WO2015104045A1 - Metallkomplexe - Google Patents
Metallkomplexe Download PDFInfo
- Publication number
- WO2015104045A1 WO2015104045A1 PCT/EP2014/003398 EP2014003398W WO2015104045A1 WO 2015104045 A1 WO2015104045 A1 WO 2015104045A1 EP 2014003398 W EP2014003398 W EP 2014003398W WO 2015104045 A1 WO2015104045 A1 WO 2015104045A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radicals
- mmol
- group
- atoms
- substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 C*c1c(*)c(*C)c(*)c(*)c1* Chemical compound C*c1c(*)c(*C)c(*)c(*)c1* 0.000 description 9
- KGRAXODNHGDIPL-UHFFFAOYSA-N CC(C)(C)c1nc2ccccc2c2nc(cc(C(C)(C)CC3(C)C)c3c3)c3[n]12 Chemical compound CC(C)(C)c1nc2ccccc2c2nc(cc(C(C)(C)CC3(C)C)c3c3)c3[n]12 KGRAXODNHGDIPL-UHFFFAOYSA-N 0.000 description 1
- DBQRMBHTJWBPCX-UHFFFAOYSA-N CC1(C)OB(c2ccc(C(CC3C4)CC3C43C4C3)c4c2)OC1(C)C Chemical compound CC1(C)OB(c2ccc(C(CC3C4)CC3C43C4C3)c4c2)OC1(C)C DBQRMBHTJWBPCX-UHFFFAOYSA-N 0.000 description 1
- UAGCAMDTUDIMRI-UHFFFAOYSA-N O=Cc(cc(C1CC2CC1)c2c1)c1C#Cc1ccccc1 Chemical compound O=Cc(cc(C1CC2CC1)c2c1)c1C#Cc1ccccc1 UAGCAMDTUDIMRI-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0033—Iridium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0086—Platinum compounds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/346—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/361—Polynuclear complexes, i.e. complexes comprising two or more metal centers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1033—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1088—Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1096—Heterocyclic compounds characterised by ligands containing other heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/90—Multiple hosts in the emissive layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
- H10K50/13—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to metal complexes which are suitable for use as emitters in organic electroluminescent devices.
- OLEDs organic electroluminescent devices
- organic semiconductors are used as functional materials
- OLEDs organic electroluminescent devices
- organometallic complexes that show phosphorescence instead of fluorescence.
- organometallic compounds as phosphorescence emitters.
- iridium and platinum complexes are used in phosphorescent OLEDs as triplet emitters in particular.
- iridium complexes in particular bis- and tris-ortho-metallated complexes with aromatic ligands are used, wherein the ligands on a negatively charged carbon atom and a neutral nitrogen atom or on a negatively charged carbon atom and a neutral
- Carbene carbon atom bind to the metal.
- complexes are tris (phenylpyridyl) iridium (III) and derivatives thereof (eg according to US 2002/0034656 or WO 20 0/027583).
- phenylpyridyl iridium
- a number of related ligands and iridium or platinum complexes are known from the literature, for example complexes with 1- or 3-phenylisoquinoline ligands (for example according to EP 1348711 or WO 2011/028473), with 2-phenyl-quinolines (eg.
- the object of the present invention is therefore to provide new metal complexes which are suitable as emitters for use in OLEDs.
- the object is to provide emitters having improved properties in terms of efficiency, operating voltage,
- the invention thus relates to a compound according to formula (1),
- M is iridium or platinum
- CyC is an aryl or heteroaryl group having 5 to 18 aromatic ring atoms or a fluorene or azafluorene group, which in each case via a carbon atom coordinated to M and which may each be substituted by one or more radicals R and which each have a covalent bond with CyD is connected;
- CyD is a heteroaryl group having 5 to 18 aromatic ring atoms, which coordinates to M via a neutral nitrogen atom or via a carbene carbon atom and which may be substituted by one or more R radicals and which is linked to CyC via a covalent bond;
- a 1 , A 2 is the same or different at each occurrence CR 2 or N;
- a 3 are identical or different in each occurrence an alkylene group having 2 or 3 carbon atoms in which a carbon atom may be replaced by oxygen and which may be substituted with one or more radicals R 3; with the proviso that in A 1 -A 3 -A 2 or A -AA 2 not two heteroatoms are bonded directly to each other;
- Radicals R 4 can be substituted, or a Diarylaminooeuvre, Deteroarylaminooeuvre or Aryiheteroarylaminooeuvre with 10 to 40 aromatic ring atoms, which can be substituted by one or more remainders R 4 ;
- two or more adjacent radicals R may together contain a mono- or polycyclic, alipha- form table, aromatic or heteroaromatic ring system, and / or two radicals R 3 may together form a mono- or polycyclic aliphatic ring system, wherein the ring formation between two radicals R 3 , which are bonded to A 3 and A 4 , possible is;
- R 4 is the same or different at each occurrence as H, D, F or a
- aliphatic, aromatic and / or heteroaromatic hydrocarbon radical having 1 to 20 C atoms, in which also one or more H atoms may be replaced by F; two or more substituents R 4 may also together form a mono- or polycyclic ring system;
- L ' is the same or different at each occurrence a ligand; n is 1, 2 or 3; m is O, 1, 2, 3 or 4; in this case also several ligands L can be linked to one another or L to L 'via a single bond or a divalent or trivalent bridge and thus span a tridentate, tetradentates, pentadentates or hexadentate ligand system; In this case, a substituent R can additionally coordinate to M; characterized in that the partial structure of the formula (2) has at least one structural unit of the abovementioned formula (3).
- a partial structure of the formula (3) ie a fused aliphatic bicyclic is essential to the invention.
- a double bond between the two carbon atoms, which are part of CyC or CyD is formally depicted. This represents a simplification of the chemical structure, since these two carbon atoms are transformed into an aromatic or heteroaromatic Aromatic system of the ligand are involved and thus the bond between these two carbon atoms formally lies between the degree of binding of a single bond and that of a double bond.
- the characterization of the formal double bond is not intended to be limiting to the structure, but it will be apparent to those skilled in the art that it is meant herein an aromatic bond.
- adjacent carbon atoms means that the carbon atoms are directly bonded to each other
- adjacent radicals in the definition of the radicals means that these radicals are bonded either to the same carbon atom or to adjacent carbon atoms.
- An aryl group for the purposes of this invention contains 6 to 40 carbon atoms;
- a heteroaryl group contains 2 to 40 C atoms and at least one heteroatom, with the proviso that the sum of C atoms and heteroatoms gives at least 5.
- the heteroatoms are preferably selected from N, O and / or S.
- an aryl group or heteroaryl group is either a simple aromatic cycle, ie benzene, or a simple heteroaromatic cycle, for example, pyridine, pyrimidine, thiophene, etc., or a fused aryl or heteroaryl group, for example naphthalene, anthracene,
- An aromatic ring system in the sense of this invention contains 6 to 60 carbon atoms in the ring system.
- a heteroaromatic ring system in the sense of this invention contains 1 to 60 C atoms and at least one heteroatom in the ring system, with the proviso that the sum of C atoms and heteroatoms gives at least 5.
- the heteroatoms are preferably selected from N, O and / or S.
- An aromatic or heteroaromatic ring system in the sense of this invention is to be understood as meaning a system which does not necessarily contain only aryl or heteroaryl groups, but in which several aryls are also present - or heteroaryl groups by a non-aromatic unit (preferably less than 10% of the atoms other than H), such as.
- N or O atom or a carbonyl group may be interrupted.
- systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ethers, stilbene, etc. are to be understood as aromatic ring systems in the context of this invention, and also systems in which two or more aryl groups, for example by a linear or cyclic alkyl group or interrupted by a silyl group.
- systems in which two or more aryl or heteroaryl groups are bonded directly to each other, such as.
- biphenyl or terphenyl also be understood as an aromatic or heteroaromatic ring system.
- a cyclic alkyl, alkoxy or thioalkoxy group is understood as meaning a monocyclic, a bicyclic or a polycyclic group.
- a C 1 - to C 40 -alkyl group in which also individual H atoms or CH 2 groups can be substituted by the abovementioned groups for example the radicals methyl, ethyl, n-propyl, Propyl, cyclopropyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclobutyl, 2-methylbutyl, n-pentyl, s-pentyl, t-pentyl, 2-pentyl, neo-pentyl, cyclopentyl, n- Hexyl, s-hexyl, t -hexyl, 2-hexyl, 3 Hexyl
- alkenyl group is understood as meaning, for example, ethenyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptenyl, octenyl, cyclooctenyl or cyclooctadienyl.
- alkynyl group is meant, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl or octynyl.
- a C 1 to C 40 alkoxy group is meant for example methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy or 2-methylbutoxy.
- aromatic or heteroaromatic ring system having 5-60 aromatic ring atoms, which may be substituted in each case with the abovementioned radicals and which may be linked via any positions on the aromatic or heteroaromatic, are understood, for example, groups which are derived from benzene , Naphthalene, anthracene, benzanthracene, phenanthrene, benzophenanthrene, pyrene, chrysene, perylene, fluoranthene, benzfluoranthene, naphthacene, pentacene, benzpyrene, biphenyl, biphenylene, terphenyl, terphenylene, fluorene, spirobifluorene, dihydrophenanthrene, dihydropyrene, tetrahydropyrene, cis- or trans indenofluorene, cis or trans monobenzoindenofluorene, cis or trans dibenzoindene
- the indices n and m are chosen such that the coordination number on the metal M in total, depending on the metal, corresponds to the usual coordination number for this metal. This is the coordination number 6 for iridium (III) and the coordination number 4 for platinum (II).
- n 1 or 2
- CyC is an aryl or heteroaryl group having 6 to 14 aromatic ring atoms, more preferably having 6 to 10 aromatic ring atoms, most preferably having 6 aromatic ring atoms, or a fluorene or azafluorene group each having a carbon atom coordinated to M, which may be substituted with one or more R groups and which is linked to CyD via a covalent bond.
- Preferred embodiments of the group CyC are the structures of the following formulas (CyC-1) to (CyC-19), wherein the group CyC in each case binds to CyD at the position indicated by # and coordinates to M at the position marked by *,
- X is the same or different CR or N at each occurrence
- W is the same or different at each occurrence NR, O, S or CR 2 . If the group of formula (3) is attached to CyC, two adjacent groups X in CyC represent CR and these two carbon atoms, together with the radicals R attached to these carbon atoms, form a group of the above-mentioned and below, respectively Formula (3).
- a maximum of three symbols X in (CyC-1) to (CyC-9) are N, particularly preferably a maximum of two symbols X in (CyC-1) to (CyC-19) is N, very particularly preferably at most one symbol X in (CyC-1) to (CyC-19) for N. More preferably, all symbols X are CR.
- CyC are therefore the groups of the following formulas (CyC-1 a) to (CyC-19a), (CyC-18a) (CyC-19a)
- Preferred groups among the groups (CyC-1) to (CyC-19) are the groups (CyC-1), (CyC-3), (CyC-8), (CyC-10), (CyC-12), ( CyC-13) and (CyC-16), and particularly preferred are the groups (CyC-1a), (CyC-3a), (CyC-8a), (CyC-10a), (CyC-12a), (CyC-1a) 13a) and (CyC-16a).
- CyD is a heteroaryl group having 5 to 13 aromatic ring atoms, particularly preferably having 5 to 10 aromatic ring atoms, which coordinates to M via a neutral nitrogen atom or via a carbene carbon atom which substitutes one or more R radicals which is linked to CyC via a covalent bond.
- the group coordinates CyD via a nitrogen atom to M.
- Preferred embodiments of the group CyD are the structures of the following formulas (CyD-1) to (CyD-10), wherein the group CyD in each case binds to CyC at the position indicated by # and coordinates at the position indicated by *,
- a maximum of three symbols X in (CyD-1) to (CyD-10) represent N, particularly preferably a maximum of two symbols X in (CyD-1) to (CyD-10) represent N, very particularly preferably at most one symbol X in (CyD-1) to (CyD-10) for N. More preferably, all symbols X are CR.
- CyD are therefore the groups of the following formulas (CyD-1 a) to (CyD-10a),
- Preferred groups among the groups (CyD-1) to (CyD-10) are the groups (CyD-1), (CyD-3), (CyD-4), (CyD-5) and (CyD-6), and particularly preferred are the groups (CyD-1a), (CyD-3a), (CyD-4a), (CyD-5a) and (CyD-6a).
- CyC and CyD can be combined as desired.
- Particularly suitable in ligand L are the following
- CyD and / or CyC or the above-mentioned preferred embodiments have two adjacent carbon atoms, which are each substituted by radicals R, wherein the respective radicals R together with the C atoms a bi- or span polycyclic structure of the above formula (3).
- the ligand L contains exactly one group of the formula (3).
- either CyC or CyD can have this structure.
- the group of formula (3) may be attached to CyC or CyD in any position.
- Groups X which represent CR, where the respective radicals R together with the carbon atoms to which they are attached form a ring of the above-mentioned formula (3),
- the groups (CyC-1-1) to (CyC-9-1) or (CyD-1-1) to (CyD-10-4) are preferable to the groups (CyC-1) to (CyC-19) or (CyD-1) to (CyD-19) shown in the Tables, respectively.
- the group of formula (3) is a bicyclic structure. It is essential that they have no acidic benzylic protons.
- benzylic protons are meant protons which bind to a carbon atom, which are bonded directly to the aromatic or heteroaromatic ligands.
- the absence of acidic benzylic protons is achieved in the structure of formula (3) by being a bicyclic structure whose bridgehead directly binds to the aromatic group of CyC and CyD, respectively. Because of the rigid spatial arrangement, when A 1 and A 2 are CR 2 and R 2 is H, the substituent R 2 attached to the bridgehead is significantly less acidic than benzylic protons in a non-bicyclic structure since the corresponding anion of the bicyclic structure is not mesomerically stabilized. Such a proton is therefore a non-acidic proton in the sense of the present application.
- a 1 and A 2 are both identical or different for CR 2 , or A 1 and A 2 are both N. More preferably, A 1 and A 2 are the same or different for CR 2 . It is therefore particularly preferable for carbon bridgehead atoms.
- the radical R 2 which is bonded to the bridgehead atom, the same or different at each occurrence selected from the group consisting of H, D, F, a straight-chain alkyl group having 1 to 10 carbon atoms, which may be substituted with one or more radicals R 4 , but is preferably unsubstituted, a branched or cyclic alkyl group having 3 to 10 carbon atoms, which may be substituted by one or more radicals R 4 , but is preferably unsubstituted, or an aromatic or heteroaromatic ring system having 5 to 12 aromatic ring atoms, each by a or more radicals R 4 may be substituted.
- the radical R 2 attached to the bridgehead atom is the same or different at each occurrence selected from the group consisting of H, F, a straight chain alkyl group having 1 to 4 carbon atoms, a branched alkyl group having 3 or 4C Atoms or a phenyl group which may be substituted by an alkyl group having 1 to 4 carbon atoms, but is preferably unsubstituted.
- the radical R 2 is the same or different selected on each occurrence from the group consisting of H, methyl or tert-butyl.
- both groups A 1 and A 2 in formula (3) are CR 2 and the two radicals R 2 are the same.
- a 3 and A 4 are the same or different each occurrence of an alkylene group having 2 or 3 carbon atoms, which may be substituted by one or more R 3 radicals.
- a 3 and A 4 preferably contain no oxygen atoms in the aikylene group.
- the radical R 3 which binds to A 3 or A 4 is identical or different in each occurrence selected from the group consisting of H, D, F, a straight-chain alkyl group having 1 to 10 carbon atoms which may be substituted by one or more radicals R 4 , but is preferably unsubstituted, a branched or cyclic alkyl group having 3 to 10 C atoms, which may be substituted by one or more radicals R 4 , but is preferably unsubstituted, or a aromatic or heteroaromatic ring system having 5 to 12 aromatic ring atoms, each of which may be substituted by one or more radicals R 4 ;
- two radicals R 3 together form a ring and clamp thus form a polycyclic, aliphatic ring system with up.
- the ring formation is also possible and preferably between a radical R 3 which is attached to A 3, and a radical R 3 which is bound to A fourth
- the ring formation between a radical R 3 , which is bonded to A 3 , and a radical R 3 , which is bonded to A 4 preferably takes place by a single bond, oxygen, a methylene group which may be substituted by one or two groups R 4 but preferably is unsubstituted, or an ethylene group which may be substituted by one or more R 4 groups, but is preferably unsubstituted.
- the radical R 3 is identical or different in each occurrence selected from the group consisting of H, F, a straight-chain alkyl group having 1 to 4 C atoms or a branched alkyl group having 3 or 4 C atoms; in this case, two radicals R 3 can form a ring with one another and thus form a polycyclic, aliphatic ring system.
- a 1 and A 2 are the same or different and represent each other as CR 2
- a 3 and A 4 are the same or different each occurrence of an alkylene group having 2 or 3 carbon atoms which may be substituted with one or more R 3 groups
- R 2 and R 3 are preferably the abovementioned preferred definitions.
- a 3 and A 4 each represent an ethylene group which may be substituted by one or more R 3 radicals.
- a 3 is an ethylene group and A 4 is a propylene group which may each be substituted by one or more R 3 radicals.
- a 3 and A 4 are each a propylene group which may be substituted with one or more R 3 groups. It is therefore preferably a group of the following formula (4), (5) or (6),
- a 1 and A 2 have the abovementioned meanings and the ethylene groups or propylene groups, which are drawn in for clarity unsubstituted, may be substituted by one or more radicals R 3 , wherein R 3 has the abovementioned meanings.
- R 3 has the abovementioned meanings.
- two radicals R 3 to the are bound to two different ethylene or propylene groups, be linked together to form a ring system.
- Preferred structures of the formulas (4), (5) and (6) are the structures of the following formulas (4a), (5a) and (6a),
- ethylene groups or propylene groups can be substituted by one or more radicals R 3 , where R 3 has the abovementioned meanings.
- R 3 has the abovementioned meanings.
- two radicals R 3 which are bonded to the two different ethylene or propylene groups, may in particular also be linked together to form a ring system.
- Preferred structures of the formulas (4) and (6) in which two radicals R 3 are linked together to form a ring system are the structures of the following formulas (4b) and (6b),
- the ethylene or propylene groups may be substituted by one or more radicals R 3 and G 1 is an ethylene group which may be substituted by one or more groups R 4 , but preferably is unsubstituted, and G 2 is a single bond, a methylene or ethylene group, each of which may be substituted with one or more R 4 groups, but is preferably unsubstituted, or is an oxygen atom.
- R 3 and G 1 is an ethylene group which may be substituted by one or more groups R 4 , but preferably is unsubstituted
- G 2 is a single bond, a methylene or ethylene group, each of which may be substituted with one or more R 4 groups, but is preferably unsubstituted, or is an oxygen atom.
- a 1 and A 2 in formulas (4b) and (6b) are the same or different for CR 2 . Examples of suitable structures of the formula (4) are the following structures:
- two adjacent radicals R or R with R 1 can also together form a mono- or polycyclic, alipha
- radicals R on each occurrence are identically or differently selected from the group consisting of H, D, F, N (R 1 ) 2 , a straight-chain alkyl group having 1 to 6 C atoms or a branched or cyclic alkyl group having 3 to 10 C atoms, with one or more H atoms can be replaced by D or F, or an aromatic or heteroaromatic ring system having 5 to 24 aromatic ring atoms, each of which may be substituted by one or more radicals R 1 ; in this case, two adjacent radicals R or R with R 1 can also form a mono- or polycyclic, aliphatic or aromatic ring system with one another. Furthermore, ring formation between CyC and CyD is possible, as described above.
- the substituent R which is bonded in the ortho position to the metal coordination, represents a group which also coordinates or binds to the metal M.
- Preferred coordinating groups R are aryl or heteroaryl groups, for example phenyl or pyridyl, aryl or alkyl cyanides, aryl or alkyl isocyanides, amines or amides, alcohols or alcoholates, thio alcohols or thioalcoholates, phosphines, phosphites, carbonyl functions, carboxylates, carbamides or aryl or alkyl acetylides.
- Examples of partial structures ML of the formula (2) in which CyD is pyridine and CyC is benzene are the structures of the following formulas (7) to (18):
- X 1 is identical or different at each occurrence for C or N and W 1 is the same or different at each occurrence for S, O or NR 1 .
- a bridging unit may be present which links this ligand L with one or more further ligands L and L '.
- Embodiment of the invention instead of one of the radicals R, in particular instead of the radicals R, which are in ortho or meta position to the coordinating atom, a bridging unit is present, so that the ligands have tridentate or polydentate or polypodalen character. There may also be two such bridging units. This leads to the formation of macrocyclic ligands or to the formation of cryptates.
- Preferred structures with polydentate ligands or with polydentate ligands are the metal complexes of the following formulas (19) to (24),
- the ligands can be bridged together via the cyclic group of the formula (3).
- V preferably represents a single bond or a bridging unit containing 1 to 80 atoms from the third, fourth, fifth and / or sixth main group (group 13, 14, 15 or 16 according to IUPAC) or a 3- to 6-membered homo- or heterocycle which covalently connects the partial ligands L with each other or L with L '.
- the bridging unit V can also be constructed asymmetrically, ie the combination of V to L or L 'does not have to be identical.
- the bridging unit V can be neutral, single, double or triple negative or single, double or triple positively charged.
- V is preferably neutral or simply negative or simply positively charged, more preferably neutral.
- the charge of V is preferably selected so that a total of neutral
- n is preferably at least 2.
- group V has no significant influence on the electronic properties of the complex, since the task of this group is essentially to increase the chemical and thermal stability of the complexes by bridging L with each other or with L ' ,
- V is a trivalent group, ie three ligands L are bridged with one another or two ligands L with L 'or one ligand L with two ligands L', V is preferably the same or different at each occurrence selected from the group consisting of B, B ( R 1 ) -, B (C (R) 2 ) 3 ,
- N (C O) 3 , N (C (R) 2 C (R) 2 ) 3 , (R 1 ) N (C (R 1 ) 2 C (R 1 ) 2 ) + , P, P (R) + , PO, PS,
- the other symbols used have the meanings given above.
- V stands for a group CR 2
- the two radicals R can also be linked to one another so that structures such as, for example, 9,9-fluorene are suitable groups V.
- ligand groups L ' are described as they occur in formula (1).
- the ligand groups L ' can also be selected if these are bonded to L via a bridging unit V, as indicated in formulas (19), (21) and (23).
- the ligands L ' are preferably neutral, monoanionic, dianionic or trianionic ligands, particularly preferably neutral or monoanionic ligands. They may be monodentate, bidentate, tridentate or tetradentate and are preferably bidentate, so preferably have two coordination sites. As described above, the ligands L 'may also be bonded to L via a bridging group V.
- Preferred neutral, monodentate ligands L ' are selected from the group consisting of carbon monoxide, nitrogen monoxide, alkyl cyanides, such as.
- alkyl cyanides such as.
- amines such as.
- Trifluorophosphine trimethylphosphine, tricyclohexylphosphine, tri-tert-butylphosphine, triphenylphosphine, tris (pentafluoro- pheny phosphine, dimethylphenylphosphine, methyldiphenylphosphine, bis (tert-butyl) phenylphosphine, phosphites, such as. For example, trimethyl phosphite, triethyl phosphite, arsines, such as.
- Trifluorarsine trimethylarsine, tricyclohexylarsine, tri-fe / t-butylarsine, triphenylarsine, tris (pentafluorophenyl) arsine, stibines, such as. Trifluorostibine, trimethylstibine, tricyclohexylstibine, Tn-tert-butylstibine, triphenylstibine, tris (pentafluorophenyl) stibine, nitrogen-containing heterocycles, such as. As pyridine, pyridazine, pyrazine, pyrimidine, triazine, and carbenes, in particular Arduengo carbenes.
- Preferred monoanionic, monodentate ligands L ' are selected from hydride, Deutend, the halides F ⁇ , Cl ⁇ , ⁇ and ⁇ , alkyl acetylides, such as.
- Carboxylates such as. Acetate, trifluoroacetate, propionate, benzoate,
- Aryl groups such as. Phenyl, naphthyl, and anionic, nitrogen-containing heterocycles, such as pyrrolidine, imidazolide, pyrazolide.
- the alkyl groups in these groups are preferably C 1 -C 20 -alkyl groups,
- aryl group is also understood to mean heteroaryl groups. These groups are as defined above.
- Preferred neutral or mono- or dianionic, bidentate or higher-dentate ligands L ' are selected from diamines, such as.
- diamines such as.
- diphosphines such as.
- pyridine-2-carboxylic acid quinoline-2-carboxylic acid, glycine, ⁇ , ⁇ -dimethylglycine, alanine, ⁇ , ⁇ -dimethylaminoalanine, salicyliminates derived from salicylimines, such as.
- dialcoholates derived from dialcohols such as ethylene glycol, 1, 3-propylene glycol, dithiolates derived from dithiols, such as.
- Preferred tridentate ligands are borates of nitrogen-containing heterocycles, such as. For example, tetrakis (1-imidazolyl) borate and tetrakis (1-pyrazolyl) borate.
- bidentate monoanionic, neutral or dianionic ligands L ' in particular monoanionic ligands, which with the metal have a cyclometall believing five-membered or six-membered ring with at least one metal-carbon bond, in particular a cyclometall striv five-membered ring.
- ligands such as are generally used in the field of phosphorescent metal complexes for organic electroluminescent devices, ie, phenylpyridine, naphthylpyridine, phenylquinoline, phenylisoquinoline, etc. ligands, each of which may be substituted by one or more R radicals.
- phosphorescent metal complexes for organic electroluminescent devices, ie, phenylpyridine, naphthylpyridine, phenylquinoline, phenylisoquinoline, etc.
- Electroluminescent devices a plurality of such ligands is known, and he can without further inventive step other such
- ligand L for compounds according to formula (1).
- the combination of two groups as represented by the following formulas (40) to (64) is particularly suitable for this, one group preferably bonding via a neutral nitrogen atom or a carbene carbon atom and the other group preferably via a negatively charged Carbon atom or a negatively charged nitrogen atom binds.
- the ligand L 'can then be formed from the groups of formulas (40) to (64) by each of these groups bonding to each other at the position indicated by #.
- the position at which the groups coordinate to the metal are indicated by * .
- These groups can also be connected via one or two bridging units V to the
- Ligands L be bound.
- W has the abovementioned meaning and X stands, identically or differently, for each occurrence for CR or N, the above-mentioned limitation that at least two adjacent groups X represent CR and the radicals R form a ring of the formula (3), does not apply; and R has the same meaning as described above.
- a maximum of three symbols X in each group represent N, more preferably, at most two symbols X in each group represent N, most preferably, at most one symbol X in each group represents N. More preferably, all symbols X stand for CR.
- ligands L ' are 1,3,5-cis, cis-cyclohexane derivatives, in particular of the formula (65), 1,1,1-tri (methylene) methane derivatives, in particular of the formula (66) and 1, 1, 1 - trisubstituted methanes, in particular of the formula (67) and (68),
- R has the abovementioned meaning and A, identical or different at each occurrence, stands for O " , S ⁇ , COO ⁇ , PR 2 or NR 2 .
- H atoms can be replaced by D or F, or an aromatic or heteroaromatic ring system having 5 to 14 aromatic ring atoms, each of which may be substituted by one or more radicals R; two or more adjacent radicals R may also together form a mono- or polycyclic, aliphatic, aromatic and / or benzoannulated ring system.
- radicals R are the same or different at each occurrence selected from the group consisting of H, D, F, Br, CN, B (OR 1 ) 2 , a straight-chain alkyl group having 1 to 5 carbon atoms, in particular methyl, or a branched or cyclic alkyl group having 3 to 5 C atoms, in particular iso-propyl or tert-butyl, wherein one or more H atoms may be replaced by D or F, or an aromatic or heteroaromatic ring system having from 5 to 12 aromatic ring atoms, each of which may be substituted by one or more R 1 ; two or more radicals R may also together form a mono- or polycyclic, aliphatic, aromatic and / or benzoannulated ring system.
- L coordinates via one or more aromatic or heteroaromatic groups on M, but does not coordinate via non-aromatic and non-heteroaromatic groups.
- the complexes according to the invention can be facial or pseudofacial, or they can be meridional or pseudomeridional.
- the ligands L may also be chiral depending on the structure. This is the case, for example, if in the structure of the formula (3) the groups A 3 and A 4 are different or if they contain substituents, for example alkyl, alkoxy, dialkylamino or aralkyl groups which have one or more stereocenters. Since the basic structure of the complex can also be a chiral structure, the formation of diastereomers and several pairs of enantiomers is possible.
- the complexes according to the invention then comprise both the mixtures of the different diastereomers or the corresponding racemates as well as the individual isolated diastereomers or enantiomers.
- the compounds can also be used as chiral, enantiomerically pure complexes which can emit circularly polarized light. This can have advantages because it can save the polarization filter on the device. In addition, such complexes are also suitable for use in security labels, since in addition to the emission they also have the polarization of the light as an easily readable feature.
- the metal complexes according to the invention can in principle be prepared by various methods. However, the methods described below have been found to be particularly suitable.
- another object of the present invention is a process for preparing the metal complex compounds of formula (1) by reacting the corresponding free ligands L and optionally L 'with metal alcoholates of formula (69), with metal ketoketonates of formula (70), with metal halides of the formula (71), with dimeric metal complexes of the formula (72) or with metal complexes of the formula (73),
- metal compounds in particular iridium compounds, which carry both alcoholate and / or halide and / or hydroxyl and also ketoketonate radicals. These connections can also be loaded.
- iridium compounds which are particularly suitable as starting materials are disclosed in WO 2004/085449.
- [IrCl 2 (acac) 2] for example Na [IrCl 2 (acac) 2 ]
- metal complexes with acetylacetonate derivatives as ligands for example Ir (acac) 3 or Trisis-e-tetramethylheptane-SS-dionato-iridium, and lrCl 3 xH 2 O, where x is usually a number between 2 and 4.
- Suitable platinum starting materials are, for example, PtCl 2 , K 2 [PtCl],
- PtCl 2 (DMSO) 2 Pt (Me) 2 (DMSO) 2 or PtCl 2 (benzonitrile) 2 .
- Heteroleptic complexes can also be used, for example, according to WO
- 2005/042548 be synthesized.
- the synthesis can be activated, for example, thermally, photochemically and / or by microwave radiation.
- a Lewis acid for example a silver salt or AICI 3 .
- the reactions can be carried out without addition of solvents or melting aids in a melt of the corresponding o-metalating ligands. If necessary, solvents or melting aids may be added.
- Suitable solvents are protic or aprotic solvents, such as aliphatic and / or aromatic alcohols (methanol, ethanol, isopropanol, t-butanol, etc.), oligo- and polyalcohols (ethylene glycol, 1,2-propanediol, glycerol, etc.).
- Alcohol ethers ethoxyethanol, diethylene glycol, triethylene glycol, polyethylene glycol, etc.
- ethers di- and triethylene glycol dimethyl ether, diphenyl ether, etc.
- aromatic, heteroaromatic and / or aliphatic hydrocarbons toluene, xylene, mesitylene, chlorobenzene, pyridine, lutidine, Quinoline, iso-quinoline, tridecane, hexadecane, etc.
- amides DF, DMAC, etc.
- lactams NMP
- sulfoxides DMOS
- sulfones dimethylsulfone, sulfolane, etc.
- Suitable melt aids are compounds which are solid at room temperature but which melt on heating the reaction mixture and dissolve the reactants to form a homogeneous melt.
- Particularly suitable are biphenyl, m-terphenyl, triphenylene, 1, 2-, 1, 3-, 1, 4-bis-phenoxybenzene, triphenylphosphine oxide, 18-crown-6, phenol, 1-naphthol, hydroquinone, etc.
- purification such as recrystallization or sublimation, the compounds of the invention according to formula (1) can be obtained in high purity, preferably more than 99% (determined by means of 1 H-NMR and / or HPLC).
- the compounds according to the invention can also be made soluble by suitable substitution, for example by longer alkyl groups (about 4 to 20 C atoms), in particular branched alkyl groups, or optionally substituted aryl groups, for example xylyl, mesityl or branched terphenyl or quaterphenyl groups.
- suitable substitution for example by longer alkyl groups (about 4 to 20 C atoms), in particular branched alkyl groups, or optionally substituted aryl groups, for example xylyl, mesityl or branched terphenyl or quaterphenyl groups.
- Such compounds are then soluble in common organic solvents, such as toluene or xylene at room temperature in sufficient concentration to process the complexes from solution can.
- These soluble compounds are particularly suitable for processing from solution, for example by printing processes.
- the compounds of the invention may also be mixed with a polymer. It is also possible to incorporate these compounds covalently into a polymer. This is particularly possible with compounds which are substituted with reactive leaving groups, such as bromine, iodine, chlorine, boronic acid or boronic acid esters, or with reactive, polymerizable groups, such as olefins or oxetanes. These can be used as monomers for the production of corresponding oligomers, dendrimers or polymers. The oligomerization or polymerization is preferably carried out via the halogen functionality or the Boronklarefunktionaitician or via the polymerizable group. It is also possible to crosslink the polymers via such groups. The compounds of the invention and polymers can be used as a crosslinked or uncrosslinked layer.
- reactive leaving groups such as bromine, iodine, chlorine, boronic acid or boronic acid esters
- reactive, polymerizable groups such as olefins or oxeta
- the invention therefore further oligomers, polymers or dendrimers containing one or more of the compounds of the invention listed above, wherein one or more bonds of the inventive compound to the polymer, oligomer or dendrimer are present. Depending on the linkage of the compound of the invention therefore, it forms a side chain of the oligomer or polymer or is linked in the main chain.
- the polymers, oligomers or dendrimers may be conjugated, partially conjugated or non-conjugated.
- the oligomers or polymers may be linear, branched or dendritic.
- the repeat units of the compounds according to the invention in oligomers, dendrimers and polymers have the same preferences as described above.
- the monomers according to the invention are homopolymerized or copolymerized with further monomers.
- Preferred are copolymers, wherein the units according to
- Suitable and preferred comonomers which form the polymer backbone are selected from fluorenes (eg according to EP 842208 or WO 2000/022026), spirobifluorenes (eg according to EP 707020, EP 894107 or WO 2006/06 181), Para phenylenes (for example according to WO 92/18552), carbazoles (for example according to WO 2004/070772 or WO 2004/113468), thiophenes (for example according to EP 1028136), dihydric phenanthrenes (e.g.
- fluorenes eg according to EP 842208 or WO 2000/022026)
- spirobifluorenes eg according to EP 707020, EP 894107 or WO 2006/06 181
- Para phenylenes for example according to WO 92/18552
- carbazoles for example according to WO 2004/070772 or WO 2004/113468
- thiophenes for
- the polymers, oligomers and dendrimers may also contain other units, for example hole transport units, in particular those based on triarylamines, and / or electron transport units.
- Yet another object of the present invention is a formulation comprising a compound of the invention or an oligomer according to the invention, polymer or dendrimer and at least one further compound.
- the further compound may for example be a solvent.
- the further compound can also be a further organic or inorganic compound which is likewise used in the electronic device, for example a matrix material.
- This further compound may also be polymeric.
- formulations of the compounds according to the invention are required. These formulations may be, for example, solutions, dispersions or emulsions. It may be preferable to use mixtures of two or more solvents for this purpose.
- Suitable and preferred solvents are, for example, toluene, anisole, o-, m- or p-xylene, methyl benzoate, mesitylene, tetralin, veratrol, THF, methyl THF, THP, chlorobenzene, dioxane, phenoxytoluene, in particular 3-phenoxytoluene, ( -) - fenchone, 1, 2,3,5-tetramethylbenzene, 1, 2,4,5-tetramethylbenzene, 1-methylnaphthalene, 2-methylbenzothiazole, 2-phenoxyethanol, 2-pyrrolidinone, 3-methylanisole, 4-methylanisole, 3 , 4-dimethylanisole, 3,5-dimethylanisole, acetophenone, a-terpineol, benzothiazole, butylbenzoate, cumene, cyclohexanol, cyclohexanone, cyclohexylbenzene, decal
- An electronic device is understood to mean a device which contains anode, cathode and at least one layer, this layer containing at least one organic or organometallic compound.
- the electronic device according to the invention thus contains anode, cathode and at least one layer which contains at least one compound of the above-mentioned formula (1).
- preferred electronic devices are selected from the group consisting of organic electroluminescent devices (OLEDs, PLEDs), organic integrated circuits (O-ICs), organic field effect transistors (O-FETs), organic thin film transistors (O-TFTs), organic light - emitting transistors (O-LETs), organic solar cells (O-SCs), organic optical detectors, organic photoreceptors, organic field quench devices (O-FQDs), light-emitting electrochemical cells (LECs), or organic laser diodes (O-lasers), containing in at least one layer at least one compound according to the above-mentioned formula (1). Particularly preferred are organic electroluminescent devices.
- Active components are generally the organic or inorganic materials incorporated between the anode and cathode, for example, charge injection, charge transport or charge blocking materials, but especially emission materials and matrix materials.
- the compounds according to the invention exhibit particularly good properties as emission material in organic electroluminescent devices. A preferred embodiment of the invention are therefore organic electroluminescent devices.
- the compounds according to the invention can be used for the production of singlet oxygen or in photocatalysis.
- the organic electroluminescent device includes cathode, anode and at least one emitting layer. In addition to these layers, they may also contain further layers, for example one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, exciton blocking layers, electron blocking layers, charge generation layers and / or organic or inorganic p / n junctions. It is possible that one or more hole transport layers are p-doped, for example, with metal oxides, such as M0O 3 or W0 3 or with (per) fluorinated low-electron aromatics, and / or that one or more electron-transport layers are n-doped.
- metal oxides such as M0O 3 or W0 3 or with (per) fluorinated low-electron aromatics
- interlayers may be introduced between two emitting layers which, for example, have an exciton-blocking function and / or control the charge balance in the electroluminescent device. It should be noted, however, that not necessarily each of these layers must be present. In this case, the organic electroluminescent device can
- Used compounds that can fluoresce or phosphoresce are particularly preferred.
- the three layers exhibiting blue, green and orange or red emission (for the basic structure see, for example, WO 2005/011013) or systems having more than three emitting layers. It may also be a hybrid system wherein one or more layers fluoresce and one or more other layers phosphoresce.
- the organic electroluminescent device contains the compound according to formula (1) or the above-mentioned preferred embodiments as
- emitting compound in one or more emitting layers.
- the compound of the formula (1) When the compound of the formula (1) is used as an emitting compound in an emitting layer, it is preferably used in combination with one or more matrix materials.
- the mixture of the compound according to formula (1) and the matrix material contains between 0.1 and 99% by volume, preferably between 1 and 90% by volume, more preferably between 3 and 40% by volume, in particular between 5 and 15% by volume .-% of the compound according to formula (1) based on the total mixture of emitter and matrix material. Accordingly contains the
- Mixture between 99.9 and 1% by volume, preferably between 99 and 10% by volume, more preferably between 97 and 60% by volume, in particular between 95 and 85% by volume of the matrix material based on the total mixture of emitters and matrix material.
- the triplet level of the matrix material is higher than the triplet level of the emitter.
- Suitable matrix materials for the compounds according to the invention are ketones, phosphine oxides, sulfoxides and sulfones, for. B. according to WO 2004/013080, WO 2004/093207, WO 2006/005627 or WO 2010/006680, triarylamines, carbazole derivatives, z. B.
- CBP ( ⁇ , ⁇ -biscarbazolylbiphenyl), m-CBP or in WO 2005/039246, US 2005/0069729, JP 2004/288381, EP 1205527, WO 2008/086851 or US 2009/0134784 disclosed
- Carbazole derivatives indolocarbazole derivatives, e.g. B. according to WO 2007/063754 or WO 2008/056746, indenocarbazole derivatives, for. B. according to WO
- a plurality of different matrix materials as a mixture, in particular at least one electron-conducting matrix material and at least one hole-conducting matrix material.
- a preferred combination is, for example, the use of an aromatic ketone, a triazine derivative or a phosphine oxide derivative with a triarylamine derivative or a carbazole derivative as a mixed matrix for the metal complex according to the invention.
- Also preferred is the use of a mixture of a charge-transporting matrix material and an electrically inert matrix material, which is not or not significantly involved in charge transport, such. As described in WO 2010/108579.
- the triplet emitter with the shorter-wave emission spectrum serves as a co-matrix for the Tri-plate emitter with the longer-wave emission spectrum.
- the complexes according to the invention of formula (1) can be used as a co-matrix for longer-wave emitting triplet emitters, for example for green or red emitting triplet emitters.
- the compounds of the invention can also be used in others
- the complexes according to the invention can be used as matrix material for other phosphorescent metal complexes in an emitting layer.
- low work function metals, metal alloys or multilayer structures of various metals are preferable, such as alkaline earth metals, alkali metals, main group metals or lanthanides (eg, Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.).
- alkaline earth metals alkali metals, main group metals or lanthanides (eg, Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.).
- alloys of an alkali or alkaline earth metal and silver for example an alloy of magnesium and silver.
- further metals which have a relatively high work function such as, for example, B. Ag, which then usually combinations of metals, such as Mg / Ag, Ca / Ag or Ba / Ag are used.
- a metallic cathode and the organic semiconductor may also be preferred to introduce between a metallic cathode and the organic semiconductor a thin intermediate layer of a material with a high dielectric constant.
- a metallic cathode and the organic semiconductor a thin intermediate layer of a material with a high dielectric constant.
- Suitable examples of this are alkali metal or alkaline earth metal fluorides, but also the corresponding oxides or carbonates (for example LiF, Li 2 O, BaF 2 , MgO, NaF, CsF, CS 2 CO 3, etc.).
- organic alkali metal complexes for.
- the layer thickness of this layer is preferably between 0.5 and 5 nm.
- the anode high workfunction materials are preferred.
- the anode has a work function greater than 4.5 eV. Vacuum up.
- metals with a high redox potential are suitable for this purpose, such as, for example, Ag, Pt or Au.
- metal / metal oxide Electrodes eg Al / Ni / NiO x) Al / PtO x
- at least one of the electrodes must be transparent or partially transparent to allow either the irradiation of the organic material (O-SC) or the outcoupling of light (OLED / PLED, O-LASER).
- Preferred anode materials here are conductive mixed metal oxides. Particularly preferred are indium tin oxide (ITO) or indium zinc oxide (IZO). Also preferred are conductive, doped organic materials.
- conductive doped polymers for. B. PEDOT, PANI or derivatives of these polymers.
- a p-doped hole transport material is applied to the anode as a hole injection layer, with metal oxides, for example MoO 3 or WO 3 , or (per) fluorinated electron-poor aromatics being suitable as p-dopants.
- metal oxides for example MoO 3 or WO 3
- fluorinated electron-poor aromatics are suitable as p-dopants.
- suitable p-dopants are HAT-CN (hexacyanohexaazatriphenylene) or the compound NPD9 from Novaled.
- the device is structured accordingly (depending on the application), contacted and finally hermetically sealed because the life of such devices drastically shortened in the presence of water and / or air.
- an organic electroluminescent device characterized in that one or more layers are coated with a sublimation process.
- the materials are applied in vacuum sublimation at an initial pressure of usually less than 10 "5 mbar, preferably less than 10 ⁇ vapor-deposited 6 mbar. It is also possible that the initial pressure is even lower or even higher, for example less than 10" 7 mbar.
- an organic electroluminescent device characterized in that one or more layers are coated with the OVPD (Organic Vapor Phase Deposition) method or with the aid of a carrier gas sublimation.
- the materials are applied at a pressure between 10 ⁇ 5 mbar and 1 bar.
- OVJP Organic Vapor Jet Printing
- an organic electroluminescent device characterized in that one or more layers of solution, such. B. by spin coating, or with any printing process, such.
- any printing process such as screen printing, flexographic printing, offset printing or Nozzle printing, but more preferably LITI (Light Induced Thermal Imaging, thermal transfer printing) or ink-jet printing (ink jet printing) can be produced.
- LITI Light Induced Thermal Imaging, thermal transfer printing
- ink-jet printing ink jet printing
- the organic electroluminescent device can also be produced as a hybrid system by forming one or more layers
- Solution are applied and one or more other layers are evaporated.
- an emitting layer containing a compound of formula (1) and a solution matrix material and then vacuum evaporate a hole blocking layer and / or an electron transport layer.
- organic electroluminescent devices are distinguished by one or more of the following surprising advantages over the prior art: Organic electroluminescent devices containing the compounds of the invention as emitting materials have a very good lifetime.
- Organic electroluminescent devices containing the compounds of the invention as emitting materials have excellent efficiency.
- the efficiency is significantly higher than analogous compounds containing no structural unit according to formula (3).
- the metal complexes according to the invention are outstandingly soluble in a large number of organic solvents, in particular in organic hydrocarbons.
- the solubility over analogous compounds containing no structural unit of the formula (3) is significantly improved. This leads to a simplified purification during the synthesis of the complexes and to their excellent suitability in the production of OLEDs in solution-processed processes, for example printing processes.
- the metal complexes according to the invention have a very high oxidation stability to air and light, so that their processing from solution, for example by printing processes, is also possible in the air.
- Some of the metal complexes according to the invention have a very narrow emission spectrum, which leads to a high color purity of the emission, which is desirable in particular for display applications.
- the metal complexes according to the invention have a reduced aggregation compared to analogous compounds which do not contain a structural unit according to formula (3). This manifests itself in a lower sublimation temperature compared to analog
- Figure 1 shows the photoluminescence spectrum of a tris (benzo [h] quinoline) iridium complex containing a group of formula (3) compared to the spectrum of the corresponding complex without the group of formula (3).
- the spectra were measured in a ca. 10 ⁇ 5 molar solution in degassed toluene at room temperature. It can be clearly seen the narrower emission band with a full width at half maximum FWHM of
- the following syntheses are carried out under an inert gas atmosphere in dried solvents.
- the metal complexes are additionally handled in the absence of light or under yellow light.
- the solvents and reagents may, for. B. from Sigma-ALDRICH or ABCR.
- the respective information in square brackets or the numbers given for individual compounds refer to the CAS numbers of the compounds known from the literature.
- the dark oily residue is dissolved in 1000 ml of THF and slowly added dropwise with ice cooling to a solution of 38.0 g (1.0 mol) of lithium aluminum hydride in 1000 ml of THF (Caution: Exothermic reaction!). After completion of the addition, allow to warm to room temperature and stir the reaction mixture. mixture for 20 h at room temperature.
- reaction mixture is hydrolyzed with ice cooling by the slow addition of 500 ml of saturated sodium sulfate solution. It is suctioned off from the salts, washed with 500 ml of THF, the THF in vacuo, the residue is taken up in 1000 ml of dichloromethane, the solution washed three times with 300 ml of water, once with 300 ml of saturated brine, dried over magnesium sulfate and then remove the solvent in vacuo.
- reaction mixture is quenched by addition of 30 ml of ethanol, the solvent is completely evaporated in vacuo, the residue is taken up in 1000 ml of glacial acetic acid, 150 ml of acetic anhydride are added with stirring and then 30 ml of concentrated solution are added dropwise. Sulfuric acid and stirred for 3 h at 60 ° C after. Then the solvent is removed in vacuo, the residue is taken up in 1000 ml of dichloromethane and under cooling with ice by the addition of 10 wt .-%, aqueous NaOH alkaline.
- the organic phase is separated, washed three times with 500 ml of water, dried over magnesium sulfate, the organic phase is concentrated completely and the residue is taken up in 500 ml of methanol, homogenized in the heat and then stirred for 12 h, the product crystallized.
- the solid obtained after aspiration is in
- the precipitated triethylammonium hydrochloride is filtered off with suction, this is reconstituted with 30 ml of DMF. washed. The filtrate is freed from the solvents in vacuo.
- the oily residue is taken up in 300 ml of ethyl acetate, the solution is washed five times with 100 ml each of water and once with 100 ml of saturated brine, and the organic phase is dried over magnesium sulfate. After removal of the ethyl acetate in vacuo, the oily residue is chromatographed on silica gel (n-heptane: ethyl acetate 99: 1). Yield: 19.6 g (72 mmol), 72%; Purity: about 97% after 1 H NMR.
- Solids are purified by recrystallization and fractionated sublimation (p ca. 10 ⁇ 4 - 10 "5 mbar, T about 160-240 ° C) of low boilers and non-volatile secondary components. Oils are purified by chromatography, fractionated by Kugelrohr distillation or dried in vacuo to remove low boilers.
- Solids are purified by recrystallization and fractional sublimation (p ca. 10 "4 - 10 5 mbar, T ca. 160 - 240 ° C) of low-boiling and non-volatile Additional components are freed. Oils are purified by chromatography, fractionated Kugelrohr distilled or dried in vacuo to remove low boilers.
- Example 78 1,5,5,6,6,7,7-heptamethyl-3-phenyl-1, 5,6,7-tetrahydroindeno [5,6-d] imidazolium iodide, L78
- Step B After 4 h under low reflux, the mixture is cooled to 50 ° C., 40 ml of methanol are added, then allowed to cool completely with stirring, stirred for 2 h at room temperature, then filtered with suction from the crystals of 2- (2-amido-phenyl) formed. benzimidazole, washed twice with 20 ml of methanol and dried in vacuo. If the 2- (2-amido-phenyl) -benzimidazole does not crystallize out, remove the solvent in vacuo and add the residue in step B. Step B:
- the crude product is taken up in ethyl acetate or dichloromethane, filtered through a short column of Alox, basic, activity grade 1 or silica gel to remove brown impurities.
- recrystallization methanol, ethanol, acetone, dioxane, DMF, etc.
- this is purified by Kugelrohr distillation or fractional sublimation (p ca. 10 "4 - 10 " 5 mbar, T approx. 160 - 240 ° C) of low-boiling components and nonvolatile secondary components.
- the mixture is extracted three times with 300 ml of toluene, the organic phase is washed three times with water, dried over magnesium sulfate and the solvent is removed in vacuo.
- the oily residue is dissolved in 200 ml of o-dichlorobenzene, the solution is treated with 86.9 g (1 mol) of manganese dioxide and then boiled for 16 h under reflux at the water. After cooling, the manganese dioxide is filtered through a Celite layer, the solid is washed with 500 ml of a mixture of dichloromethane and ethanol (10: 1) and the combined filtrates are freed from the solvents in vacuo.
- Example L136 1R, 4S-methano-1,2,3,4-tetrahydro-9-phenyl-10-phenanthrene.
- the oily residue is mixed with 27.6 g (200 mmol) of potassium carbonate, 5 g of palladium-carbon (5% strength by weight), 2.6 g (10 mmol) of triphenylphosphine, 100 g of glass beads (3 mm diameter) and 300 g ml mesitylene and heated again for 16 h under reflux. After cooling, the salts are filtered off with suction through a celite layer, which is then washed with 500 ml of toluene and the combined filtrates are concentrated to dryness in vacuo. The residue is recrystallized three times from DMF / ethanol and finally by fractional sublimation (p ca. 0 "4 - 10 5 mbar, T 230 ° C) free of low boilers and non-volatile secondary components Yield: 14.9 g (55 mmol). 55%, purity: about 99.5% after 1 H NMR.
- the solid After dry suction, the solid is re-suspended in 1 l 15 wt .-% ammonia solution and stirred for 1 h, filtered off again, washed the solid until neutral reaction with water and then sucked dry.
- the solid is dissolved in 500 ml of dichloromethane, the solution is washed with saturated brine, and the organic phase is dried over magnesium sulfate. After removal of the drying agent, the solution is concentrated and the glassy residue is once acidified on Alox, basic, activity level 1 and twice on silica gel with dichloromethane.
- Example LB118 hexadentate ligands
- connection LB119 can be represented:
- Phenyl-imidazole or phenyl-benzimidazole type Phenyl-imidazole or phenyl-benzimidazole type:
- Variant A tris-acetylacetonato-iridium (III) as iridium starting material
- the vial is heated for the indicated time at the indicated temperature
- the entire ampoule must have the indicated temperature.
- the synthesis can take place in a stirred autoclave with glass insert.
- the ampoules are usually under pressure!), the ampoule is opened, the sinter cake is 100 g
- the dry solid is placed in a continuous hot extractor on a 3-5 cm high Alox bed (Alox, basic activity level 1) and then with an extractant (amount of preparation ca, 500 ml, the extractant is chosen so that the complex therein in the Heat is good and poorly soluble in the cold, particularly suitable extractants are hydrocarbons such as toluene, xylenes, mesitylene, naphthalene, o-dichlorobenzene, halogenated aliphatic hydrocarbons are generally unsuitable because they may halogenate or decompose the complexes, if appropriate) extracted. After completion of the extraction, the extractant is concentrated in vacuo to about 100 ml.
- Metal complexes which have too good solubility in the extractant are brought to crystallization by the dropwise addition of 200 ml of methanol.
- the solid of the suspensions thus obtained is filtered off with suction, washed once with about 50 ml of methanol and dried. After drying, the purity of the metal complex is determined by NMR and / or HPLC. If the purity is below 99.5%, the hot extraction step is repeated, omitting the Alox bed from the 2nd extraction. If a purity of 99.5 - 99.9% is reached, the metal complex is tempered or sublimated.
- the annealing is carried out in high vacuum (p about 10 "6 mbar) in the temperature range of about 200-300 ° C, preferably greater than for complexes with molecular weights of about 1300 g / mol
- the sublimation is carried out in high vacuum (p about 10 ⁇ . 6 mbar) in the temperature range of about 230-400 ° C, wherein the sublimation is preferably carried out in the form of a fractional sublimation
- organic complexes soluble complexes can alternatively be chromatographed on silica gel.
- the deduced fac metal complexes precipitate as a mixture of diastereomers.
- the enantiomers ⁇ , ⁇ of the point group C3 generally have a significantly lower solubility in the extractant than the enantiomers of the point group C1, which thus accumulate in the mother liquor. A separation of the C3 from the C1 diastereomers in this way is often possible.
- the diastereomers can also be separated by chromatography. If ligands of the point group C1 are used enantiomerically pure, a pair of diastereomers ⁇ , ⁇ of the point group C3 is formed. The diastereomers can be separated by crystallization or chromatography and thus obtained as enantiomerically pure compounds.
- Variant B tris (2,2,6,6-tetramethyl-3,5-heptanedionato) iridium (III) as an iridium starting material
- Variants C Sodium [cis, trans-di-chloro (bis-acetylacetonato] iridate (III) as iridium starting material
- a mixture of 10 mmol of the ligand, 3 mmol of iridium (III) chloride hydrate, 10 mmol of silver carbonate, 10 mmol of sodium carbonate in 75 ml of 2-ethoxyethanol is refluxed for 24 h. After cooling, 300 ml of water are added, filtered off from the precipitated solid, washed once with 30 ml of water and three times with 15 ml of ethanol and dried in
- a mixture of 22 mmol of the ligand, 10 mmol of iridium (III) chloride hydrate, 75 ml of 2-ethoxyethanol and 25 ml of water is refluxed with good stirring for 16 to 24 hours. If the ligand does not dissolve or does not dissolve completely in the solvent mixture under reflux, 1, 4-dioxane is added until a solution has formed. After cooling, the product is filtered off with suction from the precipitated solid, washed twice with ethanol / water (1: 1, v / v) and then dried in vacuo. The resulting chloro dimer of the formula [Ir (L) 2 Cl] 2 is further reacted without purification.
- the sinter cake is with 00 g glass beads (3 mm diameter) in 100 ml of the specified suspension agent (the suspension medium is chosen so that the ligand is good, the chloro-dimer of the formula [Ir (L) 2 CI] 2 but poorly soluble in it, typical suspending agents are dichloromethane, acetone, ethyl acetate, toluene, etc.) stirred for 3 h and thereby mechanically digested.
- the fine suspension is decanted from the glass beads and the solid [Ir (L) 2 Cl] 2 , which still contains about 2 eq NaCl, hereinafter called the crude chloro dimer, is suctioned off and dried in vacuo.
- the resulting crude chloro-dimer of the formula [Ir (l_) 2 Cl] 2 is further reacted without purification.
- the precipitated silver (l) chloride is filtered off with suction through a bed of Celite, the filtrate is concentrated to dryness, the yellow residue is taken up in 30 ml of toluene or cyclohexane, filtered from the solid, washed with n-heptane and dried in vacuo , The product of the formula [Ir (L) 2 (HOMe) 2 ] OTf thus obtained is further reacted without purification.
- a mixture of 20 mmol of ligand L, 10 mmol h ⁇ PtCU 75 ml of 2-ethoxyethanol and 25 ml of water is refluxed for 16 h. After cooling and addition of 100 ml of water is filtered off with suction from the precipitated solid, washed once with 30 ml of water and dried in vacuo.
- the platinum-chloro-dimer of the formula [PtLCI] 2 thus obtained is suspended in 100 ml of 2-ethoxyethanol, 30 mmol of the ligands L ' and 50 mmol of sodium carbonate are added, the reaction mixture is stirred at 100 ° C. for 16 h and then concentrated in vacuo to the dry one.
- a mixture of 10 mmol of ligand L, 10 mmol K 2 PtCl 4) 400 mmol of lithium acetate, anhydrous, and 200 ml of glacial acetic acid is refluxed for 60 h. After cooling and addition of 200 ml of water, the mixture is extracted twice with 250 ml of toluene, dried over magnesium sulfate, filtered through a bed of Celite, the Celite washed with 200 ml of toluene and then removed the toluene in vacuo. The solid thus obtained is purified by hot extraction as described under 1) Variant A and then sublimated fractionally.
- a mixture of 10 mmol of the ligand, 10 mmol of silver (I) oxide and 200 ml of dioxane is stirred for 16 h at room temperature, then treated with 100 ml of butanone, 20 mmol of sodium carbonate and 10 mmol cyclooctadienyl-platinum dichloride and heated under reflux for 16 h , After removal of the solvent, the solid is triturated with 500 ml of hot toluene, the suspension is filtered through a pad of Celite and the filtrate is concentrated to dryness. The resulting solid is chromatographed on silica gel with DCM and then subjected to fractional sublimation as described under 1) Variant A.
- a mixture of 10 mmol of the ligand L, 10 mmol of sodium bis-acetyl-acetonato-dichloro-iridate (III) [770720-50-8] and 200 ml of triethylene glycol dimethyl ether is 48 h at 210 ° C on a water separator (the acetyl - acetone and thermal cleavage products of the solvent distilled off) heated. After cooling and addition of 200 ml of water is filtered off with suction from the precipitated solid and dried in vacuo.
- the solid is stirred with 500 ml of hot THF, the suspension is filtered while hot on a Celite bed, the Celite is washed with 200 ml of THF and the combined filtrates are concentrated to dryness.
- the solid thus obtained is purified as described under 1) Variant A by hot extraction with toluene and then fractionated by sublimation.
- FIG. 1 shows the photoluminescence spectrum of the complex Ir (LB94) 3 , ie a tris (benzo [h] quinoline) iridium complex, which contains a group of the formula (3) in comparison to the spectrum of the corresponding complex without the group of the formula (3).
- the spectra were measured in a ca. 10 ⁇ 5 molar solution in degassed toluene at room temperature. It can be clearly seen the narrower emission band with a half-width FWHM of 68 nm compared to 81 nm in the compound without a group of formula (3).
- Vacuum Processed Devices The preparation of inventive OLEDs and OLEDs according to the prior art is carried out according to a general method according to WO 2004/058911, based on the circumstances described here
- the OLEDs have in principle the following layer structure: substrate / hole transport layer 1 (HTL1) consisting of HTM doped with 3% NDP-9 (commercially available from Novaled), 20 nm / hole transport layer 2 (HTL2) / optional electron blocker layer (EBL) / Emission layer (EML) / optional hole blocking layer (HBL) / electron transport layer (ETL) / optional electron injection layer (EIL) and finally one
- the cathode is formed by a 100 nm thick aluminum layer.
- the emission layer always consists of at least one matrix material (host material, host material) and an emitting dopant (dopant, emitter) which is admixed to the matrix material or the matrix materials by co-evaporation in a specific volume fraction.
- the electron transport layer may consist of a mixture of two materials.
- Table 1 The exact structure of the OLEDs is shown in Table 1.
- the materials used to make the OLEDs are shown in Table 3.
- the OLEDs are characterized by default.
- the electroluminescence spectra, the current efficiency (measured in cd / A) and the voltage (measured at 1000 cd / m 2 in V) are determined from current-voltage-brightness characteristics (IUL characteristic curves).
- IUL characteristic curves current-voltage-brightness characteristics
- the service life is determined.
- the lifespan is the time defined according to which the luminance has dropped from a certain starting luminance to a certain proportion.
- the term LD50 means that the stated lifetime is the time at which the luminance has fallen to 50% of the starting luminance, ie from 1000 cd / m 2 to 500 cd / m 2 .
- the values for the lifetime can be converted to an indication for other starting luminous densities with the aid of conversion formulas known to the person skilled in the art.
- the life for a starting luminous flux of 1000 cd / m 2 is a common statement.
- the compounds according to the invention can be used inter alia as phosphorescent emitter materials in the emission layer in OLEDs.
- the compounds according to the invention can be used inter alia as phosphorescent emitter materials in the emission layer in OLEDs.
- Example LB1 2-tricyclo [6.2.2.0 * 2.7 *] dodeca-2 [79,3,5-trien-4-ypyridine,
- the sublimation is carried out in a high vacuum (p about 10 "6 mbar) in the temperature range of about 300-400 ° C, the sublimation is preferably carried out in the form of a fractional sublimation.
- the base potassium fluoride, tripotassium phosphate (anhydrous or monohydrate or trihydrate), potassium carbonate, cesium carbonate, etc.
- an aprotic solvent THF, dio
- Phosphines such as tri-tert-butylphosphine, SPhos, XPhos, RuPhos, XanthPhos, etc. are used, wherein in these phosphines the preferred phosphine: palladium ratio is 2: 1 to 1.2: 1.
- the solvent is removed in vacuo, the product is taken in a suitable phosphine
- Solvent toluene, dichloromethane, ethyl acetate, etc.
- purified as described under variant A.
- the annealing is carried out in high vacuum (p about 10 "6 mbar) in the temperature range of about 200-300 ° C
- the sublimation is carried out in high vacuum (p about 10". 6 mbar) in the temperature range of about 300-400 ° C
- the sublimation is preferably carried out in the form of a fractional sublimation.
- a suspension of 10 mmol of a borylated complex, 12-20 mmol of aryl bromide per (RO) 2B function and 80 mmol of tripotassium phosphate in a mixture of 300 ml of toluene, 100 ml of dioxane and 300 ml of water is treated with 0.6 mmol of tri-o-tolylphosphine and then with 0.1 mmol of palladium (II) acetate added and heated under reflux for 16 h. After cooling, 500 ml of water and 200 ml of toluene are added, the aqueous phase is separated off, the organic phase is washed three times with 200 ml of water, once with 200 ml
- the metal complex is finally tempered or sublimated.
- the annealing is carried out in high vacuum (p about 10 "6 mbar) in the temperature range of about 200-300 ° C, the sublimation is carried out in high vacuum (p about 10". 6 mbar) in the temperature range of about 300-400 ° C, wherein the sublimation is preferably carried out in the form of a fractional sublimation.
- Dioxane, xylene, mesitylene, dimethylacetamide, NMP, DMSO, etc. is treated with 0.6 mmol of tri-o-tolylphosphine and then with 0.1 mmol of palladium (II) acetate and heated under reflux for 1 to 24 hours.
- other phosphines such as tri-tert-butylphosphine, SPhos, XPhos, RuPhos, XanthPhos, etc., may be used, with the preferred phosphine: palladium ratio being 2: 1 to 1.2: 1 for these phosphines.
- the solvent is removed in vacuo, the product is taken in a suitable
- Composition in a total concentration of about 100 mmol / L in a mixture of 2 volumes of toluene: 6 volumes of dioxane: 1 volume of water dissolved or suspended. Then you add 2 mol equivalents of tri-potassium phosphate per Br functionality used, stirred for 5 min. then adds 0.03 to 0.003 mol equivalents of tri-ortho-tolyl-phosphine and then 0.005 to 0.0005 mol equivalents of palladium (II) acetate (ratio of phosphine to Pd preferably 6: 1) per Br functionality used and heated with very good stirring 2-3 h under reflux.
- the viscosity of the mixture increases too much, it can be diluted with a mixture of 2 volumes of toluene: 3 volumes of dioxane. After a total of 4-6 h reaction time is added to end capping 0.05 mol equivalents per boronic acid functionality of a Monobromaromaten and then 30 min. then 0.05 mol equivalents per Br-functionality of a monoboronic acid or a Monoboronklareesters added and boiled for a further 1 h.
- the mixture is diluted with 300 ml of toluene, the aqueous phase is separated, the organic phase is washed twice with 300 ml of water, dried over magnesium sulfate, filtered through a Celite bed to remove palladium and then concentrated to dryness.
- the polymer is filtered off with suction and washed three times with methanol washed.
- the Umfallvorgang is repeated five times, then the polymer is dried in vacuo to constant weight at 30 - 50 ° C.
- composition in a total concentration of about 100 mmol / L in a solvent (THF, dioxane, xylyl, mesitylene, dimethylacetamide, NMP, DMSO, etc.) dissolved or suspended. Then add 3 mol equivalents of base (potassium fluoride, tripotassium phosphate (anhydrous, monohydrate or trihydrate), potassium carbonate, cesium carbonate, etc. each anhydrous) per Br functionality and the weight equivalent glass beads (3 mm diameter), stirred for 5 min. after, then adds 0.03 to 0.003 mol equivalents of tri-ortho-tolylphosphine and then 0.005 to 0.0005 mol equivalents
- phosphines such as tri-tert-butylphosphine, SPhos, XPhos, RuPhos, XanthPhos, etc.
- the preferred phosphine: palladium ratio being 2: 1 to 1.3: 1 for these phosphines.
- the complexes of the invention have the solubility reported in the table, in the specified solvents at 25 ° C on.
- the comparison with the complexes without Bicyclus according to the invention shows that the solubility of the complexes according to the invention is significantly greater (factor about 10-100).
- the complexes according to the invention have the sublimation temperature and rate specified in the table at a base pressure of about 10.sup.- 5 mbar.
- the comparison with complexes without a bicycle of the invention shows that the sublimation temperature of the complexes according to the invention is lower and the sublimation rate is significantly greater complexes of the invention under the sublimation stable.
- the iridium complexes according to the invention can also be processed from solution and lead there to process technology significantly simpler OLEDs, in comparison to the vacuum-processed OLEDs, with nevertheless good properties.
- the production of such components is based on the production of polymeric light-emitting diodes (PLEDs), which has already been described many times in the literature (eg in WO 2004/037887).
- the structure is composed of substrate / ITO / PEDOT (80 nm) / interlayer (80 nm) / emission layer (80 nm) / cathode.
- substrates from Technoprint Sodalimeglas
- the ITO structure indium tin oxide, a transparent, conductive anode
- the substrates are in the clean room with DI water and a Detergent (Deconex 15 PF) and then activated by a UV / ozone plasma treatment. Thereafter, an 80 nm layer of PEDOT (PEDOT is a polythiophene derivative (Baytron P VAI 4083sp.) From HC Starck, Goslar, which is supplied as an aqueous dispersion) is also applied in the clean room as a buffer layer by spin-coating. The required spin rate depends on the degree of dilution and the specific spin coater geometry (typically 80 nm: 4500 rpm). To remove residual water from the layer, the substrates are baked for 10 minutes at 180 ° C on a hot plate.
- PEDOT is a polythiophene derivative (Baytron P VAI 4083sp.) From HC Starck, Goslar, which is supplied as an aqueous dispersion
- the interlayer used is for hole injection, in this case HIL-012 is used by Merck.
- the interlayer can also be replaced by one or more layers, which merely have to fulfill the condition that they will not be peeled off again by the downstream processing step of the EML deposition from solution.
- the emitters according to the invention are dissolved together with the matrix materials in toluene.
- the typical solids content of such solutions is between 16 and 25 g / L, if, as here, the typical for a device layer thickness of 80 nm is to be achieved by spin coating.
- Type 1 solution-processed devices contain a (polystyrene) emission layer: M5: M6: Ir (L) 3 (20%: 30%: 40%: 10%); Type 2 contains a (polystyrene): M5 emission layer : M6: Ir (LB3) 3 : Ir (L) 3 (20%: 20%: 40%: 15%: 5%).
- the emission layer is spin-coated in an inert gas atmosphere, in this case argon, and baked at 130 ° C. for 30 minutes.
- a cathode is made of barium (5 nm) and aluminum (100 nm) (high purity metals from Aldrich, particularly barium 99.99% (order no 474711).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Electroluminescent Light Sources (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/110,770 US11005050B2 (en) | 2014-01-13 | 2014-12-17 | Metal complexes |
| KR1020167022022A KR102378657B1 (ko) | 2014-01-13 | 2014-12-17 | 금속 착물 |
| JP2016563244A JP6618927B2 (ja) | 2014-01-13 | 2014-12-17 | 金属錯体 |
| CN201480073054.9A CN105916868B (zh) | 2014-01-13 | 2014-12-17 | 金属络合物 |
| EP14818877.4A EP3094638B1 (de) | 2014-01-13 | 2014-12-17 | Metallkomplexe |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP14000105 | 2014-01-13 | ||
| EP14000105.8 | 2014-01-13 | ||
| EP14000345 | 2014-01-30 | ||
| EP14000345.0 | 2014-01-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015104045A1 true WO2015104045A1 (de) | 2015-07-16 |
Family
ID=52146431
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2014/003398 Ceased WO2015104045A1 (de) | 2014-01-13 | 2014-12-17 | Metallkomplexe |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US11005050B2 (enExample) |
| EP (1) | EP3094638B1 (enExample) |
| JP (1) | JP6618927B2 (enExample) |
| KR (1) | KR102378657B1 (enExample) |
| CN (1) | CN105916868B (enExample) |
| TW (1) | TWI660959B (enExample) |
| WO (1) | WO2015104045A1 (enExample) |
Cited By (157)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106146532A (zh) * | 2015-05-15 | 2016-11-23 | 环球展览公司 | 有机电致发光材料和装置 |
| WO2016184540A1 (en) | 2015-05-18 | 2016-11-24 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| JPWO2015151914A1 (ja) * | 2014-04-04 | 2017-04-13 | コニカミノルタ株式会社 | 有機金属錯体の合成方法及び当該合成方法により合成された化合物を用いた有機エレクトロルミネッセンス素子 |
| WO2017080324A1 (zh) * | 2015-11-12 | 2017-05-18 | 广州华睿光电材料有限公司 | 含无机纳米材料的印刷组合物及其应用 |
| WO2017148564A1 (de) | 2016-03-03 | 2017-09-08 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| CN107528004A (zh) * | 2016-06-17 | 2017-12-29 | 三星Sdi株式会社 | 用于有机光电子装置的组合物和有机光电子装置 |
| WO2018050584A1 (de) | 2016-09-14 | 2018-03-22 | Merck Patent Gmbh | Verbindungen mit spirobifluoren-strukturen |
| WO2018050583A1 (de) | 2016-09-14 | 2018-03-22 | Merck Patent Gmbh | Verbindungen mit carbazol-strukturen |
| EP3214085A4 (en) * | 2014-10-31 | 2018-04-11 | Heesung Material Ltd. | Heterocyclic compound and organic light-emitting element using same |
| WO2018087022A1 (de) | 2016-11-09 | 2018-05-17 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2018087346A1 (de) | 2016-11-14 | 2018-05-17 | Merck Patent Gmbh | Verbindungen mit einer akzeptor- und einer donorgruppe |
| WO2018099846A1 (de) | 2016-11-30 | 2018-06-07 | Merck Patent Gmbh | Verbindungen mit valerolaktam-strukturen |
| WO2018104194A1 (de) | 2016-12-05 | 2018-06-14 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2018104195A1 (de) | 2016-12-05 | 2018-06-14 | Merck Patent Gmbh | Stickstoffhaltige heterocyclen zur verwendung in oleds |
| WO2018104193A1 (de) | 2016-12-05 | 2018-06-14 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2018127465A1 (de) | 2017-01-04 | 2018-07-12 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2018138306A1 (de) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2018138039A1 (de) | 2017-01-25 | 2018-08-02 | Merck Patent Gmbh | Carbazolderivate |
| WO2018149769A1 (de) | 2017-02-14 | 2018-08-23 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2018166932A1 (de) | 2017-03-13 | 2018-09-20 | Merck Patent Gmbh | Verbindungen mit arylamin-strukturen |
| WO2018166934A1 (de) | 2017-03-15 | 2018-09-20 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2018215318A1 (de) | 2017-05-22 | 2018-11-29 | Merck Patent Gmbh | Hexazyklische heteroaromatische verbindungen für elektronische vorrichtungen |
| WO2019007866A1 (de) | 2017-07-05 | 2019-01-10 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2019007867A1 (de) | 2017-07-05 | 2019-01-10 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2019052933A1 (de) | 2017-09-12 | 2019-03-21 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2019081391A1 (de) | 2017-10-24 | 2019-05-02 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2019096717A2 (de) | 2017-11-14 | 2019-05-23 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2019121458A1 (de) | 2017-12-19 | 2019-06-27 | Merck Patent Gmbh | Heterocyclische verbindung zur verwendung in electronischen vorrichtungen |
| WO2019145316A1 (de) | 2018-01-25 | 2019-08-01 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2019229011A1 (de) | 2018-05-30 | 2019-12-05 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2019233904A1 (de) | 2018-06-07 | 2019-12-12 | Merck Patent Gmbh | Organische elektrolumineszenzvorrichtungen |
| WO2020011686A1 (de) | 2018-07-09 | 2020-01-16 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2020053315A1 (de) | 2018-09-12 | 2020-03-19 | Merck Patent Gmbh | Elektrolumineszierende vorrichtungen |
| WO2020053150A1 (en) | 2018-09-12 | 2020-03-19 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020053314A1 (de) | 2018-09-12 | 2020-03-19 | Merck Patent Gmbh | Elektrolumineszierende vorrichtungen |
| WO2020064666A1 (de) | 2018-09-27 | 2020-04-02 | Merck Patent Gmbh | Verbindungen, die in einer organischen elektronischen vorrichtung als aktive verbindungen einsetzbar sind |
| WO2020064662A2 (de) | 2018-09-27 | 2020-04-02 | Merck Patent Gmbh | Verfahren zur herstellung von sterisch gehinderten stickstoffhaltigen heteroaromatischen verbindungen |
| WO2020077710A1 (zh) * | 2018-10-19 | 2020-04-23 | 华中科技大学 | 一种聚合物-金属螯合物阴极界面材料及其应用 |
| WO2020094542A1 (de) | 2018-11-06 | 2020-05-14 | Merck Patent Gmbh | 5,6-diphenyl-5,6-dihydro-dibenz[c,e][1,2]azaphosphorin- und 6-phenyl-6h-dibenzo[c,e][1,2]thiazin-5,5-dioxid-derivate und ähnliche verbindungen als organische elektrolumineszenzmaterialien für oleds |
| WO2020094539A1 (de) | 2018-11-05 | 2020-05-14 | Merck Patent Gmbh | In einer organischen elektronischen vorrichtung einsetzbare verbindungen |
| WO2020099307A1 (de) | 2018-11-15 | 2020-05-22 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2020099349A1 (de) | 2018-11-14 | 2020-05-22 | Merck Patent Gmbh | Zur herstellung einer organischen elektronischen vorrichtung einsetzbare verbindungen |
| US10672996B2 (en) | 2015-09-03 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
| US10680188B2 (en) | 2016-11-11 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
| WO2020127165A1 (de) | 2018-12-19 | 2020-06-25 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2020148303A1 (de) | 2019-01-17 | 2020-07-23 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2020165064A1 (de) | 2019-02-11 | 2020-08-20 | Merck Patent Gmbh | Mononukleare iridiumkomplexe mit drei ortho-metallierten bidentaten liganden und optischer orientierungsanisotropie |
| WO2020169241A1 (de) | 2019-02-18 | 2020-08-27 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2020178230A1 (en) | 2019-03-04 | 2020-09-10 | Merck Patent Gmbh | Ligands for nano-sized materials |
| WO2020182779A1 (de) | 2019-03-12 | 2020-09-17 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2020187865A1 (de) | 2019-03-20 | 2020-09-24 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2020193447A1 (de) | 2019-03-25 | 2020-10-01 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2020208051A1 (en) | 2019-04-11 | 2020-10-15 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020212296A1 (de) | 2019-04-15 | 2020-10-22 | Merck Patent Gmbh | Metallkomplexe |
| US10822361B2 (en) | 2017-02-22 | 2020-11-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
| WO2021013775A1 (de) | 2019-07-22 | 2021-01-28 | Merck Patent Gmbh | Verfahren zur herstellung ortho-metallierter metallverbindungen |
| WO2021037401A1 (de) | 2019-08-26 | 2021-03-04 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2021043755A1 (de) | 2019-09-03 | 2021-03-11 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2021043703A1 (de) | 2019-09-02 | 2021-03-11 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2021053046A1 (de) | 2019-09-20 | 2021-03-25 | Merck Patent Gmbh | Peri-kondensierte heterozyklische verbindungen als materialien für elektronische vorrichtungen |
| WO2021052921A1 (de) | 2019-09-19 | 2021-03-25 | Merck Patent Gmbh | Mischung von zwei hostmaterialien und organische elektrolumineszierende vorrichtung damit |
| WO2021078831A1 (de) | 2019-10-25 | 2021-04-29 | Merck Patent Gmbh | In einer organischen elektronischen vorrichtung einsetzbare verbindungen |
| WO2021089447A1 (de) | 2019-11-04 | 2021-05-14 | Merck Patent Gmbh | Organische elektrolumineszierende vorrichtung |
| WO2021089450A1 (en) | 2019-11-04 | 2021-05-14 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2021094269A1 (en) | 2019-11-12 | 2021-05-20 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2021110720A1 (de) | 2019-12-04 | 2021-06-10 | Merck Patent Gmbh | Metallkomplexe |
| WO2021110741A1 (en) | 2019-12-04 | 2021-06-10 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2021122740A1 (de) | 2019-12-19 | 2021-06-24 | Merck Patent Gmbh | Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2021122538A1 (de) | 2019-12-18 | 2021-06-24 | Merck Patent Gmbh | Aromatische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2021122535A1 (de) | 2019-12-17 | 2021-06-24 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2021151922A1 (de) | 2020-01-29 | 2021-08-05 | Merck Patent Gmbh | Benzimidazol-derivate |
| WO2021170522A1 (de) | 2020-02-25 | 2021-09-02 | Merck Patent Gmbh | Verwendung von heterocyclischen verbindungen in einer organischen elektronischen vorrichtung |
| WO2021175706A1 (de) | 2020-03-02 | 2021-09-10 | Merck Patent Gmbh | Verwendung von sulfonverbindungen in einer organischen elektronischen vorrichtung |
| WO2021180625A1 (de) | 2020-03-11 | 2021-09-16 | Merck Patent Gmbh | Organische elektrolumineszierende vorrichtung |
| WO2021180614A1 (de) | 2020-03-11 | 2021-09-16 | Merck Patent Gmbh | Organische elektrolumineszierende vorrichtung |
| WO2021185712A1 (de) | 2020-03-17 | 2021-09-23 | Merck Patent Gmbh | Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2021185829A1 (de) | 2020-03-17 | 2021-09-23 | Merck Patent Gmbh | Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2021191117A1 (de) | 2020-03-24 | 2021-09-30 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2021191183A1 (de) | 2020-03-26 | 2021-09-30 | Merck Patent Gmbh | Cyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2021191058A1 (en) | 2020-03-23 | 2021-09-30 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2021198213A1 (de) | 2020-04-02 | 2021-10-07 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2021204646A1 (de) | 2020-04-06 | 2021-10-14 | Merck Patent Gmbh | Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2021239772A1 (de) | 2020-05-29 | 2021-12-02 | Merck Patent Gmbh | Organische elektrolumineszierende vorrichtung |
| US11201298B2 (en) | 2017-01-09 | 2021-12-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
| WO2021254984A1 (de) | 2020-06-18 | 2021-12-23 | Merck Patent Gmbh | Indenoazanaphthaline |
| WO2021259824A1 (de) | 2020-06-23 | 2021-12-30 | Merck Patent Gmbh | Verfahren zur herstellung einer mischung |
| WO2022002771A1 (de) | 2020-06-29 | 2022-01-06 | Merck Patent Gmbh | Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022002772A1 (de) | 2020-06-29 | 2022-01-06 | Merck Patent Gmbh | Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022029096A1 (de) | 2020-08-06 | 2022-02-10 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022034046A1 (de) | 2020-08-13 | 2022-02-17 | Merck Patent Gmbh | Metallkomplexe |
| WO2022038066A1 (de) | 2020-08-19 | 2022-02-24 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022038065A1 (de) | 2020-08-18 | 2022-02-24 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022069422A1 (de) | 2020-09-30 | 2022-04-07 | Merck Patent Gmbh | Verbindungen zur strukturierung von funktionalen schichten organischer elektrolumineszenzvorrichtungen |
| WO2022069421A1 (de) | 2020-09-30 | 2022-04-07 | Merck Patent Gmbh | Zur strukturierung von funktionalen schichten organischer elektrolumineszenzvorrichtungen einsetzbare verbindungen |
| WO2022079067A1 (de) | 2020-10-16 | 2022-04-21 | Merck Patent Gmbh | Verbindungen mit heteroatomen für organische elektrolumineszenzvorrichtungen |
| WO2022079068A1 (de) | 2020-10-16 | 2022-04-21 | Merck Patent Gmbh | Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022101171A1 (de) | 2020-11-10 | 2022-05-19 | Merck Patent Gmbh | Schwefelhaltige verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022117473A1 (de) | 2020-12-02 | 2022-06-09 | Merck Patent Gmbh | Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022122682A2 (de) | 2020-12-10 | 2022-06-16 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022129116A1 (de) | 2020-12-18 | 2022-06-23 | Merck Patent Gmbh | Indolo[3.2.1-jk]carbazole-6-carbonitril-derivate als blau fluoreszierende emitter zur verwendung in oleds |
| WO2022129113A1 (de) | 2020-12-18 | 2022-06-23 | Merck Patent Gmbh | Stickstoffhaltige heteroaromaten für organische elektrolumineszenzvorrichtungen |
| WO2022129114A1 (de) | 2020-12-18 | 2022-06-23 | Merck Patent Gmbh | Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022148717A1 (de) | 2021-01-05 | 2022-07-14 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022157343A1 (de) | 2021-01-25 | 2022-07-28 | Merck Patent Gmbh | Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022194799A1 (de) | 2021-03-18 | 2022-09-22 | Merck Patent Gmbh | Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022200638A1 (de) | 2021-07-06 | 2022-09-29 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| EP4079742A1 (de) | 2021-04-14 | 2022-10-26 | Merck Patent GmbH | Metallkomplexe |
| WO2022229126A1 (de) | 2021-04-29 | 2022-11-03 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022229234A1 (de) | 2021-04-30 | 2022-11-03 | Merck Patent Gmbh | Stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022229298A1 (de) | 2021-04-29 | 2022-11-03 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022243403A1 (de) | 2021-05-21 | 2022-11-24 | Merck Patent Gmbh | Verfahren zur kontinuierlichen aufreinigung von mindestens einem funktionalen material und vorrichtung zur kontinuierlichen aufreinigung von mindestens einem funktionalen material |
| WO2023036976A1 (en) | 2021-09-13 | 2023-03-16 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2023041454A1 (de) | 2021-09-14 | 2023-03-23 | Merck Patent Gmbh | Borhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2023052275A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023052272A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023052313A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023052314A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023072799A1 (de) | 2021-10-27 | 2023-05-04 | Merck Patent Gmbh | Bor- und stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2023094412A1 (de) | 2021-11-25 | 2023-06-01 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023110742A1 (de) | 2021-12-13 | 2023-06-22 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2023117837A1 (de) | 2021-12-21 | 2023-06-29 | Merck Patent Gmbh | Verfahren zur herstellung von deuterierten organischen verbindungen |
| WO2023152346A1 (de) | 2022-02-14 | 2023-08-17 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023152063A1 (de) | 2022-02-09 | 2023-08-17 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2023161168A1 (de) | 2022-02-23 | 2023-08-31 | Merck Patent Gmbh | Aromatische heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2023161167A1 (de) | 2022-02-23 | 2023-08-31 | Merck Patent Gmbh | Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2023213837A1 (de) | 2022-05-06 | 2023-11-09 | Merck Patent Gmbh | Cyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2023222559A1 (de) | 2022-05-18 | 2023-11-23 | Merck Patent Gmbh | Verfahren zur herstellung von deuterierten organischen verbindungen |
| WO2023247662A1 (de) | 2022-06-24 | 2023-12-28 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2023247663A1 (de) | 2022-06-24 | 2023-12-28 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2024013004A1 (de) | 2022-07-11 | 2024-01-18 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2024033282A1 (en) | 2022-08-09 | 2024-02-15 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2024061948A1 (de) | 2022-09-22 | 2024-03-28 | Merck Patent Gmbh | Stickstoffenthaltende heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2024061942A1 (de) | 2022-09-22 | 2024-03-28 | Merck Patent Gmbh | Stickstoffenthaltende verbindungen für organische elektrolumineszenzvorrichtungen |
| US11950493B2 (en) | 2019-10-15 | 2024-04-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
| WO2024094592A2 (de) | 2022-11-01 | 2024-05-10 | Merck Patent Gmbh | Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2024105066A1 (en) | 2022-11-17 | 2024-05-23 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2024132892A1 (en) | 2022-12-19 | 2024-06-27 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2024132993A1 (de) | 2022-12-19 | 2024-06-27 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2024133048A1 (en) | 2022-12-20 | 2024-06-27 | Merck Patent Gmbh | Method for preparing deuterated aromatic compounds |
| WO2024149694A1 (de) | 2023-01-10 | 2024-07-18 | Merck Patent Gmbh | Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2024153568A1 (de) | 2023-01-17 | 2024-07-25 | Merck Patent Gmbh | Heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2024170609A1 (en) | 2023-02-17 | 2024-08-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2024184050A1 (de) | 2023-03-07 | 2024-09-12 | Merck Patent Gmbh | Cyclische stickstoffverbindungen für organische elektrolumineszenzvorrichtungen |
| WO2024194264A1 (de) | 2023-03-20 | 2024-09-26 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| US12103942B2 (en) | 2019-05-13 | 2024-10-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
| WO2024218109A1 (de) | 2023-04-20 | 2024-10-24 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2024240725A1 (de) | 2023-05-25 | 2024-11-28 | Merck Patent Gmbh | Tris[1,2,4]triazolo[1,5-a:1',5'-c:1'',5''-e][1,3,5]triazin-derivate zur verwendung in organischen elektrolumineszenzvorrichtungen |
| EP4486099A1 (de) | 2023-06-30 | 2025-01-01 | Merck Patent GmbH | Verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2025021855A1 (de) | 2023-07-27 | 2025-01-30 | Merck Patent Gmbh | Materialien für organische lichtemittierende vorrichtungen und organische sensoren |
| WO2025045843A1 (de) | 2023-08-30 | 2025-03-06 | Merck Patent Gmbh | Materialien für organische lichtemittierende vorrichtungen |
| WO2025045842A1 (de) | 2023-08-30 | 2025-03-06 | Merck Patent Gmbh | Materialien für organische lichtemittierende vorrichtungen |
| WO2025045851A1 (de) | 2023-08-30 | 2025-03-06 | Merck Patent Gmbh | Materialien für organische lichtemittierende vorrichtungen |
| WO2025109056A1 (de) | 2023-11-24 | 2025-05-30 | Merck Patent Gmbh | Sauerstoffenthaltende heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2025132551A1 (de) | 2023-12-22 | 2025-06-26 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2025181124A1 (de) | 2024-03-01 | 2025-09-04 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2025181097A1 (de) | 2024-02-29 | 2025-09-04 | Merck Patent Gmbh | Stickstoffenthaltende heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2025181044A1 (de) | 2024-02-29 | 2025-09-04 | Merck Patent Gmbh | Stickstoffenthaltende verbindungen für organische elektrolumineszenzvorrichtungen |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015036078A1 (de) * | 2013-09-11 | 2015-03-19 | Merck Patent Gmbh | Heterocyclische verbindungen |
| WO2016197019A1 (en) * | 2015-06-04 | 2016-12-08 | Jian Li | Transparent electroluminescent devices with controlled one-side emissive displays |
| US10672997B2 (en) * | 2016-06-20 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
| JP7064487B2 (ja) * | 2016-10-12 | 2022-05-10 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 金属錯体 |
| US11276829B2 (en) * | 2017-03-31 | 2022-03-15 | Universal Display Corporation | Organic electroluminescent materials and devices |
| CN107163086B (zh) * | 2017-06-12 | 2019-08-02 | 安徽工业大学 | 一种含烷基位阻基团的哒嗪类铱配合物及其制备方法和应用 |
| KR102360782B1 (ko) * | 2017-07-20 | 2022-02-10 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
| US11214587B2 (en) | 2017-11-07 | 2022-01-04 | Universal Display Corporation | Organic electroluminescent materials and devices |
| US11515493B2 (en) * | 2018-01-11 | 2022-11-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
| US11180519B2 (en) | 2018-02-09 | 2021-11-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
| US11459348B2 (en) * | 2018-04-02 | 2022-10-04 | Samsung Electronics Co., Ltd. | Organometallic compound, organic light-emitting device including the same, and diagnostic composition including the organometallic compound |
| CN108250228B (zh) * | 2018-04-13 | 2020-05-15 | 上海泰坦科技股份有限公司 | 一种杂环硼酸化合物的制备方法 |
| US11342513B2 (en) | 2018-05-04 | 2022-05-24 | Universal Display Corporation | Organic electroluminescent materials and devices |
| US11404653B2 (en) * | 2018-06-04 | 2022-08-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
| CN108948097A (zh) * | 2018-08-02 | 2018-12-07 | 瑞声科技(南京)有限公司 | 具有苯并环烷烃配体的金属配合物及其应用 |
| CN111087414A (zh) * | 2018-12-17 | 2020-05-01 | 广州华睿光电材料有限公司 | 过渡金属配合物、聚合物、混合物、组合物及有机电子器件 |
| KR102819939B1 (ko) | 2019-04-08 | 2025-06-13 | 삼성디스플레이 주식회사 | 유기금속 화합물 및 이를 포함한 유기 발광 소자 |
| JP7603392B2 (ja) * | 2020-07-31 | 2024-12-20 | 住友化学株式会社 | 金属錯体、組成物、膜及び発光素子 |
| US12435102B2 (en) | 2020-10-02 | 2025-10-07 | Universal Display Corporation | Organic electroluminescent materials and devices |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011157339A1 (de) * | 2010-06-15 | 2011-12-22 | Merck Patent Gmbh | Metallkomplexe |
| WO2014094961A1 (de) * | 2012-12-21 | 2014-06-26 | Merck Patent Gmbh | Metallkomplexe |
| WO2014094962A2 (de) * | 2012-12-21 | 2014-06-26 | Merck Patent Gmbh | Metallkomplexe |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007097149A1 (ja) | 2006-02-20 | 2007-08-30 | Konica Minolta Holdings, Inc. | 有機エレクトロルミネッセンス素子、白色発光素子、表示装置、及び照明装置 |
| DE102009007038A1 (de) | 2009-02-02 | 2010-08-05 | Merck Patent Gmbh | Metallkomplexe |
| JP5978843B2 (ja) * | 2012-02-02 | 2016-08-24 | コニカミノルタ株式会社 | イリジウム錯体化合物、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置 |
| KR102192286B1 (ko) * | 2012-08-07 | 2020-12-17 | 메르크 파텐트 게엠베하 | 금속 착물 |
| WO2014094960A1 (de) | 2012-12-21 | 2014-06-26 | Merck Patent Gmbh | Metallkomplexe |
-
2014
- 2014-12-17 WO PCT/EP2014/003398 patent/WO2015104045A1/de not_active Ceased
- 2014-12-17 JP JP2016563244A patent/JP6618927B2/ja active Active
- 2014-12-17 EP EP14818877.4A patent/EP3094638B1/de active Active
- 2014-12-17 US US15/110,770 patent/US11005050B2/en active Active
- 2014-12-17 KR KR1020167022022A patent/KR102378657B1/ko active Active
- 2014-12-17 CN CN201480073054.9A patent/CN105916868B/zh active Active
-
2015
- 2015-01-09 TW TW104100734A patent/TWI660959B/zh active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011157339A1 (de) * | 2010-06-15 | 2011-12-22 | Merck Patent Gmbh | Metallkomplexe |
| WO2014094961A1 (de) * | 2012-12-21 | 2014-06-26 | Merck Patent Gmbh | Metallkomplexe |
| WO2014094962A2 (de) * | 2012-12-21 | 2014-06-26 | Merck Patent Gmbh | Metallkomplexe |
Non-Patent Citations (1)
| Title |
|---|
| DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 2011, STOESSEL, PHILIPP ET AL: "Transition metal cyclometalated 2-arylbenzimidazole complexes as blue phosphorescent materials for organic light-emitting devices", XP002736352, retrieved from STN Database accession no. 2011:1654765 * |
Cited By (184)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10862053B2 (en) | 2014-04-04 | 2020-12-08 | Konica Minolta, Inc. | Method for synthesizing organic metal complex and organic electroluminescent element using compound synthesized by said synthesis method |
| JPWO2015151914A1 (ja) * | 2014-04-04 | 2017-04-13 | コニカミノルタ株式会社 | 有機金属錯体の合成方法及び当該合成方法により合成された化合物を用いた有機エレクトロルミネッセンス素子 |
| US10454043B2 (en) | 2014-10-31 | 2019-10-22 | Heesung Material Ltd. | Heterocyclic compound and organic light-emitting element using same |
| EP3214085A4 (en) * | 2014-10-31 | 2018-04-11 | Heesung Material Ltd. | Heterocyclic compound and organic light-emitting element using same |
| US12035614B2 (en) | 2015-05-15 | 2024-07-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
| EP3929201A1 (en) * | 2015-05-15 | 2021-12-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
| US10547013B2 (en) | 2015-05-15 | 2020-01-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
| USRE48809E1 (en) | 2015-05-15 | 2021-11-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
| US9859510B2 (en) | 2015-05-15 | 2018-01-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
| CN106146532B (zh) * | 2015-05-15 | 2020-07-28 | 环球展览公司 | 有机电致发光材料和装置 |
| CN106146532A (zh) * | 2015-05-15 | 2016-11-23 | 环球展览公司 | 有机电致发光材料和装置 |
| EP3098229A1 (en) * | 2015-05-15 | 2016-11-30 | Universal Display Corporation | Organic electroluminescent materials and devices |
| US11335864B2 (en) | 2015-05-15 | 2022-05-17 | Universal Display Corporation | Organic electroluminescent materials and devices |
| WO2016184540A1 (en) | 2015-05-18 | 2016-11-24 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| US10672996B2 (en) | 2015-09-03 | 2020-06-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
| US11626563B2 (en) | 2015-09-03 | 2023-04-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
| WO2017080324A1 (zh) * | 2015-11-12 | 2017-05-18 | 广州华睿光电材料有限公司 | 含无机纳米材料的印刷组合物及其应用 |
| WO2017148565A1 (de) | 2016-03-03 | 2017-09-08 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2017148564A1 (de) | 2016-03-03 | 2017-09-08 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| CN107528004A (zh) * | 2016-06-17 | 2017-12-29 | 三星Sdi株式会社 | 用于有机光电子装置的组合物和有机光电子装置 |
| CN107528004B (zh) * | 2016-06-17 | 2019-06-14 | 三星Sdi株式会社 | 用于有机光电子装置的组合物和有机光电子装置 |
| WO2018050583A1 (de) | 2016-09-14 | 2018-03-22 | Merck Patent Gmbh | Verbindungen mit carbazol-strukturen |
| WO2018050584A1 (de) | 2016-09-14 | 2018-03-22 | Merck Patent Gmbh | Verbindungen mit spirobifluoren-strukturen |
| WO2018087022A1 (de) | 2016-11-09 | 2018-05-17 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| US10680188B2 (en) | 2016-11-11 | 2020-06-09 | Universal Display Corporation | Organic electroluminescent materials and devices |
| US11069864B2 (en) | 2016-11-11 | 2021-07-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
| EP4271163A2 (de) | 2016-11-14 | 2023-11-01 | Merck Patent GmbH | Verbindungen mit einer akzeptor- und einer donorgruppe |
| WO2018087346A1 (de) | 2016-11-14 | 2018-05-17 | Merck Patent Gmbh | Verbindungen mit einer akzeptor- und einer donorgruppe |
| WO2018099846A1 (de) | 2016-11-30 | 2018-06-07 | Merck Patent Gmbh | Verbindungen mit valerolaktam-strukturen |
| EP3978491A1 (de) | 2016-12-05 | 2022-04-06 | Merck Patent GmbH | Stickstoffhaltige heterocyclen zur verwendung in oleds |
| WO2018104193A1 (de) | 2016-12-05 | 2018-06-14 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2018104195A1 (de) | 2016-12-05 | 2018-06-14 | Merck Patent Gmbh | Stickstoffhaltige heterocyclen zur verwendung in oleds |
| WO2018104194A1 (de) | 2016-12-05 | 2018-06-14 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2018127465A1 (de) | 2017-01-04 | 2018-07-12 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| US11201298B2 (en) | 2017-01-09 | 2021-12-14 | Universal Display Corporation | Organic electroluminescent materials and devices |
| WO2018138039A1 (de) | 2017-01-25 | 2018-08-02 | Merck Patent Gmbh | Carbazolderivate |
| WO2018138306A1 (de) | 2017-01-30 | 2018-08-02 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2018149769A1 (de) | 2017-02-14 | 2018-08-23 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| US11697661B2 (en) | 2017-02-22 | 2023-07-11 | Universal Display Corporation | Organic electroluminescent materials and devices |
| US10822361B2 (en) | 2017-02-22 | 2020-11-03 | Universal Display Corporation | Organic electroluminescent materials and devices |
| WO2018166932A1 (de) | 2017-03-13 | 2018-09-20 | Merck Patent Gmbh | Verbindungen mit arylamin-strukturen |
| WO2018166934A1 (de) | 2017-03-15 | 2018-09-20 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2018215318A1 (de) | 2017-05-22 | 2018-11-29 | Merck Patent Gmbh | Hexazyklische heteroaromatische verbindungen für elektronische vorrichtungen |
| EP4186898A1 (de) | 2017-07-05 | 2023-05-31 | Merck Patent GmbH | Zusammensetzung für organische elektronische verbindungen |
| WO2019007866A1 (de) | 2017-07-05 | 2019-01-10 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2019007867A1 (de) | 2017-07-05 | 2019-01-10 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2019052933A1 (de) | 2017-09-12 | 2019-03-21 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2019081391A1 (de) | 2017-10-24 | 2019-05-02 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2019096717A2 (de) | 2017-11-14 | 2019-05-23 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2019121458A1 (de) | 2017-12-19 | 2019-06-27 | Merck Patent Gmbh | Heterocyclische verbindung zur verwendung in electronischen vorrichtungen |
| WO2019145316A1 (de) | 2018-01-25 | 2019-08-01 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2019229011A1 (de) | 2018-05-30 | 2019-12-05 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2019233904A1 (de) | 2018-06-07 | 2019-12-12 | Merck Patent Gmbh | Organische elektrolumineszenzvorrichtungen |
| WO2020011686A1 (de) | 2018-07-09 | 2020-01-16 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| DE202019005923U1 (de) | 2018-09-12 | 2023-06-27 | MERCK Patent Gesellschaft mit beschränkter Haftung | Elektrolumineszierende Vorrichtungen |
| WO2020053314A1 (de) | 2018-09-12 | 2020-03-19 | Merck Patent Gmbh | Elektrolumineszierende vorrichtungen |
| DE202019005924U1 (de) | 2018-09-12 | 2023-05-10 | MERCK Patent Gesellschaft mit beschränkter Haftung | Elektrolumineszierende Vorrichtungen |
| WO2020053150A1 (en) | 2018-09-12 | 2020-03-19 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020053315A1 (de) | 2018-09-12 | 2020-03-19 | Merck Patent Gmbh | Elektrolumineszierende vorrichtungen |
| WO2020064666A1 (de) | 2018-09-27 | 2020-04-02 | Merck Patent Gmbh | Verbindungen, die in einer organischen elektronischen vorrichtung als aktive verbindungen einsetzbar sind |
| EP4601449A3 (de) * | 2018-09-27 | 2025-09-17 | Merck Patent GmbH | Verbindungen, die in einer organischen elektronischen vorrichtung als aktive verbindungen einsetzbar sind |
| EP4190880A1 (de) | 2018-09-27 | 2023-06-07 | Merck Patent GmbH | Verbindungen, die in einer organischen elektronischen vorrichtung als aktive verbindungen einsetzbar sind |
| EP4601449A2 (de) | 2018-09-27 | 2025-08-13 | Merck Patent GmbH | Verbindungen, die in einer organischen elektronischen vorrichtung als aktive verbindungen einsetzbar sind |
| US12178124B2 (en) | 2018-09-27 | 2024-12-24 | Merck Kgaa | Compounds that can be used in an organic electronic device as active compounds |
| WO2020064662A2 (de) | 2018-09-27 | 2020-04-02 | Merck Patent Gmbh | Verfahren zur herstellung von sterisch gehinderten stickstoffhaltigen heteroaromatischen verbindungen |
| WO2020077710A1 (zh) * | 2018-10-19 | 2020-04-23 | 华中科技大学 | 一种聚合物-金属螯合物阴极界面材料及其应用 |
| WO2020094539A1 (de) | 2018-11-05 | 2020-05-14 | Merck Patent Gmbh | In einer organischen elektronischen vorrichtung einsetzbare verbindungen |
| WO2020094542A1 (de) | 2018-11-06 | 2020-05-14 | Merck Patent Gmbh | 5,6-diphenyl-5,6-dihydro-dibenz[c,e][1,2]azaphosphorin- und 6-phenyl-6h-dibenzo[c,e][1,2]thiazin-5,5-dioxid-derivate und ähnliche verbindungen als organische elektrolumineszenzmaterialien für oleds |
| WO2020099349A1 (de) | 2018-11-14 | 2020-05-22 | Merck Patent Gmbh | Zur herstellung einer organischen elektronischen vorrichtung einsetzbare verbindungen |
| WO2020099307A1 (de) | 2018-11-15 | 2020-05-22 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2020127165A1 (de) | 2018-12-19 | 2020-06-25 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2020148303A1 (de) | 2019-01-17 | 2020-07-23 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| TWI850329B (zh) * | 2019-02-11 | 2024-08-01 | 愛爾蘭商Udc愛爾蘭責任有限公司 | 金屬錯合物 |
| CN113383002B (zh) * | 2019-02-11 | 2024-08-20 | Udc爱尔兰有限公司 | 含有三个邻位金属化双齿配体和光学定向各向异性的单核铱络合物 |
| WO2020165064A1 (de) | 2019-02-11 | 2020-08-20 | Merck Patent Gmbh | Mononukleare iridiumkomplexe mit drei ortho-metallierten bidentaten liganden und optischer orientierungsanisotropie |
| CN113383002A (zh) * | 2019-02-11 | 2021-09-10 | 默克专利有限公司 | 含有三个邻位金属化双齿配体和光学定向各向异性的单核铱络合物 |
| WO2020169241A1 (de) | 2019-02-18 | 2020-08-27 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2020178230A1 (en) | 2019-03-04 | 2020-09-10 | Merck Patent Gmbh | Ligands for nano-sized materials |
| WO2020182779A1 (de) | 2019-03-12 | 2020-09-17 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2020187865A1 (de) | 2019-03-20 | 2020-09-24 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2020193447A1 (de) | 2019-03-25 | 2020-10-01 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2020208051A1 (en) | 2019-04-11 | 2020-10-15 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020212296A1 (de) | 2019-04-15 | 2020-10-22 | Merck Patent Gmbh | Metallkomplexe |
| US12103942B2 (en) | 2019-05-13 | 2024-10-01 | Universal Display Corporation | Organic electroluminescent materials and devices |
| WO2021013775A1 (de) | 2019-07-22 | 2021-01-28 | Merck Patent Gmbh | Verfahren zur herstellung ortho-metallierter metallverbindungen |
| WO2021037401A1 (de) | 2019-08-26 | 2021-03-04 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2021043703A1 (de) | 2019-09-02 | 2021-03-11 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2021043755A1 (de) | 2019-09-03 | 2021-03-11 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2021052921A1 (de) | 2019-09-19 | 2021-03-25 | Merck Patent Gmbh | Mischung von zwei hostmaterialien und organische elektrolumineszierende vorrichtung damit |
| WO2021053046A1 (de) | 2019-09-20 | 2021-03-25 | Merck Patent Gmbh | Peri-kondensierte heterozyklische verbindungen als materialien für elektronische vorrichtungen |
| US11950493B2 (en) | 2019-10-15 | 2024-04-02 | Universal Display Corporation | Organic electroluminescent materials and devices |
| WO2021078831A1 (de) | 2019-10-25 | 2021-04-29 | Merck Patent Gmbh | In einer organischen elektronischen vorrichtung einsetzbare verbindungen |
| WO2021089450A1 (en) | 2019-11-04 | 2021-05-14 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2021089447A1 (de) | 2019-11-04 | 2021-05-14 | Merck Patent Gmbh | Organische elektrolumineszierende vorrichtung |
| WO2021094269A1 (en) | 2019-11-12 | 2021-05-20 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2021110720A1 (de) | 2019-12-04 | 2021-06-10 | Merck Patent Gmbh | Metallkomplexe |
| WO2021110741A1 (en) | 2019-12-04 | 2021-06-10 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2021122535A1 (de) | 2019-12-17 | 2021-06-24 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2021122538A1 (de) | 2019-12-18 | 2021-06-24 | Merck Patent Gmbh | Aromatische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2021122740A1 (de) | 2019-12-19 | 2021-06-24 | Merck Patent Gmbh | Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2021151922A1 (de) | 2020-01-29 | 2021-08-05 | Merck Patent Gmbh | Benzimidazol-derivate |
| WO2021170522A1 (de) | 2020-02-25 | 2021-09-02 | Merck Patent Gmbh | Verwendung von heterocyclischen verbindungen in einer organischen elektronischen vorrichtung |
| WO2021175706A1 (de) | 2020-03-02 | 2021-09-10 | Merck Patent Gmbh | Verwendung von sulfonverbindungen in einer organischen elektronischen vorrichtung |
| WO2021180625A1 (de) | 2020-03-11 | 2021-09-16 | Merck Patent Gmbh | Organische elektrolumineszierende vorrichtung |
| WO2021180614A1 (de) | 2020-03-11 | 2021-09-16 | Merck Patent Gmbh | Organische elektrolumineszierende vorrichtung |
| WO2021185712A1 (de) | 2020-03-17 | 2021-09-23 | Merck Patent Gmbh | Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2021185829A1 (de) | 2020-03-17 | 2021-09-23 | Merck Patent Gmbh | Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2021191058A1 (en) | 2020-03-23 | 2021-09-30 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2021191117A1 (de) | 2020-03-24 | 2021-09-30 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2021191183A1 (de) | 2020-03-26 | 2021-09-30 | Merck Patent Gmbh | Cyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2021198213A1 (de) | 2020-04-02 | 2021-10-07 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2021204646A1 (de) | 2020-04-06 | 2021-10-14 | Merck Patent Gmbh | Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2021239772A1 (de) | 2020-05-29 | 2021-12-02 | Merck Patent Gmbh | Organische elektrolumineszierende vorrichtung |
| WO2021254984A1 (de) | 2020-06-18 | 2021-12-23 | Merck Patent Gmbh | Indenoazanaphthaline |
| WO2021259824A1 (de) | 2020-06-23 | 2021-12-30 | Merck Patent Gmbh | Verfahren zur herstellung einer mischung |
| WO2022002772A1 (de) | 2020-06-29 | 2022-01-06 | Merck Patent Gmbh | Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022002771A1 (de) | 2020-06-29 | 2022-01-06 | Merck Patent Gmbh | Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022029096A1 (de) | 2020-08-06 | 2022-02-10 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022034046A1 (de) | 2020-08-13 | 2022-02-17 | Merck Patent Gmbh | Metallkomplexe |
| WO2022038065A1 (de) | 2020-08-18 | 2022-02-24 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022038066A1 (de) | 2020-08-19 | 2022-02-24 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022069422A1 (de) | 2020-09-30 | 2022-04-07 | Merck Patent Gmbh | Verbindungen zur strukturierung von funktionalen schichten organischer elektrolumineszenzvorrichtungen |
| WO2022069421A1 (de) | 2020-09-30 | 2022-04-07 | Merck Patent Gmbh | Zur strukturierung von funktionalen schichten organischer elektrolumineszenzvorrichtungen einsetzbare verbindungen |
| WO2022079068A1 (de) | 2020-10-16 | 2022-04-21 | Merck Patent Gmbh | Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022079067A1 (de) | 2020-10-16 | 2022-04-21 | Merck Patent Gmbh | Verbindungen mit heteroatomen für organische elektrolumineszenzvorrichtungen |
| WO2022101171A1 (de) | 2020-11-10 | 2022-05-19 | Merck Patent Gmbh | Schwefelhaltige verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022117473A1 (de) | 2020-12-02 | 2022-06-09 | Merck Patent Gmbh | Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022122682A2 (de) | 2020-12-10 | 2022-06-16 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022129116A1 (de) | 2020-12-18 | 2022-06-23 | Merck Patent Gmbh | Indolo[3.2.1-jk]carbazole-6-carbonitril-derivate als blau fluoreszierende emitter zur verwendung in oleds |
| WO2022129113A1 (de) | 2020-12-18 | 2022-06-23 | Merck Patent Gmbh | Stickstoffhaltige heteroaromaten für organische elektrolumineszenzvorrichtungen |
| WO2022129114A1 (de) | 2020-12-18 | 2022-06-23 | Merck Patent Gmbh | Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022148717A1 (de) | 2021-01-05 | 2022-07-14 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022157343A1 (de) | 2021-01-25 | 2022-07-28 | Merck Patent Gmbh | Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022194799A1 (de) | 2021-03-18 | 2022-09-22 | Merck Patent Gmbh | Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen |
| EP4079742A1 (de) | 2021-04-14 | 2022-10-26 | Merck Patent GmbH | Metallkomplexe |
| WO2022229126A1 (de) | 2021-04-29 | 2022-11-03 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022229298A1 (de) | 2021-04-29 | 2022-11-03 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2022229234A1 (de) | 2021-04-30 | 2022-11-03 | Merck Patent Gmbh | Stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2022243403A1 (de) | 2021-05-21 | 2022-11-24 | Merck Patent Gmbh | Verfahren zur kontinuierlichen aufreinigung von mindestens einem funktionalen material und vorrichtung zur kontinuierlichen aufreinigung von mindestens einem funktionalen material |
| WO2022200638A1 (de) | 2021-07-06 | 2022-09-29 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2023036976A1 (en) | 2021-09-13 | 2023-03-16 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2023041454A1 (de) | 2021-09-14 | 2023-03-23 | Merck Patent Gmbh | Borhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2023052313A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023052314A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023052275A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023052272A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023072799A1 (de) | 2021-10-27 | 2023-05-04 | Merck Patent Gmbh | Bor- und stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2023094412A1 (de) | 2021-11-25 | 2023-06-01 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023110742A1 (de) | 2021-12-13 | 2023-06-22 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2023117837A1 (de) | 2021-12-21 | 2023-06-29 | Merck Patent Gmbh | Verfahren zur herstellung von deuterierten organischen verbindungen |
| WO2023152063A1 (de) | 2022-02-09 | 2023-08-17 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2023152346A1 (de) | 2022-02-14 | 2023-08-17 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023161167A1 (de) | 2022-02-23 | 2023-08-31 | Merck Patent Gmbh | Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2023161168A1 (de) | 2022-02-23 | 2023-08-31 | Merck Patent Gmbh | Aromatische heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2023213837A1 (de) | 2022-05-06 | 2023-11-09 | Merck Patent Gmbh | Cyclische verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2023222559A1 (de) | 2022-05-18 | 2023-11-23 | Merck Patent Gmbh | Verfahren zur herstellung von deuterierten organischen verbindungen |
| WO2023247662A1 (de) | 2022-06-24 | 2023-12-28 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2023247663A1 (de) | 2022-06-24 | 2023-12-28 | Merck Patent Gmbh | Zusammensetzung für organische elektronische vorrichtungen |
| WO2024013004A1 (de) | 2022-07-11 | 2024-01-18 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2024033282A1 (en) | 2022-08-09 | 2024-02-15 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2024061948A1 (de) | 2022-09-22 | 2024-03-28 | Merck Patent Gmbh | Stickstoffenthaltende heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2024061942A1 (de) | 2022-09-22 | 2024-03-28 | Merck Patent Gmbh | Stickstoffenthaltende verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2024094592A2 (de) | 2022-11-01 | 2024-05-10 | Merck Patent Gmbh | Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2024105066A1 (en) | 2022-11-17 | 2024-05-23 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2024132892A1 (en) | 2022-12-19 | 2024-06-27 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2024132993A1 (de) | 2022-12-19 | 2024-06-27 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2024133048A1 (en) | 2022-12-20 | 2024-06-27 | Merck Patent Gmbh | Method for preparing deuterated aromatic compounds |
| WO2024149694A1 (de) | 2023-01-10 | 2024-07-18 | Merck Patent Gmbh | Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2024153568A1 (de) | 2023-01-17 | 2024-07-25 | Merck Patent Gmbh | Heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2024170609A1 (en) | 2023-02-17 | 2024-08-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2024184050A1 (de) | 2023-03-07 | 2024-09-12 | Merck Patent Gmbh | Cyclische stickstoffverbindungen für organische elektrolumineszenzvorrichtungen |
| WO2024194264A1 (de) | 2023-03-20 | 2024-09-26 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
| WO2024218109A1 (de) | 2023-04-20 | 2024-10-24 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2024240725A1 (de) | 2023-05-25 | 2024-11-28 | Merck Patent Gmbh | Tris[1,2,4]triazolo[1,5-a:1',5'-c:1'',5''-e][1,3,5]triazin-derivate zur verwendung in organischen elektrolumineszenzvorrichtungen |
| EP4486099A1 (de) | 2023-06-30 | 2025-01-01 | Merck Patent GmbH | Verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2025021855A1 (de) | 2023-07-27 | 2025-01-30 | Merck Patent Gmbh | Materialien für organische lichtemittierende vorrichtungen und organische sensoren |
| WO2025045843A1 (de) | 2023-08-30 | 2025-03-06 | Merck Patent Gmbh | Materialien für organische lichtemittierende vorrichtungen |
| WO2025045842A1 (de) | 2023-08-30 | 2025-03-06 | Merck Patent Gmbh | Materialien für organische lichtemittierende vorrichtungen |
| WO2025045851A1 (de) | 2023-08-30 | 2025-03-06 | Merck Patent Gmbh | Materialien für organische lichtemittierende vorrichtungen |
| WO2025109056A1 (de) | 2023-11-24 | 2025-05-30 | Merck Patent Gmbh | Sauerstoffenthaltende heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2025132551A1 (de) | 2023-12-22 | 2025-06-26 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2025181097A1 (de) | 2024-02-29 | 2025-09-04 | Merck Patent Gmbh | Stickstoffenthaltende heterocyclen für organische elektrolumineszenzvorrichtungen |
| WO2025181044A1 (de) | 2024-02-29 | 2025-09-04 | Merck Patent Gmbh | Stickstoffenthaltende verbindungen für organische elektrolumineszenzvorrichtungen |
| WO2025181124A1 (de) | 2024-03-01 | 2025-09-04 | Merck Patent Gmbh | Materialien für organische elektrolumineszenzvorrichtungen |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6618927B2 (ja) | 2019-12-11 |
| US20160365520A1 (en) | 2016-12-15 |
| CN105916868A (zh) | 2016-08-31 |
| TWI660959B (zh) | 2019-06-01 |
| EP3094638A1 (de) | 2016-11-23 |
| US11005050B2 (en) | 2021-05-11 |
| EP3094638B1 (de) | 2017-11-08 |
| KR102378657B1 (ko) | 2022-03-24 |
| TW201540720A (zh) | 2015-11-01 |
| JP2017503856A (ja) | 2017-02-02 |
| CN105916868B (zh) | 2020-06-23 |
| KR20160107305A (ko) | 2016-09-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3094638B1 (de) | Metallkomplexe | |
| EP2882763B1 (de) | Metallkomplexe | |
| EP2906575B1 (de) | Metallkomplexe | |
| EP2935291B1 (de) | Iridiumkomplexe und deren verwendung in oligomeren, polymeren oder dendrimeren in elektronischen vorrichtungen | |
| EP3102650B1 (de) | Metallkomplexe | |
| EP3044284B1 (de) | Metallkomplexe | |
| DE112011102366B4 (de) | Metallkomplexe | |
| EP3046927B1 (de) | Polycyclische phenyl-pyridin iridiumkomplexe und derivate davon für oled | |
| EP2935292B1 (de) | Metallkomplexe | |
| EP3160976B1 (de) | Metallkomplexe | |
| WO2016015815A1 (de) | Metallkomplexe | |
| EP3526226A1 (de) | Metallkomplexe | |
| EP3526228A1 (de) | Metallkomplexe | |
| EP3328872B1 (de) | Elektrolumineszierende überbrückte metallkomplexe zur verwendung in elektronischen vorrichtungen | |
| EP3532480A1 (de) | Metallkomplexe | |
| WO2014044347A1 (de) | Metallkomplexe | |
| WO2020212296A1 (de) | Metallkomplexe | |
| EP4069709B1 (de) | Metallkomplexe | |
| DE102015006708A1 (de) | Metallkomplexe | |
| WO2017097397A1 (de) | Metallkomplexe |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14818877 Country of ref document: EP Kind code of ref document: A1 |
|
| REEP | Request for entry into the european phase |
Ref document number: 2014818877 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014818877 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 15110770 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2016563244 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20167022022 Country of ref document: KR Kind code of ref document: A |