
Vorzugsweise ist das Verfahren dadurch gekennzeichnet, daß mit dem Rechenmodell thermische Zustandsänderungen des gesamten Stranges, wie Änderungen der Oberflächentemperatur, der Mittentemperatur, der Schalenstärke, durch Lösen der Wärmeleitungsgleichung und Lösen einer die Ausscheidungskinetik, insbesondere nichtmetallischer und intermetallischer Ausscheidungen, beschreibenden Gleichung ständig mitgerechnet werden und die Kühlung des Stranges in Abhängigkeit des errechneten Wertes mindestens einer der thermodynamischen Zustandsgrößen eingestellt wird, wobei für die Simulation die Strangdicke und die chemische Analyse des Metalles sowie die ständig gemessene Gießgeschwindigkeit berücksichtigt werden, wobei vorteilhaft die Ausscheidungskinetik aufgrund freier Phasenenergie und Keimbildung und Verwendung thermodynamischer Grundgrößen, insbesondere der Gibb'schen Energie, und das Keimwachstum nach Zener in das Rechenmodell integriert ist.
Zweckmäßig werden auch Gefugemengenverhältnisse in Gleichgewichtszuständen gemäß Mehrstoffsystem-Diagrammen, insbesondere gemäß Fe-C-Diagramm, in das Rechenmodell integriert.
Vorzugsweise sind in das Rechenmodell Komwachstumseigenschaften, insbesondere unter Berücksichtigung von Rekristallisation des Metalles, integriert. Hierbei kann eine dynamische und/oder verzögerte und/oder eine post-Rekristallisation, d.h. eine Rekristallisation, die später in einem Ofen stattfindet, im Rechenmodell berücksichtigt werden.
Vorzugsweise wird als die Gefugeausbildung beeinflussende Variable des Stranggießens eine während des Ausforderns des Stranges stattfindende Dickenreduktion vor und/oder nach Durcherstarrung des Stranges zusätzlich zur den Strang beaufschlagenden spezifischen Kühlmittelmenge on-line eingestellt, so daß auch während des Stranggießens stattfindende thermodynamische Walzungen, beispielsweise Hochtemperatur-thermodynamische Walzungen bei einer Oberflächentemperatur größer Ac3 berücksichtigt werden können.
Weiters wird vorzugsweise mit dem Rechenmodell auch der mechanische Zustand, wie das Verformungsverhalten, durch Lösen weiterer Modellgleichungen, insbesondere durch Lösen der Wärmeleitgleichung ständig mitgerechnet.
Eine bevorzugte Ausführungsform ist dadurch gekennzeichnet, daß mengenmäßig definierte Phasenanteile durch Aufbringen on-line errechneter spezifischer Strang-Kühlmittelmengen vor und/oder nach der Durcherstarrung des Stranges eingestellt werden.
Weiters wird zweckmäßig ein definiertes Gefüge durch Aufbringen einer on-line errechneten Strangverformung vor und/oder nach der Durcherstarrung des Stranges, welche eine Rekristallisation des Gefuges bewirkt, eingestellt.
Eine vorteilhafte Variante des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, daß die zur das Stranggießen abschließende Phasenumwandlung mit Einstellung eines mengenmäßig definierten Phasenanteiles des Stranges errechnete spezifische Strang- Kühlmittelmenge nach Durcherstarrung des Stranges im Endbereich einer Sekundärkühlzone in einer eine verstärkte Kühlung bewirkenden Kühlzone eingestellt wird.
Die Erfindung ist nachfolgend für das Stahlstranggießen näher erläutert. Eine Anwendung des erfindungsgemäßen Verfahrens für andere Metalle kann analog zu den nachstehenden Ausführungen vorgenommen werden.
Das erfindungsgemäß zu verwendende Rechenmodell läßt aufgrund einer vorgegebenen chemischen Analyse des Stahls, der Austenitkorngröße und der Temperaturgeschichte des Stranges sämtliche Umwandlungstemperaturen und -daten, die zur Vorhersage und Beschreibung der Umwandlungsvorgänge für die Phasenanteile Ferrit, Perlit, Bainit und Martensit notwendig sind, berechnen.
Hierfür wird zunächst ein Kohlenstoffäquivalent für die einzelnen Legierungsbestandteile errechnet. Daraus ergeben sich analysenabhängige Starttemperaturen für die Ferritumwandlung, für die Perlitumwandlung, die Bainitbildung und die Martensitbildung (aufgrund des Eisen/Kohlenstoff-Diagramms).
Aufgrund der Avrami-Gleichung, die in ihrer allgemeinen Form alle diffusionsgesteuerten Umwandlungsvorgänge für die jeweilige Temperatur unter isothermen Bedingungen beschreibt, lassen sich Grundgleichungen für die Umwandlungskurven ermitteln.
X = 1 - exp(-b-tn)
worin X der Mengenanteil der umgewandelten Phase und b und n Parameter bedeuten, die abhängig sind von der Keimbildung und dem Wachstum der gebildeten Phase. Diese Parameter b und n sind analysenabhängig und können durch Dilatometer- Versuche bestimmt werden. Im Zusammenhang mit ZTU-Diagrammen lassen sich mit Hilfe der Avrami- Gleichung sowohl die Start- und die Endzeit als auch die Temperatur für die Ferrit-, Perlit- und Bainit-Umwandlung unter isothermischen Bedingungen berechnen.
Um nicht-isothermische Umwandlungen zu berücksichtigen, also die in der Stranggießanlage stattfindende - gegebenenfalls auch ungleichmäßig stattfindende - Kühlung des Stranges voll berücksichtigen zu können, wird aufgrund der im Rechner gespeicherten ZTU-Schaubilder und der Abhängigkeit der Temperatur als eine Funktion der Zeit der Anteil an umgewandeltem Material berechnet, u.zw. durch eine Integration der Avrami-Gleichung über die Kühlzeit des Stranges (vgl. T.T. Pham, E.B. Hawbolt, J.K. Brimacombe: "Preciding the onset of transformation under non continuous cooling conditions. II Application to austenite - pearlite transformation", Met. Mat. Trans. A, 26A, pp. 1993-2000, 1995).
X(t) = l s(τ)[l-exp(-b-tπ)] -dt
wobei ts(T) eine virtuelle Beginnzeit der Umwandlung bei einer Temperatur T in Übereinstimmung zur tatsächlich umgewandelten Menge bedeutet.
Für diesen Berechnungsalgorithmus wird die Temperatur als Funktion der Zeit definiert. Da der berechnete Umwandlungs- bzw. Ausscheidungsanteil nach Avrami keine Auskunft über die tatsächlichen Gefüge/Mengen- Verhältnisse gibt, sondern lediglich erkennen läßt, ob und wie der Gleichgewichtszustand erreicht wird, werden zur Bestimmung des Gefügeanteils die Umwandlungsanteile auf die Gleichgewichtslinien aus dem Eisen/Kohlenstoff-Diagramm bezogen und ebenfalls im Rechenmodell berücksichtigt.
Keimbildungsvorgänge werden aufgrund der chemischen Gibb'schen Energie bzw. Phasenenergie im Rechenmodell berücksichtigt (nachstehend für Aluminiumnitride gezeigt).
ΔGchem = Δ G°A1N - R T (In XAI + In XN)
wobei G .0 AIN die Standard Gibb'sche Energie für die Bildung von AIN, XAI der Molanteil von Aluminium im Austenitvolumen und XN der Durchschnittsstickstoffgehalt bedeuten. Die Keimbildungsrate läßt sich wie folgt berechnen:
I = S DAι XAI exp
worin S die Dichte der Keimbildung im Austenit bedeutet.
ΔGcrit =
gibt die Bedingung für die Keimbildung wieder. Hierin ist σ die Austenit/AIN- Grenzflächenenergie. kß ist die Boltzmannkonstante und DAι das Ausbreitungsvermögen von Aluminium in Austenit. Das Keimwachstum wird nach Zener berücksichtigt (z.B. abgehandelt in J.S. Kirkaldy, "Diffusion in the Condensed State", The Universities Press, Belfast, 1985).
Das Rechenverfahren geht in zwei Hauptstufen vor sich. In der ersten Stufe wird die Anzahl der aktuell gebildeten Keime bestimmt und in der zweiten Stufe wird das Wachstum aller vorhergehend gebildeten Ausscheidungen berechnet.
Zur weiteren Erläuterung der Erfindung dient die beiliegende Figur.
Gemäß dieser wird ein Stahlstrang 1 aus einer Stahlschmelze 2 mit einer bestimmten chemischen Zusammensetzung durch Gießen in einer Durchlaufkokille 3 gebildet. Die Stahlschmelze 2 wird aus einer Gießpfanne 4 über ein Zwischengefäß 5 und ein vom Zwischengefäß 5 mittels eines unter den in der Durchlaufkokille 3 gebildeten Gießspiegel reichenden Gießrohres 6 in die Durchlaufkokille 3 gegossen. Unterhalb der Durchlaufkokille 3 sind Strangführungsrollen 7 zur Abstützung des Stahlstranges 1 vorgesehen, der noch einen flüssigen Kern 8 und zunächst eine nur sehr dünne Strangschale 9 aufweist.
Der aus der Durchlaufkokille mit gerader Achse austretende Stahlstrang 1 wird in einer Biegezone 10 in eine Kreisbogenbahn 11 umgelenkt und in dieser ebenfalls durch Strangführungsrollen 7 gestützt. In einer der Kreisbogenbahn 11 nachfolgenden Richtzone 12 wird der Stahlstrang 1 wiederum geradegerichtet und über einen Auslaufrollgang ausgefördert oder direkt on-line dickenreduziert, z.B. mittels eines on-line angeordneten Walzgerüstes 13.
Zur Kühlung des Stahlstranges 1 wird dieser direkt oder indirekt - über mit einer Innenkühlung versehene Strangführungsrollen 7 - gekühlt, wodurch an seiner Oberfläche bis in einen gewissen Tiefenbereich eine bestimmte Temperatur eingestellt werden kann.
Die Versorgung des Stahlstranges 1 mit der für das gewünschte Gefüge des Stahlstranges 1 notwendigen Kühlmittelmenge erfolgt über einen geschlossenen oder offenen Regelkreis mittels eines Rechners 14. In den Rechner 14 werden Maschinendaten m, das Format f des Stahlstranges 1, Materialdaten, wie die chemische Analyse StCh der Stahlschmelze 2, der Gießzustand z, die Gießgeschwindigkeit v, die Flüssigstahltemperatur tn, mit der die Stahlschmelze 2 in die Durchlaufkokille 3 eintritt, sowie das gewünschte Gefüge α/γ und gegebenenfalls eine Verformung w des Stahlstranges 1, die am Wege der Strangführung durchgeführt wird, eingegeben. Diese Verformung kann z.B. auch durch das Geraderichten des Stahlstranges 1 in der Richtzone 12 gegeben sein. In dem Rechner 14 wird anhand eines metallurgischen Rechenmodells, das die Phasenumwandlungskinetik und Keimbildungskinetik gemäß der oben angegebenen Rechenmodelle berücksichtigt, und eines thermischen Rechenmodells, das die Temperaturanalyse aufgrund der Lösung der Wärmeleitungsgleichung ermöglicht, eine Soll- Wassermenge Qs errechnet, u.zw. aufgrund der aktuellen, bereits aufgebrachten Wassermenge QA, die ebenfalls in den Rechner eingegeben wird.
Eine Lösung der Wärmeleitungsgleichung mittels eines Prozeßrechners ist Stand der Technik und z.B. in der DE-C2 - 44 17 808 für das Stranggießen ausführlich abgehandelt. Als eine Möglichkeit zur Lösung der Wärmeleitungsgleichung ist das Finite Differenzen Verfahren mit Lagrangescher Beschreibungsweise angegeben.
Das metallurgische Rechenmodell berücksichtigt die aktuelle Stahlanalyse StC , um unterschiedlichen Werkstoffverhalten gerecht zu werden. Die durch das thermische Rechenmodell errechnete aktuelle Temperatur TA wird on-line dem metallurgischen Rechenmodell zugeführt und dieses errechnet laufend die gewünschte Soll-Temperatur Ts, aufgrund der das thermische Rechenmodell die Soll-Wassermenge Qs für die einzelnen Strangkühlungsabschnitte errechnet und automatisch einstellt.

Claims

P atentansprüche :
1. Verfahren zum Stranggießen eines Metallstranges, insbesondere eines Stahlstranges (1), wobei ein Strang (1) aus einer gekühlten Durchlaufkokille (3) ausgezogen, in einer der Durchlaufkokille (3) nachgeordneten Strangstützeinrichtung (7, 11) gestützt und mit Kühlmittel gekühlt sowie gegebenenfalls dickenreduziert wird, dadurch gekennzeichnet, daß zur Ausbildung eines bestimmten Gefuges im gegossenen Strang das Stranggießen unter online-Berechnung unter Zugrundelegung eines die Ausbildung des bestimmten Gefuges des Metalles beschreibenden Rechenmodells durchgeführt wird, wobei die Gefügeausbildung beinflussende Variable des Stranggießverfahrens, wie zum Beispiel die zur Kühlung des Stranges vorgesehene spezifische Kühlmittelmenge, on-line-dynamisch, d.h. während des laufenden Gießens eingestellt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mit dem Rechenmodell thermodynamische Zustandsänderungen des gesamten Stranges, wie Änderungen der Oberflächentemperatur, der Mittentemperatur, der Schalenstärke durch Lösen der Wärmeleitungsgleichung und Lösen von einer die Phasen-Umwandlungskinetik beschreibenden Gleichung ständig mitgerechnet werden und die Kühlung des Stranges in Abhängigkeit des errechneten Wertes mindestens einer der thermodynamischen Zustandsgrößen eingestellt wird, wobei für die Simulation die Strangdicke und die chemische Analyse des Metalles sowie die ständig gemessene Gießgeschwindigkeit berücksichtigt werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß in das Rechenmodell ein kontinuierliches Phasen-Umwandlungsmodell des Metalles integriert ist, insbesondere nach Avrami.
4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß mit dem Rechenmodell thermische Zustandsänderungen des gesamten Stranges, wie Änderungen der Oberflächentemperatur, der Mittentemperatur, der Schalenstärke, durch Lösen der Wärmeleitungsgleichung und Lösen einer die Ausscheidungskinetik, insbesondere nichtmetallischer und intermetallischer Ausscheidungen, beschreibenden Gleichung ständig mitgerechnet werden und die Kühlung des Stranges in Abhängigkeit des errechneten Wertes mindestens einer der thermodynamischen Zustandsgrößen eingestellt wird, wobei für die Simulation die Strangdicke und die chemische Analyse des Metalles sowie die ständig gemessene Gießgeschwindigkeit berücksichtigt werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Ausscheidungskinetik aufgrund freier Phasenenergie und Keimbildung und Verwendung thermodynamischer Grundgrößen, insbesondere der Gibb'schen Energie, und das Keimwachstum nach Zener in das Rechenmodell integriert ist.
6. Verfahren nach einem oder mehreren der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß auch Gefugemengenverhältnisse in Gleichgewichtszuständen gemäß Mehrstoffsystem-Diagrammen, insbesondere gemäß Fe-C-Diagramm, in das Rechenmodell integriert sind.
7. Verfahren nach einem oder mehreren der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß in das Rechenmodell Kornwachstumseigenschaften, insbesondere unter Berücksichtigung von Rekristallisation des Metalles, integriert sind.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß als die Gefugeausbildung beeinflussende Variable des Stranggießens eine während des Ausfördems des Stranges stattfindende Dickenreduktion vor und/oder nach Durcherstarrung des Stranges zusätzlich zur den Strang beaufschlagenden spezifischen Kühlmittelmenge on-line eingestellt wird.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß mit dem Rechenmodell auch der mechanische Zustand, wie das Verformungsverhalten, durch Lösen weiterer Modellgleichungen, insbesondere durch Lösen der Wärmeleitgleichung, ständig mitgerechnet wird.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß mengenmäßig definierte Phasenanteile durch Aufbringen on-line errechneter spezifischer Strang-Kühlmittelmengen vor und/oder nach der Durcherstarrung des Stranges eingestellt werden.
11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß ein definiertes Gefüge durch Aufbringen einer on-line errechneten Strangverformung vor und/oder nach der Durcherstarrung des Stranges, welche eine Rekristallisation des Gef ges bewirkt, eingestellt wird.
12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß eine abschließende Phasenumwandlung, gegebenenfalls unter Berücksichtigung einer nachfolgenden Rückumwandlung, nach Durcherstarrung des Stranges in einer eine verstärkte Kühlung bewirkenden Kühlzone eingestellt wird.
EP01942855A 2000-06-02 2001-06-01 Verfahren zum stranggiessen eines metallstranges Expired - Lifetime EP1289691B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT01942855T ATE346706T1 (de) 2000-06-02 2001-06-01 Verfahren zum stranggiessen eines metallstranges

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT9722000 2000-06-02
AT0097200A AT409352B (de) 2000-06-02 2000-06-02 Verfahren zum stranggiessen eines metallstranges
PCT/AT2001/000183 WO2001091943A1 (de) 2000-06-02 2001-06-01 Verfahren zum stranggiessen eines metallstranges

Publications (3)

Publication Number Publication Date
EP1289691A1 true EP1289691A1 (de) 2003-03-12
EP1289691B1 EP1289691B1 (de) 2006-11-29
EP1289691B2 EP1289691B2 (de) 2012-07-11

Family

ID=3683713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01942855A Expired - Lifetime EP1289691B2 (de) 2000-06-02 2001-06-01 Verfahren zum stranggiessen eines metallstranges

Country Status (4)

Country Link
EP (1) EP1289691B2 (de)
AT (2) AT409352B (de)
DE (1) DE50111555D1 (de)
WO (1) WO2001091943A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079243B2 (en) 2007-12-03 2015-07-14 Sms Siemag Aktiengesellschaft Method of and device for controlling or regulating a temperature

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT411026B (de) * 2001-11-30 2003-09-25 Voest Alpine Ind Anlagen Verfahren zum stranggiessen
DE102005036068A1 (de) 2005-08-01 2007-02-08 Siemens Ag Modellierverfahren für den zeitlichen Verlauf des Zustands eines Stahlvolumens durch einen Rechner und hiermit korrespondierende Gegenstände
DE102004001037A1 (de) * 2004-01-03 2005-07-28 Sms Demag Ag Diversifizierte Regelung der Sekundärkühlung einer Stranggießanlage
AT413951B (de) * 2004-06-11 2006-07-15 Voest Alpine Ind Anlagen Verfahren zum stranggiessen eines metallstranges
DE102006056683A1 (de) 2006-01-11 2007-07-12 Sms Demag Ag Verfahren und Vorrichtung zum Stranggießen
AT506847B1 (de) * 2008-05-21 2011-07-15 Siemens Vai Metals Tech Gmbh Verfahren zum stranggiessen eines metallstrangs
AT506976B1 (de) * 2008-05-21 2012-10-15 Siemens Vai Metals Tech Gmbh Verfahren zum stranggiessen eines metallstrangs
DE102009048567B4 (de) 2008-10-23 2022-07-21 Sms Group Gmbh Verfahren und Anordnung zum Kühlen eines Gießstrangs in einer Stranggießanlage
DE102008055650A1 (de) 2008-10-29 2010-05-06 Sms Siemag Aktiengesellschaft Verfahren zur Minimierung des Energiebedarfs und des CO2 Ausstoßes bei Dünnbrammenanlagen
AT507590A1 (de) 2008-11-20 2010-06-15 Siemens Vai Metals Tech Gmbh Verfahren und stranggiessanlage zum herstellen von dicken brammen
DE102009049897B4 (de) 2009-10-20 2023-09-14 Sms Group Gmbh Verfahren und Vorrichtung zum Stranggießen eines Metallstranges
CN103347626B (zh) * 2011-02-07 2015-07-22 西门子Vai金属科技有限责任公司 用于通过能够移动的冷却喷嘴的在连铸设备的连铸坯导引装置中的定位来对连铸坯的温度进行调节的方法
DE102011082158A1 (de) 2011-09-06 2013-03-07 Sms Siemag Ag Gießverfahren, insbesondere Stranggießverfahren
EP2633929A1 (de) 2012-03-01 2013-09-04 Siemens Aktiengesellschaft Modellierung einer Gießwalzanlage
DE102013212713A1 (de) 2013-06-28 2014-12-31 Sms Siemag Ag Verfahren zum Gießen eines Metallstrangs und Verfahren zur Bestimmung der Temperatur eines gegossenen Metallstrangs
DE102015223788A1 (de) 2015-11-30 2017-06-01 Sms Group Gmbh Verfahren zum Stranggießen eines Metallstranges und durch dieses Verfahren erhaltener Gießstrang
DE102017213842A1 (de) * 2017-08-08 2019-02-14 Sms Group Gmbh Verfahren und Anlage zum Stranggießen eines metallischen Produkts
DE102022201922A1 (de) 2022-02-24 2023-08-24 Sms Group Gmbh Verfahren zur Planung und/oder Steuerung und/oder Regelung eines Herstellungsprozesses in einer metallurgischen Produktionsanlage mit mehreren aufeinanderfolgenden Prozessschritten

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759738A (fr) * 1969-12-03 1971-05-17 Schloemann Ag Procede pour refroidir de la matiere en barre sortant d'une lingotiere a bouts ouverts et dispositif pour l'execution de ce procede
AT408197B (de) * 1993-05-24 2001-09-25 Voest Alpine Ind Anlagen Verfahren zum stranggiessen eines metallstranges
US5697423A (en) * 1994-03-30 1997-12-16 Lauener Engineering, Ltd. Apparatus for continuously casting
DE19508476A1 (de) * 1995-03-09 1996-09-12 Siemens Ag Leitsystem für eine Anlage der Grundstoff- oder der verarbeitenden Industrie o. ä.
DE19612420C2 (de) * 1996-03-28 2000-06-29 Siemens Ag Verfahren und Einrichtung zur Steuerung der Kühlung eines Stranges in einer Stranggießanlage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0191943A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079243B2 (en) 2007-12-03 2015-07-14 Sms Siemag Aktiengesellschaft Method of and device for controlling or regulating a temperature

Also Published As

Publication number Publication date
ATA9722000A (de) 2001-12-15
WO2001091943A1 (de) 2001-12-06
AT409352B (de) 2002-07-25
DE50111555D1 (de) 2007-01-11
EP1289691B1 (de) 2006-11-29
EP1289691B2 (de) 2012-07-11
ATE346706T1 (de) 2006-12-15

Similar Documents

Publication Publication Date Title
AT409352B (de) Verfahren zum stranggiessen eines metallstranges
DE69814513T2 (de) Walzverfahren und Walzstrasse für dünne Flacherzeugnisse
EP3184202B1 (de) Verfahren zum stranggiessen eines metallstranges
AT408623B (de) Verfahren zur überwachung und steuerung der qualität von walzprodukten aus warmwalzprozessen
EP2753439B1 (de) Giessverfahren, insbesondere stranggiessverfahren
EP3096896B1 (de) Verfahren zur optimierten herstellung von metallischen stahl- und eisenlegierungen in warmwalz- und grobblechwerken mittels eines gefügesimulators, -monitors und/oder -modells
AT506976B1 (de) Verfahren zum stranggiessen eines metallstrangs
AT408197B (de) Verfahren zum stranggiessen eines metallstranges
DE102019208736A1 (de) Verfahren zum Gießen eines Gießstrangs in einer Stranggießanlage
DE10027324C2 (de) Verfahren zum Gießen eines metallischen Strangs sowie System hierzu
EP1448330B1 (de) Verfahren zum stranggiessen
DE60125562T2 (de) Herstellungsverfahren von angeforderten stahlbändern
WO2005120747A1 (de) Computer-gesteuertes verfahren zum stranggiessen eines metallstranges
EP3384260B1 (de) Verfahren und system zum steuern und/oder regeln einer erwärmung eines gegossenen oder gewalzten metallprodukts
DE102006032617B4 (de) Verfahren zur Herstellung eines zum Formhärten geeigneten Blechhalbzeugs
EP3733323A1 (de) Verfahren und stranggiessanlage zum giessen eines giessstrangs
DE102009048567B4 (de) Verfahren und Anordnung zum Kühlen eines Gießstrangs in einer Stranggießanlage
EP1641573B1 (de) Vorrichtung zur herstellung von warmgewalztem warmband, insbesondere aus bandförmig stranggegossenem vormaterial
EP3966356B1 (de) Verfahren zur wärmebehandlung eines metallischen produkts
EP3934822B1 (de) Verfahren zur herstellung eines metallischen bandes oder blechs
DE102020214532A1 (de) Verfahren zum Verarbeiten von einer Übergangsbramme oder -knüppel
EP4124400A1 (de) Verfahren zur feststellung einer defektwahrscheinlichkeit eines gegossenen produktabschnittes
DE102022201922A1 (de) Verfahren zur Planung und/oder Steuerung und/oder Regelung eines Herstellungsprozesses in einer metallurgischen Produktionsanlage mit mehreren aufeinanderfolgenden Prozessschritten
EP4337402A1 (de) Transportvorrichtung, verfahren zum betrieb einer transportvorrichtung und verwendung einer transportvorrichtung
EP0582132B1 (de) Baustahl, insbesondere Betonstahl und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061129

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061129

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061129

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50111555

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070312

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070430

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS VAI METALS TECHNOLOGIES GMBH & CO

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SMS DEMAG AG

Effective date: 20070829

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: VOEST-ALPINE INDUSTRIEANLAGENBAU GMBH & CO

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070301

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070601

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061129

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100702

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100617

Year of fee payment: 10

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS VAI METALS TECHNOLOGIES GMBH

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110601

27A Patent maintained in amended form

Effective date: 20120711

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50111555

Country of ref document: DE

Effective date: 20120711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50111555

Country of ref document: DE

Representative=s name: DANIEL OLIVER MAIER, DE

Effective date: 20120816

Ref country code: DE

Ref legal event code: R081

Ref document number: 50111555

Country of ref document: DE

Owner name: SIEMENS VAI METALS TECHNOLOGIES GMBH, AT

Free format text: FORMER OWNER: VOEST-ALPINE INDUSTRIEANLAGENBAU GMBH & CO, LINZ, AT

Effective date: 20120816

Ref country code: DE

Ref legal event code: R082

Ref document number: 50111555

Country of ref document: DE

Representative=s name: MAIER, DANIEL OLIVER, DIPL.-ING. UNIV., DE

Effective date: 20120816

Ref country code: DE

Ref legal event code: R082

Ref document number: 50111555

Country of ref document: DE

Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE

Effective date: 20120816

Ref country code: DE

Ref legal event code: R081

Ref document number: 50111555

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH, AT

Free format text: FORMER OWNER: VOEST-ALPINE INDUSTRIEANLAGENBAU GMBH & CO, LINZ, AT

Effective date: 20120816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50111555

Country of ref document: DE

Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50111555

Country of ref document: DE

Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50111555

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH, AT

Free format text: FORMER OWNER: SIEMENS VAI METALS TECHNOLOGIES GMBH, LINZ, AT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170621

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50111555

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101